10.

"I wish to discuss the strength of hollow solids, which are employed in art - and still
oftener in nature - in a thousand operations for the purpose of greatly increasing
strength without adding to weight; examples of these are seen in the bones of birds and
in many kinds of reeds which are light and highly resistant both to bending and
breaking".

- Galileo Galilei

Omission, in the current design recommendations, of the distortional failure for full
width unstiffened T-joints of rectangular hollow sections loaded with an out-of-plane
bending moment is unsafe.

The current CIDECT recommendation for the multiplanar load effect of multiplanar
joints should be corrected for small § values and large negative load ratios.

In evaluating databases of static strength of connections not only the material and
geometrical properties, the modelling and the definition of the ultimate load (moment)
capacities should be considered, but also the boundary conditions and the testing
method.

Every PhD student in Civil Engineering should work in practice for 6 months, to bridge
the gap between researchers and designers and to accelerate the introduction of new
research results into design practice.

Standing by a stream, Confucius said: "Ah! that which is passing is just like this, never
ceasing day or night".

Looking back at the past, a PhD student says: "Time is flying just like a passing stream,
never ceasing day or night".

Governments, industries and researchers should make more effort in the development
of environmentally friendly energy sources based on sun, wind, water and other
inexhaustible resources.

"To be" a mother as a housewife "or not to be" a mother as a working woman should
not be a question in a modern society, because women as an important productive force
should not be forged to play the tragedy of Shakespeare.

The Dutch title system is very confusing for a foreign student. A female law student
works four years to put a male title before her name (mevrouw mr.), which in English
means Mrs. Mr. A male master degree student (drs.) works four years more in order
to get a degree one letter less (dr.).

Sometimes circular is better, sometimes square...
(TV-advertisement Bokma jenever)
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10.

"Ik wil de sterkte bespreken van holle structuren die in de kunst - en nog vaker in de
natuur - op duizend verschillende manieren worden toegepast teneinde de sterkte te
vergroten zonder gewichtstoename; voorbeelden hiervan zijn te vinden in de botten van
vogels en in vele soorten riet, die licht zijn en zeer goed bestand tegen buigen en
breken".

- Galileo Galilei

Doordat in de huidige rekenregels voor T-verbindingen van rechthoekige buisprofielen,
belast op een moment uit het vlak, een controle op distorsie ontbreekt, zijn deze
rekenregels onveilig.

De huidige CIDECT richtlijnen voor ruimtelijke verbindingen voor kleine
breedteverhoudingen, waarbij de wandstaven tegengesteld belast zijn, moeten worden
aangepast.

Bij het analyseren van databestanden van de statische sterkte van buisverbindingen moet
niet alleen aandacht worden besteed aan de materiaal- en geometrische eigenschappen,
het modelleren en het criterium waarop de uiterste sterkte is bepaald, maar ook aan de
randvoorwaarden en de methode van beproeven.

Alle promovendi in de Civiele Techniek zouden een half jaar in een bedrijf moeten
werken om de afstand tussen onderzoekers en ontwerpers te verkleinen en nicuwe
onderzoeksresultaten sneller in de praktijk te kunnen toepassen.

Bij een stromende beek staande, zei Confucius: "Ah! al wat geschiedt is wat u hier ziet,
het gaat dag en nacht door."

Naar het verleden kijkend zegt een promovendus: "De promotietijd vliedt voorbij als
een stromende beek, zonder ophouden, dag en nacht."

Ten behoeve van een beter milieu voor tockomstige generaties dienen overheid,
industrie en onderzoekers snel een revolutie op het gebied van energieopwekking te
bewerkstelligen, die gebaseerd is op zon, wind, stromend water en andere onuitputtelijke
bronnen.

"To be" een moeder als huisvrouw " or not to be" een moeder als werkende vrouw zou
tegenwoordig geen punt van discussie meer mogen zijn, omdat de vrouw als een
belangrijke produktieve kracht niet in de rol van Shakespeare’s tragedie zou mogen
worden gedwongen.

De Nederlandse titulatuur is uiterst verwarrend voor buitenlandse studenten. Een
vrouwelijke rechtenstudent werkt vier jaar om een mannelijke titel voor haar naam te
krijgen (mevrouw mr.), wat in het Engels "mevrouw meneer” zou betekenen. Een
doctoraal student (drs.) moet nog vier jaar werken om één letter van de titel af te
krijgen (dr.).

Soms is rond beter, soms vierkant... (TV-reclame Bokma jenever)
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Synopsis 1

SYNOPSIS

Rectangular hollow sections (RHS) can be found in many applications, among which are
industrial buildings, towers, masts, bridges, crane booms and mechanical equipments etc. with
various types and configurations of connections. Little information was available on the static
behaviour of multiplanar connections until the end of the 1980s. Furthermore, for uniplanar
connections under complicated loading conditions, limited evidence was available. This
research programme aims to provide design recommendations on the static strength for such
connections.

This thesis presents the results of analytical, experimental and numerical studies on the static
strength of uniplanar and multiplanar welded connections in rectangular hollow sections.

In the analytical study, a set of formulae is developed for full width X-joints loaded with axial
forces, in-plane bending moments and out-of-plane bending moments respectively, based upon
a so called "4-hinge yield line and chord web crippling” model. Furthermore, the influence
of the bending moments in the chord on the ultimate load capacity of the joint is studied
analytically.

In the experimental research programme, the multiplanar geometrical stiffening effect due to
the existence of the out-of-plane braces and the multiplanar load effect due to the loads
applied on the out-of-plane braces have been studied.

A numerical model (finite element model) has been developed and calibrated with the
experimental results. The numerical modelling and calibration considered the following
aspects: the element types, the modelling of the weld, the modelling of the members and the
behaviour of material and geometrical non-linearities.

The finite element model is further used for a series of extensive parameter studies for
uniplanar X-, T- and multiplanar XX- and TX-joints under different loading conditions.
Furthermore, additional studies on the influence of boundary conditions on uniplanar K-joints
are included. Based upon the analytical formulae for uniplanar joints and the experimental and
numerical results for each type of joint considered, design recommendations for the static
strength of uniplanar and multiplanar connections in rectangular hollow sections are proposed.

KEYWORDS

Static Strength, Rectangular Hollow Sections, Uniplanar Connection, Multiplanar Connection,
Welded Connection, Analytical Model, Experiments, Numerical Modelling.
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Greek Letters

o 2 times the chord length to width ratio 2ly/by;

o Angle between two yield lines;

o Shape factor of the cross section;

o, Ciritical chord length to width value to form a distortion mechanism.

B Brace to chord width ratio b,/bg;

¥ I1alf width to thickness ratic of the chord, by/(2t,);

Yy Action load factor;

Y™ . Partial safety factor of the joint;

™™o . Partial safety factor of the section resistance (class 1, 2 3);

M1 . Partial safety factor of the section resistance (class 4);
Chord top face indentation;

) : Chord distortion displacement:

339,00 : Chord top face indentation at 3%b,;

max Chord top face indentation at maximum load or moment capacity;

3, : Chord top face indentation at ultimate load capacity or ultimate moment
capacity of the joints;

&g :  Engineering strain;

€1 . Logarithm strain;

M Brace depth to chord width ratio h/by;

0 Angle between brace and chord;

K Reduction factor for buckling;

A Non-dimensional slenderness of a column or chord side wall;
A : Slenderness of a column or chord side wall;

7"E . Eulerian slenderness;

£ Moment reduction factor for the chord webs due to shear;

p Moment reduction factor for the chord section due to shear;




Symbols 3

Stresses in the chord;

Engineering stress;

True stress;

Wall thickness ratio between brace and chord members T=t,/t,;
Angle between planes of multiplanar joints;

Joint rotation angle: ¢=56/(h,/2) or 0=03/(b;/2);

Distortion angle of the chord wall;

Joint rotation angle at 0.1 rad.;

Rotation angle of yield line i;

Throat thickness of the weld;

Section area of a member;

Section area of the chord;

Effective area of the cross-section;

Projected length of the weld along the chord face;

Updated section area of a member;

Projected length of the weld along the brace face;

External width of the chord;

External width of the brace;

External width of member i (i=0, chord; i=1, in-plane brace; i=2,
out-of-plane brace);

Factor for the multiplanar geometrical stiffening effects;

Modulus of elasticity;

Function for the multiplanar load effects;

Function for the multiplanar load effects;

Function for the multiplanar load effects;

Reduction function for the ultimate load capacity due to the chord bending
moment;

Reduction function for the ultimate load capacity due to the chord axial
preloading;

Ultimate strength of the chord in longitudinal direction;

Yield strength of the chord in longitudinal direction;

Yield strength of the brace in the longitudinal direction;

External depth of the chord;

External depth of the brace;

External depth of member i (i=0, chord; i=1, in-plane brace; i=2,
out-of-plane brace);

Load ratio between axial loads applied to the out-of-plane and in-plane
braces: J,z=Ny/Ny;

Moment ratio between the in-plane bending moments applied to the
out-of-plane and the in-plane braces: I;;=M,/M;;

Load ratio between the axial load applied to the out-of-plane braces and
the in-plane bending moment applied to the in-plane braces:
J1a=N/(M /hy);
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M, ipbu
M, ipb w1
M, ipbuUr=0)

M ipb,u(J1a)

Lipbu(J1a=0) :

M 1,opb
Ml Jopbk
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MU
MV,e,Rd

Moment ratio incorporating the moment applied to the chord, equation
(5.47) or (7.28);

Reduction factor for the warping stress due to torsional shear stresses;
Length of the chord;

length of a member;

Length of the in-plane brace;

Length of the out-of-plane brace;

Length of yield line i;

Chord bending moment;

In-plane bending moment applied to the in-plane braces;

In-plane bending moment applied to the in-plane braces;

Characteristic moment strength of the joints loaded with in-plane bending
moments;

Design resistance moment of the joints loaded with in-plane bending
moments;

Ultimate moment capacity of uniplanar joints loaded with in-plane
bending moments;

Ultimate moment capacity of multiplanar joints loaded with moment ratio
I

I}Iltimate moment capacity of multiplanar joints loaded with moment ratio
J1=0;

Ultimate moment capacity of muitiplanar joints loaded with load ratio J;4;
Ultimate moment capacity of multiplanar joints loaded with load ratio
Out-of-plane bending moment applied to the in-plane brace;
Characteristic moment strength of the joints loaded with out-of-plane
bending moments;

Design resisiance moment of ihe joinis loaded wiih oui-of-piane bending
moments;

Ultimate moment capacity of uniplanar joints loaded with out-of-plane
bending moments;

Ultimate moment capacity of the joints;

In-plane bending moment applied to the out-of-plane braces;
Elastic design resistance moment for class 3 section without reduc
shear;

Moment resistance of the flange;

Plastic moment of yield line i;

Plastic moment per unit length m =fy0t02/4;

Plastic moment per unit length otP yield line i;

Plastic moment resistance for class 1 and 2 sections without reduction by
shear;

Moment capacity of the joints at the serviceability deformation limit;
Design moment for the chord;

Torsional moment;

Plastic torsion capacity under pure torsion;

Ultimate moment capacity of the joint;

Moment resistance for class 3 sections reduced by shear;

tion by




Symbols 5

My ra
Mw,e,Rd

Mw,Rd
n

No
NO(in gap)

Moment resistance for class 1 and 2 sections reduced by shear;
Moment resistance of the web for class 3 sections;

Moment resistance of the web for class 1 and 2 sections;

Chord axial preloading ratio, n=N0/(fy0*A0);

Axial force in the chord;

Axial load in the gap of the chord;

Axial load applied to the top and the bottom flanges of the chord,;
Design compression resistance of the chord;

Axial load applied to the in-plane braces;

Characteristic strength of the joints;

Design axial load on brace 1;

Design axial load on brace 2;

Design resistance load of uniplanar joints,

Ultimate load capacity of uniplanar joints;

Ultimate load capacity of multiplanar joints loaded with axial forces with
a load ratio J 4;

Ultimate load capacity of multiplanar joints loaded with axial forces with
a load ratio J, ,=0;

Ultimate load capacity of the joint including the chord bending moment;
Ultimate load capacity of the joint excluding the effect of the chord
bending moment;

Ultimate load capacity of the joint with chord preloading ratio n;
Ultimate load capacity of the joint with n=0;

Axial load applied on the out-of-plane braces;

Characteristic strength of the joint;

Design plastic resistance of the chord section;

Design resistance of the joint;

Load capacity of the joints at the serviceability deformation limit;
Design axial load on the chord;

Ultimate load capacity of the joints;

Brace axial load corresponding to My , gq for class 3 sections;
Brace axial load corresponding to My g4 for class 1 and 2 sections;
Reaction force per unit length of the web at buckling;

Reaction force per unit length of the web at yielding;

Force applied to the section area;

Internal corner radius of the chord or braces;

External corner radius of the chord or braces;

Wall thickness of the member i

Wall thickness at the curved corners of the chord or the braces;
Thickness of the weld in the FE model,

Shear load on the chord;

Plastic shear resistance of the chord;

Design shear load on the chord;

Elastic section modulus;

Internal energy dissipation;

Plastic section modulus;

Length to form the failure mechanism in Figure 7.23, Chapter 7;
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Symbols

Abbreviations

AWS
CIDECT

ECSC
FE
Iw
ipb
mp
opb
RHS
up

American Welding Society;

Comité International pour le Développement et I’Etude de la
Construction Tubulaire;

European Community of Steel and Coal;
Finite Element;

International Institute of Welding;
In-plane bending;

Multiplanar;

Out-of-plane bending;

Rectangular hollow section;

Uniplanar.
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1 INTRODUCTION

Tubular structures made of structural hollow sections are not only aesthetically attractive but
also have structural, economical and other advantages, e.g. as McGilvray (1994) states: The
qualities of tubular structures are their power to evoke in their occupants a sense of lightness,
vigour, delight, order, comfort, shelter and protect.

Structural hollow sections with a rectangular, square or circular cross-section offer outstanding
static properties with regard to resisting tension, compression, torsion and biaxial bending and
consequently result in a considerable saving in material compared to structures of open
sections. Furthermore, structural hollow sections have smaller and smoother surfaces than
open sections without sharp edges and the required corrosion protection can be applied more
economically.

A connection, also referred to as a joint, can be formed by joining several structural hollow
sections together by welding. The welding procedure for joints of rectangular hollow sections
(RHS) is fairly straightforward, because profiling is not required for RHS which is necessary
for circular hollow sections. Rectangular hollow sections can be found in industrial buildings,
towers, masts, bridges, crane booms, mechanical equipment and agricultural applications etc.
with various types and configurations of joints.

Since the first preliminary tests on joints of RHS in the sixties, many experimental and
analytical investigations have been carried out on uniplanar joints. However, very little
information was available on the static behaviour of multiplanar joints until the end of the
1980s. Furthermore, for uniplanar joints under complicated loading conditions, limited
evidence was available. In order to thoroughly investigate the static behaviour of uniplanar
and multiplanar joints, this PhD research programme was set up.

1.1  OBJECTIVES AND SCOPE

This PhD research programme aims to provide design recommendations on the static strength
of uniplanar and multiplanar connections in rectangular hollow sections. Basically there are
two approaches in doing research: the theoretical approach and the experimental approach.
The first can be further divided into an analytical approach (eg. the yield line method) and
a numerical approach (eg. the finite element method). The current research work reflects a
combination of the theoretical and experimental approaches. The experimental approach is
time consuming and expensive. The yield line theory can be used in the derivation of
solutions of a mechanism under some assumptions. In some cases, no direct analytical
formula can be derived due to the complexity of the problem. In the last decade, there has
been an increasing growth of the use of non-linear finite element techniques to analyse the
static behaviour of connections of structural hollow sections.

In 1988, an ECSC (European Community of Steel and Coal) research programme entitled
"The development of design methods for the cost-effective applications of multiplanar
connections” started to fill up the lack of information on the static behaviour of multiplanar
joints. This research programme consists of both experimental tests and numerical simulations
of uniplanar X- and T-joints and multiplanar XX-, TX- and KK-joints. Furthermore, a
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numerical study was carried out within the framework of CIDECT (Comité International pour
le Développement et I'Ftude de la Construction Tubulaire) programme No. 5BG entitled "The
static strength of multiplanar joints of square hollow sections". This PhD study covers the last
mentioned programme and a part of the ECSC research programme.

Based upon the experimental results from the ECSC research project, a numerical model
(finite element model) is developed which is fully calibrated against the experimental results.
The finite element model is further used for a series of extensive parameter studies of
uniplanar and multiplanar connections under different loading conditions. Based upon the
analytical solutions and the experimental and numerical results for each type of joint, design
recommendations for the static strength of uniplanar and multiplanar connections in
rectangular hollow sections are proposed.

1.2 TERMINOLOGY

1.2.1 Classification of joints

The joint types studied in this thesis contain unstiffened welded uniplanar and multiplanar
connections between rectangular hollow sections. The classification of the joints is
summarised in Table 1.1.

An uniplanar joint consists of a chord member and one or more brace members in one single

plane. A multiplanar joint consists of a chord member and brace members in more than one
planes. For each type of joint, different loads can be applied.
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Table 1.1 Classification of joints in RHS
Uniplanar joints Multiplanar joints
< )
X-joint |§§% XX-joint 9?
TX-joint %
T-joint
K-joint KK-joint %
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1.2.2 Determination of the design strength of the joint

The bases for design and general principles for the determination of the design strength of
predominantly statically loaded joints made of hollow sections is given by Wardenier (1982a)
where the variables in the strength functions were assumed as normal distribution. In Annex
Z of EC3 (1993a), a log-normal distribution is assumed for all variables of a strength
function. Adopting a log-normal distribution has the advantage that no negative values can
occur for the geometrical and strength variables which is physically correct. The basic ideas
of the two are comparable, because if a variable r has a log-normal distribution, In(r) has then
a normal distribution. The formulae for a normal distribution can be transferred to those for
a log-normal distribution. Several terms with regard to the joint strength should be
distinguished which are: the serviceability deformation limit, the "ultimate" deformation limit,
the serviceability load capacity, the ultimate load (moment) capacity, the characteristic
strength and the design strength (design resistance) of the joint.

The serviceability and the "ultimate’ deformation limit

The serviceability deformation limit is generally accepted as a local deformation of 1%b,, for
hollow sections (Wardenier 1982a and IIW 1989). The "ultimate" deformation limit

is defined as a local deformation of 3%hb, of the joint (Lu 1994*). For a joint loaded with
bending moment, the joint rotation angle corresponding to the "ultimate" deformation limit
should not be larger than 0.1 rad, see Chapter 4.

The serviceability load capacity

The serviceability load capacity of the joint is defined as the load at the serviceability
deformation limit.

The ultimate load or moment capacity (the ultimate strength)

The ultimate load (moment) capacity of the joint is defined as the maximum load (moment)
if the local deformation at the maximum load (moment) is smaller than the "ultimate"
deformation limit, or is defined as the load (moment) at the "ultimate” deformation limit if
no maximum load is reached. The determination of the ultimate load (moment) capacity of
the joint can be found in Chapter 4.

The characteristic strength
The characteristic strength is defined as the strength with a probability of failure of 5%. The

procedure to determine the characteristic strength from a given ultimate strength formula can
be found in Annex Z of EC3 (1993a).

For the clearness of reading, only the name of the first author is mentioned. The
names of the coauthors can be found in the references.
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The design strength (design resistance)

In Limit States Design, the design load should not exceed the design strength. The procedure
to determine the design strength from a given ultimate strength function (ultimate load or
moment capacity formula) can be found in Annex Z of EC3 (1993a) and Sedlacek (1991).
The same procedure as for the characteristic strength can be used to determine the design
strength by replacing the characteristic fractile coefficient by the design fractile coefficient
(Annex Z of EC3 1993a), or if the partial safety factor of the joint is known beforehand, the
design strength is equal to the characteristic strength divided by the partial safety factor
(Wardenier 1982a). The relationship between the design strength and the characteristic
strength is given as:

Ny
Npg=—f (1.1)
™

Where Ngg4 is the design resistance of the joint; Ny is the characteristic strength of the joint
and Y, is the partial safety factor of the joint.

1.3  OUTLINE OF THE THESIS
This thesis contains eleven chapters.
Chapter 1 gives an introduction of the research work.

Chapter 2 summarises the current design guidance and the existing literature on the static
behaviour of uniplanar and multiplanar connections in rectangular hollow sections.

Chapter 3 gives experimental evidence on uniplanar X- and T-joints and multiplanar XX- and
TX-joints.

Chapter 4 discusses the calibration of the numerical model and the general aspects about the
numerical parameter study.

Chapter 5 includes the existing analytical formulae and gives the newly developed analytical
formulae for full width joints (B=1.0) under different load cases. The influence of chord
bending moments is also studied analytically based upon the yield line theory.

Chapter 6 deals with a parameter study on uniplanar X-joints loaded with axial forces,
in-plane bending moments and out-of-plane bending moments. Furthermore, the influence of
axial preloading and bending moments in the chord is studied. Ultimate load (moment)
capacity formulae are given for uniplanar X-joints which form a basis for the formulae from
the parameter study of the corresponding multiplanar XX-joints.

Chapter 7 includes a parameter study on uniplanar T-joints loaded with axial forces, in-plane
and out-of-plane bending moments which forms a basis for the study of multiplanar TX-joints.



12 Chapter 1

The influence of chord bending moments is also investigated. For unstiffened full width
T-joints loaded with out-of-plane bending moment, a distortional failure mode is observed.
The ultimate moment capacity formula is derived on the basis of an analytical and a
numerical study. The ultimate load (moment) capacity formulae of uniplanar T-joints are
related to those of uniplanar X-joints.

Chapter 8 considers the multiplanar geometrical stiffening effect and multiplanar load effect
of multiplanar XX-joints loaded with three different multiplanar load combinations. Ultimate
load (moment) capacity formulae for multiplanar joints loaded with three load cases are
established.

Chapter 9 deals with a parameter study on multiplanar TX-joints. The influence of restraints
on the out-of-plane braces is studied. The multiplanar geometrical effect and the multiplanar
load effect of TX-joints excluding chord bending moments are related to those of XX-joints.
Additionally, based upon available evidence on uniplanar K-joints, the influence of boundary
conditions is studied. The experimental results of multiplanar KK-joints are compared with
the CIDECT design resistance formula and the existing mean ultimate load capacity formula.

Chapter 10 gives conclusions and recommendations. Ultimate load (moment) capacity
formulae for each type of joint and each load case are summarised in tables.

Chapter 11 lists the references with regard to the static strength of connections of rectangular
hollow sections and other relevant literature.

The geometrical parameters and the loading cases for each type of joint in this PhD study of
Chapters 6 to 9 are outlined in Tables 1.2 to 1.4. The symbols used can be found in the list
of symbols.
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2 SUMMARY OF EXISTING LITERATURE

2.1  INTRODUCTION

Since the first tests on connections of rectangular hollow sections by Stewarts and Lloyds in
1965 (now British Steel Corporation), extensive series of experiments have been carried out
on uniplanar X- T- and K-joints from the sixties to the eighties. Most of them were tests on
isolated joints loaded with axial forces. Some of the tests were joints loaded with in-plane and
out-of-plane bending moments. The number of corresponding girder tests were limited. During
that period, design equations for the static strength of uniplanar joints were derived based on
the experiments and the analytical approaches, for instance, the yield line theory.

At the end of the eighties the subject of multiplanar connections was targeted as a key area
where research had lagged behind the needs of industry. The lack of design guidance was
identified as an obstacle to the development of the market. In 1988, an ECSC research
programme entitled "The development of design methods for the cost-effective applications
of multiplanar connections" was started which included both multiplanar joints of circular and
rectangular hollow sections. The research programme contained two phases: phase 1 and
phase 2. Phase | (SCI 1989) gave a state-of-the-art technical and economic review and
programme definition study. A detailed survey of the construction industry in the UK revealed
that RHS multiplanar connections under static loading regime are encountered frequently. Due
to the absence of sufficient test evidence on the static behaviour of multiplanar connections,
phase 2 of the programme was formulated. The objectives of phase 2 were to investigate and
establish the fundamental multiplanar influences on the static strength of welded hollow
section joints and to develop a numerical model, fully calibrated against experimental results,
which could be used in the future development of design guidance and hence costly test
programmes could be reduced. This PhD research work was initiated as part of the above
ECSC programme Phase 2. The numerical study was carried out within the framework of
CIDECT programme No. 5BG entitled "Static Strength of Multiplanar Joints of Square
Hollow Sections".

In this chapter, the existing design guidance and the experimental, numerical and analytical
evidences with regard to the static behaviour of uniplanar and multiplanar connections in
rectangular hollow sections are summarised briefly.

2.2  CURRENT DESIGN GUIDANCE

In the 1980s and early 1990s, design recommendations for statically-loaded welded
connections of rectangular hollow sections have been developed by IIW (1981 and 1989),
Wardenier (1982a) and CIDECT (Giddings 1985a, 1985b, Packer 1992a) etc. These
recommendations have been implemented in standards of Canada (Packer 1984a, 1992b),
Japan (AlJ 1990), the USA (AWS 1992) and all EC member countries (EC3 1993b, Annex
K). Since most of the design recommendations for uniplanar connections of rectangular
hollow sections are based on those of IIW (1989) and CIDECT (Packer 1992a), only the
CIDECT design formulae are used for comparison in the present study.
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In the CIDECT design guide, little information is available about the influence of bending
moments in the chord on the static strength of the joints. For most cases, identical design
formulae have been recommended for axially loaded uniplanar X- and T-joints. However, the
static behaviour of axially loaded T-joints is obviously influenced by the chord length, thus
by the bending moment in the chord. The current CIDECT formula for the influence of chord
prestressing is mainly based upon the experimental results of K-joints (Wardenier 1982a). For
full width uniplanar T-joints loaded with out-of-plane bending moments, distortion of the
unstiffened chord section is a dominant failure mode which is not yet included in the
CIDECT design guide.

For the static strength of multiplanar joints of rectangular hollow sections, it is indicated in
the CIDECT design guide (Packer 1992a) that if the ratio between the axial loads applied to
the out-of-plane braces and those applied to the in-plane braces is negative, the design
resistance of the multiplanar TT-, XX- and KK-joints will be reduced by 10% compared to
that of their uniplanar counterparts, see Table 2.1. This muitiplanar effect is only roughly
considered, since insufficient evidence was available. However the ultimate load capacity of
multiplanar joints is obviously influenced by the magnitude of the load ratios, the geometrical
parameters and the joint configurations.

Table 2.1 Correction factors for RHS multiplanar joint strength (CIDECT, Packer

1992a)
Type of connection Correction factor to uniplanar connection formulae
09
KK also, for gap KK connections, check that:
60°<h<90° Notn gap)\2 vV o
<4< gap) |2, ) <1.0
Apf
0'y0 AOfyO/‘/?T
TT, XX
0.9
60°<¢=<90°

In EC3 (1993b), different correction factors for multiplanar joints have been given depending
upon the joint configurations, see Table 2.2. This recommendation was based upon the results
of multiplanar connections between circular hollow sections (Paul 1989) and some initial
investigations on multiplanar rectangular hollow section joints (Bauer 1983, 1984, 1985),
Coutie (1983), British Steel (1985) and Redwood (1983).
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Table 2.2 Correction factors for RHS multiplanar joint strength (EC3 1993b)

Type of joint Correction factor to uniplanar connection formulae
TT-joint
0.9
60°<¢<90°
XX-joint 0.9(1+0.33 N, ¢ /Ny g4)
0.9
KK-joint provided that, in a gap-type joint, the chord satisfies:
N v
60°<)<90° (L P+ (2L f<r0
Nora"  Vpird

2.3 RESEARCH WORK BEFORE 1982

A thorough bibliography of the literature regarding welded joints in structural hollow sections
was given by Wardenier (1982a). Only some references in the period before 1982 are
summarised in this thesis, because these references form an important background for the
present research.

The first design equations which were based upon some amount of experimental evidence
were provided by Eastwood (1970a, 1970b, 1971). These equations were based on the results
of experiments where the actual dimensions and the actual material properties of the joints
were not measured. Furthermore, these equations showed a scale effect which is not likely
for the static strength.

From 1973 until the beginning of the 1980s, an extensive experimental and analytical research
programme was carried out in the Netherlands which covered isolated T-, X-, K-, N- and
KT-joints and some additional girder tests. All the results of this programme were reported
in many interim reports which have been summarised by Wardenier (1978) and de Koning
(1979). At the same period of time, experimental tests and analytical investigations were also
carried out in Germany (K-joints), the U.K. (K-joints), Italy (girder tests), Poland (T-, X and
K-joints), Canada (T-joints) and Japan (T-joints) etc. Many of these programmes have been
coordinated by CIDECT and benefited from the additional financial support of CIDECT
Member Companies, national governments and the European Community of Steel and Coal.

Based on all these test results and analytical investigations design recommendations were
given by HW (1981) and Wardenier (1982a) which were the basis for the present design
recommendations. The design recommendations for uniplanar T- and X-joints were based
upon the yield line theory (Johansen 1962, Mouty 1978 and Wardenier 1982a etc.) for joints
with $<0.85 and semi-empirical formulae (effective width, punching shear and chord side wall
failure) for joints with 0.85<B<1.0 (Wardenier 1982a). Theoretical formulae based upon a
yield line approach for uniplanar K-joints excluding the membrane and work hardening effects
were found very conservative compared to the experimental results (Davies 1975, 1977). The
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membrane action and work hardening effects for K-joints have been considered by Packer
(1978). Taking these effects into account leads to extremely complicated functions which can
only be solved with the help of a computer. Thus, no direct formula could be deduced. The
analytical studies for K-joints were only used to study the influence of various parameters of
the joints.

24 RESEARCH WORK AFTER 1982

Based upon ITW (1981) and Wardenier (1982a), current design recommendations on uniplanar
joints of rectangular hollow sections have been established which are CIDECT Monograph
No. 6 (Giddings 1985a and Packer 1992a), IIW (1989) and EC3 (1993b). These
recommendations with minor modifications have been widely implemented in standards of
many countries as mentioned in Section 2.2.

Uniplanar joints

From 1983 until now, publications on the static strength of uniplanar connections of
rectangular hollow sections are summarised in Table 2.3. It can be seen from this table that
much work has been done on overview and implementations of design recommendations.
Most of publications dealing with an overview and implementations of design guidance are
consistent with the IIW or the CIDECT design guide. One of the most important
developments during this period of time was the use of finite element techniques in the
analysis of the joint behaviour. Studies of uniplanar connections during this period include:

- Joints under combined axial and moment loading (Davies 1986, Panjeh Shahi 1983
and Szlendak 1984).

- Web crippling of fuii width joints (Crocket 1994, Davies 15874, Packer 1984b, 158

Yu 1996¢, Zhang 1989 and Zhao 1992).
- Distortion of full width T-joints under out-of-plane bending (Niemi 1986).

- Influence of the chord bending moments or chord axial forces of a T- or an X-joint
(Zhao 1991, 19932, 1993b and Yu 1995, 1996d)

- Influence of the brace angle (Davies 1986 and 1996a).

- Influence of the welds (Davies 1994, Yu 1994a, 1994b).

- Behaviour of joints under low temperature (Niemi 1989).

- Behaviour of joints made of stainless steel (Rasmussen 1993).

- Finite element analyses (Crockett 1994, Davies 1989, 1994 and 1996a, Koskimdki

1989, Owen 1996, Partanen 1989, Yu 1993, 1994a, 1994b, 1995, 1996¢, 1996d and
Zhang 1989, 1993, 1994 etc.).
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Table 2.3 Publications on uniplanar joints of rectangular hollow sections after 1982
Authors T-joints X-joints K-joints

Burdekin (1993) 1,3
Crockett (1994) 3
Czechowski (1989) 4 4 4
Davies (1984, 1986) 1,2
Davies (1987a) 1,24 1,2,4 1,24
Davies (1987b) 4 4 4
Davies (1989) 3
Davies (1994) 3
Davies (1996a) 3
Giddings (1985a, 1985b,1986) 4 4 4
Koning (1983) 2
Koning (1984) 2
Koskimiki (1989) 3
Kurobane (1984) 4
Linderman (1990) 4
Marshall (1991) 4
Niemi (1986) 1,2
Niemi (1989) 1
Owen (1996)
Packer (1983,1984a) 4 4 4
Packer (1984b) 1,2
Packer (1985) 4 4 4
Packer (1987) 1,24 1,24
Packer (1989) 4 4
Packer (1992a, 1992b, 1992¢, 1993) 4 4
Panjeh Shahi (1983) 1,2

Note: 1. Tests. 2. Theory.

3. FEM. 4. Overview or recommendations of design formulae
*: For the clearness of reading, only the first author is mentioned. The names of the

coauthors can be found in the references.
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Table 2.3 (Continued)

Authors T-joints X-joints K-joints
Partanen (1989) 23 23
Partanen (1993) 1,2 1,2
Rasmussen (1993) 1
Reusink (1989) 4 4 4
Szlendak J. (1983, 1984, 1985) 1,2 1,2
Wardenier (1985, 1988) 4 4 4
Wardenier (1989) 2.4 2,4 2.4
Wardenier (1991,1993) 4 4 4
Yeomans (1989)
Yu (1993, 1994a, 1994b, 1995) 3 3
Yu (1996¢, 1996d) 2,3 23
Zhang (1989) 2,3 23
Zhang (1993) 3
Zhang (1994) 3
Zhao (1991, 1992, 1993a, 1993b) 1,2
Zhao (1996) 4
Note: 1. Tests. 2. Theory.
3. FEM. 4. Overview or recommendations of design formulae
Multiplanar joints

The earliest studies on the static behaviour of muitiplanar joints were carried out by Bauer
(1983, 1984 and 1985) and Redwood (1983) in order to investigate the static behaviour of a
triangular truss. Sixteen TT-joints and seven KK-joints were included in the experimental
tests. The B values of the joints investigated range from 0.2 to 0.6. The equations for
uniplanar T- and K-joints based upon the yield line mechanisms were modified and adapted
to TT- and KK-joints. Due to the limited information about the static behaviour of multiplanar
joints, design recommendations were not included until the beginning of the 1990s (Wardenier
1991, 1993, Packer 1992a and EC3 1993b). The multiplanar effects in the current design
guidance were only roughly considered. Within the ECSC research programme as mentioned
before, experimental tests and numerical simulations of multiplanar XX-, TX- and KK-joints
were carried out. Additionally, the current extensive numerical study was carried out within
the framework of CIDECT programme No. 5BG entitled "Static strength of multiplanar joints
of square hollow sections”. Publications about the static behaviour of multiplanar joints are
summarised in Table 2.4,
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Table 2.4
1982

Publications on multiplanar joints of rectangular hollow sections after

Authors

TT-joints

TX-joints

XX-joints

KK-joints

Bauer (1983)

1

Bauer (1984)

Bauer (1985)

Bauer (1988, 1989)

British Steel (1985)

Crockett (1994)

Davies (1991a)

Davies (1991b, 1992a,
1992b, 1993a, 1993b)

1,3

Davies (1996a)

EC3 (1993b)

Koning (1992)

1,3

Liu (1993)

1,3

Liu (1998)

O’Connor (1993)

CIDECT (1992)

Packer (1992a)

SCI (1989)

SCT (1995)

1,3

Redwood (1983)

Wardenier (1991,1993)

Yeomans (1993)

Yu (1993a, 1993b)

Yu (1996a, 1996b)

Yu (1998)

Note: 1. Tests.
3. FEM.

2. Theory.

4. Overview or recommendations of design formulae
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In summary, the following literature is relevant for multiplanar connections:

- Axially loaded multiplanar TT-joints including experimental tests and analytical
studies (Bauer 1984, 1985 and Redwood 1983).

- Axially loaded XX-joints including analytical studies, experimental tests, finite
element calibrations and numerical parameter studies (Davies 1991a, de Koning 1992,
Liu 1993, SCT 1995 and Yu 1993a, 1993b, 1996b).

- XX-joints loaded with in-plane bending moments on both in-plane and out-of-plane
braces including numerical parameter study (Yu 1996a).

- XX-joints loaded with in-plane bending moments on the in-plane braces and axial
forces on the out-of-plane braces including experimental tests, finite element
calibration and numerical parameter studies (de Koning 1992, Liu 1993, SCI 1995 and
Yu 1998).

- Axially loaded TX-joints including experimental tests, finite element calibration and
numerical parameter studies (Crockett 1994, Davies 1991b, 1992a, 1992b, 1993a,
1993b, 1996b, SCI 1995 and Yu 1993a, 1993b).

- Axially loaded KK-joints including analytical studies, experimental tests and finite
element calibrations (Bauer 1983, 1985, British Steel 1985, O’Connor 1993, Liu
1998b, Yeomans 1993 and SCI 1995).

- Overview and implementations of design recommendations (Bauer 1988, 1989, EC3
1993b, Packer 1992a, SCI 1989, Wardenier 1991, 1993).
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3 EXPERIMENTAL WORK

31 INTRODUCTION

The experimental work has been carried out within an ECSC programme "The Development
of Design Methods for the Cost-Effective Application of Multiplanar Joints". The first
objective of the experimental work is to study the fundamental multiplanar interactions
affecting the static strength of joints between rectangular hollow sections (RHS). The second
objective is to develop numerical models fully calibrated against the experimental results in
order to reduce the need for future costly test programmes.

A series of 24 full scale joint tests on uniplanar X-, T- and multiplanar XX- TX-joints and
multiplanar KK-joints has been carried out at TNO in The Netherlands, University of
Nottingham and British Steel’s Swinden Laboratories in the United Kingdom. Full details of
all the tests can be found in the reports of de Koning (1992), Davies (1992a, 1992b) and
TS&MD (1992). The experimental investigation concerns the determination of:

- The influence of the unloaded out-of-plane braces of multiplanar XX- or TX-joints in
comparison with their uniplanar counterparts (the multiplanar geometrical stiffening
effect).

- The influence of different load ratios between the loads applied on the out-of-plane
braces and the loads applied on the in-plane braces of multiplanar XX- and TX-joints
(the multiplanar loading effects).

- The influence of the restraints applied on the out-of-plane braces of multiplanar
TX-joints in order to keep the out-of-plane braces horizontal.

- The influence of the geometrical parameters for multiplanar KK-joints.

3.2 RESEARCH PROGRAMME

The research programme for uniplanar X- and T- joints and for multiplanar XX- and
TX-joints is outlined in Table 3.1. Eight tests on uniplanar X-joints and multiplanar XX-joints
have been carried out at TNO and seven tests on uniplanar T-joint and multiplanar TX-joints
have been carried out at University of Nottingham. The joint parameters in Table 3.1 are
fixed at p=0.6, 2y=24, 1=1. These above two test series are used to examine the multiplanar
geometrical stiffening effects and the multiplanar loading effects of multiplanar joints under
different loading conditions. The third test series consists of nine multiplanar KK-joints which
have been tested at British Steel’s Swinden Laboratory. The joint specimens for the third test
series are divided into three groups dependent upon the brace to chord width ratios (). This
chapter includes only the tests on X- and T-joints and their multiplanar counterparts. The test
results of multiplanar KK-joints are discussed in Chapter 9.
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3.3  TESTS FOR X- AND XX-JOINTS
3.3.1 Specimen Geometry

The X-joints are fabricated from hot finished RHS 150 x 150 x 6.3 and 90 x 90 x 6.3 in
grade S355 according to the current European standard EN 10210-1. The joint parameters are
B=0.6 and 2y=24. To prevent failure of the braces before joint failure, the T ratio is taken as
1.0. The measured thicknesses and the yield strength of the chord and the braces are listed
in Tables 3.2 and 3.3. The length of the braces is 5 times the width of the brace and the
length of the chord is 6 times the chord width. The specimen parameter ratios are chosen as
being typical of practical joints and provide a good starting point for the study of multiplanar
interactions.

All brace members for a specimen are from the same production batch. The braces are welded
to the chords with fillet welds with a throat thickness equal to the wall thickness of the
connected brace. The welds are carried out using a low hydrogen electrode. The weld
sequence is such that the welds start and finish at the mid-sides of the member.

3.3.2 Test procedure

For the axially loaded joints (X1, DX2, DX3 and DX4), a schematic illustration of the test
arrangement is given in Figure 3.1. The compressive axial load N is applied at the ends of
the pin-ended in-plane braces. The out-of-plane braces are unloaded for joint DX2.
Proportional compression and tension loads N, are applied on the out-of-plane braces for
specimens DX3 and DX4 respectively. The axial loads on the in-plane braces and the
proportional loads on the out-of-plane braces are applied at the same time with a proportional
ratio of 0.6. The joints have been loaded incrementally to failure (maximum load or
excessively large deformation). The chord is supported in the lateral and the longitudinal
directions, to prevent displacement in both directions. As the in-plane loads are applied
equally to the top and the bottom chord faces, no significant rotation of the out-of-plane chord
faces should take place. Therefore, it is sufficient for the majority of the tests to keep the
out-of-plane braces unrestrained. However, to ensure that no significant secondary moments
occur for specimen DX3 under out-of-plane compression loads, the out-of-plane braces are
adjusted to remain in-line with the centre of the specimen throughout the test. During the
tests, the change in distance between two points of the upper and the lower in-plane braces
is measured which is approximately equal to the indentation of the chord top face plus the
indentation of the chord bottom face. Thus, the indentation of one chord face is half of the
change in distance measured. The measured points which are close to the chord faces are in
the middle of the brace faces parallel to the longitudinal axis of the chord, see Figure 3.1.

For joints loaded with in-plane bending moments (specimens X5, DX6, DX7, DX8), a
compression force is applied to one end of the chord and the specimen is simply supported
at the ends of the in-plane braces as shown schematically in Figure 3.2. The chord is
supported in two directions by lateral supports, to prevent lateral displacements in any
directions. The out-of-plane braces of joint DX6 are unloaded. Proportional compression and
tension loads have been applied on the out-of-plane braces of specimens DX7 and DX8
respectively. The out-of-plane loads are applied in such a way that at each stage of the test
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the axial stresses in the out-of-plane braces are 30% (i.e. 0.6 x 50%) of the bending stresses
in the in-plane braces at the intersection of the chord. The value of the out-of-plane loads are
calculated as 2.613 times the vertical load applied to the end of the chord. During the tests,
the vertical displacements at two points on each of the in-plane braces have been measured.
From these measurements, the rotation angle ¢ of the in-plane braces can be calculated as
shown in Figure 3.2. Furthermore, the indentation of the chord faces on the compression side
and the push-out of chord faces on the tension side is measured to check the rotation.
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Figure 3.1  Test arrangement for the axially loaded XX-joints
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It should be mentioned that for the joints loaded with in-plane bending moments, rotation of
the out-of-plane braces occurs due to asymmetry in loading condition. If the out-of-plane
braces are free for rotation and loaded by tension, the secondary bending moments reduce the
rotation somewhat which may result in a small positive effect on the ultimate moment
capacity of the joint. If the out-of-plane braces are free for rotation and loaded by
compression, the secondary bending moments enlarge the rotation which may result in a large
negative effect on the ultimate moment capacity of the joint. If the out-of-plane braces are
restrained for rotation and loaded in compression, this may result in a positive influence on
the ultimate moment capacity of the joint. Thus, for joints loaded with compression on the
out-of-plane braces, the ultimate moment capacity of the joint is largely influenced by the
boundary conditions of the out-of-plane braces. This effect is further studied in Section 8.3
of Chapter 8. During the test, vertical adjustable supports are only applied for specimen DX7
in order to prevent such rotation (the out-of-plane braces are kept in level), see Figure 3.2.
This may result in a stronger multiplanar loading effect because keeping the out-of-plane
braces in level means applying favourable bending moments on them.

Table 3.2 Test results for axially loaded X- and XX-joints

Joints | B | 2y to fy fo1 oy N,/N; N, N,
mm | N/mm? | N/mm? | mm kN kN
X1 06241 6.12 411 444 4.5 - 171 205
DX2 | 0.6 | 24 | 6.12 411 444 4.5 0.0 180 220
(1.05)* (1.07)*
DX3 | 0.6 | 24 | 6.12 411 444 - 0.6 250 (272)***
(1.40)** | (1.24)**
DX4 | 0.6 | 24 | 6.12 411 444 4.5 -0.6 132 177
(0.73)** | (0.80)**

*; Ratio to the load of uniplanar joint X1.
*k Ratio to the load of multiplanar joint DX2.
#*%:.  Load for joint DX3 at the end of the test.
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Table 3.3 Test results for X- and XX-joints loaded with in-plane bending moments
Joints B 2y | t fyO s fyl ) b1 3, M, M,
mm | N/mm N/mm rad. mm kNm kNm
X5 06 | 24 |6.12 411 406 0.1 4.5 10.4 14.5
DX6 0.6 | 24 {6.12 411 406 0.1 4.5 10.4 14.6
(1.00)* | (1.01)*
DX7 0.6 | 24 |[6.12 411 406 0.1 4.5 154 18.80
(1.48)** | (1.29)**
DX8 06 | 24 |[6.12 411 433 0.1 45 10.5 15.8
(1.01)** [ (1.08)**
*: Ratio to the load of uniplanar joint X5.

**:  Ratio to the load of multiplanar joint DX6.

3.3.3 Test results and discussions

The load vs. chord face (one face) indentation curves for the four axially loaded X- and
XX-joints are given in Figure 3.3. The moment vs. in-plane rotation curves for the four
X- and XX-joints under in-plane bending moments are given in Figure 3.4. The serviceability
deformation limit of 1%b, and the ultimate deformation limit of 3%b,, are indicated in the
two figures. The relationship between the in-plane rotation and the chord face indentation can
be approximately written as follows:

-
L

2 4

B.

— Indentation [mm]

Figure 3.3 Test results of axially loaded X- and XX-joints
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Figure 3.4  Test results of X- and XX-joints loaded with in-plane bending moments

Detailed description of the deformation limits and the determination of the ultimate load
(moment) capacity of the joint can be found in Chapter 4. The serviceability load capacity
and the ultimate load capacity are listed in Table 3.2. The serviceability moment capacity and
ultimate moment capacity are shown in Table 3.3.

The failure mode for both axially loaded and moment loaded joints is usually plastification
of the chord faces with excessive chord face indentation. For joints loaded with in-plane
bending moments (X5, DX6, DX7 and DX8), cracking occurs in the tension side chord wall
at the weld toe. Cracking in the chord initiates very close to or even after the ultimate
deformation limit.

From the results of axially loaded X- and XX-joints listed in Table 3.2, it can be concluded
that:

- For the joint with the out-of-plane braces unloaded (DX2), the multiplanar geometrical
stiffening effect is 5% at the serviceability limit and 7% at the ultimate deformation
limit, compared to uniplanar joint X1.

- For the joint with the out-of-plane braces loaded in compression (DX3), the
serviceability load capacity is increased by 40% compared to that of the joint with the
out-of-plane braces unloaded (DX2). Comparison between the results of joint DX3 and
DX2 at the ultimate deformation limit is hampered by the premature stop of the test
for joint DX3. However, it can be found from the load vs. indentation curve in Figure
3.3 that there is a large enhancement of the load capacity for joint DX3 too in
comparison with that for joint DX2. For indication, the load at the end of the test for
joint DX3 is listed in Table 3.2 which is already 24% higher than the ultimate load
capacity of joint DX2.
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- For the joint with the out-of-plane braces loaded in tension (DX4), the serviceability
load capacity is decreased by 27% and the ultimate load capacity is decreased by 20%
compared to joint DX2.

For the results of X- and XX-joints loaded with in-plane bending moments, it is concluded
that:

- For the joint with the out-of-plane braces unloaded (DX6), the geometrical stiffening
effect can be neglected at both serviceability limit and ultimate deformation limit in
comparison with joint X5.

- For the joint with the out-of-plane braces loaded in compression (DX7), the
multiplanar loading effect is significant (with 48% and 30% enhancement of moment
capacity at serviceability deformation limit and ultimate deformation limit respectively
in comparison with joint DX6). As mentioned before, this strong effect is mainly due
to the vertical adjustment of the out-of-plane braces for DX7.

- For the joint with the out-of-plane braces loaded in tension (DX8), there is a slight
enhancement of the load capacity due to the reduced rotation of the out-of-plane
braces.
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3.4 TESTS FOR T- AND TX-JOINTS
3.4.1 Specimen geometry

The nominal steel grade and joint geometrical parameters are the same as for the tests of X-
and XX- _]Oll‘ltS The measured yield strength of the chord is 420 N/mm? and that the braces
is 430 N/mm?. All brace members for a specimen are from the same production batch. The
braces are welded to the chords with fillet welds with a throat thickness equal to the wall
thickness of the brace. The welds are made using a low hydrogen electrode of yield strength
460 N/mm? and ultimate tensile strength of 570 N/mm?. The weld sequence is such that the
welds start and finish at the mid-sides of the member cross sections. The measured
dimensions of the hollow sections and the weld sizes are listed in Tables 3.4 and 3.5
respectively.

Table 3.4 Measured Dimensions of the chord and the braces (mm)

Specimen bxhxt t. T I,

MPIT1A chord 149.2 x 149.8 x 6.42 7.50 4.17 12.00
in-pl. brace 89.5 x 90.5 x 6.15 7.96 2.78 9.63

MPIT2 chord 150.0 x 149.5 x 6.20 7.70 2.20 10.10
in-pl. brace 90.5 x 89.5x 6.20 8.01 2.31 10.13

out-of-pl. brace 90.5 x 89.5x 6.20 8.03 2.52 9.85

MPIT3 chord 150.0 x 150.0 x 6.20 7.96 2.25 9.43
in-pl. brace 91.0 x 90.0 x 6.30 8.09 2.28 9.63

out-of-pl. brace 91.0 x 90.0 x 6.30 8.11 2.33 9.68

MPIT4 chord 149.5 x 149.5x 6.20 7.92 2.25 8.93
in-pl. brace 90.5 x 89.5x6.20 8.06 1.98 8.33

out-of-pl. brace 90.5 x 89.5x 6.20 8.32 2.58 8.39

MPIT5 chord 149.7 x 149.3 x 6.42 7.70 2.20 10.10
in-pl. brace 90.1 x 89.6 x 6.19 8.01 2.31 10.13

out-of-pl. brace 90.1 x 89.6x 6.19 8.03 2.52 9.85

MPIT6 chord 149.1 x 149.7 x 6.36 7.96 225 9.43
in-pl. brace 90.7 x 89.7 x 6.13 8.09 2.28 9.63

out-of-pl. brace 90.7 x 89.7x 6.13 8.11 2.33 9.68

MPIJT7 chord 149.1 x 149.7 x 6.37 792 2.25 8.93
in-pl. brace 89.8 x 89.8 x 6.16 8.06 1.98 8.33

out-of-pl. brace 89.8 x 89.8 x 6.16 8.32 2.58 8.39
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Table 3.5 Measured dimensions of the welds (mm)

Specimen Brace Flat side Corner
4 & 3 ay

MPIT1A in-pl. 9.72 9.72" 93 9.3"
MPIT2 in-pl. 9.90 9.90 9.90 9.90"
out-of-pl. 9.78 9.78" 9.78 9.78"
MPIT3 in-pl. 10.00 10.00" 9.44 9.44"
out-of-pl. 9.44 9.44" 9.44 9.44"
MPIT4 in-pl. 9.88 9.88" 9.69 9.69"
out-of-pl. 9.81 9.81" 9.78 9.78"
MPIT5 in-pl. 9.88 10.00 9.75 9.75
out-of-pl. 9.26 9.57 9.16 9.47
MPIT6 in-pl. 10.13 9.25 9.38 8.43
out-of-pl. 10.57 9.44 9.57 8.78
MPIT7 in-pl. 9.38 9.38" 9.38 9.38"
out-of-pl. 9.41 9.41" 8.91 891"

* In case where a, is not measured, a,=a,, is assumed.

3.4.2 Test procedure

The behaviour of axially loaded T- and TX-joints differs from that of X- and XX-joints in

tWuU aspucts.

1.

The axial load on the in-plane brace of a T- or TX-joint is balanced by the supports
of the chord ends. The reaction forces cause overall bending moment in the chord.
Premature chord bending failure should be prevented. The chord length between two
reaction plates is chosen as 850 mm which is, for the joint geometrical parameters
used, short enough to prevent overall bending failure before joint failure, but long
enough to minimise end effects on the joint behaviour (Davies 1991b).

Due to asymmetry in geometry and loading in-plane, rotation of the out-of-plane
braces occurs for TX-joints during axial loading which results in secondary bending
moments on the out-of-plane braces. The rotation of the out-of-plane braces can be
restrained in such a way that they are always kept horizontal during the test. Two sets
of tests are carried out: one with the out-of-plane braces restrained another with the
out-of-plane braces free to rotate in order to examine the restraining effect.
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A schematic illustration of the test arrangement is given in Figure 3.5. Compression axial load
is applied on the in-plane brace.

On each of the out-of-plane braces of joints MPJT2, MPJT3 and MPJT4, two dial gauges are
arranged (gauges A and B and gauges C and D). At particular load increments the test is
halted, the position of the out-of-plane braces is adjusted based upon the readings from the
dial gauges in order to keep the out-of-plane braces horizontal. For joint MPJTZ2, the
out-of-plane braces are unloaded. While for joints MPIT3 and MPIT4, the out-of-plane braces
are loaded in tension and compression respectively. The loads on the out-of-plane braces
when applicable are applied at the same time as the load on the in-plane brace with an
absolute loading ratio of 0.56.

The tests for joints MPJTS, MPJT6 and MPJT7 correspond to the tests for joints MPJT2,
MPIT3 and MPJT4 respectively. The difference is that the out-of-plane braces for MPJTS to
MPIT7 are free to rotate, i.e. no position adjustment of the out-of-plane braces.

The test is continued until a peak occurs in the in-plane load versus chord face indentation
curve or the chord face indentation reaches unacceptably large values whichever is the sooner.

Ny IN
Reaction plate e o s Sdjustment
\ A Bllc” o
Q 0 euly © 9
=] 1 - o
10.5N, 0.6N 1 N, = 0.56N, N, = 0.56 N,

Figure 3.5 Test arrangement for axially loaded TX-joints

3.4.3 Test results and discussions

Joint failure is usually by excessive chord top face indentation, i.e. plastification of the joint.
When the out-of-plane braces are in tension (MPIT3 and MPJT6) some cracking occurs in
the chord side faces at the weld toes. Cracking initiates close to or later than the ultimate
deformation limit. For joints with the out-of-plane braces kept in horizontal position, the
in-plane load vs. chord top face indentation curves are illustrated in Figure 3.6. For joints with
the out-of-plane braces free to rotate, the results are illustrated in Figure 3.7. The load
capacity of each joint at the serviceability deformation limit and the ultimate deformation
limit is listed in Tables 3.6 and 3.7. The influence of the restraints on the out-of-plane braces
is listed in Table 3.8.
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Table 3.6 Test results for axially loaded T- and TX-joints with the out-of-plane
braces kept horizontal

Joints Bl 2v| ¢ fy0 fo1 8, | Ny/N, N, Niu
mm | N/mm? | N/mm? | mm kN kN

MPIT1A 0.6 (232642 | 420 430 3.9 - 189 210
MPIT2 |06|242| 620 | 420 430 45 | 00 202 | 251
1.on™ | (1.20)

MPIT3 |06 |242] 620 | 420 430 45 | -056 165, 210
082" | (0.84)"

MPJT4 {06 |24.1| 620 | 420 430 45 | 056 227 | 264
(L12)™ | (1.05)"

*: Ratio to the load of uniplanar joint MPJT1A.
**. Ratio to the load of multiplanar joint MPJYT2.

Table 3.7 Test results for axially loaded T- and TX-joints with the out-of-plane
braces unrestrained
Joints B 2y to fyO fyl 3, | Ny/N, N, N, u
mm | N/'mm? | N/mm? | mm kN kN
MPJT1A | 0.6 | 23.2 | 6.42 420 430 3.9 - 189 210
MPJT5 0.6 |23.3| 642 420 430 4.5 0.0 151 . 225 .
(1.0 (1.07)
MPJT6 0.6 | 234 6.36 420 430 45 | -0.56 150** 190**
(0.79) (0.84)
‘ MPITT ' na l 7233 I 637 420 430 45 0.56 232 258
l £ EXN
L | | | 1 ] | (121 l (1.15) I
*. Ratio to the load of uniplanar joint MPJIT1A
™. Ratio to the load of multiplanar joint MPJT5
Table 3.8 Influence of the restraints on the out-of-plane braces
Indentation Nyprma NmprT3 Nyiprra
Numpts Numprrs Nyvprrr
1%y, 1.06 1.10 0.98
3, 1.12 111 1.02
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From Figures 3.6 to 3.7 and Tables 3.6 to 3.8, the following conclusions can be drawn:

For the joint with the out-of-plane braces unloaded and restrained (MPJT2), the

multiplanar geometrical stiffening effect is 7% at the serviceability deformation limit
and 20% at the ultimate deformation limit. The multiplanar geometrical stiffening
effect is much stronger at the ultimate deformation limit than at the serviceability
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deformation limit. The reason is partly due to the larger vertical adjustment forces
applied at the uitimate deformation limit in order to keep the out-of-plane braces
horizontal. For the joint with the out-of-plane braces unloaded and unrestrained
(MPJTS), the multiplanar geometrical stiffening effect is 1% and 7% respectively at
the serviceability and the ultimate deformation limits. Thus, smaller geometrical
stiffening effect is found if no restraints are applied on the out-of-plane braces.

For the joint with the out-of-plane braces loaded in tension and restrained (MPJT3),
the load capacity is decreased by 18% and 16% respectively at the serviceability and
the ultimate deformation limits compared to that of joint MPIT2 with the out-of-plane
braces unloaded. For the joint with the out-of-plane braces loaded in tension and
unrestrained, the load capacity at the serviceability and the ultimate deformation
limits is decreased by 21% and 16% respectively compared to that of joint MPITS5.

For the joint with the out-of-plane braces loaded in compression and restrained
(MPJT4), the load capacity is increased by 12% and 5% respectively at the
serviceability and the ultimate deformation limits compared to joint MPJIT2. For joint
with the out-of-plane braces loaded in compression and unrestrained (MPJT7), the
load capacity at the serviceability and the ultimate deformation limits is 21% and 15%
increased respectively compared joint MPJTS.

The effect of the restraints used to keep the out-of-plane braces horizontal is within
12%.
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4 NUMERICAL CALIBRATION AND GENERAL ASPECTS
ABOUT THE PARAMETER STUDY

41  INTRODUCTION

Experimental testing is expensive and time consuming. In the last decade, there has been an
increasing awareness that the use of non-linear techniques represents a much more economic
tool for ultimate strength estimations of hollow section joints. For predicting the ultimate
strength, the following major influences should be taken into account for modelling tubular
joints (Puthli 1981 and Cofer 1992): the constitutive laws for elasto-plastic behaviour
including the strain hardening behaviour (material nonlinearity); large displacement and large
strain behaviour (geometrical nonlinearity); the ability to reproduce the weld profile in order
to take into account its influence on the static strength of tubular joints. There is no problem
of including the first two by using the general purpose FE programme MARC. For modelling
of the weld, different ways may be adopted which will be further discussed in this chapter.
Of course, experiments need to be carried out within the range of parameters being
investigated in order to: check the preliminary numerical results; calibrate the numerical
models for accuracy; give sufficient proof of the validity of the results. Once a numerical
model is well established and well calibrated, a large number of numerical parameter studies
can be carried out which are cheaper and faster than the experimental investigations.

This chapter contains the following work:

- software and hardware used for the numerical study, Section 4.2.

- selection of a suitable numerical model, Section 4.3.

- calibration of the numerical model with the experimental results, Section 4.4.
- general aspects about the numerical parameter study, Section 4.5.

42 SOFTWARE AND HARDWARE

Using the pre- and post precessing package SDRC-IDEAS (level IV and V), the FE models
have been generated on SUN SPARC Workstations. The numerical analyses have been
performed using the general purpose FE programme MARC (Versions K5 and K6) on a
CONVEX Super Computer or on an IBM RS/6000-350 Workstation. Converting IDEAS files
to MARC files and vice versa has been carried out using MARC’s pre- and post processor
MENTAT (Version 5.4).

4.3 SELECTION OF THE MOST SUITABLE NUMERICAL MODEL
4.3.1 Literature review

In order to choose the best FE strategy, available literature (de Koning 1992, van der Vegte
1991) has been reviewed. The following aspects have been considered:

- the finite element mesh refinement.
- the use of material and geometrical non-linearities.
- the modelling of the weld.
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- the modelling of the rounded corners of the rectangular hollow sections.
- the choice of a finite element type.

In order to guarantee the mesh accuracy, three different meshes have been modelled for joint
X1 with the number of elements equalling to 160, 270 and 362 (de Koning 1992), see Figure
4.1. The geometrical and material properties of joint X1 can be found in Chapter 3. It was
concluded that the model with 160 elements for joint X1 is sufficiently accurate for the
problem at a relatively low cost. Thus, similar mesh refinement is used for uniplanar T-joints.

1) No. of elements: 160 2) No. of elements: 270

3) No. of elements: 362

Figure 4.1 Different element meshes (de Koning 1992)
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As mentioned before, both material and geometrical non-linearities should be included for the
prediction of the joint ultimate load capacity .

The presence of the weld may have a strong influence on the strength of the joint, so that the
weld should be included in the numerical modelling. The degree of weld penetration has little
influence on the strength of the joint. Therefore, the gap between the chord and the brace due
to partial fillet weld penetration can be neglected in the numerical modelling.

The rounded corners of chord and braces may have a strong influence on the strength of the
joint, and have to be included in the modelling.

The choice of an element type is not only structural dependent but also limited by other
factors such as the disk space, the CPU time and the software etc. In principle, the following
element types can be used for this study: solid elements, shell elements or a combination of
the two through transition elements. It is well known that a numerical model with the
combination of solid, shell and transition elements needs much more disk space and CPU time
than a model with only solid or shell elements (Yu 1994a, Van der Vegte 1995) if the same
mesh refinement is used. Using the FE programme ABAQUS, Davies (1993b) concluded that
using solid elements to model the weld and shell elements to model the brace and the chord
gives a good simulation of the joint behaviour compared to the experimental results. However,
in the FE programme MARC, using solid elements to model the fillet weld overestimates the
load capacity of the RHS joints. This will be further discussed in this section. Van der Vegte
(1991) indicated that using eight noded thick shell elements to model the butt weld, the chord
and the braces for circular hollow section joints gives a good agreement with the experimental
results. In his model, the throat thickness of the fillet part of the butt weld is used as the
thickness of the finite elements representing the weld. However, using this approach for fillet
welded joints of RHS sections, it is found that the load capacity is overestimated compared
to the experimental results, see Figure 4.2.

—FE results
(use throat thickness)

© = “Exp. Results
300 prererrrrrre e

250 F

—_ N
(S R =]
o O

Applied Load [KN]

0 5 10 15 20 25
Indentation [mm]

Figure 4.2 Comparison between numerical and experimental results of fillet welded
joint of rectangular hollow sections (joint MPJT1A in Chapter 3)
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In order to demonstrate the sensitivity of the FE analyses to different approaches in modelling
the RHS joints, six models with different types of elements available in the general purpose
FE computer programme MARC are used to model the joint in different ways, see Table 4.1.
In Table 4.1, one uniplanar T-joint (MPJT1A) with measured dimensions and material
properties is considered, see Tables 3.4 to 3.6 in Chapter 3. The hollow section members and
the welds are modelled using: two types of solid elements (model 1 and 2); three types of
shell elements (model 3, 4 and 5); and one type of solid and shell elements together with
transition elements in between (model 6).

Table 4.1. Element types used in the six models

Models Element Types
20-noded solid
Model 1 (Element 21)
Solid models 20-noded solid with reduced I -
-noded solid with reduced integration
Model 2 (Element 57)
8-noded thick shell
Model 3 (Element 22)
8-noded thin shell
Shell Models Model 4 (Element 72)
4-noded thick shell
Model 5 (Element 75)
Shell+Solid+Transition | ,, | . | 20-noded solid+8-noded thick shell+15-noded solid
Model R (Element 22 + Element 57)

4.3.2 Description of different element types

Cnalid nlasvnsén

Solid elements can model both relatively thin objects such as steel hollow sections and thick
objects such as welds between hollow sections. With the midside nodes, twenty noded solid
clements can be used for high accuracy problems. Two types are used here for comparison.

Model 1 20-noded solid elements (MARC element type 21): Each has three translational
degrees of freedom; Quadratic interpolation polynomials are used for the
coordinates and the displacements; 27 Gaussian integration points are used in
order to elaborate the element stiffness matrix, thus 3 integration points in each
of three directions. No reduced integration technique is used. Shear locking
may occur for using such an element. Because of the existence of the midside
nodes, it is an element with a high order accuracy.

Model 2 20-noded solid element (MARC element type 57): Each has three translational
degrees of freedom; Quadratic interpolation polynomials are used for the
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coordinates and the displacements; By using reduced integration, shear locking
can be prevented; Due to the application of reduced integration, 8 Gaussian
integration points are used for elaborating the element stiffness matrix, i.e., 2
integration points in each of the three directions. It is also a high accuracy
element because of the existence of midside nodes.

It should be mentioned that it is not possible to have more than three integration points for
either of the above two solid elements in the thickness direction of the chord and the brace
walls. This will cause difficulties in adequately describing the plastic stress pattern in the
thickness direction for nonlinear analyses, and is not suitable for no-linear analysis. These two
elements are used for comparison purposes to clearly demonstrate the erroneous results.

Shell elements

Shell elements can be used for relatively thin structures such as steel hollow sections.
However, for the welds at the tubular joints, it is difficult to exactly describe the geometrical
shape, because shell element nodes are located in the middle plane of the element. It is
necessary to choose the thickness of the weld carefully in the FE analysis in order to describe
the joint behaviour correctly. It is possible to select an adequate number of integration points
in the thickness direction of the shell elements and the non-linear stress pattern in the
thickness direction of the tubular joints can be better described.

Model 3 8-noded thick shell element (MARC element type 22): Each has three
translational and two rotational degrees of freedom. Quadratic interpolation
polynomials are used for the coordinates, displacements and rotations. For
defining the strain and stress distribution adequately, 7 Simpson integration
points (called layers in MARC) are used in the thickness direction of the
elements, and 2x2 Gaussian integration points are used in each layer of the
elements with the reduced integration scheme. It is a high order accuracy
element because of the existence of the midside nodes. Thick shell elements
are also called Mindlin shell elements in which the transverse shear strains are
taken into account (Puthli 1981).

Model 4 8-noded thin shell element (MARC element type 72): Each corner has three
degrees of freedom for translation. At midside nodes, rotation of the edge
about itself is allowed. Although coordinates may be specified at the midside
nodes, they will be ignored and the edges set up as straight lines. Bilinear
interpolation is used both for displacements and coordinates. Because of the
bilinear interpolation for displacements and coordinates, it is a lower accuracy
element compared to element 22. Thin shell elements are also called Kirchhoff
elements where transverse shear strains are ignored. 7 Simpson integration
points are used in the thickness direction of the elements and 5 Gaussian
integration points are used in each layer. This type of element is suitable for
tubular joints with very thin chord and brace members.

Model 5 4-noded thick shell element (MARC element type 75): Each has three
translational and two rotational degrees of freedom. Bilinear interpolation is
used for the coordinates, displacements and rotations. With the absence of
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midside nodes, it is a lower accuracy element compared to MARC element
type 22. Again, 7 Simpson integration points are used in the thickness
direction of the elements, and 2x2 Gaussian integration points are used in each
layer of the elements. Transverse shear strains are included.

Transition elements

Model 6 Another possibility of modelling the RHS joints is to combine solid and shell
elements in one model. Namely, the weld areas are modelled as solid elements
and other parts are modelled as shell elements. Automatic constraints are used
for transitions between solid and shell elements. The transition element is a
special case of MARC element type 57 degenerated as 15-nodes, as shown in
Figure 4.3.

Figure 4.3 15-noded transition element

4.3.3 Modelling of the weld area

CVILL«OFU[IJ;][S LU dl\.« \)iA lllUL‘lU:D, ;ZAULU Ui dirj’.‘@l(«ll‘l wa_yo tU lllU&.‘lCl ‘lll(z WDIL‘I alcd, ad BilUWll
in Figure 4.4. In Figure 4.4, (b) corresponds to models 1 and 2 with solid elements; (c) to
models 3 and 4 with 8-noded thick shell and 8-noded thin shell elements respectively; (d) to
model 5 with 4-noded thick shell elements; and e) to model 6 with solid, shell and transition
elements.

For models 3, 4 and 5, the thickness of the shell elements for the fillet weld is taken as its
average thickness t,, (see Figure 4.5). The average thickness t,, was also used in the earlier
reports and papers (de Koning 1992, Lin 1993, Yu 1993a, Yu 1993b).
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Figure 4.4 Modelling of the weld area
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Figure 4.6 Solid element meshes (Models 1 and 2 in Table 4.1)

4.3.4 FE meshes for different models

Considering symmetry in load (axial compressive load applied on the brace) and geometry,
only one quarter of a T-joint is analysed. Figure 4.6 gives the element meshes for models 1
and 2 where only solid elements are used. Figure 4.7 shows the element meshes for models
3 and 4 where only 8-noded shell elements are used. For model 5, the same element grid is
used as in Figure 4.7. However there are only four nodes per element. In Figure 4.8, the
shaded elements are 15-noded degenerated solid elements with automatic constraints (the
transition elements, see Figure 4.3). The weld, the chord wall underneath the weld, the chord
wall underneath or surrounded by the brace and the brace adjacent to the weld are modelled
as 20-noded solid elements (element 57). Other parts of the joint are modelled as 8-noded
thick shell elements.

Figure 4.7 Shell element meshes (Models 3, 4 and 5 in Table 4.1)




Numerical calibration and general aspects about the parameter study 47

Figure 4.8 Solid + shell + transition element meshes (Model 6 in Table 4.1)

4.3.5 Geometrical and material non-linearities

Geometrical non-linearities

In order to describe large displacement problem, an updated Lagrange procedure is used so
that a new frame of reference is defined at the beginning of each increment.

Material non-linearities:

For finite strain problems, the true stress-strain curves should be used for the work hardening

data. For an uniaxial tensile specimen, the true strain (logarithm strain) is the integration of
the deformation rate along its length:

1+Al
d [+Al
er= [ e (1) @1
!

The true stress:

o=t P A_As (42)
A, AA, A,
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Note that for an approximate incompressible material behaviour,

A (1+eg)=A 4.3)
Where,
1 : Member length;
A, : Updated section area of a member;
A : Section area of a member;
P : Force applied to the section area;
€ : Engineering strain, eg=Al/l;
>N : Logarithm strain;
Og : Engineering stress;
Ot : True stress;

Hence, the expression for the true stress may then be approximated by
or=(1+eg)og (4.4)

First, the engineering stress-strain curves are determined by tensile testing of material from
the chord and the brace in the longitudinal direction of the members (Davies 1992b). The
engineering stress-strain curve reaches its maximum when necking occurs in the specimen,
see Figure 4.9. However, for the true stress-strain curve, the true stress will still increase after
the maximum engineering stress, due to the decreasing of the section area .

<\‘E
1=
= Chord
o E ,"” " Brace
£ 40
200 F_ True stress—strain
E "~ Engineering stress-strain
0 :IIIIIA\IIIIllIIIIllllllllllllllllllllll
0 10 20 30 40

—= Strain [%]

Figure 4.9 The stress-strain curves of the chord and the braces
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Thus, two approaches have been used to convert the engineering stress-strain curves into true
stress-strain ones:

- Directly use formulae (4.1) and (4.4). These formulae can only be used until
maximum is reached in the stress-strain curve, see Figure 4.9.

- After the maximum is reached in the engineering stress-strain curve, the
Ramberg-Osgood power law is recommended to be used (Background Document of
EC3 1992 and van der Vegte 1991):

1

— 4.5
gr/e=ax(c/o)" (4.5)

Where a and n are coefficients to be determined using the least square method based upon
the test results of the engineering stress-strain. ¢ and € are the reference stress and reference
strain (here taken as engineering stress and engineering strain respectively).

The engineering stress-strain curves and the corresponding true stress-strain curves are shown
in Figure 4.9. The true stress-strain curves are used for the work hardening data in the
numerical investigation. Furthermore, the isotropic work hardening rule and the Von Mises
yield criterion have been chosen.

4.3.6 Solution techniques used for the numerical analysis

Loading

The axial loads are applied by the displacement control procedure. With this method, an axial
displacement at the end nodes of the in-plane brace is prescribed which in turn results in
nodal forces at these nodes. The displacements are applied with increments and within each
increment, iterations are needed until the prescribed convergence criteria are reached. Full
Newton-Raphson technique has been used for the iterative-incremental solution procedure.

Convergence criteria

The convergence criteria used here are based on the ratio of residual forces and the ratio of
residual moments (the maximum residual force divided by the maximum reaction force and
the maximum residual moment divided by the maximum reaction moment respectively). Both
convergence ratios are set to 0.01.

Bandwidth optimization of the stiffness matrix
In order to reduce CPU time, the Cuthill-McKee algorithm is used to optimize the bandwidth
of the stiffness matrix.

4.3.7 Comparisons between the results of six models investigated
Results from models with solid elements

In Figure 4.10, the numerical results from the different solid element models (model 1, 2 and
6) are compared with the experimental resuit of joint MPJT1A (Davies 1992b). The horizontal
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axis represents the chord top face indentation at the joint intersection and the vertical axis
represents the axial load applied on the in-plane brace.

——  Model 1
............. Model 6
------ - Model 2
-=—-  Exp. results
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Figure 4.10 Comparison between the results of models with different solid elements
and the experimental result (B=0.6 2y=23.8)

It can be seen that the load capacity obtained for all the three models (models 1, 2 and 6) is
much higher than that from the experiment. Model 1 using 20-noded solid elements gives the
highest load capacity among the three models, because a reduced integration technique is used
for models 2 and 6. Model 1, without using the reduced integration technique, overestimates
the transverse shear strain capacity of the elements. The load capacities from models 2 and
6 are very close to each other in most part of the load vs. indentation curve.

Using solid elements or combining solid and shell elements with automatic constraints gives
too high load capacity compared to the experimental result. The reason is because there are
no more than three integration points in the area of the weld modelled with solid elements.
In that case, the stress distribution in the thickness direction of the elements can not be
appropriately described.
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Figure 4.11 Comparison between the results of models using different shell elements
and the experimental result (3=0.6 2y=23.8)

Results from models with different shell elements

Figure 4.11 shows the comparison between the results from the models with shell elements
(models 3, 4 and 5) and the experimental result of joint MPJT1A. The load capacity from
model 5 with 4-noded thick shell elements gives the highest value. The load capacity from
model 4 with 8-noded thin shell elements is higher than that from model 3 with 8-noded thick
shell elements. The difference in load capacities between model 3 and model 4 is, however,
only 1%, although the load capacity of the latter is a little bit higher for the investigated joint
geometry ($=0.6 and 2y=23.8). Thus, for a joint with a 2y value larger than 24, model 4 is
an alternative choice to model 3, although the latter is theoretically speaking more accurate,
because the transverse shear strain of the element is considered. For a smaller 27y value of 15,
the ultimate load capacity of model 4 with 8-noded thin shell elements is about 6% higher
than that of model 3 with 8-noded thick shell elements, see Figure 4.12.

The load capacity of model 5 with 4-noded thick shell elements is also close to that of the
experimental results before the kink of the load vs. indentation curve. However, with the
increase of the indentation, the numerical result is higher than the experimental one.
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Figure 4.12 Comparison between the results of Models 3 and 4 (for $=0.8, 2y=15)

The load capacities from the models with 8-noded thin (model 4) and 8-noded thick (model
3) shell elements are close to each other and close to the experimental results for the
investigated joint geometry (B=0.6, 2y=23.8). However, as already mentioned, the difference
between the numerical results from model 3 and model 4 will be larger for lower 2y values,
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quantitatively compared to the experimental resuit.
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Table 4.3 Comparisons between the results from six models

¢ Ultimate load capacity
t
Models Element No. N /ggnz mgn Ny, relative Ny | to
kN exp. results
Model 1
(20-node solid) 276 419.7 6.42 243 1.16

Model 2

(20-noded solid with | 276 4197 | 642 235 112

reduced integration)
Model 3

(8-noded thick shell)| 270 419.7 | 642 206 0.98
Model 4

(8-noded thin shell) | 210 4197 | 642 209 0.99
Model 5

(4-noded thick shelly| 270 4197 | 642 219 1.04
Model 6

(8-noded thick shell

+20-noded solid + | 2% 419.7 | 642 233 111

15-noded solid)
Exp. results
(MPJT1A) 419.7 6.42 210 1.00

4.3.8 Summary and recommendation for the numerical modelling

Six models with different types of elements have been used to model the RHS joints. The
results are summarised as follows:

- Using solid elements or a combination of solid and shell elements through transition
elements to model RHS joints gives an unacceptably high load capacity of the joint
compared to the experimental results. The reason is that there are no more than three
integration points in each direction of the solid elements, particularly in the thickness
direction. The stress distribution in the elements after yielding cannot therefore be
described exactly.

- Models with solid elements or model with a combination of solid and shell elements
through transition elements require much more computer time than models with shell
elements. Between the models with shell elements, an 8-noded thin shell element
model requires the smallest amount of CPU time and a 4-noded thick shell element
model the smallest disc working space (Yu 1994a, Van der Vegte 1995).
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The numerical results using the 4-noded thick shell elements are higher than those
using the 8-noded thin and thick shell elements.

Theoretically speaking, an 8-noded thick shell element is more accurate because the
transverse shear strain of the element is considered. For most cases, model 3 with
8-noded thick shell elements is recommended to model the hollow sections and the
welds if the disc working space and CPU time are not limited. For large models (large
number of nodes) with 2y value higher than 24, model 4 with 8-noded thin shell
elements can be an alternative model, in order to save computing time and disc
working space.

For modelling of the fillet weld, an average thickness t,, can be used, see Figure 4.5.
For modelling of the butt weld, the throat thickness of the fillet part of the weld has
been proved to be suitable (Van der Vegte 1991).
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44 CALIBRATION OF THE NUMERICAL MODEL WITH THE
EXPERIMENTAL RESULTS

4.4.1 General remarks

A numerical model has been recommended in Section 4.3. In this section, the same model is
used for the calibration with the experimental results of multiplanar TX-joints described in
Chapter 3. The numerical calibration of uniplanar X- and multiplanar XX-joints has also been
carried out in a similar way (de Koning 1992) but is not included in this section. General
remarks regarding the numerical calibration are as follows:

- In order to simulate the experiments as accurately as possible, the measured
dimensions and material properties of each joint are used. The measured dimensions
and material properties can be found in Tables 3.4 to 3.7, Chapter 3. The loading
conditions for each joint can be found in Table 3.1, Chapter 3.

- The rounded corners of the chord and the braces are modelled.

- The plates attached to the ends of the chord and the ends of the out-of-plane braces
are also modelled, using the material properties of the chord.

- 8-noded thick shell elements are used for the chord, the braces and the weld. The
thickness of the weld is taken as the average thickness defined in Figure 4.5.

- For the work hardening data, the stress-strain curves of the material are modelled as
a multilinear relationship which are obtained by converting the engineering
stress-strain curves into true stress-strain curves, see Figure 4.9. The engineering
stress-strain curves are determined by tensile tests of the chord and the brace members
in the longitudinal direction (Davies 1992a, 1992b). The work hardening data for the
braces is also used for the weld. The Von Mises yield criterion and the isotropic strain
hardening rule are adopted.

- Large displacement and finite strain options are chosen. The updated Lagrange
procedure is used.

4.4.2 Finite element meshes and boundary conditions

T-joints differ from X-joints in the way forces are transferred through the hollow section
chord. In X-joints with balanced forces, axial forces are transferred across the chord from one
brace to another, without imposing shear forces or bending moments in the chord. In X-joints,
the local chord face deformation is doubly symmetric, so that no bending of the brace
members occurs. In T-joints, however, the in-plane brace force is transferred to the supports.
This gives rise to shear and bending in the chord. Due to the non-symmetric distortion of the
chord cross section, rigid body rotation of the out-of-plane braces occurs, if their ends are free
as shown in Figure 4.13 or bending occurs in the out-of-plane braces if the out-of-plane
braces are restrained from vertical displacement at the ends.
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Figure 4.13 Rigid body motion of the out-of-plane braces

For both uniplanar T-joint and multiplanar TX-joints, a quarter of a joint has been modelled.
As an example, Figure 4.14 shows the finite element meshes and boundary conditions for
multiplanar joints (MPJT2, MPJT3, MPJT4) with the out-of-plane braces kept horizontal. The
origin of the coordinate system is at the centre of the chord.

For multiplanar joints of MPIT2 to MPJT4 shown in Figure 4.14, points Al and A2 indicate
positions where transducers are attached in the experimental work for the measurement of the
vertical displacements of the out-of-plane braces. Small forces are applied at A3 to maintain
equal vertical displacements at points Al and A2 during the experiment. In order to simulate
these forces, point A3 is tied to point Al in the vertical direction. As a result, the out-of-plane
braces are kept horizontal.

For muitipianar joints of MPJIT5 to MPJT7, the same ciement meshes and boundary
conditions are used except that no restraints are applied on the out-of-plane braces.

4.4.3 Simulation for the loading

For uniplanar joint and multiplanar joints with the out-of-plane braces unloaded, the
compressive load at the end of the in-plane brace is applied by displacement control.

For multiplanar joints with the out-of-plane braces loaded, all the loads are applied by load
control, because the loads applied to the out-of-plane braces are to be maintained proportional
(0.56 times the in-plane brace load), as in the experiment.
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7 A

Tying for loading

Support

BOUNDARY CONDITIONS

Degree of freedom Node;(zg'glane NOde;:& Oplane Nodes on support
u, 0. free free
u, free free 0.
u, free 0. free
D, free 0. free
D, 0. 0. free
D, 0. free free

Figure 4.14 FE meshes and boundary conditions for multiplanar joints

4.4.4 Numerical results

The numerical results are illustrated with the in-plane brace load versus chord top face
indentation curves in Figure 4.15. The local indentation of the chord top face is measured as
the in-plane brace displacement (at a position of 100 mm above the chord top face) minus the
bottom face displacement of the chord, as in the experiments. This load versus indentation
relationship has been included in a FORTRAN subroutine for the output.

4.4.5 Comparison between the numerical and the experimental results
Comparison between the numerical and the experimental results is shown in Figure 4.15. A

quantitative comparison between the numerical and the experimental results with regard to
the serviceability load capacity and the ultimate load capacity is listed in Tables 4.3 and 4.4.
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Table 4.3 Comparison between the numerical and the experimental results at the
serviceability load capacity
JOint Ns,num, Ns,exp. Ns,num.
kN Ns,exp.
MPITIA 182 189 0.96
MPJT2 192 202 0.95
MPIJT3 174 165 1.05
MPIT4 209 227 0.92
MPIT5S 187 191 0.98
MPIT6 159 150 1.06
MPIT7 197 232 0.85
Table 4.4 Comparison between the numerical and the experimental results at the
ultimate load capacity
Joint Nu,num. u,exp. Ny num.
kN Nu,exp.
MPIT1A 206 210 0.98
MPIT2 228 251 091
MPIT3 211 210 1.00
MPIT4 236 264 0.89
MPITS 213 225 0.95
MPIT6 188 190 0.99
MPIT7 225 258 0.87

At the serviceability deformation limit (1%b,, indentation), there is a good agreement between
the numerical results and the experimental ones for most of the cases except for joint MPJT7
where a difference of 15% occurs, which is, however, conservative compared to the
experimental result.

At the ultimate deformation limit (3%b,, indentation), the numerical results agrees well with
the experimental ones for most of the cases. A maximum difference of 13% occurs for joint
MPIT7 which is again conservative compared to the experimental result. It should be
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mentioned that for joint MPIT7, there was a horizontal rotation of the out-of-plane braces
during the experiment. This rotation can be found in Figure 3.7.5 of page 71 in the
Nottingham report (Davies 1992b). The experimental test for joint MPJT7 has been stopped
when the out-of-plane braces had become unstable. The horizontal rotation of the out-of-plane
braces may influence the load capacity of the joint.

For the numerical calibration of uniplanar X- and multiplanar XX-joints, similar results have
been found (de Koning 1992).

In conclusion, the numerical model recommended gives either good agreements or is
somewhat conservative with respect to the experimental results.
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4.5

4.5.1

GENERAL ASPECTS ABOUT THE NUMERICAL PARAMETER STUDY
The numerical model

The nominal dimensions of the joints are used for the parameter study. For all the
joints investigated, the depth of the chord is fixed at 150 mm. The external and
internal corner radii of a rectangular hollow section are two and one times its
thickness respectively. Unless indicated, the length of the chord is 6 times its width
and the length of the braces is 5 times their width. Butt welds are used in the
numerical parameter study. The weld dimensions for butt welds are shown in Figure
4.16. The leg length of the fillet part of the butt weld along the chord is taken as 0.5t;
and the leg length of the butt weld along the brace is (2+t;) mm.

8-noded thick shell elements are used for the chord, the braces and the welds as
recommended in Section 4.3. The modelling of the butt weld is shown in Figure 4.17.
The thickness of the weld in the FE modelling is taken as the throat thickness of the
fillet part of the butt weld.

The steel grade of the chord members is S355 with f y0=335 N/mm? and f, w0=310
N/mm?. In order to prevent brace failure before chord fallure a higher yield strength
of 690 N/mm? (StE 690) for the brace members has been chosen For the same
reason, the yield strength of the weld is also used as 690 N/mm?. The engineering
stress - strain curves and the corresponding true stress - strain curves for S355 and StE
690 are shown in Figure 4.18. In reality, if brace failure does not occur before joint
failure, there is little influence of the brace yield strength on the joint ultimate load.

ty

—

2 mm j 1te=a,

} to

' 0.5t1 =ah

Figure 4.16 Dimensions of the butt weld
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Figure 4.17 FE modelling of the butt weld
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Figure 4.18 Engineering and true stress - strain curves of S355 and StE 690
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4.5.2 Determination of the "ultimate" load and the "ultimate'’ moment capacity
The "ultimate'" load capacity

For axially loaded joints, the chord top face "indentation" is shown in Figure 4.19. The static
behaviour of the joint is described using the typical load (on the in-plane brace) vs. chord face
indentation curves. For joint with small to medium B values, no maximum load is reached.
The load is increasing with the increase of indentation due to the membrane effect. In such
a case, an "ultimate" deformation limit is needed to define the "ultimate" load capacity of the
joints. The local deformation of 1%b, for hollow sections is generally accepted as the
serviceability deformation limit (Wardenier 1982a and ITW 1989). The load N at the
serviceability multiplied by the load factor 7, should not exceed the design resistance load
Ngg4 of the connection:

YgN SSNRCI 4.6)

According to Eurocode 3 (EC3, 1992), the minimum value of 7, should be taken as 1.35,
considering the combination of the different unfavourable action loads on the structures. If
the ultimate loads N, at the ultimate deformation limit from the numerical analyses would be
considered as the characteristic values, the design loads can be obtained by dividing the
characteristic value by the joint partial safety factor v, which is generaily taken as 1.1 (Lu
1994). Consequently, if the ratio between the ultimate load capacity and the serviceability
load capacity is less than or equal to 1.5 (=1.35 x 1.1), the serviceability criterion will not be
critical:

N
<y ym=LS 4.7
N, g

In this case, the check at the serviceability deformation limit can be ignored. Based upon an
extensive study on different types of connections with different load conditions, an "ultimate"
1NN AN ™ - 1 POV JURpIPY R

- - - - . P ] . T 1 1T I T — A omaima
UCLONIIALON LU UL 0 700() 1143 UCTL 1ICLCULULULIUOU LU 177/ 1LV PIUSLUULLY LU GULUE LIS s

ultimate load capacity of joints loaded with axial forces is illustrated in Figure 4.20.
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Figure 4.19 "Indentation" of chord top face of joints loaded with axial forces
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Figure 4.20 Procedure to determine the "ultimate' load capacity

The "ultimate' moment capacity

For joints loaded with bending moments, the same problem exists as for axially loaded joints.
In such a case, the "indentation" represents the chord top face "push-in" at the compression
side, see Figure 4.21.
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Figure 4.21 "Indentation" and "rotation" of the chord top face loaded with in-plane
bending moments

The "ultimate” deformation limit of 3%b, can be translated into a rotation angle of the joint:

3%b,
o = o _ 0.06 (4.8)

ni2 1

According to equation (4.8), an unrealistic large joint rotation will be obtained for joints with
small 1} values. For example, for a joint with n=0.6, $=0.1 rad., while for a joint with n=0.2,
$=0.3 rad. Thc samc probicm cxists for moment connections between I-beaiis t0 a rectanguiar
hollow section chord (Lu 1995) and I-beams to a circular hollow section chord (de Winkel
1994). Equation (4.8) should be restricted so that no unrealistic large rotation occurs for all

these connections.

For joints between RHS to RHS loaded with in-plane or out-of-plane bending moments, the
numerically determined ultimate moment capacity according to the ultimate deformation limit
is firstly determined for joints with medium m or  values. Then a regression formula can be
obtained for these ultimate moment capacity which is a function of B or 1 values. By
extrapolation of the formula to joints with small § or n} values, the corresponding ultimate
moment capacity can be determined for such joints. With the obtained ultimate moment
capacity as a reference, the rotation angle of the joint can be found according to the moment
vs. rotation (or indentation) curves of the numerical results. This rotation angle is about $=0.1
for joints with small B or 1 values.

For connections between I-beams to a circular hollow section column (CHS) or CHS to CHS,
there is nearly no difference in the ultimate moment capacity if the rotation angle is between

¢=0.08 to 0.13 (de Winkel 1994 and van der Vegte 1995).

Based upon these considerations, a rotation angle of ¢=0.1 rad. is used as a restriction to the
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deformation limit of equation (4.8). The procedure for the determination of the ultimate
moment capacity is summarised in Figure 4.22.

53%1:0 < Omax

Y N

\ 4

Sambo< ¥, h1/2

— 5 S
|

Oy = 53%1:0 Oy = 900.1111/2 Oy = 6m8! 6u = (po,lhi/z

Ml.u = Ml.u((su )

Figure 4.22 Procedure to determine the "ultimate' moment capacity

Based upon the procedures described in Figures 4.20 and 4.22, the ultimate load capacity and
the ultimate moment capacity can be determined which will be used to establish the ultimate
load and ultimate moment capacity formulae respectively.

4.5.3 The analytical models

The analytical models described in Chapter 5 will be used as a basis for the analyses of the
numerical results in Chapters 6 to 9.

4.5.4 The regression analyses

Non-linear regression analyses are performed using the numerical results in order to determine
the ultimate load or ultimate moment capacity formulae for each type of joint with different
loading cases. The regression formulae are based upon the analytical approaches described
in Chapter 5. After each regression analysis, the regression constants are determined and the
statistical results such as the mean normalised error, the coefficient of variation (CoV), and
the correlation coefficient R? etc. are given. The non-linear regression analyses are carried out
with the program NONLIN, developed at the Stevin Laboratory for Steel Structures, Delft
University of Technology.
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The statistical formulae used for the regression analysis are given as follows:

The mean value:

n .
v=L Yy Ji (4.9)
n i=1 YF;i
Where
Yi : the value from the numerical result;
Yri the value from the formula;
n : number of data points.

The standard deviation:

1 &Y (4.10)
o= | — ¥ (—-y?
n-1 {35 Ygj
The coefficient of variation:
Cov = S 4.11)
y
The correlation coefficient
n n n 2
mz_i(sﬂ ey
s i n\img ) e G PR
R- = 7% . (4.12)
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S ANALYTICAL MODELS FOR X-JOINTS

5.1 AXIALLY LOADED X-JOINTS
5.1.1 General description of different failure modes

For axially loaded uniplanar X-joints of rectangular hollow sections, failure mechanisms can
be described as follows (Wardenier 1982a):

a. Plastification of the chord top face (small to medium  values).

Cracking of the chord face around the brace (punching shear, § < 1.0-1.0/y).
Cracking in the welds or in the brace by tension (effective width).

Local buckling in the brace by compression (effective width).

Chord web bearing or buckling (B=1.0).

o a0 T

According to Wardenier (1982a), plastification of the chord top face (mode a) can be analysed
using the yield line theory and cracking of the chord face (mode b) be analysed with the
punching shear model. Failure modes ¢ and d are combined together under the term "effective
width failures", and treated identically since the connection resistance in both cases is
determined by the effective cross section of the brace members. Failure modes ¢ and d are
due to the non-uniform local stress distribution in the braces caused by the different support
conditions provided by the side walls and top faces of the chord. Weld failure can be avoid
by choosing suitable weld sizes and material qualities. According to EC3 (1992), when forces
applied to one flange and transferred through the web in I, H or U sections to the other
flange, both web crushing (or bearing) and web buckling should be checked in order to
determine the web resistance to the transverse forces. However, according to Wardenier
(1982a), one combined formula including both chord web bearing and buckling can be used
for failure mode e.

Because cracking is not simulated in the FE analyses, the punching shear model and the
effective width model due to cracking cannot be calibrated with the FE results. Thus, this
study will concentrate on the failure modes of chord face plastification (mode a), and chord
web yielding or buckling (mode €).

5.1.2 Analytical model for chord face plastification

The yield line model has been used by many researchers in dealing with the plastic
mechanism failure of RHS joints. The most commonly used method is the simplified yield
line theory which ignores membrane action and strain hardening effects of the material. This
method is adopted in several design guides such as ITW (1989), AWS (1992), EC3 (1993b)
and CIDECT (Packer, 1992a) etc. Several researchers have tried to include the membrane
action and the strain hardening behaviour. However, this led to extremely complicated
analytical formulae as far as it was possible to include this effect. In this study, the simplified
yield line method is used as the basis for the analysis, considering its simplicity. For axially
loaded X-joints of RHS, the yield line pattern for the chord top face plastification is shown
in Figure 5.1.
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Figure 5.1 Chord face plastification model

The mechanism failure load of X-joints with 6=90° is taken as the design resistance:

2ft

. 5.1
Ny g™ nu\/l—p )
1-B

Rewriting it in non-dimensional form:

N

1Rd 2 . = ‘

— eV ) (9.2)
Hotoo 1P

Equation (5.2) will be used as a basis for the analyses in Chapter 6.
5.1.3 Analytical models for chord web yielding or buckling

For X-joints of RHS with B=1.0, failure of the chord with stocky webs is caused by yielding
of the web and the flange directly under the applied load. However, for joints with relatively
thin webs, failure may occur by web buckling or the combination of the two. The models to
describe the failure mechanism of such joints can be summarised as follows:

- Chord web crippling failure (Mouty 1978), shown in Figure 5.2;
- Frame instability model (Kato 1981), shown in Figure 5.3;
- Combined check of chord web bearing (shown in Figure 5.4) and chord web buckling




Analytical models for X-joints 71

failures (Wardenier 1982a);
- "4-hinge yield line and web buckling” model (Yu 1996c¢).

Other models used for connections between I-chord or other sections:

- Web crippling model used for cold formed hat sections (Bakker 1992);

- "4-hinge yield line" mechanism used for slender plate girders under in-plane patch
loading (Roberts 1979); This model has been also used in EC3 (1992) in determining
the web resistance to transverse forces where the webs are in I, H or U sections;

- "4-hinge yield line" mechanism used for plate to I-chord connections with the
membrane action excluded (Zoetemeyer 1982) or included (Wardenier 1982b).

For the chord web crippling mechanism, the yield line patterns shown in Figure 5.2 was given
by Mouty (1978). Because of the complexity in calculating the minimum mechanism failure
load, an iteration procedure has to be used in solving the equation, thus, no direct analytical
formula can be obtained according to this yield mechanism. The same problem exists in the
web crippling model used by Bakker (1992).

The frame instability model (Kato 1981) may give a good analytical basis but it leads to a
very comprehensive formula.

The combined check procedure for chord web bearing and buckling (Wardenier 1982a) is
used as a comparison in this study. This model is found to be very conservative for high web
slenderness compared to the results from the finite element analyses, see Chapter 6.

The "4-hinge yield line and web buckling" model was introduced (Yu 1996c) based upon the
"4-hinge yield line" mechanism. A detailed description is given in this section.

Figure 5.2 Chord web crippling model (Mouty 1978)
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Figure 5.3 Equivalent frame instability model (Kato 1981)
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Figure 5.4 Chord web bearing mechanism (Wardenier 1982a)
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Figure 5.5 "4-hinge yield line" mechanism (Yu 1996¢)

5.1.31 Chord web bearing and buckling model

For full width X-joints of RHS, both chord web bearing and buckling should be checked.
However, in order to simplify the checking procedure, Wardenier (1982a) combined these two
checks into one formula. The design resistance of the joint for the combined check of chord
web bearing and buckling has also been used in the CIDECT design guide (Packer 1992a):

N ra=2%(hy +5tp)f 5o/ Yy (5.3)

Where ¥ can be derived from EC3 buckling curve-a (EC3 1992) which is a function of the
slenderness ratio A. The ratio A is calculated according to a pin ended strut with a buckling

length of (hy-2ty), thus 7\.=2\/3_ (hy/ty-2). The partial safety factor for full width X-joints is
recommended as Y,=1.25 (Wardenier 1982a). The characteristic strength of the joints can be
obtained from equation (5.3) by multiplying the partial safety factor Yy

N, =2k +5)f oty (54)

It can be understood from equation (5.4) that if the joint fails due to chord web bearing, k=1.
However if the joint fails by chord web buckling, then k<I.

5.1.3.2 "4-hinge yield line and web buckling' model
As already mentioned, Roberts (1979) used the "4-hinge yield line" model to predict the

mechanism collapse load of slender plate girders when subjected to in-plane patch loading.
Zoetemeyer (1982) used the "4-hinge yield line" model to determine the failure load of plate
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to I-chord connections. Wardenier (1992b) used the same model but with the membrane
action of the chord flange included. In this study, the "4-hinge yield line" model is applied
to full width X-joints of RHS. The only difference is that there are two webs for X-joints of
RHS, but only one for I-chord connections. The "4-hinge yield line" theory can be
summarised as follows: at a small load, the flange of the chord behaves as a beam on an
elastic foundation consisting of the chord web. Yielding of the chord web initiates with
increasing load. With increasing vertical deformation of the flange and extending of the yield
region of the web, plastic hinges form in the chord flanges, see Figure 5.5, points A, B, C and
D. This failure mechanism is called the "4-hinge yield line" mechanism. Equating the external
work to the internal energy dissipation gives:

1
N,8=4b,m £+2n h,8+48n, _* (3.5)
1 0 Pl wy 1 Wy
X

Where my, is the plastic bending moment of the flange per unit length,

2
to?
m. =0 'y (5.6)

PTg

And Nyy is the reaction force per unit length of one web at yield (two webs for RHS chord),

ey = f0 1 (5.7)

From equation (5.5):

h m

bom
Ny =4 P+2ny, hy+2n, 1, (5.8)
X

In order to find the minimum failure load,

oy
ULy 1 lllD

T = —400_1_7“.“ y - O (5.9)
X

. Zbgm,, (5.10)

i Ow,y

Substituting 1, into equation (5.8):

N, = 4,/2b0mpnwy +2n,, hy (5.11)

In equation (5.11), the yield stress is used for the web reaction force n,, .. If web buckling
occurs, the web yield stress could be replaced by the web buckling stresq Thus, the web
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reaction force at web buckling is:

Ny, b =Kfyglo=Kny, (5.12)

Where x is calculated according to EC3 (1992) curve-a:

1

KEooe—— 5.13
o+ 9K o

$=0.5[1+0.21(%-0.2)+X?] (5.14)

7:=% (5.15)

E
Agem | £ (5.16)
fo

It should be mentioned that the buckling reduction factor in equation (5.12) is different from
the « values used by Wardenier (1982a) in equations (5.3) and (5.4) where a pin ended strut
with a buckling length of (hy-2ty) has been used. The chord side wall is assumed as a fix
ended strut in this study considering that the rotation of the chord side walls is restrained by
the chord corners and the walls of the braces. The slenderness ratio based upon a fix ended
strut with a buckling length of (hy-2t,)/2 is:

h
A=y/3 (t_o—z) (5.17)
0

Replacing the yield force n,, , with the buckling force n equation (5.11) becomes:

y w,b?

Ny, = 4y2bgmn,p +20,1hy (5.18)

Equation (5.18) is the ultimate load capacity of the joints for a combined "4-hinge yield line
flange failure and web buckling”. Substituting equations (5.6), (5.7) and (5.12) into (5.18)
gives:

Ny, =R Hmfytg (5.19)

For the commonly used joint geometrical parameters, equation (5.19) can be approximated
by:

2
Nl,u :4K(\/’?+m)fy0t() (520
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Comparison between equations (5.19) and (20) is given in Table 5.1.

The membrane action of the chord top face is not included in equations (5.19) and (5.20). The
membrane effect is a function of the chord top face deformation, see Appendix V. It can be
found in Chapter 6 that the deformation of the chord top face is very small at the ultimate
load capacity of the joints. Thus, the influence of the membrane action on the ultimate load
is neglectable.

Equation (5.20) will be compared to the FE results in Chapter 6.

Table 5.1 Comparison between equations (5.19) and (5.20)

2y hy/t, K equation (5.20)/(5.19)
n=0.5 n=1.0 n=2.0
15 15 0.98 1.00 1.00 1.00
15 30 0.88 0.97 0.98 0.99
35 17.5 097 0.99 1.00 1.00
35 35 0.82 0.97 0.98 0.99
17.5 35 0.82 0.96 0.97 0.99

f,(=355 N/mm’
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5.2  X-JOINTS LOADED WITH IN-PLANE BENDING MOMENTS
5.2.1 General description of different failure modes

Similar to axially loaded uniplanar X-joints, following failure modes are described for joints
loaded with in-plane bending moments (Wardenier 1982a):

a. Plastification of the chord face.

b. Cracking in the chord (punching shear).
c. Cracking in the brace (effective width).
d. Chord side wall failure.

As no crack elements are modelled in the numerical study, the FE results can not calibrate
failure modes b and c. Only failure mode a and d will be discussed in detail.

5.2.2 Analytical model for chord face plastification
Similar to axially loaded uniplanar X-joints, failure mode a of uniplanar X-joints loaded with

in-plane bending moments can also be analysed by using the yield line theory. The yield line
pattern is shown in Figure 5.6 (Wardenier 1982a).

Figure 5.6 Chord face plastification model
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Neglecting the influence of membrane effects and strain hardening behaviour, the design
resistance load of the joints with 8=90° is (Packer 1992a):

2 h/by g
M, jp ra= Ty0to™hy € * + ) (521

Jip 1B b/

Rewriting equation (5.21) results in:

ML B (5.22)

_ 2
M| iph rd=fyoto Mi(
In Chapter 6, equation (5.22) is used as a basis in determining the ultimate moment capacity
of uniplanar X-joints loaded with in-plane bending moments.
5.2.3 Analytical models for chord web yielding or buckling
5.2.31 Chord web bearing model
Similar to axially loaded X-joints, full width X-joints of RHS loaded with in-plane bending
moments have been checked with the same chord web bearing model (Wardenier 1982a). The

design resistance moment based upon the chord web bearing model has been included in the
CIDECT design guide (Packer 1992a):

M, ipbrd = 0-5fy0tothy +5t0) 2 (5.23)

Whara tha nartial oqfnhr factor v =128 fWarr{prnpr 1082a), The

YV LLIU uGY pdliuius saay 1aviUs SOLA . 0c aalac

strength of the joints accordmg to equation (5 23) can be written as:

)2 (5.24)

2 5
M, ik =fyotohymad + 7

Similar to .?.dell)’ loaded univolanar X-in%n_te the "4- hinop viPld line and web huckling"

QCl nlpaaiial QIULS, <

mechanism is used for uniplanar X-joints loaded with in- plane bending moments.
5.23.2 "4-hinge yield line and web buckling' model

For full width X-joints loaded with in-plane bending moments in the braces, the "4-hinge
yield line" mechanism is shown in Figure 5.7.
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Figure 5.7 '4-hinge yield line" mechanism (Yu 1996¢)

Equating the external work to the internal energy dissipation:

M, iop 5 5 h, 1

= 4bgm 2 +2bym _° _+4n  S(_L+ X (5.25)
h,/2 0T TOTPR 2 Y vy
Where m_ and n, , can be found in equations (5.6) and (5.7) respectively. From equation
(5.25):
bym b,m
Mo = (4 01 P g (;1 p+nwyyh1+2nwyylx)71 (5.26)
X 1
In order to find the minimum failure moment,
" = 2n, ~4—_P)_=0 5.27
G = Oy 45 (5.27)

X

N (5.28)
x n
W,y

Substituting 1, my, and Ny y into equation (5.26):

2bym n, h,
Ml,ipb,u = (2V2b0mpnw,y + h P+ w,2y )hl (5.29)

1

Similar to axially loaded X-joints, the chord web reaction force at yielding N,y should be
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replaced by the reaction force at buckling ny, ,, if chord web local buckling occurs. In this
case, equation (5.29) becomes:

2bym, n h
= P w,b1
Ml,ipb,u = (2ﬁ/2b0mp“w,b + - +_2_)h1 (5.30)

1

Substituting equations (5.6), (5.7) and (5.12) into equation (5.30) results in:

1 2
M ipbu = VKY +KM +ﬁ)fyotoh1 (5.31)

For the most commonly used joints in rectangular hollow sections, equation (5.31) can be
conservatively approximated by:

1., 2
M ipbu = VY M eholohy (5.32)

Comparison between equations (5.31) and (5.32) is shown in Table 5.2.

Table 5.2 Comparison between equations (5.31) and (5.32)

2y hy/t K equation (5.32)/(5.31)
n=0.5 n=1.0 n=2.0
i3 i3 0.98 0.55 0.95 1.00
15 30 0.88 0.95 0.97 0.98
35 17.5 0.97 0.99 0.99 1.00
35 35 0.82 0.94 0.96 0.98
75 | 35 | os2 | 093 | 0 | 0w
£,(=355 N/mm*

It will be found from the numerical results in Chapter 6 that for full width X-joints loaded
with in-plane bending moments, chord side wall buckling failure is only sensitive for joints
with large hy/t, and n values (eg. hy/ty=35 and n=2.0). For joints with small hy/t, and M
values, no local buckling of the chord side wall occurs. In this case, the buckling reduction
factor is still x=1.

The membrane action in the chord flange is not included in the above "4-hinge yield line and
web buckling” model. This influence is studied in Appendix V.

Equation (5.32) will be used as a basis for the analyses in Chapter 6.
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53 X-JOINTS LOADED WITH OUT-OF-PLANE BENDING MOMENTS
5.3.1 General description of different failure modes

For uniplanar X-joints with brace members subjected to out-of-plane bending moments, one
can postulate analogous failure modes to those described for in-plane bending moment
loading, which has been done for AWS (1992) and CIDECT (Packer 1992a):

Chord face plastification.

Cracking in chord (punching shear).
Brace effective width.

Chord side wall bearing or buckling.

a0 op

Failure mode a occurs for joints with small to medium J values. While failure modes b, ¢ and
d occur for joints with B=1.0. The "brace effective width" defined in the current design guide
is based upon the non-uniform stress distributions in the braces. Furthermore, for full width
joints with a large brace depth to thickness ratio (thin-walled sections), brace member may
fail by local buckling at the compression side, ie., in the direction along the chord length.
However, no such brace local buckling occurs for the geometrical parameters used in Chapter
6.

5.3.2 Analytical model for chord face plastification

The yield line pattern for chord face plastification is shown in Figure 5.8.

M
- ‘/T—_r\ 1,0pb
|
| 0
L

kl—— U Ml,opb

Figure 5.8 Chord face plastification model (Wardenier 1982a)
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The design resistance moment of the joint has been given in the CIDECT design guide
(Packer 1992a):

hy(1+8) | 2b4b,(1+B) 533
s~ | o

Rewriting equation (5.33):

_ n(+p) |, | 20+B) (5.34)
Miopnza oo (Zﬁ(l—B)+ B(-B) ]

Equation (5.34) is used as the basic formula for the analyses in Chapter 6.

5.3.3 Analytical models for chord web yielding or buckling
5.3.3.1 Chord web bearing and buckling model
For full width X-joints loaded with out-of-plane bending moments, the chord web bearing

model was used by Wardenier (1982a). The design resistance moment according to this model
has been given in the CIDECT design guide (Packer 1992a):

M opbra = fyotothy +5to)(by—t) v (5.35)

Where v,,=1.25 according to Wardenier (1982a) The characteristic moment strength of the
joint can be written as:

1 1
Ml,opb,k :'B(zm +5)(1 _E)fyot()zbl (5.36)

5.33.2 ""4-hinge yield line and chord web buckling' model

Analogously to X-joints of RHS with brace members subjected to in-plane bending moments,
a "4-hinge yield line and web buckling" mechanism is introduced to X-joints of RHS with
braces subjected to out-of-plane bending moments, see Figure 5.9.
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Figure 5.9 '"4-hinge yield line" mechanism (Yu 1996¢)

Equating the external work to the internal energy dissipation:

b b2 |
) mp(45 0+4£ o=, x

1
M, ,_~ = l, |+2n. h,8+4n. _*§ (5.37)
Lopby, 7 2 1,1 b0/2) 2 ] wy'l Wy

X

Where m_ and n,, , can be found in equations (5.6) and (5.7).

p M

From equation (5.37):

lLopb = 2

b;{4m_b 8m
p-0 p
( N +1( 5 +2nw,y)+2nw’yh1] (5.38)

For the minimum:

L ) =0 (5.39)

(5.40)
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Substituting equation (5.40) into (5.38):

M, opba = b1[2\/2mp(4mp+nw,yb0) +nw’yh1)

(5.41)

Equation (5.41) is the ultimate moment capacity of the joints according to the "4-hinge yield
line model" when chord web buckling does not occur. Analogously to axially loaded full
width X-joints, the chord web yield force n, . should be replaced by the chord web buckling
force n,, , if buckling occurs:

M opbu = b1(2\/ 2mp(4mp+nw,bb0) +nw,bh1j (5.42)
Substituting m,, and ny,;, into equation (5.42):

2
Ml,opb,u=(\/ 2(1+2yx) +2Ym)fy0t0 b, (5.43)

For the commonly used joints of RHS, equation (5.43) can be conservatively approximated
by:

Ml-Opb,u=K(\/2(l +2) +2~yn]fy0t02b1 (5.44)

Where ¥ is calculated according to EC3 (1992) curve-a for a fixed end strut with a buckling
length of (hy-2t)/2, or using equations (5.13) to (5.17). The comparison between equations
(5.43) and (5.44) is shown in Table 5.3.

Table 5.3 Comparison between equations (5.43) and (5.44)

2y hy/ty K equation (5.44)/(5.43)

n=0.5 I n=1.0 | n=2.0
15 15 0.98 1.00 1.00 o 100
15 30 0.88 0.97 0.98 0.99
35 17.5 0.97 0.99 1.00 1.00
35 35 0.82 0.97 0.98 0.99
17.5 35 0.82 0.96 0.97 0.98

f,(=355 N/mm’

Tt is shown in Chapter 6 that the rotation at the ultimate moment capacity of the joint is very
small for full width X-joints of RHS loaded with out-of-plane bending moments. Thus, the
membrane action is neglectable. Equation (5.44) is compared with the numerical results in
Chapter 6.
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54 INFLUENCE OF THE CHORD BENDING MOMENTS

For joints in tubular structures, the chord member may be subjected to a bending moment,
particularly for rigid-jointed frames. For X-joints loaded with axial forces on the braces and
bending moments on the chord, the ultimate load capacity may be reduced due to the
existence of the axial stresses on the chord top face caused by the bending moments in the
chord, see Figure 5.10. The extent of the reduction of the joint ultimate load capacity depends
upon the moment ratios between the moment applied on the chord and the design resistance
moment of the chord section. This behaviour has been numerically studied by Yu (1995,
19964).

N
m | T
byl
sy [y
f— w* [ho
.__i S P S
O-o Sa UQ
lb 5STT7T1 - {
2
: o 1} 2 . 1 1:
L 3 1

Figure 5.10 Yield line pattern and bending stresses in the chord

According to EC3 (1992), the design resistance moment of a section can be determined as
follows:

M Ra=W pif yo/ Ym0 (for class 1 or 2) (545)

Where M plLRd is the plastic design resistance moment of the chord cross section; W is the
plastic sectlon modulus; For class 1, 2 and 3 cross-sections, the partial safety factor ¥;o=1.0
(EC3 1992).

M ra=Weifyo/Ymo (for class 3) (5.46)

Where M, gy is the elastic design resistance moment of the chord cross section; W is the
elastic section modulus. The moment ratio can be defined as follows:

;- MO/Mpl,Rd (class 1 or 2) (5.47)
m M()/Mel,Rd (class 3)

In the current design guides, very little information is available for joints subjected to
combined axial forces in the brace and bending moment (M) in the chord. Therefore, the
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effect is generally taken into account based upon the effect of the axial loading in the chord.
The analytical model of Zhao (1993a) based upon the yield line theory for T-joints may gave
a basic insight into the problem. The yield line pattern can be assumed as shown in Figure
5.10.

Equating the work of the external force to the internal energy of the plastic yield lines:

N;8=) m Lid=) M0, (5.48)

Where m; is the plastic moment per unit length of yield line i, I, is the length of yield line
i, M; is the plastic moment of yield line i and ¢, is the rotation angle of yield line i.

When the chord is subjected to in-plane bending moments, axial stresses (G) exist in the
chord, see Figure 5.10.

When a yield line is parallel to the axial stresses, eg. lines 3 and 4, the plastic moment of the
yield line is:

1 2 .
Mi=zfy0t0]i=mp1i (i=3 or 4) (5.49)

When a yield line is normal to the axial stresses, eg. lines 1 and 2, the reduced plastic
moment of a yield line is:

2 .
M;=m (1-J )l (i=1 or 2) (5.50)

When a yield line is inclined to the axial stresses (line 5), different approaches have been
used to calculate the plastic moment of the yield line by different researchers, among which
were Murray (1984) and Zhao (1993a, 1993b). According to Murray, the plastic moment of
the inclined yield line can be calculated with equation (5.50). This recommendation was based
upon the omission of the twisting moment on the inclined vield line (Zhao 1993a. 1993b).

The internal energy for each yield line:

E,= “I‘gg‘m (11298 (line 1) (5.51)
B,-2PE%n 192)8 (line 2) (5.52)
E,=4( 1% +otgoym 3 (line 3) (5.53)
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E, 4__B.mp8 (line 4) (5.54)

For yield line 5, according to Murray (1984):
Es=4(tgorctgoym (1-1 )8 (line 5) (5.55)

The total internal energy:

8m 0 32
Eio= T _E [tgot(l -J ,i) +(1-B)(1 —_.Z"l)ctg(x +nJ (5.56)

Equating the external work to the internal energy yields:
8m 52
N, =_1_[;i[tg0c(l -1 2)+(1-B)(1 -_Z"l)ctga +n] (5.57)

o o dN,
From the minimum condition: _d_=0
o

(5.58)
tgol=
Substituting equation (5.58) into equation (5.57),
Niw _ (5.59)
— n+2 | (1 —-—)(1 -J )(1 2l
fuoto” - [3

It can be found that equation (5.59) is identical to equation (5.2) if J=0. The interaction
formula according to equation (5.59) is:

] 2
gy 1 +2\\ (-1 ) (5.60)
l,u(Jm=0) n+2y1-p

Theoretically speaking, f(J_) should be equal to zero when J =1. However, this is not the
case in equation (5.60). The reason is that for joints with J_=1, failure of the chord section
due to chord member bending dominates and the yield line pattern shown in Figure 5.10 is
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invalid.

According to Zhao (1993a, 1993b), the plastic moment of the inclined yield line 5 in Figure
5.10 is:

(5.61)

M =m (1

Similar to the method based on Murray (1984), the internal energy of yield line 5 can be
calculated based on Zhao (1993a, 1993b):

2, & .
Ec=4m (1-J)—_ line 5 (5.62)
5 p(-T0) oo ( )

The total internal energy:

1+ 2
E=4m (( Etga’fcos )(1-J )+Ctg0L+ nﬁjﬁ (5.63)

Equating the external work to the internal energy:

1 2 2n
N, =4m | L Bigos 1-72) +ctga+ (5.64)
1 (( = g cosa)( m) Fetg ]‘BJ
From the minimum condition ___l=0,
do
(1 —Jnﬁ)i_*g ~ctg Zo+(1-J 2)sinct=0 (5.65)

Tt chanld he mantinnad that thara ic nn dirant qr\q]nf iral calutian far anan inn (8 ARY Thia tn
men L2t e

the complcxuy of the cquduon an iteration pl’OCCGUl‘C has to be used. FOI‘ each _)Oln[ ioaded
with a specific moment ratio J_, the unknown o value can be numerically determined with
equation (5.65). Substituting the moment ratio J, and the obtained o value to equation (5.64),
the failure load of the joint can be determined.

From the above analysis, it can be understood that the reduction of the joint ultimate load
capacity is caused by the reduction of the plastic moment of the yield lines when a yield line
is not parallel to the axial stresses. Although different methods to calculate the reduction of
the plastic moment may lead to slight differences in the results, they still can give an
analytical basis for the understanding of the problem.

The interaction relation based upon Murray (1984) and Zhao (1993a) are compared with the
numerical results in Chapter 6.
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APPENDIX V MEMBRANE ACTIONS IN FULL WIDTH X-JOINTS

V-1 MEMBRANE ACTION IN AXIALLY LOADED FULL WIDTH X-JOINTS
OF RECTANGULAR HOLLOW SECTIONS

In Chapter 5, the failure load of axially loaded full width X-joints is predicted using the
"4-hinge yield line and web buckling" mechanism with the membrane action in the chord top
face excluded. It is known that due to the deformation of the chord top face, membrane forces
appear in the chord top face which increase the load capacity of the joint. The joint can be
simplified as a model with rigid plastic material and fix ended supports as shown in Figure
V-1, a similar model as used by Wardenier (1982b) for an I-section chord. The difference is
that there are two webs for a rectangular hollow section chord, but only one for an I-section
chord.

1x hy 1x
l 1 | |
M
M A | ! D _E‘M D
[- & ) } < _\ -I;]-;
#Al Al M

fyoto =Dwy

TTTTTTTT Trotomnwy

Figure V-1  "4-hinge yield line" mechanism including membrane action of axially
loaded full width X-joints

As shown in Figure V-1, yield hinges at points A, B, C and D occur due to the combined
action of a moment M and a membrane force N. The elongations Al due to the membrane
force N and the rotations ¢ due to the moment M are located at points A, B, C and D. If m
and n are represented as the bending moment and membrane force per unit width of the chord
top face respectively, the moment M and membrane force N are:

M=bgm (V-1)

N=bgn (V-2)
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The equilibrium conditions:

According to Figure V-1, the horizontal and vertical reaction forces at point D are:

Hp=Ncosp~N (V-3)

N
VD=TI ~n,, 421, +h;) (V-4)

Combined with equations (V-1) to (V-4), the equilibrium equation can be obtained by moment
equilibrium at point C of Figure V-1:

4b,m 2b,nd
N, = l0 .%o

+2n,h +2n 1, (V-5)

X X
The yield condition:

The yield condition for the combined actions of a moment and a axial force in a solid
rectangular cross section per unit width is given by:

\y=£+( n

mp nw,y

2
) -1 =0 (V-6)

Where m and n, y are the plastic bending moment capacity and the axial load capacity per
unit widtl[; of a plate with rectangular section:

2
o fyo (5.6)
P2
Ny, v=to fyo .7

The normality conditions:

According to the normality rule, the plastic strain rates are:

do=Yar-_1 an vV-7)
m m
P
d(a=Yar-_20 a4 (V-8)
on n,, y2

Where dA is a scalar factor.
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From equations (5.6), (5.7), (V-7) and (V-8), it can be obtained that

49 _2 Twy (V-9)
dAl ty n
The kinematic conditions:

According to Figure V-1, the kinematic equations for a small value of ¢ and Al are given by:

¢=13 (V-10)

2
Al = fT (V-11)

X

Combine equations (V-10) and (V-11):

do _dd 4x _2 (V-12)

AT T_ 2848 B

The relationship between n and 0 can be obtained from equations (V-9) and (V-12):

0
n=—hyy (V-13)
0
Substitution of (V-13) into equation (V-6) gives the relationship between m and d5:
2
m=(1 —8_)m (ESI) (V-14)
2 " )
0
The minimum failure load:
Substitution of equations (V-13) and (V-14) into (V-3),
Abgm, . §%. 28°
_ p
N, = l (1 —___2_)+t bo“w,y +2nw‘yh1 +2nw’y1x (V-15)
X tO 0" x
In order to find the minimum failure load,
dN
'-0 (V-16)

di,
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Then,

2
2ogmy |8 bod

1, (V-17)
1‘1w,y t02 t0
Substitute 1, in equation (V-15), the ultimate load capacity is:
N, =4 | 2bgmon (1= ey 8 By (V-18)
lLu 0pwyr m w,y 1 o
t0 p 0 0

Equation (V-18) is the ultimate load capacity of the joint including the membrane action of
the chord top face without considering the chord web buckling. The corresponding equation
excluding the membrane effect can be found in equation (5.11), Chapter 5:

B, 11
Ny =4/2bgmn, ~ +2n, h G.11)

Equations (V-18) and (5.11) can be rewritten as:

2
N, =4 y(1+5_)+ny] £ ote Sy (V-19)
s 2 Y t
t 0
0
2 -
Ny =40y =) fyoto (V-20)

Equations (V-19) and (V-20) are compared in Figure V-2. It is shown that the membrane

action is a function of the displacement over chord thickness ratio. According to the numerical
racnlte in (’har\fpr A far av}qlly laaded fill width Y_jninfc nf RHQ the Adafarmatinn at tha
ultimate load capacity is very small (with a &/ ratio less than 0.32). The marked points in
Figure V-2 are corresponding to the § /t,, ratios in the numerical results. The influence of the
membrane action is less than 2%.
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V-2 MEMBRANE ACTION IN FULL WIDTH X-JOINTS OF RHS LOADED
WITH IN-PLANE BENDING MOMENTS

Similar to the situation for axially loaded full width X-joints, yield hinges will occur due to
the combined action of the bending moment M and the membrane force N, see Figure V-3.
The yield condition, the kinematic equations and the normality rule are exactly the same as
described in Appendix V-1.

My ipb
1x hy 1x
D Vi C
——i Al M M M
M C
[\ A /‘&‘_w Ncosg 'ﬁ&'} Ncosg
N co'sqo B s D " D
Al -
b 1 Np 1 Np

2 !

m:ﬁm fy0t0 =Nw,y
fyoto =nyy

Figure V-3  "4-hinge yield line'"' mechanism including membrane action of full width
X-joints loaded with in-plane bending moments
Moment equilibrium

Moment equilibrium with respect to points A and C:
hy
ND(21x+hl)+2nw’y(lx+7)2 “2M-M, ;=0 (V-21)

2

1
ND1x+2nw,y7x—2M -Ncos¢d=0 (V-22)

Where M and N can be found in equations (V-1) and (V-2). For a small ¢, cos¢=1.
Combination of equations (V-21) and (V-22) becomes:

2

h
+n,, Jhy1, +¥2M+2NS +Tlnw’y (V-23)

2h,M+h 3N
1,ipb =——]—
X
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Substitute M, N and equations (V-13) and (V-14) into equation (V-23):

62
2bgh, (1 _)m +b0h1_n
ty

ty 82 h12 (V-24)
+ny, Jhy 1, +2b6(1 _)m #2bgn,,  +—n
0

Ml,ipb: wy " 5 Wy
to

In order to find the minimum failure moment,

dM, .
=0 (V-25)
X
Then,
2b 2 b.o2
]x Omp{l _8_)+ 0 (V_26)
My tg o
Substituting equation (V-26) into (V-24):
2 n 2 2bgm 2 2b.n 2 n h
Ml,ipb,u: [2 2b0mpnw,y(l —8_+ w,y6_) p(] 62) 0 W,y8 wy jh]
t02 2mp t h t hy 1 2 (V-27)

Equation (V-27) is the joint ultimate moment capacity based upon the "4-hinge yield line"
mechanism with the membrane effect included. It can be rewritten as:

2 2
My ipb,u™ (2 Y(1+—) +nv+i(1+8_)+ﬁ_§_ fotohl SBeny  (V28)

t0 lo t0

The corresponding solution neglecting the membrane action can be found in equation (5.29),
Chapter 5:

h
2b()mp . Oy v j h, (5.29)

M., = [2 2bym_n +
1,ipb, 0 W,
ipb,u pwy h 2

Equation (5.29) can be rewritten as:
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1 2
M, Jipb,u =(2\/'Y_ +m +7h-)fy()to h1 (V-29)

Equations (V-28) and (V-29) are compared in Figure V-4 where the influence of the
membrane action is shown. The corresponding 3 /t; values according to the numerical results
in Chapter 6 are marked in Figure V-4. The maximum membrane influence is found to be
28% for a joint with low 1 (n=0.5) and high 2y (2=Y35) values. For joints with other
geometrical parameters, the membrane influence is much smaller.
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Figure V-4 Influence of membrane action in full width X-joints of RHS loaded with
in-plane bending moments
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6 NUMERICAL STUDY ON UNIPLANAR X-JOINTS

6.1 AXIALLY LOADED UNIPLANAR X-JOINTS
6.1.1 Introduction

In the 60’s to 70’s, the investigations on uniplanar RHS joints concentrated on experimental
tests and analytical studies. With the increasing interest in the behaviour of multiplanar RHS
joints, some additional experimental tests on uniplanar connections have been done in the 80’s
and the 90’s for comparison purposes. Experimental testing is expensive and time consuming.
With the development of computer technology in the last decade, there has been a growth in
the use of non-linear finite element analyses for simulating joint behaviour. Using nonlinear
finite element analysis as a tool in investigating the static behaviour of tubular joints, a large
number of parameter studies can be carried out, which makes the analyses much cheaper and
faster than experimental tests.

In the current design guides, AWS (1989), CIDECT (Packer 1992a), EC3 (1993b) and IIW
(1989), the design resistance formulae for uniplanar RHS joints loaded with axial forces,
in-plane bending or out-of-plane bending moments have been established based upon
analytical models or experimental results. The existing design formula for chord side wall
failure was found to be very conservative compared to the numerical results. A new analytical
formula based upon the so-called "4-hinge yield line and web buckling” mechanism is
established in Chapter 5 and is checked with the numerical results in this chapter. Numerical
verifications of the analytical models for full width joints with n=p was done by Yu (1996¢c).
Different 1 values are included in this Chapter in order to enlarge the range of validity of the
analytical formulae.

Since the study on uniplanar joints loaded with axial forces, in-plane or out-of-plane bending
moments is taken as a basis for the further investigation on uniplanar or multiplanar joints
subjected to other load cases, numerical investigations on uniplanar X-joints under the above
three load cases are firstly carried out.

Because cracking is not simulated in the FE analyses, punching shear and the effective width
models cannot be calibrated with the FE results. Thus, this study concentrates on the failure
modes of chord top face plastification and chord web yielding or buckling.

6.1.2 Research programme

The configuration of an axially loaded uniplanar X-joint is shown in Figure 6.1, while the
dimensions and non-dimensional geometrical parameters are shown in Figure 6.2. The joint
geometrical parameters are summarised in Table 6.1. Five B values (8=0.2, 0.4, 0.6, 0.8, 1.0)
and three 2y values (2y=15, 24 and 35) are considered in this parameter study. For each joint
with a specific set of B and 2y values, three 1| values (n=0.5*B, 1.0*B and 2*B) are included.
In total there are 32 finite element analyses. The nominal dimensions and the geometrical
parameters of the joints are listed in Table 6.2.
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Figure 6.1 Configuration of an axially loaded X-joint in RHS
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Figure 6.2  Dimensions and non-dimensional geometrical parameters of an uniplanar
X-joint
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Table 6.1 Research programme of the numerical parameter study for axially loaded
uniplanar X-joints
B
n
0.2 0.4 0.6 0.8 1.0
0.5 B x102e05"
*
2715 1.0B xla x4a x7a x10a _
208 xlae2 x4ae2 x7ae2 x10ae2
0.5 B x5ae05 x82¢05 | x11ae05”
2y=24 1.0 B x2a x5a x8a x1la _
208 x5ae2 x8ae2 x11ae2
0.5B x32e05 x62e05 x92e05 | x12ae05"
*
2735 1.08 x13a x3a x6a x9a x12a _
208 x3ae2 x6ae2 x9ae2 x12ae2

b=150 mm, f,(=355 N/mm”

Notation example: x9ac2 means X-joint, No.9, under axial load, n=2.0*p.

*: Without weld
Table 6.2 Nominal dimensions and geometrical parameters for uniplanar X-joints
Nominal dimensions (mm) Geometrical
Joint chord brace parameters
b, to 1y b, h, t 1 B 2y n
xla 150 10 900 | 60 60 10 {300 | 04 15 04
xlae2 150 10 900 | 60 120 10 | 300 | 04 15 0.8
x2a 150 | 6.25 | 900 | 60 60 6.25 | 300 | 04 24 0.4
x3ae05 150 | 4.29 | 900 | 60 30 | 429 | 300 | 04 35 0.2
x3a 150 | 4.29 | 900 | 60 60 | 429 | 300} 04 35 0.4
x3ae2 150 | 4.29 | %00 | 60 120 | 4.29 | 300 [ 04 35 0.8
x4a 150 10 900 | 90 90 10 | 450 | 0.6 15 0.6
x4ae2 150 10 900 | 90 | 180 10 1450} 06 15 1.2
x5ae05 150 | 625 | 900 | 90 45 6.25 | 450 | 0.6 24 0.3
x5a 150 | 6.25 | 900 | 90 90 6.25 | 450 | 06 24 0.6
x5ae2 150 | 6.25 | 900 | 90 180 | 6.25 | 450 | 0.6 24 1.2
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Table 6.2 (Continued)

Nominal dimensions (mm)

Geometrical
, chord brace parameters
Joint
by o [ o | b | Ny b | LW | B[ 2r|
x6ae05 150 4.29 900 90 45 429 | 450 0.6 35 0.3
x6a 150 4.29 900 90 90 429 | 450 0.6 35 0.6
x6ae2 150 4,29 900 90 180 4.29 | 450 0.6 35 1.2
x7a 150 10 900 120 120 10 600 0.8 15 0.8

x7ae2 150 10 900 { 120 | 240 10 | 600 | 0.8 15 1.6
x8ae05 150 6.25 | 900 | 120 60 6.25 | 600 | 0.8 24 0.4

x8a 150 6.25 | 900 | 120 | 120 | 6.25 | 600 | 0.8 24 0.8
x8ae2 150 6.25 [ 900 | 120 | 240 | 6.25 | 600 | 0.8 24 1.6
x9ae05 150 4.29 | 900 | 120 60 429 | 600 | 0.8 35 0.4
x9a 150 429 | 900 [ 120 | 120 | 4.29 | 600 | 0.8 35 0.8
x9ae2 150 429 | 900 | 120 | 240 | 4.29 | 600 | 0.8 35 1.6
x13a 150 429 | 900 | 30 30 429 | 150 | 0.2 35 0.2
x102e05" 150 10 900 | 150 75 10 [ 750 | t.0 15 0.5
x10a" 150 10 900 | 150 | 150 10 | 750 | 1.0 15 1.0

x10ae2" 150 10 900 | 150 | 300 10 (750} 1.0 15 20
x112e05" 150 6.25 | 900 | 150 75 625 | 750 | 1.0 24 0.5

x11a" 150 625 | 900 [ 150 | 150 | 625 | 750 | 1.0 24 1.0
x11ae2” 150 625 1 900 | 150 | 300 | 625 | 750 | 1.0 24 2.0
x12ae05" 150 4.29 | 900 | 150 75 429 | 750 | 1.0 35 0.5

x12a" 150 429 |1 900 | 150 | 150 | 429 | 750 | 1.0 35 1.0
x12ae2" 150 429 | 900 | 150 | 300 | 429 | 750 | 1.0 35 2.0

*: Without weld

6.1.3 The finite element analysis

The general considerations with regard to the finite element analyses have been described in
Chapter 4. Thus, for further description of the modelling of the welds, the corner radii and
the material properties of the chord and the braces etc., see Chapter 4, Section 4.5. Only
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specific characteristics are described in this section:

- Considering symmetry of geometry and load, one eighth of a X-joint has been

modelled. The origin of the coordinate system is in the center of the chord.

- The boundary conditions are shown in Figure 6.3.

- For joints with f=1.0, no weld is modelled in the direction of the chord length.

- Displacement control is used to apply axial loads on the in-plane braces.

- The thickness of the plate at the ends of the chord is 25 mm.

BOUNDARY CONDITIONS

N

Degrees of Nodes on plane Nodes on plane Nodes on plane
freedom X=0.0 Y=0.0 Z=0.0
u, 0. free free
u, free 0. free
u, free free 0.
D, free 0. 0.
@, 0. free 0.
0] 0. 0. free

Figure 6.3  Finite element meshes and boundary conditions of axially loaded X-joints




104 Chapter 6

6.1.4 Numerical results and observations

The numerical results are illustrated in three groups of figures:

1) results for joins made of square hollow sections (B<0.8), see Figure 6.4.

2) results for joints made of rectangular hollow sections ([<0.8), see Figure 6.5.

3) results for joints made of square and rectangular hollow sections (f=1.0), see Figure
6.6.

In Figures 6.4 to 6.6, the ultimate deformation limit (3%b) is indicated and the ultimate load
capacity of each joint is marked in the (non-dimensional) load vs. chord top face indentation
curves.

In Figures 6.4 and 6.5, the non-dimensional load of N/, 0t02 is used as the vertical axis
which is a suitable parameter to represent the chord face plastification failure. However, this
parameter cannot physically represents the ultimate load capacity of joints with B=1.0.
Because for joints with B=1.0, chord side wall failure occurs. Thus, the load applied to the
braces is given on the vertical axis for joints with f=1.0.

Observations from Figure 6.4:

- For joints with B<0.6, the non-dimensional loads of the joints are increasing with the
increase of the chord top face indentation, due to the membrane action of the chord.
Maximum loads are not reached for such joints. The membrane action for joints with

cmallar R valuas and laraar v valneg is re nronounced. Thage curveg are tunical
SMauly o Vaiuls ald 1algel Y €5 1§ more prongunced. 1nese ypic

for the chord top face plastification failure mode.

- For joints with $=0.8, maximum loads are found. The non-dimensional load vs.
indentation curves do not abruptly drop down after the maximum.

- ‘I'he 2y intiuence observed may partly be caused by the ditferent weld sizes of the
joints. Because the weld sizes are related to the thickness of the braces. In the
numerical parameter study, the brace thickness is equal to the chord thickness.

Observations from Figure 6.5:

- For joints with a specific set of B and 2y values, the results of joints with different 1
values are compared. The influence of the 1 values on the ultimate load capacity of
the joints can be clearly seen. Both the joint stiffness and the joint ultimate load
capacity are increased with larger 1} values.
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Observations from Figure 6.6:

- For joints with B=1.0, maximum loads are reached. The load vs. indentation curves
drop down abruptly after the maximum especially for joints with larger 2y and larger
1y values. The deformation at maximum load for these joints is very small. These
curves are typical for chord side wall failures. For joints with smaller 2y and smaller
1 values, the deformation at maximum load is larger, since web plastification instead
of web buckling occurs.

- The larger the 2y and 1) values, the smaller the deformation at maximum load due to
chord web buckling.

- The deformation at maximum load can be substituted into equation (V-19) in
Appendix V-1, in order to determine the membrane effect. The corresponding data
points are marked in Figure V-2, Appendix V. It can be seen that for these joints the
membrane effect in the chord flange is neglectable, due to the small deformation at
maximum load.
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Figure 6.4 Numerical results of axially loaded uniplanar X-joints in square hollow
sections (N=P)
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Figure 6.5 Numerical results of axially loaded uniplanar X-joints in rectangular
hollow sections (1 influences)
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B=108 27=24

hollow sections (1 influences continued)

B=108 27=35

Numerical results of axially loaded uniplanar X-joints in rectangular
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Figure 6.6  Numerical results of axially loaded uniplanar X-joints in rectangular
hollow sections (f=1.0)
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The ultimate load capacity for joints with B<0.8 and for joints with B=1.0 is listed in Tables
6.3 and 6.4 respectively. The ultimate load capacity is determined based upon the procedure
described in Chapter 4, Figure 4.20.

Table 6.3 Numerical results of uniplanar X-joints in square and rectangular hollow
sections ($<0.8)

Geometrical parameters Numerical results
Joint B 2y n N, /(%) Criteria
xla 04 15 04 6.55 3,
xlae2 04 15 0.8 8.80 3,
x2a 0.4 24 0.4 6.23 3,
x3ae05 0.4 35 0.2 5.03 3,
x3a 04 35 04 6.00 3
x3ae2 04 35 0.8 7.81 9,
x4a 0.6 15 0.6 11.68 3,
x4ae?2 0.6 15 1.2 16.39 3,
x52e05 0.6 24 0.3 7.99 3,
x5a 0.6 24 0.6 10.56 3,
x5ae2 0.6 24 1.2 15.15 3,
x6ae05 0.6 35 03 7.7 3,
x6a 0.6 35 0.6 9.88 3,
x6ae2 0.6 3 1.2 13.58 3,
x7a 0.8 15 0.8 2332 Max.
x7ae2 0.8 15 1.6 36.60 Max
x8ae05 0.8 24 04 15.77 S,
x8a 0.8 24 0.8 22.32 Max.
x8ae2 0.8 24 1.6 32.63 Max.
x9ae05 0.8 35 04 15.25 9,
x%a 0.8 35 0.8 21.10 Max.
x9ae2 0.8 35 1.6 30.22 Max.
x13a 0.2 35 0.2 4.04 8,

Note: &, = deformation at 3%b; &, = deformation at 1%b,.
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Table 6.4 Numerical results of axially loaded full width uniplanar X-joints in square
and rectangular hollow sections (=1.0)

Geometrical parameters Numerical results
Joint B 2y - Nyu Criteria
kN
x10ae05" 1.0 15 0.5 1019 Max.
x10a" 1.0 15 1.0 1507 Max.
x10ae2” 1.0 15 2.0 2498 Max.
x11ae05" 1.0 24 0.5 509 Max.
xlla* 1.0 24 1.0 776 Max.
x11ae2” 1.0 24 2.0 1427 Max.
x122e05" 1.0 35 0.5 302 Max.
x12a" 1.0 35 1.0 482 Max.
x12ae2" 1.0 35 2.0 816 Max.

Without weld
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6.1.5 The ultimate load capacity of joints with chord face plastification

For joints with small to medium f§ values, the failure mode is plastification of the chord top
faces. The CIDECT formula, equation (5.2), derived from the yield line theory is used as the
basis for the analysis.

Nipda_ 2
L= +2y1- 5.2
fyotoz 1_B(n vi-8) (5.2)

The FE results listed in Table 6.3 are compared with the CIDECT formula, equation (5.2),
in Figure 6.7.
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Figure 6.7 Comparison between the FE results and the CIDECT formula (3<0.8)

It can be seen that for joints with larger § values the CIDECT formula is lower than the FE
results and it is higher than the FE results for joints with smaller B values. This is mainly
caused by the deformation criterion used which is not governing for the higher § values. A
revision is introduced for the design resistance formula in order to establish the joint ultimate
load capacity formula. The revision can be done by using correction constants for B and .
However, the author feels that a separate correction function to the analytical formula gives
a better approach:

N
- 2 (qe2yT-B) - fBm) ©6.1)
fyOtOZ 1-B

Where
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£(B)=R; +R,B+RyN 62)

A regression analysis is carried out based upon the numerical results in Table 6.3. The bold
data in Table 6.3 is excluded in the regression analysis, because the serviceability criterion
is critical for such joints. The regression results are listed in Table 6.5. The formulae for the
mean normalised error (the numerical results divided by the formula), the coefficient of
variation (CoV) and the correlation coefficient (Rz) can be found in equations (4.9) to (4.12),
Chapter 4.

Table 6.5 Regression result of equation (6.2)

R, R, R; Mean Coefficient of Correlation
variation (CoV) | coefficient (R?)

0.7 0.6 0.1 1.011 0.069 0.978

Equation (6.1) and the numerical data points are plotted in Figure 6.8.
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Figure 6.8 The FE results and the regression formula (§<0.8)

6.1.6 The ultimate load capacity of joints with chord side wall failure

For all the joints with B=1.0, a maximum load is reached which is used as the joint ultimate
load capacity according to the criterion described in Chapter 4. The joints fail by chord side
wall plastification or buckling or in combination with plastification of the chord flanges. The
joint ultimate load capacity is outlined in Table 6.4.
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Comparison between the FE results and the CIDECT formula

Equation (5.4) described in Chapter 5 is the CIDECT characteristic strength of full width
joints with chord side wall failure (without the ¥, factor of 1.25). In Figure 6.9 and Table
6.6, the ultimate load capacity from the numerical results is compared with equation (5.4).

N 4 =2KQ2N +S)f gt (5.4)

Where ¥ is derived according to EC3 buckling curve-a (EC3 1992) with a buckling length
of (hg-2ty).

It can be seen that the CIDECT formula is sometimes much lower than the numerical results
with a maximum difference of 63% for joint with 2y=35 and n=2. The §, values in Table
6.6 are the deformations corresponding to the maximum loads in Figure 6.6.
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Figure 6.9  Comparison between the FE results and the CIDECT formula (B=1.0)
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Table 6.6 Comparison between the FE results, the CIDECT formula and the
""4-hinge yield line and web buckling'' formula

N,y kN) Comparisons

Joints | ¥ % eq. 520 | CIDECT FE
mm eq. 54 results L)) 3
) @) 3) M )
x10ae05™ | 15 | 3.19 903 796 1019 1.130 1.284
x10a" 15 | 1.80 | 1425 1274 1507 1.059 1.187
x10ae2” | 15 | 1.16 | 2469 2229 2498 1.013 1.124
x11ac05™ | 24 | 1.37 483 314 509 1.049 1.618
xl1a" 24 | 051 789 536 776 0.978 1.446
x11ae2™ | 24 | 0.36 1402 979 1427 1.013 1.455
x12ae05" | 35 | 0.63 277 111 302 1.085 2.743
x12a" 35 | 0.29 465 197 482 1.033 2.463
x12ae2” | 35 | 0.26 840 369 816 0.967 2.224
Mean 1.036 1.727
CoV 0.051 0.345
R? 0.993 0.787

B=1.0 f,0=355 N/mm?

Comparison between the FE results and the ''4-hinge yield line and chord web buckling’
model

In Figure 6.10 and Table 6.6, the numerical results are quantitatively compared with the
"4-hinge yield line and chord web buckling”" model, equation (5.20).

2
Ny o= 46Gy 2t (5.20)

It should be mentioned that the values of x in equations (5.4) and (5.20) are different. The
first is determined according to a pin ended column with a buckling length of (hy-2t;) while
the second according to a fix ended column with a buckling length of (hy-2t,)/2 considering
that the chord side walls are restrained by the corners of the chord and the walls of the
braces.
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Figure 6.10 Comparison between the FE results and the "4-hinge yield line and web
buckling'' model (f=1.0), equation (5.20)

6.1.7 Conclusions

The static behaviour and strength of axially loaded uniplanar X-joints in RHS are numerically
investigated. The joint geometrical parameters included are f=0.2, 0.4, 0.8, 1.0; 2y=15, 24,
35 and n=0.5B, 1.0 and 2.0B. The formulae based upon the analytical model and the
CIDECT design guide are compared with the numerical results. The following conclusions
can be drawn:

- For joints with chord face plastification as failure mode, the CIDECT formula is
conservative for the ultimate load capacity for joints with large B values and is
non-conservative for joints with small § values. Thus, a revision function is introduced
for the design resistance formula. The ultimate load capacity formula is recommended

as equation (6.1).

- For full width joints with chord side wall failure, the CIDECT formula is very
conservative for joints with high chord wall slenderness. A newly developed formula,

equation (5.20) according to the so-called "4-hinge yield line and web buckling"
model is recommended with better statistical results compared to the FE results.
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6.2. X-JOINTS LOADED WITH IN-PLANE BENDING MOMENTS
6.2.1. Introduction

For uniplanar X-joints loaded with in-plane bending moments, the moment resistance
formulae have been given in the CIDECT design guide (Packer 1992a) which were based
upon previous research (Wardenier 1982a). For joints with chord top face plastification
failure, the moment resistance formula is based upon the yield line theory. For joints with
chord side wall failure, it is based upon chord side wall yielding where no chord side wall
buckling is considered. From previous work (Yu 1996c), the ultimate moment capacity
formula has been derived for full width joints loaded with in-plane bending moments. It has
been found that chord web buckling is not critical for full width X-joints under in-plane
bending moments within the range of validity of the geometrical parameters. In this section,
more geometrical parameters including different 1y values are included in order to check the
validity of the formula.

Based upon the analytical formulae described in Chapter 5, two sets of ultimate moment
capacity formulae are presented in this section: one for chord top face plastification failure
and another one for chord side wall failure.

6.2.2. Research programme

The configuration of an uniplanar X-joint loaded with in-plane bending moments is shown
in Figure 6.11. The joint geometrical parameters investigated are summarised in Table 6.7.
Five B values (§=0.2, 0.4, 0.6, 0.8, 1.0), three 2y values (2y=15, 24 and 35) and three M
values (N=0.5*B, 1.0*B and 2.0*B) are considered in this parameter study. In total, there are
27 finite element analyses. The nominal dimensions and the material properties of the joints
and the weld are the same as the corresponding joints in the previous section.

<A My ipp

\LL" Ml ,ipb

Figure 6.11 Configuration of an uniplanar X-joint loaded with in-plane bending
moments
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Table 6.7 Research programme of uniplanar X-joints loaded with in-plane bending

moments
n
0.2 0.4 0.6 0.8 1.0
05 B x10ie05"
. . . Lk
215 1.0B x1i x4i x7i x10i
208 x10ie2”
05PB x51e05 x81e05
=24 1.08 x2i x5i x8i x11i
20B xSie2 x8ie2 x11ie2"
05B x3ie05 x9ie05 | x12ie05”
. . . - oK
2735 1.0 B x13i x3i x6i x9i x12i
20PB x13ie2 x3ie2 x9ie2 x12ie2”
Notation example: x9ie2 means X-joint, n0.9, under in-plane bending, n=2.0*j.
by=150 mm, f =355 N/mm?

*: without weld

6.2.3. The finite element analysis

General considerations with regard to the numerical parameter study can be found in Chapter
4. Only some specific aspects are mentioned in this section:

- Considering symmetry of geometry and load, a quarter of an X-joint has been

£Aa=]0

modelled. The origin of the coordinate system is in the center of the chord.

- The boundary conditions are shown in Figure 6.12. In order to prevent rigid body
motion, an extra restraint in X-direction is added to one node with a coordinate of
X=0, Y=(h(-t;)/2 and Z=0.

- For joints with B=1.0, no weld along the direction of the chord length has been
modelled.

- The in-plane bending moment can be applied by two opposite axial forces or by shear
forces to the brace ends, see Figure 6.13 (a) and (b). The first method results in pure
bending moments in the braces. The second method results in bending moments and
shear forces in the braces and also axial forces in the chord. Due to the existence of
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the axial forces in the chord, the ultimate moment capacity of the joints using the
second method is expected to underestimate the actual strength. In this study, the
length of the braces is 5 times their width as described in Chapter 4. Comparisons of
the two methods are shown in Figure 6.14. It can be seen that for joint with 3=0.6 and
2y=35, the difference between the two methods is very small. For joint with B=0.4 and
2y=15, a larger difference is found. Thus, the first method is used for the parameter
study where only pure bending moments are applied on the braces. Using this method,
the value of the applied loads are independent of the length of the braces. Load
control can only be used in order to achieve an equal value of the two opposite loads
even after the elastic stage of the material.

2l
BOUNDARY CONDITIONS
Node at X=0.0, Nodes on plane Nodes on plane
Degrees of freedom | y_yy 1y, 7=0.0 Y=0.0 =0.0
u, 0. free free
u, free 0. free
u, 0. free 0.
D, 0. 0. 0.
D, 0. free 0.
D, free 0. free

Figure 6.12 Finite element meshes and boundary conditions of an uniplanar X-joint
loaded with in-plane bending moments
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-

v

(a) Pure bending moments (b) Shear forces and bending moments

Figure 6.13 Two methods used to apply the in-plane bending moments

pure bending
______ shear + bending cmmmee

pure bending
shear + bending

[ ]

My / (fyq * tg? + by)

0 S L 0 1 PR Y
0 5 10 15 0 5 10
Indentation [mm] Indentation [mm]
B=204 27=15 B=06 27 =35
@) (b)

15

Figure 6.14 Results of the two methods used to apply the in-plane bending moments
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6.2.4. Numerical results and observations

Similar to the previous section, the numerical results are illustrated in three groups of figures.

1) joints made of square hollow sections ($<0.8), Figure 6.15;
2) joints made of rectangular hollow sections ($<0.8), Figure 6.16;
3) joints made of rectangular hollow sections ($=1.0), Figure 6.17.

In Figures 6.15 to 6.17, the horizontal axis gives the chord top face indentation at the
intersection of the brace and the chord face. The relationship between the chord face
indentation and the rotation of the joint is $=8/(h,/2), as shown in Figure 4.21, Chapter 4.
For the reason of readability, only the ultimate deformation limit at 3%by, is indicated; the
ultimate rotation limit at ¢y ; is not indicated but only marked if it is critical i m Figures 6.15
to 6.17. In Figures 6.15 and 6.16, the non-dimensional moment M, ;../(f ot bo) is used for
the vertical axis. In Figure 6.17, the applied moment is used as the vertlcal axis, because for
full width joints, another failure mode occurs.

According to the procedure to determine the ultimate moment capacity described in Chapter
4 (Figure 4.22), the ultimate moment capacity of each joint is obtained and marked in Figures
6.15 to 6.17. The quantitative values are listed in Tables 6.8 and 6.9.

Observations from Figure 6.15 are:

- No maximum moment is reached for joints with $<0.8. These curves represent the
typical failure mode of chord top face plastification.

- For the joins with M=0.2 and 0.4, the joint ultimate rotation limit of ¢, is critical,
namely, the indentation corresponding to ¢, ; is smaller than 3%b,.

- For joints with n=0.6 and 0.8, the joint ultimate deformation limit of 3%by, is critical.

- It seems that there is a small 2y influence for joints with the same 1 and B values.
However, this can be considered as the influence of the weld sizes. Because the brace
thickness is taken the same as that of the chord. This results in a larger weld size for
joints with a smaller 2y value.

Observations from Figure 6.16 are:

- No maximum moment is found. These curves are typical for chord top face
plastification. The ultimate moment capacity is determined either by ¢, or by 3%b,

whichever is smaller.

- A clear 1 influence is observed.
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Observations from Figure 6.17 are:

- For most of the joints with N<1.0, no maximum moment is found. Although a
maximum is found for the joint with N=1.0 and 2y=35, the moment vs. indentation
curve does not drop down abruptly.

- For all the joints with n=2.0, a maximum is reached except for the joint with 2y=15.
The deformation at the maximum for the joints with 2y=24 or 35 is much smaller than
that for the joint with 2y=15. Thus, full width uniplanar X-joints loaded with in-plane
bending moments are less sensitive to local buckling of the chord side walls if n<1.0
and hy/ty<35. For joints with 11=2.0 and hg/t,>24, local buckling occurs. It should be
mentioned that when chord web buckling is considered, the ratio of hyt, should be
considered instead of the 2y value. Since square hollow section chords are used in the
parameter study, these two ratios have the same value here.
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Figure 6.15 Numerical results of uniplanar X-joints of square hollow sections loaded
with in-plane bending moments (n=03)
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Figure 6.16 Numerical results of uniplanar X-joints of rectangular hollow sections
loaded with in-plane bending moments (1 influence)
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Figure 6.17 Numerical results of uniplanar X-joints of rectangular hollow sections
loaded with in-plane bending moments (3=1.0)
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Table 6.8 Numerical results of uniplanar X-joints loaded with in-plane bending
moments (3<0.8)

Geometrical parameters Numerical results
Joints B 2y | n M b/ Eyoto”bo) (r?ﬁn , | Criteria
xli 04 15 0.4 2.28 3.00 dp 1
x2i 04 24 0.4 2.14 3.00 9o 1
x3ie05 04 35 02 1.24 1.50 do.1
x3i 04 35 04 2.08 3.00 $o 1
x3ie2 04 35 0.8 3.94 4.50 3%by,
x4i 0.6 15 0.6 4.54 4.50 3%b,
x5ie05 0.6 24 0.3 231 2.25 05 4
x5i 0.6 24 0.6 4.30 4.50 3%b
x5ie2 0.6 24 1.2 8.34 4.50 3%b,
x6ie05 0.6 35 03 2.15 2.25 001
x6i 0.6 35 0.6 435 4.50 3%b
x6ie2 0.6 35 1.2 7.92 4.50 3%by,
x7i 0.8 15 0.8 9.44 4.50 3%hy
x8ie05 0.8 24 04 4.34 3.00 dg 1
x8i 0.8 24 0.8 9.13 4.50 3%b,
x8ie2 0.8 24 1.6 23.20 4.50 3%y,
x9ie05 0.8 3s 04 4.14 3.00 do 5
x9i 0.8 35 0.8 8.70 4.50 3%b
x9ie2 0.8 35 1.6 21.70 4.50 3%b,
x13i 0.2 35 0.2 1.09 1.50 051
x13ie2 0.2 35 04 1.82 3.00 dp 1
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Table 6.9 Numerical results of uniplanar X-joints loaded with in-plane bending
moments (f=1.0)

Joint Geometrical parameters Numerical results
B 2y or n M, ippu (KNm) 3, Criteria
hy/t
x10ie05” 1.00 15 0.5 37.09 3.75 .1
x10ie” 1.00 15 1.0 89.73 450 | 3%b,
x10ie2” 1.00 15 2.0 259.65 450 | 3%b,
x11i" 1.00 24 1.0 50.01 450 | 3%b,
x11ie2” 1.00 24 2.0 128.67 141 | Max.
x12ie05" 1.00 35 0.5 12.21 3.75 .1
x12i" 1.00 35 1.0 28.57 233 | Max.
x12ie2” 1.00 35 2.0 76.48 0.65 | Max.

*; without weld
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6.2.5. The ultimate moment capacity of joints with chord face plastification

For joints with chord top face plastification failure, the analytical formula based upon the
yield line theory is given by equation (5.22):

2_.n.1, (5.22)

M4 b, Ra=fyoto N1 (

This formula has been adopted in the CIDECT design guide as the joint design resistance.
The FE results are compared with the CIDECT formula in Figure 6.18. It can be seen that
the CIDECT formula is a lower bound of the numerical results especially for joints with
larger B values. A more efficient formula can be derived by introducing a revision function
to equation (5.22). Here a similar approach is used as for axially loaded X-joints:

; = 2 2 + N +l .
M1,|pb,u fyoto h1(m T3 2’1) f(Bm) (6.3)
Where
f(B.n)=R; +RzB+Rzm (6.4)

R, to R, can be determined with a non-linear regression analysis of the numerical results
listed in Table 6.8. The statistical results of the regression analysis are listed in Table 6.10.
The formulae for the mean normalised error, the coefficient of variation (CoV) and the
correlation coefficient (R2) can be found in equations (4.9) to (4.12), Chapter 4. The mean
normalised error is based upon the FE result divided by equation (6.3).

Table 6.10  Regression results for chord top face yielding

- l - | - I Mean normalised Coefficient of | Correlation
™ 2 3 error variation CoV | coefficient R?
1.00 0.6 -0.25 1.028 0.056 0.977

The FE data points and equation (6.3) are plotted in Figure 6.19.
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Figure 6.19 The FE results and the ultimate moment capacity formula (B<0.8)
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6.2.6. The ultimate moment capacity of joints with chord side wall failure

Comparison with the CIDECT formula

In Chapter 5, the CIDECT formula is rewritten in the characteristic form as equation (5.24):

5

- 2 2
My ipb k=fyotohy (1 + 2le) (5.24)

In equation (5.24), the local buckling effect is not considered although it occurs for joints
with 1=2.0 and larger hy/t; values. A comparison between the FE results and equation (5.24)
is shown in Figure 6.20 and Table 6.11. The &, values in Table 6.11 are corresponding to the
ultimate moment capacity of the joints. The maximum difference between the FE results and
the CIDECT formula is 42%. The CIDECT formula is a lower bound for the FE results
except for the result of the joint with n=2.0 and 2y=35.

— 0 e
= m \ﬁ j—An=20:B
; ‘| .- __.0On=1.0+8
200 s |
2 E ] ©n=05:8
2 150 =y _
=100 e bo=hy
1 50—t B
O el "-.' e ’;'8;-:

Figure 6.20 Comparison between the FE results and the CIDECT formula ($=1.0)
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Table 6.11 Comparisons between the FE results, the CIDECT formula and the
""4-hinge yield line and web buckling' formula

2y 8, M| ipby (KNm) Comparisons

Joints or n K CIDECT EE
eq. 5.32 (3) (3)
1 eq. 5.24 | results = —

x10ie05” 15 051375 ] 1.00 | 27.24 27.73 37.09 | 1.362 | 1.337
x10i" 15 1.0 | 450 | 1.00 [ 71.78 71.00 89.73 | 1.250 | 1.264
x10ie2” 15 2.0 | 450 | 098 | 216.35 217.44 | 259.65| 1.202 | 1.194
x11i" 24 1.0 | 450 [ 1.00 | 4042 36.44 50.01 | 1.237 | 1.372
x11ie2” 24 20 | 141 | 092 | 119.33 121.73 | 128.67 | 1.073 | 1.057
x12ie05" | 35 051375 | 1.00 8.88 7.08 12.21 } 1.376 | 1.724
x12i" 35 1.0 } 233 | 1.00 | 25.84 22.38 28.63 | 1.109 | 1.279
x12ie2” 35 20 | 1.12 | 0.82 | 70.11 78.68 76.64 | 1.088 | 0.974

Mean 1.212 | 1.275

CoV 0.097 | 0.178

R? 0950 | 0.951
B=1.0 f,=355 N/mm*

*. Without weld

Comparison with the ''4-hinge yield line and web buckling" model

Equation (5.32) is the analytical formula deduced using the "4-hinge yield line and chord web
buckling" model developed in Chapter 5:

1 2
M1 jpb,u=%(2VY 1M “zfatoht (5.32)

In equation (5.32), a buckling reduction factor is included. As observed from the FE results,
no local buckling occurs for n<1.0. Although a maximum moment is reached for joint with
n=1.0 and 2y=35, the moment-indentation curve does not abruptly drop down after the
maximum which means that some plastification is developed. In this case, the buckling
reduction factor in equation (5.32) is taken as x=1.0. However, for joints with N=2.0, 2y=24
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and 35, local buckling occurs. In such cases, the buckling reduction factor is calculated
according to EC3 (1992) buckling curve-a for a fix ended strut of buckling length (hy-2t,)/2.
For simplicity, the same formula for the buckling reduction factor can be used for joints with
N=2.0 and hy/t;=15, because it is almost 1.00 (0.98). For 1<n<2, a linear interpolation
between N=1.0 and 2.0 is needed to determine the buckling reduction factor. Thus, the
buckling reduction factor is defined as follows:

1 (n<1.0)
-——1——— (n=2.0)

k=] /0?2 (6.5)
140 -1) (1) (1.0<n<2.0)

(R

Where ¢ and A can be determined according to equations (5.14) to (5.17).

In Figure 6.21, the FE results are compared with equation (5.32) based upon the "4-hinge
yield line and web buckling" model. The quantitative comparisons between the FE results and
equation (5.32) are listed in Table 6.11. A better coefficient of variation (CoV) based upon
the "4-hinge yield line and web buckling" model is found compared to that based upon the
CIDECT formula, although the mean values and the correlation coefficients based upon the
two formulae are very close to each other. The maximum difference between the formulae
based upon the "4-hinge yield line and web buckling" model and the FE result is 27%. The
large difference is caused by the neglecting of the membrane effects. For joints where the
ultimate moment capacity is determined at an indentation of 3%b,, or a rotation of ¢, ;, the
membrane effect is relatively larger. While for joints with a maximum moment, the
indentation at the maximum is much smaller which results in a neglectable membrane effect.
In order to examine the membrane effect, the indentation at the ultimate moment capacity of
each joint is substituted into equatlon (V-28). The corresponding data points are marked in
Flgure V-4. Takmg joint x12|e05 as an example, the ultimate moment capacity from the FE

IR A AL v\ tha mmveanmnanding k
Luault 15 duivLiny ai g fvianon oF ¥(.] \e—ver = iaanay, wal IT Z' ........ ing memtrine affant at

the ultimate moment capacity is 28%. While for joint xi2ie2" where a maximum is reached,
the membrane effect at the ultimate moment capacity is only 0.3%.
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Figure 6.21 Comparison between the FE results and the ""4-hinge yield line and chord
web buckling' model (p=1.0)

6.2.7. Conclusions

- For joints with chord top face plastification, the CIDECT formula is a lower bound
for the numerical results. A more efficient ultimate moment capacity formula, equation
(6.3), is recommended with introduction of a revision to the CIDECT formula.

- For full width joints, chord side wall buckling is more sensitive for joints with larger
M and larger hy/t, values. In the CIDECT formula, no local buckling effect is
considered, although chord side wall buckling occurs for joints with n=2.0. In the
formula based upon the "4-hinge yield line and web buckling" model, this effect is
included, equations (5.32) and (6.5).



134

Chapter 6




Numerical study on uniplanar X-joints 135

6.3. X-JOINTS LOADED WITH OUT-OF-PLANE BENDING MOMENTS
6.3.1. Introduction

As described in Chapter 5, the out-of-plane bending moments on uniplanar X-joints mainly
cause chord top face plastification, chord cracking or chord face plastification in combination
with chord side wall yielding or buckling. Similar to the previous sections, brace failure is
excluded by choosing the thickness of the braces equal to that of the chord. Cracking is not
simulated in this thesis. Thus, only the failure modes of chord top face plastification and a
combination of chord top face yielding and chord side wall buckling are examined in this
numerical study. Based upon the numerical results and the analytical formulae, two sets of
ultimate moment capacity formulae are considered.

6.3.2. Research programme

Configuration of an uniplanar X-joint loaded with out-of-plane bending moments is shown
in Figure 6.22. The joint geometrical parameters are summarised in Table 6.12. The
corresponding nominal dimensions and the material properties of the joints and the weld are

the same as those of the corresponding joints in the previous sections. In total, there are 27
FE analyses.

N

T M ,opb

Figure 6.22 Configuration of an X-joint loaded with out-of-plane bending moments
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Table 6.12 Research programme of uniplanar X-joints loaded with out-of-plane
bending moments

n
0.2 04 0.6 0.8 1.0
058 x100e052”
2=15 1.0 B xlo x40 x70 x100
20P x100e2”
0.5 B x50e05 x80e05
2y=24 1.0B x20 x50 x80 xllo
20P x50e2 x80e2 x110e2”
0.5 P x30e05 x90e05 | x120e052"
27=35 1.0B x130 x30 x60 x90 x120
20P x130e2 x30e2 x90e2 x120e2”
Notation example: x90e2 means X-joint, No.9, under out-of-plane bending, n=2.0*p.
by=150 mm, f, (=355 N/mm®

*: without weld

6.3.3. The finite element analysis

The general considerations with regarding to the numerical analyses are described in Chapter
4, Section 4.5. Only the exceptions are given here:

modelled. The boundary conditions used for the FE analysis are shown in Figure 6.23.
In order to prevent rigid body motion, an extra restraint in Z-direction is added to one
node at the chord with a coordinate of X=0, Y=(hy-t;)/2, Z=0.

- Similar to the joints loaded with in-plane bending moments, two methods can be used
to apply the out-of-plane bending moments. The out-of-plane bending moments can
be applied by two opposite axial forces or by shear forces at the ends of the braces,
see Figure 6.24 (a) and (b). Figure 6.24 (a) results in pure bending moments in the
braces and (b) results in shear forces and bending moments in the braces. Method (a)
is used in order to apply pure bending moments in the braces. Load control is used
in order to get an equal value of the two opposite loads after the elastic stage of the
material.
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2lx
BOUNDARY CONDITIONS
Node at X=0.0, Nodes on plane | Nodes on plane
Degrees of freedom | y_y "4 52, 2=0.0 X=0.0 Y=0.0

u, 0. 0. free
u, free free 0.
u, 0. free free
D, free free 0.
<I>y 0. 0. free
D, 0. 0. 0.

Figure 6.23 FE meshes and boundary conditions of an X-joint loaded with out-of-plane
bending moments

(a) Pure bending moments {b) Shear forces and bending moments

Figure 6.24 Two methods used to apply the out-of-plane bending moments
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6.3.4. Numerical results and observations

Similar to the previous two sections, the numerical results are plotted in three groups of
figures:

1 joints made of square hollow sections (f<0.8), Figure 6.25;
2) joints made of rectangular hollow sections ($<0.8), Figure 6.26;
3) joints made of rectangular hollow sections (B=1.0), Figure 6.27.

In Figures 6.25 and 6.26, the non-dimensional moment of M, opb/(f oto bO) is used. In order
to make the vertical axis non-dimensional, by, is introduced which is fixed at 150 mm in the
numerical study. Furthermore, the ultimate moment capacity is linear with f, 0t0

In Figure 6.27, the out-of-plane bending moment is used on the vertical axis. Because for full
width joints, a different failure mode occurs, the ultimate moment capacity is not linear to t02
any more.

Observations from Figure 6.25:

- For joints with <0.6, no maximum moment is reached. The non-dimensional moment
is increasing with increasing indentation. These curves are typical for a chord top face
plastification failure. As shown in the figure, the governing ultimate moment capacity
does not always occur at the 3%b,, indentation. For joints with B<0.4, the joint rotation
of ¢g; (¢=0.5*b,/d) is critical, see the marked points at an indentation smaller than
3%by,.

- For joints with f=0.8, 2y=15 and 24, a maximum moment is reached. However, the
non-dimensional moment-indentation curves do not abruptly drop down and

wlastification is developed in the ioints,
piastricatior cpe € jC

- There is a small 2y influence mainly caused by the weld sizes, similar to Sections 6.1
and 6.2.

Observations from Figure 6.26:

- A clear n mtluence 1s observed.

- For joints with $<0.6 and B=0.8, 11=0.5, the non-dimensional moment vs. indentation
curves are typical for a chord top face plastification failure. For joints with $=0.8 and
n=1.0*B or 2.0*B, a maximum moment is reached. The curves do not drop down
abruptly after the maximum.

Observations from Figure 6.27:

- For joints with f=1.0, a maximum moment capacity is reached. Similar to the
behaviour of axially loaded joints, the moment vs. indentation curves drop down
abruptly after the maximum moment is reached especially for joints with large hy/t,
values. The indentation at the maximum moment is very small for joints with large
hy/t, values. These curves are typical for a chord side wall buckling failure. For joints
with 2y=15, plastification of the chord top face and the chord side walls is developed.
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The numerically determined (non-dimensional) ultimate moment capacity of the joints with
[<0.8 and B=1.0 is listed in Tables 6.13 and 6.14 respectively.
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29 =15
_______ 27 =24
........................ 27 = 35
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5. 10. 15.
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........................ 27 =35
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5. 10. 15.
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Figure 6.25 Numerical results of uniplanar X-joints in square hollow sections loaded

with out-of-plane bending moments (n=0)
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Figure 6.26 Numerical results of uniplanar X-joints in rectangular hollow sections
loaded with out-of-plane bending moments (1} influence)
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Figure 6.27 Numerical results of uniplanar X-joints in rectangular hollow sections
loaded with out-of-plane bending moments (=1)
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Table 6.13  Numerical results of uniplanar X-joints loaded with out-of-plane bending
moments (3<0.8)

Geometrical parameters Numerical results
Joints B 27y | m M, opb.o/(Eyoto”b) (r?ﬁn ) | Criteria
xlo 04 15 0.4 2.50 3.00 901
x20 0.4 24 04 2.29 3.00 0.1
x30e05 04 35 0.2 1.72 3.00 dp 1
x30 0.4 35 04 2.20 3.00 9.1
x30e2 04 35 0.8 2.85 3.00 b 1
x40 0.6 15 0.6 532 4.50 3%by
x50e05 0.6 24 0.3 3.50 4.50 3%b,
x50 0.6 24 0.6 4.74 4.50 3%b,
x50e2 0.6 24 1.2 7.07 4.50 3%by
x60e05 0.6 35 0.3 3.44 4.50 3%Db,
x60 0.6 35 0.6 447 4.50 3%b,
x60e2 0.6 35 12 6.25 4.50 3%b,
x70 0.8 15 0.8 11.57 3.26 Max.
x80e05 0.8 24 0.4 7.66 4.50 3%b,
x80 0.8 24 0.8 10.87 345 Max.
x8oe2 0.8 24 1.6 16.13 1.47 Max.
x90e05 0.8 35 0.4 7.29 4.50 3%b,
x90 0.8 35 0.8 10.22 4.50 3%b,
x90e2 0.8 35 1.6 14.92 224 Max.
x130 0.2 35 0.2 1.14 1.50 dg 1
x130€2 0.2 35 | 04 145 1.50 o 1
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Table 6.14  Numerical results of uniplanar X-joints loaded with out-of-plane bending
moments ($=1.0)

Joint Geometrical Numerical results
parameters
Bl 2y | m | Mygu/yto®0) | Myopby 8, | Criteria
(KNm)
x100e05" | 1.00 | 15 | 05 15.10 80.41 4.40 Max.
x100e” | 1.00 | 15 | 1.0 22.43 11944 | 232 Max.
x100e2" | 1.00 | 15 | 20 36.15 192.50 1.19 Max.
x110" 1.00 | 24 | 1.0 28.54 59.37 0.50 Max.
xi10e2” | 1.00 | 24 | 20 52.23 108.64 | 0.18 Max.
x120e05* | 1.00 | 35 | 05 23.51 23.04 0.54 Max.
x120" 1.00 { 35 | 1.0 37.98 37.22 0.16 Max.
x120e2” | 1.00 | 35 [ 2.0 64.02 62.74 0.09 Max.
*: without weld

6.3.5. The ultimate moment capacity of joints with chord face plastification

For the joints with a chord top face plastification failure, the analytical formula based upon
the yield line theory is given in equation (5.34):

_ n(+p) | | 201+B) o
M, opb.Rd ‘fyotozb‘ 2B(1-B) g B(1-B)

Equation (5.34) has also been used as the design resistance moment in the CIDECT design
guide.

Comparison between the numerical results in Table 6.13 and the CIDECT design formula,
equation (5.34) is shown in Figure 6.28. It can be seen that the CIDECT formula is
sometimes very conservative compared to the FE results. A more efficient ultimate moment
capacity formula can be obtained by introducing a revision to equation (5.34), similar as
discussed for axially loaded joints, see Section 6.1:
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M, oobu=fyoto

2, | N(1+P)
1
2p(1-B)

The revision function is defined as follows:

f(B.n) =R;+R, *B +Ryxn

.| 20+B)
\]Ba—ﬁ) b

(6.6)

6.7)

The values of R; to Ry can be determined using non-linear regression analysis of the
numerical results. The regression results are listed in Table 6.15. The formulae for the mean
value, the coefficient of variation (CoV) and the correlation coefficient (R ) can be found in
equations (4.9) to (4.12), Chapter 4. The mean normalised error is based upon the FE result

divided by equation (6.6).

Table 6.15 Regression result for chord top face yielding
R R R Mean Coefficient of Correlation
1 2 3 normalised error | variation (CoV) coefficient (R2)
1.0 0.5 0.0 1.046 0.087 0.964

The FE results and equation (6.6), obtained after the regression analysis, are compared in

Figure 6.29.

Figure 6.28
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Figure 6.29 The FE results and the ultimate moment capacity formula (3<0.8)

6.3.6. The ultimate moment capacity of joints with chord web yielding or buckling

For all the joints with f=1.0, a maximum moment capacity is reached as shown in Figure
6.27. The failure mode for such joints is very similar to that for axially loaded joints.

Comparison with the CIDECT formula

In order to compare the FE results with the CIDECT formula, the CIDECT design formula
has to be written in characteristic form (i.e., without the v, factor of 1.25) as described in
Chapter 5:

1 |
M, Jopb.k =E(2'Yn +5)(1 _W)fyotozbl (5.36)

The comparison between the FE results and equation (5.36) is shown in Figure 6.30. It can
be seen that the CIDECT formula without the vy, factor of 1.25 is unsafe for joint with 2y=35
and n=2.0. Because full width joints with larger 2y (actually hy/ty) and larger n values are
more sensitive for local buckling of the chord side wall. However, this has not been included
in the CIDECT formula. A quantitative comparison between the FE results and the CIDECT
formula is listed in Table 6.16. The 8, values in Table 6.16 are the indentations corresponding
to the maximum moment.
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Figure 6.30 Comparison between the FE results and the CIDECT formula ($=1.0)

Table 6.16 Comparisons between the FE resuits, the CIDECT formula and the
"4-hinge yield line and web buckling' formula (3=1.0)

5 Ml,opb,u (kNm) Comparisons
u
Joints | 2 | K CIDECT | FE | | o
mm eq. 544 | eq. 5.36 | resuits - -
(1) 2 3) M M

x100e05" | 15 | 0.5 | 4.40 | 0.98 68.64 62.13 80.41 1.173 0.77

x100" 15| 1.0 | 232 [ 098 | 107.79 99.40 119.44 | 1.109 0.83

x100e2" 15 120 1.19 { 098 | 186.06 173.95 192.50 | 1.036 0.90

* P PR — - s —— ~ o~
X110 L4 .U u.ouv UL II.4/ J71.01 J7.21 v.770 v.7

x110e2" 24 1 20| 0.18 | 092 | 10540 105.65 108.64 | 1.026 0.97

x120e05" | 35 | 05| 0.54 | 0.82 20.88 21.42 23.04 1.098 0.93

x120" 35 [ 1.0 | 0.16 | 0.82 34.95 38.08 37.22 1.060 1.02

x120e2" 35 1201 009 | 0.82 63.07 71.40 62.74 | 0.990 1.14

Mean 1.061 | 1.074
CoV 0.060 | 0.120

R?2 0987 | 0.957
B=10 f =355 N/mm’

*. Without weld
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Comparison with the ’4-hinge yield line and chord web buckling' model

In Chapter 5, equation (5.44) is derived based upon the "4-hinge yield line and chord web
buckling” model:

/ 2
Ml,opb.u =K( 2(1+2y) +2Yﬂ)fy0t0 b, (5.44)

In this formula, a buckling reduction factor x is introduced. The x value can be determined
according to equations (5.13) to (5.17), Chapter 5.

The FE results are compared with equation (5.44) in Figure 6.31 and Table 6.16. It can be
seen that there is a good agreement between the FE results and the "4-hinge yield line and
chord web buckling" model. From Table 6.16, it can be seen that the larger the 2y value
(actually hy/ty), the smaller the deformation Su at maximum load, due to chord side wall
buckling.

e BV R
£ o
= ok \ —— A n=10p
160 F .% —__On=1.0«B
2 P\ 1 ©n=054B
R . ;
= g A ]
8 Q:‘EL\ § bg=hg
I 0 = -

010 W N 4
— 27 (or hp/tp)

Figure 6.31 Comparison between the FE results and the ''4-hinge yield line and web
buckling'' model (f=1.0)

6.3.7. Conclusions

- For joints with a chord top face plastification failure, the CIDECT formula based upon
the yield line theory is conservative compared to the FE results. The ultimate moment
capacity formula is derived by introducing a revision function equation (6.7) to the
CIDECT formula.

- For full width joints with a chord side wall failure, the CIDECT formula without the
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Ym factor of 1.25 is unsafe for joint with 2y=35 and n=2.0 compared to the numerical
results. The ultimate moment capacity formula equation (5.44) based upon the

"4-hinge yield line and web buckling" model is calibrated well with the numerical
results.
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6.4 INFLUENCE OF THE CHORD AXIAL PRELOADING ON THE ULTIMATE
LOAD CAPACITY OF X-JOINTS

6.4.1 Introduction

In Chapter 5, it has been analytically described that the joint ultimate load capacity is reduced
by the existence of the axial stresses in the chord due to the reduction of the plastic moment
of the yield lines when the axial stresses are inclined or normal to the yield lines. The axial
stresses can be caused by axial forces or bending moments in the chord of an X-joint or
bending moments in the chord of a T-joint. The influence of the chord bending moments on
the ultimate load capacity of a T-joint and an X-joint has been numerically investigated (Yu
1995, 1996d). The same interaction formula between the joint ultimate load capacity and the
chord bending moments has been recommended for both T- and X-joints when the moment
resistance of the chord section was determined according to section classes 1, 2 or 3 (EC3
1992). According to the experimental results of K- and T-joints (Wardenier 1974, 1976 and
Barentse 1976), the axial compression stresses in the chord reduce the joint strength, while
the axial tensile stresses in the chord increase the joint strength due to the membrane action.
In this section, only the influence of the compressive preloading in the chord is studied
numerically. Configuration of an X-joint is shown in Figure 6.32 where the joint is loaded
with axial forces in the braces and axial preloading in the chord.

Ny

No

Ny

Figure 6.32 Configuration of an X-joint loaded with axial forces in the braces and
axial compressive preloading in the chord

According to EC3 (1992), the design compression resistance for different classes of
cross-sections can be determined as follows:

For class 1, 2 or 3 cross-sections:

Nora=AFy0 vo (6.8)

For class 4 cross-sections:
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Nora=Aett fyo M (6.9)

Where A is the area of the chord cross-section; A g is the effective area of the cross-section;
NoRrgq 1s the axial resistance of the chord; f , is the yield stress of the chord; Ymo=1 and
Yi=1.1 according to EC3. In this study, section class 4 is excluded.

The ratio of the axial preloading in the chord is defined by the following equation:

Ny o

= = " (6.10)
Nora fyo

Where o) is the axial stress in the chord corresponding to N, Theoretically speaking, if the
axial preloading in the chord is equal to the design compression resistance of the
cross-section, the ultimate load capacity of the joint is reduced to zero. Different axial
preloading ratios are used in the numerical parameter study in order to establish the
interaction relation between the ratio of the axial preloading and the ultimate load capacity
of the joint.

6.4.2 Research programme

The numerical parameter study consists of X-joints loaded with axial forces on the braces and
axial compressive preloading on the chord. The joint geometrical parameters are summarised
in Table 6.17. For each joint with a specific set of geometrical parameters, four axial
preloading ratios are included with n=0, 0.4, 0.6 and 0.8 respectively. In total, 48 joints have
been analysed. Obviously, for n=0, the joints are the same as in Section 6.1. For joints with
2y=15 and 24, the chord cross sections are class 1, while for joints with 2y=35, the chord
cross sections are class 3. The nominal geometrical dimensions and the material properties
of the joints and the weld are the same as in Section 6.1. The only difference is the load case.

Table 6.17 Research programme for X-joints loaded with axial forces in the braces
and axial preloading in the chord

2y b
04 0.6 0.8 1.0
15 xla x4a x7a x10a"
24 x2a x5a x8a x11a*
35 x3a x6a x9a x12a"
n=0, 04, 0.6, 0.8;  f (=355 N/mm®

*. Without weld.
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6.4.3 The FE analysis

The numerical model is the same as used in Section 6.1. The axial compressive forces are
pre-loaded at the ends of the chord with one load step. After that, the axial forces on the
braces are applied by displacement control. Considering symmetry of load and geometry, 1/8
of a joint is analysed. The material properties and boundary conditions are also the same as
used in Section 6.1.

6.4.4 The numerical results

The numerical results of the joints with different geometrical parameters are shown in Figure
6.33. For each joint with the same B and 2y values, 4 axial preloading ratios are included with
n=0, 0.4, 0.6 and 0.8 respectively. The chord top face indentation at the ultimate deformation
limit of 3%by, is indicated in the figures. The ultimate load capacity of a joint is defined as
the maximum from the load versus indentation curves if it is reached before the ultimate
deformation limit. Otherwise it is taken as the load at 3%b, indentation. The non-dimensional
ultimate load capacity of each joint is listed in Table 6.18.

According to the numerical results of the load vs. indentation curves in Figure 6.33, three
failure modes can be distinguished, namely, failure dominated by chord top face plastification,
failure dominated by chord prestressing or failure dominated by chord web buckling. The
word "dominated" is used because the joints fail actually as the result of an interaction of the
forces applied on the braces and those on the chord.

The first failure mode occurs for joints with small to medium B values and small axial
preloading ratios. The load capacity for such joints is increasing with the increase of chord
top face indentation. A maximum load is not reached for such joints. In such cases, there is
a clear influence of the chord axial preloading on the ultimate load capacity. As a general
tendency, with the increase of the axial preloading ratio, the ultimate load capacity of the joint
decreases.

The second failure mode occurs for joints with small to medium f values, large 2y values and
high axial preloading ratios. This failure mode can be identified from the load vs. indentation
curves where the load decreases abruptly after the maximum load is reached. The ultimate
load capacity of such joints is reduced considerably due to the large reduction of the
membrane effects by the compressive preloading in the chord.

The third failure mode occurs for joints with B=1.0. The load vs. indentation curves of the
joints with chord axial preloading are similar to those of the joints without axial preloading.
Thus, similar failure modes occur for joints with or without chord axial preloading. The
influence of the chord preloading is very small for such joints.

From the above observations, it can be concluded that the influence of axial preloading in the
chord depends upon the modes of failure and the modes of failure depend upon the joint
geometrical parameters and the axial preloading ratios. The most significant influence of the
chord axial preloading is found for joints dominated by a failure of chord prestressing. While
the influence of the axial preloading for joints dominated by a failure of chord web buckling
is very small.
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Table 6.18 Numerical results of axially loaded X-joints with different chord
axial preloading ratios
5 . N, ,()/(f,0to2)
n= n=0.4 n=0.6 n=0.8
xla 04 15 6.55 6.10 5.41 4.04
x2a 0.4 24 6.23 5.62 4.83 3.64
x3a 04 35 6.00 5.18 421 2.90
x4a 0.6 15 11.68 10.56 9.60 7.84
x5a 0.6 24 10.56 9.35 8.07 6.45
x6a 0.6 35 9.88 8.32 6.90 5.47
x7a 0.8 15 23.32 22.50 21.10 19.03
x8a 0.8 24 22.32 20.61 19.15 16.78
x9a 0.8 35 21.10 18.80 16.99 14.15
x10a" 1.0 15 45.37 44.71 43.99 42.04
x11a" 1.0 24 58.89 57.90 56.75 54.60
x12a” 1.0 35 76.81 76.23 74.10 70.27

*. Without weld.

6.4.5 The interaction formula between the joint ultimate load capacity and the chord
axial preloading

The rednectinn functinn af the inint nltimate laad canacity duse ta tha avial nralandina in tha
M H B i e

chord is defined as:

N Lu(n)

(6.11)
N, ,(n=0)

f(n)=

Where N, (n) is the joint ultimate load capacity with axial preloading ratio n and N; ,(n=0)
is that with axial preloading ratio n=0, i.e., an X-joint loaded only with axial forces on the
braces. Based upon this definition, the interaction data points of {f(n),n} can be obtained from
Table 6.18 which are used for the regression analysis for the determination of the interaction
formula.

The interaction contours between the normalised ultimate load capacity and the axial
preloading ratio are shown in Figure 6.34 for four § values.
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Figure 6.34 Interaction contours from the numerical results of X-joints loaded

with chord axial preloading

For each B value, three 2y values are included. Following general tendency can be found from
Figure 6.34:

- The influence of the chord axial preloading is decreasing with increasing (3 values. For
B=1.0, the influence of the axial preloading is very small.

- The influence of the axial preloading is increasing with increasing 2y values. Namely,
the joint ultimate load capacity is decreasing with decreasing chord wall thickness for
a joint with the same P value and the same axial preloading ratio. Especially for joints
with 2y=35, the reduction of the joint ultimate load capacity is significant. However,
if only the data points for joints with 2y=15 and 24 are considered, there is only a
slight 27y influence which is the same tendency as observed in previous investigations
for the influence of chord bending moments on the ultimate load capacity of T- and
X-joints (Yu 1995 and 1996c). In the previous study for chord bending, the 2y
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influence on the reduction of the joint ultimate load capacity was neglected but the
design resistance moment of the chord section was calculated according to section
classes (class 1 for joints with 2y=15 and 24 and class 3 for joints with 2y=35,
f0=355 N/mm?). For section class 1, the plastic bending moment of the section was
used while for section class 3, the elastic bending moment of the section was used.
Thus, the influence for joints with 2y=35 would be larger if the plastic moment of
such sections was used as design resistance moment instead of the elastic moment of
the section. This influence is further discussed in Section 6.5.

Theoretically speaking, if n=0, then f(n)=1.0, while if n=1, then f(n)=0. Based upon these

considerations and the general tendency observed, i.e., the influence of n is large for small
B and large 2y values, the following interaction formula is used:

f(n)==(1-nf<l3ﬁf>jkl (6.12)

Where

2

f(B,y)=
(1+R,Y (1 -R 8%

(6.13)

n and f(n) are defined in equations (6.10) and (6.11).

A nonlinear regression analysis is carried out using the FE results in Table 6.18. The

racgracoinn raanltc nea ligtad 1 Tahla £ 10
LURICOSIUIT TLoUIld div Lo 111 1 auviv U.1 /.

Table 6.19 Regression results of equations (6.12) and (6.13)

| !

I Rl I ™ l ™ l b2l | ™ | LYY, (P ~

aq gy vy g g 11Lv¢f1A \_,va;ff;\;;\,u:. v CUI 1 u‘xu‘tluu
normalised Variation coefficient
error (CoV) (Rz)
04 | 0.004 2 0.85 3 1.002 0.035 0.959

A reasonable correlation coefficient and a very low coefficient of variation is found in Table
6.19. It is shown in Section 6.5 that equations (6.12) and (6.13) can also be used for both
T-joints and X-joints loaded with axial forces on the braces and bending moments on the
chord if the design resistance moment of the chord section is calculated according to its
plastic moment only.
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6.4.6 Comparison with the CIDECT formula

In the CIDECT design guide (Packer 1992a), a reduction function given by Wardenier
(1982a) has been used to determine the influence of the chord axial preloading:

04

f(n)=1.3--= (6.14)
B n

Where n can be found in equation (6.10).

A comparison between equation (6.12) and (6.14) is shown in Figure 6.35. It can be seen that,
compared to the numerical results for X-joints, the CIDECT formula is on the unsafe side
except for X-joints with small B values.
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Figure 6.35

Comparison between the FE results and the CIDECT formula
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6.4.7 Conclusions

This section deals with the investigation into the influence of the chord axial preloading on
the joint ultimate load capacity. This influence depends upon the modes of failure and the
modes of failure depend upon both joint geometrical parameters and chord preloading ratios.
For joints with small to medium B values, large 2y values and high axial preloading ratios,
failure of the joint is dominated by the preloading. In such a case, the joint ultimate load
capacity is reduced considerably due to the preloading, because the membrane effects are
largely reduced by the preloading. The smallest preloading effect is found for joints with
B=1.0. For joints with other  and 2y values, the preloading effect is between the two extreme
cases. A reduction formula equation (6.12) based upon the numerical results is derived.
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6.5 INFLUENCE OF THE CHORD BENDING MOMENTS ON THE ULTIMATE
LOAD CAPACITY OF X-JOINTS

6.5.1 Introduction

This section deals with the numerical analysis of the ultimate load capacity of X-joints loaded
with axial forces in the braces and bending moments in the chord, as shown in Figure 6.36.
In Section 6.4, the influence of the chord axial preloading on the ultimate load capacity of
an X-joint has been numerically investigated. It has been found that the reduction of the joint
ultimate load capacity is not only a function of the preloading ratios and the f values but also
a function of the 2y values. For joints with 2y=15 and 2y=24, the reduction of the joint
ultimate load capacity due to the axial preloading is rather similar, while for joints with
2y=35, the reduction of the joint ultimate load capacity is more pronounced, see Figure 6.34,
in Section 6.4.

However, according to the previous investigations into the influence of the chord bending
moments on the ultimate load capacity of a T- and an X-joint (Yu 1995, 1996d), it was shown
that the reduction of the joint ultimate load capacity is a function of the moment ratios and
the PB values and the influence of the 2y values was omitted. This conclusion was based upon
the fact that the design resistance moment was determined according to section classes (EC3
1992). For section classes 1 and 2, the plastic moment capacity was used as the design
resistance moment of the chord section. While for section class 3, the elastic moment capacity
was used. If only the plastic moment capacity of the chord is used as the design resistance
moment or if only the elastic moment capacity of the chord is used as the design resistance
moment independent of the section classes, the reduction function will be different. In this
section, the above three methods are used as a comparison.

Jv Nl
<>
Mo@
ﬁ@@%
L
ANy

Figure 6.36 X-joint loaded with axial forces and bending moments
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6.5.2 Research programme

The numerical research programme is given in Table 6.20 which consists of X-joints loaded
with axial forces on the braces and in-plane bending moments on the chord. The joint
geometrical parameters are 3=0.4, 0.6, 0.8, 1.0 and 2y=15, 24, 35 respectively. For each joint
with a specific set of geometrical parameters, four moment ratios are included with J =0, 0.4,
0.6 and 0.8 respectively, where the moment ratio is defined in Chapter 5 according to EC3
(1992):

MO/Mpl Rd (class 1 or 2)

Im=l Mo/Mel Rd (class 3)

(5.47)

Where M), 4 is the design plastic resistance moment of the chord cross-section and M

is the de31gn elastic resistance moment of the chord cross-section, see equations (5.45) and
(5.46). For joints with 2y=15 and 24, the chord cross-sections are class 1, while for joints with
2y=35, the chord cross-sections are class 3 in the present study. For class 1, 2 or 3
cross-sections, the partial safety factor y,=1.0 (EC3 1992).

M ra=W pifyo/Ymo (class 1 or 2) (5.45)

M ra=Weifyo Mo (class 3) (5.46)

Table 6.20 Research programme for X-joints loaded with axial forces in the braces
and bending moments in the chord

Section 2y B
classes 0.4 0.6 0.8 1.0
1 15 x1a x4a x7Ta x10a"
1 24 x2a x5a x8a x11a"
3 35 x3a x6a x%a x12a"
According to EC3: J =0, 0.4, 0.6, 0.8 f,o=355 N/mm?

*. Without weld.

If the design resistance moment of the chord cross-section is calculated only according to its
plastic moment capacity or only to its elastic moment capacity, the values of the moment ratio
in Table 6.20 are changed according to the shape factor of the chord cross-section which is
given as follows for a square hollow section:
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Mod-bg-2t)3)  3(1-(1-2)3
U kP
el _6_5_(b0 —(b0—2t0)4) 2(1 —(1—27)4)
0

The values of the shape factor for the joints with 2y=15, 24 and 35 are 1.2, 1.17 and 1.16
respectively.

In Table 6.21, the moment ratios based upon only the plastic or only the elastic moment
capacity of the chord-section are compared with those based upon EC3.

Table 6.21 Moment ratios based upon three methods

Based upon 2y Moment ratios
EC3 15 0.4 0.6 0.8
24 0.4 0.6 0.8
35 0.4 0.6 0.8
Only M, g4 15 04 0.6 0.8
24 0.4 0.6 0.8
35 035 0.52 0.69
Only M| rq 15 0.48 0.72 0.96
24 0.47 0.71 0.94
35 04 0.6 0.8

f,g=355 N/mm’

The dimensions and the material properties of the joints and the weld are exactly the same
as those in Section 6.1. The only difference is the load case.

6.5.3 The FE analysis

The general considerations for the numerical models are described in Chapter 4. The chord
bending moments are pre-loaded in one step by applying opposite axial forces on the top and
the bottom faces of the chord ends. After the chord bending moments are pre-loaded to a
prescribed moment ratio, the axial forces on the braces are applied by displacement control
considering its efficiency in convergency. Considering symmetry of load and geometry, a
quarter of a joint is analysed.
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6.5.4 The numerical results and observations

Figure 6.37 shows the non-dimensional load versus chord top face indentation curves for the
joints with different geometrical parameters. For each set of B and 2y values, 4 moment ratios
are included. The chord top face indentation at 3%b, is indicated in the figures. It can be seen
from Figure 6.37 that the joint ultimate load capacity is decreased with the increase of the
moment ratio. For joints with B=1.0, the influence of the moment ratio on the joint ultimate
load capacity is smaller than that for joints with other [ ratios. The non-dimensional ultimate
load capacity of the joints based upon the procedure in Chapter 4 is listed in Table 6.22.

Table 6.22 Numerical results of axially loaded X-joints with different moment ratios

Section Joints Nl,u(Jm)/(fyOtoz)

classes J,=0 J_=0.4 1,=06 J =038
1 xla 6.55 5.95 5.24 3.85
1 x2a 6.23 5.52 4.80 3.63
3 x3a 6.00 5.31 4.69 3.73
1 xda 11.68 10.72 9.66 7.75
1 x5a 10.56 9.46 8.40 6.86
3 x6a 9.88 8.79 7.86 6.50
1 x7a 2332 2248 21.05 18.32
1 x8a 2232 21.28 20.10 17.66
3 x9a 21.10 19.80 18.83 17.38
1 x10a" 45.37 4478 44.21 42.02
! vita” ¢ 20 se 10 s &7 s100
3 x12a* 76.81 75.30 73.92 71.71

The moment ratios are based upon EC3

*. Without weld
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Figure 6.37 Numerical results of axially loaded X-joints with different moment ratios
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6.5.5 The interaction formula based upon EC3
6.5.5.1 The numerical interaction formula

The reduction function of the joint ultimate load capacity is defined as:

N1 u(Jm)
f(q )= MW 6.16
() N, 7,,=0) (6.16)

Where Ny ((J,) is the joint ultimate load capacity with a moment ratio J,, and N; yJy,=0) is
that with a moment ratio J_=0. It is obvious that leu(Jm=0) is equal to the ultimate load
capacity of X-joints loaded only with axial forces on the braces. The data points of {f(m),]}
obtained from Table 6.22 are illustrated in Figure 6.38.

From Figure 6.38, it can be seen that there is a clear f§ influence on the interaction contours
between the dimensionless ultimate load capacity and the bending moment ratio. The larger
the B values, the higher the interaction curves. This means that the larger the B values, the
less the influence of the bending moment on the ultimate load capacity of the joint. This
tendency is the same as for T-joints, see Chapter 7.

For X-joints with B=1 and J_<I, the reduction function f(J,;) is smaller than 1, as shown in
Figure 6.38. It is expected that the same interaction formula can be used for both T- and
X-joints due to the similarity of the problem. Considering that no numerical data points for
T-joints with B=1 and J, <1 are available, the numerical results of X-joints with P=1 and
J,<1 will be used for the determination of the interaction formula for both T- and X-joints.
Theoretically speaking, if J =0, then f(J)=1, while if J,=1, then f(J,)=0. Thus, an
interaction formula is assumed to have the above characteristics based upon the equation
recommended for T-joints (Yu 1995):

f(J ) =3 i3, f® (6.17)
Where
1
f(B)_l R B (6.18)
1

J, and f(J,)) can be found in equations (5.47) and (6.16), or (7.28) for T-joints. The nonlinear
regression analysis is carried out including the FE resuits of both T- and X-joints. The FE
results of T-joints can be found in Table 7.3, Chapter 7. The regression results are listed in
Table 6.23.
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Table 6.23 Regression results of equation (6.17) based upon EC3

R, R, Correlation Mean normalised Coefficient of
coefficient error Variation
R2
0.85 1.6 0.965 0.995 0.039

A reasonable correlation coefficient and a very low coefficient of variation are obtained as
shown in Table 6.23. Thus, equation (6.17) can be used for both T- and X-joints with all 8
values and moment ratios if the design resistance moment of the chord section is determined
according to EC3. A comparison between equation (6.17) and the FE results of X-joints is
plotted in Figure 6.38.
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Figure 6.38 Interaction contours of the FE results of X-joints based upon EC3

6.5.5.2 Comparison with the analytical solutions based upon the yield line theory
The analytical solutions based upon the yield line theory have been described in Section 5.4.
The reduction of the joint ultimate load capacity is caused by the reduction of the plastic
moment capacity of a yield line when the yield line is normal or inclined to the axial stresses.
Although different methods to calculate the reduction of the plastic moment capacity may lead
to slightly different results, they still give an analytical basis for the understanding of the
problem. The methods of Murray (1984) and Zhao (1993a, 1993b) have been used in
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calculating the reduced plastic moment capacity of an inclined yield line.
Comparison with the analytical solution based upon Murray

The interaction formulae deduced based on Murray is (see Chapter 5):

2
J 2
oy Nia =n+2J<1—T‘“)(1—Jm><1—B) (5.60)
" Nl,u(szo) T]+2W

In Table 6.24, a set of f(J)) values according to equation (5.60) is outlined and compared
with equation (6.17) based upon the FE resuits. It can be seen that the difference between the
analytical results based upon Murray and those of equation (6.17) based upon the FE results
is within 4%.

Table 6.24 Comparison between equation (6.17) and the analytical results based on

Murray
fUm)Murray U )Murray€49(6-17)

Jin 0.4 0.6 0.8 0.4 0.6 0.8
B=0.4 0.90 0.78 0.60 1.02 1.00 0.96
B=0.6 0.92 0.81 0.66 1.00 0.99 0.99
p=0.8 0.94 0.85 0.73 0.98 0.96 0.97

Comparison with the analytical solution based upon Zhao

The interaction relationship based upon Zhao in Chapter 5 is as follows:

_ 1+f 1 2 21 (5.64)
N,=4m_|(—-tgo+ 1-J ) +ctgo+
1 p(( P g cosoc)( wtetg l-B]

Where o. can be determined by the following equation:

(1 —J,f]) i +g —ctg Zou+(1 —Jfl)sinopo (5.65)

Substituting the obtained o value from equation (5.65) into equation (5.64), the failure load
of the joint can be determined. With this method, a set of interaction data points {f(J.)).J;,}
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is obtained and compared with equation (6.17) in Table 6.25. It can be seen that the
difference between the results based on Zhao (1993a, 1993b) and the FE results of equation
(6.17) is within 7%.

Thus, equation (6.17) agrees reasonably well with the analytical results. Based upon the
numerical analyses, equation (6.17) can be recommended as the reduction formula for chord
bending moments if the design resistance moment of the chord cross-section is determined
based upon EC3. This formula can be used for both X- and T-joints.

Table 6.25 Comparison between equation (6.17) and the analytical results based upon

Zhao
f0 ) 7hao {0 ) 7hao/€9(6.17)

I 0.4 0.6 0.8 04 0.6 0.8
p=0.4 0.92 0.82 0.66 1.05 1.05 1.06
B=0.6 0.94 0.86 0.72 1.02 1.05 1.07
p=0.8 0.96 0.90 0.80 1.00 1.01 1.07

6.5.6 The interaction formula based upon the plastic moment capacity only

Different methods to determine the design resistance moment of the chord cross-section result
in different moment ratios as shown in Table 6.21. If the moment ratios are determined based
upon the plastic moment capacity for all section classes, a 2v influence is observed. Tt is
expected that a similar interaction formula can be used for joints with chord bending moments
and for joints with chord axial preloading if M, rd is used, since the stress distributions of
the chord top face are similar in the two cases. Based upon this idea, all the numerical data
points for T- and X-joints under chord bending moments and X-joints under chord axial
preloading are used for the regression analyses. The numerical data can be found in Table 7.3,
Chapter / and lables 0.1% and 0.2Z In In1s cNapter. 1ne 10rm oI e Ieracuon [ormutd 1s
assumed similar to equation (6.12):

M R

fJ_) = (1 o f(ﬂmj ' (6.19)
pl,Rd

Where

f(B,y)= 2 (6.20)

(1+R (1R ,BY)
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The regression results are listed in Table 6.26. A reasonable correlation coefficient and a very
low coefficient of variation are obtained. Comparison between Table 6.26 and Table 6.19
shows that the regression formula, equation (6.19) is the same as equation (6.12) in Section
6.4 with only slightly different statistical values.

Comparison between equation (6.19) and the numerical results of T- and X-joints with chord
bending moments and X-joints with chord axial preloading is plotted in Figure 6.39.

Table 6.26  Regression results of equations (6.19) and (6.20) for T- and X-joints with
chord bending and X-joints with chord axial preloading (based upon the
plastic moment capacity)

R4 R, R, R, R; Mean Coefficient of Correlation
variation COV coefficient R?

04 0.004 2 0.85 3 1.011 0.041 0.950

Although the above analysis shows that the reduction formula for joints with chord bending
moments agrees well with that for joints with chord axial preloading, the approach of My rg
is invalid if there is not enough rotation capacity of the chord cross-section, since the strains
in the chord top face based upon Mpl,Rd are much higher than those based upon Nj g4. For
joints with chord bending moments, using M, g4 instead of M, rd would give similar strains
in the chord top face as for joints with chord axial preloading.
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6.5.7 The interaction formula based upon the elastic moment capacity only

The moment ratios based upon the elastic moment capacity of the chord cross-section are
listed in Table 6.21. The numerical results based upon M, g4 are illustrated in Figure 6.40.
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08 A B=0.4 08 1 IR B0
i YN] L 029=15 i fodd] _ ©27=19
06 " 06 | H—"0
£ NN R = : {-- oor-24
04 \\ ------ A2y=38 T 4P+ -+ L 1 A 2Y=35
] M- cpEcT 1 [ == CIDECT
0.2 02
0.0 0.0 ]
00 02 04 06 08 1.0 00 02 04 06 08 10
— Mg/Meigg — Mg/ Mg
10 10
08 | 0.8 2 B=1.0
[ — @ 27=1§
06 | 06 | T
. 04 N e e e s e I A27=3Y
i - CpecT
0.2 ] 02 |
00 Lot 00 Loslodes
00 02 04 06 08 1.0 00 02 04 06 08 1.0
— Mg/ Mg — Mo/Mgipg

Figure 6.40 Interaction contours for X- and T-joints with chord bending (based upon
the elastic moment capacity)
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Based upon Figure 6.40, the reduction function is given as follows:

M
£(J) = 1- Rl(l—RZB)'ym( 0

A
M rd

(6.21)

The regression results are listed in Table 6.27.

Table 6.27 Regression results of equation (6.21) for T- and X-joints with chord
bending moments (based upon the elastic moment capacity)

R, R, R; [ Ry Mean Coefficient of Correlation
normalised error | variation (CoV) coefficient (R?)
023 | 085 {05 2 1.000 0.032 0.959

The reduction function for joints with chord bending moments based upon the elastic
moments is not the same as that for joints with axial preloading due to the different stress
distributions. The CIDECT formula of equation (6.14) is plotted in Figure 6.40 as a
comparison.

6.5.8 Conclusions

The influence of chord bending moments on the joint ultimate load capacity is determined in
three ways which leads to three sets of interaction formulae,

If the design resistance moment of the chord is determined based upon EC3 (section classes),
interaction formula (6.17) is recommended which agrees reasonably well with the analytical
solutions. Equation (6.17) can be used for both T- and X-joints with bending moments on the
chord.

If the design resistance moment of the chord is determined based upon the plastic moment
capacity for all section classes, equation (6.19) is recommended which can be used for both
T- and X-joints with chord bending moments and X-joints with chord axial preloading
(checked for f,(<355 N/mm?).

If the design resistance moment of the chord is determined based upon the elastic moment
capacity, equation (6.21) is recommended which is valid for T- and X-joints with chord
bending moments only.
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7 NUMERICAL STUDY ON UNIPLANAR T-JOINTS

7.1 AXJALLY LOADED T-JOINTS INCLUDING CHORD BENDING MOMENT
7.1.1 Introduction

For a T-joint, the axial load applied to the brace will be balanced by the end supports of the
chord which will cause global bending moments and shear forces in the chord member. The
extent of the chord bending and shear effects depends upon the joint parameters such as the
width ratio between the brace and the chord (B), the width to thickness ratio of the chord (27y)
and the chord length to width ratio (0/2). This bending moment will reduce the ultimate load
capacity of the joint for a concentrated load applied to the brace as described in Chapters 5
and 6. Very little information is available for this effect in the existing design
recommendations. In order to separate the influence of the bending moment from the axial
load, compensating bending moments can be applied to the chord ends in such a way that the
chord moment at the intersection between the brace and the chord remains zero. It is
envisaged that by separating the effects of chord bending from those of the brace concentrated
load, failure of uniplanar T-joints can be described in a clearer manner. As a result, the
normalized load-moment contour can offer a clear insight into the influence of the chord
moment. This method has been adopted for joints of square hollow sections (Yu 1995) where
the resistance moment of the chord have been based upon the section classes (EC3 1992).

Similar to Section 6.5, Chapter 6, three approaches are used to determine the resistance
moment of the chord cross-section (based upon EC3, based upon the plastic moment capacity
only or based upon the elastic moment capacity only) which results in three reduction
functions for T-joints with chord bending moments. It is expected that the chord bending
moments on T- and X-joints will have a similar influence on the joint ultimate load capacity.
As a result, identical interaction formulae could be used for both T- and X-joints.

The study presented covers failure due to plastification of the chord face or chord walls.
Punching shear and brace effective width failure are not included in the numerical analyses.

7.1.2 The resistance moment of the chord member
7.1.2.1 Based upon EC3
Classifications of cross-sections

The design of members and the method of analysis are influenced by the cross-sectional
dimensions. EC3 (1992) and the CIDECT design guide (Rondal 1992) specify
width-to-thickness ratios to classify the cross-sections as Classes 1, 2, 3 and 4. The
cross-section classes in this research programme with fy0=355 N/mm? are class 1 (2y=15 and
24) and class 3 (2y=35).

For class 1 cross-sections, full plasticity is developed in the cross-section with full rotation
capacity.
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For cross-section class 2, full plasticity is developed in the cross-section with restricted
rotation capacity.

The ultimate resistance moment of class 1 and 2 sections should be determined according to
plastic design. Thus, it is equal to the design plastic resistance moment.

For class 3 cross-sections, the ultimate limit state is reached by yielding of the extreme fibres
of the cross-section. Thus, the ultimate resistance moment is equal to the design elastic
resistance moment.

For class 4 cross-sections, the stress at the extreme fibres of the cross-section is less than the
yield stress. The ultimate moment resistance is governed by local buckling and occurs at a
value less than the design elastic resistance moment.

Class 1 and 2 cross-sections

According to EC3 (1992), the effect of shear may be neglected if the shear load does not

exceed 50% of the shear resistance of the section. Thus, the design plastic resistance moment
including the shear reduction in the web of a rectangular hollow section can be written as:

Mg4SMy ra=Mtra My ra &= MeRra (1 -PIMy, Ra=Mypi R PMy ra .1

E-1-p (7.2)

For a square hollow section,

2

M, Ra _ 0.5ty(byt9)fyo 1 (1.3)

MiiRd  0.5to(bytg)*fy0+(by=t) tof s 3
Thus, the right side of equation (7.1) can be rewritien as:

1

My ra=Mpira(! =5P) 74
Where,

M. =2 (b ~t) 2t fo (7.5)

pl,Rd—E( 0t tof yo/ Mo :

nmo=! for class 1, 2 and 3 sections according to EC3. For the clearness of reading, Yy will
not be included in the formulae.
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If the shear design value exceeds 50% of the design plastic shear resistance, then the effect
of the shear should be taken into account, thus,

VSd

p=(2 -1)? (7.6)
plRd
Where,
fy()
Voi,ra=2(bg “to)t()73_— (1.7)
N[
Vsam—- (7.8)

When the plastic bending moment capacity of the chord is reached, N;=Ny, g4 or Mg=My pq
by definition. The relationship between My g4 and Ny pq is given as follows:

o
N bo(——
Mo = VRalo=00) vRdPo(=P) (7.9
VRIT—— = 1

Substituting equation (7.6), (7.8) and (7.9) into (7.4) gives the following equation:

Ny ry’ 3bg(ov2-
V.Rd +Nv,Rd( ot B)— 2 }2=0 (7.10)
Voird MR Vpira

Substituting equation (7.5) and (7.7) into (7.10) yields:

(Nv,m]z 3 _Nv,Rd(ZY(aH-B) _2}4(2%1):0 (7.11)
o/ 2@D & Ve a

From equation (7.11), the axial load applied to the brace Ny pq is given as follows when
Mg=My gq:

Nvrd _@2y-1)

SR

froto

(-C+/CL+8 ) (7.12)
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Where

ol
7_B

c1=___1 -
Ba-—)
2y

2 (7.13)

It should be mentioned that equations (7.9) and (7.12) are valid for the case that the shear
force is larger than half of the design plastic shear resistance of the section.

For VSd<O-5Vp1 rg- the moment resistance of the cross-section is not reduced by the shear,
thus

0=0 (7.14)

My ra=Mpi rd (7.15)

Class 3 cross-section

Analogously to equation (7.1) which is valid for section classes 1 and 2, the formula for
section class 3 can be deduced considering that the design elastic resistance moment with
shear reduction is:

MMy . Rg=Mc RaPMy, e Rd (7.16)
Where
2 3 3
a2ty bofyo 1 )2=b0fyOC (7.17)
w,e,Rd 3 32y N 2y 3 2
1 12
. _( -—2?) (7.18)
g
2y
4_ _ 2 3 4 3
_bg ~(bg-2p)" zbofyo(l_(l_i) bofyo, (7.19)
e.Rd 6b, e 2y 6 °
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2 4
C,=1-(1- 7.20
3=1-( 27) (7.20)

When the design elastic resistance moment of the chord is reached, N;=Ny . g4 Or
Ifwlsld:Mv’e’Rd by definition. For a chord with a square hollow section, My g4 is given as
ollows:

[0
Nv,e,Rdbo(7 B

4

(7.21)
My . rda=

Substituting equations (7.6) to (7.8) and (7.17) to (7.21) into (7.16), the axial load applied to
the brace when design elastic resistance moment is reached is:

N - f
VeRd _ 2y-1 (_C4+ C42—4(1 _CS) ) (7.22)
A)

/3 (%—B)

C,= 2 (7.23)
2(1-—
(-5

c5=£3_ (7.24)
2C,

Equations (7.21) and (7.22) are valid for the case when the shear design load is larger than
half of the design plastic shear resistance. Otherwise, the following formula applies:

3

b, f.C

_ _0y3 7.25
My . Ra™Mc rd= (7.23)

7.1.2.2 Based upon the plastic moment capacity only

Similar to Section 6.5, Chapter 6, if the design resistance moment of the chord section is
determined based upon its plastic moment capacity, equation (7.9) or equation (7.15) should
be used for the shear design load larger or smaller than 50% of the design plastic shear
resistance respectively, independent of the section classes.
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7.1.2.3 Based upon the elastic moment capacity only

If the design resistance moment of the chord section is based upon its elastic moment
capacity, equation (7.21) or (7.25) should be used for the shear design load larger or smaller
than 50% of the design plastic shear resistance respectively, independent of the section
classes.

7.1.3 Research programme

The research programme for the numerical study is shown in Tables 7.1 and 7.2. Table 7.1
gives the joints including chord overall bending and Table 7.2 gives the joints excluding the
chord bending moment at the intersection between the brace and the chord. Both the chord
and the brace are made of square hollow sections. The width of the chord is fixed at 150 mm.
The joint parameters of the numerical models are $=0.4, 0.6, 0.8, 1.0 and 2y=15, 24 and 35
respectively. For each joint with the same B and 2y values, several o values have been
included for the investigation. It should be mentioned that for smaller B values (3=0.4 and
0.6), the chord bending effect is relatively small if the value of o is smaller than 12.
However, for larger B values (§=0.8, 1.0), the chord bending effect is already quite large for
a small o value (0=9). That is why different ranges of o values are used in the parameter
study depending upon the B values of the joint, see Table 7.1. Actually, the effect of overall
chord bending and chord shear depends upon the o values for a specified set of B and 2y
values. For smaller o values, the bending effect is smaller. However, too small o values may
cause an influence of the boundary conditions.

Figure 7.1 shows the configuration of a typical uniplanar T-joint including chord bending

moment.

N1

]

7

Figure 7.1  Uniplanar T-joint including chord bending moment
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Table 7.1 Uniplanar T-joints including chord bending
Including overall bending
2y B o
6 9 12 18 30 40
04 t7-4
0.6 t8-2 t8-3 t8-5
15 0.8 t5-a t5-2 t5-3 t5-4
1.0 t101 t10a t102 t103
04 t1-2 t1-3 t1-4
24 0.6 t3-2 t3-3 t3-4
1.0 tl11 tlla t112 t113
0.4 12-2 t2-3 t2-4
35 0.6 t4-2 t4-3 t4-4
0.8 t6-a 16-2 16-3
1.0 t121 tl2a t122 t123
Table 7.2 Uniplanar T-joints Excluding Chord Bending
Excluding overall bending
2y B
a=12
0.4 t7-2-m
0.6 t8-2-m
15 0.8 t5-2-m
1.0 t102-m
0.4 t1-2-m
24 0.6 t3-2-m
1.0 t112-m
0.4 t2-2-m
35 0.6 t4-2-m
0.8 t6-2-m
1.0 t122-m

For the analysis excluding the effect of chord bending, compensating bending moments are
applied at the ends of the chord to make sure that the moment in the chord at the intersection
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between the chord and the brace is equal to 0. At each load step, the bending moments are
applied as a result of two counter direction axial forces acting at the top and bottom flanges
of the chord respectively, see Figure 7.2.

b

NO,m
-~
~
N
0,m No,m
NO,m

Figure 7.2  Uniplanar T-joint excluding chord bending moment at the intersection
between brace and chord

For square hollow sections, the relationship can be approximately written as:

(04
N,(y-by) NP5 P (7.26)
0" ——— "7 Nomb

Thus, the Ny ;, value is proportional to the axial load N, on the brace at each load step:

o3 (1.27)

7.1.4 The FE analysis

This numerical investigation has been carried out before the extensive numerical parameter
studies in Chapters 6, 8, 9 and other sections in this chapter. Thus, the material properties of
the chord and the brace have been used as those from experiments (Davies 1992b). The
measured engineering stress-strain curves have been translated into true stress-true strain
curves, see Figure 4.9, Chapter 4. The weld has not been modelled in this study. Considering
symmetry in geometry and loading, a quarter of a T-joint has been used for the numerical
study, see Figure 7.3.
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Figure 7.3 Element meshes of 1/4 geometry of a T-joint

Load control can only be used in order to apply compensation bending moments at the chord
ends. At each load step, two pairs of counter-directional axial loads N, are applied
proportionally to N, based upon equation (7.27).

From experience, special care should be taken for the boundary conditions. The elements at
the end of the brace should be made very stiff in order to apply the load uniformly. The
elements at the chord end should be stronger in order to prevent chord end failure when the
compensating bending moments are applied. Especially for joints with large P and small 2y
values, the chord end always yields first if it is not strengthened. The reason is that for joints
with large B and small 2y values, the ultimate load applied to the brace is high, thus large
compensating bending moments should be applied. Using post-processing technique, all of
the results have been checked in order to make sure that no failure at the chord end occurs.
It should be mentioned that strengthening the chord end elements with high yield strength
may cause another problem which is the influence of the boundary conditions. In order to
avoid this, the chord length should be long enough. In this study, an o value of 12 is chosen
for all the joints when compensating bending moments are applied.

7.1.5 Results of T-joints including and excluding the influence of overall chord
bending

Figure 7.4 shows the non-dimensional load versus indentation curves for joints with different
geometry parameters. For each set of B and 2y values, several o values of the joints are
included. The results of the joints with compensated chord bending moment (indicated with
"-m") are plotted in solid lines. It can be seen that the ultimate load capacity of joints with
overall chord bending is reduced in general compared to that of joints with compensating
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bending moments. The greater the o value, the larger the reduction.
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Figure 7.4 Influence of the chord bending
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Figure 7.4 Influence of the chord bending (continued)

71.6 Interaction contours between local failure and failure due to chord overall
bending

7.1.6.1 Based upon EC3

From the typical non-dimensional load versus indentation curves in Figure 7.4, the ultimate
load capacity for joints including the chord bending moment and the ultimate load for joints
excluding the chord bending moment can be obtained and listed in Table 7.3. The second one
is taken as the normalising ultimate Joad capacity of the joint.
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Table 7.3 Numerical results of T-joints including and excluding chord bending

moments

Joints including chord bending CXSI(I)J réfsgo;h(g?f lj;zgcl‘ltisng Interaction relationship

Joints | B | 2y | @ %)— Joints i;_i]tmzj In I\II\II(U—J(J'Z:)).
yo'o yo'o Lu\'m
tl-2 [ 04 )24 [12] 497 t1-2-m 5.18 0.21 0.96
t1-3 04 ] 24 |18 4.81 t1-2-m 5.18 0.31 0.93
tl-4 | 04§24 |40 4.08 tl-2-m 5.18 0.60 0.79
t2-2 | 04 35|12 5.07 t2-2-m 5.25 0.17 0.97
t2-3 [ 04135 |18] 494 t2-2-m 5.25 0.25 0.94
t2-4 (04 ] 35 (40 440 t2-2-m 5.25 0.50 0.84
t3-2 [ 06 )24 [12] 795 t3-2-m 8.52 0.32 0.93
t3-3 | 06| 24 (18| 749 t3-2-m 8.52 0.48 0.88
t3-4 1 0.6 |24 (40| 546 t3-2-m 8.52 0.80 0.64
t3-5 [ 06 ] 24 [60] 4.03 t3-2-m 8.52 0.90 047
42 [06]35(12] 8.10 t4-2-m 8.58 0.26 0.94
t4-3 | 06| 35|18 7.74 t4-2-m 8.58 0.38 0.92
t4-4 | 0.6 | 35 140 6.29 t4-2-m 8.58 0.71 0.73
5« 08155 14.70 i5-2-im 17.67 0.71 0.86
t5-2 | 0.8 | 15|12 12.63 t5-2-m 17.07 0.84 0.74
t5-3 1 08} 15|18 O.11 t5-2-m 17.07 0.95 0.53
t-a | 0.8 35]9| 2015 t6-2-m 21.55 0.44 0.94
t6-3 | 0.8 ] 35 (18] 16.90 t6-2-m 21.55 0.81 0.78
t7-4 | 04 ] 14 {40] 3.28 t7-2-m 5.73 0.82 0.57
t8-2 | 06| 15 [12] 7.72 t8-2-m 8.59 0.53 0.90
t8-3 | 06§ 15|18 6.79 t8-2-m 8.59 0.73 0.79
t8-4 | 06| 15 (40| 3.69 t8-2-m 8.59 0.91 043
t8-5 106 ] 15 [30| 4.75 t8-2-m 8.59 0.87 0.55

f,g=420 N/mm?, f ;=430 N/mm?, by=150 mm, 1=1
I, according to EC3
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Table 7.3 (continued)

Joints | P 2y | a —Nlu—(Jznl)- Joints Mimz—ﬁ I M

£ ot Lol Ny ,0=0)
t101 | 1.00| 15 | 6 32.46 t102-m 4036 1.09 | 080
t1oa | 1.00| 15 | 9 22.81 t102-m 4036 106 | 057
102 | 1.00| 15 | 12 16.92 t102-m 40.36 1.08 | 042
103 | 1.00| 15 |18 10.40 t102-m 40.36 106 | 026
t11 {100 | 24 | 6 51.62 t112-m 56.36 1.04 | 092
tlla | 1.00| 24 |9 37.11 t112-m 56.36 1.03| 066
t112 | 1.00 | 24 |12 27.58 t112-m 56.36 1.04 | 049
t113 [ 1.00 | 24 | 18 16.92 t112-m 56.36 1.02| 030
t121 [ 1.00| 35 | 6 73.89 t122-m 75.15 1.04 | 098
tiza [1.00| 35 | 9 55.46 t122-m 75.15 15| 074
t122 [1.00 | 35 | 12 40.39 t122-m 75.15 118 | 054
t123 |[1.00| 35 |18 25.12 t122-m 75.15 117 033

f,g=419.7 N/mm?, £,,=430 N/mm’, by=150 mm, t=1
J, according to EC3

The moment ratio for T-joints should be determined as follows:

M,/M class1 or 2
= vt e D 729
0/My e rd (class 3)
Where the bending moment on the chord at the ultimate load capacity is:
o
Ny by (=) (7.29)

M()z 7

The normalising My, g4 0r My ;. g can be determined according to the section classes and the
percentage of the shear force to the ultimate shear resistance. Thus, for class | and 2 sections,
My Rq Is calculated according to equation (7.9) or (7.15) respectively for shear loads larger
or smaller than 50% of the shear resistance. Similarly, My , pq is calculated according to
equation (7.21) or (7.25) for class 3 sections.
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The interaction data points for T-joints are shown in Figure 7.5.

12
10 i — A B=0.8
: _ v
0 | o __OB=06
L e
— v 1 Op-04
= Al ]
04 ¢ X[ B=1.0 (27=15)
02 | v B=1.0 (27=24)
0 b I m B=1.0 (27-35)

Figure 7.5 The interaction contour of the numerical results

Figure 7.5 shows that there is a clear B influence in the interaction relationship between the
axial load and the bending moment. The larger the f values, the higher the interaction curves.
It should be mentioned that for B=1.0, all the moment ratios exceed 1.0 according to the FE
results due to the strain hardening effects. For an extremely small o value (o smaller than 6),
the moment ratio could be smaller than 1. However, this will led to a boundary influence on
the ultimate load capacity as mentioned before. For a T-joint with a moment ratio larger than
or equal to 1.0, it means physically that a chord bending failure is critical instead of a joint
failure. In this case, the failure load can be easily determined by the resistance moment of the
chord section.

As described in Chapter 6, the interaction relationship can be specified by using curve fitting
techniques with the numerical results of both T- and X-joints. Finally, the same interaction
formula for both T- and X-joints is obtained in equation (6.17) for J_<1.0. This formula is
plotted in Figure 7.5.

1 1

—_— 6.17
(3, =(1 -y, 1-085B' GF ©.17)

Where J is given in equation (7.28) for T-joints instead of equation (5.47) for X-joints.
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7.1.6.2 Based upon the plastic moment capacity only

If the resistance moment of the chord section is determined based upon its plastic moment
capacity independent of the section classes, a 2y influence is found in the interaction contours
as described in Chapter 6. In such a case, the interaction formula for T-joints is the same as
equation (6.19). The only difference is that Mpl,Rd in equation (6.19) for X-joints should be
replaced by My, g4 for T-joints:

2 0.4
M - -0.856° 7.30
f(J_)= o0 0.0047°)(1-0.85p%) (7.30)
V.Rd

The design plastic resistance moment (My gq) can be determined from equation (7.9) or
(7.15) depending upon the shear force.

7.1.6.3 Based upon the elastic moment capacity only

If the resistance moment of the chord section is determined based upon its elastic moment
capacity for all the joints, the same equation as (6.21) can be used. The only difference is that
M, rq should be replaced by My, . g4 for T-joints:

M
£J)=1-0.23(1-0.85B)y (———)? (7.31)
V,e,Rd

The design elastic resistance moment (My, , gg) can be determined from equation (7.21) or
(7.25) depending upon the shear force.

7.1.7 Conclusions

A parameter study on T-joints in square hollow sections subjected to axial loads and chord
bending moments has been carried out. The geometry parameters varied in the study are:

- The width ratio between the brace and the chord [;
- The width to thickness ratio of the chord 2y;
- The chord length to width ratio o/2.

Each joint has been analysed twice, i.e. including and excluding the effects of chord bending
moments at the intersection between the brace and the chord. The following conclusions can
be drawn:

- By separating the effect of the chord bending moment from that of the concentrated
load, failure of uniplanar T-joints can be described in a clear manner.

- Three sets of interaction formulae between axial load and the global bending moment
have been derived numerically where the resistance moment of the chord is based
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upon EC3 (1992), based upon the plastic moment capacity only or based upon the
elastic moment capacity only respectively. These formulae can be used for both T- and
X-joints.

For B=1.0 and MyMy grq21.0, failure of a T-joint is governed by the resistance
moment of the chord section or by the brace effective width criteria. The last criterion
has not been checked numerically.
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7.2 AXIALLY LOADED T-JOINTS EXCLUDING CHORD BENDING MOMENT
7.2.1 Introduction

In Section 7.1, the influence of the chord bending moment of an axially loaded T-joint has
been numerically investigated and reduction functions f(J,) due to chord bending moment
have been established. Because f(J ,)=N; ,(J;)/N; ,(J,=0), the normalising term of N, ,,(J.=0)
should be known in order to determine the ultimate load capacity of an axially loaded T-joint
including chord bending moment. This normalising term N; ,(J..=0) is defined as the ultimate
load capacity of axially loaded T-joints excluding chord bending moment at the intersection
between the chord and the brace (J,,=0). The numerical analysis for joints with J, =0 has been
done in Section 7.1. The geometrical parameters and the FE results can be found in Tables
7.2 and 7.3. By excluding the chord bending moment, local failure of a T-joint can be
expressed in a clear manner. For axially loaded T-joints excluding chord bending moment,
it is expected that failure modes should be similar to those of axially loaded X-joints. In this
section, some additional numerical analyses for X-joints have been done. According to the
numerical results, it is shown that identical ultimate load capacity formulae can be used for
both X- and T-joints if the bending moment in the chord is excluded.

7.2.2 Comparison between the results of axially loaded T-joints excluding chord
bending moment and those of axially loaded X-joints

The welds are not included for the investigated T-joints in Section 7.1, while butt welds are
included for X-joints with =0.4, 0.6 and 0.8 in Section 6.1, Chapter 6. Therefore, a direct
comparison between the results of axially loaded T-joints excluding chord bending and those
of axially loaded X-joints is not possible. In order to solve this problem, some additional
analyses are carried out for the joints in Section 6.1 with the weld excluded, see Table 7.4.
The joints in Table 7.4 are corresponding to those in Table 6.1. The only difference is that
the welds are excluded in the numerical model. For example, joint x2a" in Table 7.4 1s the
same as joint x2a in Table 6.1 with the exception that no weld is included for joint x2a". In
Figure 7.6, the numerical results of the X-joints in Table 7.4 are compared with those of the
corresponding T-joints in Table 7.2. The quantitative comparisons between the results of T-
and X-joints are listed in Table 7.5. It can be seen that the difference is neglectable.

Table 7.4 Extra study of axially loaded X-joints with the welds excluded

p
0.4 0.6 0.8 1.0
2v=15 x4a" x7a"
2y=24 x2a" x5a" xl1a*
2y=35 x6a"

0=12, f,¢=355 N/mm’
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Figure 7.6  Comparison between the results of axially loaded T-joints excluding chord
bending and those of axially loaded X-joints
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Table 7.5 Comparison between the results of axially loaded T-joints excluding chord
bending and those of axially loaded X-joints

Parameters T-joints X-joints
(D Name @ (DA2)
P 2| Name Ty std N, (gt
0.4 24 t1-2-m 5.18 x2a" 5.29 0.98
0.6 15 t8-2-m 8.59 xda” 8.59 1.00
0.6 24 13-2-m 8.52 x5a" 8.64 0.99
0.6 35 t4-2-m 8.58 x6a" 8.62 1.00
0.8 15 t5-2-m 17.07 x7a" 16.20 1.05
1.0 24 t112-m 56.36 xl1a® 55.96 1.01
a=12

*: Without weld.

Note: 1) for T-joints, f ,=419.7 N/mm?; for X-joints, fy(=355 N/mm?.
2) for both T- and X-joints, weld is excluded.

7.2.3 Conclusions

By excluding the chord bending moment at the intersection between the chord and the brace,
the joint behaviour of an axially loaded T-joint is similar to that of an axially loaded X-joint
for the same joint geometrical parameters. The difference between the ultimate load capacity
of an axially loaded T-joint excluding chord bending and that of an axially loaded X-joint is
neglectable. Therefore, the ultimate load capacity formulae equation (6.1) and (5.20) for
axially loaded X-joints can also be used for axially loaded T-joints excluding chord bending
moment. Together with the interaction formulae in Section 7.1, a complete set of formulae
for axially loaded T-joints including and excluding chord bending moments is established.
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7.3 UNIPLANAR T-JOINTS LOADED WITH IN-PLANE BENDING MOMENTS
7.3.1 Introduction

Similar to X-joints loaded with in-plane bending moments, failure modes of T-joints Joaded
with in-plane bending moment can be classified as a): chord face plastification; b): chord
punching shear; ¢): brace cracking (effective width) on the tension side or brace buckling on
the compression side; d): chord side wall yielding or buckling. Besides, chord shear failure
may occur for T-joints loaded with in-plane bending moment. This failure mode is actually
a member failure instead of a joint failure. The shear force and the moment distributions
along the chord length are shown in Figure 7.7.

A

Q1

Qz Qz

T
7

Figure 7.7  Shear force and moment distributions in the chord of a T-joint loaded
with in-plane bending moment

The shear forces shown in Figure 7.7 are:

by (7.32)

Q1:N(1‘
l()

_Nh, (7.33)

2 10
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Shear failure can be easily checked with the following formula:
fo
Qp=Vyra=2(hy -ty )tof (7.34)
The chord bending moment at the intersection between the chord and the brace is:
h, M. h
M=_L-_Ly=_Lib g1, (7.35)

It can be seen that the bending moment in the chord is generally smaller than half of the
bending moment applied on the brace My ;. Generally, failure due to the bending moment
in the chord is not critical. Compared to axially loaded T- -joints, the influence of the chord
bending moment on the joint ultimate moment capacity is relatively small.

As no cracking is modelled, only failure modes a) and d) are studied in the numerical study.
7.3.2 Research programme

The configuration of an uniplanar T-joint loaded with an in-plane bending moment is shown
in Figure 7.8. The research programme for the numerical parameter study is summarised in

Table 7.6. The dimensions and the material properties of the joints and the weld are the same
as those of the corresponding X-joints in Section 6.2, Chapter 6.

Mi,ipb

<~ ||

Figure 7.8  Configuration of a T-joint loaded with an in-plane bending moment
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Table 7.6 Research programme of T-joints loaded with in-plane bending moments

B
Y
0.4 0.6 0.8 1.0
05B t10ie05"
27=15 1.0PB tli t4i t7i t10i
20B t10ie2”
0.5 B t5ie05
224 1.0B 2i t5i t8i
208 t5ie2 t8ie2 t11ie2”
05 P t3ie05 t12ie05"
=35 1.0B t3i t6i t9i t12i
20P t3ie2 t12ie2"
*: without weld
7.33 The FE analysis

The general considerations of the FE analysis are described in Chapter 4. Because of
symmetry in geometry and loading, half of a T-joint is modelled. The finite element meshes
for each corresponding joint are the same as in Section 6.2, Chapter 6, where a quarter of a
joint is modelled. For the application of the in-plane bending moment, load control has been
used in order to apply pure bending moment on the brace, see Figure 6.13. Due to the
differences in symmetry and support conditions for T-joints, the boundary conditions in this
section are different from those for X-joints in Section 6.2. The finite element meshes and the
boundary conditions for a T-joint are shown in Figure 7.9. The origin of the coordinate
system is in the center of the chord.
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BOUNDARY CONDITIONS

Degrees of freedom lev(ﬁi-et:;t/;,( =ZO=8’O Node;:; Oplane Nodes at supports

u, 0. free free
u, free free 0.

u, 0. 0. free
@, 0. 0. iree
D, 0. 0. free
D, free free free

Figure 7.9  FE meshes of a T-joint ioaded with in-plane bending momeni

7.34

The numerical results and observations

The numerical results are illustrated in three groups of figures:

1) joints made of square hollow sections (B<0.8), Figure 7.10;
2) joints made of rectangular hollow sections ($<0.8), Figure 7.11;

3) joints made of rectangular hollow sections (B=1.0), Figure 7.12.

In the three figures, the ultimate moment capacity of the joint is marked and the ultimate
deformation limit of 3%by is indicated. The procedure to determine the ultimate moment
capacity of the joint can be found in Chapter 4.
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Observations from Figure 7.10 are:

- For joints with B=0.4, the ultimate moment capacity marked in the figure is
determined at the rotation limit of ¢ ; where the corresponding indentation is smaller
than the ultimate deformation limit (3%b).

- For joints with p=0.6 and 0.8, the ultimate moment capacity is determined at 3%b,.

- The joint behaviour is the same as that of the corresponding X-joints loaded with
in-plane bending moments (Figure 6.15). The non-dimensional moment is increasing
with the increase of the chord top face indentation. Failure of the joint is due to
plastification of the chord face.

Observations from Figure 7.11 are:

- The moment vs. indentation curves are very similar to those of the corresponding
X-joints loaded with in-plane bending moments (Figure 6.16). The n influence can be
clearly seen. The non-dimensional moment vs. indentation curves are typical for the
failure of chord top face plastification where the moment is increasing with the
increase of indentation.

Observations from Figure 7.12 are:

- For joints with 1=0.5 and 1.0, the moment vs. indentation curves are similar to those
of X-joints loaded with in-plane bending moments (Figure 6.17). No maximum
moment is found except for the joint with n=1.0 and 2y=35.

- For the joint with N=2.0 and 2y=24, a maximum is not reached in Figure 7.12, while
there is a maximum for the corresponding curve of X-joint (Figure 6.17). Thus, full
width uniplanar T-joints are less sensitive for chord side wall buckling than the
corresponding uniplanar X-joints loaded with in-plane bending moments. A maximum
is found for the joint with N=2.0 and 2y=35 in Figure 7.12.

The ultimate moment capacity and the corresponding indentation of each joint are
quantitatively listed in Tables 7.7 and 7.8 which will be compared with the results of the
X-joints loaded with in-plane bending moments.
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Figure 7.10 Numerical results of T-joints in square hollow sections loaded with
in-plane bending moment (n=p)
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Figure 7.11 Numerical results of T-joints in rectangular hollow sections loaded with
in-plane bending moment (1 influence)
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Figure 7.12 Numerical results of uniplanar T-joints of rectangular hollow sections
loaded with in-plane bending moment (f=1.0)
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Table 7.7 FE results of T-joints loaded with in-plane bending moment ($<0.8)
Geometrical parameters Numerical results
Joints B 2y n Ml,ipb,u/(fyot()zbo) (ril;n ) Criteria
tli 04 15 04 2.30 3.00 99 1
£2i 0.4 24 | 04 2.15 3.00 .1
t3ie05 0.4 35 0.2 1.25 1.50 dg 1
t3i 04 35 04 2.10 3.00 do 1
3ie2 0.4 35 0.8 3.98 4.50 3%b,
t4i 0.6 15 0.6 4.63 4.50 3%b
t5ie05 0.6 24 0.3 2.32 2.25 0o 1
t51 0.6 24 0.6 4.33 4.50 3%by
t5ie2 0.6 24 1.2 8.54 4.50 3%by
t6i 0.6 35 0.6 4.38 4.50 3%b;,
t7i 0.8 15 0.8 9.77 4.50 3%b,
t8i 0.8 24 0.8 9.42 4.50 3%b,
t8ie2 0.8 24 1.6 24.30 4.50 3%h
t9i 0.8 35 0.8 8.96 4.50 3%by,
Table 7.8 FE results of T-joints loaded with in-plane bending moment ($=1.0)
Joint Geometrical parameters Numerical results
B 2y 1 My by (KNm) 8, (mm) | Criteria
t10ie05” | 1.00 | 15 0.5 37.28 375 o1
t10i" 1.00 15 1.0 93.71 4.50 3%by
t10ie2” 1.00 15 2.0 228.29 4.50 3%by,
t11ie05" 1.00 | 24 0.5 20.08 3.75 o 1
t11ie2” 1.00 24 2.0 135.53 4.50 3%b,
t12i" 1.00 [ 35 1.0 29.74 2.56 Max.
t12ie2" 1.00 { 35 2.0 78.09 1.69 Max.

*; without weld
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7.3.5 Comparison with the results of X-joints loaded with in-plane bending
moments

In Figure 7.13, the ultimate moment capacity listed in Tables 7.7 and 7.8 are compared to the
corresponding results of X-joints loaded with in-plane bending moments listed in Tables 6.8
and 6.9. It can be seen that the difference is within 5%. Thus, the ultimate moment capacity
formulae recommended for X-joints in Section 6.2 can be used for T-joints.
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Figure 7.13 Comparison between the results of T- and X-joints

7.3.6 Conclusions

The static behaviour of uniplanar T-joints loaded with in-plane bending moments has been
investigated in this section. The joint geometrical parameters include B=0.4, 0.6, 0.8 and 1.0;

M 1& MNA and P&, an_N Tk 1 n*n and M NEKR wnncanntisrals Te Zn amamalcdad elae,

—f Ay A D e I B R S Ry Ve L e ~ Avut}wvw‘v\/“v AL AU CAAT AL LAAkas

- The joint behaviour of uniplanar T-joints loaded with in-plane bending moments is
very similar to that of the corresponding uniplanar X-joints except that chord side wall
buckling is less sensitive for T-joints than for X-joints.

- For the joint geometrical parameters used, the difference in ultimate moment capacity
between T- and X-joints is within 5%. Thus, the formulae recommended for X-joints
can be used for T-joints.
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7.4  UNIPLANAR T-JOINTS LOADED WITH OUT-OF-PLANE BENDING
MOMENTS

7.4.1 Introduction

For uniplanar T-joints loaded with out-of-plane bending moment, the behaviour of the joints
with small to medium [ values is similar to that of uniplanar X-joints. Whereas the behaviour
of full width T-joints is totally different from that of X-joints. A full width T-joint loaded
with out-of-plane bending moment is actually a box girder under restrained rotation. The
theory about rotation and distortion of box girders can be found in Terrington (1970), Li
(1987) and Nakai (1988) etc. Unfortunately, these references only deal with the elastic
behaviour of the material. No direct theoretical solution can be found for the present work
when plastification occurs in the joints. Nevertheless, these books are helpful for the
understanding of the problems such as the distribution of the torsional shear stresses, the
warping stresses, and the transverse bending stresses and the distortion behaviour etc. In the
CIDEC design guide (Packer 1992a), the failure mechanism of full width T-joints is
considered as effective width of the brace or the bearing strength of the chord side walls. For
full width T- and X-joints, identical design resistance formulae are recommended except that
when chord side wall failure occurs a higher vy factor is used for X-joints. This consideration
was based upon an assumption that the distortion failure of the chord section is not
dominating. However, if no diaphragm stiffening is used, distortion failure of the chord
section occurs. In this section, both numerical and analytical studies on this failure mode are
carried out and a formula for the ultimate moment capacity is recommended which is valid
for T-joints with different o values. The analytical model used in this section is based upon
the failure mechanism recommended by Niemi (1986). For T-joints with small to medium [
values, a numerical study is carried out and it is expected that the same ultimate moment
capacity formula can be used as for X-joints.

7.4.2 Research programme

The configuration of a T-joint loaded with out-of-plane bending moment is shown in Figure
7.14. The research programme is summarised in Table 7.9.

My ,opb

Figure 7.14 Configuration of a T-joint loaded with out-of-plane bending moment
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Table 7.9 Research programme for T-joints loaded with out-of-plane bending
moment

04 0.6 0.8 1.0

2y=15 tlo t4o t7o | tl0ol | t1002 | t1003 | t1004 t1005 | t1006

2y=24 t20 t5o t80 | tllol | tilo2 | tllo3 | tlio4 t11o5 | tllo6

2y=35 t30 t6o t90 [ tl2o01 | t1202 | t1203 | tl1204 t1205 | t1206

In this section, only joints with square hollow sections are included. The depth of the chord
is fixed at 150 mm. For joints with B<0.8, the dimensions and the material properties of the
chord, the braces and the weld are the same as used in Section 7.2. For joints with f=1.0, the
dimensions of the joints are the same as in the previous section except that the chord length
ratio varies with =6, 9, 12, 18, 24 and 40. The weld along the chord length for joints with
B=1.0 is not included. The thickness of the plates on the chord ends is 25 mm as used in the
previous sections.

7.4.3 The FE analysis

The general considerations for the FE analysis are described in Chapter 4. Only the specific
aspects for this section are described as follows:

- The finite element meshes of the joints are the same as used in the previous section
with a different plane of symmetry and different boundary conditions, see Figure 7.15.
In order to prevent rigid body motion, an extra restraint in Z-direction is added to one
node of the chord with a coordinate of X=0, Y=(hy-t5)/2, Z=0. The origin of the
coordinate system is in the centre of the chord.

- Similar to X-joints ioaded with out-of-piane bending moments, the out-of-piane
bending moment for T-joints is applied by two opposite axial forces at the end of the

brace in order to exert pure bending moment. Load control is used.

- The end of the chord is vertically supported as shown in Figure 7.15.
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Y

2l

BOUNDARY CONDITIONS

Degrees of Node at (X=0.0, Nodes on plane Nodes at
freedom Y=(hy-t,)/2, Z=0.0) X=0.0 support
u, 0. 0. free
u, free free 0.
u, 0. free free
D, free free free
D, 0. 0. free
D, 0. 0 free

Figure 7.15 FE meshes and boundary conditions of a T-joint loaded with out-of-plane
bending moment

7.4.4 The numerical results

The non-dimensional moment vs. indentation curves for joints with B=0.4, 0.6 and 0.8 are
shown in Figure 7.16. For joints with $=1.0, the moment vs. displacement curves are shown
in Figure 7.17.

In Figure 7.16, the X-axis is the indentation (8) of the chord top face in the compression side
of the brace, see Figure 7.14. The Y-axis is the non-dimensional moment which is the same
as used for X-joints. The non-dimensional moment vs. indentation curves are similar to those
of X-joints as expected. Because for T-joints with small to medium B values, large plastic
indentation of the chord top face is governing which is the same as for X-joints. The ultimate
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moment capacity for T-joints will be compared with that of X-joints in this section. It can be
seen that there is hardly difference between the two.

In Figure 7.17, the displacement due to distortion is given on the X-axis. The displacement
due to distortion is measured as the relative vertical displacement of points P; and P, as
shown in Figure 7.18. The behaviour of T-joints is totally different from that of X-joints
because distortion failure of the chord section is dominating. It can be seen that the stiffness
and the ultimate moment capacity of the joints is influenced by the 2y and the a values. The
larger the o value, the lower the stiffness of the joint. The influence of the o value on the
ultimate moment capacity is clear until o reaches a critical value which depends upon the 2y
values. However, if o is equal to or larger than a critical value, the ultimate moment capacity
becomes constant. For example, for joint with 2y=15, the o influence upon the ultimate
moment capacity is clear for a<9; while there is hardly any a influence for o between 12 and
40. The critical o value for joint with 2y=15 is about 12. For joints with 2y=24 and 35, the
critical o value is higher than 12. The physical meaning of the critical o value will be further
explained based upon a failure mechanism caused by distortion.

The same procedure is used for the determination of the ultimate moment capacity of the
joints as described in Chapter 4. The quantitative values of the ultimate moment capacity from
the FE results are listed in Table 7.10.




Numerical study on uniplanar T-joints

207

27 =15
27 =124
27 = 35

e My n=pB=104

5 [

/ ]
— 3,
0. 5, 10. 15,
— Indentation  (mm)
279 = 15
_______ 29 = 24
........................ 27 =35
o W, n-p=08
15 T r
—
- ]
~—  3ub,
0 PR 1 L Iy
0. 5. 10. 18,

Indentation  (mm)

27 = 15
27 = 24
27 = 35

3%bg
0 1 1 PR BN S S S 1
0. 5 10

15,

Indentation (mm)

Figure 7.16 FE results of T-joints loaded with out-of-plane bending moment ($<0.8)
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Figure 7.17 FE results of T-joints loaded with out-of-plane bending moment ($=1.0)
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Figure 7.18 Measured points for the displacement due to distortion
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Table 7.10  Numerical results of T-joints loaded with out-of-plane bending moment

Joint Geometrical Numerical results
parameters
B 2y | o | My /ote®) | Mygppe | 8, | Criteria
(kNPm) (mm)
tlo 04 15 12 2.58 13.74 3.0 dg 1
t20 04 24 12 2.36 12.57 3.0 do 1
t30 04 35 12 2.27 12.09 3.0 do 1
t4o 0.6 15 12 5.51 11.46 4.5 3%by,
tSo 0.6 24 12 4.86 10.11 4.5 3%b,,
t6o 0.6 35 12 4.58 9.53 4.5 3%b,
t70 0.8 15 12 11.82 11.58 45 3%b,
t8o 0.8 24 12 10.87 10.65 3.5 Max.
t90 0.8 35 12 10.11 991 4.5 3%by,
tl0ol 1.00 15 6 15.15 80.67 4.5 3%by,
t1002 1.00 15 9 13.71 73.01 4.5 3%b,
t1003 1.00 15 12 12.97 69.05 4.5 3%by
t1004 1.00 15 18 13.25 70.56 4.5 3%by,
t1005 1.00 15 24 13.29 70.77 45 3%b,,
t1006 1.00 15 40 13.08 69.64 4.5 3%b,
tllol 1.00 24 6 2543 5291 4.5 3%b,,
tllo2 1.00 24 9 19.80 4148 4.5 3%b,,
t1lo3 1.00 24 12 17.04 35.44 4.5 3%b,
t11nd 100 24 18 15.95 33.14 4.5 3%bn
tl1o5 1.00 24 24 16.31 33.92 4.5 3%by,
t1 106 1.00 24 40 16.01 33.30 45 3%by,
t1201 1.00 35 6 36.37 35.65 2.9 Max.
t1202 1.00 35 9 28.64 28.07 45 3%b,
t1203 1.00 35 12 23.07 22.01 4.5 3%b,
t1204 1.00 35 18 18.62 18.25 4.5 3%b,,
t1205 1.00 35 24 18.05 17.69 4.5 3%b,
11206 1.00 35 40 18.12 17.75 45 3%by,
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7.4.5 The ultimate moment capacity for chord top face plastification

A comparison between the ultimate moment capacity of T- and X-joints is given in Table
7.11 for joints with B values of 0.4 to 0.8. It can be seen that the difference is within 4%.
This result is expected. Because for both T- and X-joints, failure occurs due to large local
plastic indentation of the chord top faces. Thus, the ultimate moment capacity formula
recommended for T-joints is the same as for X-joints.

Table 7.11 Comparison between the FE results of T- and X-joints

Joint Geometrical Numerical results
parameters
B2y} o | Mgy GNm) | My, (kNm) M, o (T-joint)
(T-joints) (X-joints) M opb,u (X Sjoint)
tlo 04 | 15| 12 13.74 13.31 1.03
t20 04 |24 12 12.57 12.19 1.03
t30 04 [ 35] 12 12.09 11.72 1.03
t4o 0.6 15 | 12 11.46 11.07 1.04
t5o 0.6 24 | 12 10.11 9.86 1.03
t6o 06 | 35| 12 9.53 9.3 1.02
t70 0.8 15 | 12 11.58 11.34 1.02
t8o 08 | 24|12 10.65 10.65 1.00
t90 0.8 [35] 12 9.91 10.02 0.99
7.4.6 The ultimate moment capacity for chord distortion failure

The failure mechanism

When a full width T-joint is subjected to out-of-plane bending moment, the external loading
of the joint can be divided into a force system of pure torsional loading and distortional
loading as shown in Figure 7.19. The latter is in equilibrium within the cross-section and
results in warping stresses in the four walls of the chord and large stresses due to
transverse bending moments in the four corners of the chord.
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Ml,opb= N b0
N N
N tN e L R
- + N
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N, N -«—
.20 | 2 tz t
External = Torsion <+ Distortion

forces

Figure 7.19 Dividing the external forces into a force system of torsion and distortion

The distribution of the warping stresses in sections I-I and II-II is shown in Figure 7.20 when
plastification occurs, where k;, is the reduction factor due to torsion which will be discussed
later on. The distribution of the transverse bending moments in the chord cross section is

shown in Figure 7.21.

/// ko fyo fjj& //\

Figure 7.20 Warping stresses in the middle of the chord sections
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Figure 7.21 Distribution of the transverse bending moments

The transverse bending moments at the four corners are always higher than those at other area
of a cross section. Thus, yielding of the four corners of the chord occurs. As the external load
increases, yielding of the four corners extends along the length of the chord.

According to the FE post-processing result of joint t1206, the Von Mises stress distribution
is shown in Figure 7.22. The yield strength is 355 N/mm?. In Figure 7.22, the development
of the chord plastification and the stress pattern can be clearly seen. Yielding in the four
corners of the chord is caused by the transverse bending moments. Yielding in the four walls
of the chord is caused by the warping stresses.
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Figure 7.22 Distribution of the Von Mises stresses for joint with 0=40, f=n=1.0, 2y=35
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Based upon the stress distribution observed and the plastic model used by Niemi (1986), a
failure mechanism for such joints is assumed as follows:

ey

@

3)

“)

If the distortion angle of each side wall of the chord is ¢ from cross sections I-1 to
II-1I (see Figure 7.23), it follows that all side walls are forced to rotate the same
amount but in different directions. Suppose that the distortion decreases linearly to
zero at a distance x.

Yield lines 1 and 2

When a box girder is subjected to distortion, warping stresses exist in the cross
section which are parallel to the length of the chord, see Figure 7.20. Due to the
existence of the warping stresses, plastic yield lines (lines 1 and 2) appear in cross
sections I-I and II-11, see Figure 7.23.

Longitudinal yield lines at the four corners (lines 3 and 4):

When a box girder is subjected to distortion, the distribution of the transverse
bending moments is shown in Figure 7.21. The transverse bending moments at the
four corners are always higher than those at other area of a cross section. Thus,
longitudinal yield lines (lines 3 and 4) will appear at the four corners. Because each
side wall rotates an angle of ¢, each corner rotates 2¢,, at the middle area of the
chord length between cross sections I-I and II-II. The rotation angle of each corner
decreases from 29, to zero at a distance of x according to assumption (1).

In fact, the above yield line model is not a real plastic mechanism. Elastic
deformations still exist from section III-III to the end of the chord. The contribution
of the reserved elastic energy dissipation is omitted here. Thus, the ultimate moment
capacity obtained based upon the assumed model is considered as a lower bound
solution.

6:@0}10/2 5=¢0h0/2

-
1
1
\
\
\
\
o
o
il B

Figure 7.23 Yield lines of a full width T-joint loaded with out-of-plane bending

moment
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The failure moment

The general formula of the internal energy is:
Wi=Y_ mdil; (7.36)

Where m; is the plastic moment per unit length of yield line i, ¢; is the rotation angle of
yield line i and 1, is the length of yield line i. The calculation of the plastic moment and the
rotation angle of each yield line is listed in Table 7.12.

Table 7.12 The plastic moments and rotation angles of the yield lines

Yield lines | No. of yield lines m, o L
1 4 kof,obg /4 dohe/(2%) t
2 4 kof, oo /4 Pobe/(2x) t
3 4 Kofyoto /4 20, h,
4 8 ko, to /4 o X
ky: reduction factor for the warping stress taking torsional shear stresses into account, it

will be deduced later on in this section.

Equating the internal energy dissipation into the external work gives:

bohg by+hg hy x
T e _+2)=M (7.3
ar.  2x 2 7~ Miopp®

v

2
W;=4f otg Ko Ol
Differentiating with respect to x gives the value of x for the minimum solution:

hy  h
x=by | ——(1+_2) (7.38)
4, b,

Substituting equation (7.38) into equation (7.37) yields:

h h

2 0

M opb.u=2fyoto Poko (2 —ZXF—( 1 +-b—0-) +Tl] (7.39)
0 0
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It should be mentioned that the minimum chord length should not be less than (2x+h;) in
order to form the mechanism shown in Figure 7.23. If the chord length is longer than (2x+h,),
the ultimate moment capacity M, .o, , can be determined from equations (7.39). In other
words, if the chord length is equal to or longer than a critical chord length (2x+h)), the
ultimate moment capacity of the joints is independent of the chord length. This tendency is
verified by the numerical results in Figure 7.17. Similar to the definition of a., a critical oL,
corresponding to the critical value of x can be defined as follows:

o -2 [2 Bo p. o mj (7.40)
by 4, by
Thus, if o2a,, leopb,u is determined from equation (7.39).
The determination of kg
The reduction factor k is still unknown. If the out-of-plane bending moment Ml,opb is

applied to the brace (see Figure 7.23), the torsional moment in the chord is:

M. Miopb (7.41)
)

The plastic torsion capacity of a box girder for pure torsion is:

M

2

=_“_f_,bohot (7.42)
§ 0%¥0%0'0

P (—3 y

According to the Von Mises criteria, the axial warping stress capacity is reduced to

M
o=f . 1—(ML)2 (7.43)

tp

Hence, the reduction factor kg due to torsion is:
ko= | 1-(—2)° (7.44)

The value of Kk can be determined according to equations (7.39), (7.41) to (7.44) using an
iteration procedure. For a range of most commonly used geometrical parameters, the kg, value
and the corresponding non-dimensional ultimate moment capacity are calculated according
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to this procedure and are given in Table 7.13,

Table 7.13  The value of the reduction factor k, and the ultimate moment capacity
based upon an iteration procedure

hy/by 2=15 2y=24 2y=35

ko M opba| Ko M opbu | X0 M opb.u

£t by 40t Do 40t Do
1n=0.5 1.0 095 | 1130 | 097 | 1435 | 098 17.32
20 096 | 1919 | 098 | 2439 | 098 | 2048
n=1.0 1.0 094 | 1213 | 096 | 1525 | 097 18.25
2.0 096 | 2007 | 097 | 2531 | 098 | 3043
N=2.0 1.0 092 | 1373 | 095 | 1700 | 097 | 2008
2.0 095 | 2181 | 097 | 2715 | 098 | 3232

This calculation method including reduction factor k, is not practical for a design
recommendation, because an iteration procedure has to be carried out. For simplicity, it is
recommended that ky=1.0 is taken without too much loss of accuracy.

The ultimate moment capacity of full width T-joints with square hollow sections

Joints with o>oL,

For full width T-joints with square hollow sections, equations (7.38), (7.39) and (7.40) can
be approximately written as tollows by taking ky=1.0, hy=b, and h;=b;=b:

x=boy¥ (7.45)
M lLopbu~ 2’fyot()z b, (2\/'? +1) ((XZ(XX) (7.46)
0L =22y +1) (7.47)

Equation (7.46) is independent of the o values for o0, .
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In Figure 7.24, equation (7.46) is compared with the numerical results of full width T-joints
with oo, The statistical results are given in Table 7.14.

Table 7.14  The statistical results of equation (7.46)

Mean Coefficient of variation (CoV) R?

1.003 0.023 0.972

Joints with different o values

For full width T-joints with o, smaller than the critical value o, the ultimate moment capacity
is a function of the o and the 2y values. Combining with equation (7.46), a general ultimate
moment capacity formula for joints with all o values is assumed as follows:

2
M opbau™ 2Ey0t0 Po(2y¥ +1) * (o) (7.48)
Where
R,2y
f(oc)=(&)1 >1.0 (7.49)
o

The ultimate moment capacity obtained from the FE results is plotted in Figure 7.24.
Regression analysis is carried out for the data points with B=1.0 and a<o,. The regression
results are listed in Table 7.15. Equation (7.48) is plotted in Figure 7.24.

Table 7.15  Regression results of equations (7.48) and (7.49)

R, Mean Coefficient of variation R?
CoV

0.015 1.012 0.005 0.967
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Figure 7.24 The ultimate moment capacity of full width T-joints loaded with

74.7

out-of-plane bending moment

Conclusions

For T-joints with small to medium B values, the same ultimate moment capacity
formula can be used as that for X-joints, because the failure mechanism is the same.

For full width T-joints subjected to out-of-plane bending moment, failure of the joints
is dominated by distortion of the chord section. The ultimate moment capacity of the
joints is constant if the chord length is equal to or longer than a critical length. If the
chord length is shorter than the critical length, the ultimate moment capacity is higher.
A general formula which is valid for joints with all o values based upon the analytical
model and the FE numerical results is recommended.
Tha rhard cida wwall hanrina farmanla in tha OTNEMT danicn anida Fan £01 0 el
prd cide winll heoring formula in the CTRECT dosion ~uide for f3l idt
T-joints loaded with out-of-plane bending moment is restricted to joints for which
distortion failure is prevented.
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8 NUMERICAL STUDY ON MULTIPLANAR XX-JOINTS

8.1 XX-JOINTS LOADED WITH AXIAL FORCES ON BOTH IN-PLANE AND
OUT-OF-PLANE BRACES

8.1.1 Introduction

In the current design recommendations, the multiplanar effects for multiplanar joints of
rectangular hollow sections (RHS) are not included or only indicative influence factors are
given. For example, in the CIDECT design guide (Packer 1992a), it is indicated that if the
ratio between the axial loads applied to the out-of-plane braces and thosc applied to the
in-plane braces is negative, the design resistance of the multiplanar joint will be reduced by
10% compared to that of their uniplanar counterparts. This multiplanar effect is only roughly
considered, since sufficient evidence was not available. However the ultimate load capacity
of multiplanar joints is obviously influenced by the magnitude of the load ratios and the
geometrical parameters. The lack of information about the static strength of multiplanar joints
has lead to a steady increase in research effort in recent years. In 1988, an ECSC funded
project was undertaken which included both experimental and numerical investigations on
uniplanar T- and X-joints and multiplanar TX-, XX- and KK-joints of RHS etc. (Davies
1992a and 1992b, de Koning 1992, Liu 1993, Yeomans 1993, Yu 1993a, 1993b and Crockett
1994). As a part of this research work, the numerical models for uniplanar X-joints, T-joints
and multiplanar TX-joints, XX-joints of RHS under different loading conditions were
calibrated against the experimental results. A suitable numerical model has been
recommended, described in Chapter 4 which makes it possible to continue with numerical
parameter studies.

This section presents the results of the investigation on the static strength and behaviour of
multiplanar XX-joints loaded with multiplanar axial forces. The ultimate load capacity of the
multiplanar joints are determined by using the following strategy: based on the ultimate load
capacity of uniplanar X-joints recommended in Chapter 6, the multiplanar geometrical
stiffening effect is determined for multiplanar XX-joints with load ratio J , s=N,/N;=0; based
upon the ultimate load capacity of multiplanar XX-joints with load ratio J, ,=0, the
multiplanar load effects are determined for multiplanar XX-joints with different load ratios
J,a- Base upon these results, a general formula for multiplanar XX-joints loaded with axial
forces is determined.

8.1.2 Research programme
The configuration of a multiplanar XX-joint loaded with axial forces on both in-plane and

out-of-plane braces is shown in Figure 8.1, while the non-dimensional geometrical parameters
are shown in Figure 8.2.
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Figure 8.1 Configuration of a multiplanar XX-joint loaded with axial forces
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Figure 8.2 Non-dimensional parameters of a multiplanar XX-joint

The research programme consists of 13 multiplanar joints. The corresponding uniplanar joints
analysed in Chapter 6 are also included for comparison. The joint dimensions and
non-dimensional geometrical parameters are summarised in Table 8.1. Five P ratios and three
2y ratios are considered. For each multiplanar joint with a specific set of B and 2y values, five
load ratios (i.e. the ratio between the loads on the out-of-plane and the in-plane braces) are
included with J, ,=N,/N;=-1, -0.5, 0, 0.5 and 1.0. Similar to uniplanar joints, no weld is
modelled in the direction along the chord length for joints with B=1.0. While for joints with
other B values, butt welds are used. The weld dimensions and the material properties of the
joints are the same as used in Chapter 4, Section 4.5.1.
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Table 8.1 Research program for axially loaded XX-joints

Nominal dimensions Geometrical
Uniplanar Multiplanar chord brace parameters
joints joints
m | w8
xla xx laa 150x10 60x10 04 15
x2a Xx2aa 150x6.25 60x6.25 0.4 24
x3a xx3aa 150x4.29 60x4.29 04 35
x4a xx4aa 150x10 90x10 0.6 15
x5a xxS5aa 150x6.25 90x6.25 0.6 24
x6a xx6aa 150x4.29 90x4.29 0.6 35
x7a xx7aa 150x10 120x10 0.8 15
x8a xx8aa 150x6.25 120x6.25 0.8 24
x9a xx%aa 150x4.29 120x4.29 0.8 35
x10a” xx10aa" 150x10 150x10 10 15
x11a" xx1laa" 150x6.25 | 150x6.25 1.0 24
x12a" xx12aa" 150x4.29 | 150x4.29 1.0 35
x13a xx13aa 150x4.29 30x4.29 02 35
f,g=355 N/mm”  1,=900 mm  by=b;=h; =t

*; Without weld
8.1.3 The FE analysis

General considerations for the FE analysis have been described in Chapter 4, Section 4.5.1.
The specific aspects considered in this section are as follows:

- Considering symmetry in load and geometry, one eighth of a joint has been
modelled. The FE meshes and the boundary conditions used for the joints are shown
in Figure 8.3. The origin of the coordinate system is in the centre of the chord.

- For the load cases with load ratios of 0.0 and 1.0, the loads have been applied by
displacement control considering its efficiency in convergency. For other load ratios,
the loads have been applied by load control in order to maintain a constant load
ratio between the loads on the out-of-plane and the in-plane braces even after the
elastic stage of the material. In other words, the loads on the out-of-plane braces are
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proportional to those on the in-plane braces at each load step.

BOUNDARY CONDITIONS

Degrees of Nodes on plane Nodes on plane Nodes on plane
freedom X=0.0 Y=0.0 z=0.0
u, 0. free free
u, free 0. free
u, free free 0.
D, free 0. 0.
@, 0. free 0.
D, 0. 0. free
Figure 8.3 FE meshes and boundary conditions of an axially loaded

multiplanar XX-joint
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8.14 Numerical results and observations

For each joint with a specific set of B and 2y values, the results of multiplanar XX-joints with
five load ratios and the results of their corresponding uniplanar X-joints are shown in Figure
8.4. The non-dimensional axial load on the in-plane braces N /1, ’Otz has been plotted against
the indentation of the chord top face where the in-plane brace is connected. The ultimate load
capacity determined according to the procedure of Figure 4.20, Chapter 4 is listed in Table
8.2. The finite element analyses of some joints could not be continued up to the deformation
limit, due to convergency problems caused by the very high stiffness of the connections which
are marked in the figures.

For a few cases, the ratio between the ultimate load capacity and the serviceability load
capacity is larger than 1.5 (N| /N.21.5). Those results (bold in Table 8.2) are not included
in the regression analyses.

The multiplanar geometrical stiffening effects

For joints with B<0.6, aimost no increase in ultimate load capacity is observed for multiplanar
XX-joints with the out-of-plane braces unloaded (N,=0 or J, A=0), compared to the
corresponding uniplanar X-joints. However, for joints with B=0.8 and =1, there is an obvious
increase in ultimate load capacity due to the existence of the out-of-plane braces. This is
logical, because for uniplanar joints with small B values, joints fail by chord top face
plastification. Thus, the stiffening of the chord side walls with the out-of-plane braces has
almost no influence on chord top face failure. However, for uniplanar joints with large B
values, chord side wall failure or a combination of chord side wall and chord top face failure
occurs. With the existence of the out-of-plane braces, the chord side walls are strengthened.
The quantitative values of the multiplanar geometrical stiffening effects are listed in Table
8.3.

For joints with =0.8, the braces and the weld toes are already connected to the corners of
the RHS chord, especially for joint with 2y=15 (t=1), the weld toe is very close to the chord
side wall. Thus, the geometrical stiffening effect for a joint with 2y=15 is stronger than that
for joints with 2y=24 or 2y=35 due to the weld, see Table 8.3.

For joints with B=1 and 2y=15 or 24, no maximum load is reached for multiplanar joints with
the out-of-plane braces unloaded. The ultimate load capacity for such joints is taken as the
load at the ultimate deformation limit of 3%by, while the ultimate load capacity for the
uniplanar joints is the maximum load. Due to the use of the deformation limit, the multiplanar
geometrical stiffening effects are stronger for joints with smaller 2y values than those for
joints with larger 2y values, see Figure 8.4 with p=1.0.
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Table 8.2 Numerical results of axially loaded X- and XX-joints

Uniplanar Multiplanar
N1u0an)
. Nl,u . 2
Joint - Joint foto
f ot
Jaa=1 | Jpp=-0.5 | Jpa=0 [ Joa=0.5 | Jpp=1.0
xla 6.55 xxlaa 4.21 5.28 6.58 7.12 7.72
X2a 6.23 XX2aa 3.98 5.01 6.26 6.65 6.95
x3a 6.00 xx3aa 3.85 4.84 6.08 6.53 6.61
x4a 11.68 xx4aa 7.63 9.57 12.23 14.32 16.39
x5a 10.56 xx5aa 6.77 8.47 10.76 12.27 13.42
x6a 9.88 xx6aa 6.20 7.77 10.09 11.38 11.78
x7a 23.32 xx7aa 20.65 25.37 31.57 37.78 43.85

x8a 22.32 xx8aa 18.63 2276 28.43 3448 -

x9a 21.10 xx%aa 16.91 20.56 25.69 29.53 -

x10a” | 4246 | xx10aa* | 46.07 64.46 74.10 67.51 49.10
xlla® | 5596 | xxllaa" | 6574 83.37 90.92 85.09 -
x12a" | 1371 xxiZaa® | 86.53 102.6 106.5 98.95 -
x13a 4.04 xx13aa 2.74 3.36 4.06 4.32 448

*: Without weld
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Table 8.3 Multiplanar geometrical stiffening effects for axially loaded
XX-joints
Uniplanar joints Mu“.‘(};f:ii)gomts (}[)e;?rflt:rtigf; georhr/llgltlrti?;;ir;?;ects
No. Nl"; No. —NI’U(JAfO) B | 2y Nialan™®
f ot footo N
xla 6.55 xxlaa 6.58 0.4 15 1.00
x2a 6.23 xx2aa 6.26 0.4 24 1.00
x3a 6.00 xx3aa 6.08 0.4 35 1.01
xda 11.68 xx4aa 12.23 0.6 15 1.05
x5a 10.56 xx5aa 10.76 0.6 24 1.02
x6a 9.88 xx6aa 10.09 0.6 35 1.02
x7a 23.32 xx7aa 31.57 0.8 15 1.35
x8a 22.33 xx8aa 28.43 0.8 24 1.27
x9a 21.10 xx9aa 25.69 0.8 35 1.22
x10a" | 4246 xx10aa" 74.10 10 | 15 1.75
x11a” 55.96 xx1laa’ 90.92 1.0 | 24 1.62
x12a” 73.77 xx12aa" 106.5 10 | 35 1.44
x13a 4.04 xx13aa 4.06 0.2 35 1.00

*. Without weld

The multiplanar load effects

For joints with $<0.8, the ultimate load capacity increases if the load ratio T, , is positive (i.e.
both loaded in compression), see Figure 8.4. The larger the load ratio, the higher the ultimate
load capacity of the joint. The ultimate load capacity decreases considerably if the load ratio
Joa is negative (ie. tension on the out-of-plane braces and compression on the in-plane
braces). The multiplanar load effects are quantitatively listed in Table 8.4.

For joints with B=1, the ultimate load capacity of the joints loaded with J, ,20 is lower than
that of the joints loaded with J, ,=0. The larger the absolute value of the load ratio J . the
lower the ultimate load capacity of the joints.
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Table 8.4 Multiplanar load effects for axially loaded XX-joints

AT UW,
Joints B 2y N, .UJ42=0)
Taa=1.0 | Jua=0.5 | J,4=0 | 1,2=0.5 | T ,=1.0
xxlaa | 04 | 15 0.64 0.80 1.00 1.08 1.17
xx2aa | 04 | 24 0.64 0.80 1.00 1.06 1.11
xx3aa | 04 | 35 0.63 0.80 1.00 1.07 1.09
xxd4aa | 0.6 | 15 0.62 0.78 1.00 1.17 1.34
xx5aa | 0.6 | 24 0.63 0.79 1.00 1.14 1.25
xx6aa | 0.6 | 35 0.61 0.77 1.00 1.13 1.17
xx7aa | 08 | 15 0.65 0.80 1.00 1.20 1.39
xx8aa | 0.8 | 24 0.66 0.80 1.00 121 -
xx9aa 0.8 35 0.66 0.80 1.00 1.15 -
xx10aa" | 1.0 | 15 0.62 0.87 1.00 0.91 0.66
xx1laa® | 1.0 | 24 0.72 0.92 1.00 0.94 -
xx12aa" | 1.0 | 35 0.81 0.96 1.00 0.93 -
xx13aa | 02| 35 0.67 0.83 1.00 1.07 1.10

*. Without weld

8.1.5 The ultimate load capacity of axially loaded multiplanar XX-joints

The ultimate load capacity formulae of multiplanar XX-joints can be built up with the
following general formulae:
Ny u0aa=0) =cp - N (8.1

N1 w0 aa) =10 an) - Ny y(Uaa=0) (8.2)

Where N, , is the ultimate load capacity of uniplanar X-joints;

C,, 1s a factor considering the multiplanar geometrical stiffening effects;

N, ,J4a=0) is the ultimate load capacity of multiplanar XX-joints with a load ratio J, ,=0;
N; 4(Jaa) is the ultimate load capacity of multiplanar XX-joints with a load ratio J, 4;

f(J5 ) is a function for the multiplanar load effects.
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The factor for the multiplanar geometrical stiffening effects

As shown in Figure 8.5, the multiplanar geometrical stiffening effects are very small for joints
with <0.6. For joints with 3>0.8, the multiplanar geometrical stiffening effects are much
stronger, since side wall buckling is avoided for multiplanar joints especially for joints with
B=1.0. For joints with 3=0.8, there is a 2y influence on the geometrical stiffening effect.
Actually, the influence is caused by the weld effects as mentioned before, because for joints
with B=0.8, the braces are intersected with the chord corners. In the parameter study, the
thickness of the braces is taken the same as that of the chord. thus, for joints with smaller 2y
values, the weld size is larger. The weld toes are very close to the chord side walls. Thus,
larger multiplanar geometrical stiffening effects are found for joints with smaller 2y values.
For joints with B=1, the 2y influence is influenced by the use of the ultimate deformation
Jimit which becomes critical for multiplanar joints whereas a maximum appears for uniplanar
joints. Based on the above considerations, the following equation is recommended as a lower
bound:

cp=1+0.4p* (8.3)

Equation (8.3) is plotted in Figure 8.5.
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Figure 8.5 The multiplanar geometrical stiffening effects of axially loaded XX-joints

The function for the multiplanar load effects

For joints with $<0.8 and loaded with negative or zero load ratios, the numerical data points
are plotted in Figure 8.6. It can be seen that the ultimate load capacity of the joints is reduced
linearly with the load ratios and is almost independent of the B and 2y values. Following
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regression formula for joints with B<0.8 and load ratio J, ,<O0 has been obtained:
fpp)=1403T4] 5 4 (JAAS0) (8.4)

The regression results are listed in Table 8.5. Equation (8.4) is plotted in Figure 8.6.
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= M 27=24
Z._" A2Y=35
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or =y,
= B=04
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= B=0.8
05

0 <05 00 05 10
—

Figure 8.6 The multiplanar load effects of axially loaded XX-joints with B<0.8 (J, ,<0)

Tahle 8.5 Regression resnlts of equation (8.4)

R, Mean normalised error Coefficient of Correlation coefficient
variation CoV R?
0.37 0.997 0.026 0.985

For joints with f<0.8 and loaded with positive load ratios, the numerical data points are
plotted in Figure 8.7. The multiplanar load effects depend not only on the load ratios but also
on the P and 2y values. The multiplanar load effects are stronger for joints with larger B and
smaller 2y values. Following regression formula has been obtained for joints with J, ,20:

R
fan)=1+Tan Ry +2—§B+R3BZ) J Ax20) (8.5)

The regression results are listed in Table 8.6. Equation (8.5) is plotted in Figure 8.7.
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Table 8.6 Regression results of equation (8.5)
R, R, R, Mean normalised Coefficient of Correlation
error variation CoV coefficient R?
0.03 4 0.3 1.000 0.018 0.960
— 15 — 15
% T
= | o27=15 | = ®27=15
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Figure 8.7 The multiplanar load effects of axially loaded XX-joints (J, ,20)

For joints with B=1, as mentioned before, the ultimate load capacity of joints loaded with
Jo2#0 is smaller than that for joints loaded with J, ,=0. The following function for the
multiplanar load effects has been obtained after a regression analysis:

3
f(JAA)=1—_Y_JAA2

(B=D

Equation (8.6) is illustrated in Figure 8.8.

(8.6)
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Figure 8.8 The multiplanar load effects of axially loaded XX-joints (B=1)

Although equations (8.4) and (8.5) have been checked for B<0.8, $=0.85 is taken as limitation
for the validity, because similar joint behaviour is expected for joints with p=0.8 and $=0.85.
For joints with 0.85<p<1.0, a linear interpolation is needed between equations (8.4) and (8.6)
or (8.5) and (8.6).

8.1.6 Comparison with analytical formulae

When the axial forces on the in-plane and the out-of-plane braces act in the same sense,
Davies (1991a) concluded that there is no increase in joint strength, based upon a ring model.
Whei the foices on the in-plane and the out-of-planc braces are in the opposite senses, two
formulae were deduced by him, based upon a ring model and a yield line model respectively.

The ring model of Davies (], ,<0)

For XX-joints in square hollow sections, the interaction between the axial loads on the two
planes of the braces is given by:

8m
NiTaa) - N, =1—_€— ' (bio) (8.7)

Where L is the effective length of the "ring" model. If the out-of-plane braces are unloaded,
i.e. Ny=0 or J, ,=0, then equation (8.7) at the ultimate load becomes:

8
i IR (8.8)

N; uJaa=0) = T b,

Introducing equation (8.8) into equation (8.7) and considering J, ,=N,/N,, then
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NiaGaa) “JTaa - NiyTan) = Npy(Gaa=0 (8.9)

From equation (8.9), it can be obtained that:

NiuOaa) _ 1
Nj(Jaa=0) 1-Ta4

UYL (8.10)

The yield line model of Davies (J, ,<0)

For XX-joints in square hollow sections, the interaction formula based upon the yield line
model of Davies (1991a) was given as follows:

2f ot @.11)
N Jaa)-Ny= 1y-[3 B+2y2(1-B) .

Based upon equation (8.11), an identical formula as equation (8.10) can be deduced.

Equation (8.4) from the numerical results and equation (8.10) derived from the ring model
or the yield line model are compared in Figure 8.9. It can be seen that the multiplanar load
effects according to the formula of Davies are stronger than those according to the finite
element analysis.
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Figure 8.9 Comparisons between the numerical results, the model of Davies and the
CIDECT formula
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8.1.7 Comparison with the CIDECT design guidance

In the CIDECT design guide (Packer 1992a), it is simply recommended that a correction
factor of 0.9 for multiplanar joints be applied to the design resistance of uniplanar joints to
account for the combined multiplanar geometrical and load effects. From Figure 8.9, it can
be seen that the CIDECT formula is unsafe for joints with a small B and loaded with larger
negative load ratios.

8.1.8 Conclusions

A numerical parameter study has been carried out for axially loaded multiplanar XX-joints.
The joint geometrical parameters are B=0.2, 0.4, 0.6, 0.8, 1.0 and 2y=15, 24 and 35. For each
joint with a specific set of B and 2y values, five load ratios J, ,=-1, -0.5, 0, 0.5 and 1 are
included. Conclusions can be drawn as follows:

- The ultimate load capacity formula of multiplanar joints with the out-of-plane braces
unloaded can be established based upon that of the uniplanar joints multiplied by a
multiplanar geometrical stiffening factor ¢

- The ultimate load capacity formula of multiplanar joints with different load ratios can be
derived based upon that of the multiplanar joints with the out-of-plane braces unloaded
multiplied by a function for the multiplanar load effects f(J, ).

- The multiplanar geometrical stiffening effect is very small for XX-joints with B<0.6.
While the ultimate load capacity is increased clearly for XX-joints with 320.8, compared
to that of the uniplanar joints.

- The ultimate load capacity of the multiplanar joints is increased with the increase of the
load ratios for joints with f<0.8. For joints with B=1.0, the ultimate load capacity is
decreased if the out-of-plane braces are either tension or compression loaded compared
to that for unloaded out-of-plane braces.

- The CIDECT formula is unsafe for joints with small B values and loaded with large
negative load ratios.

- A set of ultimate load capacity formulae, equations (8.1) to (8.6) is recommended.
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8.2 XX-JOINTS LOADED WITH IN-PLANE BENDING MOMENTS ON THE
IN-PLANE AND THE OUT-OF-PLANE BRACES

8.2.1 Introduction

Although the multiplanar loading effect on the design resistance of axially loaded XX-joints
in RHS is roughly considered in the CIDECT design guides, there is little information
available about the static behaviour of multiplanar XX-joints in RHS when both the in-plane
and the out-of-plane braces are loaded with in-plane bending moments. Van der Vegte (1995)
has made numerical investigations for such joints but in circular hollow sections. The joint
ultimate moment capacity is determined using the same strategy as in Section 8.1 by
separately investigating the multiplanar geometrical stiffening effects based upon the
corresponding uniplanar joints and the multiplanar load effects based upon the multiplanar
joints when the out-of-plane braces are unloaded.

8.2.2 Research programme

The configuration of a multiplanar XX-joint loaded with in-plane bending moments on both
in-plane and out-of-plane braces is shown in Figure 8.10.

M,

/.

M,

Figure 8.10 Multiplanar XX-joints loaded with in-plane bending moments

The research programme consists of 13 multiplanar joints. The joint dimensions and
non-dimensional geometrical parameters are summarised in Table 8.7. The joints analysed in
this section are exactly the same as those in the previous section. However, different load
cases are applied. For each multiplanar joint with a specific set of  and 2y values, five
moment ratios between the moments on the out-of-plane and the in-plane braces are included
with J;=M,/M;=-1, -0.5, 0, 0.5 and 1.0. If two perpendicular chord faces are all pushed in
at the same side, the moment ratio is defined as positive. If one chord face is pushed in and
another pulled out at the same side, the moment ratio is defined as negative. Thus, Figure
8.10 represents a positive moment ratio.
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Table 8.7 Research program for XX-joints loaded with in-plane bending
moments
Nominal dimensions Geometrical
Uniplanar Multiplanar chord brace parameters
joints joints boxty byxt; 5 ”
mm mm
x1i xx lii 150x10 60x10 04 15
x2i xx2ii 150x6.25 60x6.25 04 24
x3i xx3ii 150x4.29 60x4.29 04 35
x4i xx4ii 150x10 90x10 0.6 15
x5i xx5ii 150x6.25 90x6.25 0.6 24
x6i xx6ii 150x4.29 90x4.29 0.6 35
x7i xx7ii 150x10 120x10 0.8 15
x8i xx8ii 150x6.25 120x6.25 0.8 24
x91 xx9ii 150x4.29 120x4.29 0.8 35
x10i" xx10ii" 150x10 150x10 1.0 15
x11i" xx11ii" 150x6.25 | 150%6.25 1.0 24
x12i° xx12ii” 150x4.29 | 150x4.29 1.0 35
x13i xx13ii 150x4.29 30x4.29 0.2 35
£,0=355 N/mm®  1;=000 mm  by=b;=h;  t,=t;
M,M,=-1.0, -0.5, 0.0, 0.5, 1.0

*: Without weld

8.2.3  The FE analysis

General considerations of the numerical modelling have been described in Chapter 4. The
specific aspects considered in this section are as follows:

- A quarter of a joint is modelled considering symmetry of loads and geometry. The
boundary conditions and the finite element meshes are shown in Figure 8.11. In
order to prevent rigid body motion, one node (with a coordinate of X=0, Y=(h,-t;)/2
and Z=0) is restrained in X-direction: u,=0.
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- Similar to uniplanar X-joints loaded with in-plane bending moments, pure bending
moments are applied to the braces by load control. The in-plane bending moments
applied to the out-of-plane braces are proportional to those to the in-plane braces.

s
BOUNDARY CONDITIONS
Node at (X=0.0, Nodes on plane | Nodes on plane
Degrees of freedom | - y_p) *1 2 and Z=0.0) Y=0.0 7=0.0
u, 0. free free
u, free 0. free
u, 0. free 0.
@, 0. 0. 0.
(I>y 0. free 0.
®, free 0. free
Figure 8.11 FE meshes and boundary conditions of a multiplanar XX-joint loaded

with in-plane bending moments

8.24 Numerical results and observations

The non-dimensional moment vs. chord top face indentation curves for multiplanar XX-joints
are illustrated in Figure 8.12. The corresponding uniplanar joints are also included. The
"indentation" in Figure 8.12 represents the chord top face "push-in" at the compression side
where the in-plane brace and the chord top intersect, see Figure 4.21, Chapter 4. The ultimate
deformation limit of 3%by, and the ultimate rotation limit of ¢=0.1 are indicated in the figure.
The ultimate moment capacity of both uniplanar and multiplanar joints loaded with in-plane
bending moments is determined according to the procedure of Figure 4.22, Chapter 4 and is
listed in Table 8.8. In most cases, the ratio between the ultimate moment capacity and the
moment at the serviceability deformation limit is smaller than 1.5. In such cases, the
serviceability deformation is not critical. Only in a few cases, the ratio between the ultimate
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moment capacity and the moment at the serviceability deformation limit of 1%by, is larger
than 1.5 (Mlyu/MSZI.S). Those results (bold in Table 8.8) are not used in the regression

analyses.
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Table 8.8 Numerical results of XX-joints loaded with in-plane bending moments

Uniplanar Multiplanar
My, ipb,u ———Ml'ipb’uz(Ju)
Joint £ oteh, Joint fyotahy
Y= J=0.5 I=0 J=0.5 J=1.0
x1i 571 xxlii 4.49 5.30 5.72 5.82 5.84
x2i 5.35 xx2ii 4.20 4.95 5.36 5.46 5.39
x3i 5.21 xx3ii 4.05 4.72 522 5.37 5.14
x4i 7.56 xx4ii 5.08 6.30 7.61 8.13 8.17
x5i 7.17 xx5ii 4.74 5.86 7.20 7.62 7.27
x6i 7.25 xx6ii 4.68 5.78 7.34 7.71 6.81
x7i 11.80 xx7ii 8.09 10.24 12.94 14.78 -
x8i 11.40 xx8ii 7.35 9.34 12.12 14.33 14.87
x9i 10.87 xx9ii 6.88 8.73 11.41 13.48 13.68
x10i" 16.85 xx10ii* | 17.05 21.08 23.38 - -
x11i" 24.04 xx11ii® | 25.63 31.28 34.62 34.62 31.47
x12i" 29.21 xx12ii° | 35.66 43.66 47.58 46.99 42.97
x13i 5.43 xx13ii 4.94 5.27 5.44 5.59 5.71

*: Without weld
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The multiplanar geometrical stiffening effects

In Figure 8.12, for each multiplanar joint with a specific set of joint geometrical parameters,
five moment ratios are included. The corresponding uniplanar joints are indicated for
comparison. Comparing the ultimate moment capacity of multiplanar joints with the
out-of-plane braces unloaded (J;=0) to that of the corresponding uniplanar joints, the
multiplanar geometrical stiffening effects can be determined.

For joints with B<0.8, the multiplanar geometrical stiffening effects are within 10%.
Especially for joints with B<0.6, the curves for uniplanar joints and those for the
corresponding multiplanar joints with J;;=0 are about the same.

For B=0.8, the 27y influence is actually the weld effects. For B=1.0, the 2y influence is caused
by the use of the ultimate deformation limit which is critical for all the multiplanar joints and
for uniplanar joints with 2y=15 and 2y=24, while for uniplanar joint with f=1.0 and 2y=35,
a maximum moment capacity is reached.

For joints with B=1, the ultimate moment capacity of multiplanar XX-joint with the
out-of-plane braces unloaded is much higher than that of the uniplanar X-joint. The
quantitative values of the multiplanar geometrical stiffening effects are listed in Table 8.9.

Table 8.9 The multiplanar geometrical stiffening effects of XX-joints loaded with
in-plane bending moments

Uniplanar joints Multiplanar joints Geometrical Mult?p]anar
I=0 parameters | geometrical effects
No. M ipb,u No. Ml,ipb,u(JII:O) B 2y Ml,ipb,u(JII:O)
£otehy £,otéh, My ipb,u

x1i 571 xx 1ii 572 04 15 1.00

x2i 535 xx2ii 5.36 04 | 24 1.00

x3i 5.21 xx3ii 522 0.4 35 1.01

x4 7.56 xx4ii 7.61 0.6 15 1.01

x5i 7.17 xx51i 7.20 06 | 24 1.00

x6i 7.25 xx6ii 7.34 0.6 35 1.01

x7i 11.80 xx7ii 12.94 0.8 15 1.10

x8i 11.41 xx8ii 12.12 0.8 24 1.06

x9i 10.87 xx91i 11.41 0.8 35 1.05
x10i" 16.85 xx10ii" 23.38 1.0 15 1.42
X1 24.04 xx11ii™ 34.62 1.0 | 24 1.44
x12i" 29.21 xx12ii" 47.58 10 | 35 1.63

x13i 5.43 xx13ii 5.44 0.2 35 1.00

*: Without weld
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The multiplanar load effects

Comparing the ultimate moment capacity of multiplanar joints with moment ratios Jjj to that
of multiplanar joints with the out-of-plane braces unloaded (J;;=0), the multiplanar load effects
can be determined.

For joints loaded with negative moment ratios, the stiffness and the ultimate moment capacity
of the joints are reduced considerably compared to those of the joints with the out-of-plane
braces unloaded.

For joints with $<0.6 loaded with positive moment ratios, the ultimate moment capacity gives
a slight enhancement compared to that of joints with the out-of-plane braces unloaded except
for joints with 2y=35 and a moment ratio Jy;=1.0 where the ultimate moment capacity is
slightly reduced. The reason is that, at the ultimate deformation limit of the joint, the
development of the membrane action in the chord is more restrained for joints with a moment
ratio Jy=1 than for joints with other moment ratios, see Figure 8.12.

For joints with $=0.8 loaded with positive moment ratios, the maximum enhancement in
ultimate moment capacity is 20% compared to that of joints with the out-of-plane braces
unloaded.

For joints with B=1.0 loaded with positive moment ratios, the ultimate moment capacity of
the joints are unchanged for a moment ratio of J;;=0.5 or about 10% decreased for a moment
ratio of J;;=1.0 compared to J;;=0.0.

For multiplanar joints with B=1, the ultimate moment capacity can be higher than that of the
uniplanar joints even for multiplanar joints with negative moment ratios, mainly due to the

rany tei 1 '
geometrical stiffening effects,

The quantitative values of the multiplanar load effects are listed in Table 8.10.
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Table 8.10 The multiplanar load effects of XX-joints loaded with in-plane bending

moments
M, sopoa (J1g)
Joints B 2y M, ipp,u (J11=0)
Jy=-1.0 =05 Ip=0 | Jp=0.5 | Ip=1.0
xx i 0.4 15 0.78 0.93 1.00 1.02 1.02
xx2ii 0.4 24 0.78 0.92 1.00 1.02 1.01
xx3ii 0.4 35 0.78 0.90 1.00 1.03 0.98
xx4ii 0.6 15 0.67 0.83 1.00 1.07 1.07
Xx5ii 0.6 24 0.66 0.81 1.00 1.06 1.01
XX6ii 0.6 35 0.64 0.79 1.00 1.05 0.93
xx7ii 0.8 15 0.63 0.79 1.00 1.14 -
Xx8ii 0.8 24 0.61 0.77 1.00 1.18 1.23
Xx9ii 0.8 35 0.60 0.77 1.00 1.18 1.20
xx10ii" | 1.0 15 0.73 0.90 1.00 - -
xx11i" | 1.0 24 0.74 0.90 1.00 1.00 0.90
xx12ii" | 1.0 35 0.75 0.92 1.00 0.99 0.90
xx13ii | 0.2 35 0.91 0.97 1.00 1.03 1.05

+ Without weld

8.2.5 The ultimate moment capacity of XX-joints loaded with in-plane bending
moments

The ultimate moment capacity formulae for multiplanar joints are determined by the following
general formulae:

M ipb a0 = € Myjop (8.12)

M ipbu 1) = FU ) - My =0 (8.13)

Where M, ; ipbu is the ultimate moment capacity of uniplanar X-joint;
Cpisa Iactor considering the multiplanar geometrical stiffening effects;
M ipb, u(JH_O) is the ultimate moment capacity of multiplanar XX-joints with J;;=0;

M| ipb, ,(Jpp is the ultimate moment capacity of multiplanar XX- -joints with Jyp.
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The factor for the multiplanar geometrical stiffening effects
According to the numerical results shown in Figure 8.13, the multiplanar geometrical
stiffening effects are very small for joints with $<0.8. Large multiplanar geometrical stiffening

effects are found for joints with §=1.0. Based on the above observations, a lower bound factor
is given by:

¢, =1+0.4p% (8.14)

In comparison with axially loaded multiplanar XX-joints, the exponent of B in equation (8.14)
is increased (i.e. P& v.s. p%).

Equation (8.14) is plotted in Figure 8.13.

21.2E 10 27 =15
T O 2y = 24

00 02 04 06 08 10

— B

Figure 8.13 The multiplanar geometrical stiffening effects of joints loaded with
in-plane bending moments

The function for the multiplanar load effects

For joints with B<0.8 loaded with negative moment ratios, the muitiplanar load effects are a

function of the moment ratios and the B values. The function for the multiplanar load effects
can be defined as follows:

f (I =1+R,BIy (J4<0) (8.15)

The regression constant R; and the statistical results are listed in Table 8.11. Equation (8.15)
is plotted in Figure 8.14.
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Table 8.11 Regression results of equation (8.15)

R Me malised error Coefficient of Correlation
1 an nor ¢ variation CoV coefficient R?
0.53 1.000 0.032 0.972

For joints with $<0.8 loaded with a positive moment ratio, the maximum multiplanar load
effect is within 20%, see Figure 8.14. For joints with B=0.6 and 2y=35, a small negative
influence is found for Jj;=1 because the membrane action at the ultimate deformation limit
for joints with J;=1 is largely reduced. For design recommendations, it is proposed to neglect
the relatively small influence of the positive moment ratio. Thus:

fJyp=1 (31120 (8.16)
For joints with =1, a large negative multiplanar load effect is found for moment ratios J;;<0.

For moment ratios J;;=0, the multiplanar load effect is smaller, see Figure 8.15 and Table
8.10. Following regression formula is assumed:

fUp=1+R I +RJ,}? (B=1.0) (8.17)

This function differs from equation (8.15) since the behaviour of joints with B=1.0 differs
from that of joints with f<1.0. The regression results are listed in Table 8.12.

Table 8.12 Regression results of equation (8.17)

Coefficient of Correlation

Mean normalised error .. .
R, Ry variation CoV coefficient R2

0.08 -0.18 0.999 0.008 0.995
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8.2.6 Conclusions

The static strength and behaviour of multiplanar XX-joints loaded with in-plane bending
moments on both in-plane and out-of-plane braces has been studied.

The multiplanar geometrical stiffening effects are very small for joints with [<0.8, while very
large multiplanar geometrical stiffening effects are found for joints with B=1.

The multiplanar load effects depend upon the  values and the moment ratios. The ultimate
moment capacity is decreased with increasing negative moment ratios and B values. For joints
with a positive moment ratio and B<0.6, the ultimate moment capacity is hardly changed
compared to that of joint with J;;=0. For joints with a positive moment ratio and =0.8, the
maximum multiplanar load effect is about 20%. For joints with a positive moment ratio and
B=1.0, the negative multiplanar load effect is up to 10% for J;=1.0.

Equations (8.15) and (8.16) have been checked for B<0.8. As limitation for the validity,
B=0.85 is taken. For 0.85<P<1.0, a linear interpolation is required between equations (8.15)
and (8.17) or (8.16) and (8.17).
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8.3 XX-JOINTS LOADED WITH IN-PLANE BENDING MOMENTS ON THE
IN-PLANE BRACES AND AXIAL FORCES ON THE OUT-OF-PLANE
BRACES

8.3.1 Introduction

Due to asymmetry in deformation, the behaviour of multiplanar XX-joints loaded with a
combination of in-plane bending moments and axial forces is more complicated than that of
XX-joints loaded with only axial forces or only in-plane bending moments as studied in
Sections 8.1 and 8.2. The joint behaviour is largely influenced by the boundary conditions
applied on the out-of-plane braces. In this section, two extreme cases of boundary conditions
are included for comparison: one with the ends of the out-of-plane braces free to rotate,
another one with the ends of the out-of-plane braces fixed in the direction parallel to the
length of the chord. Furthermore, some additional calculations have been done with the
applied loads always in the direction of the longitudinal axis of the out-of-plane braces which
are called "follow force" in the MARC program. The above three boundary conditions are
shown in Figure 8.16.

Nz
) N
i Qut—of—-plane brace 1
1

}hord " M1 ipb

3 ]
| |

Nj Nz

Free ends Fixed ends Follow force

Figure 8.16 Three different boundary conditions

Due to the in-plane bending moments on the in-plane braces the out-of-plane braces will
rotate. If the ends of the out-of-plane braces are free (free ends in Figure 8.16) and loaded
in tension, additional secondary bending moments on the out-of-plane braces occur which
reduce the rotation somewhat. Thus, the rotation of the out-of-plane braces is not very much
in such a case. If the ends of the out-of-plane braces are free and loaded in compression, the
secondary bending moments increase the rotation. As a result, failure of the out-of-plane
braces may occur due to a combination of the compression forces and the secondary bending
moments in the out-of-plane braces. In such a case, the rotation of the out-of-plane braces
reduces largely the ultimate moment capacity of the joints.
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If the ends of the out-of-plane braces are restrained (fixed ends in Figure 8.16) in a direction
parallel to the chord length, secondary bending moments due to rotation of the out-of-plane
braces are prevented. However, reaction forces on the ends of the out-of-plane braces result
in secondary bending moments too. Such restraints have been applied in the experimental test
for joint DX7, as shown in Figure 3.2, Chapter 3, where it is called "vertical adjustment". Due
to the application of the restraints, the ultimate moment capacity of the joints may increase
for a large positive load ratio.

If the method of "follow force" (Figure 8.16) is used, all distributed loads on the ends of the
out-of-plane braces are formed on the basis of current geometry. Thus, the applied forces on
the out-of-plane braces are always in the direction along the longitudinal axis of the
out-of-plane braces. As a result, no secondary bending moments on the out-of-plane braces
occur.

8.3.2 Research programme

The configuration of a multiplanar XX-joint loaded with in-plane bending moments in the
in-plane braces and axial forces in the out-of-plane braces is shown in Figure 8.17. The
research programme is summarised in Table 8.13. In fact, the same joints as in Section 8.2
are analysed in this section only with different loading and boundary conditions. The load
ratio is defined as J;,=N,/(M/h)). For each multiplanar XX-joint, five load ratios are applied
with Jj,=-1.0, -0.5, 0, 0.5 and 1.0 respectively. If the out-of-plane braces are loaded in
compression, the load ratio is defined as positive, as shown in Figure 8.17. There are two
groups of joints: the first group with the out-of-plane braces free, the second group with the
out-of-plane braces restrained at their ends in the direction parallel to the chord length. In
total, there are 120 analyses. The corresponding uniplanar joints which have been studied in
Chapter 6 are included in this section for comparison.

Figure 8.17 Configuration of an XX-joint loaded with in-plane bending moments and
axial forces
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Table 8.13  Research programme for XX-joints loaded with in-plane bending moments
and axial forces

Nominal dimensions Geometrical
Uniplanar Mul ti'planar chord brace parameters
joints joints
bgxt, (mm) | byxt; (mm) B 2y
x1i xxlia 150x10 60x10 04 15
x2i xx2ia 150x6.25 60x6.25 0.4 24
x3i xx3ia 150x4.29 60x4.29 0.4 35
x4i xx4ia 150x10 90x10 0.6 15
x5i xx5ia 150x6.25 90x6.25 0.6 24
x61 xx6ia 150x4.29 90x4.29 0.6 35
x71 xx7ia 150x10 120x10 0.8 15
x8i xx8ia 150x6.25 120x6.25 0.8 24
x9i xx9ia 150x4.29 120x4.29 0.8 35
x10i" xx10ia” 150x10 150x10 1.0 15
x11i" xx11ia" 150x6.25 150x6.25 1.0 24
x12i" xx12ia" 150x4.29 150x4.29 1.0 35
£,¢=355 Nimm®  1;=000 mm__ by=bj=h; t=t; Jju=-1,-05,0,05 10

*: Without weld

8.3.3 The FE analysis

For each corresponding joint, the same element meshes are used as in Section 8.2. For the
joints with the out-of-plane braces free (first group), the boundary conditions are the same as
shown in Figure 8.11. For the joints with the out-of-plane brace fixed (second group), an extra
support at the end of the out-of-plane braces is applied in the direction parallel to the chord
length (X-direction), besides the boundary conditions applied to the first group. Furthermore,
some additional calculations have been done with the method of "follow force" (third group).
In the third group, although the end of the out-of-plane brace is also free, the axial load on
the out-of-plane brace are formed on the basis of current geometry, thus, no secondary
bending moment occurs in the out-of-plane brace.

The same method as described in Section 8.2 is used to apply a pure bending moment on the
in-plane brace. Proportional axial load (with a load ratio of J;,=N,h;/M,) is applied to the
out-of-plane brace at each increment.
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8.3.4 Numerical results and observations

The results are presented in two groups: group 1 includes the joints with the out-of-plane
braces free to rotate; group 2 includes the joints with the out-of-plane braces fixed at the ends
in the direction parallel to the chord length. The results from group 3 are presented later on
as a comparison. The procedure to determine the ultimate moment capacity of the joint can
be found in Figure 4.22, Chapter 4.

Joints with the out-of-plane brace free (Group 1)

For joints with the out-of-plane braces free, the FE results of the non-dimensional in-plane
bending moment vs. chord top face indentation curves are illustrated in Figure 8.18. The
ultimate moment capacity of the joints is listed in Table 8.14. For each multiplanar joint, five
load ratios are included. The corresponding uniplanar joints are also included as comparison.
The results of the multiplanar joints with the out-of-plane braces unloaded are the same as
those in Section 8.2. Thus, the multiplanar geometrical stiffening effect is the same as
described in the previous section. Observations from Figure 8.18 are :

- For the joints with small B values, the ultimate moment capacity is increased with an
increase of the load ratios (-1<J;,<0.5). For joints with a load ratio of J,=1.0, the
ultimate moment capacity is decreased due to the increased rotation of the out-of-plane
braces which results in unfavourable secondary bending moments in the out-of-plane
braces. In such a case, the joint fails at the compression side of the out-of-plane braces
next to the weld toe.

- The influence of the load ratio is larger for joints with smaller § values (B=0,4 and
0.6) than that for joints with larger B values (B=0.8 and 1.0) due to the rotation

affacte. FEgnacially for ioints with B—1 the influence of the load ratin ic cn emall that
........ sSgpecially Ior jemis wiil g—i, e miuence of the load ratio IS so small that

the curves for different load ratios are overlapped.
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Figure 8.18 Numerical results of multiplanar XX-joints with the out-of-plane braces
free (Group 1)
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Figure 8.18 (Group 1 continued)
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Table 8.14 Numerical results of XX-joints loaded with in-plane bending moments and

axial forces (out-of-plane braces free)

Uniplanar joints Multiplanar joints
M igb M ipb,u(J1a)/ (fyoto hy)
No. fyOt()Zhl No.
Ja=-1 | Ja=05 | Ja=0 | Ja=05 | Ju=t
xli 571 xxlia 4.45 527 572 6.38 -
x2i 5.35 xx2ia 4.09 4.86 5.36 6.15 5.05
x3i 5.21 xx3ia 3.75 451 522 6.48 5.95
x4i 7.56 xx4ia 6.49 7.14 7.61 7.71 5.95
X5i 7.17 xx5ia 5.90 6.66 7.20 7.50 5.72
x6i 7.25 xx6ia 5.72 6.62 7.34 7.79 6.25
x7i 11.80 xx7ia 12.18 12.68 12.94 12.63 11.07
x8i 11.40 xx8ia 11.18 11.76 12.12 11.92 10.22
x9i 10.87 xx9ia 10.35 10.99 11.41 11.31 9.79
x10i" 16.85 | xx10ia" | 22.36 23.18 23.38 - -
x11i" 24.04 | xxltia® | 3520 35.27 34.62 3337 30.87
x12i" 29.21 xx12ia” | 47.68 47.70 47.58 47.31 46.52
*. Without weld, : convergency failure.

Joints with the out-of-plane braces restrained (Group 2)

In order to prevent failure due to the rotation of the out-of-plane braces, the end of the
out-of-plane brace is restrained in the direction parallel to the chord length. The numerical
results of these joints are shown in Figure 8.19. The ultimate moment capacity of the joints
is listed in Table 8.15. Observations from Figure 8.19 are as follows:

For multiplanar joints with $<0.6, very little multiplanar geometrical effects are found
compared to the results of the uniplanar joints. For multiplanar joints with $=0.8 and
1.0, larger multiplanar geometrical effects exist. The multiplanar geometrical effects
are somewhat higher than those of joint group 1 (or joints in Section 8.2) depending
upon the geometrical parameters.

As a general tendency, the ultimate moment capacity of the joints is increased with
the increase of the load ratios for joints with B<0.8. For joints with $=1.0, the
influence of the load ratio is very small which agrees with that for joints with the
out-of-plane braces free.
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- For multiplanar joints with B<0.8 and J;,=1.0, the ultimate moment capacity of the
joints is increased largely due to the restraints on the out-of-plane braces which results
in high numerical results.

Uniplanar
J!A == 05
JIA == 1 0

10 ~

Uniplanar

=-0.5
Ip=-10

~— =01

L

10 10

5
Indentation [mm]

5
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Figure 8.19 Numerical results of multiplanar XX-joints with the out-of-plane braces
restrained (Group 2)
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Table 8.15 Numerical results of XX-joints loaded with in-plane bending moments and
axial forces (out-of-plane braces restrained)

Uniplanar joints Multiplanar joints
No. Ml,igb,u No. M i oA/ (fyoto™hy)
fyotohy Jia=-1 | Jja=-05 | J4=0 | J4=05 | Jju=l
x1i 5.71 xxlia 4.60 5.44 5.83 6.25 9.37
x2i 5.35 xx2ia 4.22 5.01 5.46 6.05 8.17
X3i 5.21 xx3ia 3.84 4.67 5.36 6.36 7.70
x4i 7.56 xxdia 6.93 7.69 8.19 8.56 9.56
x5i 7.17 xx5ia 6.27 7.16 7.66 8.13 9.35
X6i 7.25 xx6ia 6.05 7.13 7.5 8.41 9.16
x7i 11.80 xx7ia - - 15.28 - -
x8i 11.40 xx8ia 12.86 13.86 14.62 15.15 15.76
x9i 10.87 Xx9ia 11.95 12.97 13.72 14.22 15.05
x10i" 16.85 xx10ia” | 23.04 2401 2427 24.00 23.16
x11i° | 24.04 xx1lia® | 35.65 35.68 35.61 35.45 35.04
x12i" 29.21 xx12ia" | 48.10 48.03 47.84 47.55 47.01

XTI 13 - e s L
. Yviloutr weid, < LOUNLYVEIECHLY 1dlIuLc,

8.3.5 Comparison between the results of joints with different boundary conditions
Comparison between the results of joints with fixed and free ends

The influence of the restraints on the out-of-plane braces is shown in Figure 8.20. The vertical
axis represents the ratio between the ultimate moment capacities of the joints with fixed and
those with free ends of the out-of-plane braces.

For joints with load ratios J;,=-1.0, -0.5, 0 and 0.5, the influence of the restraints is about
20% for joints with f=0.8 and is within 10% for joints with $=0.4, 0.6 and 1.0 independent
of the load ratios, see Figure 8.20. The 2y influence is neglectable.

For joints with J;,=1.0 and B<0.8, a much larger influence of the restraints is found, see
Figure 8.20. When the out-of-plane braces are free to rotate, the ultimate moment capacity
of the joints is reduced largely due to the large secondary bending moments on the
out-of-plane braces for joints with J;,=1.0, see Figure 8.18. Failure occurs at the compression
side of the out-of-plane braces close to the weld toe in such a case. However, when the



Numerical study on multiplanar XX-joints 261

out-of-plane braces are restrained and rotation is thus avoided, the ultimate moment capacity
is increased as shown in Figure 8.19. In practice, the out-of-plane braces are restrained
between free and fixed boundary conditions. Thus, the influence of the restraints shown in
Figure 8.20 is higher than that in the practice.
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Figure 8.20 Comparison between the results of joints with fixed and free ends
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Comparison between the results of joints with fixed ends, free ends and "follow force"

A comparison between the results of joints with fixed ends, free ends and "follow force" on
the out-of-plane braces is shown in Figure 8.21. It can be seen that the ultimate moment
capacity of joints with "follow force" is higher than joints with free ends and lower than
joints with fixed ends.

For a joint with load ratio J;,=0.5 and B=0.6, the ultimate moment capacity of a joint with
"follow force" is 5% higher than that of a joint with free ends and 3% lower than that of a
joint with fixed ends. For a joint with load ratio J;,=0.5 and B=0.8, the ultimate moment
capacity of a joint with "follow force" is 8% higher than that of a joint with free ends and
15% lower than that of a joint with fixed ends.

For a joint with J;,=1.0 and $=0.6, the ultimate moment capacity of a joint with "follow
force" is 62% higher than that of a joint with free ends and only 1% lower than that of a joint
with fixed ends. For a joint with J;,=1.0 and B=0.8, the ultimate moment capacity of a joint
with "follow force" is 31% higher than that of a joint with free ends and 15% lower than that
of a joint with fixed ends.

For low load ratio, the ultimate moment capacity of joints with "follow force" is closer to that
of joints with free ends. For high load ratio, it is closer to that of joints with fixed ends.
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Figure 8.21 Comparison between the results of joints with fixed ends, free ends and
""follow force"
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8.3.6 The ultimate moment capacity

Similar to Sections 8.1 and 8.2, the general formulae for the ultimate moment capacity of the
joints are determined as follows:

M ipbuP14=0) = € Myjnp (8.18)

Ml,ipb,u(JIA) =) Ml,ipb,u(JIAzo) (8.19)

Where M, ipp 4 is the ultimate moment capacity of uniplanar X-joints;

Cpis a factor considering the multiplanar geometrical stiffening effects;

Ml,lpb,u(JI 4=0) is the ultimate moment capacity of XX-joints with load ratio J; A=0;
1ipb «Jpa) is the ultimate moment capacity of XX-joints with load ratio Jy,.

8.3.6.1 The factor for the multiplanar geometrical stiffening effects
Joints with the out-of-plane braces free

According to definition, the factor for the multiplanar geometrical stiffening effects is defined
as the ratio between the ultimate moment capacity of multiplanar XX-joints with J;,=0 and
that of the corresponding uniplanar X-joints. Joints with J;,=0 and the out-of-plane braces
free to rotate are exactly the same as joints with J;=0 analysed in Section 8.2. Thus, the
factor for the multiplanar geometrical stiffening effects in this section should be the same as
in Section 8.2:

¢ =1+0.4B° (8.14)

Joints with the out-of-plane braces fixed

For joints with the out-of-plane braces restrained to rotate, the multiplanar geometrical
stiffening effects are somewhat larger than those of the corresponding joints with the
out-of-plane braces free due to the secondary bending moments on the out-of-plane braces.
In practice, the boundary conditions of the out-of-plane braces are between fixed and free
situations. Thus, equation (8.14) is recommended as a lower bound.

8.3.6.2 The function for the multiplanar load effects

Joints with the out-of-plane braces free

The multiplanar load effects for joints with the out-of-plane braces free are illustrated in
Figure 8.22.

For joints with negative load ratios (J;,<0.0), a clear negative multiplanar load effect is found.
The function for the multiplanar load effects is defined as follows:

fJ1a)=1+R (1 -)I14 (J;450) (8.20)
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As already discussed, due to the similar influence of the restraints for joints with different
load ratios (Jj,=-1.0, -0.5 and O etc.), the multiplanar load effects of joints with and without
restraints are similar. Thus, a regression analysis based upon equation (8.20) is carried out
using all the numerical results of joint groups 1 and 2. The regression constant R; and the
statistical results are listed in Table 8.16. Equation (8.20) is plotted in Figure 8.22.
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Figure 8.22 The multiplanar load effects (joints with the out-of-plane braces free)




Numerical study on multiplanar XX-joints 265

Table 8.16 Regression results of equation (8.20)

R Mean normalised Coefficient of Correlation
1 error variation CoV coefficient R2
0.43 1.003 0.025 0.927

For joints with a positive load ratio of J;,=0.5, the multiplanar load effect is positive or
negligibly small. For joints with a positive load ratio of Jj,=1.0 and B<0.8, a negative
multiplanar load effect is found in many cases due to the large secondary bending moments
on the out-of-plane braces. The influence of the secondary bending moments depends not only
on the load of the out-of-plane braces but also on the length of them. If the method of "follow
force" is used, the secondary bending moments are excluded and the multiplanar load effects
will be positive. For example, for joint with B=0.6, 2y=24 and J;,=1.0, the multiplanar load
effect according to Figure 8.22 is -21%, while if "follow force" is used, the joint ultimate
moment capacity is increased by 62% compared to that of the corresponding joint with the
out-of-plane braces free, see Figure 8.21. As a result, the multiplanar load effect with "follow
force" is 29%. The value of 29% is the ultimate moment capacity of the joint with "follow
force” (Jj4=1.0) divided by that of the joint with the out-of-plane braces free and unloaded.

Similarly, for the joint with =0.8, 2y=24 and J;,=1.0, the multiplanar load effect for the joint
with the out-of-plane braces free is -16%, while the multiplanar load effect for the joint with
"follow force" is 11%. Based upon these considerations, a lower bound of f(Jj,)=1.0 is
recommended for joints with J;,20.0.
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Joints with the out-of-plane braces restrained
The results of joints with the out-of-plane braces restrained are illustrated in Figure 8.23.

For joints with negative load ratios (J;,<0), equation (8.20) is applied, because a similar
tendency of multiplanar load effects is found. Equation (8.20) is plotted in Figure 8.23.

For joints with positive load ratios (J;,>0.0), the multiplanar load effects in Figures 8.22 and
8.23 are about the same for J;,=0.5, while for joints with J;,=1.0, the multiplanar load effect
for joints with the out-of-plane braces free (Figure 8.22) is negative and it is positive for
joints with the out-of-plane braces restrained (Figure 8.23). Thus, the behaviour of the joints
is largely influenced by the boundary conditions of the out-of-plane braces. In practice, the
out-of-plane braces are restrained between free and fixed boundary conditions. Based upon
Figures 8.21 to 8.23, a lower bound of f(Jj4)=1.0 is recommended for joints with J;,>0.0.
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8.3.7 Conclusions

The behaviour of multiplanar XX-joints loaded with in-plane bending moments on the
in-plane braces and axial forces on the out-of-plane braces has been analysed for different
joint geometrical parameters and three groups of boundary conditions. It is summarised as
follows:

- For joints loaded with J;,<0.5, the maximum influence of the restraints on the
ultimate moment capacity is about 20% for joints with B=0.8 and is within 10% for
joints with other [} values, see Figure 8.20. This tendency is similar for all the joints
with J;,<0.5. For joints with J;,=1.0, the influence of the restraints is larger (up to
about 60%). In practice, the out-of-plane braces are restrained between free and fixed
boundary conditions.

- For the multiplanar geometrical stiffening effects, the same formula is valid as given
in Section 8.2.

- For joints loaded with negative load ratios, a clear negative multiplanar load effect is
found with the same tendency for joints with and without the out-of-plane braces
restrained. Equation (8.20) is recommended as the function for muitiplanar load
effects.

- For joints loaded with positive load ratios, the multiplanar effects depend upon the
value of the load ratios and the boundary conditions. For joints with J;,=1.0, the
multiplanar load effects are largely influenced by the boundary conditions. For
Ji4=1.0, the multiplanar load effects are negative for most of the joints with the
out-of-plane braces free and are positive for joints with the out-of-plane braces fixed
due to the secondary bending moments, If "follow force" is used with the secondary
bending moments excluded, the multiplanar load effects are between the two extreme
cases, but still with a positive influence. As a lower bound, a function of f(Jpp)=1.0
for the multiplanar load effects is recommended.
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9 MULTIPLANAR TX-, UNIPLANAR K- AND MULTIPLANAR
KK-JOINTS

9.1 INTRODUCTION

This chapter deals with the behaviour of multiplanar TX-, Uniplanar K- and multiplanar
KK-joints. Due to asymmetric in load and deformation, the behaviour of such joints is more
complicated. In Section 9.2, the influence of boundary conditions, the multiplanar geometrical
stiffening effects and the multiplanar load effects of TX-joints excluding chord bending are
studied. In Section 9.3, the influence of boundary conditions of uniplanar K-joints is
discussed. The multiplanar load effect of KK-joints is analysed based upon the available
experimental information.

9.2 MULTIPLANAR TX-JOINTS

The configuration of a TX-joint is shown in Figure 9.1. Similar to axially loaded uniplanar
T-joints, the axial force applied to the in-plane brace is balanced by the reaction forces at the
ends of the chord which result in a bending moment in the chord. As already studied in
Chapters 5 to 7, due to this bending moment, the ultimate load capacity of the joint is
reduced. In order to separate the effect of the chord bending moment from that of the axial
load, compensating bending moments can be applied in such a way that the chord bending
moment at the intersection of the brace is zero, see Figure 9.1 (b).

¥ Nl + Nl
N2 MO NZ
N2 Ng Mo
(a) Including chord bending (b) Excluding chord bending in the

intersection of the brace

Figure 9.1 Configuration of a TX-joint

9.2.1 The numerical modelling

- The FE meshes for each joint analysed in this chapter are generated based on those
of the corresponding XX-joints in Section 8.1, Chapter 8. The dimensions and material
properties of the joints and the welds are the same as described in Chapter 8.

- The chord bending moment in the intersection between the brace and the chord is
excluded for all the joints analysed in this chapter by applying compensating bending
moments at the chord ends with My=Ny*hy=N *(15-h;)/4, see Figure 9.1 (b).
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- Based upon symmetry in load and geometry, a quarter of a joint is analysed. Boundary
conditions at the planes of symmetry and the end supports of the chord are the same
as described in Chapter 4. Boundary conditions at the out-of-plane braces are
discussed in Section 9.2.2.

9.2.2 Influence of the boundary conditions

Due to asymmetric in load and deformation, the out-of-plane braces of a TX-joint rotate as
shown in Figure 9.2 (a). If the out-of-plane braces are free and loaded in compression, the
compressive forces enlarge the rotation of the out-of-plane braces, as a result, failure of the
out-of-plane braces may occur due to large secondary bending moments for a large
multiplanar load ratio. In order to prevent rotation of the out-of-plane braces, points A and
D can be tied to points B and C respectively to keep the out-of-plane braces horizontal, see
Figure 9.2 (b). This method also results in secondary bending moments in the out-of-plane
braces. Both methods have been used in the experimental tests and the numerical calibration
in Chapters 3 and 4. Similar to Section 8.3 of Chapter 8, a method to exclude the secondary
bending moments in the numerical study is the use of the so-called "follow force”, see Figure
9.2 (c). The method of "follow force” ensures that the axial loads on the out-of-plane braces
are formed on the basis of the current geometry which means that the out-of-plane forces
always follow the axis of the out-of-plane braces during loading.

N YN
N A B c D
Ng — No _—[? ? ? ?INZ
X a— —— F— |
(a) Out—of-plane braces free (b) Out-of-plane braces kept
horizontal (restrained)
Ny
[ 1]
Ng N2

(c) Follow force

Figure 9.2  Three different boundary conditions on the out-of-plane braces

A comparison between the results of Figure 9.2 (a) and (b) is illustrated in Figure 9.3 based
upon the experimental and the numerical studies in Chapters 3 and 4. The difference between
the results of (a) and (b) is within 12% for the investigated parameters.
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1.5
= O Test results
= o 8 . O FE results
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E 27y=24
= J
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Figure 9.3  Influence of boundary conditions based upon test results and numerical
calibration (see Tables 3.8 and 4.4 in Chapters 3 and 4)

A similar numerical investigation has been done by Crockett (1994) for comparison between
boundary conditions (a) and (b). As shown in Figure 9.4, he found a difference of 10%
between the two methods except for one joint with a Joad ratio of J, ,=N,/N,=1.0. For joints
with J, ,=1.0 and boundary condition (a), the large compressive forces on the out-of-plane
braces increase their rotation which results in large secondary bending moments. Due to the
large secondary bending moments and the compressive forces, failure occurs in the
out-of-plane braces. While for joints with J, ,=1.0 and boundary condition (b), rotation of the
out-of-plane braces is prevented. Failure of the out-of-plane braces does not occur.
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Figure 9.4  Influence of boundary conditions (numerical results of Crockett 1994)

In Figure 9.5, the numerical results of joints with three different boundary conditions as
shown in Figure 9.2 are compared.
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For a joint with the out-of-plane braces unloaded (J, ,=0.0), the numerical results for Figure
9.2. (a) and 9.2. (c) are the same. The difference between the ultimate load capacity of joints
with "follow force" and that of joints with the out-of-plane braces kept horizontal (restrained)
is 5-7%. The difference between the ultimate load capacity of joints with "follow force" and
that of joints with the out-of-plane braces free is 2% for the investigated parameters and load
ratios.

It should be mentioned that the numerical analysis using "follow force" is very time
consuming and sometimes fails to convergency. Considering that the multiplanar load effect
is a relative value between Nl,u(J Aa) and N,,u(J aa=0) and the influence of the boundary
conditions is not very large except for the case J, ,=1.0, it is acceptable to omit the influence
of the boundary conditions upon the multiplanar load effect if the ultimate load capacities are
determined using a consistent boundary condition.

9.2.3 The numerical results

The numerical results of the parameter study are shown in Figure 9.6. The ultimate load
capacity of each joint is given in Table 9.1.

A general tendency is observed from Figure 9.6 and Table 9.1.

For joints with J, ,=0.0 and B<0.6, the multiplanar geometrical stiffening effect is negligible,
namely, the stiffness and the ultimate load capacity of the joints are almost the same as those
of uniplanar T-joints excluding chord bending. For joints with J, ,=0.0 and B=0.8, the factor
for multiplanar geometrical stiffening effect is 1.26 if the out-of-plane braces are kept
horizontal and 1.18 if the out-of-plane braces are free.

For joints with negative load ratios, the ultimate load capacity is reduced considerably.

For joints with positive load ratios, the ultimate load capacity is increased slightly for the
investigated parameters.
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Table 9.1 Numerical results of T- and TX-joints excluding chord bending
B |2y |BC Tan Ny W Taa(fotgD) | fTpR) Uniplanar
Ny w/(yoto)
-1.0 4.67 0.72
0.5 5.95 0.92
-0.25 6.25 0.97
Restr. 0.0 6.45 1.00
0.25 6.56 1.02
0.5 6.68 1.04
-1.0 451 0.71
24 6.46
-0.5 5.63 0.89
Free -0.25 6.04 0.96
0.4 0.0 6.33 1.00
0.5 6.73 1.06
-1.0 443 0.70
Follow 0.5 5.54 0.88
force
0.0 6.33 1.00
-1.0 4.39 0.70
-0.5 5.62 0.90
35 | Free 0.0 6.27 1.00 6.29
0.25 6.38 1.02
0.5 6.47 1.03
-1.0 7.02 0.67
-0.5 8.72 0.83
0.6 | 35 | Free 10.45
0.0 10.54 1.00
0.5 11.52 1.09
Restr. 0.0 26.55 1.00
0.8 |35 21.01
Free 0.0 24.79 1.00
f,0=355 N/mm® by=hy=150 mm b;=h,




276 Chapter 9

The numerical results from Crockett (1994) are given in Table 9.2. The following aspects
about his results and the numerical modelling should be known:

- Crockett used different element types than those used in this thesis. For joints with
B=0.25 and 0.6, the chord and the braces were modelled with 4-noded thick shell
elements and the welds were modelled with 6-noded solid elements. For joints with
B=1.0, the joints were modelled with 8-noded thick shell elements.

- If no maximum load was reached, the ultimate load capacity was determined at the
intersection point of two tangent lines (the line of the linear elastic part and that of the
plastic part of the load vs. indentation curve). Since this method was used consistently
for all uniplanar and multiplanar joints, the results in Table 9.2 can be used as far as
for a relative comparison.

- For joints with B=0.25 and 0.6, the chord bending moments were not excluded,
namely TX-joints as shown in Figure 9.1 (a) were analysed. According to the results
of uniplanar T-joints in Table 7.3 of Chapter 7, the influence of the chord bending
moment on the ultimate load capacity of the joint is within 7% for joints with B<0.6
and 0<12. For the joint geometrical parameters used by him ($=0.25, 0.6 and 0=12),
it is considered that the influence of the chord bending moments is negligible as far
as for a relative comparison.

- For joints with B=1.0, the axial load applied to the in-plane brace was balanced by a
uniform support at the whole bottom of the chord. As a result, bending moments in
the chord were completely excluded.
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Table 9.2 Numerical results from Crockett (1994)

B |2y |BC | san NI'FS\}I\)A) Ny Oan)" /Ny yan=0)" Sl“l‘lplai‘;r)
-0.5 71 0.90 ’
Restr. | 0.0 79 1.00
0.5 80 1.01
0.25 | 24 -1.0 57 0.72 79
Free -0.5 69 0.87
0.0 79 1.00
0.5 80 1.01
-1.0 162.5 0.71
-0.8 170 0.74
-0.56 192 0.83
-0.40 220 0.96
-0.20 222 0.97
Restr. | 0.0 230 1.00
0.2 230 1.00
04 235 1.02
06 |24 0.56 240 1.04 195
0.8 245 1.07
1.0 245 1.07
-1.0 150 0.71
-0.56 187.5 0.88
Free 0.0 212 1.00
0.56 230 1.08
0.8 230 1.08
1.0 190 0.90
-0.5 1259 0.95
1.0 |24 Free 0.0 1321 1.00 989
0.5 1284 0.97
£,¢=420 N/mm? ;=625 mm__ by=hy=150 mm _ b,=h,
Notation: Ny AA)* means maximum load or load at the intersection point of two

tangent lines (the line of the linear elastic part and that of the plastic part of
the load vs. indentation curve).
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9.2.4 The ultimate load capacity

The ultimate load capacity formulae of multiplanar TX-joints excluding the influence of chord
bending moments can be built up with the same general formulae as those of XX-joints:

Ny yJaa=0)=c" Ny (8.1

NiuUan)=fTan) - Ny yJ 22 =0) (8.2)

Where N, |, is the ultimate load capacity of uniplanar T-joints with the influence of chord
bending moment excluded, equation (6.1);

¢, is a factor considering the multiplanar geometrical stiffening effects;

N; 4(Ja4=0) is the ultimate load capacity of multiplanar TX-joints with a load ratio J, ,=0;
N; 4(Jaa) is the ultimate load capacity of multiplanar TX-joints with a load ratio Jj »;
f(Joa) is a function for the multiplanar load effects.

TX-joints with the out-of-plane braces unloaded

In Section 7.2, it has been concluded that axially loaded T-joints excluding the influence of
chord bending moment can be treated as axially loaded X-joints, namely, the same ultimate
load capacity formula is used for T- and X-joints. Similarly, the ultimate load capacity of
multiplanar TX-joints excluding the influence of chord bending moment can be related to that
of XX-joints. In Table 9.3, the results of TX-joints with J, ,=0.0 are compared with those of
the corresponding XX-joints analysed in Chapter 8 (see Table 8.3). It can be seen that the
results of TX-joints agree very well with that of XX-joints. Thus, axially loaded TX-joints
excluding the influence of chord bending moment can be treated as axially loaded XX-joints.
The factor for the muitipianar geometrical effects is defined as equation (8.3):

¢, =1+0.4p* (8.3)
Tabie 7.5 Comparison Detween (Ne reswts oI axiaily loaded 1 X- and X X-joints
B 2y Ian N, .0 4a=0) / (£, (H/(2)
TX-joints XX-joints
(1) (2)
0.4 24 0.0 6.45 (Restr.) 6.26 1.03
6.33 (Free ) 1.01
35 0.0 6.27 (Restr.) 6.08 1.03
6.17 (Free) 1.01
0.6 35 0.0 10.54 (Free ) 10.09 1.04
0.8 35 0.0 26.55 (Restr.) 25.69 1.03
24.79 (Free ) 0.96
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TX-joints with the out-of-plane braces loaded

The ultimate load capacity of TX-joints with the out-of-plane braces loaded can be built up
according to equation (8.2) which is equal to the function for multiplanar load effect f(J 5 5)
multiplied by Ny ,(Jo A=0.0). Because Ny ,(J 4=0.0) is recommended to be the same as for
XX-joints, only f(J, ») needs to be determined.

The multiplanar load effects from the numerical results of the author and those of Crockett
are presented in Tables 9.1 and 9.2.

According to Chapter 8, the function for the multiplanar load effects of XX-joints is:
f(Jap)=1403T8 s (JAAS0) 8.4

A comparison between equation (8.4) and the results from Tables 9.1 and 9.2 is illustrated
in Figure 9.7. It can be seen that for joints with negative load ratios, equation (8.4) is a lower
bound for the multiplanar load effects of TX-joints. For joints with positive load ratios, a
slightly positive effect is found.

15
,OL( |
= M 2y=24
= m[p
10

| For B=0.25
“z B=0.4
= B=0.6

Figure 9.7 Multiplanar load effects of TX-joints

Based upon the above observations, it is recommended that equation (8.4) can be used also
for TX-joints with JAASO.O. For JAAZO.O, fJan)=1 .0 is recommended.

For joints with $>0.6 and J,,>0, only a few results are available, no formula for the
multiplanar load effect is recommended.
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9.3 UNIPLANAR K- AND MULTIPLANAR KK-JOINTS

Uniplanar K-joints can be found in a Warren truss system and multiplanar KK-joints in a
three dimensional triangular truss system. Experimental research (for example by Wardenier
1978) on uniplanar K-joints has shown that different failure modes can exist depending on
the joint types, loading conditions and joint geometrical parameters. In the CIDECT design
guide (Packer 1992a), different design formulae have been recommended for gap and overlap
joints. For RHS K-joints with gap, four design formulae are included which are based upon
chord face plastification, chord shear, brace effective width and chord punching shear
respectively. Plastic failure of the chord face is the most common failure mode for gap
K-joints with small to medium B values. Chord shear mechanism is found for gap K-joints
with lower chord depth (hy<by) or high B values. Brace effective width mechanism is found
for gap K-joints with relatively thin walled brace members. For overlap joints, three design
formulae depending upon the overlap parameter are included based upon brace effective width
failure. As described in Chapter 2, Tables 2.1 and 2.2, the current design formulae for
multiplanar KK-joints are equal to that of the corresponding uniplanar K-joints multiplied by
a correction factor of 0.9. This recommendation was based upon some initial investigations
on multiplanar rectangular hollow section joints (Bauer 1983, 1984, 1985) and Redwood
(1983).

Configurations of uniplanar K- and multiplanar KK-joints are shown in Figure 9.8.

Figure 9.8 Configurations of K- and KK-joints

This chapter concentrates on a study of the static behaviour of gap joints with zero or small
eccentricities. Following considerations should be taken into account for such joints:

In design practice, lattice structures can usually be designed assuming pin jointed
members. Secondary bending moments can be neglected for static design if the joints
and the members of the joints have sufficient rotation capacity. In experimental tests
or numerical studies on isolated K- and KK-joints, large secondary bending moments
may exist in case of extremely bad boundary conditions (e.g. for a free end
compression brace) which should be avoided. In principle, boundary conditions used
for isolated K- and KK-joints should reflect the conditions in the girder as close as
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possible. The influence of boundary conditions used in the literature is discussed in
Section 9.3.1.

- Plastification of the chord face is the most common failure mode for K-joints with
small to medium B values. Maximum load capacity of the joints is not reached and
joints fail at very large local deformation. The membrane effects for such joints are
much larger. An ultimate deformation limit should be used to determine the ultimate
load capacity of the joints.

9.3.1 Influence of boundary conditions for K-joints

Some representing boundary conditions for isolated uniplanar K-joints used in the existing
literature are shown in Figure 9.9. They can be summarised as follows:

- One chord end restraint: UBC3, UBC4 and UBCS or two chord ends restraints: UBC1,
UBC2 and UBCS6.

- Free ended, pin ended or roll ended braces. Boundary conditions with free ended
braces (UBC6) are not recommended because lateral movement of the braces causes
very large secondary bending moments which do not reflect the boundary conditions
of a K-joint within a frame.

- Compression chord (UBC1, UBC3, UBC5 and UBC6) or tension chord (UBC2 and
UBC4) due to reaction forces at the chord end.

- Boundary conditions used by Wardenier (1978) for extensive tests on isolated K-joints
were similar to UBCS. Later on, four lattice girders (de Koning 1979) were
ulvu)usalud o Coinipaic the jGii‘u behaviour with that of isolated JUullb it was
concluded that the load-deformation behaviour of the girder joints was very similar

to that observed for similar isolated joints.

N, UBCL N, UBCZ N, UBC3

NANSA AN

Ni UBC4 N UBC5 Ot upce  Ne,
y s \/ N

Figure 9.9 Boundary conditions
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Numerical investigation has been carried out by Liu (1998) in order to study the influence of
boundary conditions UBC1 to UBCS5 on the static behaviour of uniplanar gap K-joints. This
study includes three basic uniplanar K-joints. Each joint analysed five times with boundary
conditions UBC1 to UBCS. The joint geometrical and material properties are shown in Figure
9.10 and Table 9.4. The angle of the brace to the chord is 45°. Eight noded thick shell
elements are used to model the joints. Fillet welds are included. One material property is used
for the chord, the braces and the welds. Both geometrical and material non-linearities are
included.

Unit: mm
by=150 e=0.0
b;=90 g=Rk.8

_____

_____

800 950

Figure 9.10 Configuration of joints UBC-15, 25 and 35

Table 9.4 Geometrical and material properties

Joints by to by t B 2y fyo fy1
mm mm mm mm N/mm? N/mm?

UBC-15 150.6 9.74 89.0 8.09 0.59 15.5 355 355

UBC-25 146.9 6.00 89.0 8.09 0.61 24.5 355 355

UBC-35 145.1 4.20 89.0 8.09 0.61 34.5 355 355

Results of the numerical investigation

The ultimate load capacity of each joint is determined based upon the ultimate deformation
criterion used in this thesis based on the compression brace load versus chord top face
indentation. It should be mentioned that the serviceability deformation and the ultimate
deformation should be 1%bg/sin(8) and 3%b/sin(8) respectively for joints with an inclined
brace (the relative vertical displacement between point A and C in Figure 9.10) in order to
be consistent with those for joints with an orthogonal brace. Comparison of the numerical
results of the joints with different boundary conditions with that of the joint with boundary
condition UBCS is given in Table 9.5.
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Table 9.5 Comparison between the numerical results of joints under different BCs

Joints Chord reaction Ny N; /N; ((UBC5-15)
force kN
UBCI-15 c” 674 1.00
UBC2-15 T 693 1.02
UBC3-15 c’ 677 1.00
UBC4-15 T* 695 1.03
UBC5-15 c 677 1.00
Joints Chord reaction Nl,u Nl,u/N 1,u(UBC5-25)
force kN
UBC1-25 o 307 1.00
UBC2-25 T 338 1.10
UBC3-25 c” 308 1.00
UBC4-25 T 338 1.10
UBC5-25 c 307 1.00
Joints Chord reaction Ny, N /N LU(UBC5—35)
force kN
UBC1-35 c 175 1.01
UBC2-35 T 206 1.19
UBC3-35 c” 174 1.01
UBC4-35 T 208 1.20
UBC5-35 c” 173 1.01
Note: - UBCI-15 means a joint under boundary condition UBC1 (see Figure 9.9) with
2y about 15.

" *I! v * M
- C " means compression and "T " means tension.

Following conclusions can be drawn:

- The boundary conditions used can be divided into two groups: joints with chord in
compression (UBC1, 3 and 5) and joints with chord in tension (UBC2 and 4) due to
reaction forces. There is hardly any difference between the ultimate load capacities of
joints UBCI, 3 and 5. Similarly, the ultimate load capacities of joints UBC2 and 4 are
almost the same. Thus, the influence of the boundary conditions is actually due to the
sense of the chord reaction force. The reason is that chord compression force reduces
the chord membrane action, as a result, the ultimate load capacity is reduced. The
influence of the sense of the chord end reaction force on the ultimate load capacity
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of the joints depends on the 2y values of the joints. For joints with 2y~15, 25 and 35,
the influence is 3%, 10% and 20% respectively compared to UBCS. This is logical
because for joints with large 2y values the membrane effect is largely reduced by the
compression reaction force in the chord.

- As long as the lateral movement of the braces is restrained, the difference between the
results of one chord end restraint and two chord end restraints can be neglected.

- The results of UBC2 and 4 may be too optimistic for joints with chord end reaction
forces in compression. UBCI, 3 or 5 can be used as a basis for further studies of
uniplanar K- and multiplanar KK-joints.

9.3.2 Multiplanar KK-joints

Information about the static behaviour of multiplanar KK-joints is very limited. The earliest
work was done by the Canadians (Bauer 1983 and 1985) and Redwood (1983) to investigate
the static behaviour of triangular trusses with tension in the chord. It was concluded that the
yield line theory gave a lower bound ultimate load capacity prediction. Furthermore, two tests
on multiplanar KK-joints were done by British Steel (1985). Insufficient data was available
to develop comprehensive guidelines for such joints. Since then on, no work has been done
on multiplanar KK-joints until about the end of the 80’s when the ECSC research programme
entitled "The Development of Design Methods for the Cost Effective Applications of
Multiplanar Connections" was started. As a part of this programme, experimental tests on

multiplanar KK-joints have been carried out by British Steel (Yeomans 1993). Calibration of
the numerical models for such joints have been done by SCI (O’Connor 1993, SCI 1995).

The specimen configuration of the SCI KK-joints is shown in Figure 9.11. The geometrical
and material properties of the joints are outlined in Table 9.6. For multiplanar KK-joints, the
chord reaction force is 4*N*cos(8) if no extra tension forces are applied on the chord end.
However, for the corresponding uniplanar K-joints (UBC1, or 3 or 5), the chord reaction force
is 2*N*cos(8). It is known from Section 9.3.1 that the ultimate load capacity of the joints is
largely influenced by the chord axial forces. Thus, the ultimate load capacity of multiplanar
KK-joints with chord compressive reaction force 4*N*cos(8) will be much lower than that
of their uniplanar counterparts. In order to make the results of multiplanar KK-joints
comparable with those of uniplanar K-joints, an additional tension force 2*N*cos(0) in the
multiplanar tests is applied at one end of the chord as shown in Figure 9.11. With the
additional tension force, local buckling of the chord is also prevented.
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Figure 9.11 Specimen configuration of KK-joints (SCI 1995)

Table 9.6 Measured geometrical and material properties of the test specimen

Joints by ta g ) fon s B8

mm mm mm N/mm 2y
rrkk01 149.0 4.87 65 45° 325 04 30.6
rrkk02 149.3 6.05 65 45° 321 0.4 24.7
rrkk03 1510 Q74 RS AR® Nk na 152 g
rrkk04 149.0 4.87 30 45° 325 0.6 30.6
rrkk05 149.3 6.05 30 45° 321 0.6 24.7
rrkk06 151.0 9.74 30 45° 305 0.59 15.5
rrkk07 149.0 4.87 13 45° 325 1.00 30.6
rrkk08 149.4 6.05 13 45° 321 1.00 24.7
rrkk09 150.0 9.74 13 45° 305 1.00 15.4

The chord face deformation is the change in length of a displacement transducer between two
steel offsets attached to the chord center line and to the compression brace center line (the
relative displacement between point A and C), see Figure 9.11. The ultimate load capacity of
the joints is determined based upon the compressive brace load vs. chord top face indentation
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curves. Because no maximum load capacity is reached for the tests, the ultimate deformation
criterion has to be used (3%by/sin(8) for an inclined brace). The ultimate load capacity
(Nu,exp_) from the test results is outlined in Table 9.7.

The CIDECT design resistance formula for uniplanar gap K-joints with chord plastification
failure is given by:

2

f ot
N =8.9By%3- Y00 | 4 9.1)
Rd)y BY sm(e) (n)

This design formula was derived from the following ultimate mean test formula (Wardenier
1982a):

2
f oot
N =109p7%5- 2% . fn (9.2)
wm By sin(0) )
Where f(n) is given as:
N,
f(n)=13-24_0 9.3)

B AOfyO

For uniplanar K-joints (UBC1, UBC3 and UBCS in Figure 9.9) with no extra chord
preloading, the chord axial load Ny is equal to the chord reaction force:

No =2 * N, - cos(6) 9.4

Equation (9.4) can also be used for the multiplanar KK-joints shown in Figure 9.1 1, because
extra chord tension loads are applied.

For multiplanar joints with B=1.0, chord shear failure may occur. Due to the extra tension
load in the chord, Figure 9.11, the axial stress in the gap of the chord is zero. Only shear
failure needs to be checked. The design resistance of multiplanar joints with chord shear
failure is given in the following analytical equation:

2 (hy~to) t fy0
/3 - sin(®)

According to CIDECT (1992), the design resistance of multiplanar joints is equal to equation
(9.1) multiplied by 0.9. A similar method is applied to predict the ultimate mean value of
multiplanar joints. In Table 9.7, the predicted design resistance and ultimate mean value for
multiplanar joints are compared with the test results.

Rd,sh =~ 9.5)
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Table 9.7 Comparison between test results and the predicted values

Multiplanar Multiplanar | Exp. Comparison

chord face shear results

plastification failure
Joints NRd,y*O'9 Nu,m*o'9 NRd,sh Nu,exp. Nu,exp. Nu,exp. Nu,exp.

eq.(9.1)*0.9 | €q.(9.2)%0.9 | eq. (9.5) 0.9*Nggy [ 09N, | Ngggn
kN
kN kN kN
rkk01 138 168 375 148 1.07 0.88 0.39
rrkk02 185 226 454 203 1.09 0.90 045
rkk03 333 407 682 392% 1.18 0.96 0.57
rrkk04 207 252 375 367 1.77 1.46 0.98
rkk05 277 338 454 403* 1.45 1.19 0.89
rrkk06 494 603 682 673* 1.36 1.12 0.99
rrkk07 344 419 375 603* 1.75 1.44 1.61
rrkk08 460 562 454 659* 1.43 1.17 1.45
rkk09 836 1020 682 796* 0.95 0.78 1.17
*; If the ultimate deformation limit is not reached, the load at the end of the test is taken.

Comparison with the design resistance

Table 9.7 shows that for joints rrkk07, rrkk08 and rrkk09 (B=1.0, 2y=30.6, 24.7 and 15.4),
chord shear failure is critical. For other joints, chord face plastification failure is critical. The
ultimate load capacity of the tested results are all higher than the predicted design resistance
of multiplanar joints, except for joint rrkk09.

Comparison with the ultimate mean

Actuaily, the uitimate ioad capacity of the test resuit shouid be compared with the predicted
ultimate mean value instead of the design resistance. For joints with chord shear failure, no
comparison is available for ultimate load capacity due to the lack of formula for such failure
mode. For joints with chord plastification failure, test results are compared with the predicted
ultimate mean values of KK-joints. For joints rrkk01, rrkk02 and rrkk03 (B=0.4), the ultimate
load capacity of the tested multiplanar joints is lower than that of the predicted ultimate mean
value, while for joints rrkk04 to rrkk07, the tested ultimate load capacity is higher than the
predicted ultimate load capacity. This means that for joints with lower B values (f<0.4) the
factor for the multiplanar load effect is lower than 0.9 while for joints with higher B values
(B=0.6), it is higher than 0.9.

It should be mentioned that the above comparison is being made between the prediction
equations and experimentally obtained multiplanar tests. The ultimate load capacity obtained
from the multiplanar experiments is based upon the ultimate deformation criterion, whereas
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the predicted equations are based upon test data which has been analysed based on the
"ultimate load capacity” without any deformation limit. Therefore, similar to the study on
multiplanar XX- and TX-joints, multiplanar KK-joints need to be analysed based upon the
same ultimate criterion, the same geometrical parameters, material properties and boundary
conditions as those for uniplanar K-joints before final conclusions can be drawn. Further
numerical investigation on multiplanar KK-joints with more geometrical parameters and
loading cases is currently undergoing (Liu 1998). The same philosophy as for multiplanar
XX- and TX-joints will be used to establish the ultimate load capacity formulae for
multiplanar KK-joints.

9.3.3 Conclusions

In this section, the influence of the boundary conditions on the ultimate load capacity of
uniplanar K-joints is discussed. The ultimate load capacity of the tested KK-joints (SCI 1995)
is compared with the design resistance formula and the predicted ultimate mean formula for
multiplanar KK-joints. Conclusions can be drawn as follows:

- In tests or numerical studies on isolated K- and KK-joints, the brace lateral
movements should be restrained in order to prevent large secondary bending moments.
As long as the lateral movements of the braces are restrained, the influence of the
boundary conditions is actually due to the sense of the chord reaction force. If the
sense of the chord reaction force is the same, there is no difference between the
ultimate load capacities of joints under different boundary conditions. Boundary
conditions of UBC1, 3 or 5 are recommended for further numerical parameter study
because they give lower values than the tests with chord reaction force in tension.

- The multiplanar effects of KK-joints depend upon the § values and the 27 ratios. For
joints with small B and large 2y ratios, the ultimate load capacity of KK-joints may
be reduced compared to that of uniplanar K-joints (even larger than 0.9). The ultimate
load capacity of multiplanar KK-joints from the experiments is determined based upon
the ultimate deformation criterion whereas the predicted ultimate mean formula is
based upon the "ultimate load capacity” without any deformation limit. Further study
on multiplanar XK-joints is required in order to get more information about the
multiplanar effects.
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10 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

10.1 INTRODUCTION

This PhD study provides new information about the static behaviour of uniplanar and
multiplanar connections in rectangular hollow sections. A numerical model which is fully
calibrated against the experimental results is developed. This numerical model is further used
for a series of extensive parameter studies on uniplanar and multiplanar connections in
rectangular hollow sections under different loading conditions. Based upon the numerical
studies, the experimental results and the existing and newly developed analytical formulae,
design recommendations for the static strength of uniplanar and multiplanar connections in
rectangular hollow sections are proposed. Specific conclusions have been drawn for each topic
at the end of the appropriate section of the previous chapters. This chapter gives a summary
of the main conclusions of the above research work. Furthermore, recommendations for a
further study on multiplanar connections in rectangular hollow sections are given.

10.2 SUMMARY AND GENERAL CONCLUSIONS
Experimental work

The experimental research programme consists of uniplanar X-, multiplanar XX-joints,
uniplanar T- and multiplanar TX-joints in square hollow sections with a brace to chord width
ratio of 0.6 (§), a chord width to thickness ratio of 24 (2y) and a brace to chord thickness
ratio of 1.0 (1), see Table 3.1.

For the uniplanar X- and multiplanar XX-joints, the tests are divided into two groups: the first
consists of an axially loaded uniplanar X-joint and three axially loaded multiplanar XX-joints
with load ratios between the out-of-plane braces and the in-plane braces of -0,6, 0.0 and 0.6
respectively. The second consists of an uniplanar X-joint loaded with in-plane bending
moments and three multiplanar XX-joints loaded with in-plane bending moments on the
in-plane braces and axial forces (tension, compression or unloaded) on the out-of-plane
braces.

For the uniplanar T- and multiplanar TX-joints, the tests are also divided into two groups: the
first consists of an axially loaded uniplanar T-joint and three multiplanar TX-joints with the
out-of-plane braces kept horizontal. The second consists of three axially loaded multiplanar
TX-joints with the out-of-plane braces free to rotate. The load ratios for multiplanar joints are
-0.56, 0.0 and 0.56.

Following conclusions can be drawn:

- For all the experimentally investigated multiplanar joints with =0.6, the multiplanar
geometrical stiffening effects are minor, except for TX-joints with the out-of-plane
braces kept horizontal which results in bending moments on the out-of-plane braces.
This conclusion is valid only for multiplanar joints with B values smaller than or equal
to 0.6. For joints with larger B values, higher multiplanar geometrical effects are
expected. The reason is that for joints with small to medium B values, local
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plastification of the chord top face is the governing failure mechanism. While for
joints with large B values, chord side wall failure occurs.

- For all the multiplanar joints, the joints loaded with positive load ratios give the
highest ultimate load (moment) capacity, while the joints loaded with negative load
ratios give the lowest ultimate load (moment) capacity.

- For axially loaded multiplanar joints, the ultimate load capacity for joints with
negative load ratios is considerably reduced.

- For the multiplanar XX-joint loaded with in-plane bending moments in the in-plane
braces and axial compression forces in the out-of-plane braces, the secondary bending
moments due to the adjustment of the out-of-plane braces enhance the ultimate
moment capacity of the joint.

- For the first group of axially loaded TX-joints, the out-of-plane braces are kept
horizontal during the tests which results in favourable bending moments on the
out-of-plane braces. As a result, the ultimate load capacity of the joints is increased.
The maximum influence of the adjustment of the out-of-plane braces is 12% for the
investigated joints.

Numerical modelling and calibration

In order to establish a suitable model to simulate the current problem, following aspects have
been considered:

- The choice of the element types.

- The modelling of the weld and the geometry of the joint as precise as possible.
- The mesh refinement.

- The inclusion of material and geometrical non-linearities.

Following conclusions are drawn from the numerical modelling and calibration:

- AlUUUgH 1L 1> RIUWL tial dULIU Livitus  aiv ;uuduquu'u, W snUULE el
behaviour, it has been used, for comparison purposes, to clearly demonstrate the
erroneous results. Using solid elements or a combination of solid and shell elements
through transition elements to model RHS joints gives, as experienced by using the
FE MARC program, an unacceptably high load capacity of the joint compared to the
experimental results. The reason is that there are no more than three integration points
in each direction of the elements, particularly in the thickness direction. The stress
distribution in the elements after yielding can therefore not be described adequately.

- If the same mesh pattern is used, the numerical results using the 4-noded thick shell
elements give higher ultimate loads than those using the 8-noded thin and thick shell
elements.
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- The weld should be properly included in the numerical model. An 8-noded thick shell
element is recommended to model the hollow sections and the welds. For modelling
of the fillet weld, an average thickness of the weld can be used, see Figure 4.5. For
modelling of the butt weld, the throat thickness of the "fillet" part of the weld has
been proved to be suitable.

- For models with 2y value higher than 24, an 8-noded thin shell element can give
adequately accurate solutions and can be used as an alternative model, in order to save
computing time and disc working space if the model is very large (with large number
of nodes). Theoretically speaking, an 8-noded thick shell element is more accurate
than an 8-noded thin shell element because the transverse shear strain of the element
is considered. The recommended numerical model is calibrated for accuracy against
the experimental results. This makes it possible to carry out an extensive numerical
parameter study.

Analytical study

The existing design formula for chord side wall failure of axially loaded full width X-joints
(B=1.0) is very conservative especially for joints with high chord width to thickness ratios.
Based upon a so-called "4-hinge yield line and chord web crippling" model (see Figures 5.5,
5.7 and 5.9), a set of new formulae is developed for full width X-joints loaded with axial
forces, in-plane and out-of-plane bending moments respectively. This model is also compared
with the model including the membrane action in Appendix V. It is found that the membrane
effect can be neglected for axially loaded full width X-joints. The membrane effect for full
width X-joints loaded with out-of-plane bending moments is also very small, similar to that
for axially loaded full width X-joints. For full width X-joints loaded with in-plane bending
moments, the membrane effect is larger than that for axially loaded joints which is, however,
for simplicity, not taken into account in the recommended formula. The new formulae agree
well with the numerical results especially for full width X-joints loaded with axial forces or
out-of-plane bending moments.

Based upon a yield line model, the influence of the in-plane bending moments and axial
forces in the chord on the ultimate load capacity of the joint is studied analytically. It is
concluded that the reduction of the joint ultimate load capacity is caused by the reduction of
the plastic moment of the yield lines when a yield line is not parallel to the axial stresses.
Furthermore, the compressive axial stresses in the chord reduce the membrane effect of the
chord faces, and as a result, the ultimate load capacity of the joint is reduced.

For full width T-joints subjected to an out-of-plane bending moment, failure of the joints is
dominated by distortion of the chord section. This failure mechanism is not included in the
CIDECT design guide, which is unsafe. Generally, the ultimate moment capacity of full width
T-joints loaded with an out-of-plane bending moment is lower than that of the corresponding
X-joint if no diaphragm stiffening for the chord is used. In this analytical study, a yield line
model given by Niemi is used. Other analytical formulae used in this study are taken from
the existing literature.
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Parameter study and analysis

The recommended numerical model which is adequately calibrated against the experimental
results is used for an extensive numerical parameter study. This study includes both uniplanar
and multiplanar joints in RHS with different joint configurations and loading cases. For each
type of joint and load case, ultimate load (moment) capacity formulae are derived based upon
a combination of the numerical results and the analytical studies. For a specific joint type and
load case, details can be found in Chapters 6 to 9. General aspects about the numerical
parameter study can be found in Chapter 4.

General remarks about the numerical parameter study:

- The numerical parameter study covers chord face plastification and chord side wall
failure. Because cracking is not modelled at this moment, brace effective width and
chord punching shear failure are not included in the numerical study. For design, brace
effective width failure and chord punching shear failure should be also checked.

- Because the load-indentation curves are very important in reflecting the joint
behaviour, all the numerical results are presented in figures in this thesis. These
figures may give very helpful information to future researchers in evaluating the
databases. Except for joints with maximum load (moment), there is no internationally
uniform definition to describe the ultimate strength of joints which makes it very
difficult to compare the results from different researchers if the load-indentation curves
are not available. The load-indentation curves are also necessary to give the initial
stiffness of joints as well as stiffness at other load levels as information for future
researchers.

- In this thesis, the ultimate load (moment) capacity of the joints is defined as the
maximum load (moment) if the deformation at the maximum load (moment) is smaller
than the "ultimate" deformation limit, or is defined as the load (moment) at an
"ultimate” deformation limit if no maximum load is reached, see Chapter 4. The
ultimate strength determined based upon this criterion is used for further regression
analyses in combination with the analytical studies. As a result, ultimate strength

o [ I ¥
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- The ultimate strength formulae developed in this thesis generally have a very low
coefficient of variation and a very high correlation coefficient compared to the
numerical results. The mean normalised error between the numerical results and the
recommended formulae is close to 1.0.

10.3 PROPOSED ULTIMATE STRENGTH FORMULAE

In the Limit States Design, the design load should not exceed the design strength. The
ultimate strength formulae have to be statistically analysed to give the design strength. There
are two approaches to obtain the design strength:
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1) Using the procedure in Annex Z of EC3 (1993a) to determine the design strength from
a given ultimate strength function (ultimate load or moment capacity formula).

2) If the partial safety factor of the joint is known beforehand, the design strength is
equal to the characteristic strength divided by the partial safety factor yy, of the joints
(Wardenier 1982a).

In Annex Z of EC3 (1993a), a procedure is given in determination of the partial safety factor
Ym- Nevertheless, the method of Wardenier (1982a) is a very practical way to determine the
¥y factor. In his methods, the Yy factor depends on the mode of failure and the way in which
the ultimate strength functions are determined. He proposed that if the strength function is
based on a lower bound analytical model (e.g. yield line) and justified by tests which show
sufficient ductility, a Yy=1.0 can be chosen. If the ultimate strength is derived from the
ultimate load capacity based on experimental evidence, then due to the greater uncertainties
and no additional reserve a y)1.0 should be taken into account. The value also depends on
the deformation capacity of the joint. For example, for ductile joints a y\,=1.0 to 1.1 and for
less ductile joints Yy=1.25 can be adopted. Based upon these considerations, different partial
safety factors were recommended for each type of joint and failure mode (Wardenier 1982a).

The results of the research work for each type of joint and load case are presented in ultimate
strength formulae and summarised in Tables 10.1 to 10.13.
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Table 10.1  Axially loaded uniplanar X-joints

Ny
Ultimate load capacity formulae Validity
tN,
2tyo 02<B<0385
Niu= - (218 ) (Bn) (6-1) P
Chord top face 1 [3 Is <2y 35
plastification T
f(B,n) = 0.7+0.6p+0.11n (6.2) | 0.5p<n <2.0B
Niy = 4% (7 ¥m) - fyotd (5.20) B=1.0
Chl‘l’rf i‘de . 15 <2y<35
wall fatlure | . according to EC3 curve-a, using a column
slenderness ratio of 1.732%(hy/t,-2), see also 0.5p< n< 2.0
equation (5.13) to (5.17).
Linear interpolation between equations (6.1) 0.85<P<1.0
and (5.20) + note 2.
Note: 1. For statistical values see Table 6.5 for equations (6.1) and (6.2) and Table 6.6
for equation (5.20).
2. Brace effective width and chord punching shear failures should be checked
scparatcly using the CIDECT dosign guide foinaalac,
k=1/(0+/¢*+X% ) (>-13)
$=0.5[1+0.21(X-0.2)+X2] .14
7:=_}\_ (5.15)
Ag

Ag=my[E/f (5.16)

A=/3 (hy/ty-2) (5.17)
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Table 10.2  Uniplanar X-joints loaded with in-plane bending moments

My ipb
Ultimate moment capacity formulae Validity
My, ipb
2 n o1 2
M by = (——=" *—) fugty” hye f(B.M)
e B T R 63) | 02 <p <085
Chord top face 15 <2y<35
plastification
f(Bn) = 1+0.68-0.251
(6.4) 0.5p<n <2.0B8
1 2
M ipbu™ K2y +E)fyoto hy (5.32)
Where
1 m<1.0) B=1.0
: 1
Chord side wall n=2.0)
. 15 <2y< 35
failure k=1 0+ /¢2 T2 6.5)
. 0.5B< n=2.0B
1+M=D{—0 ——-1) (1.0<n<2.0)
¢+ ¢2 +x2
¢, A:  see note Table 10.1
0.85<P <1.0
Interpolation between equations (6.3) and (5.32) + 15 <2y<35
note 2.
0.5p<n <28
Note: 1. For statistical values, see Table 6.10 for equations (6.3) and (6.4); Table 6.11
for equation (5.32).
2. Brace effective width and chord punching shear failures should be checked

separately using the CIDECT design guide formulae.
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Table 10.3  Uniplanar X-joints loaded with out-of-plane bending moments
Ml,opb
Ultimate moment capacity formulae Validity
Ml,opb
2 nA+P) | 2(1+p)
M = f otyb + - (B,
Lopbu = fyolo by (ZB(I-B) D) ) B (6.6)| 0.2 <B <0.85
C;‘gl‘éiia;e 15 <2y<35
f(B.n) = 1+0.5B
6.7 0.5Bf<n <2.0B
B=1.0
i = - . 2 5.44
Chord side | My, = % (Y2(1+21) +21m)* f,g0 by G4 < 35
wall failure
K see Table 10.1 0.5B< <2.0B
0.85<f <1.0
Interpolation between equations (6.6) and 15 <2y<35
(5.44) + note 2
0.5B<n <2B

Note: 1.

For statistical vaJues see Table 6.15 for equations (6.6) and (6.7); Table 6.16
for equation (5.44).

Brace effective width and chord punching shear failures should be checked
separately using the CIDECT design guide formulae.
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Table 10.4 Influence of the chord axial preloading

Ny
No Reduction function due to chord preloading Validity
No
N,
2 04 0.2<p <1.0
fn)=|1-n (1+0.004y%)(1-0.858%) (6.12)
15 €2v<35
B=n
No _ Np
= = (6.10) 2
NO,Rd A()fy() fy()3355 N/mm
Note: 1. For statistical values see Table 6.19 in Section 6.4 of Chapter 6.
2. The ultimate load capacity of the joint is equal to the ultimate load capacity

formula of the corresponding joint with Ny=0.0, equation (6.1) in Table 10.1,

multiplied by this reduction function f(n).
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Table 10.5 Influence of the chord bending moment

N
" Mo Reduction function due to chord bending Validity
0
Ny
1 1
553 6.17
f(Jm)=[1 -y, 1-085B' T ©.17)
Based upon
section classes
of EC3
MO/Mpl Rd (class 1 or 2) (5.47)
Tm™ MO/Mel Rd (class 3) 0.2<B <1.0
15 <2v<35
Based upon the 2 0.4 B=n
plastic moment _ (1+0.004Y2)(1-0.858%) (6.19)
capacity only w2 G —) fyg<355
pL,Rd
( N/mmz)
Based upon the M.
elastic moment | f(J,)=1-0.23(1-0.85B)/| ( 0 ) (6.21)
capacity only el,Rd
Note: 1. For statistical values see Tables 6.23, 6.26 and 6.27 for equations (6.17), (6.19)
and (6.21) respectively.
2. The ultimate load capacity of the joint is equal to the ultimate load capacity

formula of the corresponding joint with My=0.0, equation (6.1) in Table 10.1,
multiplied by this reduction function f(J).
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Table 10.6 Reduction function for T-joints due to chord bending
N
Reduction function due to chord bending Validity
1 1
_ 16 |3 6.17)
Based upon ) {1 -(J) 1-085p ]'
section classes
of EC3
I = { MO/MV,Rd (class1 or 2) (7.28)
m AMy/M, e Ry (class 3) 0.2<B £1.0
2 0.4 15 <2y<35
Based upon £ )= 1 My y (@ +0.004v%)(1-0.85p%) (7.30)
the plastic m My rd B=n
moment ‘ <
capacity only fy0‘355
(N/mm?)
Based upon | ¢y y_y_623(1-0.85B)y (__MO )2 (7.31)
the elastic m ' ' v My . R '
moment ”
capacity only

Note: 1. For statistical values see Tables 6.23, 6.26 and 6.27 for equations (6.17), (7.30)
and (7.31) respectively.
2. The ultimate load capacity of the joint is equal to the ultimate load capacity
formula of the corresponding X-joint with My=0.0, equation (6.1) in Table
10.1, multiplied by this reduction function f(J ).
3. M, chord bending moment at the intersection of the brace: N *(l-by)/4.
4. My, gq: Plastic moment resistance reduced by shear, eq. (7.9) or (7.15).

5. My . rd: elastic moment resistance reduced by shear, eq. (7.21) or (7.25).
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Table 10.7  Axially loaded uniplanar T-joints excluding chord bending moments
N
Mo Ultimate load capacity formulae Validity
Mo
2 ol
0
Niju= 1y_BO M+2/1-B ) - fB.m) ©D 1 62 <B <0.85
Chord top face 15 <2y<35
plastification =07 1 (6.2)
f(Bn) = 0.7+0.68+0.1n 0.5p<n <2.08
=1.0
Nl uw " 4x (\/17+Y'1) fyOt()2 (5.20) B
Chord side ' 15 <2y<35
wall failure T
k: see Table 10.1
0.5B8<n <2.0B
Linear interpoiation between equations (6.1) and 0.85<B<1

(5.20) + note 2.

Note: 1. For statistical values see Table 6.5 for equations (6.1) and (6.2) and Table 6.6
for eauation (5.20)
2. Brace effective width and chord punching shear failures should be checked
separately using the CIDECT design guide formulae.
3. M,: moment to compensate the moment in the chord due to N;, see note 3

Table 10.6.
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Table 10.8  Uniplanar T-joints loaded with in-plane bending moments

My, ipb
Ultimate moment capacity formulae Validity
2 n 1 2
Ml,' bu ( + +—)f olo h1' f(B.n)
? p 1B’ 63 92<p <085
Chord top face <
plastification 15 <2y<35

f(B.m) =1+0.6-0.25n
(6.4) 0.5Bsn <23

1 =1.0
My b= % Y Y110 £otohy 53| B

. 15 £2y<35
h 11
Chord side wa Where

failure 0.5B<n <2p
K. see Table 10.2

0.85<P <1.0
Linear interpolation between equations (6.3) and <
(5.32) + note 2. 15 <2y<35
0.5p<n <2B
Note: 1. For statistical values, see Table 6.10 for equations (6.3) and (6.4); Table 6.11
for equation (5.32).
2. Brace effective width and chord punching shear failures should be checked

separately using the CIDECT design guide formulae.
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Table 10.9  Uniplanar T-joints loaded with out-of-plane bending moment

Ml ,opb
The ultimate moment capacity Validity

5 2. NAP) L 120+B) .
Ml,opb,u h fyOtO b1 ( 2B(1 _B) + B(l _B) ) f(B,ﬂ) (6.6) BSO.85

Chord top face

<
plastification 15 <2y<35
f(B.m) = 1+0.58
6.7) 0.5B<n <28
2
My oob i = 2fy0tobo - VY +1) - (o) (7.48) B=1.0
Chord where 15<2y<35
distortion 0, \0.03y
eilone flot) = (7) 21.0 749\ g5,
hy=b
o, = 2*(2\/'y_+1) (7.47) 070
Note: 1 For statistical values, see Tables 7.14 and 7.15 for equation (7.48)
2. Brace effective width and punching shear failures should be checked separately

using the CIDECT design guide formulae.
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Table 10.10 Axially loaded multiplanar XX-joints

¥ Ny
No
Multiplanar XX-joints Validity
Nz
N
Nj uan=0) = e Ny @.1)
General Nl’u(JAA) = fJaa) " Nl,u (T 5 4=0) (8.2)
formulae
where, Jy, = N, /' Ny
Multiplanar ~ 4 8.3 0.2<B<1.0
geometrical Cp=1+04p (8-3)
stiffening factor 15<2y<35
F(J An)=1+0.370 5 p Taa2®  BH 1 59<p <085
2 2
£(J 4 2)=1+(0.03+2B+0.33)) (Jaa=0) (8.5
AA Y AA AA (8.5) 15 <2y<35
Multiplanar 3
load function fJ 400 =1 -_JAA7- (~1.0<J 5 ,<1.0) (8.6) B=1.0
Y
15 <2v<35
Linear interpolation between equations (8.4) and
(8.6) or (8.5) and (8.6). 0.85<B<1.0
Note: 1. N, , is the ultimate load capacity of uniplanar X-joints, see equation (6.1) in

Table 10.1.

2. For the statistical values of equations (8.4) and (8.5), se¢ Tables 8.5 and 8.6.
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Table 10.11 Multiplanar XX-joints loaded with in-plane bending moments

My
Multiplanar XX-joints Validity
M
My
M
Ml,ipb,u(JII=O) “Cm’ Ml,ipb,u (8.12)
General formulae M],ipb,u(JII) =f(JH) " M],ipb,u(JII=O) (8.13)
where, Iy =M, / M,
Multiplanar
<B<
geometrical ¢, =1+0.4p% (8.14) 0.2<B<1.0
stiffening factor 15<2y<35
f(Jy)=1+0.53BJ (=0 (8.15) | 02<B <0.85
fdp=1.0 (J120) (8.16) IS <2y<35
Multiplanar load B=1.0
function f0=1+0.081;-0.181 % (-10<I<1.0) BID | o, <35
Linear interpolation beiween equations (8.15) and
(8.17) or (8.16) and (8.17). 0.85<B<1.0
Note: 1. M; ;pb,u 1S the ultimate moment capacity of uniplanar X-joints, see equation

(6.3} in Table 10.2:

2. For the statistical values of the above equations, see Section 8.2, Chapter 8.
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Table 10.12 Multiplanar XX-joints loaded with in-plane bending moments and axial

forces
My
N2 Multiplanar XX-joints Validity
Nz
M

M ipbuU1a=0) =C = My ipb (8.18)
General formulae Ml,ipb,u(JIA) =f(Jia) Ml,ipb,u(JIA=0) (8.19)

where, Jj, = N,*h; / M,
Multiplanar ~ 8 8.14 0.2<p<1.0
geometrical ¢p=1+04B 8.14)
stiffening factor 15<2y<35

f(J;4)=1+0.43(1-B)J J4<0)  (8.20)
Multiplanar load Uia) (1B T1a=0) 0.2<B <1.0
function

0=l Ja20) B2D | 15 <yess

Note: 1. M oy I8 the ultimate moment capacity of uniplanar X-joints, see equation

(6.3) in Table 10.2;

2. For the statistical values of equation (8.20), see Table 8.16, Chapter 8.
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Table 10.13  Axially loaded multiplanar TX-joints excluding chord bending moments

¥ Ny
Mo N2 Multiplanar TX-joints Validity
N2 Mo
N oJaa=0)=cp" Ny 8.1
Ny U an)=fUan) - N; yJAa=0) 8.2)

General formulae

where, Jaa =Ny /Ny

Multiplanar 4 8.3 <R<
geometrical ¢p=1+0.4p (83) 1 02<p<10
stiffening factor 15<2y<35
I apn)=1+0.37T 4 (T2 420) (8.4)
£(J,0)=1.0 (T 4 a20) p<0.6
Maultiplanar load
function
Only a few results are available, no formula for B>0.6 and
the multiplanar load effect is recommended.
Jpa>00
Notation: 1. N, , is the ultimate load capacity of uniplanar X-joints or T-joints
excluding chord bending, see equation (6.1) in Table 10.1.
2. M, is the moment to compensate the moment in the chord due to N;:

N, *(lg-h, /4.
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104

RECOMMENDATIONS FOR FURTHER RESEARCH WORK

Further study is required on axially loaded or moment loaded multiplanar TX- and
KXK-joints in rectangular hollow sections.

Some investigations on the static behaviour of multiplanar KK-joints are under way
which include the study on the influence of the boundary conditions, the influence of
the chord preloading and the multiplanar effects (Liu 1998a and 1998b). However,
after this, parameter studies are necessary to complete the evidence and to set up
design recommendations.

The ultimate strength formulae developed should be considered as basic formulae
which need further simplifications for design rules.

The establishment of an international database (similar to that for joints in circular
hollow sections, Makino 1996) including experimental and numerical results of
multiplanar connections in rectangular hollow sections is required in order to further
evaluate proposals for new ultimate strength formulae for multiplanar connections in
a proper manner.
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SAMENVATTING

De Statische Sterkte van Verbindingen van
Rechthoekige Buisprofielen

Rechthoekige buisprofielen (RHS) vinden veel toepassing, onder meer in industriéle
gebouwen, torens, masten, bruggen, kranen en mechanische werktuigen met verschillende
typen en verbindingsconfiguraties. Tot het einde van de tachtiger jaren was er weinig
informatie beschikbaar op het gebied van het statisch gedrag van ruimtelijke verbindingen.
Daarnaast zijn voor verbindingen in één vlak onder gecompliceerde belastingsgevallen slechts
weinig gegevens beschikbaar. Dit onderzoeksprogramma richt zich op het vaststellen van
basisformules voor de statische sterkte van dergelijke verbindingen.

Dit proefschrift bevat de resultaten van analytisch, experimenteel en numeriek onderzoek naar
de statische sterkte van gelaste verbindingen tussen rechthoekige stalen buisprofielen.

In de analytische studie zijn sterkteformules opgesteld voor X-verbindingen waarvan de
wandstaven even breed zijn als de randstaaf, en belast door een axiale kracht of een buigend
moment in het vlak of uit het vlak. Deze analytische modellen zijn gebaseerd op zowel het
“4-scharnier” vloeilijn model als op plooi van de lijven van de randstaaf. Verder is de invloed
van buigende momenten in de randstaaf op de uiterste sterkte van de verbinding analytisch
onderzocht.

In het experimentele programma zijn de sterkte en stijfheid van ruimtelijke verbindingen
onderzocht en vergeleken met die van vergelijkbare verbindingen met staven in één vlak.
Hierbij is de geometrie-invloed en de belastingsinvlioed nader bepaald.

Voor de verbindingen is een numerieck model ontwikkeld en gecalibreerd met de
proefresultaten. Bij de calibratie van dit model zijn het elementtype, de lasmodellering en het
materiaal- en geometrisch niet-lineair gedrag nader beschouwd.

Het eindige elementen model is verder gebruikt voor een uitgebreide parameterstudie van X-
en T-verbindingen en ruimtelijke XX- en TX-verbindingen met verschillende
belastingsgevallen. Verder zijn aanvullende studies verricht naar de invloed van de
randvoorwaarden op de sterkte van K-verbindingen. Gebaseerd op de analytische formules en
experimentele en numerieke resultaten zijn voor de beschouwde verbindingen voorstellen
gedaan voor de sterkteformules die als basis kunnen dienen voor rekenregels voor de statische
sterkte van vlakke en ruimtelijke verbindingen van rechthoekige buisprofielen.

Trefwoorden

Statische Sterkte, Rechthoekige Buisproficlen, Ruimtelijke Verbindingen, Gelaste
Verbindingen, Analytisch, Experimenteel, Numeriek.
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