
Towards Use-Case Driven
Self-Management of Distributed

Systems

Reza Haydarlou

ii

Towards Use-Case Driven
Self-Management of Distributed

Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. ir. K.Ch.A.M. Luyben,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 29 november 2011 om 15:00 uur

door

Ali Reza HAYDARLOU

doctorandus in de informatica
geboren te Khoy, Iran.

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. F.M.T. Brazier

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. F.M.T. Brazier Technische Universiteit Delft, promotor
Dr. M.A. Oey Technische Universiteit Delft, co-promotor
Prof. dr. S. Dobson University of St Andrews
Prof. dr. A. Plaat Universiteit van Tilburg
Prof. dr. A. van Deursen Technische Universiteit Delft
Prof. dr. Y-H. Tan Technische Universiteit Delft
Dr. P.H.G. van Langen Technische Universiteit Delft, advisor

Cover design by Shadi Haydarlou
Copyright c© 2011 by A.R. Haydarlou

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilised in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage and
retrieval system, without the prior permission of the author.

ISBN 978-90-8570-625-0

To my late parents who always encouraged me to explore science, and
to my children, Shadi and Poeya, hoping they will pursue science...

iv

Acknowledgements

For the realisation of this thesis, I have benefited from the support, guidance,
and encouragement of many people. They helped me in completing my PhD
research journey. I am deeply indebted to them. First of all, I would like to
thank my promotor Frances Brazier. She gave me the opportunity to enter into
the fascinating world of scientific research. She guided me to elevate the different
aspects of the research topics to a higher level of abstraction. I am also grateful
to Benno Overeinder who was my weekly supervisor at the time the IIDS group
was established at the VU University Amsterdam.

I owe special thanks to two people, Michel Oey (my co-promotor) and Martijn
Warnier. I learned a lot from both of you during the writing of this thesis. You
inspired me, contributed to my thinking, and helped me to advance my knowledge
in different areas. You spent a lot of time and effort to review each chapter page
by page, and gave me both high level and in-depth feedback.

My gratitude also goes to all members of my thesis committee for their effort
to read my thesis and provide me with valuable comments. Your comments have
deepened my thinking on some topics in this thesis.

During my PhD research trajectory at the VU University Amsterdam and Delft
University of Technology, I had the pleasure to work with wonderful colleagues. I
would especially like to thank Sander van Splunter, Kassidy Clark, and Evange-
los Pournaras for supporting and encouraging me in writing this thesis. I would
also like to thank Elth Ogston, David Mobach, Thomas Quillinan, Reinier Tim-
mer, Rick van Krevelen, Jordan Janeiro, Jan-Paul van Staalduinen, Çağri Tekinay,
Mohsen Davarynejad, Tanja Buttler, Jonatan Bijl, Maartje van den Bogaard, Yilin
Huang, Thieme Hennis, Selin Ebeci, Mingxin Zhang, Alireza Rezaee, and other
colleagues of the Systems Engineering section; thank you all for creating a warm,
friendly, interesting, funny, and great atmosphere. Also many thanks to Sabrina
Rodrigues and Everdine de Vreede-Volkers for their valuable administrative sup-
port.

I would like to express my gratitude to my family and friends, especially to
my dear wife Karin Dekker. Without her patience, continuing support, and love,
this thesis would not have been accomplished. Thank you for supporting and
encouraging me through all these years.

Delft, Reza Haydarlou
October 2011

v

vi Acknowledgements

Contents

Acknowledgements v

1 Introduction 1
1.1 Management of Distributed systems 2
1.2 Management of Behaviour . 2
1.3 Autonomic Computing Model . 3
1.4 Research Objective . 5
1.5 Research Question . 6
1.6 Research Approach . 6
1.7 Contributions . 7
1.8 Thesis Outline . 8

2 Related Work & Positioning 11
2.1 Autonomic Systems: System Organisation 11

2.1.1 Unstructured Autonomic Systems 12
2.1.2 Dynamically Structured Autonomic Systems 14
2.1.3 Statically Structured Autonomic Systems 15

2.2 Autonomic Systems: Domains of Application 17
2.2.1 Management Unit Perspective 17
2.2.2 Knowledge Utilisation Perspective 19

2.3 Framework Positioning . 19

3 Use-case Driven Self-Management 23
3.1 Introduction . 24

3.1.1 Behavioural Complexity . 24
3.1.2 Structural Complexity . 25

3.2 Basic Unit of Management . 26
3.3 Reusing Available Knowledge . 28
3.4 Use-Cases . 29
3.5 Use-Case Levels . 31
3.6 Use-Case References . 34

3.6.1 Horizontal References . 34
3.6.2 Vertical References . 35

3.7 An Example Scenario . 37

vii

viii Contents

3.7.1 System Level View . 39

3.7.2 Runnable Level View . 39

3.7.3 Component Level View . 42

3.7.4 Class Level View . 43

3.8 Summary . 44

4 The Management Model 45

4.1 Introduction . 46

4.2 Management Model Overview . 46

4.2.1 High Level Overview . 46

4.2.2 A Failure Scenario . 48

4.3 Analyser . 49

4.4 Diagnoser . 51

4.5 Planner . 56

4.6 Plan Translator . 58

4.7 Autonomic Manager . 59

4.7.1 Autonomic Manager’s Process 60

4.7.2 Relationship between Autonomic Managers 62

4.8 Information Flow Entities . 64

4.8.1 Sensors . 64

4.8.2 Symptoms . 67

4.8.3 Hypotheses . 68

4.8.4 Plans . 69

4.8.5 Effectors . 72

4.9 Related Work . 72

4.10 Summary . 80

5 The System Model 81

5.1 Behavioural Model . 81

5.1.1 Job . 82

5.1.2 Task . 83

5.1.3 State . 85

5.1.4 Event . 86

5.2 Structural Model . 87

5.2.1 Managed System . 88

5.2.2 Managed Runnable . 88

5.2.3 Managed Connector . 90

5.2.4 Managed Component . 91

5.2.5 Managed Class . 92

5.2.6 Managed Method . 92

5.3 Summary . 93

Contents ix

6 Self-Management Knowledge Representation 95
6.1 Knowledge Representation Requirements 95

6.1.1 Knowledge Locality & Modularity 95
6.1.2 Knowledge Reasoning . 96
6.1.3 Knowledge Acquisition . 96

6.2 Choice for Knowledge Representation 96
6.3 Semantic Web Overview . 97

6.3.1 OWL Concepts & Properties 98
6.3.2 OWL Cardinality Restrictions 99
6.3.3 OWL Value & Existential Restrictions 99
6.3.4 OWL Consistency Check 99
6.3.5 Requirements Satisfaction 99

6.4 Self-Management Ontology . 100
6.4.1 Autonomic-Manager Sub-Ontology 101
6.4.2 Behavioural-Model Sub-Ontology 101
6.4.3 Structural-Model Sub-Ontology 102
6.4.4 Analyser Sub-Ontology . 102
6.4.5 Diagnoser Sub-Ontology . 103
6.4.6 Sensor Sub-Ontology . 104

6.5 Related Work . 106
6.6 Summary . 107

7 Illustrative Scenarios 109
7.1 Methodology . 109
7.2 Case 1: Single-Level Use-Case Management 111

7.2.1 Managed System Description 111
7.2.2 Use-Case Descriptions . 111
7.2.3 Self-Management Model Specification 114
7.2.4 Simultaneous Failure Diagnosis 118

7.3 Case 2: Multi-Level Use-Case Management 121
7.3.1 Managed System Description 122
7.3.2 Use-Case Descriptions . 122
7.3.3 Self-Management Model Specification 125
7.3.4 Multi-Level Failure Diagnosis 130

7.4 Concluding Remarks . 131
7.5 Summary . 132

8 The Execution Environment 135
8.1 Execution Environment Overview 135
8.2 Activation & Control Engine . 136

8.2.1 Communication between Autonomic Management &
Managed System . 137

8.2.2 Synchronisation between Autonomic Management &
Managed System . 138

8.2.3 Communication between Autonomic Managers 138

x Contents

8.2.4 Invocation of Inspective Plan 139
8.2.5 Bootstrapping Autonomic Management 139

8.3 Rule Engine . 139
8.4 Instrumented Managed System . 140

8.4.1 Instrumentation Technique 141
8.4.2 Instrumentation Code . 142

8.5 Summary . 143

9 Conclusions and Future Work 145
9.1 Thesis Summary . 145
9.2 Research Question Revisited . 147
9.3 Discussion . 148
9.4 Future Work . 150

A Generic Rules 153
A.1 Symptom Occurrence Rules Template 153
A.2 Hypothesis Selection Rules . 155
A.3 Hypothesis Validation Rules . 156
A.4 Hypothesis Evaluation Rules . 157
A.5 Diagnosis Determination Rules . 158
A.6 Plan Selection Rules . 158
A.7 Plan Translation Rules . 159

B Autonomic Management Code 161
B.1 Performing Autonomic Process . 161
B.2 Instantiating Autonomic Manager 162
B.3 Performing Diagnostic Process . 163
B.4 Handling Sensor Values . 164
B.5 Execution of Rules by Rule Engine 165

Samenvatting (Dutch Summary) 167

Bibliography 171

Index 189

Curriculum Vitae 191

Chapter 1

Introduction

Management of today’s complex information systems is an important challenge.
An information system is usually defined as a set of hardware, software, network,
people, and procedures that are configured to collect and process data into infor-
mation [102, 154, 171]. Almost all commercial and social organisations depend on
information technology for their continual survival. Information is considered as a
vital resource produced by their information systems [158]. As the dependency of
organisations on information grows day by day, requirements as information qual-
ity, processing, delivery, and distribution become more and more stringent and
diverse.

Within most organisations, information needs to be in the right place, at the
right time, and in the right form. Information must often need to be consistent
with other information in the system. Information needs to be concise (no ex-
tra information) and to represent external facts accurately. Timely and reliable
information delivery and service availability is critically important.

Information systems are expected to quickly react to rapidly changing organisa-
tional, political, economic, social, and technological situations. They are expected
to be flexible and handle large volume of information. Information systems are also
expected to exchange information within different departments of an organisation,
between organisations, and with customers. These systems often span different de-
partments and organisations at various physical and geographical locations, requir-
ing distributed information processing. Complex distributed information systems
are the result.

In summary, the demands for high quality information, timely and distributed
information delivery and information access, and cross-organisation information
integration increase the complexity of distributed information systems. The com-
plexity of these systems must be managed timely, efficiently, and cost effectively.
The focus of this thesis is on the management of distributed information systems.

1

2 Introduction

1.1 Management of Distributed systems

A distributed system is usually defined as a system in which computing ele-
ments (program units), located at networked nodes, communicate by message
passing [57, 177] to cooperatively solve some complex problem [162]. For example,
the different program units of a distributed multimedia system, located on mul-
timedia databases, proxy and information servers, and the various mobile clients,
work together to provide multimedia content to mobile users [124]. Another exam-
ple is that in a distributed financial trading system, several program units located
on transaction servers, applications servers, web servers, groupware servers, and
workstations cooperate to perform financial transactions. Significant characteris-
tics of distributed systems are concurrency, scalability, and resource sharing. As
a result, the coordination of concurrently executing computing elements sharing
resources becomes an important topic in design and implementation of distributed
systems.

The growing complexity of distributed systems is a crucial constraint on the
success in designing and management of these systems. The need to provide
increasing degrees of dynamism, heterogeneity, decentralisation, and decoupling
between distributed program units increases the complexity of distributed sys-
tems [32]. More specifically, the complexity is increased because the program
units are usually written in different programming languages, commonly interact
with each other through several different interaction mechanisms and protocols,
are often executed both inside and outside organisations, and utilise different ar-
chitectural models.

Complexity of distributed systems can be described as a measure of the diffi-
culty of understanding and managing these systems. The complexity is related to
the size of a system, the degree of differentiation of a system’s computing elements,
and the degree of chaotic behaviour a system has [155]. The size of a system is
measured by the number of nodes and services, and the number of interconnections
or dependencies between its compartments. The chaotic behaviour is the effect of
a small variation in a certain part of a system on the overall system behaviour.
The complexity of distributed systems influences their management.

The goal of the management of distributed systems is to ensure the effective and
efficient operation of these systems in line with organisational objectives. The man-
agement tasks and activities depend on a specific management purpose. Examples
of management purposes are configuration management, security management,
availability management, performance management, and recovery management.

1.2 Management of Behaviour

The complexity of distributed systems does not only concern their structure. The
need to design distributed systems for automating sophisticated governmental,
scientific, and corporate business processes, including business to business (B2B)
electronic commerce, increases the complexity of behaviour of distributed systems.
System behaviour is defined as a set of actions or reactions of a system in response

1.3 Autonomic Computing Model 3

to external or internal stimuli [128]. Examples of system behaviour are handling
a money transaction by an Internet banking system and showing articles in re-
sponse to a search query by a web shopping system. Usually, sophisticated system
behaviour is divided into a number of simpler behaviours that are executed by
different distributed computing elements. Showing articles by a web shopping sys-
tem is an example of a complex behaviour. This behaviour consists of analysing
a given search query, retrieving requested data from a database, and converting
the data into a human readable format. Management of behaviour of distributed
systems is the primary focus of this thesis.

The responsibility of management of the behaviour of a distributed system
is to ensure that the system correctly exposes expected and specified behaviour.
Manual management of behaviour of such systems requires more and more human
skills. Determining the root cause of software runtime failures and performance
degradations in such complex systems is difficult, costly, and very time consum-
ing [56, 72, 91, 109, 181]. Automating routine management tasks relieves system
administrators from the burden of manually detecting and resolving system mal-
functions.

Ideally distributed systems would be able to recognise and solve a large portion
of their malfunctions on their own. To this purpose, these systems would need to
know when and where an incorrect state occurs, and have adequate knowledge
to analyse the problem situation, diagnose the root-cause, and make healing and
optimisation plans. They should also be able to execute these plans to stabilise,
heal, or optimise themselves, if possible, without human intervention. The auto-
nomic computing [109] initiative started by IBM in 2001 incorporates these generic
management functionalities in one model.

Autonomic computing has been proposed to reduce the cost of maintaining
complex systems by developing computer systems capable of self-management.
Ganek et al. [72] distinguish a number of autonomic properties, such as self-
configuring, self-healing, self-optimising, and self-protecting. Extending and en-
hancing a system with these properties is an important step towards a self-managed
system. This thesis utilises the general principles of the autonomic computing to
make the self-management of behaviours of existing distributed systems possible.
The following section explains the general principles of autonomic computing.

1.3 Autonomic Computing Model

Many researchers have proposed (and extensively studied) the use of control theory
techniques for system management purposes [53, 86, 149]. Control theory describes
the behaviour of dynamic systems (such as mechanical, electrical, or biological)
and provides a basic mechanism with which a dynamic system can maintain its
own steady state [122]. A very common mechanism provided by control theory is
the closed-loop feedback.

Figure 1.1 shows the concept of closed-loop feedback in which the actual output
of a system state is controlled based on the previous actual output and a desired
output value. It is a continuous feedback loop for process flow. Whenever there is a

4 Introduction

Figure 1.1: Basic closed-loop control

deviation from a desired value of a system state, the controller takes corrective ac-
tions. A controller receives signals from sensors placed in the device, computes the
difference between the desired and actual values, and performs corrective actions
based on this computation.

The autonomic computing initiative [93] has greatly benefited from the for-
malisms provided by control theory. The very abstract reference architecture for
autonomic computing [72], shown in Figure 1.2, is based on the closed-loop feed-
back control. The underlying principle is surprisingly simple. The decision entity
receives measurements from a resource entity, makes decisions and sends adaptive
instructions to the resource entity. The adaptive instructions often influence the
state of the resource entity, that in turn sends new measurements to the decision
entity.

Figure 1.2: Autonomic computing control loop

The blueprint architecture for autonomic computing [93] refines this abstract
reference architecture, identifying a number of fundamental concepts and archi-
tectural building blocks for self-managed systems. A self-managed system has two
main building blocks: an autonomic manager and a managed resource, as depicted
in Figure 1.3.

According to the blueprint, a managed resource is a hardware or software
component that corresponds to the resource entity in the control loop. Examples
of managed hardware resources are workstations, routers, and storage devices.
Examples of managed software resources are operating systems, database servers,
web servers, application servers, and business applications. A managed resource
has a manageability interface that includes sensors and effectors. An autonomic
manager uses this manageability interface to obtain management data, gathered
by sensors, and to change the behaviour of the managed resource through effectors.

The autonomic manager is the decision entity in the control loop. The auto-
nomic manager’s control loop distinguishes four main entities, the MAPE entities:
monitor, analyse, plan, and execute. The responsibilities of these entities are re-

1.4 Research Objective 5

Figure 1.3: Autonomic computing architectural blueprint

spectively: collecting management data from the managed resource, analysing this
data to determine the problem, creating new plans or selecting from existing plans,
and executing the plans to realise the needed changes to the managed resource.
The MAPE entities utilise the knowledge-base component which is shared among
them.

1.4 Research Objective

The ultimate goal of this thesis is to explore the potentials of autonomic computing
for management of behaviour of existing distributed systems. The architectural
concepts, presented in the autonomic computing architectural blueprint [93], are
not sufficient to achieve this goal. These concepts define a common approach
and terminology, but do not specify a particular implementation. Consequently,
there is a need for more specific self-management concepts that concern the key
principles of distributed systems. One of the key principles of distributed systems
is that they comprise from a number of heterogeneous sub-systems communicating
with each other through network using various protocols. As a result, most often,
heterogeneous sub-systems are delivered by different vendors, and maintained by
different departments in an enterprise. In general, knowledge regarding each sub-
system has been spread out over different domain experts with their own view
from system, and usually the quality of system maintenance documentation is
not very high. Therefore, communication between domain experts maintaining
a system is less efficient, and manual management suffers from delayed problem
determination. Self-management can be used to improve problem determination.
However, domain experts would probably not be willing to cooperate to implement
self-management of existing systems if it requires much effort. In conclusion, a

6 Introduction

successful self-management approach should:

• be able to efficiently capture system knowledge from domain experts and
integrate their views in one unified model,

• be able to detect, diagnose, and repair the most frequently occurring system
malfunctions by utilising domain experts’ knowledge,

• be less intrusive on existing systems and domain experts.

1.5 Research Question

Following from the problem description (complexity of behaviour of distributed
systems and their management), the issues regarding the management of dis-
tributed systems, and the requirements regarding a successful self-management
approach, this thesis investigates the central research question:

RQ: How to design autonomic management of behaviour of existing distributed
systems?

To answer the central question, certain aspects of the artifact to be managed
(distributed system) and its management need to be understood, analysed, and
taken into account. With respect to the distributed systems, this entails:

• identifying different types of behaviours to be managed,

• determining the relationship between behaviours,

• specifying knowledge about behaviours and their relationships.

With respect to the management of distributed systems, this entails:

• managing an individual behaviour,

• coordinating the management of multiple behaviours,

• specifying knowledge required for the management of behaviours.

The above research question is used to guide the design of the system model and
the management model, presented in this thesis. Furthermore, the two models are
combined into a single model called self-management model.

1.6 Research Approach

The research philosophy [46] followed by this thesis is a combination of posi-
tivism and interpretivism. Positivists believe that scientific knowledge is built up
from verifiable observations and inferences drawn from controlled experiments [88].
They study complex phenomena by decomposing them into simpler components.

1.7 Contributions 7

Interpretivists attempt to understand how people think about the world by col-
lecting qualitative data about people’s activities [61]. In this thesis, both the
complex behaviour and the structure of a distributed system are decomposed into
simpler and manageable units. Also, qualitative data regarding operational man-
agement processes are collected from system administrators, functional analysts,
and system developers.

The research strategy followed by this thesis is design science. The design sci-
ence strategy guides a scientific research to provide a solution for a specific problem
with emphasis on artifacts as the outcome of the research [87, 156]. Artifacts can
be concepts, models, methods, or implemented/prototyped systems. The resulting
products of this thesis are system and management related concepts and models,
and an implemented framework.

The research instruments used by this thesis are literature review, case study,
action research, and evaluation. A literature review provides background knowl-
edge and deeper understanding of the research domains [165]. A case study pro-
vides a qualitative and observatory insight into the real-life context of the research
phenomenon [192]. Action research encourages researchers to experiment through
intervention and incorporate the effects of their intervention into their theories [15].
Evaluation helps researchers assess the final product of their research. This thesis
employs the literature review and case study instruments to perform an extensive
literature survey regarding autonomic systems and study the case of a distributed
trading system. It also utilises the action research instrument to study the effects
of specific alterations in the relationships between autonomic management and
managed system. The evaluation instrument is used to apply the implemented
framework to a number of real-life cases.

1.7 Contributions

This thesis advances the state of the art in self-management of distributed systems
by introducing the first general purpose self-management model:

• that is based on behavioural aspects of distributed systems through the use
of use-cases,

• that is declarative,

• that is a bridge between the high-level functional world and the low-level
technical world by allowing the integration of knowledge from both worlds
in one unified model,

• that can be used for the self-management of existing distributed systems.

The work on the research question leads to several more specific contributions that
are summarised as follows:

8 Introduction

• A distinction is made between behaviours at system, operational, functional,
and code levels based on the software fault handling process, currently en-
countered in many enterprises. All of these behaviours are represented in
use-case notations. A use-case is considered to be the unit of management.
Use-cases at each level describe the interactions with the system from the
viewpoint of a designated domain expert, such as a system administrator,
functional analyst, software developer, etc. As a result, a use-case based
autonomic manager views the system from a domain expert’s perspective.

• Each of the use-cases, independent of the level at which it resides, may
reference other use-cases. Two types of use-case references are identified:
horizontal and vertical references. The former is a reference from a use-case
at a specific level to a use-case at the same level, and the latter is a reference
to a use-case at a different level.

• A Semantic Web based model of distributed systems is proposed to formally
describe the behaviour and structure of these systems.

• An autonomic manager, including its main entities (analyser, diagnoser,
planner and plan translator), for managing the execution of a use-case is de-
signed. The information such as symptom, hypothesis, and plan, exchanged
between these entities, are specified as well.

• Corresponding to the referential relationships (both horizontal and verti-
cal) among use-cases, the autonomic managers managing these use-cases are
related with each other as well. A mechanism is proposed to realise the com-
munication and cooperation between autonomic managers to manage the
overall system behaviours properly.

• A Semantic Web based management model of distributed systems is pro-
posed to formally describe each entity of the autonomic manager, informa-
tion flow between these entities, and the relationship between the autonomic
managers.

A self-management framework based on the system and management models is
designed and implemented. The framework can automatically instrument sensors
and effectors in an existing distributed system, and generate code for autonomic
management purposes, based on declarative behaviour descriptions. The frame-
work focusses on self-diagnosis.

1.8 Thesis Outline

The structure of the remainder of this thesis is depicted in Figure 1.4. Chapter 2
gives an overview of the research works related to autonomic systems. Chapter 3
explains why a use-case driven self-management approach is preferable. Chapters 4
and 5 together introduce the self-management model. Chapter 4 presents the
management model and describes how an autonomic manager manages a use-case

1.8 Thesis Outline 9

of a system, and how multiple autonomic managers of a system cooperate with
each other to manage the behaviour of the whole system. Chapter 5 lays out
the structural and behavioural model of a distributed system used by autonomic
managers.

Figure 1.4: Thesis outline

Chapter 6 discusses requirements for representing self-management knowledge
in distributed environments, and argues that the Semantic Web languages OWL
and SWRL satisfy the requirements. Chapters 7 and 8 present the application of
the framework and the execution environment. Chapter 7 describes the results of
two case studies to illustrate how the framework can be applied to real-life applica-
tions. Chapter 8 describes how the framework can be used to provide autonomic
management for a specific distributed system based on the models specified in
OWL and SWRL. Finally, Chapter 9 presents the conclusions and a discussion on
future work.

10 Introduction

Chapter 2

Related Work & Positioning

This chapter provides an overview of research on autonomic systems related to this
thesis. Autonomic systems proposed in the related works are studied from two per-
spectives: system organisation and domains of application. The first perspective,
system organisation, focusses on the relationship between autonomic elements in
an autonomic system. An autonomic element is the fundamental building block of
any autonomic system, and contains a control loop that integrates an autonomic
manager with its managed resource (see Figure 1.3). The second perspective, do-
mains of application, concentrates on the area for which an autonomic system has
been designed and developed. The domains of application are reviewed on the ba-
sis of two important characteristics of autonomic systems: management unit and
knowledge utilisation. The first characteristic concerns the managed resource of
each autonomic manager in an autonomic system. The second characteristic in-
volves the way autonomic elements utilise/exchange knowledge about a managed
system.

2.1 Autonomic Systems: System Organisation

Autonomic systems can be characterised by the way their autonomic elements
are organised, that is, the way autonomic elements are coordinated and the way
they exchange information. The internal organisation of autonomic systems is also
affected by the way in which they fulfill specific self-* properties. The organisa-
tion of autonomic elements in autonomic systems can vary from less structured
to more structured as depicted in the spectrum shown in Figure 2.1. On the left
side of the spectrum are emergent autonomic systems within which autonomic
elements are fully decentralised and interact with each other in changing config-
urations (Unstructured Autonomic Systems). In the center of the spectrum are
self-organising autonomic systems in which the relationships between autonomic
elements arise/change during the life-time of a system (Dynamically Structured
Autonomic Systems). On the right side of the spectrum are autonomic systems in
which the hierarchical relationships between autonomic elements are pre-defined

11

12 Related Work & Positioning

and static (Statically Structured Autonomic Systems). In the following sections,
examples of unstructured, dynamically structured, and statically structured au-
tonomic systems are reviewed, focussing in particular on the interaction between
autonomic elements.

Figure 2.1: The spectrum of the system organisation of autonomic systems
ranging from less structured to more structured.

2.1.1 Unstructured Autonomic Systems

In unstructured autonomic systems, system-wide autonomic behaviour is the re-
sult of local interactions between individual autonomic elements that solely follow
their own local rules and are not explicitly aware of the global impact of these
rules [189]. In such fully decentralised systems, there is no central entity to control
the behaviour of individual autonomic elements. This property is the essence and
strength of a fully decentralised and emergent system [6].

In unstructured autonomic systems, the role of coordination mechanisms is
of key importance. A short description of the most used coordination mecha-
nisms, from pheromone-based through market-based to token-based, can be found
in [52, 189]. Because of the broad similarities between multi-agent systems and
fully decentralised autonomic systems, Brazier et al. [25] propose to apply com-
munication protocols and coordination mechanisms utilised by multi-agent sys-
tems to autonomic systems. The common assumption is that autonomic elements
communicate asynchronously, take independent actions based on incomplete local
knowledge, and influence only their own peers without any direct feedback. This
assumption holds, independent of whether autonomic elements are natural entities
modifying their local environment by laying down pheromone trails (pheromone-
based), economic entities buying or selling computing resources by using electronic
currencies (market-based), or individual entities holding and passing around tokens
containing a localised view of the system (token-based).

In fully decentralised environments, market-based coordination mechanisms
are usually used to optimise resource allocation or task assignment between self-
interested and competing autonomic elements [3, 78, 79, 195]. The global objec-
tive of such a system is to prevent self-interested autonomic elements from wasting
and monopolising scarce resources, and to minimise the time required to complete

2.1 Autonomic Systems: System Organisation 13

computational tasks. Note that such systems do not have a central auctioneer.
Local interactions of buyers and sellers obey the laws of supply and demand. The
auctioneer is one of the bidders. Zimmerman et al. [195], for example, apply a
market-based mechanism to wireless sensor networking. They propose one utility
(profit) function for buyers and one for sellers. The utility function for buyers
calculates the amount of time that can be saved by adding an additional pro-
cessing node based on the computational task on which they are working. The
utility function for sellers calculates the expected profit from each proposed bid
and chooses the bid that generates the greatest profit. Ajorlou et al. [3] use the
concepts of price, revenue, cost, and one-round auctions in a decentralised envi-
ronment in which a team of Unmanned Aerial Vehicles (UAVs) collects data from
a set of Unmanned Ground Sensors (UGSs) and delivers it to a Ground Station
(GS). UGSs are deployed in a remote area away far from the GSs. Ajorlou et
al. consider visiting a UGS by a UAV, collecting data, and returning to the GS
to be a continuous task, which they refer to as a sensor-visit task. A number of
sensor-visit tasks are broadcast to the UAVs. The price of a task is the amount of
virtual money that will be given to a UAV for completing the task within a given
time window. A UAV then submits a bid on the task most profitable for it. The
GS evaluates all bids received and chooses the one with the most profit. Ajorlou
et al. show that the system-wide objective of optimising data delivery time can be
achieved on the basis of local interactions between auctioneers.

One of the major challenges in the management of unstructured autonomic
systems is the frequent changes of the number and type of the system’s com-
ponents. Wireless network systems [117, 160], automated guided vehicle (AGV)
transportation systems [189, 190], swarm robotics systems [136], and traffic control
systems [135, 188] are examples of such structurally flexible systems. To obtain
maximum flexibility and scalability, and to handle frequent changes, fully decen-
tralised autonomic approaches have been proposed. In these approaches, each base
station in a wireless network, a car equipped with special gear transmitting wireless
radio signals and containing a global positioning device in a traffic control system,
and each AGV in a warehouse transportation system is an autonomic element that
locally and fully autonomously exchanges and synchronises information with its
neighbouring base stations, cars, or AGVs.

The way information is processed by autonomic elements, and the way infor-
mation is exchanged between neighbouring autonomic elements are determined by
the self-* properties for which an autonomic system has been designed. For exam-
ple, Parunak et al. [147] describe self-optimisation in a wireless network system.
The self-optimisation is realised by minimising power consumption of individual
base stations and, at the same time, maximising system throughput. To achieve
this self-optimisation, autonomic elements (base stations) build a history of their
interactions with clients, utilising a reinforcement learning algorithm to give more
weight to recent interactions, and to share this local history with their direct
neighbours.

Another example is self-optimisation performed in an AGV transportation sys-
tem [190]. Self-optimisation is realised by guaranteeing constant throughput of

14 Related Work & Positioning

packets in a warehouse. In this system, multiple AGVs pick up incoming packets,
move them through AGV stations connecting segments, and drop them off at their
destinations. Note that packets arrive at random times, AGVs can fail, AGVs can
encounter obstacles, etc. To guarantee constant throughput, the system needs to
ensure even distribution of AGVs between two zones: the zone to where the AGVs
move to pick-up locations without a packet, and the zone to where the AGVs move
to drop-off locations holding a packet. To achieve this goal, autonomic elements
propagate artificial pheromones (that gradually disappear as they become older)
to the neighbouring AGV stations. An artificial pheromone includes information
about its own age, distance and cost of traveling from the current AVG station
to the location of the packet, and the priority of the packet. So, AGVs on each
AVG station can decide about the best outgoing segment (i.e., the direction of the
closest packet and with the highest priority) based on a pheromone.

The major benefits of unstructured autonomic systems are the design simplicity of
individual autonomic elements, low communication overhead, and scalability. De-
sign simplicity is implied from the fact that autonomic elements are required only
to know about their own activities. Based on their local knowledge regarding these
activities, autonomic elements send informational (not instructional) messages to
their neighbours at random intervals. As a result, the cost of communication is
low, and autonomic elements can dynamically join or leave the system. However,
it is often difficult to test and configure these systems because of the randomness:
random message loss, random interaction between random pairs of autonomic ele-
ments, and random arrival time of events [6]. Unstructured autonomic systems are
often used for modeling natural or artificial systems that are inherently distributed
and fully decentralised.

2.1.2 Dynamically Structured Autonomic Systems

A dynamically structured autonomic system is a self-organising system in which
the organisation of autonomic elements changes during runtime. These systems re-
structure themselves in response to changing environmental conditions to achieve
a specific self-* property. As a result, the relationship between autonomic elements
arises dynamically. The arrangement (topology) of autonomic elements in these
systems differs from star to tree topologies. Such systems are used to self-optimise,
self-configure, and self-heal network nodes in a wide range of applications ranging
from radio access networks such as Universal Mobile Telecommunications System
(UMTS) or Long Term Evolution (LTE) [97], to self-categorisation of visual ob-
jects in computer vision [71, 114], to provision of services in a Service Component
Architecture (SCA) platform [144].

Dynamically structured autonomic systems use diverse mechanisms to restruc-
ture themselves. For instance, to search multi-media datasets in a large distributed
p2p environment, Sedmidubsky et al. [161] base the interconnection of autonomic
elements on the query-answer paradigm. Each peer (autonomic element) initially
sends a query with MPEG-7 feature descriptors to peers from a random list. Those

2.1 Autonomic Systems: System Organisation 15

peers that provide the highest quality of answer are added to the list of commu-
nicating peers. This list changes continuously, i.e., the system restructures itself
according to answers returned to queries.

Visual object categorisation requires recognition of one or several objects in an
image. Due to the wide variations of shape and appearance of objects inside a
category, various scales and orientations of objects, and diverse illumination and
occlusion of objects in an image, visual object categorisation remains a challenging
task [71]. Kinnunen et al. [114] use an unsupervised competitive learning approach
using the Kohonen Self-Organising Map (SOM) [115] algorithm to this purpose.
SOMs provide a way to represent multi-dimensional data in much lower dimen-
sional spaces. SOMs learn to classify data without supervision. Each node in
the network has a specific topological position and contains a vector of weights of
the same dimension as the input vectors. A SOM learns to classify the training
data by automatically adjusting the weights of nodes and re-organising them. For
visual object categorisation, first, interest points at images are detected. Then,
these points are converted to scale and rotation invariant descriptors. Finally, a
codebook is constructed from these key point descriptions using SOM.

Boesen et al. [22] propose a biology inspired cell architecture (eCell) in which
electronic DNA (eDNA) enables self-organisation. Similar to a biological cell,
each eCell reads the eDNA and determines which function to perform. The eCells
communicate with one another in a mesh topology. Each eCell, based on its inter-
pretation of the eDNA, and on inputs from other eCells or from the environment,
determines to which eCells to communicate. Any changes of the eDNA or unavail-
ability of an eCell cause system re-organisation.

A more generic approach regarding self-organisation in a distributed p2p envi-
ronment is developed by Pournaras et al. [152]. They introduce a generic middle-
ware service (AETOS) that provides self-organised tree overlays for applications
based on their requirements such as robustness, node degree, or expected response
time. The nodes of a tree overlay are selected from a proximity list containing nodes
with close proximity neighbours. In turn, the nodes in the proximity list are se-
lected from a list of nodes constructed through random sampling. Self-organisation
of the tree overlay is realised by the fact that both random and proximity lists are
continually updated through a gossiping protocol [101].

The above examples illustrate the major benefits of dynamically structured auto-
nomic systems: adaptability and flexibility. Note however, too much adaptability
and flexibility can result in chaos and less robust systems [58]. Especially, if small
environmental changes have strong effects, acquiring stable system-wide behaviour
is a challenge.

2.1.3 Statically Structured Autonomic Systems

A statically structured autonomic system is composed of hierarchically organised
autonomic elements each of which controls and optimises its own dedicated part of
a system. The system hierarchy can contain many levels. An autonomic element

16 Related Work & Positioning

at a higher level (parent), in addition to its own responsibility of managing part
of the system, is also responsible for managing a number of autonomic elements at
the next lower level (children). Only parent-children interactions take place. Note
that the root autonomic element in a statically structured autonomic system, in
contrast to centralised systems1, does not have knowledge over all constituent
system components or autonomic elements.

An example of a hierarchically organised environment is a data center. A
data center houses computer systems, storage systems, network devices, and their
associated environmental controls such as power supplies, air conditioning, etc.
Kephart, Tesauro, and Lefurgy [108, 121, 179] tackle the problem of dynamic
resource allocation under changing workload conditions in a data center. They all
model a data center as logically separated Application Environments (AE), each
containing a pool of resources of various types, such as application servers, web
servers, database servers, etc. AEs are hierarchically organised. Detailed control
of resources within an AE, at each level, is handled by an autonomic manager.
Autonomic managers at different levels communicate with each other by passing
the result of their utility functions2. The goal of the root autonomic manager is
to optimise the overall utility function for the entire data center.

Khargharia et al. [112, 113] tackle the problem of energy consumption in a data
center. They define autonomic managers at every physical hierarchy of a data
center (processor, memory, IO, server, server cluster, and the whole data center).
Each managed resource is modelled as a Discrete Event System (DEVS) which is
a finite state machine, and includes a set of inputs, set of outputs, set of states,
and a set of state transitions. The important task of each autonomic manager is
to enable transitions from one state to another without violating any performance
constraint while optimising the managed resource’s power consumption. In this
approach, the direction of communication between autonomic managers is top-
down. In other words, an autonomic manager at a higher level passes its decision
(the output of its DEVS) to its children. This decision becomes the input of the
DEVS of each child.

Another example of a hierarchically organised environment is a Federated
Database Management System (FDBMS). An FDBMS is a collection of hetero-
geneous databases that provides a homogeneous view to distributed data managed
by partly autonomous database systems [182]. The need to include complex data
types in SQL statements and to store very large objects in databases has led to
unmanageable complexity [74, 76, 126, 129, 131]. Automated query optimisation
and dynamic workload management in an FDBMS are two active research areas
that tackle the problem of increasing performance degradation. For this purpose,

1To our knowledge, the current literature has not reported on fully centralised autonomic
systems. In a fully centralised autonomic system, a central autonomic element has complete
knowledge over all constituent autonomic elements. Therefore, this type is not covered in this
chapter.

2A utility function maps a possible state of an autonomic element into a real scalar value (usu-
ally expressed in monetary units) or into a vector. A state is any combination of attributes, such
as system availability, reliability, performance, and robustness, measured by sensors monitoring
the different resources of an autonomic element.

2.2 Autonomic Systems: Domains of Application 17

various researchers [66, 74, 76, 129, 131, 191] propose to use a hierarchical auto-
nomic system in which each database in an FDBMS is managed by a dedicated
autonomic manager. For query optimisation, they use a statistical cost model to
calculate the cost of all or a subset of query execution plans and select the cheap-
est one. For workload management, they use clustering and supervised learning
techniques to discover homogeneous classes of database queries which have simi-
lar workload properties (e.g., execution time, memory utilisation, or average rate
of random I/O regarding a query). The cost and workload models are contin-
uously adjusted based on monitoring information exchanged between autonomic
managers.

Note that in a statically structured autonomic system, both the number of levels
and the number of autonomic elements in each level are known in advance. This is
both an advantage and a limitation of these systems. These systems do not have
to deal with the complex task of maintaining a continuously changing structure.
However, they are not flexible; it is not possible to add a new autonomic element in
the system during runtime. These systems are often used for modeling inherently
hierarchically organised computing environments where structure rarely changes.

2.2 Autonomic Systems: Domains of Application

The review of autonomic systems in the previous section shows the diversity of
application domains of autonomic systems. At a very generic level, the application
domain is hardware management or software management. At a slightly more
specific level, autonomic systems are applied to the domains of wireless network,
logistics vehicle routing, traffic control, p2p overlay network, multi-media search
on Internet, data center, federated database management, and e-commerce, among
others. The similarities and differences between the application domains can be
adequately described on the basis of two important characteristics of autonomic
systems: management unit and knowledge utilisation (see Figure 2.2).

2.2.1 Management Unit Perspective

The autonomic computing architectural blueprint [93] organises each autonomic
element into two building blocks: an autonomic manager and a managed resource.
In general, the managed resource (management unit) can be a part of system
structure (structural element) or system behaviour (behavioural element). A be-
havioural element can be macroscopic (the behaviour of the system as a whole) or
microscopic (the behaviour of an individual autonomic element) [189]. A system
can have multiple macroscopic and microscopic behaviours.

In the first years of research on autonomic systems, reviewed in the previous
section, focus is mainly on hardware management. Management units in these sys-
tems are physical elements (structural elements) such as base stations in a wireless
network system [117, 160], transport vehicles in a logistics vehicle system [189, 190],
traffic lights or cars equipped with special gear in a traffic control system [118, 188,

18 Related Work & Positioning

Figure 2.2: The domains of application of autonomic systems are reviewed from
the management unit and knowledge utilisation perspectives.

194], or server machines in a data center management system [108, 112, 113, 121].
In the last decade, autonomic systems have also been designed for software manage-
ment. Management units in the majority of software-focussed autonomic systems
are software elements (structural elements) such as multi-media search engines in
a p2p multi-media application [161] or database servers in a federated database
management [74, 76, 131, 191]. In the majority of generic software frameworks
for autonomic computing, management units are structural elements such as web
services in an autonomic service-oriented framework [10, 11, 14], components in an
autonomic component-oriented framework [125], software agents in an autonomic
multi-agent framework [20], or architectural elements in an autonomic architec-
tural description framework [39, 116, 187]. Microscopic behaviour of a component
or macroscopic behaviour of the whole system does not seem to be of central
interest for these researchers.

Some researchers [13, 33, 34, 35, 59, 103, 159] do pay attention to the behaviour
of a distributed system. For instance, Ballagny et al. [13] introduce a state-based
component model in which for each software component a state machine is em-
ployed. The correct behaviour of a component is modelled in the associated state
machine in the form of a sequence of state transitions. Any deviation from this
sequence is considered to be an abnormal behaviour. More or less the same ap-
proach can be found in [63] that mainly focusses on the microscopic behaviour of
a component, and does not handle the management of the system’s macroscopic
behaviours. In contrast, other researchers (e.g., [59, 103, 123]) focus only on a
system’s macroscopic behaviour. They model this behaviour as a failure-trace
or request-trace. A failure-trace contains information about abnormal behaviour
logged by several components of a system during a period of time. A request-
trace contains information about the paths that user requests follow as they move
through the system. Note that these approaches do not model the relationship be-

2.3 Framework Positioning 19

tween macroscopic behaviours. They also do not model the relationship between
a system’s macroscopic behaviours and microscopic behaviours.

2.2.2 Knowledge Utilisation Perspective

Many researchers (e.g., [72, 93, 109]) have stressed the importance of shared
knowledge in the feedback loop within autonomic elements. Autonomic systems
differ in the way they utilise and update this knowledge to achieve their self-*
properties. This knowledge in the majority of hardware-focussed autonomic sys-
tems is implicit, and often embedded in digital pheromones [189], learning algo-
rithms [59, 147, 178], utility functions [108, 179], discrete event functions [113],
etc. In most software-focussed autonomic systems, knowledge is also implicit. Ex-
amples of implicit knowledge are statistical cost models [76, 129, 131] used for
automated query optimisation and dynamic workload management in FDBM sys-
tems, machine learning methods used to identify significant deviations between
normal and abnormal traces in a failure-trace based approach [35, 59], and various
statistical techniques used to analyse large volumes of user requests in a request-
trace based approach [33, 103].

There are also autonomic systems (e.g., [20, 39, 65, 173]) designed to use explicit
(declarative) knowledge. Explicit self-management knowledge for software man-
agement purposes can be formally represented, and explicitly shared between au-
tonomic elements. This knowledge can be acquired from domain experts involved
in the software development process, and is represented in knowledge represen-
tation languages. For example, XML-Based Architecture Description Language
(xADL) [48, 111] and Architecture Description Markup Language (ADML) [169]
are used to describe software and system architectures. Some researchers express
self-management knowledge in various policy expression languages such as AG-
ILE [7] or Autonomic Computing Expression Language (ACEL) [1]. Other re-
searchers (e.g., [96, 106, 173]) utilise ontologies for representing monitored data
analysed by correlation engines. Ontologies provide a shared understanding of the
managed domain, and therefore they facilitate interoperability between different
correlation engines that together are responsible for managing systems in heteroge-
neous distributed environments. To summarise, a number of application domains
of autonomic systems, and their management unit and knowledge utilisation char-
acteristics, are depicted in Table 2.1.

2.3 Framework Positioning

The goal of this thesis is to provide a self-management framework that can be used
to enrich an existing distributed system with self-management capabilities. The
previous sections review autonomic systems from the management unit, knowl-
edge utilisation, and system organisation perspectives. In this section, the pro-
posed self-management framework is briefly explained from the same perspectives.
The first part illustrates the management unit of the autonomic element in the
framework, the second focusses on the way self-management knowledge is utilised

20 Related Work & Positioning

Application Domain Management Unit Knowledge Utilisation

Hardware Management

Wireless network - Base station - Reinforcement learning
Wireless sensor network - Unmanned Ground Sensor

(UGS)
- Unmanned Aerial Vehicle
(UAV)

- Market-based profit function

Logistics vehicle routing - Automated guided vehicle
(AGV)

- Digital pheromone

Traffic management - Car equipped with special
gear

- Local knowledge exchange

Traffic light control - Traffic light - Fuzzy logic
- Mathematical adaptive algo-
rithm

Dynamic resource alloca-
tion in data center

- Application Environment
(AE)

- Utility function

Energy consumption in
data center

- Physical elements (server,
processor, etc.)

- Discrete event function

Software Management

Federated database man-
agement

- Database server - Statistical cost model
- Supervised learning

Visual object categorisa-
tion

- Node of Self-Organising Map
(SOM)

- Unsupervised learning

Multi-media search - Search engine - Query-answer paradigm
E-commerce - Macroscopic behaviour (re-

quest/failure trace)
- Microscopic behaviour (com-
ponent state)

- Hierarchical clustering
- Decision tree
- Automaton model
- State transition model

Web service composition &
diagnosis

- Web service - Clustering
- Supervised learning
- Ontology

Forest fire analysis based
on component-oriented
framework (ACCORD)

- Software component - Rules specified in XML

System administration
based on multi-agent
framework (ABLE)

- Software Agent - Learning methods
- Fuzzy logic
- Logical rules

Video conferencing based
on architectural descrip-
tion framework (RAIN-
BOW)

- Architectural element - Annotations specified in an
Architectural Description Lan-
guage (ADL)

Table 2.1: Summary of the review of application domains of autonomic systems
from management unit and knowledge utilisation perspectives.

by the framework, and the third part zooms in on the system organisation of the
autonomic system provided by the framework.

The type of management unit in an autonomic approach is significant. Current
research focusses primarily on structural elements of distributed systems rather
than on their behavioural elements. In most cases, a network of autonomic man-
agers are made responsible for managing the different structural elements of a
distributed system (e.g., base stations in a wireless network) instead of managing
the different behaviours of the system. Research that does focus on behaviour of
distributed systems does not make a distinction between macroscopic and micro-

2.3 Framework Positioning 21

scopic behaviours, and does not explicitly model relationships between these types
of behaviours [13, 33, 63, 103]. This thesis advocates that both macroscopic and
microscopic behaviour of distributed systems need to be addressed, and considered
as the management unit. Note that the choice for system behaviour as the unit of
management does not exclude the system’s structural elements from the manage-
ment scope of the autonomic manager, because a system behaviour is executed by
a group of structural elements. As a result, this group becomes part of a collection
of resources to be managed by an autonomic manager.

As stated above, knowledge about a managed system is of special importance.
Self-management requires systems to know when and where abnormal behaviour
occurs, to analyse the problem situation, to make healing plans, and suggest
various solutions to the system administrator or heal themselves. Implicit self-
management knowledge for software management purposes does not seem to be
appropriate. For instance, using machine learning and statistical methods to anal-
yse a failure or request trace raises a number of issues. First, appropriate fea-
ture selection for learning methods and suitable learning and statistical model
construction regarding the structure and behaviour of software systems are not
straightforward. Second, as it is inefficient (and in some cases impossible) to in-
clude all normal traces in the training sample set, it is difficult to estimate the
generalisation capacity of a limited number of normal traces (training samples).
High generalisation implies high false negative and low generalisation implies high
false positive [35, 103].

This thesis argues that self-management knowledge needs to be made explicit
by representing it in a formal language. Such a formal knowledge can be under-
stood and shared by different autonomic elements of an autonomic distributed
system. As there is no widely accepted method of automatically constructing
this formal knowledge, it needs to be provided by system developers. This the-
sis uses Semantic Web languages to represent the formal knowledge. As system
developers utilise use-cases to describe the behaviour of these systems, a use-case
based approach is taken to apply the principles of autonomic computing to the self-
management of distributed systems. Both macroscopic and microscopic behaviours
are represented as use-cases, and explicitly related to each other. A use-case is the
unit of management in this approach. The execution of each use-case is managed
by a dedicated autonomic manager.

Use-cases and their corresponding autonomic managers are organised in a hier-
archy as a statically structured decentralised autonomic system. Each autonomic
manager in the hierarchy, on the one hand, is responsible for management of a sys-
tem behaviour in its own scope. On the other hand, it influences the management
decision of its parents (i.e., making multi-level management possible) by reporting
its autonomic management result to its parents.

The framework is based on three models: management model, structural sys-
tem model, and behavioural system model. The proposed models will be exten-
sively explained in the coming chapters. These models make it possible to generate
self-management code for existing distributed systems from declarative knowledge
about both structure and behaviour of a managed system.

22 Related Work & Positioning

Chapter 3

Use-case Driven Self-Management

The complexity and size of information systems, especially distributed systems,
are increasing significantly both with behaviour and structure. As a result, man-
agement and maintenance of such systems are becoming a serious challenge. Au-
tonomic computing [109] is one of the approaches currently being developed to
address this challenge by automating management and maintenance tasks. One of
the objectives of autonomic computing is self-management. This thesis focusses
on self-management of existing distributed systems through application of the gen-
eral principles of autonomic computing, described in Chapter 1. Self-management
must deal with both behavioural and structural complexities.

The autonomic computing architectural blueprint, depicted in Figure 1, distin-
guishes two building blocks in each and every autonomic system: an autonomic
manager and a managed resource. To apply the general principles of autonomic
computing to the management of distributed systems (self-management), the unit
of management (i.e., managed resource) must be identified. Section 3.2 argues
that self-management of distributed systems can be best achieved by choosing a
behavioural element as the unit of management instead of a structural element, as
is most common in the literature.

Self-management of distributed systems, however, requires knowledge about
behaviour of these systems. Much of the knowledge needed is usually elaborated
during the software development phase. Section 3.3 argues that this knowledge
can be reused for automated management of distributed systems. The knowledge
regarding the behaviour is commonly specified in the form of use-cases. Section 3.4
describes the notion of use-cases and their basic characteristics. Self-management
of distributed systems also requires knowledge about structure of these systems. As
the current use-case definition does not include knowledge regarding the structure
of distributed systems, Section 3.4 introduces a new definition of a use-case from a
management perspective. The new definition integrates behavioural and structural
knowledge, providing the knowledge needed for self-management.

Section 3.5 introduces hierarchical use-case levels (i.e., behaviour levels) which
organise use-cases at distinct levels. The use-case levels are based on the software
fault handling process, currently encountered in many enterprises. Use-cases at

23

24 Use-case Driven Self-Management

each level describe the interactions with the system from the viewpoint of a des-
ignated domain expert, such as a system administrator, functional analyst, etc.
As a result, a use-case based autonomic manager also views the system from a
domain expert’s perspective. The proposed organisation of use-cases yields dis-
tributed multi-level diagnosis. This thesis primarily focusses on diagnosis as the
most important prerequisite for the main autonomic properties (self-configuration,
self-healing, self-optimisation, and self-protection). Finally, Section 3.7 illustrates
the use of a hierarchy of use-cases for an example scenario to determine the root-
cause of a system malfunctioning at different levels.

3.1 Introduction

The main objective of self-management of a distributed system is to let the system
itself manage the correct, effective, and efficient execution of its own behaviours.
For this purpose, many researchers (e.g., [37, 39, 145]) propose to manage the
system’s structural elements executing the system’s behaviours. This thesis argues
that self-management of distributed systems could alternatively focus primarily on
the behavioural elements of a system (i.e., its services).

As a software system’s behaviours are often described as use-cases, the self-
management approach presented in this thesis is based on use-cases. Use-cases
are explained in detail in Section 3.4, for now it is sufficient to know that use-
cases provide a semi-formal notation to describe how a system should be used
and the behaviour it provides. The following sections describe the complexity of
distributed systems from both a behavioural and a structural perspective.

3.1.1 Behavioural Complexity

Attempts to automate highly complex corporate business processes1 including
business to business (B2B) electronic commerce interactions are currently com-
mon [102, 171, 132]. As multiple complex business functionalities are combined
and offered in one large corporate-wide distributed system, management is be-
coming even more complex. To cope with these complexities in a system capable
of self-management, a system has to be able to obtain knowledge on its internal
behaviour at any given moment, that is, current activities, the flow of control from
one activity to another, the outcome of multiple activities and their synchronisa-
tion, etc. Transaction systems are an example of a complex distributed system.
An example of a transaction system in the financial sector is a Trading System2,
that provides authenticated end-users the possibility to trade, perform payments,
maintain customers’ shares, and estimate risks. This thesis uses the trade payment
process, depicted in Figure 3.1, to illustrate complex system behaviour. Figure 3.1
depicts the main activities involved.

1Note that the terms business (sub)process and operating system process are not the same.
2The Trading System example is reused in the remainder of this thesis to illustrate the ap-

proach proposed in this thesis.

3.1 Introduction 25

Figure 3.1: The activity diagram of a trade payment process. Distributed sys-
tems normally contain a considerable number of such processes that cause the
behavioural complexities to increase.

The process starts when a trade arrives. The information contained in the
trade is validated. After ensuring that the trade is valid, two activities (getting
the customer profile and getting the current financial market information) are
activated to estimate the risk. If the outcome of the risk analysis is below a
certain threshold then the customer’s bank account information is retrieved and
the customer’s bank is contacted to effectuate payment. After successful payment,
the position (i.e., the number of shares) of the customer is updated. Note that
most activities shown in the figure, including B2B processes such as getting the
current financial market information and realising payment, are in turn separate
business processes. The trade payment process gives an impression of how complex
contemporary business processes are.

3.1.2 Structural Complexity

Structural complexity of distributed systems concerns the infra-structure upon
which they execute. Many enterprises run their distributed systems on a large
number of heterogeneous machines often with different operating systems and char-
acteristics. The infra-structure is dynamic: machines and the software running on
them join or leave the infra-structure continuously. To provide more flexibility,
each piece of the distributed system running on the mentioned infra-structure has
a considerable number of configuration parameters.

26 Use-case Driven Self-Management

Figure 3.2: An infra-structure, encountered in many enterprises, upon which
distributed systems execute. It gives an impression of the structural complexities
of distributed systems.

Figure 3.2 shows an example of an infra-structure implemented in many en-
terprises. At the right, end-users behind desktops interact with the enterprise’s
systems behind the firewalls. An authentication server3 is placed between two
firewalls in the Demilitarised Zone (DMZ). All other servers, such as web server,
groupware server, application server, database server, broker server, file server,
market data server, message queue server, and business process server are posi-
tioned behind the second firewall.

The trade payment process, as described above in Section 3.1.1, uses (1) the
application server to receive and validate the trade, (2) the database server to
retrieve the customer’s profile, (3) the market data server to get current market
data, (4) the business process server to estimate risk, and (5) the groupware server
to contact the customer’s bank and realise the payment. Each of these activities is
implemented as a sub-process running on a specific server. The individual servers
are structural elements.

To cope with the structural complexities, a system needs to possess information
about each server and their communications, that is, which address is associated
with each server, which servers communicate with each other, which protocols they
use, in which order the servers should be started, etc.

3.2 Basic Unit of Management

To face the complexities concerning management of existing distributed systems,
this thesis utilises the principles of autonomic computing. These principles dictate

3The word server is an overloaded term. Here, a server does not refer to a machine (a hardware
device) but it refers to a specialised software program running on a machine.

3.2 Basic Unit of Management 27

that distributed systems need to be able to monitor themselves, analyse situa-
tions, diagnose problems, and take proper remedial actions [109]. Applying the
autonomic computing paradigm requires identification of a managed resource (see
Figure 1.3) from a management point of view. There are at least two options. A
distributed system can be viewed as a collection of:

• structural elements (servers), on each of which runs a sub-process (an activ-
ity) of a business (or non-business) process. This view is called a structural
perspective.

• behavioural elements (business or non-business process), each of which is
effectuated by a number of structural elements. This view is called a be-
havioural perspective.

The unit of management (the managed resource) for an autonomic manager man-
aging an existing distributed system would therefore be either a structural or a
behavioural element, as depicted in Figure 3.3.

Figure 3.3: Two options for managed resource for an autonomic manager: (a) A
structural element (such as a system’s sub-system), or (b) a behavioural element.

Almost all autonomic properties such as self-configuring, self-healing, self-
optimising, and self-protecting require diagnosis. Diagnosis is needed for iden-
tification of root-causes of system misconfigurations, system malfunctions, system
degradations, and system security leaks. The following depicts the effect of the
choice for the structural or the behavioural perspective on the autonomic man-
ager’s diagnostic process regarding system malfunctions.

Generally speaking, a root-cause is the initiating cause of a causal chain. The
primary goal of root-cause diagnosis is to understand why and how malfunction-
ing has occurred so that it can be prevented from reoccurring. The diagnostic
process determines which part of system caused a system malfunctioning, and un-
der which conditions (during the execution of which activity) the malfunctioning
occurred. Without proper diagnosis, an autonomic manager is not able to con-
struct and perform appropriate remedy plans. The autonomic manager obtains
information regarding the system malfunctioning during system execution. The
obtained information needs to be analysed and interpreted in the light of a certain
context. Many researchers have stressed the importance of contextual knowledge

28 Use-case Driven Self-Management

in performing diagnostic tasks ([143, 183]). The contextual knowledge refers to
the information about the environment of the problem to be diagnosed.

The availability of appropriate contextual knowledge for an autonomic man-
ager depends on the perspective (structural or behavioural) for which an autonomic
system has been designed. A distributed system has multiple structural elements
(s1..sm) and multiple behavioural elements (b1..bn). Depending on the choice for a
structural or behavioural element as the unit of management, a self-managed sys-
tem includes either autonomic managers As1..Asm associated with the structural
elements s1..sm, or autonomic managers Ab1..Abn associated with the behavioural
elements b1..bn. Each behaviour bi contains a number of activities (ai1..aik) each of
which is executed by exactly one structural element and each si executes multiple
activities of different behaviours. In fact, each of As1..Asm manages the realisation
of the activities belonging to different behaviours, but each of Ab1..Abn manages
the realisation of the activities belonging to one behaviour bi.

If a system has been designed from a behavioural perspective, an autonomic
manager is aware of all activities of its managed behavioural element. In case of
malfunctioning of an activity of that behavioural element, the autonomic manager
knows how the activity has been invoked. The contextual knowledge in this case
consists of a chain of behavioural invocations. If a system has been designed from
a structural perspective, activities of different behaviours are executed within the
same structural element. An autonomic manager of that structural element cannot
know how that activity has been invoked (i.e., it lacks the contextual knowledge).

Note that the choice for one of the elements (structural or behavioural element)
as the unit of management does not exclude the other from the operating scope
of the autonomic manager. This thesis prefers the behavioural perspective, and
advocates utilising use-cases to reuse existing knowledge about the business (or
non-business) processes.

3.3 Reusing Available Knowledge

The autonomic manager requires access to knowledge about the managed unit. For
example, monitoring a managed resource requires information from sensors that
have been placed (instrumented) in the managed resource. Where sensors should
be instrumented and which information they should provide to an autonomic man-
ager depends on the availability and quality of knowledge about a managed unit.
Self-management of distributed systems can reuse the knowledge regarding a sys-
tem’s behaviour and structure acquired during software design and development.

A large number of software engineers use Unified Modeling Language (UML)
and Object Constraint Language (OCL) [157] to express knowledge on systems
business processes (behavioural elements) and their software architecture (relation
between structural elements). UML is a graphical language for visualising and
specifying the artifacts of distributed systems. It defines various types of diagrams
that can be used to clarify a system’s behaviour and structure. The UML use-
case diagram, activity diagram, sequence diagram, and state diagram describe a
system’s behaviour, and the UML class diagram and component diagram describe

3.4 Use-Cases 29

a system’s structure. OCL is a formal language designed to describe expressions
and constraints in UML diagrams. Both languages are used by software engi-
neers to understand, document, and describe different aspects of complex business
processes and their structure.

Use-cases are core to UML behavioural diagrams. Use-cases are used to capture
and describe requirements regarding complex business processes. Use-cases sup-
port communication between business users and technical domain experts. They
model business processes by clearly specifying the boundaries and goals of a busi-
ness process, and identifying the user interactions with the system. For example,
the diagram depicted in Figure 3.1 is the UML activity diagram for the trade
payment process. The use-case notion is most often used to describe business pro-
cesses (functional requirements) but it can also be used to describe non-business
processes (non-functional requirements) such as security, performance, availability,
etc [41].

UML structural diagrams are used to show the static structure of a system,
focusing on a system’s structural elements (e.g., servers), their relationships, and
the type of relationships (communication protocols) irrespective of time. These di-
agrams allow software designers, architects, and developers to communicate about
the high level organisation of the software and test/verify the soundness of the
design. The relation between structural elements is represented by interfaces con-
sisting of one or more methods (functions).

The knowledge of a system’s business process and its structure, specified in
use-cases, UML diagrams, and OCL constraints is most often used for manual
software maintenance purposes. This thesis assumes that this knowledge can also
be used for automated management of software systems.

Coming back to the definitions of the structural and behavioural perspectives
presented earlier, both the knowledge concerning a system’s structure and the
knowledge concerning a system’s behaviour are incomplete on their own. The
structural elements in the UML structural diagrams are black boxes without any
detail on how a structural element executes a system’s behaviour. Likewise, use-
cases do not include information about the structural elements by which they are
executed. As the main objective of a self-management system is to manage the
system’s behaviour, this thesis proposes to base self-management on use-cases and
to extend them to also include the information regarding structural elements.

Use-cases are the driving concept behind the proposed self-management model
(described in Chapters 4 and 5). The coming sections describe what use-cases
are, how the basic characteristics of a use-case are extended, how use-cases can be
organised, and how different use-cases are related.

3.4 Use-Cases

Jacobson introduced use-cases in 1992 [95] for requirements modeling and struc-
turing. Software engineers utilise business use-cases to describe the behaviour of
a system from the viewpoint of a user.

30 Use-case Driven Self-Management

Figure 3.4: Use-cases of an example system: (a) None of the use-cases have been
activated and therefore none of the rectangular blocks, representing the system’s
structural elements, have been highlighted. (b) The system is processing the User

Authentication use-case. (c) The system is processing the Payment use-case.

A use-case represents a unit of functionality that a user expects from a system.
In spite of the fact that there is no single universally accepted definition of a use-
case in the literature, there is a general acceptance [41, 69, 95] that a use-case is
a collection of possible sequences of interactions between the system and external
actors having a set of main goals to be reached with the help of the system.

Figure 3.4(a) shows the Trading System surrounded by a number of use-cases.
The use-cases include User Authentication (user authenticates him/her-self to the
system), Trade Entry (user enters a trade in the system), Payment (user requests
the system to administrate the payment regarding a trade), and Update Shares
(user requests the system to update his/her shares). The system has been depicted
as a rectangular block containing a number of light-coloured rectangular blocks
representing the structural elements of the system. The blocks have been related
with each other through continuous lines showing their structural relationships.
The example shows that system behaviour can be considered to be a collection of
use-cases and a use-case can be seen as a unit of behaviour (behavioural element).

When a user initiates activation of a use-case, a number of related structural
elements are activated. To indicate this, some of the rectangular blocks in Fig-
ures 3.4(b) and 3.4(c) are highlighted and connected through dashed arrows repre-
senting the information flow. The continuous arrow ending at a highlighted block

3.5 Use-Case Levels 31

represents the input of a use-case, and the continuous arrow originating from a
highlighted block represents the output of a use-case. Figure 3.4(b) shows the
active blocks when the User Authentication use-case is being executed, and Fig-
ure 3.4(c) shows other blocks that become active when the Payment use-case is
being executed.

Use-cases are usually expressed in a semi-formal way (referred to as use-case
template or use-case notation) and include the following basic characteristics:

• A use-case name that uniquely identifies the use-case and clearly expresses
its goal.

• A list of use-case actors, which are systems or persons that initiate interac-
tions with the system to achieve their goals.

• A use-case trigger, which is the event (external, internal, or temporal) that
causes initiation of the use-case.

• A list of use-case pre-conditions, which are the conditions (i.e., certain system
states) that must be true for the trigger to meaningfully cause the initiation
of the use-case.

• A list of use-case post-conditions, which are the desired system states after
use-case completes.

• A list of use-case steps, which are either interactions between the system (or
part of the system) and an actor, or references to other use-cases to which
to delegate certain sub-goals [73].

For the purpose of system management, a use-case can be viewed as a de-
scription of a process in which a system receives a request, executes the use-case
steps internally by means of the structural elements (e.g., system’s sub-systems,
components), and produces a response. Based on this definition, and the fact that
current use-case notations do not include information concerning the structural
elements involved, the basic characteristics of use-cases are extended to include:

• A list of use-case structural elements, which are the system’s structural el-
ements responsible for executing a number of use-case steps. Each use-case
can be executed by a number of structural elements, and each use-case step
is executed by exactly one structural element.

As the number of use-cases of complex distributed systems can be significant
and the complexity of different use-cases can vary considerably, this thesis struc-
tures the use-cases. The following two sections discuss two approaches to struc-
turing use-cases: use-case levels and use-case references.

3.5 Use-Case Levels

One of the important responsibilities of self-management of distributed systems is
determining the root-cause of a system malfunctioning. Pinpointing a root-cause

32 Use-case Driven Self-Management

in a system with a considerable number of complex use-cases running within a
complex environment is one of the main challenges this thesis addresses. This
thesis advocates that, for management purposes, use-cases can be best structured
based on the software fault handling process performed in practice.

Enterprises have organised their software fault handling process around three
teams, namely help desk support teams, system administrator teams, and system
maintenance teams. As shown in Figure 3.5 (the fault handling process), when
users encounter a problem regarding a specific system they first contact the related
help desk support team and explain their problem. Based on the explanation of
a problem, a help desk support team tries to determine the context (the top-level
use-case) in which the problem occurred. This context information is passed to
the system administrator team responsible for a set of servers on which different
number of business processes run.

Figure 3.5: Activities performed by a help desk support team, a system admin-
istrator team, and a system maintenance team consisting of functional analysts
and system developers.

The system administrator team tries to determine the business process respon-
sible for the reported problem. If further investigation is needed, the information
regarding the process is passed to the system maintenance team responsible for
corrective and adaptive maintenance of the system. This team includes both func-
tional analysts and system developers. The functional analysts try to determine
the functional component responsible for the fault, and the system developers try
to determine the root-cause of the problem in the code. After the root-cause of
the problem has been determined, appropriate remedy actions are planned and
performed. In line with the software fault handling process, this thesis proposes
use-case levels to structure the use-cases of a distributed system.

To introduce use-case levels, further exploration of structural elements is needed.
Structural elements are extensively explained in Section 5.2, for now it is sufficient

3.5 Use-Case Levels 33

to know that, on the highest level, each distributed system is composed of a number
of communicating sub-systems (in this thesis referred to as runnables), on the next
lower level, each sub-system is composed of a number of components, and finally
each component is composed of a number of classes. These elements (i.e., systems,
runnables, components, and classes) are different types of structural elements. The
following use-case levels for a distributed system are proposed [83, 85]:

1. System level use-case - From the end-user’s viewpoint, a system is, in fact,
a black box and end-users are not interested in how the system executes
the use-case. A system level use-case describes the external behaviour of
a system. Assuming that the whole system is one big structural element,
all use-case steps of a system level use-case are performed by one structural
element (i.e., system). The use-cases in Figure 3.4 are all examples of system
level use-cases. Help desk support teams are interested in this type of use-
cases to narrow down the problem space at a very high level.

2. Runnable level use-case - From the viewpoint of a system administrator,
only runnables and their connections are of importance. A runnable level
use-case describes the internal behaviour of a system as interactions between
runnables. All use-case steps of a use-case at this level are performed by
runnables.

3. Component level use-case - From the viewpoint of a functional analyst,
only components and their communications are of importance. A component
level use-case describes the internal behaviour of a system as communica-
tions between components. All use-case steps of a use-case at this level are
performed by components.

4. Class level use-case - From the viewpoint of a system developer, only
classes, methods, and their invocations are of importance. A class level use-
case describes the internal behaviour of a system as invocations between
methods. All use-case steps of a use-case at this level are performed by
classes/methods.

The goal of the manual software fault handling process, described above, is to
find the root-cause of system malfunctioning. Note that a root-cause is defined
by each involved team in different terms (i.e., root-cause is a relative term). This
thesis defines the root-cause of a system malfunctioning in terms of use-case steps
and structural elements. The root-cause of malfunctioning during execution of use-
case ui is expressed as a pair (sk, usj), where usj is a use-case step belonging to
ui, and sk is the structural element executing the use-case step usj . As the types
of use-cases and structural elements at each use-case level are different, each team
determines its own root-cause of the reported problem. For example, the root-
cause of the problem from the viewpoint of the system administrator team is a pair
containing a runnable and a runnable level use-case step. From the viewpoint of the
functional analyst, the root-cause is a pair containing a functional component and a
component level use-case step. With respect to structural elements, the granularity

34 Use-case Driven Self-Management

of the root-cause of the reported problem can vary from coarse-grained (faulty
system) to less coarse-grained (faulty process), to fine-grained (faulty component),
and finally to more fine-grained (faulty code).

Introducing the above use-case levels has the following advantages concerning
management of distributed systems:

• Use-case levels facilitate knowledge acquisition. Acquiring domain knowl-
edge necessary for model-based4 approaches is known to be difficult [42, 150].
Self-management of distributed systems requires knowledge about a managed
system, and different domain experts (such as help desk support team, sys-
tem administrators, etc.) are the providers of this knowledge. As use-case
levels reflect the view of different domain experts, the required knowledge
about use-cases of a specific level can be independently and conveniently
specified in use-case notation by the corresponding domain experts.

• Use-case levels provide an opportunity for autonomic managers to pinpoint
the root-cause of a system malfunctioning at different granularity levels
(i.e, system, runnable, component, and class).

• Use-case levels divide a problem space into a number of sub-spaces each with
their own type of problems. For example, problems such as a broken connec-
tion, an incorrect start-up sequence of processes, or excessive heap usage can
occur at runnable level, problems such as incorrect component version, or
unregistered component can occur at component level, and problems such as
incorrect parameters, or uninitialised class members can occur at class level.
This means that an autonomic manager controlling the correct execution of
a use-case at a specific level has to pay attention only to the specific category
of problems occurring at that particular level.

3.6 Use-Case References

To facilitate the diagnostic task of autonomic managers, the previous section in-
troduced use-case levels to structure the knowledge needed to diagnose system
malfunctioning. Note, however, that each of these use-cases, independent of the
level at which it resides, may reference other use-cases. Two types of use-case refer-
ences are distinguished: horizontal and vertical references. The following sections
explain both types of use-case references in relation to the use-case levels.

3.6.1 Horizontal References

Recall that a use-case contains a number of use-case steps. Each use-case step
can be either an activity or a reference to another use-case to delegate a certain
sub-goal to be realised. A reference from a use-case step (of a use-case at a specific
level) to a use-case at the same level is called a horizontal reference.

4The self-management approach in this thesis uses a model of an existing distributed system
to perform management tasks.

3.6 Use-Case References 35

Figure 3.6 shows the different use-case levels and horizontal references between
use-cases at the same level. The ovals at different use-case levels represent be-
havioural elements5 (BEi) each containing one or more blocks representing the
relevant structural elements (SEi). All structural elements within one use-case
level are of the same type (according to the definition of a use-case level presented
in Section 3.5). For example, at the runnable level, structural elements SE2, SE3,
and SE4 are of type runnable. Use-case BE3 is executed by structural elements
SE2, SE3, and SE4, and use-case BE4 is executed by structural elements SE3 and
SE4. Note that different behavioural elements within the same use-case level may
be executed by the same structural elements (both BE3 and BE4 use SE3 and SE4

to be executed).

Figure 3.6: Various use-case levels and their relationships. Horizontal references
between use-cases at the same use-case level are shown.

Use-case steps, including references to other use-cases, are executed by struc-
tural elements. A dashed line in the figure, originating from a structural element
(SEi) and ending at a behavioural element (BEi), represents the communication
between use-cases at the same level. For example, at the runnable level, the dashed
line from SE3 to BE4 shows that the use-case step (horizontal reference) running on
SE3 is an invocation of BE4 at the same level. An example of a horizontal reference
is given in the next section (see Figure 3.12 - step (2)).

3.6.2 Vertical References

A reference from a use-case step of a use-case at one level to another use-case
at a different level is called a vertical reference. There are two types of vertical
references: a use-case reference from a higher level use-case to a lower level use-case,

5The terms use-case and behavioural element are used interchangeably.

36 Use-case Driven Self-Management

called a downward vertical reference, and a use-case reference from a lower level use-
case to a higher level use-case called an upward vertical reference. Figure 3.7 shows
the use-case levels with the same behavioural and structural elements as Figure 3.6.
The difference is that Figure 3.7 depicts the vertical references including both
downward and upward.

Figure 3.7: Various use-case levels and their relationships. Vertical references
(both downward and upward) at the different use-case levels are shown.

A dashed line from a higher level toward a lower level in the figure represents
downward communication between use-cases at the different levels. There is a
compositional relationship between a structural element executing the downward
reference of a use-case at a higher level, and a number of structural elements exe-
cuting the use-case steps of the referenced use-case at the lower level. For instance,
structural element SE2, at the runnable level, consists of structural elements SE5,
SE6, and SE7 at the component level. When the downward reference executes
on SE2, the system switches to the execution of use-case BE5 executed by the
components SE5, SE6, and SE7.

The figure also illustrates that different structural elements used by the same
behaviour can have different compositions. For instance, component level use-case
BE5 uses components SE5, SE6, and SE7. As there are two downward vertical
references executed by SE6, and SE7, there are two different compositional rela-
tionships: component SE6 only consists of the classes SE8 and SE9 (and not SE10),
however, component SE7 consists of the classes SE8, SE9, and SE10. Note that the
two classes SE8 and SE9 are used by both structural elements (components) SE6
and SE7.

The downward referential relationship between behavioural elements makes it
possible for autonomic managers to narrow down the search space of the root-
cause of a system malfunctioning from complex behaviours to simpler behaviours,
by following the line of references from a higher level toward lower levels. The

3.7 An Example Scenario 37

compositional relationship between structural elements makes it possible for au-
tonomic managers to pinpoint more fine-grained structural elements as the faulty
elements, by following the same line of references. An example of a downward
vertical reference is given in the next section (see Figure 3.12 - step (6)).

A dashed line from a lower level to a higher level represents upward commu-
nication between use-cases at the different levels. For instance, use-case BE8, at
the class level, needs a functionality of a library (component) that is executed by
SE6 at the component level. The invocation statement executed within SE10 is
an upward reference. Note that there is no compositional relationship between a
structural element executing upward reference of a use-case at a lower level, and
the structural elements executing the use-case steps of the referenced use-case at
the higher level. An example of an upward vertical reference is given in the next
section (see Figure 3.18 - step (2)).

Figure 3.7 illustrates only behavioural relationships between two neighbouring
levels. Nevertheless, to cope with some practical situations, the definition of the
vertical reference also allows behavioural relationships between non-neighbouring
levels. The invocation of a method of a class from the main method of a runnable
(a downward vertical reference from the runnable level use-case to the class level
use-case), and the invocation of an executable from a method of a class (an upward
vertical reference from the class level use-case to the runnable level use-case) are
examples of such practical situations.

Remember that the objective of this thesis is to achieve self-management of dis-
tributed systems by managing the different behaviours of these systems. To man-
age an individual behaviour, an autonomic manager is made responsible for man-
aging a use-case representing a behavioural element. To manage the behaviour of
a whole system, the autonomic managers of all of the behavioural elements are re-
lated to each other according to the referential relationships (both horizontal and
vertical). These autonomic managers make the self-management of a distributed
system possible. An example scenario in the following section illustrates use-cases,
use-case levels, and their relationships.

3.7 An Example Scenario

This section presents a user authentication scenario for a simplified version of a
complex portal system, with possible causes of failure at different use-case lev-
els. The following scenario illustrates how enterprises authenticate business users
requesting access to a company’s secure portal system. Portal systems typically
integrate a number of legacy systems, presenting them on the web as a single sys-
tem. Consequently, the authentication logic for the system as a whole is usually
spread out and embedded in different sub-systems of a portal system including
legacy sub-systems. Figure 3.8 illustrates the activities of the example scenario.
These activities are realised by cooperation of different structural elements (at
runnable level) shown in Figure 3.9.

38 Use-case Driven Self-Management

Figure 3.8: The activity diagram of the authentication scenario.

To access a portal system, business users provide their certificates to the Access-
Manager sub-system using a negotiation process, established between the user’s
Browser and the AccessManager (see Figure 3.9). Upon receiving the user’s cer-
tificate, the AccessManager verifies the certificate, and passes it to the Business-
Integrator sub-system using an appropriate connection. The BusinessIntegrator
communicates with the DatabaseManager sub-system, extracts the user’s identity
(userid), acquires the password for the given userid, constructs login information
(userid/password), and sends it to the BusinessManager sub-system (legacy back-
end). The BusinessManager authenticates the user’s credential and returns the
result of the authentication to the BusinessIntegrator. Finally, the BusinessInte-
grator passes the result of the authentication through the AccessManager back to
the user’s Browser.

Figure 3.9: The structural elements of the authentication scenario at runnable
level.

The above description of the authentication process assumes nothing goes
wrong (correct behaviour). Suppose, however, that an error occurs: a user is
denied access even though he/she has a valid certificate and identity. The root-
cause of this malfunctioning needs to be discovered. The root-cause might be
somewhere in the system code. It is obvious that pinpointing such a root-cause
in a system with thousands of lines of code distributed on different physical sub-

3.7 An Example Scenario 39

systems is not straightforward. Distinguishing a hierarchy of levels in the structure
and the behaviour of a system on the basis of use-case descriptions, and relating
root-causes to these levels, can facilitate the diagnostic task.

Based on the definition of a root-cause (see Section 3.5), the root-cause of
system malfunctioning at a specific use-case level relates to the structural element
dedicated to that level. Therefore, the root-cause of malfunctioning of a system
level use-case relates to the whole system, a runnable level use-case relates to a
runnable, a component level use-case relates to a component, and a class level use-
case relates to a class/method. The above mentioned levels of use-case descriptions
are clarified in the following sections together with illustrations of level-related
errors.

3.7.1 System Level View

Usually an end-user informs the help desk support team about a system malfunc-
tioning by reporting ‘system x does not work’. To narrow down the search space of
possible root-causes, the first question the help desk support team asks is: ‘What
were you doing?’ or more specifically: ‘Which behaviour of system x were you
using?’ As mentioned before, a system can contain many behavioural elements
(such as User Authentication, Trade Entry, Payment, and Update Shares intro-
duced in Section 3.4) that divide the behaviour space of a system into the top
level (system level) use-cases. By associating an autonomic manager with each
system level behavioural element, the search space of possible root-causes of a
system malfunctioning is divided between multiple autonomic managers. There-
fore, the user-system interactions regarding one specific behavioural element can
provide the starting point for discovering the root-cause of the mentioned system
malfunctioning.

Figure 3.10 shows the authentication process (behavioural element) from the
viewpoint of a user, described as a system level use-case. Note that the use-case
steps have been intentionally formulated in terms of user and system. A system
malfunctioning might be caused by the fact that a user did not provide a certificate
(step (2)), the system was not able to authenticate the user (step (4)), or the system
did not show the authentication result (step (5)). The help desk support teams
are interested in this use-case level to determine the use-case step that caused the
undesired situation.

Figure 3.11 shows the structural element a user sees during interaction with
the system. The system is the only structural element involved at this level. Note
that the root-cause of a malfunctioning at system level is coarse-grained. More
fine-grained root-causes are deeper in the hierarchy of use-case levels.

3.7.2 Runnable Level View

Step (4) in Figure 3.10 is the invocation of the Authentication Realisation use-case
at runnable level. Figure 3.12 refines the mentioned use-case step, and shows the
Authentication Realisation use-case as interactions between runnables, from the

40 Use-case Driven Self-Management

name: User Authentication
actors: user
trigger: requesting access to portal system
pre-conditions: user has a valid certificate
post-conditions: user is authenticated
structural elements: System
steps:
(1) System receives an access request from user,
(2) System requests user to provide certificate,
(3) System receives user’s certificate,
(4) System calls Authentication Realisation to authenticate user,
(5) System shows authentication result to user.

Figure 3.10: User Authentication use-case at system level.

Figure 3.11: Structural element (system) in the User Authentication use-case.

viewpoint of a system administrator. Note that each runnable, as mentioned in
Figure 3.9 (Browser, AccessManager, etc.), may implement one or more use-case
steps.

name: Authentication Realisation
actors: Browser sub-system
trigger: requesting access to portal system
pre-conditions: user has a valid certificate
post-conditions: user is authenticated
structural elements: Browser, AccessManager, BusinessIntegrator,

DatabaseManager, BusinessManager
steps:
(1) Browser passes user’s certificate to AccessManager,
(2) AccessManager calls Certificate Verification to verify certificate,
(3) AccessManager passes certificate to BusinessIntegrator,
(4) BusinessIntegrator requests a database session from DatabaseManager,
(5) DatabaseManager retrieves database session,
(6) BusinessIntegrator calls Auth-info Preparation to prepare login info,
(7) BusinessIntegrator delegates login info to BusinessManager,
(8) BusinessManager authenticates the user,
(9) BusinessManager passes result to BusinessIntegrator,
(10) BusinessIntegrator passes result to AccessManager,
(11) AccessManager passes authentication result to Browser,

Figure 3.12: Authentication Realisation use-case at runnable level.

Figure 3.13 shows which use-case steps are executed by which runnable, and
the remote connections between runnables. At this level, use-case steps are more
specific, and the coarse-grained structural element (system) has been decomposed
into a number of finer-grained structural elements (runnables). An autonomic
manager at this level can pinpoint a specific runnable or the connection between
two runnables as the root-cause of the mentioned malfunctioning.

3.7 An Example Scenario 41

Figure 3.13: Structural elements (runnables) in the Authentication Realisation

use-case.

As mentioned before, one of the most frequently occurring errors at the
runnable level is a broken connection. The autonomic manager responsible for
the Authentication Realisation monitors use-case steps (such as step (3) in Fig-
ure 3.12) that represent the communication between two runnables to detect such
errors. The autonomic manager checks whether the connection (in this case be-
tween the AccessManager and the BusinessIntegrator) is functioning correctly.

The runnable level Certificate Verification use-case illustrates horizontal use-
case relationships (see Figures 3.14 and 3.15). This use-case refines step (2), the
horizontal reference, of the Authentication Realisation use-case (see Figure 3.12),
and describes how the AccessManager delegates verification of the user’s certificate
to the CertificateVerifier. Upon receiving the certificate, the CertificateVerifier
inspects the validity of the certificate by comparing it to the certificates in its
database. If a match is found then the CertificateVerifier sends the certificate to
the CertificateAuthority to validate its expiration date. Finally, the Certificate-
Verifier sends the verification result back to the AccessManager.

name: Certificate Verification
actors: AccessManager sub-system
trigger: passing certificate for verification
pre-conditions: existence of a certificate
post-conditions: certificate is verified
structural elements: AccessManager, CertificateVerifier, CertificateAuthority
steps:
(1) AccessManager passes certificate to CertificateVerifier,
(2) CertificateVerifier inspects content of certificate,
(3) CertificateVerifier requests CertificateAuthority for certificate validation,
(4) CertificateAuthority sends validation result to CertificateVerifier,
(5) CertificateVerifier receives validation result,
(6) CertificateVerifier sends verification result to AccessManager,
(7) AccessManager receives verification result.

Figure 3.14: Certificate Verification use-case at runnable level.

Presenting the Certificate Verification use-case clarifies that different use-cases,
at the same use-case level, can be executed by different structural elements. The
runnables Browser, BusinessIntegrator, BusinessManager, and DatabaseManager
are not shown in Figure 3.15 as none of the use-case steps of the Certificate Ver-
ification are executed by the runnables. The autonomic manager responsible for
the Certificate Verification use-case does not need to care about the management
of those runnables.

Step (6) in Figure 3.12 is an example of a downward vertical reference, from

42 Use-case Driven Self-Management

Figure 3.15: Structural elements (runnables) in the Certificate Verification use-
case.

runnable level use-case (Authentication Realisation) to component level use-case
(Auth-info Preparation). The output of this reference indicates whether the refer-
enced use-case (auth-info preparation) is successful.

3.7.3 Component Level View

Figure 3.16 refines step (6) of the Authentication Realisation use-case, and shows
the Auth-info Preparation use-case from the viewpoint of a functional analyst in
which only components and their interactions are of importance. Each component
performs one or more use-case steps.

name: Auth-info Preparation
actors: BusinessIntegrator sub-system
trigger: passing certificate
pre-conditions: existence of a certificate
post-conditions: login-info (userid/password) is prepared
structural elements: CertificateParserComp, PrepareAuthComp
steps:
(1) CertificateParserComp receives certificate,
(2) CertificateParserComp extracts userid,
(3) CertificateParserComp passes userid to PrepareAuthComp,
(4) PrepareAuthComp receives userid,
(5) PrepareAuthComp calls Login-info Retrieval to prepare login info,
(6) PrepareAuthComp returns login info.

Figure 3.16: Auth-info Preparation use-case at component level.

Runnable BusinessIntegrator contains two components: the Certificate-
ParserComp, that parses a certificate and extracts a user identity, and the Pre-
pareAuthComp, that constructs login information. Figure 3.17 shows these com-
ponents and the use-case steps executed by each.

Figure 3.17: Structural elements (components) in the Auth-info Preparation

use-case.

3.7 An Example Scenario 43

Use-case step (3) in Figure 3.16 expresses the communication between the two
components CertificateParserComp and PrepareAuthComp. The autonomic man-
ager responsible for the Auth-info Preparation use-case monitors the mentioned
use-case step by keeping track of the state of the current version of a component.
Monitoring is needed because the components might be incompatible, the version
numbers of the components might not correspond.

3.7.4 Class Level View

Figure 3.18 refines step (5) of the Auth-info Preparation use-case, and shows the
Login-info Retrieval use-case from the viewpoint of a system developer in which
only classes, methods, and their interactions are of importance. Note that each
class or method may perform one or more use-case steps.

name: Login-info Retrieval
actors: PrepareAuthComp component
trigger: passing userid
pre-conditions: existence of a userid
post-conditions: login-info (userid/password) is retrieved
structural elements: AuthInfoClass, RetrieveAuthInfo
steps:
(1) AuthInfoClass receives userid,
(2) RetrieveAuthInfo calls Data Retrieval to retrieve password from database,
(3) RetrieveAuthInfo constructs login info,
(4) RetrieveAuthInfo returns login info.

Figure 3.18: Login-info Retrieval use-case at class level.

The PrepareAuthComp component contains a class called AuthInfoClass. The
constructor method of this class receives the userid and saves it for future use.
This class also contains a method called RetrieveAuthInfo which uses the estab-
lished connection with the database to retrieve user related information from the
database.

Figure 3.19 shows this class and its methods, and the use-case steps executed
by each of the methods. One of the errors that can occur is that either the
DatabaseManager is down or the DatabaseManager provides incorrect information
about a user’s identity. The autonomic manager responsible for the Login-info
Retrieval monitors the upward vertical reference expressed in use-case step (2) in
Figure 3.18 to determine these errors.

This step refers to the Data Retrieval use-case defined at the component level
(see Figure 3.20). The use-case describes the communication between the DataRe-
trievalComp and the JdbcComp components. The DataRetrievalComp hides the
persistence mechanism used by the BusinessIntegrator, and requests the JdbcComp
to retrieve the user-record (userid/password) from the specified database table.

Note that if the result returned from DatabaseManager is incorrect then a
NullPointerException would occur during the construction of the login information
(step (3) in Figure 3.18), and the execution of the use-case would have terminated
abnormally. Section 5.1 explains how these events are modelled.

44 Use-case Driven Self-Management

Figure 3.19: Structural elements (classes and methods) in the Login-info Re-

trieval use-case.

name: Data Retrieval
actors: RetrieveAuthInfo
trigger: passing userid
pre-conditions: existence of a database session
post-conditions: user-record (userid/password) is retrieved
structural elements: DataRetrievalComp, JdbcComp
steps:
(1) DataRetrievalComp receives userid,
(2) DataRetrievalComp requests user-record from JdbcComp,
(3) JdbcComp retrieves user-record from database table,
(4) JdbcComp passes user-record to DataRetrievalComp,
(5) DataRetrievalComp passes user’s password to RetrieveAuthInfo.

Figure 3.20: Data Retrieval use-case at component level.

3.8 Summary

This chapter argues that self-management of complex distributed systems must
deal with both the behavioural and structural complexities of these systems, and
that the behavioural element is the preferred unit of management for autonomic
managers. As an autonomic manager requires knowledge on its managed unit, the
chapter advocates to reuse the knowledge on a system’s behaviour and structure,
acquired during the software design and development phase. This knowledge is
mainly specified in use-cases and related UML diagrams. Use-case notations were
extended to also include structural information.

This chapter explains how use-cases can be structured and organised in use-case
levels, including references, based on an existing software fault handling process.
Finally, the chapter describes an example scenario illustrating use-cases at different
levels: system, runnable, component, and class level. The scenario shows how
a system’s behaviour at a specific level can be related to the system’s software
architecture at that level. Moreover, the scenario shows how the granularity of
the root-cause of problems from higher levels to lower levels changes from coarse-
grained to fine-grained.

Chapter 4

The Management Model

To face the complexity of management of distributed systems, the previous chapter
advocated the use of multiple autonomic managers, one for each behavioural ele-
ment. The relationships between behavioural elements determine the relationships
between autonomic managers. This chapter explains how an autonomic manager
manages a behavioural element (i.e., use-case) of a system, and how autonomic
managers cooperate with each other to manage the behaviour of the whole system.
The self-management approach described in this thesis is a model-based approach:
the important properties of distributed systems are abstracted, and the main en-
tities that play a role in the management of these systems are identified. This
chapter presents the management model : the model of individual autonomic man-
agers and their interactions.

Section 4.2 zooms in on autonomic managers and behavioural elements, and
provides an overview of their internal structures. Sections 4.3 through 4.6 explain
the autonomic manager’s main entities (analyser, diagnoser, planner, and plan
translator), their working, and their role in the management of system malfunc-
tioning. These entities are formally specified in Chapter 6. Section 4.7 describes
how an autonomic manager coordinates the working of its main entities, and co-
operates with other autonomic managers to realise the management of the whole
system. Section 4.8 depicts the internal structure of information flow entities (sen-
sor, symptom, hypothesis, plan, effector) that are passed from one main entity of
the autonomic manager to the next.

The autonomic manager and its main entities utilise (logical) rules to determine
the occurrence of symptoms, identify diagnoses, select proper plans, and translate
plans to executable adaptation instructions. There are two sets of rules: generic
rules and domain-specific rules. The domain-specific rules are relevant to the
management of a specific distributed system. In contrast, the generic rules are
domain independent. They are relevant to the management of all distributed
systems supported by the framework proposed in this thesis. The generic rules
are the pre-defined part of a management model and domain-specific rules are
added as the result of interactions with domain experts. Appendix A illustrates
and explains the generic part of these rules.

45

46 The Management Model

4.1 Introduction

Computer system malfunctions occur in every enterprise. Because of the inability
of human beings to produce error-free software, software malfunctioning is almost
inevitable. According to a technical report published by NASA [180], ‘[. . .] it is
extremely difficult to produce a flawless piece of software. For humans, perfect
knowledge of a problem and its solution is rarely achieved. Even if a programmer
has sufficient knowledge to solve a problem, that knowledge must be transformed
into a systematic representation adequate for automatic processing’. Hard-to-
detect design faults are likely to be introduced during development, especially,
when a software program is developed by multiple development teams (and ven-
dors), and maintained by different administrator teams. System malfunctioning
can occur if different teams misunderstand each other about even one small issue.

Developers and system administrators all encounter system malfunctions in
the course of time. Once a root-cause is identified software is most often repaired
manually. The knowledge gathered during this process is often stored in a human
language in a knowledge repository. Human languages are inherently ambiguous
and can be interpreted in different ways. Expressing this knowledge in a formal
language and embedding the human diagnostic process into a separate software
program makes it possible for both human (developers, system administrators, etc.)
and automated systems to reuse this knowledge for problem determination and
repair actions. This thesis proposes a management model in which this knowledge
plays an important role.

4.2 Management Model Overview

Recall from Chapter 3 that autonomic management of a distributed system is per-
formed by multiple autonomic managers. System behaviour specified in use-cases
is the unit of management, and each use-case’s execution is managed by a dedi-
cated autonomic manager. Management of execution of a use-case is a complex
task. To cope with this complexity, and to achieve a reasonable degree of maintain-
ability, transparency, extensibility, and adaptability, an explicit design decision has
been made to define separate entities within an autonomic manager for analysis,
diagnostic, planning, and plan translation processes. Also, the relationships and
interfaces between these entities are formally defined to allow them to be flexible
in changing their internal algorithmic and computational approach.

The following sections provide a high level overview of the autonomic man-
ager, managed use-case, and their relationships and thereafter describe a scenario
regarding an abnormal behaviour of a distributed system.

4.2.1 High Level Overview

This section zooms in on the ‘autonomic manager ’ and ‘behavioural element ’ de-
picted in Figure 3.3(b), providing an overview of their internal structures. Fig-
ure 4.1 depicts the management feedback process, inspired by the autonomic com-

4.2 Management Model Overview 47

puting architectural blueprint, in more detail. At the highest level, the figure
shows an autonomic manager and a behavioural element (i.e., managed use-case).
The managed use-case is depicted as an oval containing a number of rectangu-
lar blocks representing structural elements on which use-case steps are executed.
These structural elements are extended with sensors and effectors. Sensors provide
runtime information from a managed use-case to an autonomic manager, and effec-
tors implement adaptation instructions from an autonomic manager to a managed
use-case.

Figure 4.1: Internal structure of an autonomic manager responsible for managing
a use-case with steps that are executed within structural elements containing
sensors and effectors.

Each autonomic manager has four main entities: Analyser, Diagnoser, Planner
and Plan Translator. These entities share the knowledge available in the struc-
tural and behavioural models regarding the managed use-case. The analyser is
responsible for identifying abnormal behaviour (symptom) of a managed use-case
based on values received by the sensors and the information available in the shared
knowledge-base. The diagnoser determines the root-cause (diagnosis) of the abnor-
mal behaviour identified. Based on this diagnosis, the planner constructs remedy
plans and passes the plans to the plan translator to be translated into instructions
for the effectors instrumented in the code of the managed use-case. Note that the
autonomic manager’s main entities in the architecture depicted in Figure 4.1 are
slightly different from the ones in the autonomic computing architectural blueprint
depicted in Figure 1.3.

The monitor entity of the architectural blueprint in Figure 1.3 is replaced in
Figure 4.1 by Analyser. Analyser not only monitors information but also infers
new information. The analyser entity of the architectural blueprint in Figure 1.3
is replaced in Figure 4.1 by Diagnoser. Diagnoser does not analyse the informa-
tion regarding the managed use-case but it uses meta-knowledge to diagnose the
cause of abnormal behaviour. The execute entity of the architectural blueprint in
Figure 1.3 is replaced in Figure 4.1 by Plan Translator. Plan Translator does not

48 The Management Model

directly execute plans but it translates them into instructions to be executed by
effectors.

Recall from Chapter 3 that an existing distributed system usually has a con-
siderable number of complex use-cases running within a complex environment. In
this thesis, the complexity of the self-management of distributed systems is reduced
by dividing the use-cases space into use-case levels and relating use-cases to each
other at various levels according to their references. The proposed management
model provides a mechanism to support communication and cooperation between
autonomic managers.

4.2.2 A Failure Scenario

The working of the main entities (such as analyser) of an autonomic manager in the
management model is further explained in the next sections by a failure scenario.
This scenario concerns a failure of the Trading System, introduced in Chapter 3,
during execution of the Payment use-case. This section describes the scenario.

Naming plays an important role in distributed systems (see [177] for an ex-
tended discussion about naming). Comparable to a card catalog, that maps names
of books to their location in a library, a naming service associates names with loca-
tions of services, and maintains a set of bindings (associations between names and
locations). Usually one sub-system (a server) registers a service with a naming
service, and another sub-system (a client) uses a naming service to locate that
service by name, to retrieve it, and to use it for its own purposes.

Figure 4.2: The interaction diagram between different structural elements used
in the naming service example. A rectangular block represents a structural element
of a system. An interaction is depicted by an arrow, and the text above an arrow
depicts a method invocation. The star on the arrow at the bottom indicates the
occurrence of a malfunctioning.

Assume the Payment use-case of the Trading System is managed by an au-
tonomic manager. The Payment use-case involves interaction between a client

4.3 Analyser 49

sub-system (called PaymentClient), a server sub-system (called PaymentServer),
and a naming service sub-system (called NamingService). As shown in Figure 4.2,
when PaymentServer is executed, it creates a PaymentService object and reads the
name of the created object from its configuration. After, it registers PaymentSer-
vice with NamingService. PaymentClient reads the name of the PaymentService
object from its own configuration, sends a message to NamingService, and re-
quests the service. If something is wrong (an abnormal behaviour is detected),
PaymentClient does not receive a reference to PaymentService.

The following sections explain how such abnormal behaviour can be deter-
mined and healed by the autonomic manager, and describe the roles of analyser,
diagnoser, planner, and plan translator entities in the management process1.

4.3 Analyser

The main responsibility of an Analyser is to determine whether one or more
symptoms have been detected, based on the information returned by the relevant
sensors. The entities related with the analyser are described below. The two infor-
mation flow entities, Sensor and Symptom, are explained in detail in Sections 4.8.1
and 4.8.2 respectively.

Entities Related to Analyser

An Analyser utilises one or more SymptomOccurrenceRules which are logical com-
binations of comparison operators over sensor values. One SymptomOccurrence-

Rule uses one or more sensors instrumented in the code of a managed use-case
(Job2). There are at least three sensors associated with a job: two inform the
autonomic manager about the beginning and end of job execution, and the third
monitors a use-case step3. Figure 4.3 shows the entities and relationships involved
in ER diagram form.

An Analyser’s activities are affected by a set of policy rules represented as
AnalyserStrategicRules. For example, consider a distributed system consisting

1Entity-Relationship (ER) diagrams, originally proposed in 1976 by Chen [36], are used in this
thesis to describe all entities, relationships, and attributes needed to implement the management
feedback loop described in the previous section. UML state diagrams [69] are used to describe
the activities of the entities and the interactions between them including their information flow.
For the sake of readability, model elements are denoted in the Courier font, names of model
entities start with an upper case letter, and names of relationships and attributes start with a
lower case letter.

An ER diagram depicts the static structure of an entity. In an ER diagram, entities are
represented by rectangles, and relationships are represented by diamonds. Each entity contains
a number of attributes describing the characteristics of the entity. Attributes are represented
by ellipses. A range of numbers (or just one number) along continuous lines indicate cardinality
which expresses the number of relationships allowed per entity.

2The Job entity is an element of the system behavioural model, and is described in Section 5.1.
In this thesis, the terms use-case and job are used interchangeably.

3The assumption is that each use-case contains at least one use-case step.

50 The Management Model

Figure 4.3: The ER diagram depicts the relationships of an analyser with its
symptom occurrence rule and policy rule. Furthermore, the diagram depicts that
the symptom occurrence rule uses sensors, instrumented in the code of a managed
use-case (job), to determine a symptom occurrence.

of two sub-systems that communicate with each other using message delivery mid-
dleware. Also assume that the middleware is always unavailable between 00:00 AM
and 01:00 AM. If the two sub-systems attempt to communicate during this period,
the MessageDeliveryFailed symptom occurs. The occurrence of this symptom can
be ignored by the analyser if the following policy rule is included in the Analy-

serStrategicRules: ‘if the MessageDeliveryFailed symptom is inferred between
00:00 AM and 01:00 AM then the symptom occurrence should be ignored ’.

Analyser’s Process

The process model of Analyser is shown in Figure 4.4 in UML state diagram form4.
When Analyser is activated (by the autonomic manager), it executes its policy
(strategic) rules, and subsequently tries to infer one or more symptoms, based on
the observed values coming from sensors, using its SymptomOccurrenceRules.

Analyser’s Role in the Scenario

To analyse the situation around the abnormal behaviour mentioned in the fail-
ure scenario described above, the analyser deploys the following entities specified
by domain experts: PaymentServiceSensor, ServiceRetrievalFailed, and a set of
SymptomOccurrenceRules. When an autonomic manager obtains a value from
PaymentServiceSensor, it sends this value to the analyser. The analyser uses the
knowledge specified as SymptomOccurrenceRules to identify abnormal behaviour.
An example of a SymptomOccurrenceRule is: ‘if the value returned by PaymentSer-
viceSensor is null then the ServiceRetrievalFailed symptom has occurred ’. The

4A state diagram depicts the dynamic behaviour of an entity, and consists of a collection of
states and transitions between states. There are two special states: initial state and final state.
An initial state is the state that an entity is in when it is first activated, and a final state is the
state from which no transition is allowed. A transition is a progression from one state to another,
and is triggered after an activity takes place. To keep the diagram simple, a number of related
states together with their transitions can be grouped as one composite state.

4.4 Diagnoser 51

Figure 4.4: Analysis process model.

analyser executes the SymptomOccurrenceRules and concludes the occurrence of
a specific symptom.

4.4 Diagnoser

The main responsibility of a Diagnoser is to reason about root-causes of the
detected symptoms and to determine one or more diagnoses. A diagnosis is deter-
mined on the basis of a pre-defined set of hypotheses by utilising a number of sets
of rules belonging to the diagnoser. A possible root-cause of detected symptoms is
referred to as a hypothesis.

Note that the occurrence of different symptoms can often be explained by
the same hypothesis, and different hypotheses can explain the same symptom.
Determining proper diagnosis is not straightforward. A diagnoser needs to deal
with incomplete and inconsistent knowledge. For instance, when the diagnoser is
informed about the ‘failure to read a file from a shared drive’ but it is not informed
about the ‘broken network connection’. Moreover, there can be a generality relation
between hypotheses. For example, the fileSystemNotAvailable hypothesis is more
generic than the directoryNotReadable hypothesis. The proposed diagnostic model
deals with these issues.

The diagnostic model has been inspired from the model, introduced by Brazier
et al. [24], where the authors describe a diagnostic reasoning process. The process
starts by selecting hypotheses on which to focus, validating these hypotheses by
determining relevant observations to be performed, and evaluating the hypotheses
on the basis of the observation results. This approach combines causal and anti-
causal domain knowledge for diagnostic reasoning processes. In the first case,
derivations follow the direction of causality, that is, symptoms are derived from
hypotheses (possible causes). In the second case, the direction of derivation is
against the direction of causality, that is, the reasoning process proceeds from
actual occurred symptoms to derive hypotheses [26].

52 The Management Model

Brazier et al. applied their diagnostic model to the diagnosis of chemical pro-
cesses and soil sanitation. This thesis applies their diagnostic model to the domain
of software failure diagnosis. The reasons for adopting their model are:

1. their model is designed to reason about incomplete and inconsistent knowl-
edge: whether or not a symptom has occurred may be specified as unknown.
The value of a symptom can be unknown if the relevant sensors of the symp-
tom have been instrumented in the code at points that are not executed.
The value of a symptom can also be unknown if the relevant sensors of the
symptom have not been instrumented in the executable code of a managed
use-case (e.g., a symptom that represents a mis-configured property in a con-
figuration file, a symptom that represents a broken network connection, etc.).
Note that, during execution of a use-case, only sensors are triggered that have
been instrumented in the code at points that are executed. Consequently,
the occurrence of only a part of symptoms becomes known.

2. the nature of knowledge specification needed for diagnostic reasoning is
declarative. Declarative knowledge can be provided by non-technical do-
main experts, can be stored and maintained in a file separate from the code
for the diagnoser, and it can be modified (to some extent) during runtime
without redeploying the autonomic manager.

In the following, the entities related to the diagnoser are described, and it
is explained how these entities work together to realise the diagnostic process.
Section 4.8.3 explains the information flow entity, Hypothesis, in detail.

Entities Related to Diagnoser

Figure 4.5 depicts the relationships of Diagnoser with different sets of rules. How
and in which order these different sets of rules are executed by the diagnostic
engine are explained later. This section explains the role of each rule set with
respect to a diagnostic task.

Figure 4.5: The ER diagram depicts the relationships of a diagnoser with dif-
ferent hypothesis rules and policy rule.

Rules in HypothesisSelectionRules are required for selecting a hypothesis
from a set of hypotheses. A selection rule selects a hypothesis for validation,

4.4 Diagnoser 53

based on one or more symptoms. Note that there is a possibility that none of the
selection rules succeed to select a hypothesis. Meta-knowledge is then needed to
determine the next action. Diagnoser’s activities are influenced by a set of policy
rules represented as DiagnoserStrategicRules. An example of such a heuristic
policy rule is: ‘if more than two relevant symptoms of a hypothesis are unknown
then do not perform an inspection concerning the occurrence of these symptoms.’

Rules in HypothesisValidationRules validate a selected hypothesis by check-
ing whether all of the symptoms of the selected hypothesis are known to have
occurred. To enable a diagnoser to observe the real world for the occurrence
of a symptom, an InspectivePlan is associated with each symptom. An
InspectivePlan consists of a collection of actions executed by the diagnoser to
explore whether or not a related symptom has occurred.

A Diagnoser also has a set of rules (ChildResultToSymptomRules) to trans-
late results of child autonomic managers into Symptoms. The result of the au-
tonomic process of an autonomic manager contains the diagnosis determined by
its diagnoser. A child autonomic manager delivers its diagnosis to its parent. To
enable a parent to incorporate diagnostic knowledge of its children, a diagnoser of
a parent autonomic manager combines the diagnoses of all children and translates
them into symptoms using the ChildResultToSymptomRules. For example, if the
diagnoses of two children of the same autonomic manager are directoryNotWritable
and directoryNotReadable then a ChildResultToSymptomRule can conclude the
occurrence of fileSystemNotAvailable symptom.

Rules in HypothesisEvaluationRules are required to assess (reject or accept)
valid hypotheses based on certain criteria such as their pre-defined importance or
generality. Finally, rules in DiagnosisDeterminationRules are required to deter-
mine a diagnosis based on the result of the assessment of the selected hypothesis.

Diagnoser’s Process

A diagnostic process starts with the anti-causal knowledge (symptoms) to derive
which hypotheses are to be validated. Causal knowledge is then used to determine
the occurrence (or absence) of certain symptoms in the past. If the occurrence
(or absence) of those symptoms is not known then the diagnostic engine tries
to determine their occurrence. This section describes the state diagram of the
diagnostic process including interaction between hypothesis selecting, validating,
evaluating, and determining states. How exactly a hypothesis is selected, validated,
evaluated, and determined is explained in the Appendix sections A.2 through A.5
that describe the generic hypothesis rules.

Figure 4.6 shows the working of a Diagnoser. A diagnoser is activated by
either its autonomic manager or by arrival of diagnostic information from one of
the children of the autonomic manager. After activation, the diagnoser executes
its policy (strategic) rules. If a diagnoser is activated by its autonomic manager,
it immediately activates its HypothesisSelectionRules. Otherwise, it first maps
the diagnostic information of its child into certain symptoms, and thereafter goes
to the SelectingHypotheses state.

54 The Management Model

Figure 4.6: Diagnostic process model.

From the collection of hypotheses that indicate a possible root-cause of prob-
lems related to a managed use-case, HypothesisSelectionRules selects one or
more hypotheses as possible root-causes of the occurred symptoms. The criteria
for selecting a hypothesis from the collection are determined by meta-knowledge.
If every attempt to select a hypothesis fails (for example, because all hypotheses
have already been examined), a diagnoser transits to the DeterminingDiagnosis
state, and performs one of the following activities:

1. If there are one or more assessed (accepted or rejected) hypotheses then the
diagnoser activates the DiagnosisDeterminationRules to infer one or more
diagnoses. After that, the diagnoser terminates, whether the execution of the
DiagnosisDeterminationRules has led to any diagnosis or not.

2. If no hypotheses have been assessed, a diagnoser immediately terminates
without determining a diagnosis.

The transition from the SelectingHypotheses state to the ValidatingHypotheses
state occurs if at least one hypothesis can be selected by a HypothesisSelection-
Rule. The diagnoser activates the HypothesisValidationRules to determine

4.4 Diagnoser 55

whether the values of all symptoms of a selected hypothesis are known. A hy-
pothesis is said to be valid if the occurrence of all of its associated symptoms are
known or it is known that they have not occurred. A hypothesis is considered to be
invalid if at least one of its symptoms is unknown. If a hypothesis is valid then the
diagnoser activates the HypothesisEvaluationRules to accept or reject this hy-
pothesis as being the possible root-cause of a system malfunctioning. Immediately
after assessment, the diagnoser returns to the SelectingHypotheses state.

If the occurrence of at least one of the symptoms of a hypothesis is unknown
and there is an InspectivePlan associated with that symptom then the diagnoser
starts the execution of the InspectivePlan to inspect the occurrence of the re-
lated symptom. The execution of an inspective plan is managed by one of the
children of the autonomic manager performing the diagnostic task. The informa-
tion acquired by the execution of the inspective plan is delivered to the parent
autonomic manager.

Diagnoser’s Role in the Scenario

To determine a diagnosis for the abnormal behaviour mentioned in the failure
scenario, the autonomic manager requests its diagnoser to investigate the root-
cause of the failure. Note that the analyser has already inferred the occurrence of
the ServiceRetrievalFailed symptom. The knowledge the diagnoser needs concerns
the possible root-causes (hypotheses) and their relationships with the symptoms.
Two hypotheses are defined by the domain expert as possible root-causes of the
ServiceRetrievalFailed symptom: NamingServiceDown and NameNotRegistered.
The first one declares that NamingService is down, and the second one states
that no binding can be found between the given service name and a location.

The diagnoser should be first sure about the value of all symptoms. Suppose
the domain expert defines the following rules:

• ‘if both ServiceRetrievalFailed and NSNotAccessible symptoms have occurred
then a possible root-cause is NamingServiceDown’.

• ‘if both ServiceRetrievalFailed and NamingConflict symptoms have occurred
then a possible root-cause is NameNotRegistered ’.

When the diagnoser tries to execute the first rule, it detects that it does not
know whether the NSNotAccessible symptom (describing that NamingService is
not accessible for PaymentClient) has occurred or not. The diagnoser needs to
have knowledge of how to check the accessibility to proceed. This knowledge is
represented by an inspective plan that consists of a collection of actions to be exe-
cuted by the diagnoser. The inspective plan associated with the NSNotAccessible
symptom is defined by the domain expert as a plan (called CheckNSAccessibility)
containing only one action to send a ping message to NamingService to see whether
it responds. Figure 4.7 illustrates the relation between the mentioned hypotheses,
symptoms, and inspective plans.

The diagnoser also detects that the occurrence of the NamingConflict symptom
(describing that PaymentClient and PaymentServer have different names for the

56 The Management Model

Figure 4.7: The relation between specific hypotheses, symptoms, and inspective
plans.

same service) is unknown. The inspective plan associated with the NamingConflict
symptom is defined as a plan (called CheckNamingConflict) containing three ac-
tions: (1) retrieve the service name from the configuration used by PaymentClient,
(2) retrieve the service name from the configuration used by PaymentServer, and
(3) compare the retrieved names. The first and the second actions are executed in
parallel, and the third one is executed after their termination.

Suppose the child autonomic manager associated with the third action deter-
mines that the DifferentNameSpaces diagnosis is the root-cause due to the fact
that the retrieved service names are not equal. When the DifferentNameSpaces
diagnosis is reported to the parent (current autonomic manager), the diagnoser
of the parent maps the DifferentNameSpaces diagnosis into the NamingConflict
symptom, and concludes the occurrence of NamingConflict.

4.5 Planner

The main responsibility of Planner is to select remedy plans from a pre-defined
set of plans, specified by domain experts, based on the information contained in
the relevant diagnoses. This section describes the entities related with the planner.
Section 4.8.4 explains the information flow entity Plan and its internal structure.

Entities Related to Planner

Figure 4.8 shows the entities and relationships needed to select a plan. A Planner

utilises one or more PlanSelectionRules to select suitable remedy plans based
on the diagnoses determined. A plan consists of a collection of actions grouped
by an ActionsConstruct. Planner’s activities are affected by the policy rules
PlannerStrategicRules. An example of a policy rule is: ‘if there is more than
one remedy plan then select the remedy plan with the highest weight value.’

Planner’s Process

The planning process model describes the working of Planner, shown in Figure 4.9.
After the diagnostic process determines one or more diagnoses for the root-cause

4.5 Planner 57

Figure 4.8: The ER diagram depicts the relationships of a planner with its plan
selection rules and policy rules. Furthermore, the diagram depicts that the plan
selection rule uses diagnoses to select a plan (a collection of actions).

of the current system malfunctioning, the planner is activated by the autonomic
manager. The planner first executes its policy rules. It then selects one or more
remedy plans, based on the given diagnoses, by executing its PlanSelectionRules.

Figure 4.9: Planning process model.

Planner’s Role in the Scenario

When the autonomic manager, managing the execution of the Payment use-case
in the failure scenario, notices that the diagnoser has inferred one or more diag-
noses, it requests the Planner to select a remedy plan. As an example, suppose
the determined diagnosis is NameNotRegistered. Based on this diagnosis, the rem-
edy plan ResolveNameConflict executes two actions in sequence: (1) retrieve the
service name from the configuration used by PaymentServer, and (2) modify the
service name in the configuration used by PaymentClient.

58 The Management Model

4.6 Plan Translator

The main responsibility of PlanTranslator is to map a specific plan onto effectors.
Each ActionsConstruct has its own semantics. Actions are grouped in different
ways such as sequentially and parallelly (see Section 4.8.4 for more details). The
plan translator implements each ActionsConstruct as a method containing code
to invocate the related effectors. This section describes the entities related with
the plan translator. Section 4.8.5 explains the information flow entity, Effector.

Entities Related to Translator

Figure 4.10 shows entities and relationships that translate a plan. A
PlanTranslator utilises one or more PlanTranslationRules that map a Plan

onto one or more Effectors. An Effector is a piece of software instrumented in
the code of a managed use-case, and listens to the instructions coming from its
autonomic manager.

Figure 4.10: The ER diagram depicts the relationships of a plan translator with
its plan translation rules and policy rules. Furthermore, the diagram depicts how
the plan translation rule uses a plan to translate it to an effector.

PlanTranslator’s activities are affected by a set of policy rules represented as
TranslatorStrategicRules.

Translator’s Process

The translation process model describes the working of PlanTranslator, shown
in Figure 4.11. The plan translator is activated by the autonomic manager after
the planning process selects a number of remedy plans to be translated. The plan
translator first executes its policy rules. Thereafter, it attempts to map a remedy
plan into adaptation instructions carried out by Effectors.

Initially, an Effector is inactive. When a plan translator translates a remedy
plan into Effector, its autonomic manager sends a message to the Effector to
activate it. When the thread of execution of the managed use-case reaches the
point where the active effector is instrumented, the adaptation code is executed.

4.7 Autonomic Manager 59

Figure 4.11: Translation process model.

Translator’s Role in the Scenario

To heal the abnormal behaviour mentioned in the failure scenario, the plan trans-
lator acts as follows. Each adaptive action is translated by the plan translator
into appropriate effectors. For instance, the second action of the remedy plan can
be translated into the ModifyServiceName effector. This effector, defined by the
domain expert, is instrumented at the instrumentation point (after the assignment
statement in which the service name is assigned to a variable that represents the
service name in the system) that is found in the PaymentClient sub-system. The
effector is by default non-active. To perform an adaptation action, an autonomic
manager turns the effector into the active state. When the thread of execution
reaches the instrumentation point, the code of the effector is executed to modify
the value of the variable representing the service name. This means that the self-
healing is realised after the first occurrence of the ServiceRetrievalFailed symptom
and before the second occurrence of that symptom.

4.7 Autonomic Manager

The heart of the management model is the AutonomicManager. The main respon-
sibility of an autonomic manager is to manage the execution of a use-case, and
communicate the result of its management process to other autonomic managers.
As mentioned before, the autonomic manager delegates its management tasks to
its main entities analyser, diagnoser, planner, and plan translator, and coordinates
their activities.

Policy rules (ManagerStrategicRules) influence the behaviour of an
AutonomicManager (i.e., to make it customisable). When the autonomic man-
ager starts, it first executes all of these rules. For example, policy rules are used
to customise the control flow between activities of the autonomic manager’s main
entities, or set the threshold value of a certain parameter. These rules are specified
by domain experts (e.g., system administrators).

60 The Management Model

The next section explains how an autonomic manager coordinates the working
of its main entities, and how it communicates with other autonomic managers.

4.7.1 Autonomic Manager’s Process

The autonomic process model describes the dynamic behaviour and lifespan of
AutonomicManager. As illustrated in Figure 4.12, when an AutonomicManager

starts, it activates its rule engine to execute the policy (strategic) rules. After
execution of the policy rules, an AutonomicManager starts two parallel activities:
waiting for sensor values coming from the managed use-case (WaitingForSensors
state), and waiting for the autonomic process results coming from its children
(WaitingForChildResult state).

When an AutonomicManager is in WaitingForSensors state, it receives infor-
mation from various types of sensors. Sensors are instrumented in the code of
a managed use-case and they can be triggered during the execution of the man-
aged use-case. An AutonomicManager obtains information from JobStartSensor

and JobEndSensor that have been instrumented at the beginning and at the
end of the code of a managed use-case. They indicate that a managed use-
case has started or the execution of the managed use-case has finished, respec-
tively. AutonomicManager also obtains information from the sensors that have
been instrumented in the content (core code) of the managed use-case. These are
StateSensors or EventSensors that send information about the state changes
and event occurrences to AutonomicManager. Based on the received information
from a sensor, one of the following three activities is performed:

1. If AutonomicManager receives information from a JobStartSensor, it allo-
cates resources with which to manage a running use-case, and activates its
immediate children. After that, it returns to the WaitingForSensors state.

2. If AutonomicManager receives information from a state or event sensor in-
strumented in the content of the managed use-case, it activates the analysis
process to ensure the occurrence of a symptom. If no symptoms can be
inferred, AutonomicManager goes back to the WaitingForSensors state. If
Analyser determines the occurrence of an abnormal behaviour, Autonomic-
Manager activates the diagnostic process to find the root-cause of the symp-
tom occurrence. If Diagnoser is not able to declare the reason for the
abnormal behaviour, AutonomicManager does not take any action and re-
turns to the WaitingForSensors state (i.e., AutonomicManager gives up and
it notifies the system administrator about the current situation). Other-
wise, AutonomicManager activates the planning process to select one or more
remedy plans based on the inferred diagnoses. If there are no remedy plans
available then AutonomicManager goes back to the WaitingForSensors state.
Otherwise, it activates the plan translation process to map the selected rem-
edy plans to appropriate effectors. After the translation process finishes
its task, AutonomicManager goes back to the WaitingForSensors state no
matter whether the translation process has translated a remedy plan or not.

4.7 Autonomic Manager 61

Figure 4.12: Autonomic process model.

3. If AutonomicManager receives information from a JobEndSensor, it de-
allocates the resources and deactivates its children. Subsequently, it sends
its AutonomicProcessResult to its parent(s).

If AutonomicManager is in the WaitingForChildResult state and one of the
children sends its autonomic process result, then the parent AutonomicManager

activates the diagnostic process. At the same time, AutonomicManager returns
to the same state to wait for the autonomic process results of its other children.
After that, the autonomic process continues in the same way as explained above.

62 The Management Model

4.7.2 Relationship between Autonomic Managers

How the relationship among autonomic managers is determined is an essential is-
sue in a self-managed system. In this thesis, the referential relationship among
use-cases are used to this purpose. The referential relationship (both horizontal
and vertical) among use-cases at different levels provides a corresponding bind-
ing among their autonomic managers. This binding is a parent-child relationship.
Just before a child use-case is activated, the parent autonomic manager activates
the appropriate child autonomic manager to control the execution of the activated
child use-case. After the execution of the child use-case terminates (normally or
abnormally), the child autonomic manager informs the parent about its manage-
ment issues (such as problem determination, diagnosis, remedy plans).

Figure 4.13: Various use-case levels and their relationships including horizontal
references, downward and upward vertical references. Moreover, the relationships
of the autonomic managers, associated with each behavioural element (use-case),
have been illustrated.

Figure 4.13 shows the different use-case levels containing behavioural ele-
ments (use-cases) including their horizontal and vertical references. Sections 3.6.1
and 3.6.2 explain the horizontal and vertical references in the figure, respectively.
The pentagon above each behavioural element represents an autonomic manager
and the arrows between autonomic managers illustrate their relationships.

For the sake of clarity, the relationships of the three use-cases BE1 and BE2 at
system level, and BE3 at runnable level and their associated autonomic managers
AM1, AM2 and AM3 are re-examined in a separate figure (see Figure 4.14). The com-

4.7 Autonomic Manager 63

Figure 4.14: Behavioural elements (i.e., use-cases) and their autonomic man-
agers. BE1 references (i.e., calls) BE2 and BE3. AM1 communicates with both AM2

and AM3 to coordinate the management of the complex use-case BE1.

plex use-case BE1 references BE2 (horizontal reference) and BE3 (vertical reference)
in order to compute and construct its result. The autonomic managers AM1, AM2
and AM3, on the one hand, control the execution of BE1, BE2 and BE3 through a
feedback loop. On the other hand, AM2 and AM3 communicate with AM1 to inform
it (parent) about any management issues that have arisen during the execution of
BE2 and BE3.

Figure 4.15: The ER diagram depicts the relationships of the autonomic man-
ager with its parents and children. It also depicts the unit of communication
(AutonomicProcessResult) between autonomic managers.

Based on the description above, Figure 4.15 depicts entities and relationships
representing the relationship between autonomic managers. The hasChild rela-
tion for an AutonomicManager is introduced to relate autonomic managers with
each other based on the relationships between their managed use-cases. The re-
lation refers to a set of AutonomicManagers that are children of an autonomic
manager. Each autonomic manager can have zero or more child autonomic man-
agers, indicating that its managed use-case can reference multiple other use-cases.
The relation also refers to a set of AutonomicManagers that are parents of an
autonomic manager. Each autonomic manager can have zero or more parent auto-

64 The Management Model

nomic managers, indicating that its managed use-case can be shared by multiple
other use-cases.

A child autonomic manager communicates the result of its process by pass-
ing an AutonomicProcessResult to its parent. For a parent autonomic manager
two things about its child are important: (1) the opinion of its child regarding
the root-cause of a problem, and (2) the remedy actions performed by its child.
To this purpose, AutonomicProcessResult contains the determinedDiagnosis

and executedRemedyPlan relationships to inform the parent about how the
child use-case has executed. The entities representing the determined diagnosis
(Hypothesis) and the executed remedy plan (Plan) are explained in more detail
in Sections 4.8.3 and 4.8.4, respectively. Note that although in Figure 4.14, the
reference from BE1 to BE2 is a horizontal one and the reference from BE1 to BE3 is
a vertical one, both AM2 and AM3 use the same entity (AutonomicProcessResult)
to communicate the result of their autonomic process with their parent (AM1).

4.8 Information Flow Entities

The autonomic manager’s main entities communicate with the managed use-case
through Sensors and Effectors. The main entities communicate with each other
with Symptoms, Hypotheses, and Plans. These entities are populated with ap-
propriate information either during the execution of a managed use-case or by
activation of a main entity of the autonomic manager. They are called informa-
tion flow entities. These entities are stored in the knowledge-base shared by all
main entities of the autonomic manager. This section explains the data structure
of these entities and their relationships.

4.8.1 Sensors

Sensors acquire appropriate information during the execution of a managed use-
case. Note that a managed use-case is implemented by a software program, and a
Sensor is a piece of software that is instrumented around the code implementing a
use-case step of that managed use-case. Sensors are used by the autonomic man-
ager and the analyser to provide knowledge about the current state of a managed
use-case. Knowledge is captured during execution of a use-case by observing state
changes, event occurrences, interactions with the environment, and communica-
tions between use-cases. These observations are passed on to the analyser. Each
sensor contains not only information about the value of an item to be monitored
but also meta-information about the domain of these values, the type of monitored
item, and the type of instrumentation placed in the code. Figure 4.16 depicts the
relationships of a sensor and its attribute.

Sensor - Monitored Item

A Sensor monitors state changes and event occurrences as execution of a use-
case step changes the state of a managed use-case. The variables in the code of

4.8 Information Flow Entities 65

Figure 4.16: The ER diagram depicts the relationships of a sensor, and
its attribute. It depicts how a sensor is instrumented in a managed use-case
(InstrumentationType), what it monitors (MonitoredItem), and what the type
of its observed value (ValueDomain) is.

a managed use-case are represented by State, and the different types of events
that may be identified during code execution are represented by Event. State and
Event are sub-entities of MonitoredItem. They are part of the behavioural model,
and described in more detail in Sections 5.1.3 and 5.1.4. To classify observations,
based on MonitoredItem, two types of sensors are distinguished: StateSensor

and EventSensor. A StateSensor observes changes regarding a state that were
caused by execution of a use-case step. An EventSensor observes occurrence of
an event caused either by execution of a use-case step or by an environmental
factor. Both sensor types are further subdivided into a hierarchy of sensor types
that corresponds to the hierarchy of states and events specified in the behavioural
model.

Sensor - Instrumentation Type

A Sensor is a piece of software code that is woven (instrumented) into the code of
a managed use-case at a pre-defined point. The software code of a sensor is invoked
when the thread of execution of a managed use-case reaches that pre-defined point.
The InstrumentationType, shown in Figure 4.16, represents a point in the code
of the managed use-case where a Sensor is instrumented. Various instrumentation
points (InstrumentationTypes) are identified (see Figure 4.17) that are explained
below: MethodCall, MethodExecution, HandlerExecution, FieldAccess, and
LineNumber.

A MethodCall represents a point immediately before the invocation of another
use-case or after returning. A sensor, instrumented at this point, monitors the
communication between the managed use-case and other use-cases. The input
values of an invoked use-case are checked before invocation. After invocation, the
result of the invoked use-case is examined.

A MethodExecution represents a point at the beginning or end of a managed
use-case. By instrumenting a sensor at the beginning, the expected input values
of a managed use-case are checked. The instrumented sensor at the end of the
managed use-case monitors the result of the execution of the managed use-case.

66 The Management Model

MethodExecution is also used to instrument sensors that indicate the lifespan of
a managed use-case, and sensors that capture unexpected events (i.e., events for
which a managed use-case does not include code to handle).

A HandlerExecution represents a point at the beginning or end of the execu-
tion of a piece of code of a managed use-case that handles exceptional situations
that are raised either by execution of a use-case step or by external factors. The
goal is to monitor the behaviour of the handler included in the managed use-case.

A FieldAccess represents a point immediately before or after a state is read
or written. By instrumenting a sensor at this point, the expected state changes
are checked. These changes are the result of execution of a use-case step.

Once an instrumentation type is specified for a Sensor, the self-management
framework proposed in this thesis (see Chapter 8) can automatically find the cor-
responding instrumentation points in the software program (code of a managed
use-case), and instrument a Sensor in a program. As basically a Sensor monitors
a use-case step and a use-case step can be implemented by a group of statements
within the program, there is a possibility to instrument a sensor before or after
a group of statements. A LineNumber is introduced to provide an opportunity to
automatically instrument before or after a specified line of code5.

Figure 4.17: Various places in the managed use-case where sensors can be in-
strumented.

Sensor - Value Domain

After a Sensor is associated with a MonitoredItem and is instrumented in the
code of a managed use-case, it passes observed values of MonitoredItems to
Analyser. Each observed value is then compared with the expected value to
derive the occurrence of a symptom. To compare two values, both have to belong
to the same ValueDomains. A ValueDomain can be: BooleanType, IntegerType,
DoubleType, DateType, TimeType, CharType, or StringType. These entities rep-
resent the most widely accepted primitive value types, inspired from XML Schema
specification [21]. ValueDomain is not limited to the data types mentioned. It can
be extended to include new data types.

Chapter 3 stressed the importance of contextual knowledge in performing diagnos-

5This does not necessarily imply that the source code of a managed system should be available
for the autonomic management. If a software program is compiled with the debug option, the
compiler puts line number information (the line number of each statement) in the compiled file.

4.8 Information Flow Entities 67

tic tasks. A Sensor provides contextual knowledge as qualitative and quantitative
temporal information, and spatial information regarding each observation. Quali-
tative temporal information refers to the chronological order of a managed use-case
execution in a chain of use-cases, and the chronological order of a use-case step
execution in the context of a managed use-case. Quantitative temporal informa-
tion is represented by the timestamp attribute of Sensor, and refers to the actual
timestamp of the observation. The spatial information about an observation is
provided in the form of information concerning the structural element where the
Sensor has been instrumented.

4.8.2 Symptoms

The value of a Symptom is determined by an analyser and is used by a diagnoser.
A Symptom represents abnormal behaviour. An example symptom, that can be
defined by a domain expert, is highAmountSymptom that occurs when the value
of a transaction exceeds a certain threshold amount. A Symptom is either derived by
one or more symptom occurrence rules that use the values of the relevant Sensors
or by performing an inspective plan (see Figure 4.18). The arisen attribute of
Symptom shows whether the Symptom has occurred or not. This attribute is of
type Ternary that can have three values: unknown, pos, and neg. The first value
indicates that it is not known whether a symptom has occurred or not. The second
one indicates that a symptom has indeed occurred (positive), and the third one
indicates that a symptom has not occurred (negative). Initially, all Symptoms are
set to unknown.

Figure 4.18: The ER diagram depicts the relationships of a symptom, and its
attribute. Each Symptom is associated with one or more Sensors. A Symptom

is determined either by the values of the relevant Sensors or by performing an
inspective plan.

The inspectivePlan relation of Symptom needs more explanation. While de-
termining a diagnosis based on symptoms, it is required that the arisen attribute
has the value pos or neg but not unknown. If the value is unknown then the diag-
nostic engine of the autonomic manager pro-actively performs the inspective plan
to confirm occurrence or absence of the symptom.

Chapter 3 introduced use-case levels to structure a considerable number of
complex use-cases of a managed system. Depending on the type of managed
use-case (i.e., the use-case level it belongs), symptoms can be SystemLevel-

SYM, RunnableLevelSYM, ComponentLevelSYM, and ClassLevelSYM. The system
level symptoms concern malfunctions experienced by end-users, the runnable level
symptoms concern infrastructural malfunctions, the component level symptoms

68 The Management Model

concern malfunctions related to the behaviour of functional and technical com-
ponents, and the class level symptoms concern malfunctions that are specific to
classes and methods.

4.8.3 Hypotheses

The value of a Hypothesis is determined by a diagnoser and is used by a planner. A
Hypothesis represents the possible root-cause of the occurrence of a symptom, and
is specified by a domain expert. The diagnoser uses a pre-defined set of hypotheses
to indicate some of those hypotheses as diagnoses. An example hypothesis might
be directoryNotShared that describes the root-cause of the unsuccessfulReadAction
symptom (not being able to read data from a shared file).

Figure 4.19: The ER diagram depicts the relationships of a hypothesis, and
its attributes. Attributes together with the relevantSymptom and subHypothesis

relationships are used to reason whether a hypothesis can be marked as diagno-
sis. The other relationships provide information regarding how and where the
abnormal behaviour has occurred.

The primary goal of finding the root-cause of malfunctioning is to understand
why and how a symptom occurs so that it can be prevented from recurring. There-
fore, a diagnostic task should determine which part of a managed system caused
the malfunctioning, and under which conditions malfunctioning occurred. Fig-
ure 4.19 shows all attributes and relationships of Hypothesis that are needed to
express the mentioned goal.

The attributes of Hypothesis are used by the diagnoser, during the diagnos-
tic process, to determine a diagnosis. The attributes focussed, assessed, and
determined are of boolean type, and are initially set to false. They become true if
the hypothesis is selected for validation, evaluated, and marked as diagnosis. The
attribute validated is of type Ternary, and is initially set to unknown. It becomes
pos or neg if the hypothesis is validated. The attribute weight is of a numeric
type, and it is determined by domain experts to indicate the degree of possibility
that the Hypothesis is the root-cause. The value of this attribute is used by the

4.8 Information Flow Entities 69

diagnosis determination rules to choose the hypothesis with the highest weight

value.

The relationships relevantSymptom and subHypothesis play a role during
diagnostic reasoning. When an abnormal behaviour (symptom) occurs, the hy-
pothesis selection rules select hypotheses that can explain the root-cause of that
symptom. The relevantSymptom relates Hypothesis with one or more Symptoms
that can be explained by the Hypothesis.

To structure hypotheses and facilitate the selection process, they are organ-
ised as a hierarchy of hypotheses. The more generic hypotheses are placed at
the top of the hierarchy. The relation between hypotheses in the hierarchy is ex-
pressed by subHypothesis that points to a child hypothesis. For example, the
directoryNotReadable hypothesis can be considered as the sub-hypothesis of the
fileSystemNotAvailable hypothesis. When both fileSystemNotAvailable and direc-
toryNotReadable are selected, validated, and evaluated, the diagnoser can use the
hypothesis hierarchy to determine more generic root-causes.

Section 3.2 explains why contextual information is important in performing
diagnostic tasks. To provide this information, three relationships faultyElement,
faultyJob, and faultyTask are defined for each Hypothesis. The first one relates
a Hypothesis to a ManagedStructuralElement6 that specifies the portion of the
system code that caused the problem. The second one relates a Hypothesis to a
Job that represents the managed use-case. The third one relates a Hypothesis to
a Task7 representing a use-case step that caused the malfunctioning.

Hypotheses can be SystemLevelHYP, RunnableLevelHYP, ComponentLevel-
HYP, and ClassLevelHYP. This means that each hypothesis type describes the
root-cause of its corresponding symptom type (e.g., a RunnableLevelHYP describes
the root-cause of a RunnableLevelSYM).

4.8.4 Plans

The value of a Plan is determined by a planner and is used by an autonomic
manager, diagnoser, and plan translator. A Plan is defined as a collection of
actions (each represented by a Job), and the way (e.g., in sequence or in parallel)
these actions are executed. The Jobs comprising a Plan are not part of a managed
system, and are started by an AutonomicManager. Each such Job is managed by
its own AutonomicManager specified to be the child of the current Autonomic-

Manager.

Figure 4.20 shows the different types of plans distinguished in the management
model. An InitialPlan is a collection of actions that are started by an autonomic
manager immediately after it starts. An example of an initial plan are jobs that are
required for gathering environmental information, or required for starting timers
to perform periodic tasks.

6The ManagedStructuralElement entity is part of the system structural model, and is de-
scribed in Section 5.2.

7The Task entity is part of the system behavioural model, and is described in Section 5.1.

70 The Management Model

Figure 4.20: Various plans distinguished in the management model. Each spe-
cific plan is used for a specific management purpose.

A RemedyPlan is a collection of actions performed to overcome a cer-
tain malfunctioning within a managed use-case. RemedyPlans are further cat-
egorised into SelfConfiguringPlan, SelfHealingPlan, SelfOptimisingPlan,
and SelfProtectingPlan based on the most widely accepted autonomic prop-
erties (see Chapter 1).

Finally, an InspectivePlan is a collection of actions associated with a symp-
tom. The inspective actions are performed by diagnosers in order to help the
diagnostic engine to make correct decisions and to properly validate a hypothesis.

Plans are categorised into SystemLevelPLN, RunnableLevelPLN, Component-
LevelPLN, and ClassLevelPLN. This categorisation is also based on the four use-
case levels, similar to categorising symptoms and hypotheses into the four groups.
This way, the use-case level specific symptoms, hypotheses, and plans can be
related with each other (e.g., a RunnableLevelSYM is used by the diagnoser to
determine a RunnableLevelHYP that is used by the planner to select a Runnable-

LevelPLN). The assumption is that a managed use-case belonging to a specific
level shows the level-related symptoms caused by the level-related root-causes,
and requires level-related remedy plans.

Actions Constructs

An ActionsConstruct is a control construct that bundles various actions of a
Plan, and specifies how these actions are executed. Domain experts can use
ActionsConstructs to compose different actions that are executed by an au-
tonomic manager. Each action is defined to be either a Job or, again, an
ActionsConstruct. For instance, consider a plan, called myParPlan, that consists
of two sets of actions (s1 = {a1} and s2 = {a2, a3}) to be executed in parallel.
Moreover, actions in s2 should be executed in sequence. To specify a plan, first
the three actions a1, a2 and a3 are defined as Jobs. Then the ActionsConstruct
acseq is defined to bundle the actions a2 and a3. Last, the ActionsConstruct

acpar is defined such that it bundles the actions a1 and the ActionsConstruct

acseq.

4.8 Information Flow Entities 71

Different types of control constructs8 are identified (see Figure 4.21). The
following describes each of these constructs.

Figure 4.21: Various actions constructs are distinguished in the management
model. Each specific construct binds a number of actions in a specific way and
produces a plan.

The AnyOrder construct bundles a number of actions that are to be executed
in some unspecified order. Choice groups a number of actions of which only one
is selected for execution. Domain experts specify actions and a control construct
for these actions, and autonomic managers execute the construct. For example,
when an autonomic manager interprets AnyOrder, it executes all actions contained
in AnyOrder in an unspecified order, or when an autonomic manager interprets
Choice, it executes only one of the actions contained in Choice. It is up to the
autonomic manager to choose one.

IfThenElse allows conditional execution of two collections of actions. IfThen-
Else has three attributes: ifCondition, then and else. The ifCondition at-
tribute of this construct points to a set of logical expressions (rules), and the then
and else attributes point to a set of ActionsConstructs.

The RepeatUntil and RepeatWhile constructs allow that a collection of ac-
tions are repeatedly executed until a certain condition becomes true (for the first
construct) or false (for the second construct). The first construct has the attribute
untilCondition, and the second one has the attribute whileCondition. The
untilCondition and whileCondition attributes of these constructs refer to a set
of logical expressions.

Sequence is the opposite of AnyOrder. It enforces execution of a group of
actions in a specified order. The Parallel construct allows actions in a specified
collection to be executed in parallel. All control constructs, except for IfThenElse,
have the attribute elements that refers to a set of ActionsConstructs.

Finally, the JobInvocation construct contains one action. The important
point is that this action refers to a Job (a basic element of the behavioural model).
This job is called an administrative job. An administrative job is specified in
the same way as a regular job. It is invoked by an autonomic manager, and
it is associated with its own autonomic manager. The autonomic manager of

8The semantics of these control constructs is similar to the semantics of control constructs
used in the OWL-S specification [130] for the description of composite processes.

72 The Management Model

an administrative job becomes the child of the autonomic manager that invokes
that administrative job. This ensures that all management tasks of autonomic
managers themselves become the subject of self-management.

4.8.5 Effectors

An Effector is populated with appropriate information by a plan translator. It
represents a piece of software code that is instrumented, similar to a Sensor,
around the code implementing a use-case step of the managed use-case. The
execution of the effector code adapts the current behaviour of the managed use-
case.

Figure 4.22: The ER diagram depicts the relationships of an effector and its
attribute. Each Effector specifies how it is instrumented in the managed use-
case (InstrumentationType), what it adapts (MonitoredItem), and what the type
of its adaptation value (ValueDomain) is.

Figure 4.22 illustrates the relationships of Effector and its attribute. The
entities MonitoredItem, InstrumentationType, and ValueDomain were already
explained in Section 4.8.1. An Effector adapts the value of a State or the code
of the handler of an Event when its isActive attribute is set to true by the plan
translator.

4.9 Related Work

A number of design choices, concerning the management model of the self-
management framework presented in this thesis, have been made. The high-level
design choices involve the architecture of an autonomic manager, and the analy-
sis, diagnosis, and adaptation techniques used by the autonomic manager’s main
entities. In this section, some related works regarding these design choices are
reviewed.

Autonomic Manager’s Architecture

The internal architecture of an autonomic manager in a self-management frame-
work determines to a large extent the maintainability, transparency, extensibility,

4.9 Related Work 73

and adaptability of the framework. The study of the research works shows that
the degree of attention of researchers to the internal architecture of an autonomic
manager depends on the generality of their proposed self-management framework.
The following reviews the internal architecture of an autonomic manager in two
types of generic self-management frameworks: autonomic programming frame-
works [20, 125] and autonomic application frameworks [33, 39].

Accord [125] is an example of an autonomic programming framework. Auto-
nomic components are the building blocks in Accord. An autonomic component
is a self-contained and modular component with specified interfaces, rules, con-
straints, and mechanisms for the self-management. An autonomic component
mainly consists of a rule agent, that is responsible for periodically querying the
state of the component and controlling the firing and execution of the rules, and a
computational component, that is the traditional component and is responsible for
performing computational tasks. A rule agent in Accord resembles an autonomic
manager. The internal architecture of a rule agent is not known. It seems that
Accord makes no distinction between different functionalities within an autonomic
manager. The managed resource in Accord is a software component. Another ex-
ample of an autonomic programming framework is ABLE [20]. ABLE is introduced
as a platform for constructing autonomic agents. The number of components in an
autonomic agent in ABLE is extensive. Three behavioural components are used
to implement the basic (reflexive), the complex (reactive), and the more complex
(learned) behaviours of an agent. An executive component is responsible for mak-
ing decisions based on two models: agent’s self-model and agent’s world model.
An action planner component creates sequences of actions necessary to achieve a
goal determined by the executive component. The managed resource in ABLE is
a software agent.

An example of an autonomic application framework is JAGR [33]. JAGR is
a self-recovering framework that integrates its self-recovery components into the
opensource J2EE application server JBoss [100]. An autonomic manager in JAGR
contains the following components: monitoring, recovery management, recovery
agent, fault injector and stall proxy. Its monitoring component tracks Java level
exceptions thrown by application and platform components, and reports the error
and the offending component to the recovery manager. Based on the monitor-
ing information and path-based failure analysis, it detects unexpected component
behavior. To reduce recovery time of the whole system, it reboots only those com-
ponents that have been affected by the failure through inspecting the component
dependency graph. The managed resource in JAGR is an Enterprise Java Bean
(EJB) component. Rainbow [39] is another example. Rainbow uses an abstract
architectural model of a managed system to monitor and evaluate the system’s
runtime properties, and adapt the system. An autonomic manager in Rainbow
contains four main modules: model manager, constraint evaluator, adaptation en-
gine, and adaptation executor. These modules are responsible for maintaining an
annotated architectural model (consisting of components and connectors anno-
tated with desired properties and constraints) of a managed system, evaluating
the model for constraint violation, and performing adaptations on the running

74 The Management Model

system. The managed resource in Rainbow is an architectural element (a system’s
component or connector).

Note that some researchers [10, 14, 96] either skip to implement one or more
main functionalities of an autonomic manager or do not make a clear distinction
between them. For example, in the knowledge-based framework for multimedia
adaptation [96], there are no implementations of the analysis and diagnosis func-
tionalities. An autonomic manager in this framework contains only two function-
alities: adaptation plan and adaptation service. Other examples are the works of
Ardissono et al. [10] and Baresi et al. [14], who applied the general principles of
the autonomic computing to the fault diagnosis of Web Services and monitoring of
Web Service compositions, respectively. The only functionality implemented in the
work of Ardissono et al. is the diagnosis. In the work of Baresi et al., the analysis
and diagnosis functionalities are highly integrated in one component containing
monitoring rules.

In the self-management framework proposed in this thesis, similar to ABLE and
Rainbow, the complex management task is decomposed into a number of less com-
plex sub-tasks that are performed by well-defined separate software entities (i.e.,
analyser, diagnoser, planner, and plan translator). This separation of concerns
results in a more maintainable and adaptable autonomic manager. The managed
resource in our framework is a system behaviour (specified as a use-case). Despite
of that, the framework takes into account the system’s components and connectors,
similar to Rainbow and JAGR.

Analysis Techniques

The analysis process is responsible for inspecting the collected data, that rep-
resent the current status of a managed system, to determine any abnormality.
The number of analysis techniques used by different researchers to realise self-
management are moderately large. Dependency analysis [105, 107], program anal-
ysis [12, 67, 141, 196], path-based analysis [34, 35], and learning-based analy-
sis [4, 59, 186] are examples of analysis techniques.

To perform root-cause analysis of system malfunctions, some researchers pro-
pose the use of dependency models that describe dependencies between system
components. A dependency model is usually represented as a directed acyclic
graph in which nodes represent system components and weighted edges represent
dependencies. Keller et al. [107] propose two different types of dependency models:
functional and structural. Dependency models can be constructed either manually
or automatically. Recently, the automatic identification of components dependen-
cies has received increased attention. Techniques have been proposed for this pur-
pose are: instrumenting within the application and service components to capture
invocations from one component to the other [107], instrumenting the communi-
cation protocol stack to intercept the communication between components [138],
using information stored in system configuration repositories [105], and active per-
turbation of components by injecting faults and observing the behaviour of the

4.9 Related Work 75

components [29].

Program analysis is the process of automatically analysing a computer program
in order to predict the program’s behaviour at runtime. The result of program anal-
ysis is used to diagnose the root-cause of software faults. Program analysis offers a
number of techniques such as data flow analysis, control flow analysis, model check-
ing, program slicing [141], etc. Program Dependence Graph (PDG) [67] has been
proven to be the preferred data structure for representing certain control or data
dependencies between program statements. However, Baah et. al [12] argue that
PDGs are not able to model the statistical (uncertain) dependencies between pro-
gram elements. Therefore, they propose a new graph, called Probabilistic Program
Dependence Graph (PPDG), that facilitates probabilistic reasoning about program
behaviours for fault localisation and fault comprehension. Zoeteweij et al. [196]
propose an automated debugging technique through program analysis based on
program spectra for locating software faults. They define a program spectrum as a
collection of data (a vector), collected at runtime, that characterise a specific be-
havior of the program and indicate which parts of the program were active during
various executions of that program. A very simple program spectrum is a block
count spectrum telling how often each block of code is executed during a program
run. For fault diagnosis, they constitute a binary matrix whose columns corre-
spond to different parts of the program (program blocks) and rows correspond to
different program runs. There is also an error column whose elements indicate
whether an error occurred during a specific program run. In this way, they try to
find correlations between various program spectra and the errors detected in the
different program runs.

The path-based root-cause analysis pays more attention to behaviour of a
system rather than the structure of a system’s components. In the path-based
approach, the paths that requests follow as they move through the system are
recorded [34, 35]. A request is defined as any external entity that asks the system
to perform some action, and a path is defined as a collection of connected resources
associated with servicing a request. The target system is modelled as a collection
of paths. Paths may have dependencies through shared resources. For diagnosing
failures, large volumes of requests are statistically analysed to identify significant
deviations from normal behaviour.

Many researchers propose utilising various Machine Learning (ML) methods to
automatically create and continuously adapt the required knowledge for analysing
a system behaviour. For example, Wildstrom et al. [186] propose an ML based
approach whereby the autonomic manager learns to predict the change in resource
requirements of the system. The training data (to train the performance predic-
tion models) consists of kernel thread counts, memory utilisation, paging events,
system events, and CPU usage for a range of configurations and workloads. The
knowledge-base containing the trained models is used to estimate the expected
gain or loss of a resource reallocation. Al-Nashif et al. [4] use ML for their auto-
nomic multi-level network intrusion detection system. They use an unsupervised
learning algorithm to identify changes in network operations at three different lev-
els: network flow, network protocol, and network payload. If these changes show

76 The Management Model

a discrepancy with the current baseline models (that have been produced by the
learning algorithms and are available in the knowledge-base) of normal network
operations then an adaptive supervised learning is used to re-train the errant sys-
tem in real time. Duan and Babu [59] use ML for failure diagnosis. They collect
monitoring data from failure states of the system and annotate the data with infor-
mation about the type and cause of failure. When the system experiences a failure,
they try to determine whether the failure is the same as a previously diagnosed
failure. They view this as a multi-class classification task, and therefore, they use a
decision tree to train a classifier from the current set of annotated failure instances.
The decision tree and the different failure classes are stored in the knowledge-base.
If the cause of failure instances is unknown, they use sophisticated unsupervised
ML methods to group failure instances into clusters that contain instances of the
same failure type with high probability.

In this thesis, different dependency models are combined to perform analysis. In
our primary dependency model, nodes do not represent system components but
system behaviours (use-cases), and edges represent both compositional and usage
dependencies (see Section 3.6). In our secondary dependency model, nodes repre-
sent system components and edges represent compositional dependencies. These
models are more or less comparable with the functional and structural depen-
dency models of Keller et al. [107]. Furthermore, in our third dependency model,
nodes represent both system behaviours and system components, and edges rep-
resent usage dependencies between system behaviours and system components. A
use-case in our approach can be considered as a combination of a request and a
path in a path-based approach [34]. The difference is that a path only contains
information about a system’s components (that are responsible for executing the
relevant request), and it does not contain information about a system’s states and
events (that change/occur during execution of the relevant request by the system).
Similar to the work of Duan and Babu [59], the analyser in our approach collects
monitoring data from failure states and events of a system, and annotates the data
with information about the type of the failure states and events. However, our
approach uses logical rules, instead of ML methods, to perform analysis (determine
a symptom), based on the monitoring data and the dependency models.

Diagnosis Techniques

The diagnosis process is responsible for finding the root-cause of any abnormality
determined by the analysis process. Examples of diagnosis techniques used for
self-management purposes are: model-based diagnosis [10, 11, 150], case-based
diagnosis [137, 184], and rule-based diagnosis [50, 54, 80, 110].

The term Model-Based Diagnosis (MBD) refers to a diagnostic approach where
a system to be diagnosed is modelled as a set of components and their interac-
tions. In MDB, a diagnosis is considered as a set of assignments of behaviour
modes (faulty or correct mode) to a set of components for a given set of ob-
servations (runtime values of the component’s variables). There are two MDB

4.9 Related Work 77

approaches: consistency-based or abductive. According to the first approach, the
component’s expected correct behaviour is modelled. If a component shows an
abnormal behaviour then it is concluded that the observation is not consistent
with the model any more. This approach reasons from causes to effects. Ac-
cording to the second approach, the component’s faulty behaviour is modelled.
The observation of an abnormal behaviour implies the correctness of the predicted
faulty behaviour. This approach reasons from effects to causes. Originally, MBD
has been developed for determining faults on physical systems (e.g. electronic cir-
cuits). Recently, they have also been applied to find faults in component-oriented
software programs [150]. Ardissono et al. [10, 11] propose a model-based approach
to the fault diagnosis of Web Services. In their approach, each activity (method)
of a Web Service corresponds to a component in MDB terminology. The behaviour
of a Web Service is modelled as a correlation between input and output parameters
of the different activities. The model is a set of ok (representing normal behaviour)
and ab (representing abnormal behaviour) values that are assigned to the input
and output parameters of all activities. The runtime values of the parameters
(observations) are provided by loggers embedded in the code of each activity. The
diagnoser is triggered if there is a conflict between the model and the observations.

The main element in Case Based Diagnosis (CBD) is a knowledge-base of past
situations (cases) that are reused in solving present problems. A case is a set of
meaningful features of a specific problem together with the applied solution to that
problem. A typical CBD process includes four phases: retrieve, reuse, revise, and
retain. To find a suitable solution for a new problem, the features of the problem
are matched against cases in the knowledge-base and one or more similar cases are
retrieved. After that, the associated solution of the retrieved cases are reused and
tested. If necessary, the retrieved solution is revised producing a new case that
is retained in the knowledge-base. By retaining more and more representative
examples in the knowledge-base, it becomes easier to find a suitable solution to a
new problem [184]. Montani and Anglano [137] provide an excellent reference to
the work of researchers who apply the principles of CBD to failure diagnosis and
remediation in software systems.

In Rule Based Diagnosis (RBD), the empirical knowledge of domain experts
are elicited and implemented in the form of rules. Each rule consists of one or
more conditional sentences relating statements of facts with one another. The di-
agnosis is realised by using a causal model and filtering out those rules matching
the system observation. In spite of the fact that the knowledge elicitation is a
difficult process, some researchers [31, 119] still prefer RBD over other diagnostic
approaches. They argue that the rule inference engines are more flexible than other
reasoning engines, and use reasoning which more closely resemble human reason-
ing. De Paola et al. [50] apply RBD to network management. In their distributed
multi-agent architecture for network management, a rule-based reasoner is not only
capable of diagnosis but also able to trigger monitoring and repair network anoma-
lies. For diagnosing failures in large-scale network protocols, Khanna et al. [110]
propose a monitoring architecture through which the message exchanges between
the protocol entities are observed. Then, the observed data are stored in a causal

78 The Management Model

graph. At runtime, a rule-based diagnoser uses this graph together with a rule
base of allowed state transition paths to diagnose the failures. One of important
shortcomings of RBD is its inability to deal with unknown situations. If the obser-
vation does not exactly match the condition of a rule in the rule base, no diagnosis
is performed by the rule inference engine. To overcome this shortcoming of RBD,
Hanemann [80] combines RBD with CBD. In his proposed service-oriented event
correlation framework, both diagnosers run in parallel. When an event cannot
be matched to any rule in the rule base, the case-based diagnoser is triggered to
match the current event to prior cases. If the previous solution associated with a
prior case is not adequate, the system administrator is requested to adapt the prior
solution or determine a new solution (root-cause of the case). Then, the current
event together with its solution is used to automatically generate a new rule and
update the rule base with that new rule to cope with similar events in the future.
A variant of rule-based reasoning that has attracted interest of many researchers
is fuzzy rule-based reasoning that uses fuzzy set theory [193] to deal with approxi-
mate rather than crisp (precise) reasoning. A simple fuzzy rule is usually expressed
in the form of ‘IF variable IS property THEN action’ (e.g. ‘IF temperature IS very
hot THEN start fan’) [60, 75]. Also, the usage of fuzzy rules in control systems
(i.e. systems containing closed-loop feed-back) is an active area of research [148].
For example, Diao et al. from IBM T.J. Watson Research Center [54] use a fuzzy
controller to self-optimise the response times of the Apache Web Server [8].

Although in our approach, similar to MDB, a set of components and their interac-
tions, a set of observations, and a set of behaviour modes (symptoms) are defined,
we do not use the classic MDB. To our knowledge, the MDB does not take into
account that the occurrence of a behaviour mode can be unknown, and it should
be determined during the diagnosis process. This aspect should be taken into ac-
count in a fault diagnosis approach for finding root-cause of failures in software
programs. This thesis solves the issue of unknown behaviour modes by combining
the ternary logic based diagnostic model of Brazier et al. [24] with the description
logic. To realise more effective diagnosis, combining RDB with CBD would be a
reasonable option, as suggested by Hanemann [80].

Adaptation Techniques

One of the biggest challenges of the autonomic computing paradigm is system
adaptation. An adaptable system should be able to dynamically react and mod-
ify its behaviour in response to changes in its execution environment. Differ-
ent approaches are taken by various researchers to realise software adaptabil-
ity [28, 140, 146]. Here, a very limited number of adaptation approaches (dynamic
reconfiguration [19, 37, 38] and AOP-based adaptation) are reviewed.

Dynamic reconfiguration is a software mechanism that allows resources to be
added or removed from the system without bringing the system down. Dynamic
reconfiguration requires minimal execution disruption and some well-defined con-
sistency preserving of the system. Bidan et al. [19] apply dynamic reconfiguration

4.9 Related Work 79

in the CORBA framework. A CORBA object is brought to life when a client
application requests an operation on that object. The request is sent to the
CORBA object using the Remote Procedure Call (RPC) [174] mechanism. To
perform reconfiguration and, at the same time, guarantee the consistency con-
straint, Bidan et al. state that a reconfiguration action should not leave initiated
RPCs pending. Therefore, a remote call whose target is a CORBA object that
is going to be reconfigured is blocked. The remote call remains blocked for the
duration of the requested reconfiguration action. After that, the request is routed
to the adapted (reconfigured) CORBA object. Xuejun [37, 38] extends Java RMI
to preserve the consistency of distributed Java systems when reconfiguring a com-
ponent. His extended RMI (XRMI) includes a software layer on top of Java RMI.
The additional layer contains a virtual stub and a configuration management agent
(CMA). A virtual stub is an object that is used by a client component to commu-
nicate with a server component. CMA is responsible for the reconfiguration of all
server components. In addition, it maintains a list of pairs, each pair consisting
of a virtual stub and its server component. When a server component needs to be
reconfigured, CMA asks the virtual stub of the server component to block any new
invocations to its related server component. After the reconfiguration, the virtual
stub is signaled by CMA to update the real reference to the server component and
to resume the blocked communication.

Aspect-Oriented Programming (AOP) is an appropriate technique for software
adaptation that makes use of aspects to facilitate the dynamic adaptation of com-
ponents and services transparently and in a non-intrusive way. Multiple behaviours
of a component (or a service) are expressed in separate aspects. The system adap-
tation is realised by replacing the current aspect with a new one depending on
the changes in the environment. Different researchers utilise AOP for adaptation
purposes in different ways. For example, for runtime adaptation in a Service Ori-
ented Architecture (SOA) environment, Irmert et al. [94] integrates AOP with the
OSGi Service Platform [5] that supports hot-deployment. A deployable unit in a
OSGI platform is called an application bundle. Several application bundles can co-
exist inside the platform that runs on a single Java Virtual Machine (JVM). The
platform provides various API’s for installing, starting, stopping and de-installing
application bundles without restarting the platform. In their approach, AOP as-
pects implementing different behaviours of a service are deployed as OSGi appli-
cation bundles. The deployed aspects are maintained and managed by the aspect
manager. When an adapted behaviour of a service should replace the current be-
haviour, the aspect manager utilises the hot-deployment capability of the OSGI
platform to stop/de-install the current aspect and install/start the new one repre-
senting the adapted behaviour. Another example of AOP-based adaptation is the
TRAP [159] framework. TRAP uses AOP to adapt existing object-oriented appli-
cations. It performs the adaptivity task at compile time and runtime. At compile
time, for each base class to be adapted, the framework produces three classes: an
aspect class, a wrapper class extending the base class, and a meta class. The gener-
ated aspect class contains an AOP advice causing the instantiation of the wrapper
class instead of the base class. The generated meta class contains a list of delegate

80 The Management Model

objects, each providing specific implementation of a base class method. In other
words, each delegate object implements an alternative behaviour of the same base
class to be adapted. At runtime, using an interactive management console, users
can register/unregister the delegate objects with the meta class for the purpose of
adapting the behavior of the base class.

This thesis prefers the AOP-based techniques for software adaptation for the fol-
lowing reasons. First, in an AOP-based adaptation (in contrast to a dynamic
reconfiguration approach), it is possible to adapt the behaviour of an existing
component in a system, in addition to adding or removing a component. Second,
adaptation in an AOP-based adaptation approach is more modular. Adaptations
are expressed in separate aspects which are reusable programming constructs that
can be carefully designed and programmed. In our approach, adaptations are con-
sidered as new behaviours. Similar to the existing system behaviours, these new
behaviours are also represented as use-cases that are implemented as aspects in
an AOP language. The meta-information about these aspects are included in the
management model expressed in a declarative language.

4.10 Summary

This chapter explains the management model for distributed systems. The man-
agement model contains three category of entities: AutonomicManager, its main
entities (Analyser, Diagnoser, Planner, and PlanTranslator), and informa-
tion flow entities (Sensor, Symptom, Hypothesis, Plan, Effector). This
chapter explains how the structured information (that is now in a format un-
derstandable for a computer) can be used to automate problem determination and
repair actions, to heal software malfunctioning.

Chapter 5

The System Model

The previous chapter introduced a management model for distributed systems.
This chapter introduces a model of the system to be managed, a distributed system.
The model contains both behavioural and structural models. The behavioural
model , presented in Section 5.1, describes the way a distributed system provides
its functionality. This model is based on use-cases. As use-cases are expressed in a
semi-formal format, they are converted into a formal format (Job) to make them
understandable for autonomic managers. Taking the internal structure of a use-
case into account, system malfunctioning can be associated with a use-case step
(Task) that changes a state (State) or causes the occurrence of an event (Event).
Section 5.1 explains these model elements as the common characteristics of the
behaviour of distributed systems.

The structural model , presented in Section 5.2, describes the common aspects
of the internal structure of software programs in a distributed system. Knowledge
about the internal structure of a managed system is needed to identify which
part of the software program causes a malfunctioning, and where in the software
program remedy actions should be instrumented. The structural model provides
abstractions to specify this knowledge.

5.1 Behavioural Model

Recall that the behavioural model presented in this thesis is based on use-cases. A
use-case describes the response of a system to a given request. The system provides
its response by a number of use-case steps executed by its structural elements. In
the behavioural model, a Job represents a running use-case and a Task represents
a use-case step.

To understand the response of a system to a request, an imaginary channel
(job execution channel) is assumed in which tasks of a single job are executed
by various structural elements (see Figure 5.1). Tasks within a single job are
executed sequentially. All tasks in a chain of tasks manipulate data they receive
from different data sources. A data source for a task can, for example, be a

81

82 The System Model

Figure 5.1: Job execution channel.

database, a variable in a structural element, output of the previous task, or job
input. A possible malfunctioning during execution of a job can be caused by:
(1) a request (job input) that contains incorrect data, (2) incorrect data received
from a data source such as a structural element or a database, (3) inappropriate
manipulation of the data by a task, and/or (4) improper operation of computing
resources on which a task runs (task’s environment).

Note that the output of one job can be the input to another job, creating a
chain of job execution channels. The following sections explain the basic entities
that play a role during execution of a job.

5.1.1 Job

The notion of Job is very close to the notion of use-case as described in Section 3.4.
A Job is defined in a formal language with additional properties for management
purposes. The ER diagram, depicted in Figure 5.2, shows the relations of Job.

Each Job has one or more Tasks, zero or more inputs, and at most one output.
The tasks of a job manipulate input and result in output. A job’s inputs and output
are specified as a State. The entity State is explained in detail in Section 5.1.3, for
now it is sufficient to know that it represents a data item, and contains information
about the data type of the item and the data source where it originates. Two
additional Task types are added to a Job to check a job’s pre-conditions and post-
conditions. To monitor the execution of the tasks of a job, sensors are associated
to each Task.

A job can delegate sub-goals to other jobs, defining a parent-child relationship
between jobs. A Job has zero or more children and zero or more parents (i.e., each
job can invoke multiple jobs and be invoked by multiple jobs). This information is
used by autonomic management to determine the context (the chain of invocations)
of a system malfunctioning.

Sensors are associated with each Job to inform an autonomic manager about
the start and end of a job, or about occurrences of events during execution of the
job. Job’s effectors execute adaptation instructions changing a job’s behaviour
(e.g., adding a new task or statement in the job’s code).

Four types of Jobs are distinguished corresponding to the four levels of
use-cases distinguished in Section 3.5: SystemLevelJob, RunnableLevelJob,
ComponentLevelJob, and ClassLevelJob, each with their own structural ele-

5.1 Behavioural Model 83

Figure 5.2: The ER diagram depicts the relations of a job with other jobs, state,
sensor, effector and task.

ments, symptoms, and hypotheses. For example, the tasks of a Runnable-

LevelJob execute within ManagedRunnables (described in the next section), and
RunnableLevelSYM and RunnableLevelHYP specify their associated symptoms and
hypotheses respectively.

5.1.2 Task

A Job consists of a number of Tasks each representing a use-case step. As correct
execution of a job largely depends on correct execution of its tasks, autonomic
managers monitor their executions. As a result, autonomic managers can pinpoint
a task (that is a more fine-grained behavioural element) as the root-cause of system
malfunctioning.

The size of the actual code of tasks can vary. The code of one task may
consist of thousands lines of programming statements, and the code of another task
may consist of just one programming statement (such as an arithmetic operation).
For instance, in most cases, the size of the actual code of a task belonging to a
RunnableLevelJob is larger than that of a task belonging to a ClassLevelJob.
From the viewpoint of an autonomic manager, there is no difference between tasks.
The ER diagram, depicted in Figure 5.3, shows the common characteristics of a
Task.

Each Task has zero or more inputs, and at most one output. The task’s input
can be a job’s input, the value of a variable belonging to the structural element,
the data item coming from a data source, or the output of one of the previous
tasks. For example, the input of the runnable level task (8) (‘BusinessManager
authenticates the user ’), depicted in Figure 3.12, is the input of the Authentication

84 The System Model

Figure 5.3: The ER diagram depicts the relations of a task with state, sensor,
effector and managed structural element.

Realisation job, namely the user’s certificate.

Each Task is executed by exactly one structural element and monitored by
one or more sensors. StateSensors monitor a task’s input and output states,
and EventSensors monitor the occurrence of an event during execution of a task.
Effectors adapt a task’s input or output state.

The following types of tasks are identified:

• A StateManipulationTask reads a data item from a data source, or writes
a data item to a data source. Different tasks are distinguished for dif-
ferent sources. Examples are DataSourceStateManipulation, Managed-

ElementStateManipulation, and JobInputStateManipulation. By moni-
toring these tasks, autonomic managers can relate system malfunctioning to
an incorrect value of a specific state or states.

• A StateInteractionTask sends a state from one structural element to an-
other structural element. This task is used when a managed use-case dele-
gates an activity to another use-case. Autonomic managers can follow the
flow of a state in the system by monitoring this type of task.

• An InvocationTask invokes a child job from a parent job. Monitoring this
task makes it possible for autonomic managers to keep track of chains of
use-case invocations. Switching control flow from one use-case level to an-
other one is explicitly modelled (i.e., LowerInvocation, PeerInvocation,
and HigherInvocation tasks). Invocation task’s property invocationType

can be: local if both invoked and invoking jobs are in the same process
space; synchRemote if the invoked and invoking jobs are in different process
spaces and the invoking job blocks until the invoked job finishes its exe-
cution; or asynchRemote if the invoked and invoking jobs are in different
process spaces and the invoking job does not wait for the execution of the
invoked job to finish.

5.1 Behavioural Model 85

5.1.3 State

A State models a data item in a class, the status of a runnable, the parameters or
local variables of a method, or the return value of a referenced job. States contin-
uously change during execution of jobs. One of the most frequently encountered
causes of system malfunctioning is related to an improper state change. Auto-
nomic managers trace (1) where (in the system code) a state change occurs, and
(2) when (during execution of which task) a state changes.

State has two attributes: name and type. When a State represents a variable
occurring in the code of a managed system, the value of the name attribute is the
qualified name of that variable. For example, the qualified name of an instance
variable iv belonging to an object o is o.iv, and the qualified name of a static
variable sv belonging to a class c is c.sv. The value of name is used to automatically
find the corresponding variable in the code and instrument a sensor around it.

The type attribute makes it possible for autonomic managers to compare val-
ues, during runtime, to check whether a state contains the expected value. The
following state types, based on the xml schema [21] data types, are distinguished:
booleanType, integerType, doubleType, stringType, dateType, and timeType.

A job, during execution, can manipulate (or is affected by) different states in
an execution channel. Autonomic managers are interested in the origin of these
states to determine the source of an incorrect data item. Based on the data source
a state originates, various states are identified:

• An InvocationResultState represents the value returned by an invoked
job. If the value of this state is not as expected, the autonomic manager
concludes that the problem may be caused by the referenced job and needs
further information.

• A DataSourceState represents the value originating from a data source such
as a database, file, message queue, message topic, or user interface includ-
ing standard input/output console and web forms. Commonly, distributed
systems obtain their data from a persistent data source or standard I/O
console, store the data in a variable, and process the data. During system
malfunctioning, this division helps identify possible data corruption within
the specific data source.

• A JobInputState and JobOutputState represent the input and output value
of a job during its execution, respectively. Note that the JobOutputState

is different from InvocationResultState. The output value of a job can
change as a result of certain problems (such as network problems) before this
value can be received by the invoking job. Modeling these states makes it
possible for an autonomic manager to check the pre- and post-conditions of
a job.

• A ManagedElementState represents the values kept within structural el-
ements. They describe the status of a process or thread (e.g., running,
stopped) or a connector (e.g., broken connection, overloaded connection),

86 The System Model

component variables (e.g. version, configuration parameters), static and dy-
namic variables declared in a class, and method parameters and local vari-
ables declared in a method.

5.1.4 Event

An Event is a notable occurrence at a particular point in time. There are two
categories of events: managed events and management events. Managed events
occur during execution of jobs and tasks, influencing the normal flow of execu-
tion. They can affect the behaviour of a distributed system, and cause system
malfunctioning. Autonomic managers monitor events to obtain knowledge about
a managed system. Examples of managed events are:

• those caused by execution of a specific task of a job, or

• those caused by a system’s environment that provides computing resources
for job execution.

Management events are used to inform autonomic managers to take management
actions. They are added to the code of the managed system by autonomic man-
agers. Examples of management events are:

• events that inform autonomic managers about the life-cycle of a job, or

• events that warn autonomic managers to take a pre-defined management
action.

The following Events are defined:

• An RunnableStartupEvent and RunnableShutdownEvent represent events
that are executed to ascertain the startup and shutdown of a runnable, re-
spectively. These events are used by autonomic managers to monitor the
startup/shutdown order of various runnables. For example, suppose that an
initialisation code in the BusinessIntegrator, described in Section 3.7, makes
a connection to the DatabaseManager to fetch all user identification informa-
tion from a database. The DatabaseManager is required to start before the
BusinessIntegrator. Large distributed systems have many numbers of such
dependencies among runnables that should be managed.

• A JobStartEvent and JobEndEvent represent events that are executed to
ascertain when a job has been started and finished, respectively. Job execu-
tion takes place between the occurrences of these two events. JobStartEvent
causes the autonomic manager responsible for that job to be activated.

• An InvocationEvent is executed to determine the moment at which a job
references another job at a lower use-case level (LowerInvocationEvent),
at the same use-case level (PeerInvocationEvent), or at a higher use-case
level (HigherInvocationEvent).

5.2 Structural Model 87

• An ExceptionEvent is executed to determine an abnormal and unexpected
happening during execution of a job. The NullPointerEvent (referencing
an uninitialised object) and NoSuchFieldEvent (referencing a non-existing
object field) exceptions are examples of the exception event.

• A TimerExpirationEvent triggers autonomic managers to start their timer
based activities. For example, an autonomic manager can use this event to
check the availability of a runnable at regular intervals.

5.2 Structural Model

Distributed systems are most often composed of one or more sub-systems, each
of which in turn is composed of a number of components. Components either
contain other (sub)components or a number of classes. Classes may contain other
(sub)classes and a number of methods. Each of these elements (structural ele-
ments) can be considered to be a logical unit containing system code.

The common properties of the different structural elements are modelled as
ManagedStructuralElement. One of the common properties of structural ele-
ments is that they contain code with which use-case steps are executed. The other
common property is that they can all contain one or more states that keep data
needed for the execution of use-case steps. The ManagedStructuralElement entity
in the structural model contains properties which reflect the mentioned properties
of the structural elements.

Figure 5.4: Various types of managed structural elements that correspond to
the use-case levels.

The following managed structural elements are distinguished: ManagedSystem,
ManagedRunnable, ManagedComponent, and ManagedClass. As shown in Fig-
ure 5.4, these elements correspond to the use-case levels introduced in Chapter 3.

88 The System Model

Each of these structural elements contains one or more other structural elements,
and has the common property entryPoint for activation. There are also two other
managed structural elements: ManagedMethod and ManagedConnector. These are
atomic, meaning that they do not contain other managed structural elements.
The following sections explain all different types of managed structural elements
and their relationships. The UML structural diagrams illustrate the relationships
between different structural elements.

5.2.1 Managed System

Usually a number of related use-cases, addressing the specific needs of an organi-
sation’s processes and data flow, are grouped and packaged as one system. Many
enterprises define a clear boundary for each system, and organise their software
maintenance and fault handling processes around these systems. There are ded-
icated teams for maintaining specific software systems. A ManagedSystem in the
proposed structural model represents a system, a logical entity containing code
with which a collection of related behaviours (use-cases) is executed.

As explained in Section 3.5, all use-case steps in system level use-cases are
executed by one structural element, a ManagedSystem. Autonomic managers can
pinpoint this structural element as the source of system malfunctioning during
execution of system level use-cases.

Figure 5.5: A ManagedSystem contains one or more ManagedRunnables, and one
ManagedMethod.

A ManagedSystem is composed of a number of ManagedRunnables. Each
ManagedSystem contains one special ManagedMethod which serves as its entry
point (see Figure 5.5). Managed method starts the executions of all runnables
belonging to that system. Autonomic managers use this entry point to monitor
the start order of the execution of runnables (i.e., to make sure that runnable r1
starts after/before runnable r2). For example, if an Application Server requires
initialisation data, stored in a database, and it starts before the Database Server
then the Application Server will fail to start.

5.2.2 Managed Runnable

A computer program, written in a programming language, is compiled into a set
of instructions. The operating system of a computer loads these instructions into
computer memory and starts a process to execute the computer program. Within a
process, a computer program can split itself into two or more concurrently running
pseudo-processes which share the same resources allocated to their process. These

5.2 Structural Model 89

pseudo-processes are called execution threads. Processes and threads have certain
properties (such as host, port, process-id, thread-id, status) that are of importance
to management. A ManagedRunnable models a process or an execution thread.

Runnable level use-cases describing the internal behaviour of a system as inter-
actions between runnables are executed by ManagedRunnables. Autonomic man-
agers at this level can pinpoint these structural elements as the source of system
malfunctioning during execution of runnable level use-cases.

Figure 5.6: Relationship between the composite and atomic ManagedRunnables.

A ManagedRunnable is either atomic or composite (see Figure 5.6). A Com-

positeManagedRunnable contains a combination of AtomicManagedRunnables

and/or CompositeManagedRunnables. As a result, the related processes (or
threads) can be bundled and represented in the model as one (composite) managed
runnable. Using CompositeManagedRunnable, it is possible to model distributed
middleware software systems such as a Java 2 Enterprise Edition (J2EE) appli-
cation server (e.g., IBM WebSphere Application Server [92] or JBoss Application
Server [100]). It is also possible to model a structurally complex composite web
service [151] that aggregates a number of web services (atomic or composite) - run-
ning on different remote machines - according to a certain composition pattern.

Figure 5.7: An AtomicManagedRunnable contains one ManagedMethod, one or
more ManagedComponents, and zero or more ManagedConnectors which bind the
atomic managed runnables to each other.

Figure 5.7 shows that an AtomicManagedRunnable is composed of one or more
ManagedComponents, and contains a special ManagedMethod that represents the
main method. In most programming languages, this method serves as the entry
point of a program, and it is where a program starts its execution. Autonomic
managers use this entry point to monitor the flow of execution from a runnable to
its components.

90 The System Model

5.2.3 Managed Connector

Atomic managed runnables can be connected with each other by means of a Man-

agedConnector using specific protocols. Each specific protocol defines its own rules
governing the syntax, semantics, and transfer of data between two sub-systems.
An autonomic manager possessing the knowledge about a specific protocol, used by
two runnables, is able to properly manage the connection between these runnables.

As explained in Section 3.6, a complex use-case references simple use-cases
to delegate certain sub-goals to referenced use-cases. The use-case step type
(i.e., InvocationTask), that describes this reference, is executed by a piece of
software code that implements the connection between two runnables. The Man-

agedConnector models this piece of software code. This structural element can
be pinpointed by autonomic managers, similar to system administrators, as the
source of connection problems.

The following entities, containing meta-information about the corresponding
communication protocols, are part of the structural model:

• A DataAccessProtocol represents the protocol used between a runnable
executing business logic and a Database Management System (DBMS) to
persist data permanently on a storage device. This entity is used to model
the most widely used protocols Java Database Connectivity (JDBC) [176]
and Open Database Connectivity (ODBC) [134].

• A FileOrientedProtocol represents the protocol usually used by legacy
sub-systems to communicate with each other by reading or writing a shared
file in a proprietary format.

• A MessageOrientedProtocol makes it possible for runnables to asynch-
ronously exchange messages in a standard format using either the message-
queue mechanism or the message-topic mechanism. The message-queue
mechanism makes it possible for two runnables to exchange messages di-
rectly (point-to-point), and the message-topic mechanism provides a way to
publish messages to (or consume from) multiple runnables at the same time.

• A StreamOrientedProtocol transfers data on demand, in real-time, as a
continuous stream of bytes.

• A WebOrientedProtocol is used for communication through Internet. The
most frequently used protocol Hypertext Transfer Protocol (HTTP) is mod-
elled by this entity.

• An RPCProtocol (Remote Procedure Call) and ROIProtocol (Remote Object
Invocation) are used to invoke functionality in external address spaces. The
most commonly used protocols Open Network Computing Remote Procedure
Call (ONC RPC) [174] and Java Remote Method Invocation (JRMI) [175]
are modelled by these entities.

5.2 Structural Model 91

5.2.4 Managed Component

A ManagedComponentmodels a software component (or a library). A software com-
ponent groups a set of related classes (code) to provide specific business function-
ality (e.g., retrieving customer profile) or specific technical utility (e.g., logging).
Each software component has a set of service access points (interface methods)
that hides the implementation details of the component from its clients.

Component level use-cases describing the internal behaviour of a system as
communication between components are executed by ManagedComponents. Auto-
nomic managers at this level can pinpoint these structural elements as the source
of system malfunctioning during execution of component level use-cases.

Figure 5.8: Relationship between the composite and atomic ManagedComponents.

A ManagedComponent is either atomic or composite (see Figure 5.8). A Com-

positeManagedComponent contains a combination of AtomicManagedComponents
and/or CompositeManagedComponents. Composite managed components model
more complex structural elements consisting of a set of related libraries and
reusable software components. An Object-Relational Mapping (ORM) framework
(such as Hibernate [99]), containing both the core elements of the framework
and other utility libraries such as logging, is modelled as a CompositeManaged-

Component.

Figure 5.9: A ManagedComponent contains one or more ManagedMethods, and
one or more ManagedClasses.

Figure 5.9 shows the relationship between an atomic managed component with
its managed classes. An AtomicManagedComponent contains one or more dedicated
ManagedMethods, and one or more ManagedClasses. The managed methods, that
represent the interface methods of a component, form the entry-points of an atomic
managed component. Autonomic managers use these entry points to manage the
interaction of a component with other components or with its classes.

92 The System Model

5.2.5 Managed Class

A ManagedClass models a module or a class. A module in imperative or script-
ing programming paradigm groups a number of related variables and functions
(procedures or subroutines). A class in object-oriented programming paradigm
abstracts the real-world objects (e.g., employee, currency, customer) by grouping
related fields and methods. Fields contain data that are manipulated by methods.
Each method contains a collection of statements (instructions) that can access the
data stored in a field and change the state of a class.

Class level use-cases describing the internal behaviour of a system as invocations
between methods are executed by ManagedClasses. Autonomic managers at this
level can pinpoint these structural elements as the source of system malfunctioning
during execution of class level use-cases (i.e., they can determine which method of
which class incorrectly manipulates a certain system state).

Figure 5.10: Relationship between the composite and atomic ManagedClasses.

A ManagedClass is either atomic or composite (see Figure 5.10). Similar
to the recursive definitions of managed runnables and managed components,
a CompositeManagedClass contains a combination of AtomicManagedClasses

and/or CompositeManagedClasses. The CompositeManagedClass can be used
to model the hierarchical relationship between a class and its sub-classes.

An AtomicManagedClass contains a number of ManagedMethods, and one ded-
icated managed method which represents the class’s constructor method and forms
the entry-point of an atomic managed class. A constructor method is called au-
tomatically when an instance of a class is created. Autonomic managers use this
entry point to monitor the state of a class during its creation.

5.2.6 Managed Method

A method in object-oriented programming languages (such as Java) is associated
with a class, and usually consists of a sequence of programming statements to
access and manipulate the state of the class. A method accepts a set of input
parameters, and returns a possible output. A ManagedMethod models a method.
A ManagedMethod can also represent a function, procedure, or a subroutine in
imperative programming languages (such as C or Pascal) or scripting languages
(such as Perl or Bash). The parameters and local variables are assumed to be the

5.3 Summary 93

states of a ManagedMethod. Autonomic managers monitor these states to manage
the execution of the statements contained in a method.

5.3 Summary

The model of a managed system presented in this chapter contains both be-
havioural and structural models. The behavioural model describes the way a
distributed system provides its functionalities, and the structural model describes
the internal structure of software programs for a distributed system. The be-
havioural model contains jobs, tasks, states, and events, and the structural model
contains managed structural elements.

A job represents a use-case to be executed within the managed structural el-
ements, and consists of a number of tasks each representing a use-case step to
manipulate states. Manipulation can cause system malfunctioning. Autonomic
managers need to know which part of the software program causes the malfunc-
tioning, and where in the software program the remedy actions should be instru-
mented. By combining the behavioural and structural model, autonomic managers
can pinpoint the location of possible root-causes of system malfunctioning.

94 The System Model

Chapter 6

Self-Management Knowledge
Representation

The term self-management knowledge refers to (1) knowledge a system has of its
internal structure and its dynamic behaviour, and (2) meta-knowledge a system has
to evaluate and adjust its own behaviour. This knowledge needs to be represented
in a formal way that supports interpretation by an autonomic manager. In this
thesis the knowledge is expressed in a formal language that is processable and
understandable by software modules.

Representation of self-management knowledge is important for two reasons.
First, domain experts use representations to provide knowledge regarding a specific
system to be managed. Second, representations can be used to generate code for
a specific autonomic manager. A considerable number of formal languages have
been used for knowledge representation (see [44] for an overview of traditional
and web-based languages, their expressiveness and reasoning capabilities). This
chapter discusses the choice of a suitable language for self-management knowledge
representation.

6.1 Knowledge Representation Requirements

This section discusses a number of important requirements [82] for representation
of self-management knowledge in distributed environments.

6.1.1 Knowledge Locality & Modularity

A distributed system is a system with multiple computing elements distributed
across a network. Efficient self-management mandates co-location of self-
management knowledge, that relates to a specific computing element, and the
computing element itself. Co-location implies that the system as a whole needs to
be able to reason with such distributed knowledge.

95

96 Self-Management Knowledge Representation

Assume that a managed system is composed of a number of Web Services
distributed on the web, each with its own self-management knowledge, and each
provided by a different vendor. Such knowledge is needed both at the level of each
of the Web Services and at the level at which they are combined.

6.1.2 Knowledge Reasoning

Self-management knowledge does not only contain concepts, but also rules to rea-
son about concepts, and meta-rules to reason about these rules. Rules are used in
a running self-management system to analyse a system’s current status, detect ab-
normal behaviour, and repair system malfunctioning. Self-management concepts
and rules are distributed across network. There is a need for a rule language that
supports reasoning with distributed knowledge.

6.1.3 Knowledge Acquisition

To support the creation and maintenance of the self-management knowledge, two
non-functional requirements hold:

• Tool availability - The availability of tools to support knowledge acquisition
in distributed environments is essential.

• User acceptance - The language used for self-management knowledge speci-
fication must be intuitive and comply with standards.

6.2 Choice for Knowledge Representation

As the self-management model is driven by use-cases and UML/OCL [157] is
used to describe use-cases, UML/OCL is one of the options considered. However,
UML/OCL has two shortcomings: (1) it is not possible for a concept specified in
UML/OCL to refer to another concept that is located (distributed) elsewhere on
the network, (2) UML/OCL does not have logical reasoning capabilities (i.e., it is
not possible to express logical statements in UML/OCL).

An alternative for self-management knowledge representation is a language
based on first-order logic [166]. In principle, first-order languages can be used to
specify every finite system. However, (1) it is very cumbersome to specify complex
concepts and inheritance relations over the concepts (subsumption) in first-order
languages, (2) it is difficult to add the notion of sort (type) to the formalism of
first-order logic in order to categorise a domain into groups, and (3) there is to our
knowledge no first-order language available that provides a mechanism to refer to
distributed concepts located on the network.

Another option is the family of knowledge representation languages known as
description logics [139] which have evolved from a combination of semantic net-

6.3 Semantic Web Overview 97

works1 [167] and high-order logic2 [30]. Ontologies, implemented in description
logic languages, are increasingly used to this end. For example, Stojanovic et
al. [173] use ontologies to describe resources and changes in the state of a re-
source in a correlation engine, and Jannach et al. [96] use ontologies to describe
multimedia resources and transformation actions in a multimedia adaptation en-
gine. According to the principles of knowledge representation presented in [49],
self-management knowledge representation can be viewed as a set of ontological
commitments, i.e., agreements about the concepts and their relations, as discussed
in Chapters 4 and 5.

This thesis has chosen to represent self-management knowledge as ontological
commitments in the description logic language OWL and the rule language SWRL.
The following section provides an overview of the Semantic Web languages OWL
and SWRL, and the argumentation for the choice.

6.3 Semantic Web Overview

The central idea of the Semantic Web initiative [18] is to augment the current web
with formalised knowledge to make information on the web machine-processable.
The Semantic Web relies on:

• ontologies by which the domain concepts, concept hierarchies, and concept
relationships can be expressed, and

• logical reasoning by which new conclusions can be drawn after combining
data with ontologies.

Semantic Web ontologies are expressed in a description logic language such as
Ontology Web Language (OWL) [16]. Logical reasoning rules are expressed in
Semantic Web Rule Language (SWRL) [90] (a W3C proposal).

In the Semantic Web hierarchy of languages, shown in Figure 6.1, Uniform
Resource Identifier (URI) is depicted as the lowest layer. A URI is a string of
characters used to identify an abstract or physical resource [17]. A resource can
be anything that is located anywhere and has an identity (e.g., an electronic doc-
ument, an image, a service). The main purpose of identifying resources with a
URI is to find, exchange and combine data about the identified resource across the
Web.

The layer above the URI layer is the Extensible Markup Language (XML) [23].
XML is an extensible specification language for creating custom markup languages.
A well-formed XML document conforms to the XML syntax rules. Additionally, a
valid XML document conforms to semantic rules defined in an XML schema [21]
document.

1A semantic network represents semantic relations between the concepts as a graph. The
vertices of the graph represent concepts, and the edges represent their relations.

2Languages based on higher-order logic provide more possibilities to express more complex
concepts through allowing to define quantifications over predicates, and introducing sets of indi-
viduals.

98 Self-Management Knowledge Representation

Figure 6.1: Semantic Web Stack.

The layer above the XML layer is the Resource Description Framework
(RDF) [120]. RDF provides a common data model for describing resources, identi-
fied by URIs, on the Web. A graph of resource descriptions contains a collection of
RDF statements about web resources as subject-predicate-object expressions. The
subject denotes the resource, and the predicate denotes characteristics of the re-
source and expresses a relationship between the subject and another resource (the
object). RDF is designed to be interpreted by computers. RDF statements are
written in XML. RDF schema (RDFS) [27] is a language for describing ontologies
in RDF, and it provides mechanisms to describe groups of related resources (re-
source classes) and the relationships between these resources (resource properties).
In analogy to XML schema language, in which semantic rule definitions are written
in XML, RDFS ontology descriptions are written in RDF.

OWL is the layer above RDF and RDFS. OWL is based on the DARPA Agent
Markup Language (DAML) [47] effort. OWL combines the expressive power of de-
scription logics with the simplicity and distributive nature of RDF. SWRL extends
the set of OWL axioms with Horn-like rules to enrich OWL ontologies. A rule is an
implication between an antecedent (body) and consequent (head). Atoms in these
rules consist of OWL concepts, properties, individuals, data values, or variables.
The following sections describe some of OWL’s features.

6.3.1 OWL Concepts & Properties

A concept (Class) in OWL is interpreted as a set of individuals , and a property
relates individuals of different concepts to each other. In fact, each property is a
mapping between a member of a domain and a member of a range. The domain
of a property consists of the individuals of one or more concepts. This is also true
for the range of a property.

There are two types of properties: ObjectProperty and DatatypeProperty. The
members of the range of the first type are the members of an OWL class, and the
members of the range of the second type are data literals (members of a primitive
type such as integer, dateTime, etc.).

Examples of an OWL class are Person and University. Examples of an OWL
individual, belonging to these OWL classes, are Frank and TUDelft. An example
OWL Object property is isEmployeeOf. The domain and range of this property
respectively are the Person and University classes. An example OWL Datatype
property is hasAge of which the domain is the OWL class Person and the range
is the data type integer.

6.3 Semantic Web Overview 99

6.3.2 OWL Cardinality Restrictions

In OWL, cardinality restrictions are used to constrain the number of values of
a particular relationship. Cardinality restrictions are defined on Object and
Datatype properties. They specify either the minimum number, the maximum
number, or the exact number of a specific relationship of an individual. An ex-
ample of a maximum cardinality restriction is to restrict the property hasParent
such that the individuals of the OWL class Person have at most two parents.

6.3.3 OWL Value & Existential Restrictions

These restrictions limit which values (instead of how many values) of the range of
the property can be used by instances of a concept. The value restriction states
that all members of the range of a particular property should be of a certain type,
and the existential restriction states that at least one member of the range of the
property should be of a certain type.

Consider two OWL classes Student and Game. A value restriction on the
property playsGame can be used to specify that if a student plays a game then
he/she plays one of the games from the OWL class Game. Consider two OWL
classes Student and Teacher. An existential restriction on the property hasParent
can be used to specify that the parent of at least one student is a teacher.

6.3.4 OWL Consistency Check

The consistency is checked by an OWL reasoner such as Pellet [164] or Racer [77].
The reasoner checks to see whether the instances of all mandatory concepts and
the relationships between them have been correctly specified. For this purpose, an
OWL reasoner utilises the meta-level information available in the Assertional Box
(ABox) and Terminological Box (TBox). The ABox contains instances of concepts
and instances of the relationships between these concepts. The TBox contains
definitions of concepts, relationships between them, and different restrictions on
those relationships. A model in OWL is said to be consistent if all sentences in
the ABox are consistent with respect to the TBox of the model.

6.3.5 Requirements Satisfaction

This section argues that the Semantic Web languages OWL and SWRL satisfy
the requirements for self-management knowledge representation specified before in
Section 6.1.

Knowledge Locality & Modularity

The requirement of locality and modularity is satisfied because the Semantic Web
languages support the use of URIs. URIs make it possible to identify and re-
fer to resources stored at different locations. Local knowledge consists of self-
management concepts and rules which describe the internal structure and the

100 Self-Management Knowledge Representation

behaviour of each computing element of a distributed system. These concepts and
rules are the resources to which URIs refer.

Knowledge Reasoning

The knowledge reasoning requirement is satisfied because SWRL is specifically
designed to reason about OWL concepts. SWRL is closely integrated with OWL:
rules in SWRL use OWL concepts. A rule in SWRL can refer to an OWL concept
or to an OWL property located on the network, through a URI. Also, a rule in
SWRL can refer to another SWRL rule located on the network, through a URI.
For example, SWRL built-in rules such as lessThan(x, y), located at the internet
address http://www.w3.org/2003/11/swrlb, can be used within the SWRL rules
located at a different internet address.

Knowledge Acquisition

Both non-functional requirements defined in Section 6.1.3 are satisfied by Semantic
Web languages with respect to knowledge acquisition:

• The tool availability requirement is satisfied: both the open-source com-
munity and commercial companies provide various Integrated Development
Environments (IDEs), plugins to other existing IDEs, Java APIs, and tools
and techniques for checking the syntax and consistency of OWL documents.

• The user acceptance requirement is satisfied: the Semantic Web languages
comply with W3C standards and have common and relevant features with
Unified Modeling Language (UML). UML is the de facto industrial standard
for software development. The Ontology Definition Metamodel (ODM) [81]
defines the relationship between the relevant features of UML and OWL.

In conclusion, the choice for Semantic Web languages to represent self-management
knowledge is justified with the requirements formulated in Section 6.1. The next
section explores the use of these languages to express the knowledge needed in a
self-management framework.

6.4 Self-Management Ontology

In this thesis, the Semantic Web languages OWL and SWRL are used to express
both generic and domain models. The generic model is the formal representation
of the self-management concepts for all distributed systems, as described in Chap-
ters 4 and 5. The domain model is the model of a specific managed system. This
section illustrates the ontology for parts of the generic model3 in OWL. The on-
tology of the generic model is modular and extensible. It is composed of a number
of sub-ontologies each of which contains their own reusable knowledge.

3The complete generic model can be downloaded from http://www.iids.org/research/

self-management/self-management-ontologies.zip.

6.4 Self-Management Ontology 101

6.4.1 Autonomic-Manager Sub-Ontology

The autonomic-manager sub-ontology has been defined to describe autonomic man-
agers (and their process results) discussed in Section 4.7. The emphasis in this
section is on the definition of cardinality restrictions in OWL.

<owl:Class rdf:ID="AutonomicManager">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:ID="job"/></owl:onProperty>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:ID="subAutonomicManagers"/></owl:onProperty>
<owl:minCardinality rdf:datatype="&xsd;int">0</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:ObjectProperty rdf:about="#job">

<rdfs:domain rdf:resource="#AutonomicManager"/>
<rdfs:range rdf:resource="http://localhost/owl/behav-model.owl#Job"/>

</owl:ObjectProperty>

Figure 6.2: Part of the autonomic-manager sub-ontology showing the specifica-
tion of cardinality restrictions in OWL.

Figure 6.2 shows the definition of the AutonomicManager concept and two of
its properties. Both properties are ObjectProperties. The restriction on the first
property limits the number of jobs of an autonomic manager to exactly one. The
restriction on the second property specifies that an autonomic manager may have
zero or more children. The OWL statement at the end of the figure depicts that the
range of the first property, Job, is specified in another sub-ontology (behav-model)
located on the web.

6.4.2 Behavioural-Model Sub-Ontology

The behavioural-model sub-ontology has been defined to describe the dynamic be-
haviour (use-case realisation) of a managed system. This sub-ontology consists
of the specification of a collection of jobs, tasks, states, and events discussed in
Section 5.1. This section focuses on the definition of concept inheritance in OWL.

Figure 6.3 shows the definition of the Task concept and one of its sub-concepts.
The restriction on the property managedElement indicates that any Task is to be
executed inside exactly one managed structural element. The Invocation task,
which represents the invocation of a child job from a parent job, is a sub-concept of
Task. This means that it inherits all properties of a Task. Moreover, it introduces
a new property invokedJob that represents the child job. The specification also
indicates that a property can be shared by different concepts. For instance, the
managedElement property is also used by ElementStartupEvent to indicate the
runnable that is started.

102 Self-Management Knowledge Representation

<owl:Class rdf:about="#Task">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:about="#managedElement"/></owl:onProperty>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:Class rdf:about="#Invocation">

<rdfs:subClassOf rdf:resource="#Task"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:ID="invokedJob"/></owl:onProperty>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:ObjectProperty rdf:about="#managedElement">

<rdfs:domain>
<owl:Class>

<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Task"/>
<owl:Class rdf:about="#ElementStartupEvent"/>

</owl:unionOf>
</owl:Class>

</rdfs:domain>
<rdfs:range rdf:resource="http://localhost/owl/struct-model.owl#ManagedElement"/>

</owl:ObjectProperty>

Figure 6.3: Part of the behavioural-model sub-ontology showing the specification
of concept inheritance in OWL.

6.4.3 Structural-Model Sub-Ontology

The structural-model sub-ontology has been defined to describe the internal struc-
ture of a managed system. This sub-ontology consists of a specification of all
different types of structural elements discussed in Section 5.2. The focus is on the
value restrictions and recursive concept definitions in OWL.

The OWL definitions in Figure 6.4 are based on the diagram depicted in Fig-
ure 5.8. The property subElement is a shared property used by both Atomic-

ManagedComponent and CompositeManagedComponent. As an atomic managed
component contains one or more managed classes, the OWL value restriction is
used to restrict the range of the subElement to ManagedClass. The range of
the subElement for the composite managed component is restricted to Managed-

Component. The CompositeManagedComponent definition also shows an example
of the recursive definitions in OWL. On the one hand, the CompositeManaged-

Component is a sub-concept of the ManagedComponent, and on the other hand, the
range of the property subElement is restricted to the parent concept.

6.4.4 Analyser Sub-Ontology

The analyser sub-ontology has been defined to describe how an analyser analyses
job execution, and how incorrect behaviour of a job can be expressed as symptoms.

6.4 Self-Management Ontology 103

<owl:Class rdf:ID="AtomicManagedComponent">
<rdfs:subClassOf rdf:resource="#ManagedComponent"/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:about="#subElement"/></owl:onProperty>
<owl:allValuesFrom rdf:resource="#ManagedClass"/>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:Class rdf:ID="CompositeManagedComponent">

<rdfs:subClassOf>
<owl:Class rdf:about="#ManagedComponent"/>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:ObjectProperty rdf:about="#subElement"/></owl:onProperty>
<owl:allValuesFrom rdf:resource="#ManagedComponent"/>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

Figure 6.4: Part of the structural-model sub-ontology showing the specification
of value restrictions and recursive definitions in OWL.

The focus in this section is on DatatypeProperty in OWL.

<owl:Class rdf:about="#Symptom">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:DatatypeProperty rdf:ID="existInspectivePlan"/></owl:onProperty>
<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:DatatypeProperty rdf:about="#existInspectivePlan">

<rdfs:domain rdf:resource="#Symptom"/>
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>

</owl:DatatypeProperty>

Figure 6.5: Part of the analyser sub-ontology showing the specification of
DatatypeProperty in OWL.

Figure 6.5 illustrates the definition of Symptom and one of its properties exist-
InspectivePlan. This property indicates whether there is an inspective plan with
which the occurrence of a symptom can be clarified. The property is an OWL
DatatypeProperty and its range is the XMLSchema’s boolean type.

6.4.5 Diagnoser Sub-Ontology

The diagnoser sub-ontology has been defined to describe a diagnoser, its SWRL
rules, and hypotheses. The emphasis in this section is on the definition of necessary
and sufficient [89] conditions in OWL. These conditions limit the membership of
an OWL class to having dedicated individuals.

104 Self-Management Knowledge Representation

<owl:Class rdf:ID="Ternary">
<owl:equivalentClass>

<owl:Class>
<owl:oneOf rdf:parseType="Collection">

<Ternary rdf:ID="Pos"/>
<Ternary rdf:ID="Neg"/>
<Ternary rdf:ID="Unknown"/>

</owl:oneOf>
</owl:Class>

</owl:equivalentClass>
</owl:Class>
<owl:ObjectProperty rdf:about="#validated">\

<rdfs:domain rdf:resource="#Hypothesis"/>
<rdfs:range rdf:resource="#Ternary"/>

</owl:ObjectProperty>

Figure 6.6: Part of the diagnoser sub-ontology showing the specification of nec-
essary and sufficient conditions in OWL.

Figure 6.6 shows the definition of the Ternary class. The members of this class
are limited to the OWL instances (individuals in OWL) Pos, Neg, and Unknown.
These OWL instances are used to indicate that the result of the validation of a
hypothesis is positive, negative, or unknown. The Ternary class is also used to
denote the value of a symptom, signifying its occurrence.

The diagnoser sub-ontology also includes generic hypothesis selection, valida-
tion, evaluation, and determination rules. These rules are expressed in SWRL. An
example of a rule is that a hypothesis is not selected for validation purposes if it
has already been evaluated. Figure 6.7 depicts this rule in SWRL4. The highest
level SWRL class is swrl:Imp that represents a single SWRL rule. This class con-
tains a consequent part (swrl:head) and an antecedent part (swrl:body), each
containing a list of rule atoms.

6.4.6 Sensor Sub-Ontology

The sensor sub-ontology has been defined to describe the different sensor types
with which runtime information from a running managed system is retrieved. In
this section, the focus is on the definition of an OWL property for which the range
is not known in advance. Because sensors in the code of a managed system monitor
values of states of several different types (boolean, string, integer, etc.), it is not
possible to determine the range of the observedValue property of the Sensor in
advance.

4SWRL has two different syntaxes: the XML Concrete syntax and the Human Readable

syntax [90]. The example rule depicted in Figure 6.7 is in XML Concrete syntax. The XML

Concrete syntax is a combination of the OWL syntax with the RuleML XML syntax [90]. SWRL

statements in this syntax can be combined with OWL concepts and properties. The example

rule in Human Readable syntax is as follows:

Hypothesis(?hy) ∧ tried(?hy, true) → toBeFocussed(?hy, false)

6.4 Self-Management Ontology 105

<swrl:Imp rdf:ID="hypSelRule-4">
<swrl:head>

<swrl:AtomList>
<rdf:first>

<swrl:DatavaluedPropertyAtom>
<swrl:propertyPredicate rdf:resource="#toBeFocussed"/>
<swrl:argument1 rdf:resource="#hy"/>
<swrl:argument2 rdf:datatype="&xsd;boolean">false</swrl:argument2>

</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>
</swrl:head>
<swrl:body>

<swrl:AtomList>
<rdf:first>

<swrl:ClassAtom>
<swrl:argument1 rdf:resource="#hy"/>
<swrl:classPredicate rdf:resource="#Hypothesis"/>

</swrl:ClassAtom>
</rdf:first>
<rdf:rest>

<swrl:AtomList>
<rdf:first>

<swrl:DatavaluedPropertyAtom>
<swrl:argument2 rdf:datatype="&xsd;boolean">true</swrl:argument2>
<swrl:argument1 rdf:resource="#hy"/>
<swrl:propertyPredicate rdf:resource="#tried"/>

</swrl:DatavaluedPropertyAtom>
</rdf:first>
<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>
</rdf:rest>

</swrl:AtomList>
</swrl:body>

</swrl:Imp>

Figure 6.7: Part of the diagnoser sub-ontology showing one of the generic rules
in SWRL’s XML Concrete Syntax.

<owl:Class rdf:ID="Sensor">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty><owl:DatatypeProperty rdf:ID="observedValue"/></owl:onProperty>
<owl:maxCardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>
<owl:DatatypeProperty rdf:ID="observedValue">

<rdfs:domain rdf:resource="#Sensor"/>
</owl:DatatypeProperty>

Figure 6.8: Part of the sensor sub-ontology showing the specification of
observedValue in OWL.

OWL assumes that the range of a DatatypeProperty such as observedValue

can be any XML Schema type [21] if the range is not pre-defined. Figure 6.8 shows
the definition of the observedValue property. The domain of this property is the
Sensor class, and the range of the property is empty.

106 Self-Management Knowledge Representation

6.5 Related Work

Recall that self-management knowledge should be represented in a formal lan-
guage in order to be understood by autonomic management. Unfortunately, there
is no standard language for expressing self-management knowledge. Different re-
searchers have created their own proprietary languages. Fortunately, most of these
languages are based on XML and RDF. The XML and RDF languages are open
standards, web enabled, extensible, and platform independent. They enable dis-
tributed systems, running on different platforms across the web, to share infor-
mation easily. The following briefly describes how different autonomic approaches
utilise these languages.

XML Based Languages

XML is a general purpose language upon which custom languages can be created.
XML-Based Architecture Description Language (xADL) [48, 111] and Architecture
Description Markup Language (ADML) [169] are XML-based mark-up languages
for describing software and system architectures. A number of basic tags which
are introduced in these languages are: <Architecture>, <Component>, <Connec-
tor>, <Topology>, and <Expression>. Domain experts specify system structure
in one of these languages making an abstract architectural model of a managed
system. This architectural model is used by an architecture-based autonomic man-
agement to evaluate the managed system for constraint violation during runtime.

Examples of XML-based policy languages used by policy-centric autonomic
computing approaches are Autonomic Computing Policy Language (ACPL) [1],
Autonomic Computing Expression Language (ACEL) [1], and AGILE [7]. The
first and second languages are used within the IBM’s Policy Management for Au-
tonomic Computing (PMAC) platform. Each policy, consisting of conditions, ac-
tions, priority, and role, is expressed in ACPL. Policy conditions are expressed
in ACEL. ACEL defines nine primitive types and various types of operators such
as arithmetic functions, string functions, and calendar operations. The autonomic
manager in PMAC is a policy-based manager that obtains its policies from the pol-
icy storage to provide policy guidance to managed resources. The third language
(AGILE) facilitates dynamic adaptations of the policy configuration of autonomic
systems. A policy, written in AGILE, is able to change its own behaviour through
the use of indirect addressing. The monitoring library of AGILE automatically at-
taches monitoring logic to each numeric variable and silently monitors successive
sample values. So, various temporal characteristics of an input stream (such as
mean value, largest value, etc.) are collected and represented as properties that
can be directly incorporated into policy logic.

RDF Based Languages

Recall that RDF itself is based on XML and provides a common data model for
describing resources on the web. Stojanovic et al. [173] propose using RDF-based

6.6 Summary 107

ontologies for representing monitored data that are analysed by correlation en-
gines implementing the MAPE model. According to them, ontologies provide a
shared understanding of the managed domain, and therefore they facilitate inter-
operability between different correlation engines that together are responsible for
managing systems in heterogeneous distributed environments.

Jannach et al. [96] use ontologies to describe multimedia resources and trans-
formation actions in a multimedia adaptation engine. Two important components
of their adaptation engine are: adaptation plan and adaptation service. The first
component contains a suitable sequence of transformation steps, and the second
one contains adaptation methods that can be applied on the multimedia content.
They use the XML-based MPEG standards as domain ontology to represent vari-
ous multimedia resources, and the RDF-based Semantic Markup for Web Services
(OWL-S) [130] together with SWRL to represent adaptation services.

Keeney et al. [106] use the RDF-based ontologies to represent autonomic el-
ements in an autonomic network in order to enable ontological reasoning. They
derive OWL classes and properties from existing management information repre-
sented as Common Information Model (CIM) [55] objects. These OWL classes are
used for two purposes: for defining runtime policies constraining the behaviour of
an autonomic element, and for providing management capabilities that are speci-
fied as OWL-S services.

6.6 Summary

The representation of self-management knowledge is important because domain
experts use the representation to provide knowledge regarding a specific system
to be managed. So, on the one hand, the representation must be powerful enough
to express and reason about distributed concepts regarding a distributed system,
and on the other hand, there must be user friendly tools for the representation
to support knowledge acquisition. Additionally, it must be possible to use the
representation to generate code for a specific autonomic manager.

This chapter presents a number of important requirements for representing self-
management knowledge in distributed environments, and argues that the Semantic
Web languages OWL and SWRL together satisfy the requirements. Parts of the
sub-ontologies of the ontology of the self-management model in OWL have been
presented for the purpose of illustration.

108 Self-Management Knowledge Representation

Chapter 7

Illustrative Scenarios

This chapter illustrates how the self-management framework actually works for
the Trading System1 introduced in Chapter 3. The Trading System is an existing
system used by a banking enterprise. The focus is on how the self-management
framework proposed in this thesis could be used in practice. Section 7.1 explains
the methodology used to apply the framework for self-diagnosis.

Two types of failure are examined in two separate case studies. The purpose
of the first case is to illustrate how the framework and its generic diagnostic rules
can be used to analyse and diagnose the root-cause of multiple failures automati-
cally (Section 7.2). In this case study, multiple failures occur during simultaneous
execution of two single-level (runnable level) use-cases. The purpose of the second
case is to illustrate how multi-level diagnosis is achieved by interaction between
autonomic managers (Section 7.3). In this case study, a failure occurs during ex-
ecution of a multi-level use-case. A complex use-case is divided into a hierarchy
of simpler use-cases, and the corresponding autonomic managers are related with
each other accordingly. Both types of failure are illustrated for use-cases and fault
scenarios2 encountered in practice.

7.1 Methodology

Deployment of the proposed self-management framework for an existing dis-
tributed system entails3 specification of a self-management ontology of the system

1Note that it is not the aim of this chapter to discuss whether or not the system or its
sub-systems have been designed and implemented appropriately.

2These fault scenarios have been encountered in the author’s extensive practical experience
as a system architect in a banking enterprise.

3Deployment of the framework also entails: (a) generation of autonomic management for an
existing system using the code generation tool of the framework, (b) instrumentation of the
specified sensors and effectors in the code of the system using the code instrumentation tool of
the framework, and (c) preparation of the execution environment by linking the generic software
libraries, provided by the framework, with the generated code, and bootstrapping different soft-
ware processes in the appropriate order. The code generation and instrumentation are explained
in Chapter 8.

109

110 Illustrative Scenarios

using the generic self-management ontology. A specific self-management ontology
requires specification of:

1. Managed System Model Specification - The unit of system model specification
is a use-case. The behavioural and structural models of each use-case4 are
specified in OWL format. The use-case model consists of the specification
of a Job, its Tasks and ManagedStructuralElements, and Sensors that
monitor the Job and its Tasks.

2. Autonomic Manager Specification - An AutonomicManager including its
Analyser, Diagnoser, Planner, and PlanTranslator are specified for
each use-case. Moreover, the parent-child relationships between autonomic
managers are specified.

3. Symptoms & Hypotheses Specification - Each autonomic manager has its own
set of Symptoms and Hypotheses for the Job it manages. The Symptoms,
Hypotheses, and their many-to-many relationships are specified.

4. SWRL Rules Specification - The specific SWRL rules used by the Autonomic-
Manager to determine a diagnosis are specified. Generic SWRL rules are
provided by the framework.

Specification of model elements (such as a symptom or an autonomic manager)
corresponds to the self-management elements introduced in Chapters 4 and 5.
Note that all specification code in OWL, shown in the coming sections, is gener-
ated by means of the Protege-OWL editor [172]. The Protege-OWL editor pro-
vides a graphical user interface with which to specify OWL classes, properties and
their instances (individuals). OWL classes and properties for self-management
of all distributed systems (the generic part of the self-management model) are
pre-defined. They are provided by the framework. For the self-management of
a specific distributed system, domain experts specify domain-specific instances of
the self-management classes and properties. For the sake of brevity, in the coming
sections, only parts of the specifications in OWL are shown.

During runtime, autonomic management logs data regarding its autonomic
process (receiving sensor values, inferring symptoms, executing inspective plans,
determining a diagnosis, and communicating the diagnostic result from a child
to the parent autonomic manager) to a log file. This log file makes it possible
to study a specific execution process related to autonomic management. In the
coming sections, parts of this log file are shown to display the flow of activities of
the autonomic managers.

In the following sections, the above methodology is depicted for two case studies5.
The first case study focuses on self-diagnosis of multiple failures during execution

4Note that the framework does not require specification of models of all use-cases of a system.
5The complete code of both experiments including their autonomic manage-

ment can be downloaded from http://www.iids.org/research/self-management/

self-management-experiments.zip.

7.2 Case 1: Single-Level Use-Case Management 111

of two single-level use-cases. The second case study focuses on self-diagnosis of a
failure during execution of a multi-level use-case.

7.2 Case 1: Single-Level Use-Case Management

This section describes how the proposed self-management approach is applied to
management of two single level use-cases of the Trading System: Authentication
Realisation and Payment Status. This section describes the two use-cases, and
explains how a generic (domain independent) diagnostic rule pinpoints the root-
cause of multiple failures that occur simultaneously.

7.2.1 Managed System Description

The Trading System, introduced in Chapter 3, consists of the structural elements
shown in Figure 7.1. These structural elements (at the runnable level) cooperate
with each other to execute different use-cases.

Figure 7.1: The structural elements of the Trading System.

The Browser interacts with users. The AccessManager is responsible for veri-
fying user credentials. The BusinessIntegrator is the core element of the system.
It requests information from the DatabaseManager or the ServiceProvider, stores
information in the database, generates HTML pages, and sends them to users.
The ServiceProvider provides a number of Web Services that obtain their infor-
mation from the BusinessManager (a legacy mainframe system). A prototype of
the Trading System has been implemented6.

7.2.2 Use-Case Descriptions

Before describing the use-cases, note that the Authentication Realisation use-case is
triggered by an end-user action, and the Payment Status use-case is triggered by a
timer within the system. The timer periodically initiates this use-case. The system
executes the two use-cases simultaneously when an end-user requests access to the
system while the payment status use-case is being executed. Both use-cases use the

6Each runnable is implemented as a Java RMI [175] server object, and runs inside its own Java
Virtual Machine (JVM) [133]. In the real world, the runnables use various protocols to communi-
cate with each other. For example, the Browser-AccessManager communication uses the HTTPS
protocol and the BusinessIntegrator-ServiceProvider communication uses the SOAP protocol.
However, for the sake of simplicity, the communication between all runnables, for the purpose
of the case studies, is implemented using the Java Remote Method Invocation (JRMI) [175]
protocol.

112 Illustrative Scenarios

structural elements DatabaseManager, BusinessIntegrator, ServiceProvider, and
BusinessManager. The Authentication Realisation use-case also uses the Browser
and AccessManager. As a result, the use-cases have many common structural
elements.

Authentication Realisation Use-Case

The authentication realisation use-case describes the way users authenticate them-
selves in the secure Trading System. Users provide their certificates through the
Browser to the AccessManager. Upon receiving a certificate, the AccessManager
verifies its validity, and passes it to the BusinessIntegrator. The BusinessIntegrator
consults the DatabaseManager to construct authentication information based on
the user’s identity specified in the certificate. The authentication information is
then sent to the ServiceProvider. The ServiceProvider provides a number of Web
Services that are also used by other systems of the company. Many of these Web
Services access distributed resources. To this end, the ServiceProvider maintains
a connection pool with the BusinessManager, as shown in Figure 7.2. One of the
Web Services is the Authentication service that sends the authentication request
to the BusinessManager.

Figure 7.2: The process of sending authentication requests to the BusinessMan-

ager.

The BusinessManager authenticates the user and returns the result back to
the user’s Browser through the BusinessIntegrator. The semi-formal use-case de-
scription of the Authentication Realisation use-case is depicted in Figure 7.3.

Payment Status Use-Case

To explain how the Payment Status use-case works, first the situation before ex-
ecution of this use-case is briefly described. Users provide their bank account
information to the Trading System and request payment of a selected trade. The
BusinessIntegrator sends the payment order to the BusinessManager, and adds
the selected trade to a list of trades of which the payment have been requested.
The actual payment realisation, performed by the back office systems and bank
employees, requires processing time. Users can consult the system to enquire the
status of their payment after payment request. Initiating and maintaining a com-
munication link with the back office systems and obtaining the status of payments
is the purpose of the Payment Status use-case.

7.2 Case 1: Single-Level Use-Case Management 113

name: Authentication Realisation
actors: User
trigger: passing certificate
pre-conditions: valid certificate
post-conditions: user authenticated
structural elements: Browser, AccessManager, BusinessIntegrator, ServiceProvider,

BusinessManager
steps:
(1) Browser passes user’s certificate to AccessManager,
(2) AccessManager passes certificate to BusinessIntegrator,
(3) BusinessIntegrator calls ‘Authentication Preparation’ to obtain the auth-info,
(4) BusinessIntegrator sends the auth-info to ServiceProvider,
(5) ServiceProvider sends the auth-info to BusinessManager,
(6) BusinessManager sends the auth-result to ServiceProvider,
(7) ServiceProvider sends the auth-result to BusinessIntegrator,
(8) BusinessIntegrator sends the auth-result to Browser.

Figure 7.3: Authentication Realisation use-case description at runnable level.

The status of a payment is one of the following: unknown, pending, rejected,
or processed. Periodically (e.g., every 10 seconds), the BusinessIntegrator sends a
request to the DatabaseManager to provide the list of trades of which the payment
status is unknown or pending. The list is sent to the Payment service hosted by the
ServiceProvider. For each item in the list, the Payment service sends a payment
status request to the BusinessManager using the ServiceProvider ’s connection
pool, as shown in Figure 7.4.

Figure 7.4: The process of sending payment status requests to the Business-

Manager.

As the BusinessManager can handle only a single request per connection and
there are only a limited number of connections, the ServiceProvider puts the items
of the list (of payment status requests) in an internal queue. As soon as a con-
nection in the pool becomes free, the ServiceProvider chooses a request from the
queue and sends it to the BusinessManager through that connection. The Busi-
nessManager only responds to the request if the payment status of the related
trade has changed. The semi-formal use-case description of the Payment Status
use-case is depicted in Figure 7.5.

114 Illustrative Scenarios

name: Payment Status
actors: Timer
trigger: Time expiration
pre-conditions: Payment orders are in Database
post-conditions: Payment status is updated
structural elements: DatabaseManager, BusinessIntegrator, ServiceProvider, BusinessManager
steps:
(1) BusinessIntegrator receives ordered-payments (list) from DatabaseManager,
(2) BusinessIntegrator passes the ordered-payments to ServiceProvider,
(3) ServiceProvider sends the ordered-payments one by one to BusinessManager,
(4) BusinessManager sends the status-upgrade to ServiceProvider,
(5) ServiceProvider sends the status-upgrade to BusinessIntegrator,
(6) BusinessIntegrator sends status-upgrades (list) to DatabaseManager,
(7) DatabaseManager deletes ‘processed’ or ‘rejected’ payments from database.

Figure 7.5: Payment Status use-case description at runnable level.

7.2.3 Self-Management Model Specification

This section depicts the specification of the relevant part of the self-management
model (relevant for self-diagnosis) for the use-cases described in Section 7.2.2. The
OWL specifications of the use-cases (Jobs) are presented, the autonomic manager
of each job and the corresponding symptoms and hypotheses are specified, and
the SWRL rules with which to reason about these symptoms and hypotheses are
sketched.

Managed System Model Specification

This section focuses on the behavioural model specification. A use-case is specified
in OWL in terms of a job and tasks. The objective is to show how a job and a
task are specified, how a sensor is related to a job and a task, and how a task is
related to a managed structural element executing the task. The Authentication
Realisation use-case is specified as AuthRealJob, and the Payment Status use-case
is specified as PaymentStatusJob.

<behav-model:RunnableLevelJob rdf:ID="AuthRealJob">
<behav-model:jobInputs rdf:resource="#JICertificate"/>
<behav-model:jobOutput rdf:resource="#JOAuthResult"/>
<behav-model:tasks rdf:resource="#SendAuthInfo2BusinessManagerTask"/>
...
<behav-model:parentJobs rdf:resource="#AuthPaymentJob"/>
<behav-model:jobStartIndicator rdf:resource="#AuthRealJobStart"/>
<behav-model:jobEndIndicator rdf:resource="#AuthRealJobEnd"/>

</behav-model:RunnableLevelJob>
<behav-model:SendStateInteraction rdf:ID="SendAuthInfo2BusinessManagerTask">

<behav-model:managedStructuralElement rdf:resource="#ServiceProvider"/>
<behav-model:partnerManagedStructuralElement rdf:resource="#BusinessManager"/>
<behav-model:sensors rdf:resource="#TimeoutExceptionSensor"/>

</behav-model:SendStateInteraction>

Figure 7.6: Job specification of the Authentication Realisation use-case in OWL.

Figure 7.6 depicts the OWL code for the Authentication Realisation use-case.
The job has one input (JICertificate), one output (JOAuthResult), and a num-
ber of tasks (such as SendAuthInfo2BusinessManagerTask). The AuthRealJob-

7.2 Case 1: Single-Level Use-Case Management 115

Start and AuthRealJobEnd are sensors that indicate the start and end of the
job. SendAuthInfo2BusinessManagerTask is a state interaction task (see Sec-
tion 5.1.2), runs inside the structural element ServiceProvider, and is monitored
by the TimeoutExceptionSensor. As depicted in Figure 7.7, this sensor moni-
tors the occurrence of the TimeoutEvent and is instrumented in the byte-code of
the SendAuthInfo2BusinessManager method of the ServiceProviderImpl Java
class.

<sensor:ExceptionSensor rdf:ID="TimeoutExceptionSensor">
<sensor:instrumentationLocation rdf:resource="#TimeoutExceptionSensorLoc"/>
<sensor:monitoredItem rdf:resource="#TimeoutEvent"/>
<sensor:sensorId rdf:datatype="&xsd;string">TimeoutExceptionSensor</sensor:sensorId>

</sensor:ExceptionSensor>
<sensor:HandlerExecution rdf:ID="TimeoutExceptionSensorLoc">

<sensor:className rdf:datatype="&xsd;string">
org.iids.shf.msys.auth.serviceprovider.ServiceProviderImpl

</sensor:className>
<sensor:currentMethod rdf:datatype="&xsd;string">

SendAuthInfo2BusinessManager
</sensor:currentMethod>
<sensor:handledException rdf:datatype="&xsd;string">Exception</sensor:handledException>

</sensor:HandlerExecution>

Figure 7.7: The specification of the TimeoutExceptionSensor sensor for moni-
toring the interaction task in OWL.

In addition to the jobs specified above, two administrative jobs (see Sec-
tion 4.8.4) are introduced: (1) a system level job (AuthPaymentJob) to control
the simultaneous execution of the AuthRealJob and PaymentStatusJob, and (2)
a runnable level job (SpBmConnCheckJob) to inspect the connection between the
ServiceProvider and BusinessManager. The tasks of the first job is to invoke both
AuthRealJob and PaymentStatusJob. The tasks of the second job is to read the
size of the connection pool and the current number of connections.

Autonomic Manager Specification

Four autonomic managers are specified for each of the jobs specified in the previous
section: AuthPaymentAM, AuthRealAM, PaymentStatusAM, and SpBmConnCheckAM.
Figure 7.8 depicts the OWL code of the AuthPaymentAM. The job that this auto-
nomic manager manages is AuthPaymentJob. The autonomic manager has three
children: AuthRealAM, PaymentStatusAM, and SpBmConnCheckAM that each deliver
the result of their autonomic process to their parent. Furthermore, the figure de-
picts the symptoms (AuthRealisationFailed, StatusUpgradeFailed, Broken-
SpBmConn, and SpBmCommonChannelBlocked) and hypothesis (LowSpBmConnPool-
Size) regarding the job managed by AuthPaymentAM. The figure also depicts the
autonomic process result (AuthPaymentAPR) of AuthPaymentAM. This autonomic
process result contains the determined diagnosis of AuthPaymentAM.

116 Illustrative Scenarios

<autonomic-manager:AutonomicManager rdf:ID="AuthPaymentAM">
<autonomic-manager:job rdf:resource="#AuthPaymentJob"/>
<autonomic-manager:subAutonomicManagers rdf:resource="#AuthRealAM"/>
<autonomic-manager:subAutonomicManagers rdf:resource="#PaymentStatusAM"/>
<autonomic-manager:subAutonomicManagers rdf:resource="#SpBmConnCheckAM"/>
<autonomic-manager:analyser rdf:resource="#AuthPaymentAnalyser"/>
<autonomic-manager:diagnoser rdf:resource="#AuthPaymentDiagnoser"/>
<autonomic-manager:planner rdf:resource="#AuthPaymentPlanner"/>
<autonomic-manager:planTranslator rdf:resource="#AuthPaymentPlanTranslator"/>
<autonomic-manager:symptoms rdf:resource="#AuthRealisationFailed"/>
<autonomic-manager:symptoms rdf:resource="#StatusUpgradeFailed"/>
<autonomic-manager:symptoms rdf:resource="#BrokenSpBmConn"/>
<autonomic-manager:symptoms rdf:resource="#SpBmCommonChannelBlocked"/>
<autonomic-manager:hypotheses rdf:resource="#LowSpBmConnPoolSize"/>
<autonomic-manager:autonomicProcessResult rdf:resource="#AuthPaymentAPR"/>
...

</autonomic-manager:AutonomicManager>

Figure 7.8: The specification of the AuthPaymentAM autonomic manager in OWL.

Symptoms & Hypotheses Specification

Each autonomic manager has its own set of symptoms and hypotheses. The fol-
lowing describes the symptoms and hypotheses belonging to the knowledge-base of
AuthPaymentAM, as depicted in Figure 7.9. The AuthRealisationFailed symp-
tom indicates failure of the AuthRealJob, and the StatusUpgradeFailed symptom
indicates failure of the PaymentStatusJob. The BrokenSpBmConn symptom indi-
cates that the connection between the ServiceProvider and BusinessManager has
failed (i.e., connection is not available). The SpBmCommonChannelBlocked symp-
tom indicates that the connection is available but no data traffic is possible. To
inspect the value of SpBmCommonChannelBlocked, an inspective plan (SpBmConn-
CheckInspectivePlan) is specified. The figure also depicts the OWL code for the
LowSpBmConnPoolSize hypothesis and its relevant symptoms.

<analyser:Symptom rdf:ID="SpBmCommonChannelBlocked">
<analyser:existInspectivePlan rdf:datatype="&xsd;boolean">true</analyser:existInspectivePlan>
<analyser:inspectivePlan rdf:resource="#SpBmConnCheckInspectivePlan"/>
...

</analyser:Symptom>
<diagnoser:Hypothesis rdf:ID="LowSpBmConnPoolSize">

<diagnoser:relevantSymptoms rdf:resource="#AuthRealisationFailed"/>
<diagnoser:relevantSymptoms rdf:resource="#StatusUpgradeFailed"/>
<diagnoser:relevantSymptoms rdf:resource="#BrokenSpBmConn"/>
<diagnoser:relevantSymptoms rdf:resource="#SpBmCommonChannelBlocked"/>
...

</diagnoser:Hypothesis>

Figure 7.9: The specification of the LowSpBmConnPoolSize hypothesis and the
SpBmCommonChannelBlocked symptom in OWL.

During runtime, the value of a symptom is determined by the values of one
or more sensors, the autonomic process results of one or more children, and/or
the result of an inspective plan. Figure 7.10 illustrates how the values of the rel-
evant symptoms of the LowSpBmConnPoolSize hypothesis are determined. Auth-

RealisationFailed and StatusUpgradeFailed are respectively determined by

7.2 Case 1: Single-Level Use-Case Management 117

the autonomic process result of the AuthRealAM and PaymentStatusAM. The
BrokenSpBmConn is determined by the value of the SpBmConnSensor, and the
SpBmCommonChannelBlocked is determined by the autonomic process result of the
SpBmConnCheckAM that manages the execution of the inspective plan.

Figure 7.10: The relation between specific hypotheses, symptoms, and inspective
plans.

SWRL Rules Specification

As stated in Chapter 4, the framework provides a set of generic rules that are
used by all specific models. The SWRL rule in Figure 7.11 is one of the generic
rules used by the system level autonomic manager (AuthPaymentAM) to determine
whether or not an inspective plan is to be activated. Recall that the autonomic
process result of an autonomic manager includes the diagnosis determined. This
diagnosis includes information about the task (the abnormal task) that has caused
the failure. Also, recall that a state interaction task sends a state from one struc-
tural element (runnable) to another structural element (runnable), related to each
other through a connector. The generic rule in Figure 7.11 indicates that an auto-
nomic manager will perform an inspective action for the connection between two
runnables if the autonomic manager receives diagnoses, determined by its children,
that include abnormal tasks of the same type (SendStateInteraction), and the
structural elements (runnables) associated with these tasks are the same.

AutonomicManager(?pam) ∧

subAutonomicManagers(?pam, ?cam1) ∧ subAutonomicManagers(?pam, ?cam2) ∧
autonomicProcessResult(?cam1, ?apr1) ∧ autonomicProcessResult(?cam2, ?apr2) ∧
determinedDiagnoses(?apr1, ?d1) ∧ determinedDiagnoses(?apr2, ?d2) ∧
tasks(?d1, ?t1) ∧ SendStateInteraction(?t1) ∧
tasks(?d2, ?t2) ∧ SendStateInteraction(?t2) ∧
managedStructuralElement(?t1, ?mse1) ∧ partnerManagedStructuralElement(?t1, ?mse2) ∧
managedStructuralElement(?t2, ?mse3) ∧ partnerManagedStructuralElement(?t2, ?mse4) ∧
sameAs(?mse1, ?mse3) ∧ sameAs(?mse2, ?mse4) ∧
ManagedConnector(?c) ∧ runnable1(?c, ?mse1) ∧ runnable2(?c, ?mse2) ∧
RunnableLevelSymptom(?sy) ∧ runnable(?sy, ?c) ∧ arisen(?sy, Unknown) ∧
existInspectivePlan(?sy, true) → toBeInspected(?sy, true)

Figure 7.11: The generic rule for inspection of a connector status.

This section presents a number of specific rules that reason about the relation
between sensors, symptoms, and hypotheses belonging to the knowledge-base of

118 Illustrative Scenarios

an autonomic manager. The SWRL rules in Figure 7.12 are part of the knowledge-
base of the AuthRealAM. The first rule is a symptom occurrence rule, and indicates
that the occurrence of the TimeoutExpOccurred symptom depends on the value
of the TimeoutExceptionSensor. The second rule is a hypothesis selection rule,
and confirms that the AuthRealisationFailure hypothesis must be selected if
and when the TimeoutExpOccurred occurs.

observedValue(TimeoutExceptionSensor, "occurred") → arisen(TimeoutExpOccurred, Pos)

arisen(TimeoutExpOccurred, Pos) → userDefSelCriteria(AuthRealisationFailure, true)

Figure 7.12: The specific analysis and diagnosis rules for the AuthRealAM.

The SWRL rule in Figure 7.13 is included in the knowledge-base of SpBmConn-
CheckAM. The value of the SpBmConnPoolSizeSensor specifies the maximum num-
ber of connection slots between the ServiceProvider and BusinessManager, and
the value of the SpBmNumOfConnsSensor is the actual number of connection slots
used. The SWRL rule indicates that the data traffic blocks (the SpBmConnBlocked
symptom occurs) if the actual number of connection slots used equals the maxi-
mum number of connection slots.

observedValue(SpBmConnPoolSizeSensor, ?v1) ∧ observedValue(SpBmNumOfConnsSensor, ?v2) ∧

swrlb:equal(?v1, ?v2) → arisen(SpBmConnBlocked, Pos)

Figure 7.13: The specific analysis rule for the SpBmConnCheckAM.

The SWRL rule in Figure 7.14 is included in the knowledge-base of Auth-

PaymentAM. This rule is a hypothesis evaluation rule, and states that all connection
slots between the ServiceProvider and BusinessManager are in use, indicating that
the pre-defined maximum number of connection slots (connection pool size) is too
low. As a result, the data traffic is blocked between the ServiceProvider and
BusinessManager.

arisen(BrokenSpBmConn, Neg) ∧ arisen(SpBmCommonChannelBlocked, Pos)

→ diagnoser:userDefEvalCriteria(LowSpBmConnPoolSize, true)

Figure 7.14: The specific diagnosis rule for the AuthPaymentAM.

7.2.4 Simultaneous Failure Diagnosis

Note that use-cases, such as those described in the previous sections, require a
number of runnables communicating with each other using diverse protocols. As
a result, there are many places where things can go wrong during the execution of
these use-cases. In the case study presented in the previous sections, two failures
are assumed to occur simultaneously. The first failure is that the Trading System
denies to grant access to the user, even though he/she has a valid certificate and
identity. The second failure is that the Trading System does not confirm the
payment status of one or more trades, even though the employees of the back

7.2 Case 1: Single-Level Use-Case Management 119

office have assured the user over other channels (e.g., fax, phone) that his/her
payment has been successfully processed. The possible root-causes of these failures
are that the number of trades of which the payment status is unknown or pending
increases to exceed the size of the connection pool, and the system repeatedly
requests authenticating a user. The following explains how the root-causes of
these multiple failures are found by the autonomic managers.

After instrumenting sensors in the code of the Trading System and generating
autonomic management, the autonomic manager at the highest hierarchical level
is started. As shown in Figure 7.15 (the log of execution), this autonomic manager
loads the OWL concepts and individuals specified in the OWL file (line (1)) into
the execution environment. Immediately thereafter, the rule engine is instantiated
to prepare it for interpreting the SWRL rules (line (2)). Line (3) shows that a com-
munication channel between autonomic management and the messaging software
is set up to consume messages. Lines (4) through (7) show that each autonomic
manager is responsible for creating and starting its children, job, analyser, and
diagnoser. After these initialisation activities, all autonomic managers wait for
sensor values from the Trading System to arrive.

(1) OWL model from URI ‘http://localhost/app/payment.owl’ successfully created.
(2) The rule engine (SWRLJessBridge) successfully created.
(3) Connecting to URL: tcp://localhost:61616, consuming messages from the topic: org.iids.shf.
(4) Creating and starting childAM ‘PaymentStatusAM’ of ‘AuthPaymentAM’.
(5) Starting Job ‘PaymentStatusJob’ for AM ‘PaymentStatusAM’...
(6) Starting Analyser ‘PaymentStatusAnalyser’ for AM ‘PaymentStatusAM’...
(7) Starting Diagnoser ‘PaymentStatusDiagnoser’ for AM ‘PaymentStatusAM’...

Figure 7.15: Part of the log file showing the initialisation activities.

Figure 7.16 shows that the PaymentStatusAM receives the job start indicator,
the timeout exception, and job end indicator.

(1) JobStart sensor ‘PaymentStatusJobStart’ received for AM ‘PaymentStatusAM’.
(2) Content sensor ‘TimeoutExceptionSensor’ received for AM ‘PaymentStatusAM’.
(3) JobEnd sensor ‘PaymentStatusJobEnd’ received for AM ‘PaymentStatusAM’.

Figure 7.16: Part of the log file showing the arrival of sensor values.

As soon as the job end indicator arrives, the PaymentStatusAM starts its auto-
nomic process. Figure 7.17 depicts a trace of the autonomic process. Before exe-
cuting the symptom occurrence rules, the value of the TimeoutExceptionSensor

is stored in the OWL model to enable the rule engine to execute the related SWRL
rule (line (3)). Line (5) shows the inferred axiom that underlies the occurrence
of the TimeoutExpOccurred. Lines (6) through (12) show the diagnostic process.
Line (13) shows that the diagnostic process starts again to see whether there are
any hypotheses to reason about. Because the StatusUpgradeFailure has already
been evaluated, the diagnostic process enters its last phase by performing the
diagnosis determination rules (lines (15) and (16)). So, the PaymentStatusAM

determines the failure of the payment status upgrade. After diagnosis determina-

120 Illustrative Scenarios

tion, the autonomic process result is delivered to the parent autonomic manager
(line (17)).

(1) Starting autonomic process for AM ‘PaymentStatusAM’...
(2) Performing Analysis Rules for AM ‘PaymentStatusAM’...
(3) Value ‘occurred’ of sensor ‘TimeoutExceptionSensor’ stored.
(4) Performing Analysis Symptom Occurrence Rules ...
(5) InferredAxiom: arisen(TimeoutExpOccurred, Pos)
(6) Performing Diagnosis Rules for AM ‘PaymentStatusAM’...
(7) Performing Hypothesis Selection Rules ...
(8) InferredAxiom: focussed(StatusUpgradeFailure, true)
(9) Performing Hypothesis Validation Rules ...
(10) InferredAxiom: validated(StatusUpgradeFailure, Pos)
(11) Performing Hypothesis Evaluation Rules ...
(12) InferredAxiom: evaluated(StatusUpgradeFailure, true),

assessed(StatusUpgradeFailure, true)
(13) Performing Hypothesis Selection Rules ...
(14) InferredAxiom: tried(StatusUpgradeFailure, true),

focussed(StatusUpgradeFailure, false)
(15) Performing Diagnosis Determination Rules ...
(16) InferredAxiom: determined(StatusUpgradeFailure, true)
(17) childResult ‘PaymentStatusAPR’ received for ‘AuthPaymentAM’.

Figure 7.17: Part of the log file showing the autonomic process of the Payment-
StatusAM.

As soon as the execution of the Authentication Realisation use-case finishes,
the AuthRealAM starts its autonomic process as shown in Figure 7.18. Line (3)
shows that the AuthRealAM determines the failure of the authentication process.
Finally, the autonomic process result of the AuthRealAM is delivered to the same
parent autonomic manager as the PaymentStatusAM (line (4)).

(1) Starting autonomic process for AM ‘AuthRealAM’...
...

(2) Performing Diagnosis Determination Rules ...
(3) InferredAxiom: determined(AuthRealisationFailure, true)
(4) childResult ‘AuthRealAPR’ received for ‘AuthPaymentAM’.

Figure 7.18: Part of the log file showing the autonomic process of the
AuthRealAM.

The autonomic process of the parent (AuthPaymentAM) starts when its job
end indicator arrives. As shown in line (3) of Figure 7.19, it is confirmed that
the BrokenSpBmConn symptom has not occurred. However, the occurrence of the
SpBmCommonChannelBlocked is unknown. Therefore, the LowSpBmConnPoolSize

hypothesis is not considered to be valid while performing the hypothesis validation
rules (line (8)). That is the reason why no diagnosis is determined (line (11)).
As a result of the execution of the generic validation rule, shown in Figure 7.11,
the SpBmConnCheckInspectivePlan is started (lines (9) and (10)) to inspect the
occurrence of the unknown symptom.

The autonomic manager that manages the execution of the inspective plan is
SpBmConnCheckAM which is the child of the AuthPaymentAM. After the termination
of the inspective plan, the SpBmConnCheckAM delivers its autonomic process result

7.3 Case 2: Multi-Level Use-Case Management 121

(1) Starting autonomic process for AM ‘AuthPaymentAM’...
(2) Performing Analysis Rules for AM ‘AuthPaymentAM’...
(3) InferredAxiom: arisen(BrokenSpBmConn, Neg)
(4) Performing Hypothesis Selection Rules ...
(5) InferredAxiom: focussed(LowSpBmConnPoolSize, true)
(6) Unknown symptoms: ‘SpBmCommonChannelBlocked’
(7) Performing Hypothesis Validation Rules ...
(8) InferredAxiom: validated(LowSpBmConnPoolSize, Neg)
(9) Inspective Plan ‘SpBmConnCheckInspectivePlan’, associated with the symptom

‘SpBmCommonChannelBlocked’, is going to be executed...
(10) Executing command: cmd.exe /C "cd classes&&java -classpath ... SpBmConnCheckConst"
(11) Performing Diagnosis Determination Rules ...
(12) InferredAxiom:

Figure 7.19: Part of the log file showing the autonomic process of the Auth-

PaymentAM.

to the AuthPaymentAM, which leads to the restart of the autonomic process of the
AuthPaymentAM (see Figure 7.20 for the trace of this process).

Finally, the AuthPaymentAM determines that the size of the connection pool is
low. This diagnosis, which is based on the information provided by the Payment-
StatusAM, AuthRealAM, and SpBmConnCheckAM, explains the failure of both pay-
ment status upgrade and authentication process.

(1) Starting autonomic process for AM ‘AuthPaymentAM’...
(2) Performing Hypothesis Selection Rules ...
(3) InferredAxiom: focussed(LowSpBmConnPoolSize, true)
(4) Performing Hypothesis Validation Rules ...
(5) InferredAxiom: validated(LowSpBmConnPoolSize, Pos)
(6) Performing Hypothesis Evaluation Rules ...
(7) InferredAxiom: evaluated(LowSpBmConnPoolSize, true), assessed(LowSpBmConnPoolSize, true)
(8) Performing Diagnosis Determination Rules ...
(9) InferredAxiom: determined(LowSpBmConnPoolSize, true)

Figure 7.20: Part of the log file showing the autonomic process of the Auth-

PaymentAM after performing the inspective plan.

The above case study shows that an autonomic manager is able to combine generic
SWRL rules, provided by the framework, and specific SWRL rules, provided by
domain experts, to infer the root-cause of multiple failures occurring simultane-
ously. In addition, the trace shows that if a certain symptom is unknown, the
autonomic manager is able to execute the pre-defined inspective plan, observe the
real world, and incorporate this observation in its diagnostic process.

7.3 Case 2: Multi-Level Use-Case Management

Pinpointing the root-cause of system failures in complex systems is often a chal-
lenge. The framework proposed in this thesis provides an explicit means with
which to structure use-cases and a means to define relations between use-cases
(see Section 3.5 for the description of use-case levels). Autonomic managers of

122 Illustrative Scenarios

use-cases, and their relations are structured in the same way (see Section 4.7.2).
This section shows how autonomic managers at different levels cooperate with each
other to pinpoint the root-cause of a problem.

7.3.1 Managed System Description

The use-cases in this case study execute on a number of components and classes of
the runnables BusinessIntegrator, DatabaseManager, and ServiceProvider of the
Trading System. As shown in Figure 7.21, three components of the Business-
Integrator and two classes within one of the components, one component of the
DatabaseManager and one of its classes, and one component of the ServiceProvider
are deployed. The following sections describe how these structural elements coop-
erate to execute the various use-cases.

Figure 7.21: The structural elements of the Trading System at multiple levels.

7.3.2 Use-Case Descriptions

To illustrate multi-level diagnosis, this section describes six use-cases organised at
different use-case levels (see Figure 7.22). The top level use-case (Authentication
Preparation) invokes three component level use-cases: Certificate Parsing, User-
info Update, and Auth-info Preparation. In turn, the last component level use-case
invokes two class level use-cases: User-record Retrieval and Auth-info Construc-
tion.

Authentication Preparation use-case

The goal of the Authentication Preparation use-case is to prepare authentication
information based on the provided certificate. The user’s identity (userid) is ex-
tracted from the certificate, the corresponding user information is obtained from
the mainframe (user-info), and is stored in the database (user-record) after en-
hancement. The user-record is used to construct the authentication information
(auth-info). The actual work is done by the three component level use-cases. The
semi-formal use-case description of the Authentication Preparation use-case is de-
picted in Figure 7.23.

7.3 Case 2: Multi-Level Use-Case Management 123

Figure 7.22: The use-cases at different use-case levels and their referential rela-
tionships.

name: Authentication Preparation
actors: AccessManager sub-system
trigger: passing certificate
pre-conditions: valid certificate
post-conditions: prepared authentication info
structural elements: BusinessIntegrator
steps:
(1) BusinessIntegrator calls ‘Certficate Parsing’ to obtain the user’s identity,
(2) BusinessIntegrator calls ‘User-Info Update’ to update the user’s credentials,
(3) BusinessIntegrator calls ‘Auth-Info Preparation’ to prepare auth-info.

Figure 7.23: Certficate Parsing use-case at component level.

Certificate Parsing Use-Case

The Certificate Parsing use-case is responsible for parsing the certificate, extract-
ing the user’s identity, and passing it to its parent use-case. Usually, the user’s
identity in a company is based on a specific pattern (e.g., firstname lastname).
The assumption is that a user’s identity follows that pattern in all certificates. If
the use-case encounters a mismatch, it stops processing. The semi-formal use-case
description of the Certificate Parsing use-case is depicted in Figure 7.24.

name: Certficate Parsing
actors: BusinessIntegrator sub-system
trigger: passing certificate
pre-conditions: valid certificate
post-conditions: user’s identity
structural elements: CertificateParserComp, UserInfoMaintainerComp
steps:
(1) CertificateParserComp extracts userid,
(2) CertificateParserComp passes userid to UserInfoMaintainerComp.

Figure 7.24: Certficate Parsing use-case at component level.

124 Illustrative Scenarios

User-info Update Use-Case

The User-info Update use-case is responsible for obtaining user information (such
as password, department, role, country, etc.) from the back-end sub-system and
storing the information in a local database. The use-case first queries the database
to see whether the given user is known. Otherwise, it makes a connection with
a Web Service to obtain the information from the back-end sub-system. The
semi-formal use-case description of the User-info Update use-case is depicted in
Figure 7.25.

name: User-info Update
actors: BusinessIntegrator sub-system
trigger: passing user’s identity
pre-conditions: valid user’s identity
post-conditions: database updated
structural elements: UserInfoMaintainerComp, UserInfoProviderComp, DBTableMaintainerComp
steps:
(1) UserInfoMaintainerComp passes the identity to UserInfoProviderComp,
(2) UserInfoMaintainerComp receives the user-info from UserInfoProviderComp,
(3) UserInfoMaintainerComp converts the user-info to the database user-record,
(4) UserInfoMaintainerComp passes the user-record to DBTableMaintainerComp,
(5) DBTableMaintainerComp writes the user-record to database.

Figure 7.25: User-info Update use-case at component level.

Auth-info Preparation Use-Case

The Auth-info Preparation use-case is responsible for retrieving the user record
from the database and constructing authentication information. This component
level use-case utilises two class level use-cases for this purpose: User-record Re-
trieval and Auth-info Construction. The semi-formal use-case description of the
Auth-info Preparation use-case is depicted in Figure 7.26.

name: Auth-info Preparation
actors: BusinessIntegrator sub-system
trigger: database update
pre-conditions: user-record in database
post-conditions: auth-info prepared
structural elements: PrepareAuthComp
steps:
(1) PrepareAuthComp calls ‘User-record Retrieval’ to obtain the user-record,
(2) PrepareAuthComp calls ‘Auth-info Construction’ to construct the auth-info.

Figure 7.26: Auth-info Preparation use-case at component level.

User-record Retrieval Use-Case

The User-record Retrieval use-case is responsible for retrieving user records from
the database. The semi-formal use-case description of this use-case is depicted in
Figure 7.27.

7.3 Case 2: Multi-Level Use-Case Management 125

name: User-record Retrieval
actors: PrepareAuthComp component
trigger: passing user’s identity
pre-conditions: valid user’s identity, user-record in database
post-conditions: user-record retrieved
structural elements: UserRecordRetrieveClass, DBTableResponseClass
steps:
(1) UserRecordRetrieveClass passes the userid to DBTableResponseClass,
(2) UserRecordRetrieveClass receives the user-record from DBTableResponseClass.

Figure 7.27: User-record Retrieval use-case at class level.

Auth-info Construction Use-Case

The back-end sub-system, responsible for authenticating users and initiating a
session for them, requires authentication information consisting of a user’s userid,
password, role, and country. The Auth-info Construction use-case checks the val-
ues of the mentioned fields to see whether they have been specified or not. If
so, it constructs the auth-info object and initiates the connection with the Au-
thentication Web Service. The semi-formal use-case description of the Auth-info
Construction use-case is depicted in Figure 7.28.

name: Auth-info Construction
actors: PrepareAuthComp component
trigger: passing user-record
pre-conditions: valid user-record
post-conditions: auth-info constructed
structural elements: UserRecordRetrieveClass, AuthInfoConstructClass
steps:
(1) AuthInfoConstructClass receives the user-record from UserRecordRetrieveClass,
(2) AuthInfoConstructClass constructs the auth-info.

Figure 7.28: Auth-info Construction use-case at class level.

7.3.3 Self-Management Model Specification

This section describes how the model of the managed system and the relation
between autonomic managers at different levels of the hierarchy are specified in
OWL. Also, the SWRL rules for multi-level diagnosis are specified.

Managed System Model Specification

This section focuses on the relation between the behavioural and structural model
specification. Figure 7.29 depicts the OWL code of one of the tasks of the runnable
level job AuthPrepJob. The task is an invocation of the component level job
AuthInfoPrepJob, and it is executed inside the managed runnable Business-

Integrator. This managed runnable consists of a number of connectors and com-
ponents. The figure depicts only one of its connectors (BiDmConnector) and one
of its components (PrepareAuthComp). The BiDmConnector connects the Busi-
nessIntegrator to the DatabaseManager using the JDBC protocol.

126 Illustrative Scenarios

<behav-model:RunnableLevelJob rdf:ID="AuthPrepJob">
<behav-model:tasks rdf:resource="#AuthInfoPrepInvokeTask"/>
...

</behav-model:RunnableLevelJob>
<behav-model:LowerInvocation rdf:ID="AuthInfoPrepInvokeTask">

<behav-model:invokedJob rdf:resource="#AuthInfoPrepJob"/>
<behav-model:managedStructuralElement rdf:resource="#BusinessIntegrator"/>
...

</behav-model:LowerInvocation>
<struct-model:AtomicManagedRunnable rdf:ID="BusinessIntegrator">

<struct-model:connector rdf:resource="#BiDmConnector"/>
<struct-model:subElement rdf:resource="#PrepareAuthComp"/>
...

</struct-model:AtomicManagedRunnable>
<struct-model:ManagedConnector rdf:ID="BiDmConnector">

<struct-model:managedStructuralElementState rdf:resource="#BiDmConnStatus"/>
<struct-model:protocol rdf:resource="#APJJdbcProtocol"/>
<struct-model:runnable1 rdf:resource="#BusinessIntegrator"/>
<struct-model:runnable2 rdf:resource="#DatabaseManager"/>

</struct-model:ManagedConnector>

Figure 7.29: The specification of the AuthPrepJob including one of its tasks and
the associated structural element in OWL.

As depicted in Figure 7.30, the AuthInfoPrepJob has two invocation tasks.
The UserRecordRetrieveInvokeTask invokes the class level job UserRecRetJob,
and the AuthInfoConstInvokeTask invokes the class level job AuthInfoCons-

Job. Both tasks are executed inside the managed component PrepareAuthComp.
This managed component consists of two classes: UserRecordRetrieveClass and
AuthInfoConstructClass.

<behav-model:ComponentLevelJob rdf:ID="AuthInfoPrepJob">
<behav-model:tasks rdf:resource="#UserRecordRetrieveInvokeTask"/>
<behav-model:tasks rdf:resource="#AuthInfoConstInvokeTask"/>
...

</behav-model:ComponentLevelJob>
<behav-model:LowerInvocation rdf:ID="UserRecordRetrieveInvokeTask">

<behav-model:invokedJob rdf:resource="#UserRecRetJob"/>
<behav-model:managedStructuralElement rdf:resource="#PrepareAuthComp"/>
...

</behav-model:LowerInvocation>
<behav-model:LowerInvocation rdf:ID="AuthInfoConstInvokeTask">

<behav-model:invokedJob rdf:resource="#AuthInfoConsJob"/>
<behav-model:managedStructuralElement rdf:resource="#PrepareAuthComp"/>
...

</behav-model:LowerInvocation>
<struct-model:AtomicManagedComponent rdf:ID="PrepareAuthComp">

<struct-model:subElement rdf:resource="#UserRecordRetrieveClass"/>
<struct-model:subElement rdf:resource="#AuthInfoConstructClass"/>

</struct-model:AtomicManagedComponent>

Figure 7.30: The specification of the AuthInfoPrepJob including its tasks and
the associated structural element in OWL.

Figure 7.31 depicts one of the tasks (SendUserId2DBClassTask) of the class
level job UserRecRetJob. The SendUserId2DBClassTask is an interaction task
between the two managed classes UserRecordRetrieveClass and DBTable-

ResponseClass. The first class belongs to the managed component Prepare-

7.3 Case 2: Multi-Level Use-Case Management 127

AuthComp and the second class belongs to one of the components of the Database-
Manager.

<behav-model:ClassLevelJob rdf:ID="UserRecRetJob">
<behav-model:tasks rdf:resource="#SendUserId2DBClassTask"/>
...

</behav-model:ClassLevelJob>
<behav-model:SendStateInteraction rdf:ID="SendUserId2DBClassTask">

<behav-model:managedStructuralElement rdf:resource="#UserRecordRetrieveClass"/>
<behav-model:partnerManagedStructuralElement rdf:resource="#DBTableResponseClass"/>
...

</behav-model:SendStateInteraction>
<behav-model:ClassLevelJob rdf:ID="AuthInfoConsJob">

<behav-model:tasks rdf:resource="#ConstructAuthInfoTask"/>
...

</behav-model:ClassLevelJob>
<behav-model:ReturnJobOutput rdf:ID="ConstructAuthInfoTask">

<behav-model:managedStructuralElement rdf:resource="#AuthInfoConstructClass"/>
...

</behav-model:ReturnJobOutput>
<struct-model:AtomicManagedRunnable rdf:ID="DatabaseManager">

<struct-model:connector rdf:resource="#BiDmConnector"/>
<struct-model:subElement rdf:resource="#DBTableMaintainerComp"/>

</struct-model:AtomicManagedRunnable>
<struct-model:AtomicManagedComponent rdf:ID="DBTableMaintainerComp">

<struct-model:subElement rdf:resource="#DBTableResponseClass"/>
</struct-model:AtomicManagedComponent>
<struct-model:AtomicManagedClass rdf:ID="DBTableResponseClass"/>

Figure 7.31: The specification of the UserRecRetJob and AuthInfoConsJob in-
cluding their tasks and associated structural elements in OWL.

Autonomic Manager Specification

To determine the root-cause of abnormal behaviour at different levels, seven auto-
nomic managers are specified: one per use-case described in the previous section
and one for the management of the inspective plan used to inspect the status of
the connector between the BusinessIntegrator and DatabaseManager. Figure 7.32
shows the relationship between the autonomic managers and their private knowl-
edge (symptoms and hypotheses).

The OWL code for each autonomic manager is straightforward. In Figure 7.33,
only the OWL code for the AuthInfoConsAM is depicted. This autonomic man-
ager communicates its result to its parent, AuthInfoPrepAM, through AuthInfo-

ConsAPR. It has a number of sensors for monitoring its job, AuthInfoConsJob,
and a number of symptoms, hypotheses, and SWRL rules that are explained in
the coming sections.

Symptoms & Hypotheses Specification

Different abnormal behaviours can occur at each level of the hierarchy of the use-
cases (see Figure 7.32). For example, ParseError can occur when parsing the
certificate by the CertParseJob, the retrieval of user information by the User-

InfoUpdateJob from the ServiceProvider can fail (UserInfoRetrieveFailed), ob-

128 Illustrative Scenarios

Figure 7.32: The relationships among the autonomic managers of the use-cases
described before. The knowledge of each autonomic manager regarding the abnor-
mal behaviour of its managed use-case and the possible root-causes are depicted.
An arrow shows the flow of autonomic management information from a child to
its parent.

<autonomic-manager:AutonomicManager rdf:ID="AuthInfoConsAM">
<autonomic-manager:job rdf:resource="#AuthInfoConsJob"/>
<autonomic-manager:autonomicProcessResult rdf:resource="#AuthInfoConsAPR"/>
<autonomic-manager:hypotheses rdf:resource="#EmptyUserRecord"/>
<autonomic-manager:hypotheses rdf:resource="#EmptyPasswordField"/>
<autonomic-manager:parentAutonomicManagers rdf:resource="#AuthInfoPrepAM"/>
<autonomic-manager:sensors rdf:resource="#AuthExpSensor"/>
<autonomic-manager:sensors rdf:resource="#AuthInfoConsJobEnd"/>
<autonomic-manager:sensors rdf:resource="#AuthInfoConsJobStart"/>
<autonomic-manager:sensors rdf:resource="#TSPasswordSensor"/>
<autonomic-manager:symptoms rdf:resource="#AuthExpOccurred"/>
<autonomic-manager:symptoms rdf:resource="#PasswordNotSpecified"/>
...

</autonomic-manager:AutonomicManager>

Figure 7.33: The specification of the AuthInfoConsAM autonomic manager in
OWL.

taining the user record by the UserRecRetJob from the DatabaseManager can be
unsuccessful (UserRecordRetrieveFailed), or an exception can occur (AuthExp-
Occurred) during construction of the authentication information by the AuthInfo-
ConsJob. Here, in Figure 7.34, only the OWL code of the hypotheses concerning
the AuthInfoPrepJob and AuthInfoConsJob is depicted.

Note that the importance (weight) of the hypothesis UserRecRetFailure is
higher than the AuthInfoConsFailure, because the output of the UserRecRet-

Job is the input for the AuthInfoConsJob. The authentication information can

7.3 Case 2: Multi-Level Use-Case Management 129

<diagnoser:Hypothesis rdf:ID="UserRecRetFailure">
<diagnoser:relevantSymptoms rdf:resource="#EmptyAuthInfo"/>
<diagnoser:weight rdf:datatype="&xsd;float">1.0</diagnoser:weight>
...

</diagnoser:Hypothesis>
<diagnoser:Hypothesis rdf:ID="AuthInfoConsFailure">

<diagnoser:relevantSymptoms rdf:resource="#ImproperUserRecord"/>
<diagnoser:weight rdf:datatype="&xsd;float">0.0</diagnoser:weight>

</diagnoser:Hypothesis>
<diagnoser:Hypothesis rdf:ID="EmptyPasswordField">

<diagnoser:relevantSymptoms rdf:resource="#PasswordNotSpecified"/>
...

</diagnoser:Hypothesis>
<diagnoser:Hypothesis rdf:ID="EmptyUserRecord">

<diagnoser:relevantSymptoms rdf:resource="#AuthExpOccurred"/>
<diagnoser:subHypotheses rdf:resource="#EmptyPasswordField"/>
...

</diagnoser:Hypothesis>

Figure 7.34: The specification of the the hypotheses belonging to the AuthInfo-
PrepAM and AuthInfoConsAM in OWL.

be constructed only if the user record is retrieved from the local database. Also
note that the hypothesis EmptyPasswordField is the sub-hypothesis of the Empty-
UserRecord, because the password field is part of the user record. In the following
section, the generic SWRL rules use this information to determine the proper
diagnosis.

SWRL Rules Specification

The two generic SWRL rules that impact the determination of hypotheses are
depicted in Figure 7.35. The first rule states that if the evaluated set of hypotheses
contains more than one hypothesis then the pre-defined weights of the hypotheses
are compared and the one with the highest weight is chosen as the final diagnosis.
The second rule expresses a preference for a parent hypothesis (more generic root-
cause) instead of a child hypothesis (more specific root-cause). Based on these
rules, the determined diagnosis of the AuthInfoPrepAM is the UserRecRetFailure
instead of AuthInfoConsFailure, and the determined diagnosis of the AuthInfo-
ConsAM is the EmptyUserRecord instead of EmptyPasswordField.

Hypothesis(?hy1) ∧ Hypothesis(?hy2) ∧

evaluated(?hy1, true) ∧ evaluated(?hy2, true) ∧
weight(?hy1, ?w1) ∧ weight(?hy2, ?w2) ∧
swrlb:greaterThan(?w1, ?w2) → toBeDetermined(?hy2, false)

Hypothesis(?hy1) ∧ Hypothesis(?hy2) ∧
evaluated(?hy1, true) ∧ evaluated(?hy2, true) ∧
subHypotheses(?hy1, ?hy2) → toBeDetermined(?hy2, false)

Figure 7.35: The generic rule for choosing the hypotheses that are more impor-
tant and represent more generic root-causes.

Figure 7.36 depicts part of the specific rules for the AuthPrepAM. Both rules
indicate that the retrieval of the user record from the database was not successful.

130 Illustrative Scenarios

The first rule concludes that the root-cause of this symptom is the fact that the
DatabaseManager is not available because the database does not accept any con-
nections. However, the second rule concludes that the connection to the Database-
Manager is not properly configured.

arisen(UserRecordRetrieveFailed, Pos) ∧ arisen(DBConnFailed, Pos) ∧

→ userDefEvalCriteria(DBNotAvailable, true)

arisen(UserRecordRetrieveFailed, Pos) ∧ arisen(DBConnFailed, Neg) ∧
→ userDefEvalCriteria(ImproperDBConfig, true)

Figure 7.36: The specific diagnosis rules for the AuthPrepAM.

7.3.4 Multi-Level Failure Diagnosis

In this case study, the DatabaseManager goes down and thereafter a user initiates
an access request. Consequently, the Trading System is not able to prepare the
authentication information. The unavailability of the DatabaseManager causes the
failure of the User-info Update use-case to store the retrieved user information into
the database. The following explains how this root-cause of the failure is found by
the autonomic management.

As in the first case study, after starting autonomic management, the Trading
System is started. The first part of the log file, logged by the autonomic manage-
ment, is more or less the same as the log file of the first case study (see Figure 7.15).
In the following, the traces of the autonomic processes of the AuthInfoConsAM and
AuthPrepAM are described.

The autonomic process of the AuthInfoConsAM is started when its job end
indicator arrives (see Figure 7.37). The autonomic manager receives the values of
both AuthExpSensor and TSPasswordSensor and stores their values in the OWL
model (lines (3) and (4)) to reason about its symptoms. Line (6) shows the inferred
symptoms. The interesting part is line (15). Although both EmptyUserRecord

and EmptyPasswordField hypotheses are evaluated (line (13)), EmptyUserRecord
hypothesis is determined to be the root-cause. That is because of the execution of
the generic SWRL rule depicted in Figure 7.35. After diagnosis determination, the
autonomic process result is delivered to the parent autonomic manager (line (16))
which causes the execution of the mapping rules. These rules infer the occurrence
of the parent’s symptom (EmptyAuthInfo) (line (18)).

Figure 7.38 shows the autonomic process of the top level autonomic manager,
namely AuthPrepAM. Two hypotheses (from six hypotheses) are selected (line (4))
to investigate whether they are the root-causes but only one of them (DBNot-
Available) is determined to be the diagnosis (line (10)). That is because of the
execution of the hypothesis evaluation rules depicted in Figure 7.36.

The above case study shows that a failure in one part of a distributed system can
result in different abnormal behaviours in other parts of the system. To diagnose
such a failure, a complex use-case is divided into several use-cases at different

7.4 Concluding Remarks 131

(1) Starting autonomic process for AM ‘AuthInfoConsAM’...
(2) Performing Analysis Rules for AM ‘AuthInfoConsAM’...
(3) Value ‘occurred’ of sensor ‘AuthExpSensor’ stored.
(4) Value ‘invalid’ of sensor ‘TSPasswordSensor’ stored.
(5) Performing Analysis Symptom Occurrence Rules ...
(6) InferredAxiom: arisen(PasswordNotSpecified, Pos), arisen(AuthExpOccurred, Pos)
(7) Performing Diagnosis Rules for AM ‘AuthInfoConsAM’...
(8) Performing Hypothesis Selection Rules ...
(9) InferredAxiom: focussed(EmptyUserRecord, true), focussed(EmptyPasswordField, true)
(10) Performing Hypothesis Validation Rules ...
(11) InferredAxiom: validated(EmptyUserRecord, Pos), validated(EmptyPasswordField, Pos)
(12) Performing Hypothesis Evaluation Rules ...
(13) InferredAxiom: evaluated(EmptyUserRecord, true), assessed(EmptyUserRecord, true),

evaluated(EmptyPasswordField, true), assessed(EmptyPasswordField, true)
(14) Performing Diagnosis Determination Rules ...
(15) InferredAxiom: determined(EmptyUserRecord, true)
(16) childResult ‘AuthInfoConsAPR’ received for ‘AuthInfoPrepAM’.
(17) Performing Mapping Rules for AM ‘AuthInfoConsAM’...
(18) InferredAxiom: arisen(EmptyAuthInfo, Pos)

Figure 7.37: Part of the log file showing the autonomic process of the Auth-

InfoConsAM.

(1) Starting autonomic process for AM ‘AuthPrepAM’...
(2) Performing Diagnosis Rules for AM ‘AuthPrepAM’...
(3) Performing Hypothesis Selection Rules ...
(4) InferredAxiom: focussed(DBNotAvailable, true), focussed(ImproperDBConfig, true)
(5) Performing Hypothesis Validation Rules ...
(6) InferredAxiom: validated(DBNotAvailable, Pos), validated(ImproperDBConfig, Pos)
(7) Performing Hypothesis Evaluation Rules ...
(8) InferredAxiom: evaluated(DBNotAvailable, true), assessed(DBNotAvailable, true),
(9) Performing Diagnosis Determination Rules ...
(10) InferredAxiom: determined(DBNotAvailable, true)

Figure 7.38: Part of the log file showing the autonomic process of the Auth-

PrepAM.

levels. This division provides a suitable basis for relating the autonomic managers
to each other in a hierarchical fashion. In this way, each autonomic manager
in the hierarchy, on the one hand, is aware of the abnormal behaviour of only
its own scope, and on the other hand, influences the diagnostic decision of its
parent (i.e., making the multi-level diagnosis possible) by reporting its autonomic
management result to its parent.

7.4 Concluding Remarks

In Section 1.4, a number of requirements were formulated regarding self-man-
agement of existing distributed systems. Furthermore, in the previous chapters,
the design of the self-management framework for existing distributed systems was
explained. Based on this design, two experiments were implemented. The following
discusses how far the proposed self-management framework meets the requirements
mentioned in Section 1.4.

The requirement of efficiently capturing system knowledge and integrating

132 Illustrative Scenarios

views of domain experts is to a large extent satisfied. The framework provides
an efficient way to capture system knowledge because it reuses the knowledge
available in existing use-cases. The framework also provides a mechanism to cate-
gorise use-cases based on the views of domain experts. All these different use-case
categories are finally converted into a single concept (Job) in the framework. The
integration between different views of domain experts is accomplished by relating
different instances of the single concept to each other. However, existing use-cases
should be slightly adapted to be used by the framework. As use-cases are expressed
in a semi-formal format, they have to be converted into the formal format required
by the framework. The framework does not provide a mechanism to automatically
convert the semi-formal notation into the formal one. This is a limitation of the
framework.

The requirement of detecting, diagnosing, and repairing the most frequently
occurring system malfunctions is partially satisfied. Analysers are responsible for
detecting system malfunctions based on sensor values. The quality of detection
depends on the type of sensors. The framework improves the quality of detec-
tion by providing a considerable number of sensor types which monitor various
aspects of distributed systems. The framework also improves the quality of di-
agnosis by performing pro-active observations, and by combining the diagnostic
results of multiple diagnosers. Although the framework provides basic concepts for
planning, plan translation, and effectors, it cannot yet be used to repair a system
malfunctioning. This is left as future work.

The requirement of being less intrusive on existing systems and domain ex-
perts is generally satisfied. The framework relieves system developers from writ-
ing additional system management code by automatically instrumenting sensors
and effectors in the code of a managed system, and generating code for autonomic
management. To minimise the impact of autonomic management on managed sys-
tem, the framework let them execute in their own process spaces and communicate
remotely with each other. Note that domain experts should still provide the code
for specific sensors and effectors. The framework is unable to provide such codes.

7.5 Summary

This chapter depicts how the self-management framework is applied to manage-
ment of examples of real-life problems. Two case studies are used to illustrate
different aspects of the framework.

The first case study concerns the diagnosis of the simultaneous occurrence
of two failures. The experiment shows that the autonomic management quickly
becomes aware of the occurrence of both failures regarding two use-cases, and
suggests the possible root-cause of the failures by utilising a generic diagnostic
rule.

The second case study illustrates the ability of the framework to find the root-
cause of a problem regarding a complex use-case. The use-case is divided into a
hierarchy of simpler use-cases, and their autonomic managers are related to each
other accordingly, making a hierarchy of parent-child relationships. The diagnostic

7.5 Summary 133

process of an autonomic manager is influenced by the diagnostic results of its
children.

134 Illustrative Scenarios

Chapter 8

The Execution Environment

The core component of the self-management framework presented in this thesis
is the self-management model. The self-management model contains management
and system specifications in OWL and SWRL (respectively presented in Chapters 4
and 5). These specifications themselves are not executable. To perform autonomic
management of a distributed system, an execution environment is needed. This
chapter introduces the execution environment, designed and implemented as part
of the framework. The execution environment has been implemented in Java.

8.1 Execution Environment Overview

The execution environment consists of the following main components depicted
in Figure 8.1: activation & control engine and rule engine. These components
interact with self-management model and instrumented managed system.

Figure 8.1: The components of the execution environment.

The activation & control engine implements the autonomic process model de-
scribed in Section 4.7.1 and depicted in Figure 4.12. This engine contains code with
which to perform analysis, diagnosis, planning, and plan translation processes by
an autonomic manager, to handle communication between an autonomic manager

135

136 The Execution Environment

and a managed system, to handle communication between autonomic managers,
to invoke an inspective plan, and to handle communication between an autonomic
manager and the rule engine. To accomplish these tasks, the activation & control
engine utilises the knowledge on self-management concepts and their relationships
specified in the self-management model. As mentioned in Section 6.4, the self-
management model, specified in OWL and SWRL, consists of two parts: a generic
part and a domain-specific part. The generic part is provided by the framework,
and the domain-specific part is provided by domain experts.

The rule engine executes analysis, diagnostic, planning, and plan translation
rules specified in SWRL. These rules are specified in the self-management model.
The execution of rules is activated by the activation & control engine. The rule
engine continuously applies a set of rules to a set of facts. The set of rules, loaded
from the self-management model, is stored in the rule memory, and the set of
facts, obtained from the activation & control engine, is stored in the fact memory.
By applying rules to facts, the rule engine infers new facts that are passed to the
activation & control engine. The activation & control engine stores the new facts
in the self-management model.

The instrumented managed system is the executable code of a managed system
extended with sensors and effectors. The activation & control engine obtains
runtime information from sensors about the status of managed use-cases, and
sends adaptation instructions to managed use-cases by activating effectors. The
following sections explain in more detail the different aspects of the activation &
control engine, the rule engine, and the instrumentation aspect of the instrumented
managed system.

8.2 Activation & Control Engine

The code1 of the activation & control engine consists of two parts: generic code and
domain-specific code. The generic code is provided by the framework. The generic
code implements common control features of the autonomic process, and is used for
the management of all managed systems. The domain-specific code is generated
by the code generation tool of the framework based on the domain-specific part of
the self-management model (see Figure 8.2). The domain-specific code implements
the domain-specific control features, and is used for the management of a specific
managed system.

Figure 8.2: The generation of code for an activation & control engine performed
by the code generation tool of the self-management framework.

1The complete code of the activation & control engine can be downloaded from http://www.

iids.org/research/self-management/self-management-framework.zip.

8.2 Activation & Control Engine 137

The code generation tool of the framework generates six Java packages2. The
packages contain the Java classes generated for the specified jobs and tasks, anal-
ysers and symptoms, diagnosers and hypotheses, autonomic managers and their
autonomic management results, planners and inspective plans, and sensors and
sensor value providers. The generic code (Java classes) together with the gener-
ated Java classes comprise the activation & control engine (i.e., autonomic man-
agement) for a specific managed system.

To completely separate the activities of autonomic management and its man-
aged system, a design decision has been made to let the managed system and
autonomic management execute in their own process spaces, and communicate
remotely with each other. As a result, unexpected problems regarding autonomic
management do not affect the normal working of the managed system. All auto-
nomic managers run within one process space (the autonomic management process
space). Each autonomic manager has its own thread of control within the auto-
nomic management process space. The following sections explain some important
features in the code of the activation & control engine (see Appendix B for parts
of the Java code for these features).

8.2.1 Communication between Autonomic Management &
Managed System

Communication between autonomic management and the sensors/effectors instru-
mented in a managed system has been implemented using the Apache ActiveMQ [9]
messaging software. Apache ActiveMQ provides the publish/subscribe mechanism
through which publishers send their messages to multiple subscribers3. Utilising
this mechanism, sensors publish their values to autonomic managers that have sub-
scribed themselves to receive the value of a specific sensor. Furthermore, effectors
have subscribed themselves to receive adaptation instructions which are published
by autonomic managers.

To enable communication between autonomic management and an instrumented
managed system, the different software elements need to be activated in an appro-
priate order. First, the messaging software is started. Second, autonomic manage-
ment is started to subscribe to messaging software for consuming sensor values.
Finally, the instrumented managed system is started to subscribe to messaging
software for consuming adaptation instructions.

After an instrumented managed system is started, the instrumented sensors in
the managed system send sensor values to autonomic management. An autonomic
manager that receives a sensor value examines the type of the sensor value. The
sensor value can indicate the start and end of a use-case, a state change, or an event
occurrence within a use-case. Based on a sensor value, the autonomic manager

2The generated Java packages are: org.iids.shf.model.experiment.behavmodel,
org.iids.shf.model.experiment.analyser, org.iids.shf.model.experiment.diagnoser,
org.iids.shf.model.experiment.autonomicmanager, org.iids.shf.model.experiment.planner,
and org.iids.shf.model.experiment.sensor.

3The messaging software uses message topics to manage message flow from multiple publishers
to multiple subscribers.

138 The Execution Environment

performs an appropriate action. A state change or an event occurrence causes the
invocation of the analyser, diagnoser, planner, and plan translator of the autonomic
manager. If there is a need to activate certain effectors then a message is sent to
those effectors to become active.

8.2.2 Synchronisation between Autonomic Management &
Managed System

When an autonomic manager receives a sensor value it spends time to analyse the
current situation. The question that can be raised is: should the managed system
wait for the response of the autonomic manager? The answer to this question is
not straightforward and depends on the type of the managed system.

A ‘yes’ answer means that autonomic managers can run in sync with the man-
aged system and are on time to perform remedy actions. However, forcing a
managed system (especially a real-time system) to wait for the response of an
autonomic manager can have undesirable affect on the behaviour of a managed
system. That is because the communicating parties within a managed system
have a certain expectation of each other’s response time. The response time of the
communicating parties increases because of the overhead of autonomic managers.
Therefore, a sequence of time-outs can occur.

A ‘no’ answer means that an autonomic manager always lags behind its man-
aged system. The reason is that it takes time before a sensor value reaches an
autonomic manager. The sensor values sent from the managed system are kept in
the queue of autonomic management. In this case, autonomic managers are able
to perform delayed problem determinations but it is hard for them to perform
remedy actions because the managed system is not in the required state any more.

The default policy of the framework is based upon the ‘no’ answer: the managed
system does not wait for the response of the autonomic manager. The motivation
for this default policy is to minimise the influence of autonomic management on
the regular working of the managed system.

8.2.3 Communication between Autonomic Managers

As described in Section 4.7.2, a distributed system’s behaviour is considered to be
a collection of use-cases that are related to each other at various levels according
to their references. Associating a separate autonomic manager to each use-case for
managing its execution implies that autonomic managers should communicate and
cooperate with each other to manage their use-cases. How autonomic managers
communicate with each other is as follows.

As soon as an autonomic manager is started it creates all its children, assigns
itself as their parent, and starts them one by one. Then, it starts one thread per
child to wait for the autonomic process result of that child. When the autonomic
process of a child autonomic manager finishes it sends its result to its parent.

For the sake of simplicity, communication between autonomic managers is im-
plemented using the Java observer and observable pattern. According to the Java

8.3 Rule Engine 139

observer and observable pattern [62], a Java object (observable) maintains a list of
its dependents (observers) and notifies them automatically of any state changes.
An alternative would have been to implement this communication using a messag-
ing system such as the Apache ActiveMQ allowing remote communication between
autonomic managers distributed across a network.

8.2.4 Invocation of Inspective Plan

After the hypothesis validation rules of an autonomic manager has been executed,
the autonomic manager investigates the inferred facts to see whether the occur-
rence of a symptom should be inspected. If so, the autonomic manager reads the
symptom specification from the OWL model, extracts its associated inspective
plan, and invokes the plan’s execute method. This method extracts the plan’s
ActionsConstruct class, prepares its runtime environment, and starts the class in
a separate process. The ActionsConstruct is a Java class that invokes a set of
atomic actions according to the specified construction scheme (see Section 4.8.4
for the description of different construction schemes such as Sequence, Parallel,
Any-Order).

Each atomic action is a Java class that performs an inspective job such as
determining the actual number of slots used in the connection pool between two
runnables or inspecting a log file for the occurrence of an exception. This Java
class, similar to the managed system’s code, is instrumented with sensors that
inform the autonomic manager about the inspection results. Note that these Java
classes are automatically generated by the framework.

8.2.5 Bootstrapping Autonomic Management

As stated above, autonomic managers are started by their parents. However, the
system level autonomic managers responsible for the system level use-cases, intro-
duced in Section 3.5, do not have a parent. The framework provides MasterAM
and MasterJob for this purpose. The MasterAM is the parent of all system level
autonomic managers, and it is responsible for managing MasterJob. The Master-
Job contains tasks that are not representations of tasks in the managed system.
They are administrative tasks, for example, a task that checks the correct execu-
tion order of the different runnables of the managed system.

The bootstrap process starts by manually starting the MasterAM. After the
MasterAM is started it automatically starts the rule engine and all the system
level autonomic managers, waiting for their results just the same as the regular
autonomic managers.

8.3 Rule Engine

The different SWRL rules, such as the symptom occurrence rules or the hypothesis
selection, validation, evaluation, and determination rules, specified in the generic

140 The Execution Environment

and domain models, are executed by the rule engine. When the rule engine4

completes the inference process, the inferred facts are transformed back into OWL
knowledge.

Autonomic managers communicate with the rule engine as follows. When an
autonomic manager is notified about a sensor, it stores the sensor’s observed value
in the OWL model, reads its symptom occurrence rules from the model, and
delivers them to the rule engine. The rule engine executes the rules and infers the
occurrence of certain symptoms. Thereafter, the autonomic manager stores the
inferred facts in the OWL model, and starts the diagnostic process. The result
of the execution of the hypothesis determination rules (diagnosis) is stored as the
autonomic process result of the autonomic manager in the OWL model. Finally,
the autonomic manager reads its process result from the OWL model and sends it
to its parent.

8.4 Instrumented Managed System

The instrumented managed system is an existing system extended with sensors and
effectors. The required sensors and effectors can be instrumented in the code of an
existing system manually or automatically. The framework offers an instrumenta-
tion tool to automatically instrument sensors and effectors in a managed system.
This tool utilises the domain-specific part of the self-management model (see Fig-
ure 8.3). This part includes information about the instrumentation location (in
the code of a managed system) specified by domain experts.

Figure 8.3: The instrumentation of sensors and effectors in the code of a managed
system performed by the instrumentation tool of the self-management framework.

Using the instrumentation technique described in the following section, the
instrumentation tool of the framework is able to perform automated instrumenta-
tion of a managed system written in an object-oriented language (e.g., Java, C#,
C++)5.

4This thesis uses the Jess [70] rule engine. As this rule engine is not familiar with the SWRL
syntax, the SWRL-Jess bridge [142] is used to convert SWRL rules to Jess facts, templates, and
slots.

5The framework does not support the automated instrumentation of a managed system written
in other programming languages (e.g., C, Pascal, Cobol). Note that the framework is still able
to generate code for autonomic management for such a managed system if the required sensors

8.4 Instrumented Managed System 141

Note that a managed system can be written in multiple programming languages
including object-oriented and other programming languages. In this case, only
sensors and effectors belonging to the object-oriented part of the managed system
are automatically instrumented. The sensors and effectors belonging to the other
part of the managed system are assumed to be instrumented in another way. The
following sections explain the instrumentation technique used by the framework,
and the content of the instrumentation code.

8.4.1 Instrumentation Technique

Aspect-Oriented Programming (AOP) [64] is a programming technique that allows
developers to cleanly separate cross-cutting concerns. A concern is a particu-
lar functionality provided by a software program. Examples of concerns in the
Trading System are Trade Administration or Payment Realisation. Cross-cutting
concerns are aspects of a program which affect (cross-cut) other concerns (e.g.,
logging or authentication concerns touch both Trade Administration and Payment
Realisation). Similar to logging, this thesis considers the self-management aspect
as a cross-cutting concern [84], and therefore uses AOP to instrument the self-
management aspect in the managed system.

The instrumentation locations specified in the generic model (see Section 4.8.1)
correspond to the join points in AOP. A join point is a region in the dynamic
control flow of a program. There are various join point models depending on
the underlying programming language. Examples of join points are: a call to a
method, execution of a method, the event of setting a field, or the event of handling
an exception. The static projection of a join point onto the program’s source code
or compiled code is called a join point shadow. AOP languages implement an
aspect by weaving hooks into the join point shadows.

There are different implementations of AOP for the Java language: AspectJ [43],
Spring AOP [104], JBoss AOP [98], and Javassist [40]. These AOP implementa-
tions differ in the join point models they provide, and whether they require Java
source code or not. The current implementation of the proposed framework uses
Javassist to automatically instrument that part of a managed system written in
the Java language. The reason for choosing Javassist is mainly because it can be
used to add self-management aspects to an existing system by directly altering
its compiled code (byte-code), without requiring its source code. Note that an
existing distributed system usually has been developed by multiple vendors, and
its source code is not always available.

For the C++ language, Spinczyk et al. [170] have developed AspectC++, which

and effectors are instrumented in the system in other ways. The instrumentation of sensors and
effectors in a managed system written in a language other than an object-oriented language is
realised by domain experts. If the source code is available then the domain experts manually
instrument sensors and effectors into the source code at proper locations. Otherwise they can use
the API of the binary instrumentation system called Pin [127] to perform the instrumentation.
The Pin API makes it possible to monitor the state of a process including the contents of registers,
memory, and control flow. It also provides the ability to alter the program’s behaviour by allowing
an adaptation routine to overwrite a program’s registers and memory.

142 The Execution Environment

is an aspect-oriented language extension for C++. The AspectC++ weaver is a
source to source weaver that transforms AspectC++ programs into C++ pro-
grams. The framework can be easily extended to utilise the AOP implementation
for the C++ language (or other object-oriented languages).

8.4.2 Instrumentation Code

The instrumentation code contains code fragments for setting the values of the
properties of the specific Sensor class (e.g., amountSensor) and sending these val-
ues to the appropriate autonomic manager. The Sensor class has three important
properties: observedValue, targetAddress, and timestamp. The first property is the
value of the monitored item, the second one contains the address of the autonomic
manager waiting for the value of this sensor, and the third one is the actual time-
stamp of the observation. The observedValue is the result of an invocation to a
sensor value provider class that is responsible for gathering the requested infor-
mation (i.e., the value of the monitored item) about the behaviour of the managed
system.

The instrumented code is more or less the same for all specified sensors. For
example, Figure 8.4 shows the instrumented code that invokes the amountSensor.
The information concerning the instrumentation location is specified in the OWL
domain model. The invocation code is instrumented after the statement containing
code which reads the value of the monitored item amount.

... read access to the monitored item ’amount’ ...
(1) AmountSensor amountSensor = new AmountSensor();
(2) SensorValueProvider svp = AmountSensorValueProvider.getInstance();
(3) Object observedValue = svp.getObservedValue();
(4) amountSensor.setObservedValue(observedValue);
(5) amountSensor.setTimestamp(new Date());
(6) amountSensor.sendSensor();

Figure 8.4: The Java code snippet for invoking a sensor implementation
(amountSensor implementation).

Line (1) creates an instance of the AmountSensor class generated by the frame-
work. Lines (4) and (5) set the values of the observedValue and timestamp prop-
erties. Line (2) retrieves an instance of the AmountSensorValueProvider class
that provides the runtime value of the monitored item (line (3)). All sensor value
providers (e.g., AmountSensorValueProvider) implement the Java interface, Sen-
sorValueProvider, supplied by the framework. Line (6) sends the mentioned infor-
mation to the given autonomic manager.

The sensor value provider class can be either generated by the framework or
supplied by domain experts. If it is generated then the instrumentation process
also instruments that class at the given instrumentation location. Otherwise the
supplied class is linked into the code of the managed system (i.e. becomes a part
of the managed system) in order to be invoked.

An example of the sensor value provider class (AmountSensorValueProvider)
that is generated by the framework is shown in Figure 8.5. This class is gener-

8.5 Summary 143

ated based on the specifications in the model, and it is instrumented at the given
instrumentation location. Line (1) retrieves an instance of the AmountSensorVal-
ueProvider class, and line (2) stores the value of the monitored item amount in
the sensor value provider class so that it can be used at a later time.

... read access to the monitored item ’amount’ ...
(1) SensorValueProvider svp = AmountSensorValueProvider.getInstance();
(2) svp.setObservedValue(amount);

Figure 8.5: The Java code snippet showing how a sensor implementation
(amountSensor implementation) gathers required information.

Examples of the sensor value provider classes supplied by domain experts are:
a class that reads the value of a monitored item from a database or from a log file,
a class that checks the status of a connection by sending a Ping request, or a class
that collects required information from a sub-system having only binary code.

The starting point for the instrumentation process is the OWL domain model. The
process iterates through all specified sensors defined in the OWL model, identifies
the instrumentation location in the managed system, and uses Javassist to modify
the managed system by instrumenting the appropriate code.

8.5 Summary

This chapter explains the execution environment in which self-management of an
existing distributed system can be realised. The activation & control engine is the
most important component of the execution environment. The different aspects
of the activation & control engine such as the communication and synchronisation
between autonomic managers, invocation of an inspective plan by an autonomic
manager, and the communication between an autonomic manager and the rule
engine are explained. The self-management framework utilises the information in
the self-management model to enable the code generation tool to automatically
generate code for the activation & control engine implementing the autonomic
management of a specific managed system.

For the activation & control engine to communicate with a managed system,
sensors and effectors need to be instrumented (manually or automatically) in a
managed system. The self-management framework utilises the information in the
self-management model to enable the instrumentation tool to automatically in-
strument sensors and effectors in a managed system. The instrumentation process
automatically instruments invocations to the sensors in those parts of the managed
system that are written in an object-oriented language. The Aspect-Oriented Pro-
gramming (AOP) technique is used to realise the instrumentation. The domain
experts are expected to instrument (manually or using some other instrumentation
method) sensors in the remaining parts of the managed system.

144 The Execution Environment

Chapter 9

Conclusions and Future Work

This chapter first summarises the work reported in this thesis. Thereafter, the
research problem and the central research question outlined in Chapter 1 are
revisited. Finally, a number of possible directions for future research work are
proposed.

9.1 Thesis Summary

This thesis focusses on management of distributed systems. The growing complex-
ity of these systems makes their management a challenge. A distributed system
exposes a considerable number of behaviours, and is composed of a variety of sub-
systems and components that execute these behaviours. The complexity of both
behaviour and structure of these systems is increasing. Management of these sys-
tems must deal with both behavioural and structural complexities. To manage
these complexities, the general principles of the autonomic computing paradigm
are used to let systems manage themselves (self-management). According to this
paradigm, a self-managed system has two main building blocks: an autonomic
manager and a managed resource. In this thesis, an individual behaviour is the
unit of management (i.e., managed resource) for an autonomic manager.

Behaviour is defined as a unit of functionality expected from a system such
as handling a money transaction by an Internet banking system or showing arti-
cles in response to a search query by a web shopping system. Usually a system
shows multiple behaviours. Behaviours of a system can be complex or simple.
A complex behaviour consists of a number of less complex or simple behaviours.
Showing articles by a web shopping system is an example of a complex behaviour.
This behaviour consists of analysing the given search query, retrieving requested
data from database, and converting the data into a human readable format. As
mentioned before, autonomic managers needs to have knowledge about their man-
aged behaviours. The knowledge describing the different behaviours of a system is
mainly acquired during the software design and development phase, and specified
in use-case notations. This thesis proposes the reuse of use-case specifications,

145

146 Conclusions and Future Work

representing system behaviour, for self-management purposes (Chapter 3).

The activities of autonomic managers are based on the management model for
distributed systems presented in this thesis. The management model contains the
following functional entities: analyser, diagnoser, planner, and plan translator. It
also includes the information flow entities sensor, symptom, hypothesis, plan, and
effector. To manage individual system behaviour, an autonomic manager utilises
information coming from sensors instrumented in a managed system. The analy-
ser, based on the sensor values, ascertains whether the managed system shows
an abnormal behaviour (symptom). The diagnoser determines the possible root-
cause of the abnormal behaviour (hypothesis). The planner, based on the diagnosis
determined, selects a plan from its plan repository. Thereafter, the plan transla-
tor translates the selected plan into executable adaptation instructions (effectors).
This process is called autonomic management process. Autonomic managers com-
municate the result of their autonomic management process with each other to
manage the complex behaviours of their managed system (Chapter 4).

For self-managed distributed systems to be able to recognise and solve a large
portion of their malfunctionings on their own, they need to know themselves. For
this purpose, two models of a managed system are proposed and constructed:
behavioural and structural models. The first model describes the way a distributed
system provides its functionalities, and the second model describes the internal
structure of a distributed system. The elements of the behavioural model are jobs,
tasks, states, and events. The underlying idea here is that a system realises a
behaviour by means of performing a number of activities (tasks). These activities
cause changes in the states of the system. Besides, while performing any activity
by the system, events can occur. These events impact the normal performance
of other system activities. The elements of the structural model are runnables,
connectors, components, classes, and methods. The underlying idea here is that a
distributed system consists of multiple processes (runnables), each of which is a
running software program. These processes communicate with each other through
network software programs (connectors). Each process consists of a number of
components. Each component consists of a number of classes. Finally, each class
consists of a number of functions (methods) which perform the system activities.
Autonomic managers use both models for management purposes (Chapter 5).

All knowledge included in behavioural, structural, and management models is
referred to as self-management knowledge. To utilise this knowledge in an au-
tomated environment, this knowledge needs to be represented in a knowledge
representation language. This thesis discusses a number of important require-
ments for representing self-management knowledge in distributed environments,
and argues that the Semantic Web languages OWL and SWRL together satisfy
the requirements. Furthermore, the different parts of self-management knowledge
are represented in Semantic Web ontologies (Chapter 6).

A self-managed system consists of an autonomic management part (containing
multiple autonomic managers) and a managed system. To enrich an existing dis-
tributed system with self-management capabilities, a self-management framework
has been designed and implemented. Two case studies have been implemented

9.2 Research Question Revisited 147

to demonstrate the application of the self-management framework to the manage-
ment of real-life problems. The first case study shows how autonomic management
determines the diagnosis of a simultaneous occurrence of two failures. The sec-
ond case study illustrates how autonomic managers in a parent-child hierarchy
communicate and cooperate with each other to perform a multi-level diagnosis
(Chapter 7).

The self-management framework generates code for an autonomic management
with which the system behaviours are managed. The self-management framework
also generates code with which sensors and effectors are automatically instru-
mented in a managed system. The code generation is done using the generic self-
management ontologies and their specific instances provided by domain experts
(Chapter 8).

9.2 Research Question Revisited

The goal of this thesis is to improve management of the behaviour of existing
distributed systems. Manual management of these systems is costly and time con-
suming, and suffers from a major drawback: delayed problem determination. In
practice, knowledge about a managed system, required for manual management,
is most often divided over a number of human administrators with different skills.
Hence, manual management, to a large extent, depends on effective communica-
tion between members of an administrator team, each with their own technical
terminology. The other source of the manual management knowledge is system
documentation that is often incomplete and subject to multiple interpretations due
to the fact that it is usually written in natural language. Automated management
could possibly reduce problem determination time because the knowledge of vari-
ous human administrators with different skills can be aggregated in a management
software layer that can immediately be aware of the occurrence of a problem. In
this context, the following central research question was formulated:

RQ: How to design autonomic management of behaviour of existing distributed
systems?

To answer this question, this thesis investigates the following aspects concerning
distributed systems:

• different types of behaviours to be managed,

• the relationship between behaviours,

• knowledge required about behaviours and their relationships.

These aspects have been explored in Chapters 3 and 5. In Chapter 3, be-
haviours of a distributed system are divided into system, operational, functional,
and low level code behaviours. All of these types of behaviours are represented
in use-cases notations. Behaviours of the same type are related to each other

148 Conclusions and Future Work

through horizontal use-case references. Behaviours of different types are related
to each other by means of vertical use-case references.

In Chapter 5, generic concepts regarding the structure and behaviour of dis-
tributed systems were abstracted. The relationships between these concepts are
incorporated into the structural and behavioural models. These models contain
the knowledge required for the self-management of distributed systems. Chapter 6
illustrated the representation of these models in the Semantic Web language OWL.

This thesis also investigates the following aspects concerning management of
distributed systems:

• management of an individual behaviour,

• coordination of the management of multiple behaviours,

• knowledge required for the management of behaviours.

These aspects were explored in Chapter 4 in which different components of
the autonomic manager are depicted. Also, the information flow entities (sensor,
symptom, hypothesis, plan, and effector), that are passed from one autonomic
manager’s main entity to the next, were introduced. To realise management of an
individual behaviour of a distributed system, it was specified how an autonomic
manager needs to coordinate the working of all its main entities.

To coordinate management of multiple behaviours, multiple distributed auto-
nomic managers are organised into parent-child hierarchies. After completion of
the autonomic process, the child autonomic manager sends its result to its par-
ent. A parent autonomic manager realises the distributed autonomic process by
integrating the results of its children with its own observations from real-world.

The knowledge required for the management of behaviours are incorporated in
the management model. Chapter 6 illustrated the representation of this model in
the Semantic Web languages OWL and SWRL.

9.3 Discussion

The self-management framework is the important artifact proposed and produced
by this thesis. A number of factors, discussed in the following sections, influences
the practical usage of the framework for the self-management of large existing
distributed systems.

Knowledge Acquisition

Currently, the self-management knowledge cannot be automatically acquired from
the code of the distributed systems. The framework requires specification of the
self-management knowledge by domain experts. The volume of the required knowl-
edge depends on the number of managed behaviours of the system. The concern
is that the high volume of the required knowledge can prevent domain experts
from using the framework. To deal with this concern, a balance should be struck

9.3 Discussion 149

between coarse-grained behaviours (system level, runnable level, and component
level) and fine-grained behaviours (class level) to be managed. Usually, the number
of fine-grained behaviours of a distributed system is high and the number of coarse-
grained behaviours is low. To cope with the issue, one can suggest to only manage
the coarse-grained behaviours. The drawback of managing only coarse-grained
behaviours is that autonomic management only performs the coarse-grained diag-
nosis and adaptation (i.e., the root-cause of a system malfunctioning is related to
the whole system, a runnable, or a component). A slightly better suggestion might
be to specify only those fine-grained behaviours that are related to the important
coarse-grained behaviours. In this way, both the volume of the required knowledge
remains acceptable and the fine-grained diagnosis and adaptation can be achieved.

Note that the framework does not require specification of self-management
knowledge all at one point in time. Specification of the self-management knowl-
edge is a continuous process. Because of the occurrence of a system malfunc-
tioning, the self-management knowledge regarding a new behaviour can be added
into the knowledge-base, or the self-management knowledge regarding an existing
behaviour can be refined and updated.

Synchronisation

The framework does not provide synchronous communication between autonomic
management and the managed system. Accordingly, the managed system does
not need to wait for the result of the autonomic process (diagnosis and remedy
actions) of autonomic management. The motivation for this design decision is to
minimise the influence of autonomic management on the regular working of the
managed system. The consequence of this decision is that the first occurrence of a
system malfunctioning cannot be prevented. The explanation for this restriction
is as follows. The instrumented sensors in the managed system send information
regarding the malfunctioning to autonomic management before the malfunctioning
occurs. Autonomic management receives the information and takes time to analyse
the current situation. As the managed system does not wait for the response of
autonomic management, the malfunctioning of the managed system occurs for the
first time. After this occurrence, autonomic management performs the diagnosis
and prepares effectors to execute remedy actions such that the next occurrence of
the same malfunctioning is prevented.

To be able to prevent the first occurrence of a system malfunctioning, the
managed system must wait for the autonomic process of autonomic management.
This feature does not have a considerable impact on the managed system if the
response time of the system is not of significant importance. However, in systems
in which a late response is sometimes worse than no response at all, and time is
the most precious and critical resource, the synchronous communication between
autonomic management and the managed system disturbs the regular working of
the managed system (i.e., existing distributed system) substantially.

150 Conclusions and Future Work

Performance & Availability of Managed System

Sensors and effectors instrumented in the managed system affect the performance
and availability of the managed system. The higher the number of instrumented
sensors and effectors, the higher their impact on the performance of the managed
system. Moreover, the availability of the managed system can be affected by any
critical mistake in the code of the instrumented sensors and effectors provided by
domain experts. For example, an instrumented sensor causing a memory problem
can lead to a crash of the managed system. This is an inevitable consequence
of the autonomic computing control loop and architectural blueprint. Domain
experts are expected to pay more attention to the code for the sensors and effectors
instrumented in the managed system.

Scalability of Autonomic Management

The scalability of autonomic management can become an issue if, for any reason
(such as cost considerations), all autonomic managers are deployed on the same
machine. Autonomic management may not be prepared to handle such increased
workload. Shared usage of computing and network resources also disturbs the
performance of autonomic management. Note that the framework provides the
possibility to fully distribute autonomic managers on different machines.

Knowledge Representation

The Semantic Web language OWL is expressive enough to specify the self-man-
agement knowledge. However, this is not true for the Semantic Web rule language
SWRL. At present, SWRL does not support negated atoms, disjunction, or retrac-
tion of axioms. As a result, the construction of more complex logical combinations
of atoms in SWRL becomes difficult. Another issue with SWRL is the availability
of a stable cross-platform SWRL engine. Currently, other rule engines are used to
evaluate the SWRL statements. Hence, the SWRL statements must first be trans-
lated into the syntax of the other rule languages, and the inferences of the rule
engines must be translated back into the SWRL syntax. Although this back and
forth translation is done automatically, it affects the performance of autonomic
management. Another solution needs to be considered.

9.4 Future Work

The self-management framework presented in this thesis can be extended in a
number of areas briefly discussed in the following sections.

Reasoning

The self-management framework can be extended with other reasoning techniques
than rule-based reasoning, such as fuzzy and case-based reasoning. Currently,
the framework utilises rule-based reasoning to choose a policy, infer a symptom,

9.4 Future Work 151

determine a diagnosis, and select a plan. One of the limitations of rule-based
reasoning is the difficulty of expressing uncertain knowledge. Another limitation
is the inability to deal with a situation where the observation does not exactly
match the condition of a rule in the rule base. It can be investigated how to
incorporate fuzzy and case-based reasoning into the framework to overcome these
limitations.

Planning

The self-management framework can be extended with a proper planning approach.
As mentioned in Chapter 4, a plan (either a remedy plan or an inspective plan) is
a collection of actions that are bundled by a control construct such as IfThenElse
or RepeatUntil. Currently, a domain expert determines which actions by means
of which control construct should be bundled. To automatically construct a plan
from a given initial state, goal state, and a set of possible actions, different planning
approaches such as hierarchical planning [45], multi-agent planning [51], case-based
planning [168], heuristic planning [163], etc. can be investigated.

Applicability

The self-management framework can be applied to agent-oriented software systems
by integrating the framework in agent platforms. As an example, the framework
can be implemented as a middleware service of the AgentScape platform [185].
AgentScape provides a secure and large-scale runtime platform for execution of het-
erogeneous mobile agents. Agents can use the middleware services of AgentScape
to perform their tasks properly. For example, they use the AgentScape services
to look up each other, discover other agents’ services, transparently and securely
route messages, access web services, and negotiate about the quality of services.

The assumption is that each agent is equipped with its self-management knowl-
edge. When an agent enters the AgentScape platform, the agent provides its self-
management knowledge to the self-management middleware service. This service
generates autonomic management code for the agent and instruments sensors and
effectors in the agent, based on the provided self-management knowledge.

152 Conclusions and Future Work

Appendix A

Generic Rules

The autonomic manager’s main entities utilise rules (e.g., SymptomOccurrence-
Rules) to determine the occurrence of symptoms, identify diagnoses, select proper
plans, and translate plans to executable adaptation instructions. There are two
sets of rules: generic rules and domain-specific rules. The domain-specific rules
are relevant to the management of a particular distributed system and provided
by domain experts. In contrast to the domain-specific rules, the generic rules are
domain independent. They are part of the proposed model and are explained in
the following sections. The Backus-Naur Form (BNF) [2] is used to denote the
generic rules. All nonterminals appear in italic, and start with a capital. All
terminals, which are in first-order predicate logic, appear in boldface. Variables
are depicted in italics.

The purpose of a rule engine is to continuously apply a set of rules (if-then
statements) to a set of data (the knowledge base). A set of rules is stored in the
rule memory, and a set of facts is stored in the fact memory. A pattern matcher
looks at both sets and generates a set containing rules whose conditions have been
satisfied. This set is called the conflict set. A conflict resolver is called to determine
which particular rule to fire. Firing rules make some changes in the fact memory
(creates new facts or removes old ones). Each time any single rule performs one or
more of such changes, the rule engine immediately enters a new cycle. This cycle
is called a match-resolve-act1 cycle.

A.1 Symptom Occurrence Rules Template

For each managed use-case, domain experts specify various abnormal behaviours as
symptoms. They also specify monitored items used within the managed use-case,
and sensors that indicate the occurrence of the abnormal behaviours concerning
the monitored items. The sensors that indicate the occurrence of a symptom are
said to be the relevant sensors of that symptom. Based on the rule template shown

1A simple implementation of the match-resolve-act cycle can be very inefficient. Many rule
engines use an efficient implementation based on the Rete algorithm [68].

153

154 Generic Rules

in Figure A.1, domain experts provide rules that infer the occurrence of a symptom
from the information obtained from the relevantSensors of that symptom.

Symptom-occurrence-rule ::= Expr [∧ Expr]* −→ arisen(sy, te)
Expr ::= Expr1 | Expr2
Expr1 ::= isRelevantSensor(se, sy, true) ∧ observedValue(se,mi, v1) ∧ (v1 Op vc)
Expr2 ::= isRelevantSensor(se1, sy, true) ∧ observedValue(se1,mi1, v1)

∧ isRelevantSensor(se2, sy, true) ∧ observedValue(se2,mi2, v2) ∧ (v1 Op v2)
Op ::= OpInt | OpDbl | OpDate | OpTime | OpBool | OpChar | OpString

where:
- sy belongs to a set of symptoms of AutonomicManager.
- se, se1, se2 belong to a set of sensors of AutonomicManager.
- te is a Ternary value limited to: pos, neg.
- arisen is a relation that is defined as: Symptom × Ternary.
- mi,mi1,mi2 belong to a set of states and events to be monitored.
- vc, v1, v2 belong to one of the ValueDomains such as IntegerType, StringType, etc.
- isRelevantSensor is a relation that is defined as: Sensor × Symptom × BooleanType.
- observedValue is a relation that is defined as: Sensor × (State|Event) × ValueDomain.
- OpInt is one of operations <,≤,=, >,≥, defined as: IntegerType × IntegerType −→ BooleanType.
- OpDbl is one of operations <,≤,=, >,≥, defined as: DoubleType × DoubleType −→ BooleanType.
- OpDate is one of operations <,≤,=, >,≥, defined as: DateType × DateType −→ BooleanType.
- OpTime is one of operations <,≤,=, >,≥, defined as: TimeType × TimeType −→ BooleanType.
- OpBool is the operation =, defined as: BooleanType × BooleanType −→ BooleanType.
- OpChar is the operation =, defined as: CharType × CharType −→ BooleanType.
- OpString is the operation =, defined as: StringType × StringType −→ BooleanType.

Figure A.1: The template for the analyser’s symptom occurrence rules.

Each symptom occurrence rule consists of a logical implication (see [153] for an
introduction of formal logic). The antecedent is composed of a number of logical
conjunctions of expressions, and the consequent is the Symptom’s arisen attribute
that is used as a logical relation. The entities used in the expressions are Symptom,
Sensor, MonitoredItem, and ValueDomain.

Initially, the analyser assumes that it is unknown whether a symptom has
occurred. To conclude the occurrence or absence of a symptom sy, the analyser
first checks whether the sensor (se) belongs to the relevantSensors of sy. Then
the observed value (v1) of the MonitoredItem of the sensor is compared with either
a pre-defined constant value vc (Expr1 in the figure) or the observed value of the
monitored item of another sensor (Expr2 in the figure). In the first case, the
value of a state (variable) or an event is compared with the expected value defined
by domain experts. In the second case, the dependency of two or more states
(or events) is checked by comparing the observed values of different sensors. The
values vc, v1, v2 belong to one of the ValueDomains (see Section 4.8.1) depending
on the type of the monitored item (i.e., the specific state or event type defined
in the system model). The comparison operation between vi and vj takes place
if vi and vj have the same ValueDomain type. The usual comparison operators
(<,≤,=, >,≥) can be applied to variables of all ValueDomain types except for
BooleanType, CharType, and StringType. Only the equality operator (=) is
allowed to be applied to variables of these three types.

A.2 Hypothesis Selection Rules 155

A.2 Hypothesis Selection Rules

The generic rules in Figure A.2 illustrate the logical expressions used by the hy-
pothesis selection rules. These rules that can be used for all distributed systems
are denoted by GRulei. The userDefSelCriteria is an attribute of Hypothesis,
and represents the domain-specific criteria. The value of this attribute is initially
set to true. This allows the execution of the generic rules without incorporating
the domain-specific rules. The assumption is that domain experts provide a set of
rules that determine the value (true or false) of userDefSelCriteria. The value
of the domain-specific criteria is combined with the relations used in the generic
rules in order to select a hypothesis for validation purposes. The diagnostic engine
executes the domain-specific rules before the generic rules. Both rules are executed
for all available hypotheses.

Hypothesis-selection-rule ::= GRule1 | GRule2 | GRule3 | GRule4 | GRule5 | GRule6 | GRule7
GRule1 ::= validated(hy, neg) −→ tried(hy, true)
GRule2 ::= assessed(hy, true) −→ tried(hy, true)
GRule3 ::= tried(hy, true) −→ toBeFocussed(hy, false)
GRule4 ::= numUnknownSymptoms(hy, v1) ∧ allowedUnknownSymptoms(hy, v2)

∧ (v1 ≤ v2) −→ toBeFocussed(hy, true)
GRule5 ::= toBeFocussed(hy, false) −→ focussed(hy, false)
GRule6 ::= toBeFocussed(hy, true) ∧ userDefSelCriteria(hy, true) −→ focussed(hy, true)
GRule7 ::= toBeFocussed(hy, true) ∧ userDefSelCriteria(hy, false) −→ focussed(hy, false)

where:
- validated is a relation that is defined as: Hypothesis × Ternary.
- assessed is a relation that is defined as: Hypothesis × BooleanType.
- tried is a relation that is defined as: Hypothesis × BooleanType.
- toBeFocussed is a relation that is defined as: Hypothesis × BooleanType.
- numUnknownSymptoms is a relation that is defined as: Hypothesis × IntegerType.
- allowedUnknownSymptoms is a relation that is defined as: Hypothesis × IntegerType.
- subHypothesis is a relation that is defined as: Hypothesis × Hypothesis × BooleanType.
- userDefSelCriteria is a relation that is defined as: Hypothesis × BooleanType.
- focussed is a relation that is defined as: Hypothesis × BooleanType.

Figure A.2: The generic rules for the diagnoser’s hypothesis selection.

The goal is to select one or more hypotheses from the hypothesis set of the
current autonomic manager, and mark them as focussed in order to be further
validated. Initially, all hypotheses are marked as not focussed. The set contains
both hypotheses that have already been tried and hypotheses that have never been
examined. A hypothesis is considered as tried if it has already been validated
and/or assessed by the other rules of the diagnoser.

Figure 4.6 shows that there are three closed loops from the SelectingHypothe-
ses state: (1) a loop that goes through the ValidatingHypotheses state and comes
back to the SelectingHypotheses state if the selected hypothesis is invalid, (2) a loop
that goes through the ValidatingHypotheses and EvaluatingHypotheses states, and
comes back to the SelectingHypotheses state if the validated hypothesis is assessed,
(3) a loop that goes through the ValidatingHypotheses, ExecutingInspectivePlan,
ExecutingStrategicRules and MappingChildResultToSymptoms states, and comes
back to the SelectingHypotheses state if the inspective plan execution clarifies the
occurrence or absence of a symptom. Therefore, the HypothesisSelectionRules
should take into account that the values of the hypothesis’s attributes (i.e., the

156 Generic Rules

value of focussed, validated, and assessed) could change during previous acti-
vations of the mentioned loops.

The generic rules in Figure A.2 show that a hypothesis (hy) is considered as
a candidate to be focussed if (1) the number of unknown symptoms of hy is not
greater than a pre-defined threshold, (2) hy has not been already validated, and (3)
hy has not already been evaluated. The selection result is subsequently influenced
by the domain-specific selection criteria. The numUnknownSymptoms is an attribute
of the hypothesis hy, and indicates the number of unknown symptoms of hy. It
is initially set to the number of symptoms of hy. The diagnoser is responsible
for decreasing its value each time the occurrence of a symptom, belonging to the
relevantSymptoms of hy, becomes known. The allowedUnknownSymptoms is also
an attribute of the hypothesis hy, and indicates the maximum number of symptoms
of hy allowed to be unknown. Its value is initially determined by a policy rule for
all hypotheses. Domain experts can override that value for a specific hypothesis.

A.3 Hypothesis Validation Rules

Initially, the diagnoser sets the value of the validated attribute of all hypotheses
to unknown. The hypothesis validation rules, illustrated in Figure A.3, set the
value of validated of the focussed hypotheses either to pos or to neg. It is also
possible that the rules leave the value of validated unchanged and just activate
the inspective plans. The following explains the generic rules.

Hypothesis-validation-rule ::= GRule1 | GRule2 | GRule3 | GRule4 | GRule5 | GRule6 | GRule7
GRule1 ::= (∀syi isRelevantSymptom(syi, hy, true) −→ arisen(syi, te))

∧ focussed(hy, true) −→ toBeValidated(hy, true)
GRule2 ::= (∃syi isRelevantSymptom(syi, hy, true) −→ arisen(syi, unknown))

∧ focussed(hy, true) ∧ existInspectivePlan(syi, false) −→ validated(hy, neg)
GRule3 ::= (∃syi isRelevantSymptom(syi, hy, true) −→ arisen(syi, unknown))

∧ focussed(hy, true) ∧ isInspectivePlan(ip, syi, true)
−→ toBeInspected(ip, syi, hy, true)

GRule4 ::= toBeInspected(ip, sy, hy, true) ∧ inspectivePlanExecuted(ip, false)
−→ activated(ip, true)

GRule5 ::= toBeInspected(ip, sy, hy, true) ∧ inspectivePlanExecuted(ip, true)
−→ validated(hy, neg)

GRule6 ::= toBeValidated(hy, true) ∧ userDefValCriteria(hy, true) −→ validated(hy, pos)
GRule7 ::= toBeValidated(hy, true) ∧ userDefValCriteria(hy, false) −→ validated(hy, neg)

where:
- te is a Ternary value limited to: pos, neg.
- isRelevantSymptom is a relation that is defined as: Symptom × Hypothesis × BooleanType.
- toBeValidated is a relation that is defined as: Hypothesis × BooleanType.
- validated is a relation that is defined as: Hypothesis × Ternary.
- existInspectivePlan is a relation that is defined as: Symptom × BooleanType.
- isInspectivePlan is a relation that is defined as: InspectivePlan × Symptom × BooleanType.
- toBeInspected is a relation, defined as: InspectivePlan × Hypothesis × Symptom × BooleanType.
- inspectivePlanExecuted is a relation that is defined as: InspectivePlan × BooleanType.
- activated is a relation that is defined as: InspectivePlan × BooleanType.
- userDefValCriteria is a relation that is defined as: Hypothesis × BooleanType.

Figure A.3: The generic rules for the diagnoser’s hypothesis validation.

The GRule1 expresses that the focussed hypothesis hy is the candidate for
validation if the occurrence (or absence) of all symptoms syi belonging to the

A.4 Hypothesis Evaluation Rules 157

relevantSymptoms of hy are known (i.e., the value of the arisen attribute of none
of syi is unknown). The GRule2 states that if occurrence (or absence) of at least
one of the symptoms is unknown, and there is no inspective plan associated with
that symptom then validated of the hypothesis hy is set to neg. However, if there
is an inspective plan (GRule3) and it has not been executed during the current
diagnostic process then the value of validated of the hy remains unknown and
the diagnostic engine activates the inspective plan (GRule4). Finally, the GRule5
expresses that the value of validated of the hy is set to neg if the inspective plan
has already been executed but it has not been succeeded to make the occurrence
(or absence) of the syi known.

The userDefValCriteria is an attribute of Hypothesis, and its value repre-
sents the result of the execution of domain specific validation criteria provided by
domain experts. The value of this attribute is initially set to true. The diagnostic
engine first executes the set of domain-specific rules that determine the value (true
or false) of userValSelCriteria. Thereafter, the generic rules are executed to
determine whether the value of validated of the hy is set to pos or not.

A.4 Hypothesis Evaluation Rules

The goal of the hypothesis evaluation rules is to accept or reject a validated hypoth-
esis hy based on domain-specific evaluation criteria. The attribute userDefAEval-
Criteria of a hypothesis hy represents the result of the execution of a set of
rules expressing the criteria for accepting the validated hypothesis. The attribute
userDefREvalCriteria represents the result of the execution of rules expressing
the criteria for rejecting the validated hypothesis. After the execution of these
rules, the generic rules shown in Figure A.4 are executed.

Hypothesis-evaluation-rule ::= GRule1 | GRule2 | GRule3 | GRule4 | GRule5 | GRule6 |
GRule7 | GRule8

GRule1 ::= validated(hy, unknown) −→ rejected(hy, true)
GRule2 ::= validated(hy, neg) −→ rejected(hy, true)
GRule3 ::= validated(hy, pos) ∧ rejected(hy, false) ∧ userDefAEvalCriteria(hy, true)

−→ accepted(hy, true)
GRule4 ::= validated(hy, pos) ∧ userDefAEvalCriteria(hy, false) −→ accepted(hy, false)
GRule5 ::= validated(hy, pos) ∧ accepted(hy, false) ∧ userDefREvalCriteria(hy, true)

−→ rejected(hy, true)
GRule6 ::= validated(hy, pos) ∧ userDefREvalCriteria(hy, false) −→ rejected(hy, false)
GRule7 ::= rejected(hy, true) −→ assessed(hy, true)
GRule8 ::= accepted(hy, true) −→ assessed(hy, true)

where:
- rejected is a relation that is defined as: Hypothesis × BooleanType.
- accepted is a relation that is defined as: Hypothesis × BooleanType.
- assessed is a relation that is defined as: Hypothesis × BooleanType.
- userDefAEvalCriteria is a relation that is defined as: Hypothesis × BooleanType.
- userDefREvalCriteria is a relation that is defined as: Hypothesis × BooleanType.

Figure A.4: The generic rules for the diagnoser’s hypothesis evaluation.

The GRule1 and GRule2 state that the hy is immediately rejected if the value
of validated of the hy is either unknown or neg. The GRule3 through GRule6

158 Generic Rules

set the value of the accepted or rejected attributes of the hy to true or false,
based on the values of the domain-specific criteria.

The GRule7 and GRule8 express that the value of assessed of the hy is set
to true if the hy is either accepted or rejected. The hypothesis selection rules use
the value of this attribute of the hypothesis hy to ignore it from being selected.

A.5 Diagnosis Determination Rules

The last rules to be executed in a diagnostic process are diagnosis determination
rules, illustrated in Figure A.5. These rules are responsible for providing the
result of the diagnostic process, namely one or more diagnoses. If a hypothesis
hy has already been rejected then it is deleted from the set of possible diagnoses
(GRule1). The hy is immediately marked as the diagnosis if it has been accepted
by the hypothesis evaluation rules, and if it is the only member of the set of
accepted hypotheses (GRule2).

Diagnosis-determination-rule ::= GRule1 | GRule2 | GRule3 | GRule4 | GRule5 | GRule6
GRule1 ::= rejected(hy, true) −→ determined(hy, false)
GRule2 ::= accepted(hy, true) ∧ (∀hyi accepted(hyi, true) −→ (hyi = hy))

−→ toBeDetermined(hy, true)
GRule3 ::= accepted(hy1, true) ∧ accepted(hy2, true) ∧ weight(hy1, v1) ∧ weight(hy2, v2)

∧ (v1 ≥ v2) −→ toBeDetermined(hy1, true)
GRule4 ::= accepted(hy1, true) ∧ accepted(hy2, true)

∧ subHypothesis(hy1, hy2, true) −→ determined(hy1, false)
GRule5 ::= toBeDetermined(hy, true) ∧ userDefDetCriteria(hy, true)

−→ determined(hy, true)
GRule6 ::= toBeDetermined(hy, true) ∧ userDefDetCriteria(hy, false)

−→ determined(hy, false)

where:
- toBeDetermined is a relation that is defined as: Hypothesis × BooleanType.
- weight is a relation that is defined as: Hypothesis × IntegerType.
- userDefDetCriteria is a relation that is defined as: Hypothesis × BooleanType.
- determined is a relation that is defined as: Hypothesis × BooleanType.

Figure A.5: The generic rules for the diagnoser’s diagnosis determination.

In case the accepted hypothesis set contains more than one hypothesis, then
the pre-defined weights of the hypotheses, given by domain experts, are compared
and the one with the highest weight is chosen as the diagnosis (GRule3). In
addition, the determination rules prefer a parent hypothesis hy2 (more generic
root-cause) to a child hypothesis hy1 (more specific root-cause) (GRule4). Finally,
the value of the userDefDetCriteria attribute, determined by a set of domain-
specific diagnosis determination rules, affect the result.

A.6 Plan Selection Rules

Figure A.6 shows the rules that select the remedy plans based on the appropri-
ate diagnoses. The GRule1 states that plan pl is chosen as the candidate to be
translated (and thereafter to be performed) if the pl has been specified by domain
experts as the suitable remedy plan for the current system malfunctioning whose

A.7 Plan Translation Rules 159

root-cause is the diagnosis hy. The GRule2 checks to see whether the candidate
plan pl is the only available remedy plan. If there is more than one remedy plan,
the pre-defined weights of the plans are compared and the one with the highest
weight is marked as a suitable remedy plan (GRule3).

Plan-selection-rule ::= GRule1 | GRule2 | GRule3 | GRule4 | GRule5
GRule1 ::= determined(hy, true) ∧ isRelevantDiagnosis(hy, pl, true)

−→ toBeTranslated(pl, true)
GRule2 ::= toBeTranslated(pl, true) ∧ (∀pli toBeTranslated(pli, true) −→ (pli = pl))

−→ toBeSelected(pl, true)
GRule3 ::= toBeTranslated(pl1, true) ∧ toBeTranslated(pl2, true) ∧ weight(pl1, v1)

∧ weight(pl2, v2) ∧ (v1 ≥ v2) −→ toBeSelected(pl2, false)
GRule4 ::= toBeSelected(pl, true) ∧ userDefPlnCriteria(pl, true) −→ selected(pl, true)
GRule5 ::= toBeSelected(pl, true) ∧ userDefPlnCriteria(pl, false) −→ selected(pl, false)

where:
- isRelevantDiagnosis is a relation that is defined as: Hypothesis × Plan × BooleanType.
- toBeSelected is a relation that is defined as: Plan × BooleanType.
- toBeTranslated is a relation that is defined as: Plan × BooleanType.
- weight is a relation that is defined as: Plan × IntegerType.
- userDefPlnCriteria is a relation that is defined as: Plan × BooleanType.
- selected is a relation that is defined as: Plan × BooleanType.

Figure A.6: The generic rules for the planner’s plan selection.

Note that it is possible that a domain expert defines more than one remedy
plan based on one diagnosis. Depending on the situation expressed as the domain-
specific rules, one of the remedy plans is selected.

The value of userDefPlnCriteria, an attribute of Plan, is the result of the
execution of the domain-specific rules expressing the plan selection criteria out of
the set of remedy plans. This value finally determines which remedy plans should
be translated.

A.7 Plan Translation Rules

The goal of PlanTranslationRules, shown in Figure A.7, is to map a selected
remedy plan to an effector. The generic ruleGRule1 checks to see whether the basic
condition for choosing the appropriate effector is satisfied. The effector ef is chosen
if the planning process has indicated pl as the remedy plan for compensating the
current system malfunctioning, and if domain experts defined a relation between
pl and ef.

Plan-translation-rule ::= GRule1 | GRule2 | GRule3
GRule1 ::= selected(pl, true) ∧ isRelevantPlan(pl, ef , true) −→ toBeActive(ef , true)
GRule2 ::= toBeActive(ef , true) ∧ userDefEffCriteria(ef , true) −→ isActive(ef , true)
GRule3 ::= toBeActive(ef , true) ∧ userDefEffCriteria(ef , false) −→ isActive(ef , false)

where:
- isRelevantPlan is a relation that is defined as: Plan × Effector × BooleanType.
- toBeActive is a relation that is defined as: Effector × BooleanType.
- isActive is a relation that is defined as: Effector × BooleanType.
- userDefEffCriteria is a relation that is defined as: Effector × BooleanType.

Figure A.7: The generic rules for the plan translator’s plan translation.

160 Generic Rules

Similar to other generic rules, the domain-specific criteria for activating an
effector ef are represented as the userDefEffCriteria attribute of Effector. At
last, its value determines whether the isActive attribute of ef is set to true or
false.

Appendix B

Autonomic Management Code

B.1 Performing Autonomic Process

The following Java code shows what an autonomic manager performs when it is
started, how it starts its children, how it handles the sensors received, how it
performs its autonomic process, and how it handles the result of its child. This
generic code is used by all specific autonomic managers.

public abstract class AutonomicManager extends Observable implements Observer {
...
protected abstract void setChilderen();

/* An autonomic manager starts all its children. */
protected void startChilderen() {
String AMName = this.getClass().getSimpleName();
for (Iterator<AutonomicManager> iterator = subAutonomicManagers.iterator(); iterator.hasNext();) {
AutonomicManager child = iterator.next();
String childName = child.getClass().getSimpleName();
logger.info("Creating and starting childAM ’" + childName +"’ of ’" + AMName + "’.");
child.start(this);

}
}

/* The starting point for an autonomic manager. */
public void start(AutonomicManager parentAM) {
String AMName = this.getClass().getSimpleName();
String jobName = job.getClass().getSimpleName();
this.init();
parentAutonomicManagers.add(parentAM);
try {
addObserver(parentAM);

}
catch (Exception e) {
logger.info("This is probably the MasterAM which has no parent.");

}
setChilderen();
startChilderen();
logger.info("Starting Job ’" + jobName + "’ for AM ’" + AMName + "’...");
job.start(this);
analyser.start();
diagnoser.start();

}

161

162 Autonomic Management Code

/* The autonomic process is performed and the result is delivered to the parent. */
private void performAutonomicProcess() {
String AMName = this.getClass().getSimpleName();
logger.info("Starting autonomic process for AM ’" + AMName + "’...");
logger.info("Performing Analysis Rules for AM ’" + AMName + "’...");
analyser.performAnalysis(sensors, symptoms);
logger.info("Performing Diagnosis Rules for AM ’" + AMName + "’...");
diagnoser.performDiagnosis(hypotheses, symptoms);
if (countObservers() >= 1) {
setChanged();
notifyObservers(autonomicProcessResult);

}
}

/* A parent autonomic manager handles the result of its child. */
private void handleChildResult(AutonomicProcessResult childResult) {
String childResultName = childResult.getClass().getSimpleName();
logger.info("childResult ’" + childResultName + "’ received for: ’" + AMName + "’.");
for (Iterator<AutonomicManager> iterator = subAutonomicManagers.iterator(); iterator.hasNext();) {
AutonomicManager childAM = iterator.next();
AutonomicProcessResult childAPR = childAM.autonomicProcessResult;
if (childAPR.getClass().getSimpleName().equalsIgnoreCase(childResultName)) {
logger.info("Performing Mapping Rules for AM ’" + childAM.getClass().getSimpleName() + "’...");
childAM.diagnoser.performMappingRules(hypotheses, symptoms);
if (jobEndSensorReceived) {
logger.info("Perform autonomic process again because of new child results.");
performAutonomicProcess();

}
break;
}

}
childResult.setHandledByParent(true);

}

/* An autonomic manager handles the received sensor values. */
public void update(Observable observable, Object signal) {
if (signal == null) {
logger.error("Signal should not be Null.");
return;

}
if (signal instanceof JobStartSensor) {
handleJobStart((JobStartSensor)signal);

}
else if (signal instanceof AutonomicProcessResult) {
handleChildResult((AutonomicProcessResult)signal);

}
else if (signal instanceof JobEndSensor) {
handleJobEnd((JobEndSensor)signal);

}
else if (signal instanceof Sensor) {
handleContentSensor((Sensor)signal);

}
else {
logger.error("AM cannot handle this signal: " + signal.getClass().getSimpleName());

}
}
}

B.2 Instantiating Autonomic Manager

The following Java code shows how a specific autonomic manager provides the
required information used by the abstract autonomic manager.

B.3 Performing Diagnostic Process 163

public class SpecificAM extends AutonomicManager {
private static SpecificAM specificAMAM = null;
private SpecificAM() {
}
public static SpecificAM getInstance() {
if (specificAM == null) {
specificAM = new SpecificAM();

}
return specificAM;

}

/* All symptoms and hypotheses are added to the ’symptoms’ and ’hypotheses’ set.*/
public void init() {
super.init();
this.symptoms.add(new SpecificSymptom());
this.hypotheses.add(new SpecificHypothesis());
this.autonomicProcessResult = new SpecificAPR();
this.job = SpecificJob.getInstance();
this.analyser = SpecificAnalyser.getInstance();
this.diagnoser = SpecificDiagnoser.getInstance();

}

/* All children are added to the ’subAutonomicManagers’ set.*/
protected void setChilderen() {
this.subAutonomicManagers.add(SpecificChildAM.getInstance());

}
}

B.3 Performing Diagnostic Process

The following Java code shows the implementation of the diagnostic loop where
the hypothesis selection, validation, evaluation, and the diagnosis determination
rules are executed. This generic code is used by all specific diagnosers.

public abstract class Diagnoser {
...
public void performDiagnosis(ArrayList<Hypothesis> hypotheses, ArrayList<Symptom> symptoms) {
OWLModelHelper.activateHypotheses(hypotheses);
boolean anyHypSelected = false;
do {
logger.info("Performing Hypothesis Selection Rules ...");
anyHypSelected = OWLModelHelper.inferHypSelRules(hypothesisSelectionRules);
OWLModelHelper.clearHypotheses(hypotheses, OWLModelHelper.TO_BE_FOCUSSED);
OWLModelHelper.clearHypotheses(hypotheses, OWLModelHelper.TRIED);
boolean anyHypValidated = false;
if (anyHypSelected) {
logger.info("Performing Hypothesis Validation Rules ...");
anyHypValidated = OWLModelHelper.inferHypValRules(hypothesisValidationRules, symptoms);
OWLModelHelper.clearHypotheses(hypotheses, OWLModelHelper.TO_BE_VALIDATED);
}
if (anyHypValidated) {
logger.info("Performing Hypothesis Evaluation Rules ...");
OWLModelHelper.inferHypEvalRules(hypothesisEvaluationRules);
}

} while (anyHypSelected);
logger.info("Performing Diagnosis Determination Rules ...");
OWLModelHelper.inferHypDetRules(diagnosisDeterminationRules);
OWLModelHelper.clearHypotheses(hypotheses, OWLModelHelper.TO_BE_DETERMINED);
OWLModelHelper.deactivateHypotheses(hypotheses);

}
}

164 Autonomic Management Code

The following Java code shows how a specific diagnoser provides the various
rule names to the abstract diagnoser.

public class SpecificDiagnoser extends Diagnoser {
private static SpecificDiagnoser specificDiagnoser = null;
private SpecificDiagnoser() {
}
public static SpecificDiagnoser getInstance() {
if (specificDiagnoser == null) {
specificDiagnoser = new SpecificDiagnoser();

}
return specificDiagnoser;

}

/* The various rule names are delivered to the rule engine.*/
public void init() {
super.init();
hypothesisSelectionRules.add("specificHypSelRule-1");
hypothesisValidationRules.add("specificHypValRule-1");
hypothesisEvaluationRules.add("specificHypEvalRule-1");
diagnosisDeterminationRules.add("specificHypDetRule-1");
childResultToSymptomRules.add("specific2AuthPrepMapRule-1");

}
}

B.4 Handling Sensor Values

The following Java code shows how a job delegates the received sensor values to
its associated autonomic manager. This generic code is used by all specific jobs.

public abstract class Job extends Observable implements Observer {
...
public abstract void start(AutonomicManager associatedAM);

/* A job delegates the received sensor values to its associated autonomic manager. */
public void update(Observable observable, Object sensor) {
setChanged();
notifyObservers(sensor);

}
}

The following Java code shows how a specific job registers its associated auto-
nomic manager and starts the different sensors to listen to their incoming values
from the managed system. The abstract job class handles the delegation of the
sensor values to the proper autonomic manager.

public class SpecificJob extends Job {
private static SpecificJob specificJob = null;
private SpecificJob() {
}
public static SpecificJob getInstance() {
if (specificJob == null) {
specificJob = new SpecificJob();

}
return specificJob;

}

/* This starts listening to incoming sensor values. */
public void start(AutonomicManager associatedAM) {

B.5 Execution of Rules by Rule Engine 165

addObserver(associatedAM);
SpecificJobStart SpecificJobStart = new SpecificJobStart();
SpecificJobStart.addObserver(this);
SpecificJobStart.listen();
ContentSensor contentSensor = new ContentSensor();
contentSensor.addObserver(this);
contentSensor.listen();
SpecificJobEnd SpecificJobEnd = new SpecificJobEnd();
SpecificJobEnd.addObserver(this);
SpecificJobEnd.listen();

}
}

B.5 Execution of Rules by Rule Engine

The following Java code shows how an autonomic manager connects to the rule
engine, delivers the generic and domain specific rules to the rule engine, and obtains
the inferred facts. In addition, it is shown how the autonomic manager starts an
inspective plan.

public class OWLModelHelper {
...
/* Load proper rules. */
public static boolean inferHypValRules(ArrayList<String> hypValRuleNames, ArrayList<Symptom> symptoms) {
enableRules(GENERIC_HYP_VAL_RULES_1);
String[] ruleNames = new String[hypValRuleNames.size()];
enableRules(hypValRuleNames.toArray(ruleNames));
Set<OWLAxiom> inferredProps = inferRules();
disableRules(GENERIC_HYP_VAL_RULES_1);
disableRules(hypValRuleNames.toArray(ruleNames));
determineInspection(inferredProps, symptoms);
enableRules(GENERIC_HYP_VAL_RULES_2);
inferredProps = inferRules();
disableRules(GENERIC_HYP_VAL_RULES_2);
return anyHypValidated(inferredProps);

}

/* Starting an inspective plan. */
private static void startInspection(Symptom symptom) {
if (symptom.isInspectionPerformed()) {
return;

}
else {
symptom.setInspectionPerformed(true);

}
String symptomName = symptom.getClass().getSimpleName();
Plan plan = symptom.getInspectivePlan();
logger.info("@@@Inspective Plan ’" + plan.getClass().getSimpleName() +

"’, associated with the symptom ’" + symptomName + "’, is going to be executed...");
plan.execute();

}

/* Perform rule inference. */
private static Set<OWLAxiom> inferRules() {
Set<OWLAxiom> inferredProps = null;
try {
bridge.importSWRLRulesAndOWLKnowledge();
bridge.run();
logger.info("NumberOfInferredProperties: " + bridge.getNumberOfInferredAxioms());
inferredProps = bridge.getInferredAxioms();
for (Iterator<OWLAxiom> iterator = inferredProps.iterator(); iterator.hasNext();) {
OWLPropertyAssertionAxiom inferredProp = (OWLPropertyAssertionAxiom) iterator.next();

166 Autonomic Management Code

logger.info(inferredProp.toString());
}
bridge.writeInferredKnowledge2OWL();
bridge.reset();

}
catch (Throwable t) {
logger.error("SWRL RuleEngine exception occurred during infering rules.", t);

}
return inferredProps;

}
}

Samenvatting (Dutch Summary)

Tegenwoordig vinden we informatiesystemen in allerlei commerciële en sociale or-
ganisaties. Informatiesystemen bëınvloeden de dagelijkse operaties en competi-
tieve strategieën van organisaties. Het succes en voortbestaan van vrijwel iedere
organisatie hangt in hoge mate af van informatietechnologie. Hedendaagse orga-
nisaties beschouwen informatie, die door hun informatiesystemen wordt geprodu-
ceerd, als een vitale resource voor hun organisatie, net als geld. Naarmate organi-
saties meer afhankelijk van informatie worden, worden hun eisen ten aanzien van
de kwaliteit, verwerking, beschikbaarheid en de distributie van informatie uitge-
breider en strenger. Dit leidt tot het ontstaan van complexe informatiesystemen.
Het beheer van steeds in complexiteit groeiende informatiesystemen is één van de
belangrijke uitdagingen voor het Autonomic Computing onderzoeksveld.

Een informatiesysteem wordt gedefinieerd als een verzameling van hardware,
software, netwerk, mensen en procedures die samen gegevens verzamelen en dit
vervolgens naar informatie omzetten. Informatiesystemen vertonen een gedrag (le-
veren een functionaliteit) en hebben een structuur. In dit proefschrift ligt de focus
op het beheer van bestaande gedistribueerde informatiesystemen. Bij het beheer
van deze systemen moet rekening gehouden worden met zowel gedragsgerelateerde
als structuurgerelateerde complexiteiten. Om deze complexiteiten aan te kunnen
worden in dit proefschrift de generieke principes van het autonomic computing pa-
radigma gebruikt: laat systemen zichzelf beheren (self-management). Volgens dit
paradigma heeft een zichzelf beherend systeem twee bouwstenen: een autonomic
manager en een managed resource. In dit proefschrift wordt een individueel gedrag
van het systeem beschouwd als de basiseenheid (managed resource) die door een
autonomic manager wordt beheerd.

Aangezien een gedrag de basiseenheid van autonomic management in de aan-
pak in dit proefschrift is, is het van belang om te weten wat er met een gedrag
bedoeld wordt en hoe een autonomic manager kennis over het te beheren gedrag
kan verkrijgen. In essentie is een gedrag een functionaliteit die van een systeem
wordt verwacht, zoals het afhandelen van een geldtransactie door een internet-
bankiersysteem of het tonen van artikelen in antwoord op een zoekopdracht door
een webwinkelsysteem. Normaliter vertoont een systeem meervoudige gedragin-
gen. Gedragingen van een systeem kunnen complex of simpel zijn. Een complex
gedrag bestaat uit een aantal minder complexe of atomaire gedragingen. Het to-
nen van artikelen door een webwinkelsysteem is een voorbeeld van een complex

167

168 Samenvatting (Dutch Summary)

gedrag. Dit gedrag bestaat uit het analyseren van de gegeven zoekopdracht, het
ophalen van de desbetreffende gegevens vanuit de gegevensbank en het opmaken
(leesbaar maken) van de gegevens voor gebruikers. Zoals eerder gezegd moeten
autonomic managers kennis hebben over de te beheren gedragingen. De kennis
die verschillende gedragingen van een systeem beschrijft wordt vaak verworven
tijdens de software ontwerp- en ontwikkelfase en wordt vaak in use-case notaties
gespecificeerd. In dit proefschrift wordt voorgesteld om de use-case specificaties,
die systeemgedragingen representeren, te hergebruiken voor bewerkstelligen van
self-management (Hoofdstuk 3).

De activiteiten van autonomic managers zijn gebaseerd op het management
model voor gedistribueerde systemen. Dit model is uitvoerig in dit proefschrift
beschreven. Het bevat de volgende functionele entiteiten: analyser, diagnoser,
planner en plan translator. Het bevat ook de informatiestroomentiteiten: sensor,
symptom, hypothesis, plan en effector. Om een individueel gedrag van een systeem
te kunnen beheren maakt de autonomic manager gebruik van de informatie die
door sensoren wordt geleverd. Deze sensoren zijn al in het te beheren systeem
gëınstrumenteerd. De analyser constateert aan de hand van de sensorwaarden
of een afwijkend gedrag (symptom) heeft plaatsgevonden. De diagnoser stelt de
eventuele oorzaak (hypothesis) van het afwijkende gedrag vast. De planner se-
lecteert aan de hand van de vastgestelde diagnose een plan vanuit zijn plannen
opslagplaats. Vervolgens vertaalt de plan translator het geselecteerde plan naar
uitvoerbare adaptatieinstructies (effectors). Dit proces wordt het autonomic ma-
nagement process genoemd. Autonomic managers communiceren het resultaat van
hun autonomic management process aan elkaar om de complexe gedragingen van
een systeem te beheren (Hoofdstuk 4).

Om zelf-beherend systemen een groot deel van hun eigen gebreken te laten lo-
kaliseren en oplossen is het noodzakelijk dat deze systemen zichzelf kennen. Hier-
voor zijn twee modellen van een te beheren systeem voorgesteld en geconstrueerd:
behavioural en structural modellen. Het eerste model beschrijft hoe een gedistribu-
eerd systeem zijn functionaliteit aanbiedt en het tweede model beschrijft de interne
structuur van een gedistribueerd systeem. De elementen van het behavioural model
zijn job, task, state en event. Het achterliggende idee hierbij is dat een systeem een
gedrag (job) door middel van het uitvoeren van een aantal taken (tasks) realiseert.
Deze taken veranderen de verschillende status (state) van het systeem. Tijdens
het uitvoeren van een taak kunnen gebeurtenissen (events) plaatsvinden waardoor
de normale gang van zaken wordt verstoord. De elementen van het structural mo-
del zijn runnable, connector, component, class en method. Het achterliggende idee
hierbij is dat een gedistribueerd systeem bestaat uit meerdere processen (runna-
bles), welke een draaiend softwareprogramma is. Deze processen communiceren
met elkaar middels netwerk-software programma’s (connectors). Ieder proces be-
staat uit een aantal componenten (components). Iedere component bestaat uit een
aantal klassen (classes). Ten slotte bestaat iedere klasse uit een aantal functies
(methods) die de echte systeemtaken uitvoeren. Autonomic managers gebruiken
beide modellen voor hun managementdoelen (Hoofdstuk 5).

Alle kennis die in de behavioural, structural en management modellen is opge-

169

nomen wordt self-management kennis genoemd. Om deze kennis in een geauto-
matiseerde omgeving te kunnen gebruiken is het noodzakelijk om deze kennis in
een kennisrepresentatietaal te representeren. In dit proefschrift wordt een aantal
belangrijke eisen voor de representatie van de self-management kennis in gedis-
tribueerde omgevingen besproken en betoogd dat de Semantic Web talen OWL
en SWRL samen aan die eisen voldoen. Vervolgens worden de verschillende delen
van de self-management kennis in Semantic Web ontologieën (self-management
ontologieën) gerepresenteerd (Hoofdstuk 6).

Zoals eerder gezegd bestaat een zelf-beherend systeem uit een aantal autonomic
managers (die samen een autonomic management laag vormen) en het te beheren
systeem. Om een bestaand gedistribueerd systeem te verrijken met self-manage-
ment capabiliteiten moet er een autonomic management laag beschikbaar zijn.
Voor dit doel is er in dit proefschrift een self-management raamwerk ontworpen
en gëımplementeerd. Om de toepasbaarheid van het self-management raamwerk
op de management van in de praktijk voorkomende problemen te demonstreren
zijn er twee praktijkstudies gëımplementeerd. In de eerste praktijkstudie wordt
getoond hoe de autonomic management laag de diagnose van twee gelijktijdig op-
tredende fouten vaststelt. In de tweede praktijkstudie wordt gedemonstreerd hoe
autonomic managers in een ouder-kind hiërarchie met elkaar communiceren en
coöpereren om een diagnose op meerdere niveaus (multi-level diagnose) mogelijk
te maken (Hoofdstuk 7).

Het raamwerk genereert broncode voor de autonomic management laag en voor
het instrumenteren van sensoren in het te beheren systeem. Het raamwerk maakt
gebruik van de generieke self-management ontologieën en de specifieke instanties
van die ontologieën die ten behoeve van het te beheren systeem door domeinexperts
zijn aangemaakt (Hoofdstuk 8).

170 Samenvatting (Dutch Summary)

Bibliography

[1] D. Agrawal, K. W. Lee, and J. Lobo. Policy-based management of networked
computing systems. IEEE Communications Magazine, 43:69–75, 2005.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques,
and tools. Addison Wesley, 1985.

[3] A. Ajorlou, A. Homaifar, A. Esterline, J. G. Moore, and R. J. Bamberger.
Market-based coordination of UAVs for time-constrained remote data col-
lection and relay. International Journal of Applied Science, Engineering and
Technology, 4:19, 2008.

[4] Y. Al-Nashif, A. A. Kumar, S. Hariri, Y. Luo, F. Szidarovsky, and G. Qu.
Multi-level intrusion detection system (ML-IDS). In Proceedings of the Fifth
International Conference on Autonomic Computing (ICAC ’08), volume 0,
pages 131–140, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

[5] O. Alliance. OSGi Service Platform: The OSGi Alliance. IOS Press,US,
April 2007.

[6] R. Anthony, A. Butler, and M. Ibrahim. Exploiting Emergence in Autonomic
Systems. In M. Parashar and S. Hariri, editors, Autonomic Computing:
Concepts, Infrastructure, and Applications, pages 121–146. Taylor & Francis,
Inc., Bristol, PA, USA, 2007.

[7] R. J. Anthony. Policy-centric integration and dynamic composition of au-
tonomic computing techniques. In Proceedings of the Fourth International
Conference on Autonomic Computing (ICAC ’07), page 2, Washington, DC,
USA, 2007. IEEE Computer Society.

[8] Apache Software Foundation. Apache HTTP Server. http://httpd.

apache.org/, 1996.

[9] Apache Software Foundation. Apache ActiveMQ. http://activemq.

apache.org/home.html, 2005.

[10] L. Ardissono, L. Console, A. Goy, G. Petrone, C. Picardi, M. Segnan, and
D. T. Dupré. Enhancing web services with diagnostic capabilities. In Euro-
pean Conference on Web Services (ECOWS ’05), pages 182–191, 2005.

171

172 Bibliography

[11] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan. Fault tolerant
web service orchestration by means of diagnosis. In European Workshop on
Software Architecture (EWSA ’06), pages 2–16, 2006.

[12] G. K. Baah, A. Podgurski, and M. J. Harrold. The probabilistic program
dependence graph and its application to fault diagnosis. In Proceedings of
the international symposium on Software testing and analysis (ISSTA ’08),
pages 189–200, New York, NY, USA, 2008. ACM.

[13] C. Ballagny, N. Hameurlain, and F. Barbier. Mocas: A state-based com-
ponent model for self-adaptation. In Third IEEE International Conference
on Self-Adaptive and Self-Organizing Systems (SASO ’09), pages 206–215,
September 2009.

[14] L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL pro-
cesses. In Proceedings of the 3rd Int. Conference on Service Oriented Com-
puting (ICSOC ’05), pages 269–282, 2005.

[15] R. L. Baskerville. Investigating information systems with action research.
Commun. AIS, 2, November 1999.

[16] S. Bechhofer, F. van Harmelen, J. A. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL web ontology language
reference. http://www.w3.org/TR/owl-ref, 2004.

[17] T. Berners-Lee, R. Fielding, U. Irvine, and L. Masinter. Uniform resource
identifiers (uri): Generic syntax. http://www.ietf.org/rfc/rfc2396.txt,
1998.

[18] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific
American, May 2001.

[19] C. Bidan, V. Issarny, T. Saridakis, and A. Zarras. A dynamic reconfiguration
service for corba. In CDS ’98: Proceedings of the International Conference
on Configurable Distributed Systems, page 35, Washington, DC, USA, 1998.
IEEE Computer Society.

[20] J. P. Bigus, D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao.
ABLE: A toolkit for building multiagent autonomic systems. IBM Systems
Journal, 41(3):350–371, 2002.

[21] P. V. Biron, K. Permanente, and A. Malhotra. XML Schema Part 2:
Datatypes Second Edition. http://www.w3.org/TR/xmlschema-2, 2004.

[22] M. Boesen and J. Madsen. eDNA: A bio-inspired reconfigurable hardware
cell architecture supporting self-organisation and self-healing. In Conference
on Adaptive Hardware and Systems (AHS ’09), pages 147–154, August 2009.

Bibliography 173

[23] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan. Extensible Markup Language (XML) 1.1 (Second Edition). http:
//www.w3.org/TR/xml11/, 2006.

[24] F. M. T. Brazier, C. M. Jonker, and J. Treur. Dynamics and control in
component-based agent models. Int. J. Intell. Syst., 17(11):1007–1047, 2002.

[25] F. M. T. Brazier, J. O. Kephart, H. V. D. Parunak, and M. N. Huhns.
Agents and service-oriented computing for autonomic computing: A research
agenda. IEEE Internet Computing, 13:82–87, 2009.

[26] F. M. T. Brazier, J. Treur, and N. J. E. Wijngaards. The acquisition of a
shared task model. In Proceedings of the 9th European Knowledge Acquisition
Workshop on Advances in Knowledge Acquisition (EKAW ’96), pages 278–
289, London, UK, 1996. Springer-Verlag.

[27] D. Brickley and R. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, 2004.

[28] A. Brogi, C. Canal, and E. Pimentel. On the semantics of software adapta-
tion. Sci. Comput. Program., 61(2):136–151, 2006.

[29] A. Brown, G. Kar, and A. Keller. An active approach to characterizing dy-
namic dependencies for problem determination in a distributed environment.
In Proceedings of the 7th IFIP/IEEE International Symposium on Integrated
Network Management, 2001.

[30] C. E. Brown. Automated Reasoning in Higher-Order Logic: Set Compre-
hension and Extensionality in Church’s Type Theory. College Publications,
2007.

[31] B. G. Buchanan and R. O. Duda. Principles of rule-based expert systems.
Technical report, Stanford, CA, USA, 1982.

[32] G. Cabri, L. Leonardi, and R. Quitadamo. Tackling complexity of distributed
systems: Towards an integration of service-oriented computing and agent-
oriented programming. In International Multiconference on Computer Sci-
ence and Information Technology (IMCSIT ’08), pages 9–15, October 2008.

[33] G. Candea, E. Kiciman, S. Zhang, P. Keyani, and A. Fox. Jagr: An au-
tonomous self-recovering application server. International Workshop on Ac-
tive Middleware Services, 0:168, 2003.

[34] M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd, D. Patterson, A. Fox, and
E. Brewer. Path-based failure and evolution management. In Proceedings
of the first conference on Networked Systems Design and Implementation
(NSDI ’04), pages 23–23, Berkeley, CA, USA, 2004. USENIX Association.

174 Bibliography

[35] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pinpoint: Prob-
lem determination in large, dynamic internet services. In Proceedings of the
International Conference on Dependable Systems and Networks, volume 0,
page 595, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[36] P. P. Chen. The entity-relationship model - Toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976.

[37] X. Chen. Extending RMI to support dynamic reconfiguration of distributed
systems. In Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS ’02), page 401, Washington, DC, USA, 2002.
IEEE Computer Society.

[38] X. Chen. Specifying a component model for building dynamically reconfig-
urable distributed systems. In Proceedings of the 4th International Confer-
ence on Formal Engineering Methods (ICFEM ’02), pages 80–91, London,
UK, 2002. Springer-Verlag.

[39] S. W. Cheng, A. C. Huang, D. Garlan, B. R. Schmerl, and P. Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastructure. In
Proceedings of the First International Conference on Autonomic Computing
(ICAC ’04), pages 276–277, 2004.

[40] S. Chiba. Javassist: Java bytecode engineering made simple. Java Devel-
oper’s Journal, 9(1), 2004.

[41] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2001.

[42] T. Cofino, Y. Doganoata, Y. Drissi, T. Fin, L. Kozakov, and M. Laker.
Towards knowledge management in autonomic systems. In Proceedings of the
Eight IEEE International Symposium on Computers and Communications
(ISCC’03), pages 789–794, Kemer, Turkey, 2003.

[43] A. Colyer and A. Clement. Aspect-Oriented programming with AspectJ.
IBM System Journal, 44(2):301–308, 2005.

[44] O. Corcho and A. Gmez-prez. A roadmap to ontology specification languages.
In Proceedings of the 12th International Conference on Knowledge Engineer-
ing and Knowledge Management: Methods, Models and Tools (EKAW ’00),
pages 80–96. Springer, 2000.

[45] D. D. Corkill. Hierarchical planning in a distributed environment. In Pro-
ceedings of the Sixth International Joint Conference on Artificial Intelligence
(IJCAI-79), pages 168–175, San Mateo, CA, 1979. Morgan Kaufmann Pub-
lishers.

[46] J. W. Creswell. Research Design: Qualitative, Quantitative, and Mixed Meth-
ods Approaches, volume 2. Sage Publications, 2003.

Bibliography 175

[47] DARPA. DARPA Agent Markup Language (DAML). http://wwww.daml.
org/.

[48] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. A highly-extensible,
XML-based architecture description language. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture, pages 103–112, 2001.

[49] R. Davis, H. E. Shrobe, and P. Szolovits. What is a knowledge representa-
tion? AI Magazine, 14(1):17–33, 1993.

[50] A. De Paola, S. Fiduccia, S. Gaglio, L. Gatani, G. Lo Re, A. Pizzitola,
M. Ortolani, P. Storniolo, and A. Urso. Rule based reasoning for network
management. In Proceedings of the 7th International Workshop on Computer
Architecture for Machine Perception (CAMP ’05), pages 25–30, Washington,
DC, USA, 2005. IEEE Computer Society.

[51] M. de Weerdt, A. ter Mors, and C. Witteveen. Multi-agent Planning: An
introduction to planning and coordination. In Handouts of the European
Agent Summer School, pages 1–32, 2005.

[52] T. De Wolf and T. Holvoet. Design patterns for decentralised coordination
in self-organising emergent systems. In Proceedings of the 4th international
conference on Engineering self-organising systems (ESOA ’06), pages 28–49,
Berlin, Heidelberg, 2007. Springer-Verlag.

[53] Y. Diao, J. Hellerstein, S. Parekh, and J. Bigus. Managing WebServer Perfor-
mance with AutoTune Agents. IBM Systems Journal, 42(1):136–149, 2003.

[54] Y. Diao, J. L. Hellerstein, and S. Parekh. Optimizing quality of service using
fuzzy control. In Proceedings of the 13th IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management (DSOM ’02), pages
42–53, London, UK, 2002. Springer-Verlag.

[55] DMTF. Common Information Model (CIM) Schema - version 2.21.0. http:
//www.dmtf.org/standards/cim, 2009.

[56] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci,
P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic
communications. ACM Trans. Auton. Adapt. Syst., 1(2):223–259, 2006.

[57] J. Dollimore, T. Kindberg, and G. Coulouris. Distributed Systems: Concepts
and Design (4th Edition) (International Computer Science Series). Addison
Wesley, May 2005.

[58] F. Dressler. Self-Organization in Sensor and Actor Networks. Wiley Series in
Communications Networking & Distributed Systems. Wiley-Blackwell, UK,
2007.

176 Bibliography

[59] S. Duan and S. Babu. Guided problem diagnosis through active learning. In
Proceedings of the Fifth International Conference on Autonomic Computing
(ICAC ’08), volume 0, pages 45–54, Los Alamitos, CA, USA, 2008. IEEE
Computer Society.

[60] D. Dubois and H. Prade. What are fuzzy rules and how to use them. Fuzzy
Sets and Systems, 84:169–185, 1996.

[61] S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting Empirical
Methods for Software Engineering Research. Springer, 2007.

[62] B. Eckel. Thinking in Java (4th Edition). Prentice Hall PTR, February 2006.

[63] X. Elkorobarrutia, A. Izagirre, and G. Sagardui. A self-healing mechanism
for state machine based components. In Proceedings of the First International
Conference on Ubiquitous Computing: Applications, Technology and Social
Issues, Alcal de Henares, 2006.

[64] T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming: In-
troduction. Communications of the ACM, 44(10):29–32, 2001.

[65] C. Ensel and A. Keller. Managing application service dependencies with
XML and the resource description framework. In Proceedings of the 7th
International IFIP/IEEE Symposium on Integrated Management (IM ’01),
pages 661–674. IEEE Publishing, 2001.

[66] S. Ewen, M. Ortega-Binderberger, and V. Markl. A learning optimizer for a
federated database management system. In Proceedings of the 8th interna-
tional conference on Database Systems for Business, Technology, and Web
(BTW ’05), pages 87–106, Berlin, Germany, 2005. Springer.

[67] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, 1987.

[68] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object
pattern match problem. Artificial Intelligence, 19:17–37, 1982.

[69] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Model-
ing Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[70] E. Friedman-Hill. Jess in Action : Java Rule-Based Systems (In Action
series). Manning Publications, December 2002.

[71] H. Fu, C. Zhu, E. Dellandrea, C. E. Bichot, and L. Chen. Visual object cate-
gorization via sparse representation. In Proceedings of the Fifth International
Conference on Image and Graphics (ICIG ’09), pages 943–948, September
2009.

Bibliography 177

[72] A. G. Ganek and T. A. Corbi. The dawning of the autonomic computing
era. IBM Syst. J., 42(1):5–18, 2003.

[73] M. W. Georg Kosters, Bernd-Uwe Pagel. Coupling use cases and class mod-
els. In Proceedings of the BCS-FACS/EROS workshop on Making Object
Oriented Methods More Rigorous, pages 27–30, London, Imperial College,
1997.

[74] S. Ghanbari, G. Soundararajan, J. Chen, and C. Amza. Adaptive learning
of metric correlations for temperature-aware database provisioning. In Pro-
ceedings of the Fourth International Conference on Autonomic Computing
(ICAC ’07), page 26, Washington, DC, USA, 2007. IEEE Computer Society.

[75] T. T. P. Guanrong Chen. Introduction to fuzzy sets, fuzzy logic, and fuzzy
control systems. CRC Press, 2001.

[76] C. Gupta, A. Mehta, and U. Dayal. Pqr: Predicting query execution times for
autonomous workload management. In Proceedings of the Fifth International
Conference on Autonomic Computing (ICAC ’08), pages 13–22, Washington,
DC, USA, 2008. IEEE Computer Society.

[77] V. Haarslev and R. Möller. Racer: A core inference engine for the semantic
web. In In 2nd International Workshop on Evaluation of Ontology-based
Tools (EON ’03), pages 27–36, 2003.

[78] M. Ham and G. Agha. Market-based coordination strategies for physical
multi-agent systems. SIGBED Rev., 5:23:1–23:2, January 2008.

[79] M. Ham and G. Agha. A robust audit mechanism to prevent malicious
behaviors in multi-robot systems. In Proceedings of the Second IEEE Inter-
national Conference on Self-Adaptive and Self-Organizing Systems (SASO
’08), pages 35–44, October 2008.

[80] A. Hanemann. A hybrid rule-based/case-based reasoning approach for ser-
vice fault diagnosis. In Proceedings of the 20th International Conference
on Advanced Information Networking and Applications (AINA ’06), pages
734–740, Washington, DC, USA, 2006. IEEE Computer Society.

[81] L. Hart, P. Emery, R. M. Colomb, K. Raymond, D. Chang, Y. Ye, E. Kendall,
and M. Dutra. Usage scenarios and goals for ontology definition meta-model.
In Procceding of the 5th International Conference on Web Information Sys-
tem Engineering(WISE ’04), pages 596–607. Springer-Verlag, 2004.

[82] A. R. Haydarlou, M. A. Oey, B. J. Overeinder, and F. M. T. Brazier. Using
semantic web technology for self-management of distributed object-oriented
systems. In Proceedings of the IEEE/WIC/ACM International Conference
on Web Intelligence (WI ’06), pages 489–493, Hong Kong, China, 2006.

178 Bibliography

[83] A. R. Haydarlou, M. A. Oey, M. Warnier, and F. M. T. Brazier. Structured
use-cases as a basis for self-management of distributed systems. In Proceed-
ings of the 5th International Conference on Software and Data Technologies
(ICOSFT ’10), pages 198–205, Athens, Greece, 2010.

[84] A. R. Haydarlou, B. J. Overeinder, and F. M. T. Brazier. A self-healing
approach for object-oriented applications. In Proceedings of the 3rd Intl.
Workshop on Self-Adaptive and Autonomic Computing Systems, pages 191–
195, Copenhagen, Denmark, 2005.

[85] A. R. Haydarlou, B. J. Overeinder, M. A. Oey, and F. M. T. Brazier. Multi-
level model-based self-diagnosis of distributed object-oriented systems. In
Proceedings of the 3rd IFIP International Conference on Autonomic and
Trusted Computing (ATC ’06), pages 67–77, Wuhan, China, 2006.

[86] K. Herrmann, G. Muhl, and K. Geihs. Self-management: The solution to
complexity or just another problem? IEEE Distributed Systems Online,
6(1):1, 2005.

[87] A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in informa-
tion systems research. MIS Q., 28:75–105, March 2004.

[88] R. A. Hirschheim. Information systems epistemology: An historical per-
spective. In Information Systems Research: Issues, Methods and Practical
Guidelines, pages 28–60, London, U.K., 1992. Blackweel Scientific Publica-
tions.

[89] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C. Wroe. A prac-
tical guide to building OWL ontologies using the Protégé-OWL plugin and
COODE tools, 2004.

[90] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL and
RuleML. http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/,
2004.

[91] M. C. Huebscher and J. A. McCann. A survey of autonomic computing -
degrees, models, and applications. ACM Comput. Surv., 40(3):1–28, 2008.

[92] IBM. WebSphere Application Server. http://www-306.ibm.com/software/
webservers/appserv/was, 2007.

[93] IBM Corporation. An architectural blueprint for autonomic computing.
2005. White Paper.

[94] F. Irmert, T. Fischer, and K. Meyer-Wegener. Runtime adaptation in a
service-oriented component model. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems
(SEAMS ’08), pages 97–104, New York, NY, USA, 2008. ACM.

Bibliography 179

[95] I. Jacobson. Object-Oriented Software Engineering. Addison-Wesley Pub-
lishing Company, 1992.

[96] D. Jannach, K. Leopold, C. Timmerer, and H. Hellwagner. A knowledge-
based framework for multimedia adaptation. The International Journal of
Artificial Intelligence, Neural Networks, and Complex Problem-Solving Tech-
nologies, page 109125, 2006.

[97] T. Jansen, M. Amirijoo, U. Turke, L. Jorguseski, K. Zetterberg, R. Nasci-
mento, L. Schmelz, J. Turk, and I. Balan. Embedding multiple self-
organisation functionalities in future radio access networks. In Proceedings
of the 69th IEEE Vehicular Technology Conference (VTC ’09), pages 1–5.
Springer, 2009.

[98] N. Janssens, E. Truyen, F. Sanen, and W. Joosen. Adding dynamic recon-
figuration support to JBoss AOP. In Proceedings of the 1st workshop on
Middleware-application interaction (MAI ’07), volume 224 of ACM Interna-
tional Conference Proceeding Series, pages 1–8, New York, NY, USA, 2007.
ACM.

[99] JBoss Federation. Hibernate framework. http://www.hibernate.org, 2007.

[100] JBoss Federation. JBoss Application Server. http://labs.jboss.com/

jbossas, 2007.

[101] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen.
Gossip-based peer sampling. ACM Trans. Comput. Syst., 25(3):8, 2007.

[102] L. Jessup and J. Valacich. Information Systems Today: Managing in the
Digital World. Pearson Prentice Hall, 3rd edition, 2006.

[103] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. Trace Analysis for Fault
Detection in Application Servers. In M. Parashar and S. Hariri, editors,
Autonomic Computing: Concepts, Infrastructure, and Applications, pages
471–491. Taylor & Francis, Inc., Bristol, PA, USA, 2007.

[104] R. Johnson, J. Hoeller, A. Arendsen, T. Risberg, and D. Kopylenko. Pro-
fessional Java Development with the Spring Framework. Wrox Press Ltd.,
Birmingham, UK, UK, 2005.

[105] G. Kar, A. Keller, and S. Calo. Managing application services over ser-
vice provider networks: Architecture and dependency analysis. In Proceed-
ings of the 7th IEEE/IFIP Network Operations and Management Symposium
(NOMS 00, pages 61–75. IEEE Press, 2000.

[106] J. Keeney, K. Carey, D. Lewis, and V. Wade. Ontology-based semantics for
composable autonomic elements. In Proceedings of the Workshop on AI in
Autonomic Communications at the 19th International Joint Conference on
Artificial Intelligence (IJCAI), 2005.

180 Bibliography

[107] A. Keller, E. Keller, and G. Kar. Dynamic dependencies in application ser-
vice management. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA ’00), Las
Vegas, Nevada, USA, June 2000. CSREA Press.

[108] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, F. Rawson, and
C. Lefurgy. Coordinating multiple autonomic managers to achieve speci-
fied power-performance tradeoffs. In Proceedings of the Fourth International
Conference on Autonomic Computing (ICAC ’07), page 24, Washington,
DC, USA, 2007. IEEE Computer Society.

[109] J. O. Kephart and D. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[110] G. Khanna, M. Y. Cheng, P. Varadharajan, S. Bagchi, M. P. Correia, and
P. J. Verssimo. Automated rule-based diagnosis through a distributed mon-
itor system. IEEE Transactions on Dependable and Secure Computing,
4(4):266–279, 2007.

[111] R. Khare, M. Guntersdorfer, P. Oreizy, N. Medvidovic, and R. Taylor. xADL:
Enabling architecture-centric tool integration with XML. Hawaii Interna-
tional Conference on System Sciences, 9:9053, 2001.

[112] B. Khargharia and S. Hariri. Autonomic Power and Performance Manage-
ment of Internet Data. In M. Parashar and S. Hariri, editors, Autonomic
Computing: Concepts, Infrastructure, and Applications, pages 435–469. Tay-
lor & Francis, Inc., Bristol, PA, USA, 2007.

[113] B. Khargharia, S. Hariri, and M. S. Yousif. Autonomic power and perfor-
mance management for computing systems. Cluster Computing, 11(2):167–
181, 2008.

[114] T. Kinnunen, J.-K. Kamarainen, L. Lensu, and H. Kalviainen. Unsupervised
visual object categorisation via self-organisation. In Proceedings of the 20th
International Conference on Pattern Recognition (ICPR ’10), pages 440–443,
2010.

[115] T. Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6, 1998.

[116] J. Kramer and J. Magee. Self-managed systems: an architectural challenge.
In Future of Software Engineering (FOSE ’07), pages 259–268, Washington,
DC, USA, 2007. IEEE Computer Society.

[117] J. Krill and M. O’Driscoll. Near-neighbor based engineering: A new systems
engineering approach for emergent, swarming networks. In IEEE 3rd Annual
International Systems Conferences (SysCon), pages 76–81, Vancouver, BC,
2009.

Bibliography 181

[118] G. Kulkarni and P. Waingankar. Fuzzy logic based traffic light controller. In
Proceedings of the International Conference on Industrial and Information
Systems (ICIIS ’07), pages 107–110, September 2007.

[119] G. Lamperti and M. Zanella. Diagnosis of Active Systems: Principles and
Techniques. Kluwer Academic Publisher, Dordrecht, NL, 2003.

[120] O. Lassila and R. R. Swick. Resource Description Framework
(RDF) Model and Syntax Specification. http://www.w3.org/TR/1999/

REC-rdf-syntax-19990222/, 1999.

[121] C. Lefurgy, X. Wang, and M. Ware. Server-level power control. In ICAC ’07:
Proceedings of the Fourth International Conference on Autonomic Comput-
ing, page 4, Washington, DC, USA, 2007. IEEE Computer Society.

[122] F. Lewis. Introduction to modern control theory. In Applied Optimal Control
and Estimation, chapter 1. Prentice-Hall, 1992.

[123] X. Li, X. Qiu, L. Wang, B. Lei, and W. E. Wong. UML state machine
diagram driven runtime verification of java programs for message interac-
tion consistency. In SAC ’08: Proceedings of the 2008 ACM symposium on
Applied computing, pages 384–389, New York, NY, USA, 2008. ACM.

[124] X. Li, B. Veeravalli, and H. Li. Multimedia service provisioning and personal-
ization on grid-based infrastructures: Now and the future. IEEE MultiMedia,
pages 36–45, 2009.

[125] H. Liu. A component-based programming model for autonomic applications.
In Proceedings of the First International Conference on Autonomic Comput-
ing (ICAC ’04), pages 10–17, Washington, DC, USA, 2004. IEEE Computer
Society.

[126] G. M. Lohman and S. Lightstone. Smart: Making DB2 (more) autonomic.
In Proceedings of the international conference on Very Large Data Bases
(VLDB ’02), pages 877–879, 2002.

[127] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In Proceedings of the ACM
SIGPLAN conference on Programming language design and implementation
(PLDI ’05), volume 40, pages 190–200, New York, NY, USA, June 2005.
ACM Press.

[128] T. Margaria and B. Steffen, editors. Leveraging Applications of Formal Meth-
ods, Verification, and Validation, volume 6416 of Lecture Notes in Computer
Science, Heraklion, Crete, Greece, October 2010. Springer.

[129] V. Markl, G. M. Lohman, and V. Raman. LEO: An autonomic query opti-
mizer for DB2. IBM Syst. J., 42(1):98–106, 2003.

182 Bibliography

[130] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. OWL-S: Semantic markup for web services. http://www.w3.

org/Submission/OWL-S/, 2004.

[131] P. Martin, S. Elnaffar, and T. Wasserman. Workload models for autonomic
database management systems. In Proceedings of the International Confer-
ence on Autonomic and Autonomous Systems (ICAS ’06), page 10, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[132] W. Mathias. Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 5rd edition, November 2007.

[133] J. Meyer and T. Downing. Java virtual machine. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 1997.

[134] Microsoft. ODBC - Open Database Connectivity Overview. http://

support.microsoft.com/kb/110093, 2007.

[135] K. L. Mills. A brief survey of self-organization in wireless sensor networks:
Research articles. Wirel. Commun. Mob. Comput., 7(7):823–834, 2007.

[136] Y. Mohan and S. Ponnambalam. An extensive review of research in swarm
robotics. In World Congress on Nature Biologically Inspired Computing
(NaBIC ’09), pages 140–145, September 2009.

[137] S. Montani and C. Anglano. Case-based reasoning for autonomous service
failure diagnosis and remediation in software systems. In Proceedings of the
European Conference on Case-Based Reasoning (ECCBR), Lecture Notes in
Computer Science, pages 489–503. Springer, 2006.

[138] N. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Interceptors for java
remote method invocation. In Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications ((PDPTA
’01)), pages 850–856, Las Vegas, Nevada, 2001. Computer Science Research,
Education, and Applications Technology Press.

[139] D. Nardi and R. J. Brachman. An introduction to description logics. In
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors, The Description Logic Handbook. Theory, Implementation and Ap-
plications, pages 1–40. Cambridge University Press, New York, NY, USA,
2003.

[140] A. Nicoara, G. Alonso, and T. Roscoe. Controlled, systematic, and effi-
cient code replacement for running java programs. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems (Eu-
rosys ’08), pages 233–246, New York, NY, USA, 2008. ACM.

[141] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

Bibliography 183

[142] M. O’Connor, H. Knublauch, S. Tu, and M. Musen. Writing rules for the
semantic web using SWRL and Jess. In 8th International Protege Conference,
Protege with Rules Workshop, Madrid, Spain, 2005.

[143] J. Palma and R. Maŕın. Modelling contextual meta-knowledge in temporal
model based diagnosis. In Proceedings of the 11th European Conference on
Artificial Intelligence (ECAI ’02), pages 407–411, 2002.

[144] A. Papageorgiou, T. Krop, S. Ahlfeld, S. Schulte, J. Eckert, and R. Stein-
metz. Enhancing availability with self-organization extensions in a SOA
platform. In Proceedings of the Fifth International Conference on Internet
and Web Applications and Services (ICIW ’10), pages 161–166, May 2010.

[145] J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting autonomic
capabilities onto legacy systems. Cluster Computing, 9(2):141–159, 2006.

[146] C. A. Parra and L. Duchien. Model-driven adaptation of ubiquitous appli-
cations. Electronic Communication of the European Association of Software
Science and Technology (ECEASST), 11, 2008.

[147] H. V. D. Parunak and S. A. Brueckner. Stigmergic learning for self-organizing
mobile ad-hoc networks (MANET’s). In Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’04), pages 1324–1325, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[148] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman,
Menlo Park, CA, 1998.

[149] R. J. Patton. Fault-tolerant control systems: The 1997 situation. In IFAC
Symposium on Fault Detection Supervision and Safety for Technical Pro-
cesses, pages 1033–1054, 1997.

[150] B. Peischl and F. Wotawa. Model-based diagnosis or reasoning from first
principles. IEEE Intelligent Systems, 18(3):32–37, 2003.

[151] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

[152] E. Pournaras, M. Warnier, and F. M. T. Brazier. Self-optimized tree over-
lays using proximity-driven self-organized agents. In Optimization and its
Applications, chapter 7. Springer, complex intelligent systems and their ap-
plications edition, 2010.

[153] W. V. O. Quine. Methods of Logic, 4th edition. Harvard University Press,
Cambridge, MA, 1982.

[154] R. Rainer and E. Turban. Introduction to Information Systems: Supporting
and Transforming Business. John Wiley and Sons Ltd, 2rd edition, July
2008.

184 Bibliography

[155] A. Ranganathan and R. H. Campbell. What is the complexity of a dis-
tributed computing system? Complexity, pages 37–45, 2007.

[156] M. Rossi and M. Sein. Design research workshop: A proactive research
approach. In Proceedings of the 26th Information Systems Research Seminar
in Scandinavia (IRIS ’03), pages 1–20, Scandinavia, 2003.

[157] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Manual, The (2nd Edition) (Addison-Wesley Object Technology
Series). Addison-Wesley Professional, 2004.

[158] S. Sadagopan. Management Information Systems. Prentice Hall, August
2004.

[159] S. M. Sadjadi, P. McKinley, R. Stirewalt, and B. Cheng. TRAP: Trans-
parent reflective aspect programming. Technical Report MSU-CSE-03-31,
Department of Computer Science, Michigan State University, East Lansing,
MI, 2003.

[160] S. Schuetz, K. Zimmermann, G. Nunzi, S. Schmid, and M. Brunner. Au-
tonomic and decentralized management of wireless access networks. IEEE
Transactions on Network and Service Management, pages 96–106, Septem-
ber 2007.

[161] J. Sedmidubsky, V. Dohnal, S. Barton, and P. Zezula. A self-organized
system for content-based search in multimedia. pages 322–327, December
2008.

[162] S. M. Shatz. Development of distributed software: concepts and tools.
Macmillan Publishing Co., Inc., Indianapolis, IN, USA, 1993.

[163] J. Sierra-Santibanez. Heuristic planning: a declarative approach based on
strategies for action selection. Artif. Intell., 153(1-2):307–337, 2004.

[164] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A
practical OWL-DL reasoner. Web Semantics: Science, Services and Agents
on the World Wide Web, 5(2):51–53, June 2007.

[165] D. I. K. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical meth-
ods in software engineering research. In Future of Software Engineering,
FOSE ’07, pages 358–378, Washington, DC, USA, 2007. IEEE Computer
Society.

[166] R. M. Smullyan. First-Order Logic. Dover Publications, January 1995.

[167] J. F. Sowa. Principles of Semantic Networks: Explorations in the Represen-
tation of Knowledge. Morgan Kaufmann, 1991.

[168] L. Spalzzi. A survey on case-based planning. Artif. Intell. Rev., 16(1):3–36,
2001.

Bibliography 185

[169] J. Spencer. Architecture description markup language (ADML): Creating
an open market for IT architecture tools. Open Group White Paper, 2000.

[170] O. Spinczyk, D. Lohmann, and M. Urban. AspectC++: An AOP Extension
for C++. Software Developer’s Journal, pages 68–76, 2005.

[171] R. Stair and G. Reynolds. Fundamentals of Information Systems. Course
Technology, 5rd edition, December 2008.

[172] Stanford Medical Informatics. The Protégé OWL editor. http://protege.
stanford.edu/overview/protege-owl.html.

[173] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer, R. Studer, A. Abecker,
G. Breiter, and J. Dinger. The role of ontologies in autonomic computing
systems. IBM Systems Journal, 43(3), August 2004.

[174] Sun Microsystems. RPC: Remote Procedure Call Protocol Specification Ver-
sion 2. http://tools.ietf.org/html/rfc1831, 1995.

[175] Sun Microsystems. Java Remote Method Invocation - Distributed Comput-
ing for Java. http://java.sun.com/javase/technologies/core/basic/

rmi/whitepaper/index.jsp, 2007.

[176] Sun Microsystems. Java SE Technologies - Database. http://java.sun.

com/javase/technologies/database/index.jsp, 2007.

[177] A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2006.

[178] G. Tesauro. Reinforcement learning in autonomic computing: A manifesto
and case studies. IEEE Internet Computing, 11(1):22–30, 2007.

[179] G. Tesauro and J. O. Kephart. Utility functions in autonomic systems. In
Proceedings of the First International Conference on Autonomic Computing
(ICAC ’04), pages 70–77, Washington, DC, USA, 2004. IEEE Computer
Society.

[180] W. Torres-Pomales. Software fault tolerance: A tutorial. Technical report,
2000.

[181] D. Tosi. Research perspectives in self-healing systems. Technical Report
LTA:2004:06, University of Milano-Bicocca, Milano, Italia, 2004.

[182] C. Türker. Semantic Integrity Constraints in Federated Database Schemata,
volume 63 of DISDBIS. Infix Verlag, St. Augustin, Germany, 1999.

[183] F. van Harmelen and A. ten Teije. Using domain knowledge to select solu-
tions in abductive diagnosis. In European Conference on Artificial Intelli-
gence, pages 652–656, 1994.

186 Bibliography

[184] I. Watson and F. Marir. Case-Based Reasoning: A Review. The Knowledge
Engineering Review, 9(4):355–381, 1994.

[185] N. J. E. Wijngaards, B. J. Overeinder, M. van Steen, and F. M. T. Bra-
zier. Supporting internet-scale multi-agent systems. Data and Knowledge
Engineering, 41(2-3):229–245, June 2002.

[186] J. Wildstrom, P. Stone, and E. Witchel. CARVE: A cognitive agent for
resource value estimation. In Proceedings of the Fifth International Confer-
ence on Autonomic Computing (ICAC ’08), volume 0, pages 182–191, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[187] D. S. Wile and A. Egyed. An externalized infrastructure for self-healing
systems. In Working IEEE/IFIP Conference on Software Architecture, vol-
ume 0, page 285, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[188] L. Wischoff, A. Ebner, H. Rohling, M. Lott, and R. Halfmann. SOTIS - A
self-organizing traffic information system. In Proceedings of the 57th IEEE
Semiannual Conference on Vehicular Technology (VTC ’03), volume 4, pages
2442–2446. Springer, 2003.

[189] T. D. Wolf and T. Holvoet. A Taxonomy for Self-* Properties in Decen-
tralized Autonomic Computing. In M. Parashar and S. Hariri, editors,
Autonomic Computing: Concepts, Infrastructure, and Applications, pages
101–120. Taylor & Francis, Inc., Bristol, PA, USA, 2007.

[190] T. D. Wolf, G. Samaey, T. Holvoet, and D. Roose. Decentralised autonomic
computing: Analysing self-organising emergent behaviour using advanced
numerical methods. Proceedings of the second International Conference on
Autonomic Computing (ICAC ’05), pages 52–63, 2005.

[191] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the use of
fuzzy modeling in virtualized data center management. In Proceedings of
the Fourth International Conference on Autonomic Computing (ICAC ’07),
page 25, Washington, DC, USA, 2007. IEEE Computer Society.

[192] R. K. Yin. Case Study Research: Design and Methods, Third Edition, Ap-
plied Social Research Methods Series, Vol 5. Sage Publications, Inc, 3rd
edition, December 2002.

[193] L. Zadeh. Fuzzy sets. Information Control, 8:338–353, 1965.

[194] B. Zhou, J. Cao, X. Zeng, and H. Wu. Adaptive traffic light control in
wireless sensor network-based intelligent transportation system. In Vehicular
Technology Conference Fall (VTC 2010-Fall), pages 1–5, 2010.

[195] A. Zimmerman, J. Lynch, and F. Ferrese. Market-based computational task
assignment within autonomous wireless sensor networks. In Proceedings of
the IEEE International Conference on Electro/Information Technology (EIT
’09), pages 23–28, 2009.

Bibliography 187

[196] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. C. van Gemund. Diagnosis
of embedded software using program spectra. In Proceedings of the 14th
Annual IEEE International Conference and Workshops on the Engineering
of Computer-Based Systems (ECBS ’07), pages 213–220, Washington, DC,
USA, 2007. IEEE Computer Society.

188 Bibliography

Index

activation & control engine, 136
bootstrapping, 139
communication, 137, 138
synchronisation, 138

autonomic computing, 3
blueprint architecture, 4
control theory, 3
feedback loop, 3

autonomic element, 11
autonomic manager, 4
autonomic system, 11

dynamically structured, 14
statically structured, 15
unstructured, 12

behavioural complexity, 24

contextual knowledge, 28

distributed system, 2
complexity, 2
management, 2

information system, 1
instrumentation, 140

AOP, 141
sensor value provider, 142

managed resource, 4
management model, 46

analyser, 49
AnalyserStrategicRules, 49
SymptomOccurrenceRules, 49

autonomic manager, 59
AutonomicProcessResult, 64

diagnoser, 51
ChildResultToSymptomRules, 53
DiagnoserStrategicRules, 53

DiagnosisDeterminationRules, 53
HypothesisEvaluationRules, 53
HypothesisSelectionRules, 52
HypothesisValidationRules, 53

information flow entity, 64
Diagnosis, 68
Effector, 72
Hypothesis, 68
Plan, 69
Sensor, 64
Symptom, 67

plan translator, 58
PlanTranslationRules, 58
TranslatorStrategicRules, 58

planner, 56
PlannerStrategicRules, 56
PlanSelectionRules, 56

OWL, 98
cardinality restriction, 99
class, 98
existential restriction, 99
individual, 98
property, 98

plan, 69
actions constructs, 70
initial plan, 69
inspective plan, 70
remedy plan, 70

research approach
action research, 7
design science, 7
interpretivism, 6
positivism, 6

rule engine, 139

189

190 Index

self-management knowledge, 95
self-management ontology, 100
semantic web, 97
software fault handling process, 32
structural complexity, 25
SWRL, 98

example generic rule, 117, 129
example specific rule, 118, 130

system behaviour, 2, 30
macroscopic, 17
microscopic, 17

system model, 81
behavioural model, 81
Event, 86
Job, 82
State, 85
Task, 83

structural model, 81
ManagedClass, 92
ManagedComponent, 91
ManagedConnector, 90
ManagedMethod, 92
ManagedRunnable, 88
ManagedSystem, 88
Protocol, 90

unit of management, 26
behavioural perspective, 27
structural perspective, 27

use-case, 30
characteristics, 31
extended definition, 31
levels, 32
class level, 33
component level, 33
runnable level, 33
system level, 33

references, 34
horizontal reference, 34
vertical reference, 35

Curriculum Vitae

Reza Haydarlou was born in Khoy (Iran) on October 16, 1961. He completed
his pre-university education in Iran in 1979. In January 1988, he moved to The
Netherlands. After passing some admission examinations, he started his study
in Computer Science at the University of Amsterdam (UVA) in September 1988.
In 1993, he obtained his M.Sc. in Computer Architecture. After his graduation,
he worked five years as a System Programmer for a company supplying hospital
information systems. In September 1998, he changed his job and started to work
in a banking enterprise. Alongside his work as an Architect, in January 2004, he
started his Ph.D. trajectory under the supervision of Prof. dr. F.M.T. Brazier in
the Intelligent Interactive Distributed Systems (IIDS) group, Faculty of Sciences
(Department of Computer Science) of the Vrije Universiteit Amsterdam (VU). In
September 2009, the IIDS group moved to the Systems Engineering Section of
the Technology, Policy and Management Faculty of Delft University of Technology
(TUDelft). For his Ph.D. trajectory, he spent two days a week from 2004 to
2008, and one day a week from 2008 till now. During his Ph.D. trajectory, Reza
presented his research at several international conferences in China, Hong Kong,
Greece, the Netherlands, and Denmark. He also published his work in several
academic proceedings.

191

