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Chapter 1

Abstract

Nowadays, organization networks are facing an increased number of different attacks and
existing intrusion and anomaly detection systems fail to keep up. By focusing on security
policies, malicious signatures or generic network characteristics, existing systems are not
able to cover the full landscape of attacks. In this thesis we try to tackle the problem of
anomaly detection on a user network behavior level and an application level. In the pro-
posed framework, network traffic is first separated into different flows based on the mobile
application it originates from. Moving forward, the processed network flows are used as in-
put for a flexible noise tolerant behavior modeling framework. The proposed framework is
based on density based clustering and tries to identify temporal changes in the user behavior
that qualify as anomalous. Moreover, we utilize the model to identify behavioral patterns
shared by users and analyze the temporal consistency of user network behavior. To evaluate
the framework performance, real network mobile traffic provided a private organization is
used. The framework validation is performed by combining the captured network traffic
with a conducted employee survey. Overall, the system is able to accurately follow changes
in the user behavior based on each application, identify anomalies as well as provide insight
on shared behaviors or reoccurring behavioral patterns.
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Chapter 2

Introduction

The number of mobile users, that being laptop, tablet or smarthphone has increased tremen-
dously in the past years alongside with the number of mobile applications provided. Ac-
cording to Comscore [1], already in 2015 the number of mobile-only internet users exceeded
the number of desktop-only internet users. Based on the same research, mobile represents
65 percent of all digital media time, with mobile apps being the main method of usage.
Nowadays, the functions of mobile devices have expanded from simple social communica-
tions to various tasks in our everyday life from online purchases to bank transactions. This
increase in mobile functionality as well as portability has led businesses to pursue models
that take advantage of these features with the goal of improving their efficiency

2.1 Bring your Own Device (BYOD) model

The concept of Bring your own device (BYOD) is a phenomenon that has taken over the
business world and has been adapted by many companies. BYOD is a concept which allows
employees to bring and use their personal devices in the office, connect them to the company
network and conduct business operations. Employees are able to access the company data
and services through the devices that they are familiar with and use in their every day life.
These devices can range from personal laptops, tablets to mobile devices. A survey by
SANS Institute in 2012 argued that 60% of companies already permit BYOD[2]. The reason
behind this trend is that BYOD increases the employee efficiency, mobility and satisfaction
since they feel more comfortable and familiar working on their own devices[3]. From an
economical aspect, the models reduces the expenses of the company as well. The BYOD
market size is estimated to be valued at USD 350 Billion by 2022, as per a new research
report by Global Market Insights [4]. This provides the proper financial motive for more
companies to follow the BYOD trend. Moreover, a similar model that falls into the same
category is Choose your Own Device (CYOWD) where companies provide the employees
a range of mobile devices to choose from and freely use for both personal and company
related purposes. The two models exhibit the same characteristics regarding cyber security
and therefore are into the scope of the research.
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2. INTRODUCTION

2.2 Security Threat Landscape in BYOD

As beneficial as these models may be, the introduction of personal devices to the internal
company network raises security issues that need to be addressed. Since employees use the
devices for activities that are not work related, it leads to the co-existence of personal and
company data. The company data accessed by the employee device may contain creden-
tials, confidential emails and documents or company client private information. Leakage,
tampering or corruption of such information can have devastating results for the company
as well as the individual. The exposure of personal or client sensitive information stored
can cause financial and reputation damage to the company. This can happen in the case the
employee leaves his device unattended, connects it to an unsecure open Wi-Fi network or
installs unverified applications. To get a better insight on the landscape of threats in such an
environment we divide them into two categories technical and human related ones that we
discuss below.

2.2.1 Technical Threats

People usually install applications on their device without fully understanding the permis-
sion requested by apps or the validity of the installed applications. This can lead to situations
where malicious applications such as malware are installed on the device. When it comes
to mobile security, malware is one of the main attack vectors. The methods of malware
infection can be as easy as a user visiting an infected website or downloading a seemingly
harmless application. In fact, various technical reports [5, 6] have discovered numerous
applications on Google Play store with totals of 100,000 installations that are infected by
malware. A mobile threat report by Intel Security Mcafee in 2016 [5] indicates that there
has been a 72% increase in the collected unique malware in their labs. This mobile malware
growth is taking advantage of the mobile application growth as well as the lack of cyber
security awareness end users have. Based on the Mobile Security and Risk Review by Mo-
bileIron [7] a known malware, Hummingbad, was able to infect nearly 85 million devices
and possibly extract personal or company related information. Similarly, an exploit that
does not require the user to actively download and install an application but rather relies
on the underlying kernel libraries of the Android OS is Stagefright. The daily detection of
unique infected devices from Stagefright is around 800 [5] which means that although new
security measures and updates are applied there is still a number of users harmed. Malware
not only grows in number but also continues to evolve to bypass existing antivirus, firewalls
or other IT related security mechanisms. Moreover, the methods in which malware is dis-
tributed, sold or even advertised have advanced and attackers can more easily obtain and
perform malware related attacks.

When discussing about such threats not only the private sectors needs to come in mind.
The same cyber security concerns are raised on the public one. As technology advances and
different devices, applications are used to conduct vital processes in public organizations,
the cyber security aspect needs to be taken into consideration. Based on a report by Mo-
bileIron [7] the healthcare organizations with at least one compromised device accessing
corporate data is at 17% and the government organizations that had a compromised device
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2.2. Security Threat Landscape in BYOD

accessing corporate data in Q4 is at 9%. One of the most important sectors is the healthcare
one since the protection of patient private health information is critical. An overview of
the current situation in the healthcare IT system and how BYOD has introduced threats that
need to be addressed is presented in [8]. Mobile devices holding and transferring patient
records, open networks accessible by patients lead to a situation where a system needs to
be in place to ensure the protection of patients’ sensitive information. Researchers indi-
cate that 41 percent of people using smartphones in the healthcare sector have no password
protection on their devices and 53 percent of them have willingly connected to unsecure
of unknown network with their devices. An example that showcases the vulnerabilities in-
troduced in such a environment is the vulnerability assessment performed by a Kaspersky
researcher who was able to hack into a hospital and obtain patient records by accessing the
medical devices through the hospital WiFi [9]. As a result, we understand that the security
protection of organizations that handle vital private information needs to be improved.

With such a broad attack vector on mobile devices and lack of established protection
mechanisms, we understand that companies need to be cautious with the devices entering
their network. If client or employee information are made public, this can damage the image
of the company as well as its business future. Such an impact gives financial motive to rival
companies or organizations who want to harm their competition. When it comes to the
public sector, a compromised employee device can disrupt critical government services or
leak information of utmost importance.

2.2.2 Human related Threats

Apart from the technical aspect of the mobile security threats, another factor that has a
high impact is the human one. It is often said that people are the weakest link in the security
chain. The security awareness of the everyday user is struggling to keep up with the security
risks that arise. Most cyber criminals try to compromise security in various ways such as
creating and emulating an unsecured Wi-Fi network in public facilities that being an airport
or a hospital. Unaware users will connect to such networks and effectively give free access
to their device and personal information that will flow through the network.

Another approach that counts on the human factor is a phishing email attack. A recent
publication by Z. Benenson [10] at Blackhat 2016 tries to explain the reason behind phishing
attack success. A phishing email experiment followed by a survey of the subjects, revealed
that the main reason for clicking on a malicious link inside an email was plain curiosity. An
interesting finding of the research is that the IT security knowledge around email spoofing
was not statistically correlated with the reported clicking on the survey. Since the nature of
this security threat is not entirely technical, the mitigation methods can be challenging.

Furthermore, a human related threat is when the employee willingly acts maliciously
or exfiltrates sensitive data out of the company network. In a BYOD environment such
an employee could upload to a remote server, send outside the network sensitive data or
simply load the data on his personal device and thus cause the same financial harm as in
the previous case. The detection of a disgruntled employee can be challenging task from
the security aspect. Finally mobile devices are more easily lost than a PC [11] which means
that company data if not properly protected on the device can be leaked.

5



2. INTRODUCTION

Figure 2.1: Mobile and BYOD Security Management

2.3 BYOD Security Approaches

For organizations to harvest the benefits of BYOD but at the same time secure themselves
against the aforementioned cyber security threats, existing solutions try to tackle the prob-
lem from different angles. The range of solutions that organizations have to mitigate these
threats with can be visualized in Figure 2.1, moving from the least intrusive method that
revolves around Network Monitoring and Access Control up to the more intrusive but at the
same more fine grained approach of Device Agents. To better understand these solutions
and which one of them is followed in this thesis, examples of current research from the
network aspect which includes Monitoring and Access Control and the device perspective
which includes the Device Agents are going to be presented [12].

2.3.1 Device Agents

The personal devices containing company data can be considered the entry point of an at-
tacker into the company network or the weak point in the data exfiltration process. In order
to protect these devices, enterprise solutions introduce the concept of Mobile Device Man-
agement (MDM). Usually this type of solutions such as MobileIron have a server, device
agent architecture. The agent on the device is effectively monitoring all the device actions
and returns information back to the server. From that point on, based on the company secu-
rity policies the server can enforce actions such as data wipe, device encryption or device
isolation. Rhee et al [13] describe such a MDM framework for companies that want to
utilize the BYOD concept. Their architecture consists of an agent application installed on
the employee device and a device management server. The server is responsible for policy
management, enforcing decisions in case of violations while the agent application monitors
the device, permits the installation of authorized only applications and sends audit reports
periodically to the server.
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2.3. BYOD Security Approaches

A similar approach is introduced by Lee et al. [14] in order to handle malicious applica-
tions on employee devices. Based on their suggested framework, the installed agent has
an embedded White-List that contains authorized applications. The agent checks the de-
vice configurations and applications and compares them against the White-List. In case an
application is missing from the list, the violation is sent to an administrator to take corre-
sponding actions. Armando et al [15] approach the problem on an application market level.
The authors have implemented a proof of concept application named BYODroid. Their ar-
chitecture consists of a BYODroid market and BYODroid installer on the employee device.
Applications listed on the market have a security score based on a source code review. The
BYOdroid installer verifies the applications installed on the employee device based on their
score from the market and either forbids or permits the device registration to the corporate
network.
Apart from the MDM schema, the more technical approach of kernel isolation or virtu-
alization is suggested by various researchers. Such frameworks require the modification
of mobile operating system in order to ensure the protection of company information.
Kodeswaran et al. [16] propose a framework for run-time enforcement of access control
policies in order to protect corporate data. In order to differentiate corporate from personal
data, they manually classify mobile applications as corporate and therefore data related to
them are also classified as corporate either statically or based on data flow. The architecture
consists of an on device policy manager that stores security company policies describing
accepted application and data related actions. When an application requests data, infor-
mation regarding the application, the type of requested data are forwarded to the policy
manager who either permits or prohibits the action. A more low level approach is proposed
by Oluwatimi et al. [17]. The authors made a modification to the Android OS and used a
data shadowing approach combined with the Android permission mechanism to effectively
hide corporate data from the rest of the user installed applications.
By describing various research approaches on the MDM section, various disadvantages
come to the surface. As we can see, most of the MDM solutions focus on the installed ap-
plications on the device and whether they follow specific company policies that are related
to these applications. The network structure of the company as well as access to network
entities that under circumstances should not be accessed by devices are out of the MDM
solution scope. Moreover, all of them require from the employees to install a company soft-
ware on their personal devices that will effectively monitor them. This invasion of privacy
can cause a frustration on the employee side which is against the goal of the BYOD philos-
ophy. Moreover, some of these mechanisms rely on a reputation system, known malware
history that can be easily avoided by techniques such as polymorphic malware. Further-
more, the approaches that require kernel modifications are not practical on a BYOD envi-
ronment. Employee may not be comfortable with altering their personal device OS since
that can have technical implications on the device. Finally, from a more practical point of
view, the MDM approach is not viable for visitors or other who require temporary access to
the organization network and therefore such individuals are not properly monitored.

7



2. INTRODUCTION

2.3.2 Monitoring and Access Control

When the BYOD concept is used in an organization, all the devices are connected to the
internal company network. This means that information both personal and company related
flow through the network before reaching the Internet and this presents a point of control for
the organization. Administrators are able to analyze the network traffic in order to identify
specific actions or patterns that do not comply with company enforced policies. Based on
company policies, it is usually the case that specific servers or devices must be accessed
only by a handful of employees. These network actions are into the scope of the Network
Level approaches we are going to analyze. Moreover, this creates the opportunity to utilize
a big amount of user generated network data. This pool of information combined with the
upcoming solutions provided by machine learning approaches, leads to intelligent network
behavior and anomaly detection solutions.

Access Control: Every organization has a specific network structure with nodes and
information which should not be accessible by everyone. For this reason, security policies
are created that dictate the permitted actions based on user roles and positions.

Chung et al. [18] propose a 2-tier framework to enforce this access control on a BYOD
environment. Their approach can be considered as a combination of a device agent solution
on a small part alongside a network controlling server. The architecture consists of two
tiers, a device control tier and a cloud control one. Every employee device has installed a
lightweight system that contains an anti malware software as well as a device profile. The
profile contains a combination of contextual rules that define which actions are allowed for
the device e.g. at what time can this device connect to the company network, which data
can this device access. The management system of their architecture is on the cloud and
consists of a few elements. There is a profile management system that controls, updates and
creates the device profiles as well as a access control log that contains information about
the employee actions.

Costantino et al [19] suggest a framework that implements a role-based access control
as well an authentication schema based on the employee context and role in the company.
Their architecture consists of a policy server and an authentication server. The policy server
contains and updates the company policies that dectate the employee actions based on their
role. The authentication server is based on the OAuth 2.0 protocol and is responsible for
verifying the credentials of every device that is trying to access the company network. When
a device connects to the internal network, the authentication server verifies the identity of
the device. If the authentication fails, the device is not granted access. As a next step, the
policy server validates the device compliance with company policies and permits or denies
access to the network.

Finally, a Access Control framework that is closer to the Monitoring aspect is presented
by Koh et al [20]. The authors propose a dynamic access control framework that takes
into consideration the contextual information of users and creates normal and abnormal
behavior patterns. When a user tries to connect to the network, device context information
are retrieved and forwarded to a detection system. These information are compared with
stored normal behavior information of the same user and the system decides whether the
new provided information diverge from the normal ones on such a scale that they can be
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considered abnormal. Based on the decision, a policy server enforces the access control
policies to the device.

The main flaw of an access control policy system lies in the manual character of com-
pany security policies. Most of the time, such rules are created by an administrator who is
also responsible for updating them. The introduction of the human factor in this process
can introduce errors such as misconfigured policies or outdated ones. Moreover, despite the
fact that the authors in [18] start to diverge from the Device Agent approach, their approach
introduces the usage of a cloud service which can be a problem for some organizations.
When it comes to security, many companies are not fully comfortable with uploading sen-
sitive company information or policies on the cloud. In addition, the concept of the [20] is
promising but there are no details related to the normal and abnormal behavior classification
as well as the nature of the contextual information they retrieve. Both of these elements are
key pieces to a successful dynamic access control framework. Finally, access control frame-
works can enhance the security of an organization regarding the introduction of a device to
the company network. Most of these approach, fail to properly monitor user behavior after-
wards and identify abnormal patterns.

Monitoring: The monitoring approach tries to utilize the network information from
an analytic perspective and come to conclusions that will provide insight on the threats in
the network. The observation of the traffic behavior and especially traffic generated by the
devices in a BYOD environment can provide insight on the type of protocols, applications as
well as behavioral patterns. These findings can lead to elements that stand out in the network
that can be interpreted as malware or threats towards the network in general. In the industry,
security information and event management (SIEM) tools such as IBM Qradar [21] and
Splunk [22] are mostly used for this type of passive monitoring. These frameworks monitor
network events created by connected devices , analyze packet data as well as monitor user
behavior.

Although, there has not been a great amount of scientific research specifically on the
network analysis of a BYOD environment, there have been a few contributions. Zeng et al
[23] implemented a framework that provides insight on the network behavior that includes
traffic behavior, end-to-end behavior, routing behavior and application behavior. The pro-
posed architecture consists of a measurement platform which includes probes to collect the
traffic, a control platform that is responsible for displaying the analysis output and contact-
ing an analysis platform which creates the results. After evaluating their approach on a
campus network, they were able to efficiently visualize a large scale network behavior and
provide insight on the used protocols, services as well as applications in the network.

NetFlow [24] is a protocol designed by Cisco to efficiently monitor network traffic
and provide insight on it. Hou et al [25] used NetFlow to create an IP network behavior
analysis system. Their system consists of two behavior analysis modules, the network traffic
and the user one. After properly formatting the network data and aggregated them into
network flows the authors utilize analytic algorithms such as TOPN or comparative analysis
to extract information about the protocols, services and ports used in the network. In order
to perform the user behavior analysis, information such as visited URLS, type of website
visited are used. This type of information is obtained through a deep packet inspection

9



2. INTRODUCTION

(DPI) approach. As a result, their system is able to visualize a detailed traffic analysis, a
HTTP traffic trend analysis as well as visited website trends. As future work, the authors
suggest the automatic classification of traffic based on the extracted characteristics of their
system.

A problem with passive monitoring approaches is the interpretation of the generated
insight. The information that derive from a network analysis tool can be translated into
meaningful information only be people who have the appropriate security knowledge. To
deal with this situation, solutions have introduced the machine learning approach that is able
to learn from the network data and automatically distinguish normal from abnormal behav-
ior. However, as with every machine learning approach these solutions require training with
proper configuration to avoid the common mistake of false positives.

2.3.3 Research Approach

Figure 2.2: Thesis Research Overview

Every solution that is introduced to tackle the BYOD security threats in an organization
has specific advantages and disadvantages. Most of the existing research has heavily fo-
cused on Device Agent and Access Policy approaches while there is room for development
on the network aspect as well as a lack of implemented framework that can validate or con-
tradict proposed models. Moreover, the passive networking approach is the least intrusive
compared to the rest which is an important factor for the success of a security model in
a BYOD environment. Furthermore, the nature of a network security approach gives the
ability to be applied in different scenarios because of its modularity that being a corporate
network, a hospital or a government facility. For all these reasons, the focus of the thesis is
on network monitoring and traffic analysis.

The research problem is the network analysis of user behavior in a BYOD environment
based on mobile application generated traffic. In order to tackle the formulation of a user
network behavior model, a framework that performs a cluster flow temporal analysis is cre-
ated. This is achieved by utilizing density based machine learning algorithms as described
later in detail. Regarding the mobile application level aspect, a better understanding of the
user behavior can be achieved since an efficient separation of network traffic is applied by
utilizing a proposed novel application identification algorithm. The proposed framework
goal is to efficiently follow the human behavior reflected on the network traffic and detect
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changes and anomalies. This is accomplished by techniques of anomaly detection closely
related to the concept of cluster algorithms. A general structure of the steps followed in the
thesis is presented in Figure 2.2.

Overall, our study can be formulated into the following research questions and sub-
research questions:

1. Are we able to transform raw encrypted network traffic into sessions separated
based on the application they belong to?

a) What are the network session fields that provide information regarding the mo-
bile application?

b) How well can the model identify the application depending on the used proto-
col?

c) Is the proposed method able to scale on a large network environment?

2. Can we implement a framework that translates user network behavior into a
measurable metric?

a) What are network features that can efficiently characterize a user network be-
havior?

b) What is the most suitable clustering algorithm for such a model?

c) To what extent can such user models be utilized to detect anomalies and behav-
ioral changes in a BYOD network?

d) To what extent can such user models scale on a large scale organization net-
work?

3. Can the proposed framework identify behavioral patterns and trends as well as
compare user behaviors?

a) Is the model able to reflect user behavior patterns on an application level?

b) Is the model able to detect behavior patterns and application usage habits shared
by the users?

c) To what extend is the model able to identify user behavior stability?

d) Is the model able to compare user behavior and identify user groups of similar
behavior?

In the following chapter, the research approach is broken down into key elements and
the related work around them is presented. The presented related work will provide the
motivation and detailed reasoning for the choices made in the thesis methodology. Before
describing the proposed framework, the choices regarding the network data collection and
analysis are presented in Chapter 4. The detailed methodology and design of the framework
are explained in Chapter 5. Moreover, the method in which the framework is evaluated is
also presented in 5. Finally, the results of the research are discussed in Chapter 6 as well as
the conclusion of our research in Chapter 7.
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Chapter 3

Related Work

Research in the sector of network anomaly detection has primarily focused on methods
that examine network characteristics without taking into consideration the human behavior
aspect and the application context of the network flows. For these reasons, the structure of
the related work is broken down to the three key elements that formulate the research of the
thesis. Firstly the research methods around the application traffic identification in which a
vast amount of network flows are attributed to specific mobile or computer applications is
analyzed. In this way, the possible methods in which traffic will be filtered and analyzed
in this thesis are presented. Furthermore, the broad spectrum of methodologies in network
anomaly detection is analyzed. The benefits and limitations of the established methods are
presented in order to identify the ones that will contribute to the goal of the thesis. With the
two previous aspects covered, the work that is closer to user behavior analysis on a network
level is presented. Finally, an overview of the limitations of related work and how this thesis
is trying to overcome them is stated.

3.1 Application Traffic Identification

Since the network traffic generated by applications is the aspect in which data will be an-
alyzed, a better understanding on the network behavior and identification of mobile and
computer applications is required. Unlike traditional applications and protocols, modern
applications do not use specific protocols and IP addresses and therefore can be hard to
identify on the network. When it comes to application identification, the research is mainly
split in two approaches. The first one is a payload-based method which identifies traffic by
checking the existence of specific information on the header or the payload of each packet.
Although such approaches have a high accuracy rate, they encounter difficulties related to
encrypted traffic, computation complexity and user privacy issues. The second approach
is a statistical-based method that analyzes the statistical characteristics of a network flow
e.g. distribution of packet size, connection duration, source and destination address. Such
methods try to define characteristics that are unique, to an acceptable percent, per appli-
cation. Similarly as the previous one, this approach has limitations since an exhaustive
statistical analysis of all mobile applications is not feasible as well as the misidentification
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of applications that share online resources as such CDN servers can create problems.
A very interesting work on application traffic identification is presented by Q. Xu et

al [26]. The authors propose a system called FLOWR that is able to identify applications
by continuously gaining information about their unique network features through traffic
analysis. FLOWR is collecting information from the HTTP headers of application packets
and tries to identify which information can uniquely be related to an application. The in-
formation can range from specific strings in the URL of an HTTP GET request to strings
in the Referer field of an HTTP message. Information that can be generally related to an
application are called application identifiers and when they are unique enough to be tied
to an application they are called application signatures. An application signature can be
for example a unique string in the HTTP header that contains the application Play Store
id number. After the authors manually provide an initial seed of applications and applica-
tion signatures to the system they apply a temporal correlation approach to generate more
signatures. When a application identifier re-occurs with a high frequency closely in time
to an application signature then it has a high probability of becoming an signature for that
application. The authors call this method flow regression and is the main mechanism of
creating new signatures. In order to maximize the algorithm efficiency the authors tune
the value of the window in which an identifier is considered close in time to a signature as
well as the number of co-occurrences that are required to promote an identifier to a signa-
ture. FLOWR is able to narrow down 65% of the network flows to 5 or fewer candidate
applications as well as accurately associate 86-95% of flows to their generated apps. As
the authors mentioned however the algorithm has a few limitations. Most importantly, the
restriction to HTTP only traffics can leave out of the scope application traffic that is fully
encrypted. Moreover, the initial seed of applications plays an important role on the growth
rate and success of the application signatures and limits the number of applications that can
be identified. Despite the limitations, this work provides great insight on a non statistical
approach to relate network flows to applications.

A similar research that takes advantage of information on the HTTP header is presented
by Dai et al [27]. In their research the authors create a novel system that automatically
generates network profiles for android applications. The network profile consists of the
network flows sent by the application during its execution. In order to profile an android
app, the authors have created a fuzzing framework that consists of an android emulator and
a fuzzing mechanism. Every application that is under analysis is installed on the emulator
and the fuzzing mechanism implemented with the tool monkeyrunner [28] is applied. The
fuzzing mechanism generates a sequence of random UI related actions that will trigger
the application to create network traffic. The authors have implemented two execution
modes a truly random mode and a directed mode that allows a user to communicate with
the tested app and insert specific actions when they are required. Moreover, a small analysis
is conducted on the ad related network traffic generated by applications since such flows
are rich in unique strings in their HTTP headers. After analyzing the HTTP content of
each type of flow and the possibility of finding unique identifiers, the author implemented
an network fingerprint extraction mechanism called Fingerprint Extractor. This mechanism
takes as input the HTTP header, URL and fields strings and creates a tokenized flow after
splitting the string in segments. In order to achieve higher accuracy and correlate flows that
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should fall into the same application category even though they have minor differences in
their string values the authors apply a clustering algorithm. Tokens from the tokenized flow
are grouped into clustered based on their similarity scored computed with the Jacard index.
Some limitations of the authors work are the inability to distinguish apps which use the
same online services and the need for a directed fuzzing mechanism when the application
has a log in functionality. Despite the limitations, the authors contribute some important
information on the various network flows that can be generated from an android fuzzing
process and more specifically the network fingerprints of ad-related flows.

Zuquete et al [29] present a decentralized architecture that identifies the application
source of network traffic by using a device agent that modifies outgoing application net-
work packets. The architecture consists of a mechanism on the host device as well as a
central network monitor system controlled by an auditor who is responsible for detecting
anomalies. Each application on the host is assigned a unique application identifier and a
local database is created contained information related to all the installed applications. The
database, with the application identifier being the database key, stores the name of the pack-
age containing the application, the version of the package and the applications binary local
path. When network traffic is generated by an application its corresponding identifier is
embedded to each packet and details about the applications are updated locally on the host.
From each packet that arrives to the network monitor system, the application identifier is
extracted and each host database is queried for a detailed set of application information.
Therefore, each flow of network traffic is correlated to a specific mobile application and
the auditor has an overview of the application network traffic. However the suggest ap-
proach has a few practical limitations such as communication problems with the devices
as well as the on device monitoring mechanism efficiency that the author do not take into
consideration.

Kumano et al [30] propose a method of multi-stage application identification by using
statistical information from the first packets of a network flow. The purpose of the multi
stage classification is to first identify the category in which the application falls so that the
following classifier can be focused on applications of a specific category. The network fea-
tures used to create the classification models are derived from network flows belonging to
various application categories such as Youtube, Hulu as streaming applications and BitTor-
rent as P2P ones. In order to narrow down the network features of the dataset that are most
suitable for separating network flows the authors focus on the level of variance they exhibit
and how uniquely they can be related to specific applications. After determining the appro-
priate features, the filtered data are fed into a multi-stage classifier that progressively tries to
determine the type and category of application. An interesting configuration by the authors
is that each classifier uses network features based on a different number of packets and is
therefore better tailored to classify specific categories of applications. The concept behind
this configuration is that the network traffic generated by each type of applications does not
require the same number of packets so as to be uniquely identified. For example, an HTTP
web flow only needs a few initial packets to identify the application type since the rest of
the traffic will be the actual content of the web page. Based on their implementation, the
authors can identify applications from their training set with an 88% accuracy although the
method has not been verified against encrypted network flows.
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Another research in the statistical section that focused directly on specific applications
and not the category they fall into is presented by Amac et al [31]. The authors suggest
that a direct classification of applications is important for the security implications specific
apps present and believe that a statistical machine learning approach is the most promising
one. Their architecture follows a typical supervised learning method which includes a la-
beled dataset containing network flows from various applications, a feature extractor and a
classifier that is fed the features as training data. For the research, the UNB ISCX Network
Traffic dataset was used as well as a smaller internally made that included the most recent
and widely used social applications. After trying various machine learning algorithms as
well as different combinations of network features, the authors were able to achieve an av-
erage 87% accuracy on all network flows. However, they observed the phenomenon where
some applications had poor performance and were misclassified as other applications serv-
ing the same purpose. The main reason behind it is that applications such as WhatsApp and
Skype have very similar network flows since they have a very similar behavior and therefore
increase the number of misclassifications.

A hybrid approach to identify application traffic is introduced by Y. Won et al [32]. The
authors propose a model that has two steps into the identification, a signature matching and
a session behavior mapping. The suggested signatures are patterns of hexadecimal digits
or strings that can be found in the payload of a packet. A signature is divided into two
categories, a packet signature that includes the port number, protocol and specific strings in
the header and a behavior signature that includes connection information such as number
of protocols and packet burst period. When a new packet is analyzed, its signatures are ex-
tracted and compared to signatures from known applications. If there is a match, the packet
is allocated to that application and the signature baseline is updated. If there is not an ap-
plication that matches with a high probability then the session behavior mapping part of the
model is enabled. In this case, packets are correlated to previously known processed pack-
ets if they share the same origin IP address and port number. The network traffic used to
test the hybrid model was obtained by the POSTTECH university network in the timespan
of 1 hour. Apart from the typical validation approaches in these cases, where labeled data
are used as unknown to calculate the accuracy of the approach the authors introduce a port
related angle. Once all traffic was assigned to specific applications, the port dependency ra-
tio (PDR) was calculated in order to observe specific patterns of port usage by applications.
The results indeed verify that a number of applications are designed to allocate ports that
are close in between them as well as specific ports based on application specific protocols.
Of course, there are cases where the port distribution is too noisy to provide meaningful
insight. Such an approach however can indicate whether a specific applications uses a fixed
port for its network traffic and therefore verify or not the application identification results.

From the aforementioned papers, it is shown that there is a wide range of tailored so-
lutions toward application network identification that rely on either content analysis or sta-
tistical analysis. When it comes to content analysis either payload or packet header, the
lack of implementations that take into consideration encrypted traffic can be a problem. A
considerable amount of traffic generated by applications especially the control packets that
establish the communication of the application with a server are encrypted. Apart from that,
the ideas presented and some details in their frameworks will contribute to the application
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identification approach presented in this thesis. Regarding the statistical analysis ideas, the
main obstacle is the lack of a scaling implementation. The need for prior analysis of appli-
cation in order to identify them later is a great problem for a large organization. Moreover,
the requirement of labeled data narrows dows the evaluation of such methods to systems tai-
lored by the researchers. Despite these problems, the analytic related papers provide great
insight on the network behavior of applications that will contribute to the comprehension of
results from the identification approach implemented in the later stages of the thesis.

3.2 Network Intrusion and Anomaly Detection

Intrusion and prevention detection systems are key elements of the cyber security of an
organization network. Such systems are configured to monitor the network in order to
identify potential cyber threats or risks based on various methods. Since the goal of the
thesis is to implement a system regarding network anomalies and before diving into the user
behavior anomalies, the existing methodologies and knowledge around anomaly detection
needs to be established.

Although there have been various research proposals on anomaly and intrusion detection
systems, all the proposed ideas are based on four main methodologies. An overview of these
four main methods is presented by Mudzingwa et al [33]. As displayed in Figure 3.1, the
methodologies can be broken down to three distinct ones and a final method which is a
combination of the rest. All of them share the same architecture and differentiate only
on the method of information analysis and determining whether there is a violation. The
architecture was developed by the IDWG [34] (Intrusion Detection Working Group), has
four functional modules as show in Figure 3.2 and consists of the following blocks:

• E Blocks (Event): This type of blocks are responsible for monitoring and collecting
the information from the target network.

• D blocks (Database): Blocks that are used to store the information from E blocks for
further analysis by A and R blocks.

• A Blocks (Analysis): Processing modules that analyze the provided information in
order to determine whether there is an anomaly.

• R Blocks (Response): Blocks that are responsible for responding to intrusions and
block then.

The Signature based methodology seeks for defined patterns, or signatures, when pro-
cessing the analyzed data. These signatures are defined a priori and can be related to attacks
ranging from malware to network malicious actions. When a signature is observed in the
network that matches the malicious defined ones an alert is raised. Some of the benefits
of signature based methods is the fact that they are fast and easy to deploy since there is
no model training period as there is for some of the following methods. The system only
searches through the dataset and compares to a known signature list. Despite the small over-
head and the high accuracy to known attacks, the method has a number of disadvantages.
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Figure 3.1: Intrusion Detection Overview

Figure 3.2: Intrusion System Architecture
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The comparison of new elements to a pre-defined set of information automatically means
that the method is unable to detect new attacks or at least attacks that are not included in the
set. This can occur when an attacker modifies a known attack so as to evade the system or
the person who is responsible for the intrusion detection set has not updated it.

The Stateful Protocol Analysis based methodology operates by comparing identified
protocol profiles against the monitored network behavior. These profiles are designed and
determined by vendors and industry leaders as the accepted definition of benign activity.
In this category fall the communication protocols of various applications and their normal
protocol flow e.g. every request needs to have an a predictable response and those that fall
outside of the expected result are flagged. This methodology is similar to the signature
based one with the difference that it has a better and deeper understanding of how protocols
and applications are supposed to work. However, it introduces some limitations such as
the inability to detect an attacker who is able to exploit the system without diverging from
the normal protocol behavior. Similarly as before, the requirement of a pre-defined set of
protocol profiles can introduce problems for the methodology.

The Anomaly based methodology compares the monitored network behavior against
established baseline profiles. Such profiles are created during the learning period where the
method trains a model based on normal network behavior of the analyzed environment. The
used profile can be either dynamic or static. A static profile is created before the monitoring
phase of the system and does not change while the dynamic profile is updating throughout
the monitoring phase. This methodology is able to detect zero-day attacks with a high
accuracy as well as identify anomalies closer to the human nature and less technical related.
However, when a static profile is creating the number of false positives is high since a user
can change his normal behavior and misidentified by the system. At the same time, when
a dynamic profile is used an attacker can spread the attack over a long period of time and
as a result make the attack part of the profile. For these reasons, great attention need to be
paid to the used training model and its configuration so as to exploit the advantages of such
automated modeling approaches with the minimum number of errors

Because of the static nature of the first two methodologies and the highly dynamic as-
pect of user network behavior, the anomaly based methodology is the one that is going to be
used for the purpose of the thesis. Moreover, Signature based or a Stateful Protocol based
approaches are only able to detect anomalies that have been observed before and are only
connected to well known attacks. However, anomalies in the human behavior can be unpre-
dictable and very hard to relate to specific network attacks.
There is a number of different anomaly detection algorithms based on the machine learn-
ing approach used or the distinct variables configuration. However, all the algorithms fall
into some generic categories. A review on the available categories regarding the anomaly
based intrusion detection is presented by Jones et al [35]. The authors divide anomaly de-
tection methods into two main categories, learning-based and specification-based ones. The
specification-based methods which are protocol based, state-based and transaction-based
fall into the general category of approaches which have a static nature. For this reason, they
are not part of the analysis. On the other hand, the learning-based methods are based on
the application of machine-learning techniques or statistical methods to define a model of
normal behavior. Extensive work on anomaly detection and the learning methods has also
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been conducted in [36, 37]. A combined overview of the methods that can contribute to the
thesis is presented in Fig 3.1.

3.2.1 Statistical based anomaly detection

In statistical-based anomaly detection techniques, the system traffic is captured and user
actions are observed in order to create profiles that reflect network behavior. The profiles
refer to features such as number of packets, traffic volume, number of connections etc.
During the anomaly detection process there are two different profiles that are used for the
classification. A stored behavior profile that is trained by using the previous seen network
traffic data and the current profile. As network events occur, the current profile is compared
with the stored one in order to measure how much the current network activity diverges
from the one seen before. The degree of irregularity on the behavior is the metric used to
classify it as abnormal if it surpasses a specific threshold.

Statistical approaches have a few advantages when applying intruction detection. An
important benefit is the lack of need for prior knowledge about the previous network be-
havior. The models are able to learn the expected normal behavior through observing the
network. Moreover, statistical-based methods have a good accuracy when it comes to at-
tacks occurring over long period of time and are good indicators of denial-of-service (DoS)
attacks. Despite the advantages, the methods also present a few flaws in their approach.
The most fundamental problem comes with the concept of a statistical approach. User be-
havior can be rather random and translating it into a normal distribution can be a challenge.
However, statistical approaches require a distribution that will be used to compare features
and decide on the classification. Therefore, the approach can be sensitive to data that easily
change and therefore increase the detection errors. Furthermore, it can be difficult to define
the threshold between normal and abnormal behavior and create a balance between false
positives and false negatives. Moreover, an attacker is able to evade the system by perform-
ing an attack whose features fall into the acceptable levels of normal behavior. Below a
few research papers around statistical-based anomaly detection related to the concept of the
thesis are presented.

A histogram-based traffic anomaly detection methodology is proposed by Kind et al
[38]. The authors construct histograms in order to describe the characteristics of traffic fea-
tures and gain insight on the distribution of the features. The network featured used are the
typical network information extracted from a packet header e.g. source IP, destination IP,
port number. For each feature the authors created a set of training histograms containing
normal network behavior which are mapped into a metric space. The space was created in
such a way that similar histograms have a small distance and dissimilar ones are far away. In
order to measure the distance between histograms the authors tried different distance met-
rics in order to take into consideration the variance and the value range of each histogram.
As a next step, a clustering algorithm is applied in order to cluster similar histograms to-
gether. Any new incoming traffic will be translated into a vector that will be compared with
the existing clusters. if the vector falls within the clusters then the behavior is considered
normal. Otherwise, the behavior is considered abnormal and the severity of the anomalous
behavior is measured by the distance of the vector from the clusters. In order to evaluate
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the framework, a trace of NetFlow packets from the IBM Research campus at Zurich and a
trace from a data center with high-volume websites were used. After optimizing the config-
urations of histograms as well as various clustering parameters, the framework was able to
detect 13 out of 15 attacks which included port scanning, worm propagation, mail bombs
and system fingerprinintg. However as the authors point out, there is a medium number of
false positives with a small distance from the clusters that can be mitigated with an opti-
mization on the distance threshold for raising alarm which they suggest as future work. In
general, a histogram-based approach as well as a distance metric similarity of them is an
interesting approach on anomaly network detection.

Limthong et al [39] identify anomalous activities from unwanted traffic data through
Discrete Wavelet Transform (DWT) techniques. The suggested methodology is to interpret
packets into a wavelet function since wavelets achieve good frequency resolution at low
frequencies and good time resolution at high frequencies. Therefore, a decomposition of
a wavelet that contains abnormal elements will bring them to the surface. Based on the
authors, the abnormal activity that needs to be identified on the network consists of spe-
cific packets that are translated into known type of attacks. More specifically, the network
domain taken into consideration is the traffic in the Darknet and the type of packets are
TCP SYN, TCP SYN/ACK and UDP packets. The types of attacks that can be detected
through this method include port scanners, backscatter and flooding attacks. After generat-
ing the wavelets based on the distribution of the three specified type of packets, the authors
perform a wavelet decomposition in order to gain insight on how clearly attacks can be
identified. After experimenting with various values for the time interval and wavelet levels
the authors are able to identify abnormalities in the wavelet decomposition that can lead to
the detection of attacks.

Beach et al [40] propose a framework that detects anomalous behavior through fore-
casting algorithms on the network packet header information. By using a network dataset
from Fermi Lab that spanned one day, the authors were able to exhibit specific cases of
malicious network behavior and their unique characteristics. After filtering the dataset into
flows based on the IP addresses and ports, they applied the Holt-Winters algorithm in order
to predict the future values of network traffic. When a value highly deviated from a defined
threshold it was considered as an anomaly. Moreover to increase the accuracy and validity
of the results they enforced a sliding window on each examined value and when the number
of anomalies around it was above a specific number then the value was indeed considered as
an anomaly. On the results section, the authors describe specific cases of abnormal behavior
with increasing complexity that need to be taken into consideration for our research as well.
They describe cases such a simple one-variable abnormality based on one port activity and
the importance of seasonal effects on a network and how they can be misconcepted as ab-
normalities without proper scaling on the analysis. Moreover, they demonstrate cases where
network port actions need to be correlated in order to get meaningful insight on malicious
events on the network.

Ding et al [41] try to describe the characteristics of a network and identify abnormal
patterns with the usage of a Traffic Matrix (TM). A TM consists of all the flows inside the
network between nodes. Each row represents the network activity of a node towards the
rest. Since such a representation can have a sparsity problem on a large scale network the
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authors apply a principal component analysis (PCA) to analyze effectively the TM. After
performing the PCA, the dataset is structured in a way where the first principal component
value contains the highest amount of information. In order to define a network flow as
anomalous, the authors use two parameters a dissimilarity metric and an anomaly score.
The dissimilarity metric of a node is based on the distance between the PCA values on the
node from the rest of the set. The anomaly score is defined as the ratio of the projection
of data onto the first principal component value. After calculating the scale of these two
parameters and understanding the normal range of values, a flow of a node is considered
anomalous when one of its two parameters is out of the normal scale. The authors decided
to use these two parameters in order to increase the accuracy of their algorithm and decrease
the false positives. When compared to other existing anomaly approaches, their suggested
framework has a smaller percentage in False Positives and False Negatives. However, the
creating of a matrix to represent the network flows of a monitoring environment introduces
a scaling problem that decreases the efficiency of the approach.

3.2.2 Machine learning based anomaly detection

In machine learning-based anomaly detection techniques, traffic is collected, properly fil-
tered and provided as input to a machine learning algorithm. In general machine learning
algorithms require a training dataset as input that will provide information on what is the
expected output values, in this case expected behavior, and will try to optimize their per-
formance with the goal of predicting such behavior. Unlike statistical approaches, machine
learning methods adapt and improve their performance based on every new incoming in-
formation. This dynamic adaption advantage comes in the price of a resource expensive
procedure to train a machine learning algorithm which is also the main disadvantage. In
most of the cases, a rich labeled dataset is required for an algorithm to perform efficiently
and the acquisition of such a dataset can be an obstacle. Machine learning algorithms can
be separated in two main categories, supervised and unsupervised learning. The first case
includes all the methods that require a labeled dataset for the training phase. On the other
hand, the second case includes algorithms that are able to perform an analysis on an un-
labeled dataset. Because of the extensive amount of research on machine learning based
anomaly detection in general, it is more useful to provide a general overview of the differ-
ent algorithms used. Moreover, two selected papers on machine learning anomaly detection
that focus on unlabeled data and contribute to the concept of the thesis are presented in
detail.

As seen in Figure 3.1 there are 5 main machine learning approaches that are applied on
anomaly detection. Each approach is using a different method to tackle machine learning
problems as well as a different type of dataset to achieve that.

A Bayesian network is a probabilistic model that represents a set of random variables
and their conditional dependencies. Because of the representations of interdependencies
between variables, a Bayesian network is useful when part of the data are missing. More-
over, the use of acyclic graphs to create a Bayesian network introduces casual relation-
ships between nodes which can be translated into consequences of specific network actions.
In general, Bayesian networks have been used in intrusion detection alongside statistical
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schemes. However, based on Kruegel et al [42], they exhibit similar results with statisti-
cal approaches while requiring higher computational effort. Moreover, the classification
of anomalies is highly dependent on the values that are considered normal on the created
probability table.

A Markov Chain is a stochastic model used to model a system with the assumption that
future states can be solely defined based on the current state. Markov chains have been
highly used in anomaly detection because of their ability to represent event sequences and
translate them into a graph of nodes. By analyzing such a dataset of event sequences, a
Markov chain model calculates the probability of an action occurring based on the current
state. When an action with a low probability based on the model occurs then it is more likely
to be considered anomalous. One major drawback of Markov Models is the high increase
in computational requirements as the number of network connections between nodes that
are going to be included increases as well.

Neural Networks have been used in anomaly and intruction detection because of the
adaptivity and flexibility they exhibit to changes.One main advantage of neural networks is
their ability to predict a value using imprecise data that include a certain degree of uncer-
tainty. However, most neural networks fall into the category of supervised learning and thus
are out of the scope of the thesis.

Genetic algorithms are used to solve optimization and search problems based on the
concept of evolutionary computation. Such algorithms are used in anomaly detection mostly
to decide on optimal features and parameters that will be further used for the detection
process. The efficiency of genetic algorithms on deciding optimal parameters is based on
the mutation and crossover steps of the algorithm and has seen success on the network
anomaly detection.

The final category of machine learning algorithms are clustering and outliers. As the
name suggests, observed data are grouped into clusters based on a similarity or distance
metric calculated from their features. In anomaly detection applications, outliers or small
clusters can be considered as data that appear with a smaller frequency or have a specific
feature value that makes them stand out of the perceived normal behavior. An important
advantage of clustering algorithm is the lack of need for labeled data since they focus on
the existing observed data and their in-between similarity so as to define what is abnormal.

Portnoy et al [43] present a clustering-based anomaly detection algorithm that uses un-
labeled data. The authors decide to investigate the efficiency of unsupervised algorithms
since as they state there is an abundance of proposed supervised machine learning detection
algorithms. The dataset used for the clustering is derived from the KDD Cup 1999 Data that
contained a variety of intructions simulated in a military network environment. From the
dataset the authors extracted network features of TCP connections such as duration, proto-
col type, traffic volume, number of connections. However, they ignore the label provided
by the dataset so as to exclude the information whether a connection is part of an attack or
not. In order to perform a clustering algorithm, the connections are compared on a space
created based on their features and the Euclidian distance is as metric. The motivation be-
hind clustering is the assumption that normal and anomalous traffic form different clusters
in space. After applying the single-linkage clustering algorithm, clusters of connections are
creating and based on the number of cluster members they are labeled as normal or abnor-
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mal ones. When the training and clustering is completed, a test set is provided where each
new connection is labeled based on the label of its closest cluster. The authors examine
all the possible parameters that can optimize a clustering algorithm as well as the network
context information of a dataset and how it can affect the results. On their evaluation, they
determine that the percentage of normal and abnormal connections in the training set plays
an important role on the final accuracy of the algorithm as well as the balance between
detection and false positive rate can be a challenge. Moreover, the authors state that this
approach is unable to detect malicious intent of authorized users and focuses on known net-
work attacks. Despite these potential problems, their proposal has promising efficiency and
the lack of need for a labeled dataset makes it an attractive solution. The experiments and
the analysis on this paper provides great insight on the potential obstacles to consider and
how the focus of this thesis can overcome these obstacles and limitations.

A similar research regarding the clustering aspect is presented by Munz et al [44]. The
authors apply a flow-based anomaly detection based on the K-means clustering algorithm.
The approach is also based on the same assumption that flows on normal and abnormal
behavior will form different clusters. In this case, the authors try to detect time intervals
in which the network traffic is abnormal. The established steps of filtering and feature
extraction are applied on the training data where the features are the total number of packets,
total number of bytes and number of different source-destination pairs. An important aspect
of the research is the labeling of traffic based on the port used in order to cluster traffic based
on specific services e.g Port 80 traffic is clustered as Web Traffic. However, if a non-known
port is used for the connection then the flow is clustered in the generic TCP, UDP or ICMP
traffic. After the k-mean clustering algorithm is applied, clusters of flows are created based
on their assigned service. In order to define if a cluster is normal or abnormal the authors
decide to use heuristics such as the average number in packets instead of simply the size
of a cluster. After that, the classification of new incoming flows as normal or abnormal
is based on two different factors. The first one is the distance of the new traffic from all
the cluster centroids and the classification is based on the label of the closest cluster. The
second one is the outlier detection where new traffic is labeled based on the distance from
normal labeled clusters only. Finally the authors suggest that a combined approach will
yield the best results. On the evaluation aspect, the authors create two datasets a testbed
with a known flood attack injected and a dataset from a student residential network from
the University of Twente. As expected the first dataset exhibits a good performance and
is able to identify the flood attack based on the network features monitored. However, the
second dataset that is closer to real network traffic has a few challenges. Because of the
simplistic approach on the service labeling and only considering the known ports, most of
the traffic was unknown since high number ports are used nowadays by many applications.
This resulted in traffic generated by applications to be classified as abnormal because of the
high amount of traffic generated. In general, the authors present the feasibility of K-means
clustering which is considered an expensive algorithm resource-wise and the obstacles they
face give motivation for the novelty of the approach on the thesis.
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3.3 User Network Behavior Analysis

The research methods in which application traffic can be classified inside a vast amount
of network traffic have been presented. Moreover, the concept of anomaly detection on a
network level has been analyzed and the possible approaches have been presented. The final
concept of the thesis is the user network behavior aspect and how from a general anomaly
detection perspective the focus can be directed into the actual user behavior. There has
not been a great deal of research work on user network behavior combined with anomaly
detection but this only gives more motivation to pursue this aspect.

Before presenting the user network behavior aspect, the work of G. Wu et al [45] gives
a better understanding of the application network behavior and its consistency. The authors
propose a framework to capture and characterize the network behavior of applications in
order to validate their behavioral consistency. The authors suggest that normal applications
that fall into the same general category e.g. social media, music, news will exhibit similar
network behavior. Their goal is to identify malware applications by observing deviations
when compared to the normal behavior model of the category in which they claim to be.
The suggested architecture consists of a testbed platform that will generate the application
network traffic and a machine learning model that will receive the traffic as training input.
The testbed component is a scenario generator that simulates all application related actions
which are UI interactions, application changes and hardware changes. By monitoring and
capturing the network traffic generated when applying a random combination of these sce-
narios the training dataset is created. To perform the experiment, the author used a group of
the mostly downloaded android application on the Chinese download platform HiAPK as
well as a number of known malware applications. The network features that are extracting
from the traffic are the number of bytes sent and received, the number of concurrent connec-
tions during each test scenario as well as the connection duration. Afterwards, the extracted
network features are fed into a recurrent neural network (RNN) that tries to model the appli-
cation behavior. The results of the research are quite promising since malware applications
exhibit a behavior that is greatly different from the normal app behavior. Moreover, the
behavior models consistency is acceptable although the scale of the experiments and the
variety of applications is not that broad. Such results provide insight on the expected appli-
cation behaviors on the network and their consistency and is a good guideline for our own
research.

From a user network behavior aspect, the core idea of such a model has been presented
on a high level by Kim et al [46]. The authors describe a framework that collects the network
traffic of users inside a BYOD environment and forwards it to a user analysis system. The
network traffic gathered from each device is used to reflect the user behavior and contains
contextual information such as device used, time of connection and type of application
traffic generated. All these contextual information are used to craft a user profile based
on which a normal behavior is created. When the user diverges from the normal behavior
model created specifically for him then an abnormal behavior alert is generated. Although,
the suggested model is on a very high level and no specific details are presented, this core
idea is closely related to the thesis.

Zhang et al [47] approach anomaly detection on user network behavior through cross
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entropy analysis. The authors focus on user behavior on a group level and not on a per user
scale and thus consider a user flow which is the aggregated behavior of all the users in the
network. The proposed method is to analyze the distribution of user flow over time in order
to classify monitored days into normal and abnormal ones which are weekend and holiday.
The user behavior distribution is calculated through the entropy of the network traffic which
is expected to be higher in abnormal days since the human behavior on the network is not as
static as a normal day of the week. To evaluate the method, a dataset of WiFi network traffic
was collected in three different scenarios, a university campus, an office and a hotel. The
dataset consists of the MAC address of a device and a timestamp of the connection time. The
authors propose two models based on cross entropy to calculate the distribution of traffic, a
simple cross entropy method to split the traffic and an enhanced one that uses fuzzy logic to
classify traffic more accurately. After training the model and trying various values for the
classification threshold the authors were able to successfully identify anomalies based on
the high entropy off-days presented. Both models exhibit a distinct shift in the user network
behavior over the weekend and holidays compared to normal weekdays.

An anomaly detection model of network user behavior based on the Artificial Immunity
System (AIS) [48] is suggested by Zhang et al [49]. Because of the AIS characteristics
of self-adaptation, immune feedback and diversity the authors believe it will be suitable
to detect the dynamic behavior of users. In order for the model to work, all the network
elements need to be translated into the parts of an AIS system. For this reason, normal
and abnormal behavior, a detector and a simulated network dataset need to be provided
to the AIS system. For the purpose of the research, the authors simulated a network of a
few computers visiting random websites for a few hours and then configured five of the
machines to perform a varying size flood attack. From each packet of the network traffic
that was generated, a signature from the packet header was extracted and transformed into a
binary string. These strings, both normal and abnormal, were fed into the AIS and a detector
was trained. Although the model has a small scale dataset, the false alarm rate is close to
5% and the model introduces a new perspective for user network behavior analysis.

Wei et al [50] propose a user network behavior model through a scenario based graph
analysis approach. The authors create a graph representation of the user browser actions
in order to model his behavior. Despite the large number of identifiers on a browser con-
nection between a user and a server, most of them exist only during the initialization of the
connection. However, a session id cookie is persistent and most of the times used to keep
a connection alive. Therefore, the authors suggest that a session id is the suitable string
to be Fused to bind a network flow to an application. The graph model consists of nodes
which are the resources used during the user browsing. Such resources are the response
data of the server and include images, ad traffic and raw application data. Resource nodes
are connected by edges that represent the user action e.g click, login and have a correspond-
ing session id attached to them. Consequently, a user behavior pattern is the sequence of
nodes that are connected through edges with the same session id. After creating the user
behavior patterns, the authors simulated a few scenario around browser actions. After the
creation of the graph based on those scenarios, a clustering algorithm was applied to create
groups of resource nodes that are close enough and are considered part of the same session
connection. To characterize a user behavior pattern as a specific scenario, the user behavior
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patterns are compared to the clusters of resource nodes by comparing the contained nodes
in each element. For the evaluation of the approach, a simulation website was made with
four basic functions agenda management, personnel management, system management and
document management. The suggested approach is able to identify simple scenarios with
a high success rate but has less success against scenarios that create noisy traffic. A graph
based approach on user behavior can provide insight on specific user patterns but lacks the
ability to properly scale for multiple applications as well as the ability to cope with noisy
traffic.

Kang et al [51] propose a anomaly detection model based on user behavior by using
Bayesian Inference. In order to create the model, the authors decide to focus on information
that are not directly related to network information. Their dataset consists of user behavior
information such as duration of connection, time of connection, location of the user, type of
device used which are considered as a sequence of actions. The behavior model that uses
this type of information is based on Bayesian Theory and tries to calculate the probability of
an action occurring by taking into consideration the actions before that one. In such a way, a
probability matrix is calculated for each action and used to detect abnormal behavior. Each
row in the probability matrix denotes the chances of an action occurring if another one has
occurred before. Therefore, by observing the sequence of the aforementioned user behavior
actions the values in the matrix can be updated to try and predict the behavior. If a sequence
of actions has a low probability value then it is classified as abnormal. As the authors state a
framework that models human behavior is challenging since humans can be unpredictable.
In their evaluation phase, the authors created a virtual enterprise business system with a total
of 5 users with 500 connections each to train the model. However, the final results display a
large degree of variance on the behavior and therefore the probability matrix is not reliable
enough.

Vaarandi et al [52] propose two algorithms to detect anomalous traffic in an organiza-
tional private network by creating user behavior profiles. Both of their suggestions are based
on the services used by an employee inside the network. As service the authors define the
tuple of information (IP address, port number, transport protocol ID). Moreover, the authors
performed a service analysis on the network to get a better understanding of what services
exist, the frequency of their usage and the amount of active users. The dataset consists of
NetFlow data from a private backbone network of a large financial institution. Both of the
suggested algorithms utilize a service detection method to identify TCP and UDP based net-
work services from the recent past. This information is aggregated and used to generate user
behavior profiles. The first algorithm is based on the frequency of a service in a user profile
and how likely it is to reappear in the future. Therefore, when a new service appears that has
a low frequency or has never emerged in the user profile before it is considered abnormal.
An interesting finding by the authors is that several services while being widely used in the
organization displayed a varying frequency on each individual profile. Based on them, such
services should also be included the user profile and not be mistaken as abnormal. As a
result, the combination of a user profile and a list of widely used services is compared with
new services in order to classify them. The second algorithm proposed by the authors is
a clustering algorithm that tries to combine user profiles that exhibit similar service usage.
When a cluster member demonstrates a new service usage and it does not correlate with
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the rest of the members service activity then it is considered abnormal. With these two
approach the authors were able to identify misconfigured devices, rogue SSH connections,
anomalous end user actions as well as a number of cases where cluster members did not
consume a service used by the rest of the nodes in the cluster. This research is closely re-
lated to our approach with a difference on the scope of network traffic. In this thesis, the
focus is on services on an application level and the combination of network flows if they
are part of the same application traffic. In such a way, better insight on the user behavioral
patterns as well as a more accurate anomaly detection can be potentially achieved.

3.4 Related Work Overview

From the mobile application identification perspective, both presented approaches have cer-
tain limitations. However, the attribute of scaling is an important one when it comes to an
organization network. Therefore the payload-based approach is selected for this research
and an identification algorithm that correlates network traffic to specific mobile applications
is introduced. Moreover, the algorithm tackles an important obstacle mentioned in related
work, the omission of encrypted traffic with a novel string similarity based approach.
The aspect of user behavior on a network level can be challenging since the creation of such
a model is not an easy task. As mentioned by various researchers, their proposed machine
learning algorithms have difficulties to create a model to reflect user behavior because of
its dynamic nature. This translates into data that have a high variance and are not easily
grouped together into models that are not sufficiently robust. More specifically on the sec-
tor of clustering algorithms which is the focus of the thesis, related work has applied almost
exclusively algorithms such as k-means that are prone to errors when it comes to noise
and outliers. Moreover, such algorithms pre-define the number of clusters before execution
which limits the output efficiency. Finally, most of the focus has been on supervised cluster-
ing algorithms that require a labeled dataset and focuses on known network attacks instead
not the human related ones. Thus, there is room for improvement and lack of applied work
in the sector of anomaly detection and more importantly on the utilization of unsupervised
machine learning techniques. All of these points are the inspiration and guideline for the
decisions made in the proposed framework. The work conducted on this thesis tries to fill
that gap and provide a different more flexible approach on clustering with the goal of behav-
ior analysis and anomaly detection. Moreover, the proposed framework is evaluated using
real scenarios of user behavior related anomalies so as to prove the feasibility of such an
approach.
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Chapter 4

Dataset Collection & Analysis

The goal of the proposed framework is to analyze network traffic related to mobile appli-
cations and utilize it to train a clustering algorithm that will reflect user network behavior.
However, raw network traffic has an abundance of information a part of which is unrelated
with the goal of the thesis and therefore out of scope. When it comes to machine learning
algorithms, a well defined and formulated dataset is an important part of the algorithm effi-
ciency. For this reason, the dataset has to go through different filtering processes. Moreover,
the application identification algorithm is applied to separate the traffic into meaningful sets
of information based on the application to which they belong. Finally, an analysis of the
state of the network traffic after these steps and possible challenges as stated in related work
are explored. An overview of the steps described in this chapter are presented in Figure 4.1.

Figure 4.1: Network Traffic Collection and Filtering

4.1 Network Traffic Collection

For the purpose of the research, the network traffic from a large private organization was
captured for a period of 2 weeks. The network traffic was captured and stored with the use of
port mirroring and included exclusively the Wi-Fi traffic generated by company employees
mobile devices. This resulted on a daily average of 1480 unique internal IP addresses and
a total of 3.2TB monitored network traffic throughout the 2 weeks. All the internal IP
addresses were properly anonymized by hashing each address combined with salt before
usage so that there can be no connection between an IP address and a specific employee.
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However, the network traffic generated by users is initially in raw pcap format. An
analysis on a network packet level would provide low level network information, e.g, traffic
bandwidth based on assigned intervals which is not closely related to the concept of user
actions on the network. Such an approach would be preferred if we were to monitor the net-
work and identify generic changes in traffic which is not the case in the thesis. This means
that it is preferable for packets to be aggregated on meaningful groups and their combined
network features used to extract information from the network. Therefore, a suitable format
of the dataset that can facilitate the analysis on a level higher than the network packet one is
required. For this purpose, the concept of network sessions is introduced. A session object
is defined as a stream of IP packets aggregated based on a shared IP five-tuple (protocol,
source IP address, source IP port, destination IP address, destination IP port). Based on
the network characteristics and headers of the aggregated packets, each session object is
an instance of a connection between a user and a mobile application and contains general
network information. The sessions provide a good reflection of user actions on the network
and their network features can prove to be useful as features for the proposed model. Such
information are the number of packets received and sent, the duration of the session as well
as the transport layer protocol.

Moreover, each application level protocol has its own established rules and requires
the exchange of clearly defined information between the parties during a connection. All
of this information construct a rich set of data regarding the network traffic and will be
extracted from the pcap file and embedded in each session so as to be used in the applica-
tion identification algorithm. More specifically in the case of encrypted traffic, application
related information exchanged by the two parties are required such as SSL certificates or
specific header fields. When it comes to unecrypted traffic, HTTP related information avail-
able through the packet headers are of interest. Finally, the DNS protocol provides useful
information when it comes to correlating IP addresses to known applications.

Therefore a tool that will transform the pcap file from a set of packets into sessions and
provide all the aforementioned information is required. After examining the available net-
work monitor frameworks that provide this functionality, the open source network analysis
framework Bro [53] is chosen. Bro provides detailed analyzers regarding many protocols
such as HTTP, SSL, DNS. When the framework is provided with a pcap file as input, the file
is parsed and network sessions are detected and created. For each network session based on
its network protocol detailed information are stored in multiple logging files different for
each protocol.

4.2 Network Traffic Filtering

When it comes to network traffic in an large organization, various protocols and type of
sessions are expected to be found in the network. This translates into network traffic that
includes many different network protocols either on an application or transport layer. Since
the scope of the research is on a mobile application level, a fitting filtering of the sessions
is required to remove unrelated traffic. By keeping only traffic that is expected to orig-
inate from a mobile application we facilitate the application identification algorithm and
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minimize the cases where a flow is misclassified or remains unknown.
First of all, on a transport layer level the only protocols that include traffic which is

related to mobile application are the TCP, UDP and QUIC protocol. Although the vast
majority of applications utilize the TCP protocol for their connections, some applications
use the UDP and QUIC protocol and therefore they are included. A number of ICMP
packets were discovered in the monitored traffic but based on the ICMP protocol usage they
are not expected to contribute information meaningful to a behavior analysis concept. As a
result, only the TCP, UDP and QUIC network sessions are taken into consideration for our
dataset.

Moving to the application layer, there are various protocols each one defined for a differ-
ent purpose. The Internet Assigned Numbers Authority (IANA) is responsible for maintain-
ing the official assignments of port numbers for specific uses. Network ports are separated
in three categories regarding their use based on their values. The three categories are:

• Well known ports: The port numbers range from 0 to 1023. They are used by system
processes that provide widely used types of network services.

• Registered ports: The port numbers range from 1024 to 49151. They are assigned
by IANA for specific service upon application by a requesting entity.

• Dynamic, private ports: The port numbers range from 49152 to 65535. This range
is used for private, or customized services or temporary purposes.

After examining the purpose and usage of services in the well known port range, it
is clear that a large amount of them are not related to mobile applications. As a result
such traffic can be excluded to further clear the final dataset. After an analysis on the
destination ports and different services found in our dataset, the vast majority of traffic
related to mobile applications has as destination the ports 80 and 443. Apart from these two,
the only other ports used that were related to encrypted versions of mailing services. The
protocols and the port numbers in that range that are useful for the research are presented
in table 4.1. In addition, more and more mobile applications utilize ports on the two other
range values for their custom tailored functionalities. A few examples of known applications
found in the analyzed traffic are WhatsApp which uses the protocol XMPP and port 5222
for its connections, Facebook that uses sometimes port 3478 for STUN protocol related
communication services and Spotify that occupies port 4070 for its connections. In order to
avoid excluding network traffic that can provide information regarding mobile applications
all ports on the registered and dynamic port range values are accepted. As a result, sessions
that do not have a destination port included in table 4.1, in the range of registered port or in
the range private ports are filtered out.

Finally, the duration of a session is considered as whether the session should be in-
cluded in the dataset or not. The phenomena of very short connections with a small amount
of traffic can negatively affect the dataset during the analysis if the information they contain
are not actually related to user actions. Scenarios of such short connections are when a
device is trying to establish a connection with a server but the connection is dropped pre-
maturely or reset which means that this traffic is not important for the analysis and can be
discarded. However, there are a few cases of short connections that could provide useful
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Table 4.1: Application Layer Protocols

Protocol Name Protocol Port
smtp 25, 465
http 80
ssl 443
quic 443
imap (over ssl) 993
pop3 (over ssl) 995

information such as app API calls. The Bro framework provides alongside each session a
state field based on the content of specific communication protocol packets. The state gives
an overview of why the connection ended, e.g, server never responded to client request
or server responded but client dropped the connection. To identify which of these scenar-
ios actually occur and whether it is safe to exclude such malformed session, an analysis is
performed on the captured traffic.

For every day of captured traffic, an average of 1,253,512 network sessions are recorded.
In order to decide on a session duration threshold, an analysis on the dataset was performed
based on the duration and the Bro state field. The threshold that gave the minimum number
of normal connections discarded and the maximum number of malformed sessions dropped
is 500 milliseconds. To further verify what type of traffic is exactly excluded based on this
threshold, all the sessions with a duration less than 500 milliseconds are extracted from
the dataset. This resulted in a total of of 984,239 sessions which sums up to a 7.8% of
our total collected traffic. Out of these sessions, 836,603 (85.0%) are malformed sessions
based on Bro provided states and 147,636 (15.0%) are session with normal establishment
and termination.

Therefore the majority of short sessions are indeed connections that were not properly
established. However, to verify that no useful information is discarded, we look for repeat-
ing patterns in the destination IP addresses of these 147,636 sessions that would indicate the
use of an application specific functionality on such a short time. The sessions had a total of
35,348 unique destination IP addresses. To understand how often the same IP address ap-
peared on a session the distribution of sessions belonging to a specific destination IP address
are presented in table 4.2. The overwhelming majority of sessions refer to a destination IP
address only once. Moreover, there are a few addresses that reappear on a rather small
amount of sessions but after manual inspection most of them refer to revisiting websites.
Finally, two specific addresses stand out because they appear very often on sessions. After
manual analysis, the two destination IP addresses that highly stand out belong to specific
company-related services on the employee devices which are not stated for privacy reasons.
Considering the distribution, we can see that the dropped sessions that are not malformed
do not hold an important number of information that could harm the results of the thesis.
Overall, it is demonstrated that the duration threshold of 500 milliseconds is suitable to
remove unwanted sessions without losing information related to mobile applications that
could prove to be useful in the next steps.
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Table 4.2: Session/ Destination IP address Distribution

# of sessions per IP 1 2-5 6-10 100+
# of IP addresses 19,020 12681 3643 2

4.3 Application Identification Algorithm

With the network traffic transformed into sessions and initial filtering steps applied, the
actual mobile application to which they belong needs to be identified. As described in the
related work chapter, a payload-based approach is chosen for this research since its the
most suitable for scaling on a large organization. An overview of the proposed approach is
presented in Figure 4.2.

Figure 4.2: Application Identification Overview

In order to identify the application, we will use information from the network sessions.
As mentioned earlier, different type of information, based on the connection protocol, ex-
changed between the two parties of a connection are extracted. More specifically, we decide
upon specific string identifiers from this information that will match a network flow to an
application. In our approach, we choose to find identifiers that will reveal the name of the
mobile application that “owns“ a network session. For this reason, an analysis on the fields
and rules of the SSL and HTTP protocol is performed so as to determine such elements for
encrypted and unencrypted traffic accordingly. Both protocols exchange information during
the establishment of a connection between a client and a server which are used to exchange
configurations and details about the connection. Therefore, we focus on this piece of data
to extract identifiers that will reveal the application.

At the start of an SSL connection, a handshake takes place where the two parties ex-
change information regarding their identity, the purpose of the connection and other techni-
cal details before starting to exchange encrypted information. During that handshake, this
unencrypted flow of information is examined in detail to identify the mobile application. To
get a better understanding, an example of the SSL handshake of a Facebook SSL connec-
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Figure 4.3: HTTP / SSL Handshake Information

tion extracted from our dataset is presented in Figure 4.3. To initiate an SSL connection, the
client has to send a Client Hello packet to the server containing information regarding the
configuration of the connection he wants to establish. Based on RFC 6066, as part of this
packet the client is able to include a field called Server Name Indication (SNI) to indicate
the hostname the client is trying to connect to. Although the field is not mandatory, only
2.8% of the monitored SSL connections did not include a value for the field. Moreover, as
subsequent parts of the SSL handshake the server sends a packet including SSL certificates
that are related to the cryptographic aspect of the connection but also include interesting
information. Typically, the server sends a chain of certificates where the first one of the
chain is the one directly related to the user-requested hostname. In each certificate there are
two fields, the Common Name and the Company Name, that can help us identify the mobile
underlying application. As seen in Figure 4.3, all three fields contain information related to
the Facebook application.

When it comes to the HTTP protocol that does not include encryption, the process is
simplified. In this case, the information exchanged between the two parties, before estab-
lishing a connection, are less. A specific header in the HTTP packet that defines the domain
server is of interest in this case. The Host request-header field specifies the domain name
of the server being contacted as obtained from the original URI given by the client. A
similar case of an HTTP connecting to Facebook is also presented in Figure 4.3. Finally,
in cases where neither of the aforementioned protocols yield useful information, the DNS
protocol information are utilized. The DNS protocol is used to translate domain names
to IP addresses. This means that when a user requests a specific domain name it is first
translated into an IP address before other protocol specific actions take place. This name
value is transmitted unencrypted through the network and can be used for the purpose of the
algorithm. A problem with DNS it the fact that caching mechanisms can prevent the trans-
mission of such information on the network during a connection. However, the cases where
the information from SSL and HTTP are not available are extremely rare. To summarize
the network protocol fields chosen for the application identification algorithm are:
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• Server Name Indication (SNI)

• Certificate Common Name, Certificate Company Name

• Host request header

• DNS Query Name

Once these identifiers are extracted from every network session, the actual mobile ap-
plication needs to be identified. Although this process can be easily performed manually by
a person since the names of applications are easy to identify in a string an automated scaling
approach is required. For this purpose, a list of popular mobile applications from varying
categories are collected from different Internet sources e.g, websites, reports with the use of
custom scripts. The result is a list of 3000 known mobile applications that cover a big part
of the spectrum of app categories and mobile operating systems. Although, many of these
applications are not expected to be found in an organization network since most employees
tend to install only a handful of the most famous apps such as Facebook or Gmail the list
provides a certainty that cases were applications are not identified are minimized.

The extracted identifiers as well as the list of application names are provided as input
to a string similarity algorithm. A pseudocode Python interpretation of the algorithm is
presented in Figure 4.4.

For the string comparison technique, there are various different algorithms that can be
used to measure the similarity between two strings. However, as seen from the examples
in Figure 4.3, the strings under comparison are not always only containing the name of an
application but also have attached other technical related information. However, the notion
behind our string comparison is whether the application name is included partially of fully
in the extracted network string identifiers. Certain algorithms set some limitations that do
not work well with this concept. For example, the Hamming distance metric requires both
strings to be of the same size which is rarely the case. Moreover, cosine and Jaccard distance
metrics compare only the content of the strings without considering the order of appearance.
With such limitations in mind, the string comparison algorithm chosen for our purpose is
the Levenshtein distance which counts the minimal number of insertions, deletions and
replacements needed for transforming one string to the one it is being compared to.

More specifically the Python library FuzzyWuzzy [54] is used which offers an imple-
mentation of the distance metric. When provided with a query string and a list of available
strings the library returns the most similar string from the list as well as a similarity score.
The similarity score value ranges from 0 to 100, where a score equal to 100 indicates that
a perfect match has been found. Moreover, we need to define the similarity score below
which the string returned from the list is not similar to a satisfying degree. For this purpose,
the similarity scores of the network identifiers of the two week network traffic are stored
and analyzed. In Figure 4.5, the distribution of the similarity scores is presented. The ma-
jority of comparisons yield a score of 100 and these perfect matches refer to all the well
known mobile apps. As the similarity score drops, more cases of known apps resources
such as CDNs appear and still have a score close to 100. However, once the similarity score
dropped below 90 the responses matched with the query string solely based on the fact that
they shared a few characters without them being truly related. Most of these cases refer
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Figure 4.4: Application Identification Algorithm

to website URLs whose host name happen to share characters with various applications.
However, since the goal is not to identify random websites visited through a mobile device
but rather mobile applications these cases do not contribute to the analysis. Therefore, a
similarity score below 90 implies that there is no satisfying similarity candidate.

For our algorithm, each of the extracted identifiers is compared against the collected
mobile application names. Since the strings under analysis do not contain the application
name in a straightforward way but include also other pieces of unrelated information, a few
modified versions of the provided identifiers are compared against the list. In this way,
the cases of algorithm false classification are minimized. Initially, the string without any
alterations is compared in order to capture simple cases where the session explicitly defines
the target application. However, in many cases communication with application resources
such as servers include addresses and domain names with randomly generated ids or extra
information. For this reason, the provided identifiers are split into tokens based on the dot
value “.“ and each token is individually compared against the list. Moreover to capture
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Figure 4.5: Similarity Score Distribution

cases where an application name consists of two words, tuple combinations of the tokens
are also compared against the list. Although this number of comparisons increases the
approach complexity, it also increases the efficiency and accuracy of detecting applications
which is the main concern. If none of the comparisons yields a perfect candidate then the
candidate with the maximum similarity score is kept. If the chosen candidate has a score
equal or lower than 90, this means that there is no suitable application name for this network
session. So as to not falsely classify the session into an application but at the same time
keep an identifier for potential future manual analysis the algorithm of Longest Common
Substring (LCS) is applied on the list of identifiers. The result is stored in the session object
instead of an application name and with this approach a manual inspection of such cases
can be performed to identify the application or the scenario where the algorithm is unable
to detect one. Although, such scenarios of manual analysis on extracted identifiers were not

37



4. DATASET COLLECTION & ANALYSIS

Table 4.3: YouTube Session Identifiers

Identifier Name Identifier Value
SNI m.youtube.com
Certificate Common Name *.google.com
Company Name Google Inc

Table 4.4: Instagram Session Identifiers

Identifier Name Identifier Value
SNI instagram.fgua2-1.fna.fbcdn.net
Certificate Common Name *.fgua2-1.fna.fbcdn.net
Company Name Facebook

used in our thesis since the majority of them refer to websites this part is included for the
completeness of the algorithm.

Moreover, an important part of the algorithm is the order in which the identifiers are
compared against the known application list. In the case of encrypted traffic, the protocol
specific identifiers are the SNI and the certificate ones. Despite the fact that all identifiers
belong to a session regarding the same application, the level of detail on their content can
differ from case to case. In general the SNI and Host request identifiers are the most precise
ones when it comes to including the application name. On the other hand, when companies
issue certificates the related identifiers can include string elements such as an asterisk (*) to
capture a larger scope of network domains or the higher level organization name that owns
the application. One example is the details of a YouTube session presented in table 4.3. In
this example, the SNI field explicitly declares the application under usage but the certificate
is on a larger scope so as to cover general Google related services.

Apart from simply missing pieces of information, there can be cases where the more
generic identifiers return a perfect match from the database and the algorithm terminates
believing that the best candidate was found. However, this is a case of misclassification
and an example from our traffic to explain this scenario is presented in Table 4.4. These
are the identifiers of an Instagram session and in this case the Instagram application is
owned by Facebook. It can be seen that the SNI identifier clearly has a token with the
correct value. However, if we were to first compare the Company Name against the list of
collected application names then the session would have been falsely considered part of the
Facebook application traffic. To avoid such cases, the identifiers are compared against the
known application names starting with the most precise identifiers and moving towards the
generic ones.
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4.4 Network Traffic Analysis

All the actions regarding the filtering and processing of the monitored network traffic have
been described in detail. These steps have the goal to optimize the format of the dataset
and provide a final filtered version that will exclude unrelated to mobile applications traffic.
Before moving on to the next chapter regarding the clustering part of the thesis and the
reasoning behind choises made around it, we first analyze two main arguments regarding
the network traffic and its scope. First, we provide insight on how the separation of traffic
on an application level is beneficial and will help the clustering algorithm. Moreover, the
noisy nature of network traffic that is mentioned by researchers in related work is verified
and as a result this provides further motivation and reasoning for the choice of clustering in
the following chapter.

4.4.1 Session Separation Scope

As mentioned before, traffic is separated based on the mobile application that generated each
network session. However, in other research approaches the session separation is either on a
destination port level [44] or the IP five-tuple [52]. In approaches like the first one, sessions
that belong to different applications will be clustered together solely based on the fact that
they use the same network protocol. However, as mentioned by the researchers themselves
this led to a excessively broad scope of aggregation and the inability to detect many specific
patterns or anomalies. Furthermore, the second approach is not able to identify the relation-
ship between sessions that have a different IP address or port. Consider mobile applications
with various functionalities where each functionality initiates a connection using a different
port or IP address. These cases would go unnoticed and potentially useful information will
be lost. For these reasons, in the thesis the sessions are separated on a mobile application
level. With the proposed method, all of these sessions will be considered in the same group
since they serve the same mobile app. In this way, all the notions of user related actions
reflected on the traffic will be captured and a more well defined analysis is performed.

When the goal of the framework is to identify patterns and anomalies based on the
user actions, our detailed scope will facilitate the process. If sessions are aggregated on a
very high level, the clustering algorithm will have a harder time to cluster sessions or will
create not representative clusters. Moreover, different applications are expected to exhibit
different behavior on a network feature level. This means that a group of sessions that are
considered normal for one application can potentially be considerably over the value range
of another one. This can cause great problems for the clustering algorithm and again result
in malformed clusters that are not the best representation of the user actions and behavior.

To better understanding this problem and the proposed solution, a visualization of net-
work traffic first on a TCP level and then on a per mobile application level is presented in
Figure 4.6. A sample traffic of a random employee of the organization is used. In this case,
the traffic is displayed through the session features of duration and number of kilobytes sent
from the user. Based on the application detection algorithm, the employee used three dif-
ferent applications Facebook, YouTube and WhatsApp. On the first plot, the sessions are
displayed together based on the fact that they all belong to sessions with destination port
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Figure 4.6: Network Sessions Separation on Application Level

443. If the clustering algorithm was to be applied at this point then several details, applica-
tion specific patterns and anomalies would go unnoticed. Moreover, the spread distribution
of values would create problems for a clustering algorithm when it comes to finding the
optimal cluster groups.

However, in the rest three subplots, the sessions are separated based on the application
to which they belong. Now a more clear overview of the application network behavior is
gained as well as specific patterns when it comes to network features. In this example,
each set of sessions has a more distinct behavior regarding the number of Kilobytes sent as
well as the duration of a sessions. As we can see the Facebook sessions tend to have a low
number of traffic and a relatively larger duration. On the other hand, traffic originated from
WhatsApp has a distinctly higher value range of traffic. Finally, YouTube traffic has a more
static behavior which can facilitate a clustering algorithm on the outlier detection. All of
these application specific details are important in anomaly detection and would have been
undervalued using the TCP level approach.

4.4.2 Traffic Noisy Nature

Based on the related work section, clustering approaches have stumbled upon obstacles
relevant to how noisy and difficult to fit into a behavior model network traffic is. It is
important to verify this challenge in our own dataset since it plays an important role on the
selection of clustering method later on.

In data analysis, a noisy dataset is translated into a distribution of values that do not
have a normal behavior and are highly spread. To identify this noisy nature in the network
traffic, the standard deviation and the mean value of the main network features of sessions
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Figure 4.7: Network Feature Standard Deviation

are calculated. Moreover to provide better insight on the difference between applications
traffic, the sessions are further separated based on the application they belong to. The
applications chosen from the network are the 15 most popular ones based on the number
of sessions each had throughout the experiment. The list includes messaging, banking,
mailing and data storage applications. In Figure 4.7, the metrics for the aforementioned
applications are presented through the use of an error bar that utilizes the standard deviation
instead of the standard error. Each bar of the three sub plots displays the variability of the
network features for each one of the fifteen applications. Therefore, a bar with high length
translates into a distribution with a high standard deviation and therefore values which are
not homogeneously distributed around the mean value. Most of the applications exhibit a
dynamic distribution for their network features and as a result this will lead to sessions with
very different values. As a result, a more rigid clustering algorithm will not be able to cluster
together sessions that are spread non homogeneously on the feature space. This finding
further validates the choice made regarding robust and noise flexible clustering algorithms.

From the previous analysis, it is obvious how the separation of traffic on an applica-
tion level will facilitate a clustering algorithm and enhance the ability to detect patterns
and anomalies. Furthermore, the noisy nature of network traffic has been established and
plays an important role on the choice of clustering algorithm used. The details of the pro-
posed framework and the method in which density based clustering algorithms are utilized
is described in the following chapter.
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Chapter 5

Methodology

The field of clustering in machine learning with the goal of anomaly detection and network
behavior modeling offers many different algorithms. Each one has a different implementa-
tion, configuration settings and required format of input data. For the purpose of this thesis,
a density based clustering algorithm is used to model network behavior and this choice
will be explained in detail in this chapter. With the utilization of density clustering, the
framework goal is to model user network behavior on an application level so as to detect
anomalies and identify behavior changes in general. To better understand the details of the
proposed framework, the usage of clustering in anomaly detection and the advantages of
density based clustering are first explored.

5.1 Clustering in Anomaly Detection

As described in the related work chapter, researchers [38, 43, 44, 52] have mainly focused
on two cluster characteristics and exploited them so as to classify clusters and therefore
traffic as anomalous. These are the number of members of a cluster and the position of a
cluster in the feature space. Since the data format in the thesis is in network sessions this is
the scope under which these two characteristics will be described.

Cluster Size

The number of members in a cluster provides insight on sessions that exhibit the same be-
havior and highlights network pattern that appear repeatedly in the traffic. The approach
in this case is that normal and anomalous traffic sessions form clusters in the feature space
that greatly differ in size. The main assumption behind this approach, is that normal traffic
constitutes a large portion of the total traffic. The anomalous traffic is expected to be infre-
quent throughout the monitoring phase and therefore when similar anomalous sessions are
clustered together they create a cluster that is considerably smaller than a normal one. This
can be the case when the network session separation is performed on a port or protocol level
and very distinct network technical attacks want to be discovered. A visualization of such
approaches is presented in Figure 5.1.
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Figure 5.1: Anomalous cluster based on cluster size

However, this model has limitations regarding the scope to which sessions can be ana-
lyzed and the type of targeted anomalies. Technical attacks that follow the expected network
protocols or are spread homogeneously throughout the monitoring phase can go undetected
with this approach. Moreover when the main focus is not purely technical attacks but more
user oriented, the assumption about what should be considered anomalous is flawed. As
highlighted before, sessions that reflect user actions exhibit a high variability and are ex-
pected to be spread throughout the feature space. In such scenarios, efficient clustering
algorithms will possibly create multiple small clusters instead of a few large ones. There-
fore, small clusters should not be considered as anomalies based on their size but rather
as specific user actions. For this reason, a model utilizing only the cluster size will have a
high number of false positive when trying to detect more user oriented anomalies. Although
the proposed usage of cluster size in related work has flaws it still provides vital informa-
tion regarding the volume of sessions that exhibit similar behavior and will have a different
utilization in our approach.

Cluster Position

A different methodology on clustering and anomaly detection focuses on the position of a
cluster in the feature space. Two main approaches in which this characteristic is utilized by
researchers so as to classify clusters are presented. The first one is the relative position of
a cluster to the rest of the set in the feature space. When a cluster is considerably isolated
from the rest it can be flagged as anomalous. In this case, the anomaly is based on the fact
that the network features that caused a cluster to be isolated will have values that highly
differ from the rest of the set. The second method is that a cluster is classified based on the
label of the closest, in feature space, cluster. When a cluster is relatively close to an already
anomalous cluster then this means that they exhibit a similar behavior.

A visualization of these two concepts is presented in Figure 5.2. In the first example,
the cluster that is isolated is considered anomalous based on the fact that he is at a distance
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Figure 5.2: Anomalous cluster based on cluster position

from the rest. In the second example, d1 and d2 are the distance values from the clusters to
be classified from the closest normal and abnormal cluster accordingly. Since the distance
d2 is smaller than d1 the new cluster is also considered anomalous.

One main challenge of this concept is the performance of a clustering algorithm on
highly noisy traffic and the main way for the approach to succeed is a detailed clustering
that will efficiently separate traffic. If sessions are grouped in large non optimal clusters
then the relative position of the cluster can potentially hide smaller anomalies caused by
sub clusters inside the generic one. This type of problems can be tackled by using a precise
robust clustering algorithm that will find the optimal number of clusters. Furthermore, one
main disadvantage of the second methodology that measures the distance of a cluster to a
pre-flagged one is the need for prior knowledge. However, clustering algorithms that re-
quire labeled data are not in the scope of the thesis. Finally as the name suggests, the notion
of a cluster position in feature space needs to be defined. Moreover, the method in which
clusters are compared needs to be decided upon. These configurations play an important
role on the performance of the anomaly detection. In related work, various suggested meth-
ods are described such as cluster medoid distance or cluster pairwise comparison each one
introducing different benefits and challenges.

5.2 Density Based Clustering

There are many families of clustering algorithms who define the notion of a cluster in a
different way. Moreover, each algorithm has a distinct model that analyses the provided
data in a different way and requires different type of input parameters. Each algorithm has
a different output of clusters when it comes to shape and size. All these differences of the
clustering algorithms make some more suitable based on the problem that has to be solved.
In our thesis, we define three main requirements for each clustering algorithm to satisfy. A
comparison of some of the most established and used clustering methods based on the three
requirements is presented in Table 5.1. The algorithms are chosen based on the fact that they
are the ones reappearing the most on related work and therefore can provide a comparison
with other research approaches.
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Table 5.1: Clustering Methods Comparison

Clustering Method Defined Number of Clusters Arbitrary Cluster Shape Notion of Outliers
K-means Required Not available Not available

Hierarchical Clustering Required Available Not available
Density Based Clustering Not Required Available Available

When it comes to real network traffic which exhibits a high diversity, the desirable
clusters sometimes can be of arbitrary shape. This means that the points will possibly
not be homogeneously spread on the feature spare and the shape of the optimal clusters
that bring them together will not have always the same. Partitioning methods (k-means)
and hierarchical clustering are suitable for detecting spherical-shaped and convex clusters.
This means that their performance is highly affected by the solidity and clear separation
of clusters in the dataset. However, as we mentioned clusters in network traffic do not
meet these requirements. These are the scenarios where density based clustering algorithms
outclass the rest since they are able to identify clusters of arbitrary shape.

Moreover, the noisy network traffic creates the requirement as the name suggests to
characterize certain points as noise. A key aspect of density based clustering is the notion
of outlier points. When a point in the dataset does not meet specific requirements regarding
its distance to its neighborhood points then it is considered as an outlier. On the other hand,
other type of algorithms would force all points in the dataset to eventually be assigned to a
cluster even if they clearly do not belong there. When it comes to anomaly detection, this
can create problems since cluster features such as cluster position and size are negatively
affected by the values of outliers. This leads to the introduction of an error margin on the
anomaly detection algorithm that utilizes these cluster features.

Finally, an important requirement for our clustering problem is the type of input param-
eters an algorithm receives. An aspect that makes density based clustering highly favorable
is exactly its input parameters. Unlike other algorithms, there is no requirement to pre define
the number of expected clusters, as the algorithm infers their number based on the provided
data. In this way, the algorithm is not forced towards a specific solution that could not suit
the data and provide false results. Similarly as before when the domain under analysis is
network traffic, it is an extremely hard task to predict the number of clusters because of the
high amount of traffic and its noisy nature.

Overall, based on these three requirements and the inability of many algorithms to sat-
isfy them, density based clustering is chosen. This type of clustering method identifies areas
with high density of data points and creates clusters. Points that are relatively isolated or in
more sparse areas are considered outliers.

5.2.1 HDBSCAN: Density Based Clustering Algorithm

DBSCAN [55] is the most used and well defined density based clustering algorithm. How-
ever, one limitation regarding DBSCAN is the inability to detect clusters of varying density.
This problem is tackled by researchers with the introduction of the HDBSCAN algorithm
[56] which based on its creators is closely aligned with the concepts of Robust Single Link-
age with flat cluster extraction on top of it. An analysis of HDBSCAN is presented to get a
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better understanding on how the clusters are created for the rest of the thesis. The algorithm
has two main configuration parameters, the minimum cluster size and the k neighbour one
both of which will be explained in the process.

Initially, the concept of noise and outliers needs to be embedded in the dataset because
the linkage clustering part of the algorithm can be sensitive to noise. This means that rel-
atively isolated points could act as a bridge between two separate clusters even though the
clusters should not be merged. Therefore, dense areas of data need to be conceptually
brought together and outliers need to be furthered isolated. To achieve this, a metric that
estimates the distance between points is introduced and called mutual reachability distance.
The metric is estimated for all points in tuples and is the maximum of three compared nu-
meric values. The first two values are the distance of each point from its k neighbour. These
are called core distances and denote if the point is in a dense area or not. The third numeric
value used is the distance in space between the two points under comparison. As we can
understand, points with low mutual reachability distance will be in a dense area as a higher
value means a point is relatively far from the rest.

The next step is to define these dense areas without having to compare all distances
for each point against each other since this is extremely heavy computation-wise. For this
reason, the authors utilize the concept of minimum spanning tree where the data points are
vertices and an edge between any two points has a weight equal to the mutual reachability
distance of those points. Moving forward, a threshold starting with a high value and con-
tinuously decreased is compared against the mutual reachability distances and used to drop
edges from the graph and identify which points remain. In this way, clusters are created
on each threshold value and when an edge is dropped the clusters are split in smaller ones.
Therefore, a hierarchy starting with all points connected in a single cluster, since they all
have a lower distance than the high threshold, up to completely isolated points is created.
This hierarchy is presented with the use of a dendogram which on the leafs has isolated
points and the clades are the thresholds where edges are dropped to create smaller clusters.

This is the point where HDBSCAN has a different approach than DBSCAN. In the
previous version of the algorithm a, difficult to choose, parameter was required so as to cut
the dendogram horizontally and select the clusters it cuts through. However, this leads to the
inability of identifying clusters of varying density since a single cutoff value is chosen as the
threshold. In the case of HDBSCAN, a minimum cluster size parameter is introduced and
used with the dendogram so as to express the notion of a parent cluster losing points. The
algorithm walks down the dendogram and on every clade checks if the split new clusters are
above the minimum size. If this condition is satisfied then the algorithm continues, if not
then they are considered as dropped points and the cluster retains the identify of its parent.
After doing this, a condense cluster tree is created with a smaller number of nodes where
each node has information about the number of points dropped through the varying distance
threshold values.

The final step of the algorithm is to choose the optimal number of clusters. Based on
the previous description, the dendogram provides the information of when larger clusters
either split down or start to lose points because of the distance threshold. Here the authors
introduce the concept of cluster stability based on which the optimal clusters are chosen. A
cluster stability is interpreted as the summed time each cluster point remained in the cluster
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before dropping off. As a result, clusters with a higher stability values are the ones with a lot
of data points in a dense area that were truly close to each other even when a tight distance
threshold is applied. Overall, as we can see HDBSCAN is a robust and flexible algorithm
that tries to identify the optimal number of clusters and at the same time introduce the
concept of outliers and noisy.

5.3 Proposed Framework

Now that the main characteristics of clustering in anomaly detection and an analysis of
density based clustering has been presented, the proposed framework is explained in detail.
An overview of the framework is presented in Figure 5.3.

Figure 5.3: Framework Overview

5.3.1 Framework Overview

The goal of the framework is to provide a cluster flow temporal analysis of the user network
behavior. The user network behavior analysis is on a per user and mobile application level
for each of the monitored days. The framework output is an numeric interpretation of user
behavior that will provide insight on behavioral changes and extreme shifts. To achieve
this, network sessions for each user are separated into different time periods in a day and
the clustering algorithm is applied. Each of the session cluster sets reflects the behavior of
a user during that specific time frame. Furthermore, a comparison algorithm between these
sets of clusters is applied which yields a metric, the cluster flow. This metric reflects the
cluster stability and movement in the feature space throughout time. It helps us grasp the
magnitude of the user behavior change between the time frames. The details of this metric
as well as the cluster flow algorithm are described later in this section.

The first step of the framework is the session separation based on the application they
belong to. The identification algorithm has already been described in detail in Chapter 4.
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Secondly, traffic is separated on a per user level by using the internal source IP address
of each session to identify which user generated the traffic. The reasoning behind this is
that each employee behavior is expected to be diverse and exhibit different patterns. A
separation between users will facilitate the clustering process since clusters will be able
to better reflect the user specific actions and will allow more accurate predictions on their
behavior. Finally as mentioned before, sessions are further separated into specific time
frames to which clustering is applied. In order to identify the time frame in which a session
belongs to, the timestamp of when the session initiated is used. The groups are based on the
average work hours of an organization employee and the expected time frames in-between
which his behavior could change. The four time frames are:

• Morning (9-11)

• Noon (11-13)

• Afternoon (13-15)

• Late Afternoon (15-17)

5.3.2 Framework Dataset

The details of the dataset consisting of network sessions that is provided as input to the
clustering algorithm need to be clearly defined. The network packets that form the sessions
provide the network information that will be used as features for the clustering. Moreover
existing work [57, 58] on feature selection in the domain of network behavior modelling
provides guidance on which features provide the most meaningful information. In Table
5.2, the selected features of each session that will be provided as input to the clustering
algorithm are presented.

However, one common problem with such network features from a data analysis per-
spective is the highly different scale. This means that features with a higher value range will
dominate the clustering algorithm and as a result have a negative impact on the outcome.
Considering the high variance in the network dataset, a robust normalization technique is
required. As it has been suggested by other researchers, normalization is performed by
subtracting the mean and scaling to unit variance [43] or by choosing an empirical normal-
ization factor to divide each feature [44]. However, outliers can often influence the mean
and variance in a negative way and choosing a normalization factor can be a hard task. In
such cases, the median and the interquartile range can be used instead of the mean and
variance accordingly. The interquartile range is the difference between the upper (75%)
and lower(25%) percentiles of a variable. These metrics will provide a better range of val-
ues that includes outlier points and is centered around median which is less affected from
outliers than mean. For this reason, the equation used to normalize the dataset is:

new feature[i] =
feature[i]−median
interquatile range
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Table 5.2: Network Session Features

Feature Name Feature Description
Timestamp The time of the session start stored as epoch value
Destination Port The destination port number of the session
Protocol Type The protocol used in the session in protocol number
Duration The duration of the session in seconds
Sent Bytes The number of bytes sent by the user
Received Bytes The number of bytes received by the user
Sent Packets The number of packets sent by the user
Received Packets The number of packets received by the user

5.3.3 Cluster Flow Algorithm

Once the data has been properly formulated and separated into the groups, each set of ses-
sions is provided to HDBSCAN. The algorithm clusters the sessions together and returns a
set of clusters. Each of the produced cluster sets is the network reflection of user application
actions during the specific time frame. Each action e.g clicking, sending a message, sending
a file generates a set of sessions of varying feature values. By using density clustering, the
output is expected to be a set of clusters distinct in size and shape.

Since the goal of the framework is to efficiently monitor changes in user behavior and
identify anomalies, such changes are expected to be correlated with changes and shifts
between the sets of clusters on the different time frames. Possible change in the position
or number of clusters in the feature space is considered as a shift in the user behavior
where a drastic behavioral change should have a larger impact on the cluster sets. As a
result, we need a method to quantify these changes on clusters in the feature space and
identify how the cluster shift during the day. To achieve this, we introduce a novel cluster
comparison algorithm that tries to identify the aforementioned elements and express them
in a numeric value. In our thesis, this value is the cluster flow transition between two cluster
sets. A representation of the algorithm is presented below. Moreover, a visualization of the
proposed algorithm is presented in Figure 5.4.

Our algorithm receives as input two set of clusters to be compared and returns a value
that expresses how different the sets are in terms of cluster size and cluster position. The
value is trying to determine how the clusters have moved in the feature space and potential
changes in the size. To achieve this, the process described below is applied for each cluster
in both sets.

First for each cluster in the set, the closest cluster in the second set is determined. To
find the closest cluster, we use the notion of medoid point to compare cluster positions. A
medoid point is a cluster member that has the minimum distance from the rest of the clus-
ter members and is therefore the most suitable representative of a cluster. In contrast with
centroid, which is computed as the average value of all the cluster members, the medoid
is guaranteed to be part of the cluster and inside its shape. On the other hand, in clusters
with outliers a centroid is very likely to fall outside of the cluster shape and give a mis-
leading representation of a cluster.After computing the medoid points of the clusters and
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Figure 5.4: Cluster Flow Transition Evaluation

Algorithm 1 Cluster Flow Transition
1: procedure CLUSTERCOMPARISON(set 1, set 2)

The procedure takes the two cluster sets as arguments
set 1 is the cluster set of the first time frame
set 2 is the cluster set of the second time frame

2:3: sum = 0
4: for cluster1 in set1 do
5: cluster2 = medoid comparison(cluster1,set2)
6: sum+= pairwse comparison(cluster1,cluster2)
7: end for
8: return sum
9: end procedure

10:

11: cluster f low transition+=ClusterComparison(set 1,set 2)
12: cluster f low transition+=ClusterComparison(set 2,set 1)
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Figure 5.5: Cluster Flow Transition Example

determining the closest cluster in the second set, a pairwise comparison between them is
applied. The pairwise comparison is applied by computing the euclidean distance between
all cluster members of both clusters against each other so as to determine their difference
in size as well as member values. This process is repeated for all the clusters in both of the
sets.

An important aspect of our proposed cluster comparison algorithm is the fact that is
is applied for both sets that represent the two time frames. The reasoning behind this bi-
directional application of the algorithm is to capture cases where newly formed clusters are
introduced. To better understand this concept, a scenario is described with the help of Figure
5.5. In the example, we consider that all the pairwise comparisons between all clusters yield
a result of 1 for the sake of simplicity. Let us assume that the algorithm is only applied from
the first set towards the second one as shown in Figure 5.5. In this case, the final cluster
transition flow is 2. However, the fact that a new cluster is introduced in the second set goes
completely unnoticed. By applying the algorithm also from the second set, the final cluster
transition flow is going to be 3 since the newly created cluster is also compared against the
previous set. Therefore, the information of the new cluster is better reflected in the cluster
flow transition and not discarded.

The summed values of all these pairwise comparisons are considered as the cluster flow
transition between the sets. Finally, the range of the cluster transition values characterizes
the magnitude of the user behavior changes. With the goal of the framework in mind,
the transition values are expected to reflect the user behavior on the network regarding
specific applications. This means that as the transition value gets higher, the two cluster
sets are considered to have an even more different representation on the feature space and
therefore the user to have a more drastic change in his behavior. On the other hand, when a
user has a stable behavior throughout the day the clusters are expected to exhibit the same
stability on the feature space and therefore yield a relatively low transition value. Overall,
the framework provides a set of values for the user daily activity on every mobile application
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he used. These values help us get insights on how the application was used and whether
there were any drastic changes on the user behavior.

5.4 Framework Evaluation

The proposed framework is able to quantify the user behavior changes between time frames
throughout a day. In order to gain an interpretation of these measurable results as well
as evaluate the performance of the framework an experiment was conducted in the private
organization that provided the network dataset. The details and the design of the survey
are first presented in detail. Moreover, the way in which the framework numeric results are
combined with the survey responses to measure the framework efficiency is presented at the
end.

5.4.1 Experiment Details

In order to evaluate the framework findings, the monitored employees input was needed
to better understand their true actions on the network. For this reason, a survey was con-
ducted on the period of 2 weeks in parallel with the network traffic monitoring. A subset of
employees in the cyber security department of the private organization was willing to partic-
ipate in a daily survey where they explained in measurable metrics their network behavior
with regard to every mobile application they used on a daily basis. A total of 14 employees
participated in the survey throughout the 2 weeks with a result of 70 survey submissions.
An overview of the initial introduction text, user help texts as well as the survey questions
are presented in Figure 5.6.

There is a good amount of work on how to design a survey in order to efficiently extract
the information you need. Based on [59] and their suggestion on user behavior survey
questions, an introduction text as well as clear instructions towards the survey participants
facilitate the process and help to gather more accurate responses. Therefore, for each survey
question there is a text to help the user better understand the requested information. Initially,
the user is asked to provide the IP address of the mobile device he used as well as a unique
private keyword. When it comes to large organizations, the IP address provided to a device
can change during the period of the two week experiment because of the DHCP server
configuration. To avoid attributing traffic to the wrong user and therefore introduce an error
to our model, the IP address is requested alongside a unique keyword. In this way, IP
addresses with the same secret keyword generated traffic belonging to the same user.

Moving forward, the user needs to define which applications he used throughout the day
from a list of popular mobile apps as well as ones that he can manually submit. For each of
the chosen mobile apps, short questions are asked regarding the mobile usage. In order to
help the survey participants and gain more accurate responses, the application usage ques-
tion is split in two sub questions with an ordinal scale. There are three available answers
(Low, Medium, High) for the user to choose from. The participant is asked to express how
much he used an application from a data usage and duration perspective. By giving two
different perspectives, the user is able to better understand the concept of application usage
and give a more accurate response. Although the ordinal scale is normally used for non
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Figure 5.6: Survey Questions Overview
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numeric concepts, a help text as mentioned before [59, 60] facilitates a user behavior ques-
tion and gives a better understanding to the user. In this case, for the data usage perspective
examples of actions that affect the data usage such as uploading a file or watching a long
streaming video are provided to the user. For the time usage, the user is provided with some
help information which matches Low to around 30 minutes, Medium to around 1 hour and
High to around 2 hours of usage. Moreover as suggested by [61], response categories la-
beled with words give more reliable data than categories labeled with numbers. At the same
time, a broad numerical range of options can be harder for the survey participant to choose
from and accurately reflect his opinion. Of course, we can always assign numeric values
later to make it easier to analyze responses.

Finally, the goal of the framework is not only to follow user behavior changes but also
detect possible anomalies caused by user related attacks. For this purpose, anomalies were
injected into the network by asking specific survey participants to greatly change their appli-
cation usage randomly during one of the time frames and submit the corresponding action
in the survey. Although the way each individual perceives an anomalous action is not the
same, based on the participants feedback such actions relate to sending large files over an
application repeatedly or using application functionalities that they normally avoid. This
can be translated into scenarios of data exfiltration or device theft where we expect the user
behavior to similarly greatly change. The decision to ask employees to change their be-
havior instead of manually injecting packets into the network was made so as have a more
realistic scenario to evaluate.

5.4.2 Evaluation Approach

From every survey entry, the submitted answers describe the user application behavior from
the user perspective on a qualitative scale. At the same time, the framework results provide a
numerical evaluation of the change of user behavior between time frames from the network
perspective. We define an approach on how to compare these two sources of information so
as to evaluate the framework results.

First, the survey responses need to be translated from a range of Low, Medium, High
to values that can be more easily compared against the framework output. However, the
framework values express changes in behavior between the four time frames. In the same
way, we introduce three transition labels that are based on the change of user answer be-
tween time frames. From the available values and for each time frame, the user can either
express that his behavior remained the same and submit a value similar to the previous time
frame or express that his behavior changes. When it comes to behavior change there are two
scenarios. Either the user willingly changed his behavior or he is one of the survey partici-
pants who introduced an anomaly into the network. The three transition labels we present
cover all these cases and are presented below. After parsing the survey answers so as to add
the aforementioned labels a total of 150 stable transitions, 51 user dynamic transitions and
9 injected anomalies were recorded.

• Stable Transition: The submitted answer between the time frames remained the
same
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• Dynamic Transition (user intended): The submitted answer between the time frames
changed based on user intention

• Dynamic Transition (user anomaly): The submitted answer between the time frames
changed based on a user anomaly

Now that the survey answers have been labeled, we need an approach to compare the
numerical framework output against these labels. The framework values are the cluster flow
transitions and their goal is to reflect user actions and behavior change. The higher the value,
the more dynamic the user behavior change is expected to be. Based on this concept, we
turn this comparison into a classification problem of the transition values where the set of
classification labels are the aforementioned survey labels. Based on their value, each cluster
flow transition is going to be classified as one of the three available categories. The goal is
for the classification to achieve the maximum accuracy which is the most correctly labeled
transitions. For this purpose, we define two thresholds against which the transition values
are compared in order to be placed into the categories. A visualization of the proposed
approach is presented in Figure 5.7. If a cluster transition is below the low threshold then it
is classified as a stable transition. When the cluster transition is between the two thresholds
then it is a user intended transition and finally the anomalies which are expected to have the
highest values are the ones above the high threshold.

Figure 5.7: Cluster Flow Threshold Labelling

The threshold values are distinct per application and shared by all users. The nature
and category of mobile apps e.g. mailing, messaging, streaming heavily affects the size
and duration of their network sessions and therefore the characteristics of the created clus-
ters. As a result, the cluster transition values of all the users regarding each application
are aggregated in a separate distribution so as to calculate the thresholds. In order to have
unique thresholds for each user, a larger and longer dataset would be required so as to have a
healthy value distribution. In order to identify the most suitable threshold values, the metric
of quantile is used. Compared against other statistical metrics such as mean or standard de-
viation, the quantile is more resilient to outliers and non normal distributions and therefore
can more efficiently split data points. Quantiles are cutpoints dividing a set of observations
into subsets of equal size. The often used version of quantiles are the quartiles which sepa-
rate a dataset into four subsets. However to achieve higher precision on the final result, the
percentile metric is used which separates the dataset into a hundred equal subsets. As per
every classification algorithm, the percentile value that matches a threshold is chosen when
the highest classification accuracy is achieved. This translates into the highest number of
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cluster transition values being correctly labeled based on their survey label counterparts. In
the following chapter, the results of the experiment as well as an analysis of the employee
application usage habits are described.

57





Chapter 6

Results

Initially in this chapter, we present a comparison between some known clustering algo-
rithms so as to demonstrate the benefits of density based clustering that we described in the
previous chapter.

Afterwards, the proposed framework output as well as the insight it provides are pre-
sented. First, the main goal of the thesis and the framework which is the ability to identify
user behavior changes is evaluated. Moreover, the framework scalability on the total of
the organization employees is demonstrated. By presenting the evaluation approach in the
previous chapter, it is clear that the framework ability to follow user network behavior is
measured through the accuracy of the classification problem of cluster transitions combined
with the survey labels. Once the accuracy of the proposed framework is measured and its
ability to reflect user behavior is established, a broad temporal and per application analysis
is presented. The analysis identifies behavioral patterns from all the employees through-
out the experiment as well as some insights about the differences between the employees
behaviors. The statistical and cluster related information from the cluster transitions give
important information regarding the behavior patterns and are the main source of informa-
tion that will be used. Overall, the analysis of the framework output from all these different
perspectives and utilizing all the available pieces of information provides a complete picture
of the value and contributions of the framework.

Before diving into the aforementioned results, the list of applications involved in the
analysis is presented in Table 6.1. The percentage of participation is estimated using the
total number of sessions from each application. The list contains applications from three
different categories messaging, streaming and mailing which enhances the diversity of the
analysis. During the experiment of two weeks, various mobile apps were identified. How-
ever, not all of them were submitted by the users through the survey answers. Regarding the
usage of the few applications not submitted, we do not have any information that reflect the
user aspect and a possible way to verify the network aspect. Moreover, since privacy is an
important aspect of the framework and all the users are anonymized we cannot obtain this
information at a later stage. Finally, as mentioned before some employees were asked to
greatly change their behavior and therefore inject anomalies into the network. The choice of
applications to use while injecting the anomalies was solely chosen by the employee them-
selves. Based on the survey responses, the applications which include anomalous traffic are
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Facebook, Gmail and WhatsApp.

Table 6.1: Mobile Apps under Analysis

Application Name Participation in Total Traffic (%)
Facebook 30
WhatsApp 9
Telegram 7
Gmail 7
Outlook 9
YouTube 31
Spotify 7

6.1 Clustering Algorithm Comparison

In the previous chapter, we presented the three main requirements that density based cluster-
ing satisfies against the other type of clustering methods and why that makes it suitable for
our thesis. In order to validate these arguments, we compare two widely used, in anomaly
detection, algorithms against HDBSCAN. These two algorithms are the k-means and hi-
erarchical clustering algorithm. One main disadvantage these two algorithms have against
HDBSCAN is the requirement of providing a priori a number of clusters. There are a few
established approaches [62, 63, 64] that help the user identify a good number of clusters
although some of them introduce limitations that make them invalid for our research. The
most well known method is the elbow one where a user can most of the times visually
identify the optimal number of clusters based the amount of variance each new cluster in-
troduces. Other approaches such as the silhouette score[65] or the gap score[66] provide
a numeric value that can be used in an automatic way to determine a suitable number of
clusters. In our thesis the clustering algorithm is applied a great number of times on the
network dataset which makes a manual approach unrealistic to use. We tackle this problem,
by choosing two different automatic methods to decide the optimal number of clusters for
each algorithm.

For the k-means algorithm, the silhouette method [65] is used. The silhouette of a data
point exhibits how close the point is to rest of the cluster members and how loosely it is
matched to data points that belong to other clusters. An established method to choose the
optimal number of clusters is to iterate through different cluster numbers and pick the one
with the maximum average silhouette score for all the points. Since it is not practical to
have a long range iteration, we take a different approach. Initially, the cluster numbers
that will be tested are from 2 up to the number of clusters that HDBSCAN chose. If the
optimal number of clusters is equal to the HDBSCAN one then the process is repeated with
a increase step of 1 until the average silhouette score drops.

For the hierarchical clustering, there are two main approaches [63] on choosing the
number of clusters. The first approach is simply choosing a static cut off level and based
on the amount of links it cuts horizontally the number of clusters is chosen. In the second
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approach, the representation of a dendogram is utilized alongside a specific metric provided
by the algorithm called inconsistency. The second approach is chosen here because it is
more flexible when it comes to choosing the number of clusters. The value of inconsistency
compares the height of a link in the cluster hierarchy with the average height of the links
below it. A link that connects two distinct clusters will have a high inconsistency metric. On
the other hand, a link that connects clusters that are relatively close on the feature space will
have a low inconsistency metric. A cutoff threshold for the inconsistency metric is chosen
instead of the distance metric. The mean value of all the inconsistency metrics is used so as
to detect the number of clusters.

Regarding the two input parameters of HDBSCAN described in the previous chapter,
it’s authors provide an understanding on how they affect the algorithm outcome. The min-
imum cluster size is a parameter that is closer to the dataset under analysis and should be
a very small portion of its size. By providing a small percentage of the total data size the
algorithm is not restricted to stopping when rather large clusters are found. At the same time
based on the implementation of HDBSCAN, this does not mean that very small clusters are
forced to be found since clusters are also bound by the threshold of the mutual reachibility
distance. In our case and based on author suggestion, the value chosen is 5% of the size
of the dataset each time the algorithm is applied. The k neighbour parameter plays a more
dramatic effect on the clustering. The larger the value of k neighbours the more conser-
vative the clustering will be since more points will be considered isolated and declared as
noise. However, in our research the dataset is highly noisy and the algorithm is expected
to be tolerant to this kind of points so the parameter is set to the minimum value of 2. The
k neighbor value was chosen based on the author documentation on the suggested values
and the notion of what it represents. When the value was increased, the algorithm declared
as noise too many points of the dataset which was expected based on the dataset noisy na-
ture. Overall, as we can see the HDBSCAN algorithm takes into consideration the concept
of outliers and defines the clusters that are most flexible and suitable to represent the data
points.

Now that the methods of choosing the number of clusters have been explained in detail,
a comparison of the algorithms is presented. The three algorithms are compared based
on the average number of clusters for each of the monitored applications and each time
frame. In table 6.2, the average number of clusters per clustering algorithm and application
are presented. The number of clusters have been rounded to the closest integer since a
float number does not make sense with the notion of cluster number. As expected, the
HDBSCAN algorithm has a higher number of clusters in all of the categories since as we
mentioned in the previous chapter it is able to identify clusters of arbitrary shape. At the
same time, the notion of outliers creates more distinct separations between clusters and
therefore facilitate the separation of data points in clusters. Comparing k-means against
hierarchical clustering, we can see that the second one is able to get closer to the number of
clusters of HDBSCAN in some cases compared to the first one. Again, this can be attributed
to the fact that hierarchical clustering is able to form arbitrary shape clusters where k-means
can only create spherical shaped clusters. However, none of the algorithms is able to achieve
the detailed clustering that HDBSCAN does.

Furthermore, a comparison based on the average cluster size for each of the clustering
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Table 6.2: Average number of clusters per time frame

Facebook WhatsApp Telegram Gmail Outlook YouTube Spotify
HDBSCAN 8 7 5 4 4 8 4

K-means 3 3 2 2 2 5 2
Hierarchical Clustering 5 4 4 2 3 6 2

Table 6.3: Average cluster size per time frame

Facebook WhatsApp Telegram Gmail Outlook YouTube Spotify
HDBSCAN 16 13 12 25 20 10 20

K-means 60 36 35 56 47 27 43
Hierarchical Clustering 37 27 18 56 31 21 43

algorithms is provided. The results are presented in table 6.3. As we can see the size of
the average cluster in HDBSCAN is considerably smaller than the cluster of k-means and
hierarchical. This can be attributed to two main reasons. Firstly, HDBSCAN is able to
provide more accurate and smaller clusters since it is more flexible when it comes to cluster
shape. Secondly, an important aspect is the points that are included in each cluster per
clustering method. As we highlighted in the previous chapter, algorithms such as k-means
and hierarchical clustering do not include the concept of outliers. Therefore, inside these
clusters are points that are forced to be part of a cluster even thought they are isolated from
the set. On the other hand, HDBSCAN labels these points as outliers and they are excluded
from the clustering process.

6.2 Framework Classification Results

The clustering process is applied on a dataset that consists of network sessions. The net-
work sessions are considered as the reflection of user actions through the chosen 8 network
features. This means that when a user changes his behavior, the network sessions during
that time frame are expected to exhibit a change in values. As a result this translates to a
correlated change in the cluster transition flow values which measures the changes in clus-
ters of sessions. To better understand this chain of effects before moving on to the frame-
work accuracy and classification of cluster flow values we present two examples. Based
on the possible scenarios and the three different labels, an example visualization of two
user dynamic cluster transitions (use intended and anomalous) is presented to get a better
understanding on how exactly network sessions reflect user actions. Although the feature
space has 8 dimensions, the network sessions are presented in two different pairs of features
during the four time frames.

First, a case of a user intended dynamic transition is presented in Figure 6.1. The results
in Figure 6.1 are presented in a log scale to better visualize the difference between each time
frame sessions. In this example the WhatsApp usage of a random employee is presented.
At his submitted survey entry, the user replied that his behavior was Medium during the
time frames Morning, Noon and Low during the rest of the time frames. The highlighted
subplots on the right refer to the time frames where the user expressed a change of behavior
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Figure 6.1: User Intended Behavior Change

compared to the two previous ones. Although the values on the session duration axis have
the same value range, the values regarding the number of received packets are considerably
lower. Moreover from the received bytes perspective, the two highlighted frameworks have
distinct differences with the other two. Overall, as we can see the highlighted dataset points
have a different value distribution compared to the previous two. At the same time, they
exhibit a similar distribution in between them. From this example, we can better understand
that when a user changes his behavior towards an applications there is a correlated change
in the value distribution of the sessions which can be identified.

Moreover, an example of anomalous behavior on the Facebook application is presented
in Figure 6.2. In this case, the user answered that he ”injected” the anomaly during the
last time frame. Similarly as before, the sessions during the highlighted frame highly differ
from the rest of the set. However in this case, the values appear to have an extremely higher
diversity and range of values because of the fact that it is an anomaly instead of a simple
behavior change. During the first three time frames, the sessions have a small duration and
relative small number of packets. On the other hand, during the anomalous time frame
session duration greatly increased as well as the number of sessions with higher amount of
traffic. Again, the network sessions seem to exhibit changes that align with the changes in
the user behavior and the degree of change in the session values also seems to align with
the magnitude of behavioral change.
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Figure 6.2: User Anomalous Behavior Change

Although these two examples are a small sample of the numerous similar cases in our
research, they verify that sessions indeed exhibit a change in values when there is a user
behavior change. More importantly, the change in session values is correlated with the
change in behavior since we saw that an anomalous change in behavior has a more drastic
effect on the session values. In the next section, we evaluate how these changes in sessions
and as a result on the framework output can accurately identify user behavior changes based
on user input.

6.2.1 Framework Classification Accuracy

As described in the previous chapter, the ability of the framework to follow user behav-
ior changes and reflect them through its numeric output is measured with the help of the
conducted survey. The three distinct labels added to each survey response are utilized as
a ground truth to be compared against the labels added to the cluster flow transition. Each
cluster flow transition is labeled based on the comparison of its value against the two thresh-
old we introduced. Based on these concepts, the accuracy of the framework is equal to the
accuracy of the classification problem and the two thresholds are the two configuration pa-
rameters that can maximize the accuracy. Based on the analysis of the three clustering
algorithms, the accuracy results of HDBSCAN, hierarchical clustering and k-means are
presented in this section.

The specific values of the two parameters are decided based on the value that provides
the highest framework accuracy and minimum false positive rate accordingly. As mentioned
in the previous chapter, the cluster flow transitions are separated based on the application
that the sessions originated from. With the same reasoning, a different threshold is applied
on each of the application distribution. However regarding the high threshold that classifies
transitions as anomalous, there is a small set of observations that fall into this category
and three distinct applications. Moreover, the percentile metric is based on the dataset
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value range and therefore introducing a high threshold for applications that do not even
contain anomalous instances would not provide any meaningful output. Therefore, the high
threshold refers only to the three applications where users exhibited anomalous behavior
and after experimenting with different values, the optimal threshold is at 95% percentile
value.

On the other hand, the low threshold which differentiates stable from user intended tran-
sitions highly differs between applications. This occurs because all the applications include
instances of both stable and user intended transitions and they exhibit a different network
behavior. In order to identify the optimal low threshold, its value is continuously increased
as long as the accuracy rate changes accordingly. As expected, after a certain value of low
threshold the accuracy rate starts to drop. This means that the framework has adopted a very
strict labeling behavior and cases of user dynamic transitions are mislabeled as stable ones.
In Table 6.4, the average low threshold shared by all applications alongside the accuracy
rate are presented for the three clustering algorithms. For hierarchical clustering the opti-
mal threshold is at 75% percentile with an accuracy of 61.9%, for HDBSCAN the optimal
threshold is at 85.5% percentile with an accuracy of 95.2% and for k-means the optimal
threshold is at 75% percentile with an accuracy of 57.61% . As we can see the hierarchical
clustering algorithm and k-means have a significantly lower accuracy than HDBSCAN as
well as a lower low threshold. The low accuracy is mainly caused by the fact that both
algorithms aggregate sessions into more generic and larger clusters that include outliers. As
we explained before, forcing outliers to be parts of the final clusters leads to extreme values
inside each cluster. These extreme values lead to high spikes in the pairwise comparison
results which are key parts of our cluster comparison algorithm. This translates to cluster
flow transitions whose values are, because of the inclusion of outliers, not correlated with
the magnitude of a user behavior change and therefore lead to a high number of misclassifi-
cations. This phenomenon is expressed both in the low accuracy of the clustering algorithms
as well as the the low percentile value used as a threshold. Moreover, the k-means algorithm
has a lower overall accuracy than hierarchical clustering which comes in agreement with the
previous results of average cluster size and number.

Table 6.4: Clustering Algorithm Classification Accuracy
Average Low Threshold (%) HDBSCAN Accuracy Rate (%) Hierar. Clustering Accuracy Rate (%) K-means Accuracy Rate (%)

65 78 52.3 50.47
70 83 54.7 52.8
75 87.1 61.9 57.61
80 91.9 59.5 56.66

85.5 95.2 57.1 55.23
88 92.8 51.9 50.95
90 90.47 50.4 49.52

In order to get a more detailed view on the threshold for each applications as well as
how the hit and misses of the framework are distributed we present the specific threshold
value for each application in Table 6.6. The detailed accuracy of the model is presented in
Table 6.5. Both of the tables refer to the results derived from HDBSCAN clustering since it
is the optimal clustering method. As we can see the majority of cases where the framework
misclassifies is when the survey participant answered that his behavior remained stable
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between two time frames but the model identified changes in his cluster flow above the low
threshold. Factors that explain these scenarios can be attributed to the introduction of human
error where the survey participant misjudges his application usage behavior. However, this
type of cases are acceptable since they are part of an evaluation implementation that includes
a survey. On the other hand, the misclassification of user intended transitions are related to
the ability of the model to distinguish different type of transitions.

Table 6.5: Detailed Framework Accuracy

Transition Label Accuracy (%)
Stable 94.6 (142/150)
User Intended 96.0 (49/51)
User Anomaly 100 (9/9)

Table 6.6: Application Percentile Values

Application Name Low Threshold(%)
Facebook 85
WhatsApp 87
Telegram 84
Gmail 88
Outlook 85
YouTube 85
Spotify 85

Combining the cluster algorithm comparison purely from a cluster characteristic per-
spective with the accuracy results in table 6.4, we can establish that the density based clus-
tering algorithm is more suitable for the purpose of clustering noisy network traffic and
modeling user network behavior. Therefore, for the rest of the section all the presented re-
sults will based only on the output of HDBSCAN clustering. Furthermore, the results from
the combined output of the framework and the survey verify the thesis goal of creating a
framework that is able to closely follow and reflect user behavior changes. The framework
is able to follow user behavior with high accuracy both between stable transitions as well as
dynamic ones. Moreover, the notion of cluster flow values is able to grasp the user behavior
that is reflected on the network. The value range is closely aligned with the actual human
actions where a dynamic change of behavior is directly translated to a high value. This is
highlighted by the model ability to identify anomalies perfectly as well as by the fact that
anomalous changes are the highest values in their corresponding distribution.

6.2.2 Framework Scalability

The survey answers provide the ground truth regarding the user behavior during the mon-
itoring phase and are therefore the main source of information to evaluate the framework.
However, the network data generated by the company employees that did not participate in
the survey can be still utilized. The information can be used to evaluate how representa-
tive is the subset of survey participants against the total company staff. More specifically,
this will highlight whether the framework is able to reflect properly the user actions on a
larger scale. To achieve this, the same methodology as before is applied on the overall
network traffic. This results in a cluster transition distribution with far more observations
for each application. To give a better understanding, the average number of total users per
application is presented in Table 6.7.
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Table 6.7: Company Wide Application Users

Application Name Average Users per Day
Facebook 967.2
WhatsApp 986.0
YouTube 697.2

Gmail 247.4
Spotify 107.1
Outlook 350.6
Telegram 11.5

Table 6.8: Application Percentile Values

Application Name Low Threshold(%)
Facebook 82
WhatsApp 82
Telegram 84
Gmail 80
Outlook 79
YouTube 85
Spotify 87

Table 6.9: Framework Accuracy

Transition Label Accuracy
Stable 92.6 (139/150)
User Intended 88.2 (45/51)
User Anomaly 100 (9/9)

Based on the previous section, HDBSCAN is far more accurate than the hierarchical
clustering and in this section the results are presented based on HDBSCAN only. Using
the same evaluation process as before, the framework has a total of 91.9% accuracy rate
with an average of 82.7% lower threshold and 97% high one. The detailed accuracy of
the model is presented in Table 6.9. Similarly as before, the high threshold is shared by
all three applications that contain malicious transitions. The detailed low threshold of each
application is presented in Table 6.8. As we can see, the new low threshold values for each
application have changed compared to the ones that included only the survey participants.
These changes on the low threshold for each application can be interpreted in two ways
based on the fact that the behavior of a big amount of users was added. In the case that more
users who exhibit a rather stable behavior are introduced to the distribution, the percentile
value is expected to go higher so as to provide a more accurate threshold. On the other
hand, when users that exhibit a rather dynamic behavior are introduced then the percentage
of people in this category increases. Therefore, a lower percentile threshold is needed to
represent them.

Overall, the framework key purpose which is to be able to closely monitor the user
network behavior and identify changes is again established. This means that the survey
participants are a good representation of the total set of users and their actions are a good
representation of actions we expect to find in the organization network. The accuracy rate
drop is attributed mostly to the fact that newly introduced behavior shifts from the rest of the
employees do not contain survey labels. Therefore, the framework does not have a ground
truth to compare these new introduced values which would further increase the framework
accuracy on the large scale.

An important factor is that the framework is still able to identify all the anomalies and
a very good amount of user intended behavior changes. This means that the value range of

67



6. RESULTS

cluster transitions used on the survey scope is a good representation of the value range on a
larger scale. Moreover, user anomalies are considerably high even after the introduction of
a large amount of users. This proves that the proposed cluster flow approach is able to grasp
accurately the notion of user actions and reflect behavior change through its numeric value.

In the next section, we try to extract behavioral patterns and behavior trends between
users. Since there are no contextual information regarding the users such as gender, job
title so as to utilize for the behavior patterns we focus on the temporal and per-application
aspect. Moreover, we provide a comparison analysis on the daily user application behavior.
We try to identify potential clusters on the user daily behavior which would yield groups of
employees that use a specific application in the same manner or applications where users
behaviors highly differ.

6.3 Framework Behavioral Patterns

Initially, the framework ability to identify behavior changes was established by utilizing
the survey responses and considering the survey participants as the set of users. Moving
forward, the framework scalability was measured so as to verify that the sample extracted
from the organization population was representative and that the model is able to scale even
when a considerably larger set of cluster flow transitions is introduced. With these two key
points proved, the main research question of the thesis is satisfied. The framework is a
user network behavior model on an application level that reflects behavior changes, detect
anomalies and exhibits the ability to scale.

Moving forward, we evaluate the framework ability to identify behavioral patterns
shared by users as well as clusters that denote similar user behavior. The cluster flow tran-
sition values can be utilized to identify and suggest behavioral patterns among employees
from an application perspective as well as a temporal one. In this section, we initially
present the behavior trends of the average employee throughout the two weeks for all the
time frames as well as all the applications. Afterwards, we try to compare the behavioral
habits of employees in between them and present a daily cluster flow comparison. More-
over, the values of the daily cluster flow comparisons are visualized through a dendogram so
as to identify users with similar behaviors. Similarly as before, since the frameworks abil-
ity to scale has been proved the following analysis is performed on the total of the private
organization employees.

6.3.1 Employee Behavioral Patterns

Each cluster flow transition value denotes the change in cluster stability and cluster move-
ment in the feature space. The change in actions and overall behavior of a user towards a
specific application between time frames is directly translated into a change in cluster flow.
In order to introduce a temporal aspect on the analysis, we aggregate these cluster flows into
groups based on the day they were generated, the specific time frames they refer to as well
as the application that they belong to. More specifically, the repeating days of each week of
the experiment are split in different groups so as to further analyze behavioral patterns on a
daily level. By applying these separations on the values, we are able to identify changes in
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behavior for each one of the 10 days of the experiment as well as each one of the three avail-
able time frame transitions. Finally, the mean value of cluster flow transition of each group
is computed. Therefore, these values represent the average change in behavior between all
time frames for each day of the experiment and each distinct application.

With the notion of a cluster flow transition in mind, an overall low mean value expresses
a stable behavior and a relatively high one means that the average user greatly changes his
behavior regarding the specific application. Moreover, the changes in cluster flow values
between time frames provide insight on specific behavior patterns and changes in behavior.
A relatively low value spread between time frames means that the user exhibits a stable
behavior throughout time without any major changes. On the other hand, a relatively high
value spread between time frames means that the user continuously changed his behavior
during those time frames. Finally, a spike in the cluster flow values would mean that the
user changed his behavior once but then retained the same type of behavior.

In order to better understand the following figures, the x-axis labels denote the compari-
son between consecutive time frames. The label M-N stands for Morning-Noon, N-A stands
for Noon-Afternoon and A-L stands for Afternoon-Late Afternoon. For a better visual rep-
resentation, the first three applications belonging to the messaging category are presented
in Figure 6.3 and the rest four applications are presented in Figure 6.4.

In both Figures 6.3 and 6.4, the cluster flows for each application have the same repeat-
ing patterns throughout the days with a few exceptions. This means that the users do not
deviate from their normal behavior routine and use their mobile applications in the same
manner in a repeating fashion. As we can see, this leads to cluster flow transition values
that are within the same range throughout each day and closely follow each other. By tak-
ing a closer look on repeating days, we can identify that same days in week 1 and week
2 seem to share a more distinct pattern in between them. However, this hypothesis cannot
be verified with certainty since there are cases where the behavior between repeating days
is quite different such as WhatsApp on Tuesday and Wednesday. In order to strengthen
this assumption, more repeating days and therefore an experiment of longer duration are
required.

Furthermore, we can identify specific patterns on a per application level. In Figure 6.3,
Facebook has a distinct pattern of relatively high values between the first two time frame
shifts and then a drop in the cluster flow value. This can be attributed to the fact that most
employees increase the usage of Facebook during and after lunch and therefore cause this
value pattern starting from the morning time frame up to the afternoon. Moreover, the
Facebook cluster flows on Thursday and Friday in both weeks have smaller values than the
rest of the week. This means that the users started to exhibit a more stable, either high or
low, behavior during those days and thus cause a smaller cluster flow transition. Regarding
the other two messaging applications both of them have relatively small cluster flow values
which means that user exhibit a stable behavior throughout the day with a few deviations.
Regarding Figure 6.4, the applications do not seem to exhibit a distinct repeating pattern
on a time frame level apart from the overall pattern that we mentioned before on a day
level. YouTube stands out from the rest and has a comparatively high cluster flow value
throughout the two weeks which means that users change highly their application usage
throughout the day.
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Figure 6.3: User Behavior Detailed Patterns

Figure 6.4: User Behavior Detailed Patterns
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6.3.2 Employee Behavior Comparison

The previous analysis is focused on behavior patterns and habits based on the type of ap-
plication used but with a per user approach. The cluster transition values are calculated by
comparing sessions and clusters generated each time by a single user and then computing
the mean value. In order to get a better understanding on the inter relationship between
user behavior patterns, a direct comparison is applied. Because of the anonymity of the net-
work sessions, there are no contextual information such as job title or age based on which
an analysis can be performed. However, the difference in user behavior from a temporal
perspective can be analyzed.

Figure 6.5: Daily User Flow Comparison per application

To achieve this, the network sessions of each user are aggregated on a daily level and
HDBSCAN is applied on the daily set. This leads to a set of clusters that reflects the user
behavior throughout the whole day. Since we want to compare the behavior between users,
the cluster comparison algorithm presented in the previous chapter is applied between the
daily clusters of all users. This results to a set of values that denote how different in size
and position are the daily clusters of users. Therefore these values can be considered as the
daily cluster flow comparison between all the users. In Figure 6.5, the mean value of all the
cluster flow comparisons are presented for each day of the experiment. A relatively high
mean value implies that users have a rather different behavior regarding that application in
between them. On the other hand a low mean value implies that the daily clusters of the
users present similarities in size and position in the feature space and therefore so does their
behavior. The applications create two distinct groups based the range of values of clus-
ter flow comparison. Facebook, WhatsApp, Gmail and Outlook exhibit a high value and
therefore user behavior when it comes to these applications highly differs in between them.
On the other hand, users seem to have a very similar behavior when it comes to Spotify,
Telegram and YouTube. Moreover, the range of values in Figure 6.5 remain rather stable
throughout the week with a few increases towards the end of it. This comes in agreement
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with the previous results on the mean user behavior and the repetitiveness of behavior pat-
terns. Since the per user behavior patterns seem to be rather stable throughout the days, a
comparison between the users should exhibit the same type of stability.

Furthermore, to better comprehend the results in Figure 6.5, we pay a closer look on
the daily cluster flow comparison between users and how these values cluster together and
yield possible groups of users with similar behavior. Based on Figure 6.5, we choose two
applications, Facebook and YouTube, from the two distinct groups to evaluate how similar
or different are employee behaviors and if they correspond to the mean values we previously
measured. From the aforementioned process of comparing daily user cluster behaviors, we
keep all the comparison values between users for each day and each application. Instead
of measuring the mean this time, we use this matrix of daily user comparisons so as iden-
tify users who exhibit a similar daily behavior. To achieve this, we take advantage of the
concepts of dendograms and hierarchical clustering.

In hierarchical clustering, the algorithm is provided with a distance matrix between all
points and starts by grouping points that are very closely together in sub clusters moving
up to a singular cluster that contains all the data points. Dendograms are able to visual-
ize this process and exhibit similarities and possible clustering trends between data points
when provided with the distance matrix. Based on the hierarchical clustering process, the
top of dendograms represent all the data points as one singular cluster and start to separate
them into groups as they move downwards. The separation is based on the distance be-
tween points and the length of each separation denotes the number of data points split and
therefore potential clusters. When a dataset includes points which are close together and
should be clustered then the dendogram is expected to have even separations. On the other
hand, a dataset with points that are spread throughout the feature space and cannot be easily
clustered is expected to have long and uneven separations.

In our thesis, the matrix that holds all user daily cluster flow comparisons among all
the employees is provided to the dendogram. Therefore, the potential cluster patterns will
translate to users having a similar daily behavior among them. On the other hand, the lack
of cluster patterns or isolated points corresponds to users having a different daily behavior.
We pick the two most busy days for each of the two applications where busy translates into
a high number of employees using the applications that day. The reason why the two most
busy days are presented is to further validate the patterns found on the histograms and to
have a relatively high number of users to analyze. In Figure 6.8, the dendograms of the
daily cluster flows of users for YouTube are presented. As we can see in both sub Fig-
ures, there seem to be groups of users who exhibit similar daily behavior and are therefore
grouped together. Of course, there are certain users who exhibit a highly different behavior
from the rest but this is expected in a large number of observations. However, as the den-
dograms starts to move to points that are closer to each other, there are distinct clustering
patterns between the points. Finally, as the separations becomes more strict the number of
points separated every time start to gradually decline denoted by the green separation lines.
This can be translated as a relatively stable cluster being further separated because of the
algorithm process. This insight about users having similar behavior and forming potential
clusters can be extracted from both of the different days in Figure 6.6 and Figure 6.7.

Moving forward, Figure 6.11 presents considerably different dendograms. In Figure 6.9
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and Figure 6.10, we have the dendograms for each of the two most busy days of Facebook
usage. As we can see, the patterns of data points being close to each other are more rare. On
the other hand, the dendogram exhibits multiple points that are isolated from the group since
it includes uneven separations with a large number of points at the beginning. Moreover,
the majority of separations occur as the dendogram moves towards its bottom which can be
interpreted as a lack of potential clusters with a relatively high number of members. This
phenomena is observed in both of the unique days of facebook usage.

Overall, the dendograms express similarities and differences between the user daily
behaviors as well as help us to identify potential clusters created by users. This provides
insight on the level of similarity on the user behavior based on the application on a daily
level. The insight provided by dendograms comes in agreement with the results extracted
in the first part of the user behavior comparison. Although, there are a few cases of users
either exhibiting a very different behavior from the rest or users having a similar behavior
in both applications the overall mean value range corresponds to the dendogram results.
The results in this section provide further validation and value to the cluster flow algorithm
we proposed earlier. By utilizing this numeric expression of user behavior, we are able
to identify users with similar behavior as well as behavioral patterns regarding specific
applications throughout the day.
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Figure 6.6: Cluster Flow Dendogram Day 1

Figure 6.7: Cluster Flow Dendogram Day 2

Figure 6.8: YouTube User Daily Cluster Flow Comparison
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Figure 6.9: Cluster Flow Dendogram Day 1

Figure 6.10: Cluster Flow Dendogram Day 2

Figure 6.11: Facebook User Daily Cluster Flow Comparison
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Chapter 7

Conclusions and Future Work

Nowadays, organization networks are facing an increased number of different attacks and
existing intrusion and anomaly detection systems fail to keep up. The landscape of attacks is
becoming more broad from exclusive technical attacks to user related and social engineering
ones. Moreover, as more and more organizations allow employees to freely connect to the
company network with personal devices a closer look to the network traffic they generate
needs to be paid. At the same time user privacy issues raise concerns for approaches that
require employees to install company applications on their device.

For these reasons, the focus of the thesis was the modeling and analysis of user network
behavior on a mobile application level. The proposed framework has a passive monitoring
approach and tries to utilize the collected network traffic purely based on the information in-
cluded in the packet headers. The goal of the framework is to be able to closely monitor and
detect user behavior changes as well as anomalies. This type of changes can be attributed
to both normal user behavior as well as possible attack scenarios such as data exfiltration or
device theft.

In the context of the research questions stated at the beginning of the thesis, the combi-
nation of the detailed related work analysis and the presented results is able to answer all of
them and present explanation and limitation regarding some of the answers.

Firstly, the transformation of raw network traffic into meaningful sessions and the fur-
ther separation based on the mobile application traffic is able to provide us with a useful
dataset for the purpose of the thesis. Based on the related work on application identifi-
cation, the payload approach was chosen and more specifically a non intrusive scalable
header-only approach. After analyzing the protocols found on the organization network as
well as the documented protocol communications we identified key elements that contribute
to the extraction of the application that owns the network traffic. With the proposed novel
algorithm and the utilization of string similarity algorithms, we are able to identify all the
mobile applications mentioned by the users through the survey. Moreover, the amount of
traffic attributed to each application comes in agreement with the survey responses about
application usage which gives us the confidence that our algorithm has a minimum amount
of misclassifications.

Moving forward, an analysis of the existing work on user behavior anomaly detection
exposes the lack of robust and user oriented solutions that can keep up with the dynamic
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nature of user behavior. After analyzing the weaknesses of existing work and techniques
that have yet to be exploited, we decided to utilize clustering algorithms to tackle this task.
More specifically, the benefits of density clustering against other algorithms are presented
and measured in the context of the thesis. Afterwards, the proposed framework is able to
translate user actions and behavior throughout the day to a numeric estimation. This metric
expresses a temporal overview of the use behavior changes with the help of our novel cluster
flow algorithm. To evaluate and validate the proposed cluster flow algorithm and overall
framework, we conducted an experiment so as to obtain the user behavior from the actual
user perspective. The framework achieved great accuracy when it comes to user behavior
changes as well as anomalies on the network. Furthermore, the framework ability to scale
on the whole organization is validated as well as the fact that the extract survey participants
are a good representation of the whole organization.

Finally, the cluster flow output is utilized in order to extract possible behavioral patterns
as well as compare user behaviors on a daily level. The model is able to identify distinct
repeating behavior of the employees. This means that people tend to have a stable behavior
everyday with a few exceptions as well as specific behavioral patterns when it comes to
specific applications. Furthermore, a daily comparison of the user behavior is presented.
Although the comparison is limited by the lack of contextual information, we are able to
identify distinct groups of users that share the same behavior as well as an overview of user
behavior similarity depending on the applications.

When it comes to future work, the modularity of the proposed framework gives a lot of
freedom on how the cluster algorithm results can be utilized. The framework results can be
used to perform a more social oriented analysis on behavior patterns and application usage.
However, this would require a survey that asks users more personal questions regarding
their gender, job title, personal preferences etc. This can raise some concerns from a privacy
perspective and user may not be willing to participate. Moreover, the scalability evaluation
of the framework gives motivation for future work that can utilize a per person cluster
transition distribution instead of an application wide one. However, to achieve stable results
with this approach there are certain challenges that must be addressed. The most important
problem is the ability to scale up a survey inside a large organization which can be a rather
difficult task.

Overall, the proposed approach on clustering with the use of density based clustering
as well as the concept of cluster flows is a promising concept on the section of clustering
on user network behavior modeling. The metric of cluster flow seems to be able to closely
follow user actions and provide the means of a user behavior comparison that has not been
proposed yet. After tackling various problems and limitations presented in related work, the
propose framework efficiency is verified with the usage of real network traffic. Moreover,
the presented insight on behavior patterns as well as the accuracy of the framework on fol-
lowing user behavior verify the proposed concepts and algorithms. Finally, the framework
results regarding scaling give motivation and potential exploitation for future work.
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