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ABSTRACT KEYWORDS

In this paper we propose a solution to the need for a fast par- Charged particle transport;
ticle transport algorithm in Online Adaptive Proton Therapy functional analysis;
capable of cheaply, but accurately computing the changes in numerical methods
patient dose metrics as a result of changes in the system

parameters. We obtain the proton phase-space density

through the product of the numerical solution to the one-

dimensional Fokker-Planck equation and the analytical solu-

tion to the Fermi-Eyges equation. Moreover, a corresponding

adjoint system was derived and solved for the adjoint flux.

The proton phase-space density together with the adjoint flux

and the metric (chosen as the energy deposited by the beam

in a variable region of interest) allowed assessing the accuracy

of our algorithm to different perturbation ranges in the sys-

tem parameters and regions of interest. The algorithm

achieved negligible errors (1.1 x 107%% to 3.6 x 1073%) for

small Hounsfield unit (HU) perturbation ranges (-40 HU to 40

HU) and small to moderate errors (3% to 17%) — in line with

the well-known limitation of adjoint approaches - for large

perturbation ranges (-400 HU to 400 HU) in the case of most

clinical interest where the region of interest surrounds the

Bragg peak. Given these results coupled with the capability of

further improving the timing performance it can be concluded

that our algorithm presents a viable solution for the specific

purpose of Online Adaptive Proton Therapy.
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1. Introduction
1.1. Charged patrticle transport

The importance of studying charged particle transport is perhaps best illus-
trated by its applications in a wide-ranging set of fields such as radiation pro-
tection, radiotherapy, space radiation shielding, electron and ion beam
microscopy, or surface analysis and lithography (Zheng-Ming and Brahme
1993). The goal of charged particle transport problems is to obtain the phase-
space density of particles using modeled or empirically sourced reaction cross-
sections. The phase-space density of particles provides a complete description
of the particle fluence and all quantities of interest that can be derived from it.
To obtain a general integro-differential equation that describes the phase-space
density of particles in a scattering medium the collision-free Boltzmann equa-
tion (Duderstadt and Martin 1979) is altered to account for collisions via a
scatter term. This equation is Boltzmann’s general transport equation and for
most realistic applications its solution is highly complex.

In practice several application-dependent approximations are applied to the
Boltzmann equation in order to obtain an analytical or numerical solution,
with all approaches having their individual tradeoffs. For example, while
Monte Carlo (MC) methods have as advantages high precision and an ease
of understanding (since” as long as the interaction processes between charged
particles and atoms or the solid are known, the difficulties of the Monte-
Carlo method are reduced to effectively realizing statistical sampling of the
relevant interaction processes” (Zheng-Ming and Brahme 1993)), their main
disadvantage is the slow computation times which deem them inapplicable in
many scenarios (Zheng-Ming and Brahme 1993), especially when (near) real-
time calculations are necessary (Botas et al. 2018). Diametrically opposite to
MC methods from a computational expense standpoint are analytical meth-
ods such as the pencil beam approaches, which are obtained through fits and
approximations. As expected, these methods tradeoff the high precision for
the low computational expense. In between these two extremes lie several
numerical or semi-numerical approaches, such as the moment method or the
phase space time evolution method (Cordaro and Zucker 1972).

The focus of this paper is on a combination of numerical and analytical meth-
ods (the pencil beam and energy straggling methods) that are deemed promising
for fulfilling the needs of our specific application, so called online adaptive proton
therapy, which is currently the state-of-the-art form of radiotherapy.

1.2. Particle transport needs in online adaptive proton therapy

Within the field of radiation therapy, proton therapy (PT) has emerged as
an alternative to conventional photon radiotherapy for cancer treatment
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due to its promises of increased dose conformity and lowered doses achiev-
able in healthy tissues (Paganetti 2016). These benefits are due to the pres-
ence of the Bragg peak (BP) in the depth-dose distribution, as charged
particles deposit most of their energy within a small volume near the end
of their range. The Bragg peak however also makes proton doses highly
susceptible to uncertainties (Lomax 2008; Perké et al. 2016). Some of the
common sources of range uncertainties are related to computed tomog-
raphy (CT) imaging, treatment delivery or changes in the anatomy of the
patient (Paganetti 2012).

Currently, the state-of-the-art in dealing with uncertainties in clinical
practice is to apply robust optimization (Rojo-Santiago et al. 2021; van der
Voort et al. 2016). In robust optimization irradiation plans are optimized
such that they ensure good performance of the plan under even the most
extreme uncertainty scenarios (Unkelbach and Paganetti 2018). Due to the
complexity of the potential scenarios however, certain scenarios — such as
anatomical variations (e.g., weight loss over the course of often weeks long
treatments) — are typically not accounted for (Paganetti et al. 2021). Most
importantly, robust optimization essentially enlarges the high dose volume
around the tumor, increasing the dose in the surrounding healthy tissues,
which in turn increases the probability of detrimental side effects (van de
Water et al. 2016).

The ideal solution would be to use Online Adaptive Proton Therapy
(OAPT) instead. In OAPT, a daily CT scan of the patient is acquired and
within 30 seconds (the time for a robotic arm to move the patient from the
in-room CT scanner to the irradiation location) a new, fully re-optimized
plan is created (Botas et al. 2018). Having up-to-date anatomical informa-
tion allows accurately targeting the tumor (Paganetti et al. 2021) without
needing robust optimization, leading to smaller irradiated volumes and
fewer side effects. Unfortunately however, the computational expense of
dose calculations and plan re-optimization (Men, Jia, and Jiang 2010), and
the time needed for the presently mostly manual plan quality assurance
(QA) (Barrett et al. 2009) is far larger than 30 seconds, making such work-
flows currently clinically infeasible.

Fast proton transport methods that are accurate in highly heterogeneous
patient geometries are key to overcome these computational and QA
related bottlenecks, and represent one of the missing enabling technology
for online adaptive workflows and further improving cancer treatments.
First, they are necessary for re-optimization, as plan optimization requires
the dose distribution from each of the typically hundreds or even thou-
sands of individual proton beams as input (Schwarz 2011). Second, they
are crucial for replacing the current manual, measurement based plan QA
with fast computational alternatives. Traditional plan QA measurements
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assess the differences between planned and delivered doses in order to
ensure they are within the clinically acceptable *3% (Gottschalk 2004)
range and that the irradiation delivery system functions as intended (Frank
and Zhu 2020). Since manual measurements are clearly infeasible in OAPT,
independent dose calculation methods (Li et al. 2013) have been proposed
as a viable alternative, showing similar precision when using accurate MC
transport methods (Meier et al. 2015). As further advantage, such auto-
mated QA procedures yield clinically more relevant metrics than measure-
ments and could potentially even increase clinical throughput and
treatment accessibility (Meijers et al. 2020). While the benefits of auto-
mated QA procedures based on independent dose calculation and machine
log-files (measured the outgoing radiation from the treatment machine) are
clear, MC calculations (Matter et al. 2018), even when multi-threaded
(Meijers et al. 2020) are not fast enough to perform (near) real-time QA
necessary in the OAPT workflow.

1.3. A semi-analytical adjoint-based deterministic algorithm for OAPT

To overcome these issues we propose a semi-analytical adjoint-based deter-
ministic algorithm that could serve as (near) real-time plan QA, using
machine log-files and the patient geometry. The semi-analytical component
aims to provide a balance between the accuracy of MC algorithms and the
speed of analytical dose calculation algorithms. The adjoint component
aims to provide real-time quality assurance through efficient computations
of the effect of perturbations in the system parameters (beam spatial and
energy spread, its particle number or the patient geometry) on the desired
clinical metrics (dose, or more complex responses).

The semi-analytical component has as a starting point, similarly to the
MC algorithms, the Linear Boltzmann Equation (LBE). Through the con-
tinuous slowing down, energy straggling and Fokker-Planck approximations
the LBE can be reduced to two partial differential equations (PDEs). One
of the PDEs is the one-dimensional Fokker-Planck (FP) equation while the
other one is the Fermi-Eyges (FE) equation. The advantage of this
approach is threefold. First, the approach derives a system which is
described by two PDEs. The presence of the PDEs (as opposed to for
example a machine learning (ML) based dose engine (Pastor-Serrano and
Perk6 2022)) allows the application of adjoint methods. Using functional
analysis an adjoint system can be derived which can be used to avoid the
expensive process of re-computing the solution to the two PDEs for each
new set of system parameters. Second, the physical approximation will not
suffer from the typical drawbacks of ML models such as out-of-distribution
samples, i.e., will remain accurate despite the input not being already seen
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by the algorithm. Third, while the one-dimensional FP equation requires a
numerical solution the FE equation has a known analytical solution (Eyges
1948; Brahme 1975). This coupling will ensure the computational effective-
ness as the lateral part of the proton flux is computed through a straight-
forward function evaluation.

1.4. Paper outline

Section 2 covers the theoretical background of reducing the LBE to two
simplified PDEs. Section 3 describes the one-dimensional Fokker-Planck
equation and its numerical solution while Section 4 covers the Fermi-Eyges
solution. In Section 5 the application of the functional analysis framework
for the derivation of the adjoint system with its associated adjoint solution
is detailed, the solution methodology of the adjoint system is explained and
the response change computations due to perturbations in the system
parameters are given. Section 6 covers benchmarks of our own algorithm
versus TOPAS and Bortfeld’s algorithm and provides comparisons between
the forward and adjoint computation of the response changes due to sys-
tem parameter perturbations. Lastly, Section 7 contains some conclusions
and future intended research directions.

2. The system model

The physical system under consideration is given by a proton beam irradiat-
ing the patient. This system can be characterized through the (steady-state)
LBE, the validity of which for PT has been discussed by Borgers (Borgers
1999). The LBE describes the proton balance in an arbitrary volume. Its der-
ivation is obtained by equating all the gain and loss mechanisms for protons
at position r € R’ with a certain energy E in dE and direction given by the

unit vector  =v/|v| (with v the velocity vector of the protons) in d€ in an
arbitrary volume V with a boundary denoted by OV as outlined by
Duderstadt & Hamilton (Duderstadt and Hamilton 1991). The equation is an
integro-differential equation for the proton flux (¢ = vn) with v the proton

speed and n(r, E, Q) the angular proton density,
Q-Vo + Z,(r,E)p(r,E, Q)

y/ | / / A/ A ey A (1)
= |dQ' | dEZ(E — E, Q" — Q)o(r, E, Q') + s(r, E, Q)

4n 0
BC: ¢(r, E, Q) = 0 if Q-é, <0 with r, € 9V, (2)

where BC is a boundary condition of the non-reentrant type, r; denotes a
vector on the boundary surface 9V of the volume V, é; is the unit outward
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pointing normal vector to the boundary OV at r,, X, is the total macro-
scopic cross section, X, is the macroscopic double differential scattering
cross section and s is the source of protons.

Currently, the LBE in its form is computationally expensive to solve. A
first step is to divide the total X, and scatter X cross sections according to
the main interactions that a proton undergoes as it propagates through the
medium, namely X, = 2, + 2, + X;, where X, is the catastrophic (absorp-
tion) scatter cross section, X, is the elastic scatter cross section between the
incident protons and the nuclei of tissue, X;, is the inelastic scatter cross
section between the incident protons and atomic electrons. By doing so,
Equation (1) can be written as

QVp = J dQ’JdE’Za(E’ — EQ' — Q)o(r,E, Q) — Z,(r,E)p(r,E, Q)
4m E

~

+ JdQ’Ze(r, EQ — Q)p(r,E, Q') — Z,(r,E)p(r, E, Q)

47
o

~

+ JdQZin(r,E +Q— EQ)o(r,E+QQ) — Z(r,E)o(r,E, Q),
0
3)
with Q defined as the amount of energy transferred during an interaction.
In this splitting it is assumed that the energy transfer in Coulomb elastic
scatter interactions is negligible and that the angular deflection in Coulomb
inelastic scatter interactions is negligible (Zheng-Ming and Brahme 1993).
The next step is to apply approximations to each of the collision integrals
in Equation (3).

The inelastic scatter integral is approximated using the Continuous
Slowing Down Approximation (CSDA) and the Energy-loss Straggling
(ELS) approximation (Zheng-Ming and Brahme 1993). Given the difference
between the proton and electron mass, the energy loss of a proton beam in
each such individual collision is small. Thus, the stopping process can
effectively be approximated by a continuous energy loss process with a
mean (called the stopping power) and a deviation around the mean (called
the straggling coefficient).

Therafter, we orient the beam along the z-direction and apply the small
angle (i.e., Q, =1 in Cartesian angular coodinates) Fokker-Planck approxi-

mation to the elastic scatter angular integral. In doing so, Q is redefined as
Q =(Q,, Q,) € R®. Similarly to the CSDA process, due to the small angular

deflection that the proton beam suffers through its Coulomb interactions
with the atom the scattering process is approximated as a continuous
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diffusion term in the lateral angular plane. Moreover, in the elastic scattering
cross section Z,(E,Q-Q') the energy is replaced by the depth-dependent
mean energy E,(z) (Geback and Asadzadeh 2012; Zheng-Ming and Brahme
1993).

The catastrophic inscatter integral is neglected completely with only the
absorption catastrophic scatter cross section term remaining. Applying
these approximations to the LBE reduces the integro-differential equation
to the following PDE

3_(p+Q o9 dp OS(r,E)p 10°T(r,E)e
* Ox Oy OE 2 OR?

0z
82@ 8@2
— Ztr(z, Ea(Z)) (a—gli + 8—% =0,

+Q, +2,(rE)op

4

where S(r,E) is the stopping power (the mean energy loss per unit path
of the proton), T(r,E) is the straggling coefficient (the deviation of the
energy loss around its mean value), X, is the absorption cross section
(the removal of protons from the beam due to nuclear interactions) and
Y, is the transport cross section (the rate at which protons diffuse in
the lateral angular plane). The resulting PDE is linear in the dependent
variable ¢ which in turn depends on the six independent system

variables r, Q, E.

We generalize the work of Geback and Asadzadeh (Geback and
Asadzadeh 2012) by considering a laterally homogeneous, in-depth hetero-
geneous geometry and write the flux as

¢ = ¢FE(r’Q) * @pp(2,E). (5)

~

To simplify notation, the dependence of the fluxes ¢g(r,Q) and

~

¢@rp(z, E) on their respective independent variables (r, Q) and (z, E) will be
suppressed in the rest of this paper. Substitution in Equation (4) results in

Y((PFE) “@pp + @pg - 1IDFP(@pp) =0, (6)

where Y(¢pg) is the Fermi-Eyges equation and 1DFP(¢pp) is the one-
dimensional Fokker-Planck equation. In order to avoid the trivial solution
both of these equations are set to zero (for a proof of separability see
Appendix), yielding

_3€DFE Oppg Oppg Popp | P Qpp N
Y(QDFE)_ Oz +Qx Ox +Qy (9)/ Ztr(zaEa(Z)) 0Qi + 8—Q; =0 (7)

and
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0 0S(z,E 10°T(z,E
IDFP(¢ppp) = gjp— (8E)¢FP—5 (aEz)(pFP‘i‘Za(Z;E)(PFP:O- (8)

Searching for the solution in the split form defined by Equation (5) is a
usual mathematical trick for the separation of variables, ensuring that the
solutions of Equations (7) and (8) yield the exact solution of Equation (4).
However, such a split of the proton flux also has strong physics founda-
tions, even in the more general setting. Since catastrophic inscatter interac-
tions are rare, the process mostly responsible for energy change is the
Coulomb inelastic scatter. The energy loss of protons is therefore primarily
determined by the stopping power and range straggling properties of the
materials they traverse through. Due to the laterally homogeneous (or at
least not too inhomogeneous) geometry on the scale of a highly focused
beam (typically only 2-3mm in clinical proton beams) and the strong for-
ward scattering, the materials along the traversed through path till any
given depth z are very similar for protons traveling under slightly different

angles Q, resulting in strong coupling between the energy spectrum of the
beam and the depth. Moreover, since the elastic Coulomb scatter mostly
responsible for the angular spread of the beam causes negligible energy

change, the energy spectrum of protons having slight deviations Q from
the main beam direction Q, =1 and that of protons with the original un-

collided direction =(0,0,1)" is similar. These observations provide
strong reasoning for searching for the solution in the form of Equation (5) -
with a depth dependent energy spectrum ¢pp(z, E) that is independent from

the spatially dependent angle distribution q)FE(r,Q) - even in more general
cases.

Using the solution of Equations (7) and (8), the response of the system
can be defined which in this case was chosen as the energy deposited in a
certain region of interest (ROI). The method is applicable to other, more
general, responses (defined as functionals or operators) as long as the
chosen response satisfies a weak Lipschitz condition in the system state
vector and parameters (Cacuci 2003). In the case of this work, the response
R is given by

o [Emax 0S(z,E 10°T(z,E
R(p)=— J vadQL dEE{ (8E)(P : éEz )(/)—Za(z,E)q)}
o Emax IS(z,E)ppp 10°T(z,E) e ®)
A E)@rp »E)@rp
b J dVJdQQDFEJEdeE[ E 2 om _Za(zaE)qDFP]’

ROI 4n

where in the last equality Equation (5) was employed.
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3. Approximating the one-dimensional Fokker-Planck equation

The one-dimensional Fokker-Planck equation is a convection-diffusion
equation in energy whose character is well suited for Discontinuous
Galerkin (DG) methods. Consequently, its semi-discrete form was obtained
using the Symmetric Interior Penalty Galerkin (SIPG). The main advan-
tages of the SIPG method over other finite element methods (FEM) are the
relative ease with which the approximating polynomial can be changed on
different mesh elements, the fact that the method allows unstructured or
adaptive meshes, and that the method satisfies a local energy balance (as
opposed to the global energy balance satisfied by continuous Galerkin
methods) (Riviere 2008). The semi-discrete form was solved using the
Crank-Nicholson (CN) method which is a second order accurate implicit
finite difference method. The advantage of the CN method is that in a
geometry that is piece-wise constant it relies on only one of the previous
points (as opposed to schemes such as the Backward Differentiation
Formula 2 that require two previous points for the same order of accuracy
(Suli and Mayers 2003)).

The one-dimensional Fokker-Planck equation can be written in a more
standard convection-diffusion form

Oppp 08" (z,E)ppp O (T*(Z, E) 8(/)FP> + Zu(z, E)ppp = 0, (10)

0z OE OE OE

where the modified stopping power S*(z,E) = S(z,E) +%% and the
modified straggling coefficient T*(z, E) = T(z, E)/2 are introduced. To sim-
plify notation, from here on the stars will be dropped and the explicit
(z, E) dependence of the stopping power and the straggling coefficients on
the depths z and energy E will only be shown if necessary. Moreover, it is
Equation (10) that will from now on be referred to as the one-dimensional

Fokker-Planck equation.

3.1. Domain definition and discretization

The computational domain of the equation is given as & = (0,Zmax) X
(Emin> Emax)» 2 C R%. The solution of the one-dimensional Fokker-Planck
equation is the Fokker-Planck flux ¢pp(z, E) € # where # = L,(R?) is a
real Hilbert space of square integrable functions with an associated inner
product defined as

f.g) = szTdEfg.
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To ensure a unique solution to Equation (10) boundary conditions must
be imposed, namely

O¢pp(z. E
BCE : @pp(z.E) _ o, 20m(2E) =0. (11)
E:Emax BE E:Emax
BCS : pp(0,E) = Ae () . (12)

The boundary conditions in energy (BCE) are homogeneous Dirichlet
and Neumann conditions while the boundary condition in space (BCS) is
given by a Gaussian function in energy. Gerbershagen (Gerbershagen et al.
2017) showed that this is a realistic energy spectrum for a proton beam
that has suffered energy degradation. The amplitude of the Gaussian is
given by A, the mean by E, and the energy spread is given by op. In line
with usual practice, a rigorous proof of the existence and uniqueness of the
solution to Equation (10) and its associated boundary conditions is not
given and these properties are assumed to be true. The energy component
of the domain & is discretized into a number NG of groups with each
group having the same width. The minimum and maximum energy of the
domain are chosen to encompass the standard clinical proton energies
range of 1 MeV to 200 MeV. In a given group g the high energy boundary
is denoted by E,_,/,, the low energy one by E,,,/, and the center value by
E,. Thus, Enax = E; and Emin = Eng11/2- An illustration of this discret-
ization can be seen in Figure 1.

The spatial part of the domain & is discretized into a number of steps
N; with the interval length Az allowed to vary on a per step basis and the
start and end points of the spatial domain are given by zp =0 and zy, =

Zmux-

Equation (10) can also be written in a short-hand form as
L(a)ppp =0

where the vector of system parameters a and the differential operator L(a)
acting on the flux are introduced as

direction of flow

<&
<

ENGI E, | E;
| * |
Egi1p—> «—E; 1)

g

\4

increasing E

Figure 1. Energy domain discretization.
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L) = ()-8 01325,

and a = (§8"(z,E), T"(z, E), Z4(2, E)).

The stopping power, energy straggling and absorption cross sections are
all approximated as continuous, piece-wise linear functions in the NG
energy groups. Since these properties are unique for each nuclide, we typic-
ally need as many material datasets as many voxels (defined as a cubic
element in the CT scan) the beam traverses, as the CT HU units are
mapped to different material compositions. Denoting the space of univari-

ate polynomials with real coefficients and degree at most k as P*, and the
mesh in the energy variable as 7 = {EL},., g Wwith EI = [E; 1, Ej]
being the continuous energy interval in the i™ group, all our material data
can represented by the vector space of continuous, piecewise linear func-

tions defined as Pl = {VT € C*(RM)Vi € {1,...NG}, vz, € Pl}. Thus, the

space in which a resides is the tensor product constructed from the indi-
vidual spaces P to which the stopping powers, straggling coefficients and
absorption cross sections of all material domains belong.

3.2. Semi-discrete variational formulation

The first step to obtain an approximation to the solution of Equation (10)
and its associated boundary conditions 11, 12 is to obtain the semi-discrete
variational formulation. To do so, several quantities must be defined. First,
the jump and the average of the flux at the edges of an energy group are
defined as

(9] = @(E) — o(E),
1 - +
and {9} = (0(E)) + 0(E)),
where j=3,..,NG+; and with E; =limjo(Ej —¢) and E; =lim|o(E; +¢).
Special cases are defined at the boundary of the energy domain where
[V(ENG+1/2)] = _V(EztrGH/z% {V(ENGH/Z)} - V(E;GH/Z)’ and
[V(E12)] = v(Eip)s {V(Ei2)} = v(E),).

Second, the penalty term is defined as

NG+1/2
/ o0

Jo(rw) = > [v(Ej)] [w(E))]

S hie
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where hj_; ; = max(AE;_,AE;) and ¢° is a real and nonnegative number
bounded from below. The role of this term is to penalize the jumps in the
solution.

By multiplying Equation (10) with a test function v, integrating over one
group, thereafter summing over all energy groups and making use of the
definitions of the jump and the average, the semi- discrete variational for-
mulation is found to be

Epax Ema Enax

9 as*
J dE gFPv+aS,pG(<pFP, y) — J dE 82”’ v+ J dES,ppv = 0, (13)
Emm Emin Emin

where the SIPG bilinear agpg is (Riviere 2008)

Emax

8 dv 0 dv
asip(Prps V) = J ggPdEdE Z { (pFP} v - [PFp] - {T&}
Emm
50
=+ E [@Fp] [v],

(14)

where I'; denotes the interior points of the energy domain. Following
Hillewaert’s work (Hillewaert 2013), the penalty parameter was set as a
function of the maximum polynomial degree max(deg(p;)) of the basis

functions, namely

i 2
o (max(degipg)) +1) | (15)

Both a coercivity analysis and the proof of equivalence between the
semi-discrete variational formulation from Equation (13) and the model
problem 10 with its associated boundary conditions 11 and 12 are beyond
the scope of this paper and can be found in the work of Hillewaert and
Riviere respectively (Hillewaert 2013; Riviere 2008).

3.3. Basis functions

The first three group-centered Legendre polynomials'

Py(E) = (Ai“ (E — E)),i:o,l,z (16)

"Initially, the algorithm used first order basis functions. However, the resulting fluxes for coarse energy and
spatial grids resulted in unphysical negative values. The addition of the third quadratic basis function reduced
the behaviour to negligible values.
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were used as the basis functions for the expansion of the flux in the com-
putational domain as

Pep(2E) = Z Z (P;(Z)P;(E>- (17)
g=1

i=0

Introducing the expansion from Equation (17) into the semi-discrete
variational formulation from Equation (13) and sequentially replacing the
function v with the chosen basis functions p;(E) yields a system of linear
equations. This system can be written as

(1))
Md—+G(I):0, (18)
dz

where @ is a vector with dimension (1 + max(deg(p;))) X NG and its ele-
ments are given by the unknown coefficients (p;(z) from Equation (17), the

mass matrix M is a diagonal matrix that in a given group g has elements
| dEp, (E)p,(E) with i=0, 1, 2 along the diagonal and G is the system
matrix which receives contributions from the stopping power, straggling
coefficient and absorption cross section discretization.

This resulting system is discretized in space using the Crank-Nicholson
method. Depending on the chosen number of groups the size of the result-
ing system is on the order of 10°. This relatively small size of the system of
equations implies that direct solution methods are comparable in computa-
tional time to iterative ones. To this end, the banded system solver DGBSV
from the LAPACK library (Anderson et al. 1999) was used.

4. The Fermi-Eyges equation

This section describes the analytical solution to the Fermi-Eyges equation
and the steps taken to implement it. This solution is based on refinements
brought to Fermi’s original theory on the distribution of charged particles
undergoing multiple elastic scattering in their passing through matter.
Authors such as Eyges, Brahme and Asadzadeh (Eyges 1948; Brahme 1975;
Geback and Asadzadeh 2012) have brought the theory into its form pre-
sented here. A full derivation from basic principles is beyond the scope of
this document and can be found in the previously mentioned publications.
The Fermi-Eyges equation

_8(pFE OPrg OPrg Pop | Qg _
Y[opg] = % + €, P +Q, dy 2y (2) 002 + o0 =0 (19)

can be solved by separating the x and y directions, namely @p(r,Q,,Q,) =
H(z,x,Qy) - H(z,y,Q,). This results in two separate PDEs for each
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direction

0H(z, f,co)+ OH(z, & ) 0*H(z, &, )
oz Y- B?

where ¢ stands for one of x, y and w stands for one of Q,,Q,. The result-

— 2, (2) =0, (20)

ing PDEs have the same boundary condition imposed, namely

H(0,¢,0) = Cexp (— (a1 + aréw + az0?)), (21)
with a; € R,Vi=1,2,3 and C> 0. The solution of Equation (20) is found
bY artificially extending the usual domain of Q, and Q, from {(Q,,Q,):
Q| =1} to (Q,,Q,) € [—00,0]?, applying two-dimensional Fourier trans-
forms in ¢ and @ and accounting for the Gaussian initial condition as

detailed by Eyges and Brahme (Brahme 1975; Eyges 1948). In doing so the
solution to the Fermi-Eyges Equation (19) is found to be
2
)

lol® _ 1 |Q

2(2) B(z)
)

()
&(z)

; (22)

— 2
0 2nC
(E(Z)) , A= L,D = 4a,a; — a%.
& (2) b

Jette (Jette 1988 Mar-Apr) showed that if there is any scattering at all,
then B > 0 must hold. This was used as a check that the obtained coeffi-

cient values were not spurious. The coefficients 0%, 0¢, & present in the
Fermi-Eyges solution are the moments of the X, transport cross section
and are found from the following equations

0%(z) = 0%(0) + JZtr(z’)dz’, with 0%(0) = 2—1‘;3, (23a)
0
0E(z) = 02(0) + 2 (0)z + J(z )%, ()7, with TE0) =2, (23b)
0
2(2) = 2(0) + 208(0)z + PP(0)2 + J (2 — 250 (2)dZ, with 2(0) =22, (23¢)
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1
X.(z) = J dpX(Eq(2), 1, 2)(1 — p), with u = cos (Qf!'), (24)
5

and X, is the macroscopic elastic scatter cross section. Gottschalk

(Gottschalk 2012) showed that the FE coefficients 0°(z), &*(z), 0&(z) can be
intepreted as the variances of the angular direction, the lateral position and
the covariance of the lateral position and the angular direction respectively.

Next to its analytical nature an important feature of the Fermi-Eyges
solution from Equation (22) is that it is a Gaussian function in both the
spatial and angular directions with coefficients that are determined by the
average depth-dependent beam energy and the elastic scatter cross section
from Equation (24) corresponding to that energy. A disadvantage of this
solution is that only the average depth dependent energy instead of the full
beam energy spectrum is used to calculate the coefficients. As lower energy
protons tend to scatter more it is expected that only using the average
beam energy will result in an underestimation of the amount of scatter that
the proton beam suffers.

4.1. Solution method

The coefficients of the boundary condition are chosen in such a way that
Equation (21) represents the two-dimensional normal distribution. By set-
ting the average values in ¢ and w to zero the coefficients a;,i € [1,2, 3]
from Equation (21) are easily identified to be equal to

1 0 1
20— ) (1—)ozon” 21— a2’

a) = —
where ¢ is the correlation coefficient between the spatial dimension ¢ and
the angular dimension w, o¢ standard deviation in ¢ and ¢, standard devi-
ation in w. The a; coefficients are thereafter used to initialize the values of
the FE coefficients.
To compute the FE coefficients at a given depth the average beam energy
at that depth must be known. This quantity was defined as

ap (25)

J dE@gp(2, E)E
E,(z) = OOC—. (26)
J dE@pp(z, E)

The average energy is thereafter introduced into the elastic scatter cross
section via the classical relationship between speed and energy v, =

\/2E,(z)/my. The elastic scatter cross section is in turn used to compute
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the transport cross section from Equation (24). To compute the angle inte-
gral the QAGE routine from the QUADPACK library was used (Piessens
et al. 1983).

Once X;(z) is known for all the points of the z dimension, the coeffi-
cients given in Equation (23) can be calculated. As z increases in the inte-
grals from Equation (23) so do the integrands and the computational
expense of these integrals. We chose to approximate X, in a given step as
the average of its values at the start and endpoint of the step thereby
employing the trapezoidal integration rule. In doing so, the integrals could
be re-written to depend only on the previous value. Given the fact that the
segments over which X, is integrated are small (< 0.01 cm) the trapezoidal
integration scheme is adequately accurate for our purposes.

4.2. The planar integral approximation

In the response computation the angle integrated FE flux is needed. In the
derivation of the Fermi-Eyges solution the domain of €, and Q, is
extended from its normal range to the (—oo,00) range in order to apply
the Fourier transforms. Since the Fermi-Eyges solution is obtained through
this extension, the same extension should be consistently applied through-
out the calculations that involve this solution. Thus, the angular integral
can be approximated to

- 1|, %o [ T 1 s @ [
4Jn exp ( 2B Q— ?(z) p ) sin 0d0d¢ ~ _JOO_JDO exp ( 2B Q ?(z) p‘ )dede
00 00 , , (27)
_ J J exp (—%(z)[(ﬂx—cx) +(@ - )] )ae.de,

—00—00

= /2nB(z) - \/2nB(z) = 2nB(z).
where ¢; = [0&(z2) /?(z)]i, with i being x or y. Thus, the angularly inte-
grated FE flux is

Pp(x z)—J (x,7,2,Q Q)dfz—‘i2 L ep [ 0F (28)
e PR S T2 T\ 22

4n

4.3. Data sources

In order to obtain the solution to the two PDEs and the response, the stop-
ping power, straggling coefficient, absorption cross section and elastic scat-
ter cross section must be known as a function of energy and tissue
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composition. The CT scan HU values were converted to density and frac-
tional compositions according to Schneider’s method (Schneider, Bortfeld,
and Schlegel 2000). The density and fractional composition were used to
interpolate nuclide specific tables of the stopping power versus energy. The
tables were extracted from TOPAS (Perl et al. 2012) using an adapted
extension distributed on the TOPAS forum. The stopping power for pro-
tons in water versus energy can be seen in Figure 2.

The straggling coefficient represents the statistical variation around the
mean of the energy loss of a proton in a material. The consequence of
energy straggling is the spreading of the energy spectrum of an initially
mono-energetic beam (Noshad and Bahador 2012). The equation that was
used for the straggling coefficient is (Williams and Bragg 1932)

N by 4, ih(z)  2mevy
T(E,Ny(z)) —g; (4ﬂ€0)2Nz(2)4ne Zz(Z)<1+3meV12)1n o ) (29)

where Ny is the set of atomic densities corresponding to the set of atoms
atoms A that were considered to constitute human tissue, namely A =
{H, C, N, O, Na, Mg, P, S, Cl, Ar, K, Ca}. Moreover, Z; is the
atomic number of the target atom i with i € A, ¢, is the vacuum permitiv-
ity constant, e is the elementary charge, m, is the electron mass, v, is the
proton speed, I; is the mean atomic excitation energy of atom i. The strag-
gling coefficient for protons versus energy in water can be seen in Figure 3.

The elastic scatter cross section can be found by considering the deflec-
tion that a proton suffers due to the Coulomb field of the nucleus. A deriv-
ation of this can be found in the work of Goldstein (Goldstein, Poole, and
Safko 2002) who gives the microscopic elastic scatter cross section for pro-
tons incident on a target nucles £, € A with atomic number Z; and atomic
mass numbers A, as

Modified stopping power versus energy in water

400

w
S
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o
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Figure 2. Water stopping power versus energy.



18 (&) T.BURLACU ET AL

Modified straggling coefficient versus energy in water
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Figure 3. Water straggling coefficient versus energy.

3/2
(+a5+5) [ z@e ) 1
O'S’t(E, n Z) _ (2) A(2) < t(z)e ) (30)

1 —|—ﬁ(z) dmeomov | (1 — pu+ 2n(2))*’

where m, is the reduced mass which is defined by
1 1 1

my  m, m(z)
with m,, the mass of the proton and m, the mass of the target nucleus, v, is

the incident speed of the proton, ¢ is the vacuum permittivity, e is the
elementary charge and

13, 0, C ’
1(2) = ©() = (L 2 )

with m, the electron mass, o the fine structure constant, ¢ the speed of light
and p the momentum of the incident proton. Equation (30) is used to
define the macroscopic scatter cross section as

21 E Na(2)) = > Ni(2)0(E, 1, 2) (31)
icA
with Nj,i € A the individual atomic density in the material under consider-
ation. This cross section can be seen in Figure 4 for a range of energies.

5. Response change

Using the Fokker-Planck flux ¢pp, the FE coefficients from Equation (23)
and a given set of system parameters a the deposited energy in an arbitrary
ROI is computed via
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Elastic scatter cross section versus angle in water for multiple energies
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Figure 4. Water elastic scatter cross section for protons versus angle for multiple energies.

Emax
R(at, @pp) = — J dv J dQ me dE {Eag—];p + E(% (TZ_@ - Ezaq)],
ROI  4n

where the z and E dependency of S, T and X, has been supressed for nota-
tional conveniency. It is of interest to assess how the response changes depend-
ing on changes in the system parameters a. This change in the response can
be described as a direct and an indirect change. The direct change is the one
that results from the change in the system parameters being directly used to
compute the response. The indirect change comes through the FP flux and FE
coefficients which are perturbed when changes in the system parameters are
present. Thus, for each new vector of system parameters & a new solution to
the Fokker-Planck and Fermi-Eyges systems must be obtained.

This section describes the functional relationship between the change in
the response 0R and the changes in the system parameters da and the FP
flux d¢rp. Moreover, it describes a methodology that allows cheaply evalu-
ating the desired change in the response without re-computing the Fokker-
Planck flux and the Fermi-Eyges coefficients.

5.1. The change in the response

The response can be written using Equation (5) as

OS@pp 0 ( OPpp
oe Lo\ ok

Ermax

Rpr) = | av [ | dE[E )—Ezawp]. (32)

ROI 4n

Emin
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Making use of the definition from Equation (28) for the 4m integrated
Fermi-Eyges flux allows writing the response from Equation (32) in a
shortened form

R(at, ¢pp) = J dVYWes(r) Dep(2, @pps @), (33)
ROT
where
Emax Emax 8
Dep(z, Qpp, @) = |:ES§0FP + J dES¢gp + J dET ;);P + Z —[o]T
Emin Emin Emin F,'

Emax

+ J dEEZagon} .
Emin

The change in the response due to changes in the system parameters can
be found by computing the Gateaux-differential. Let € = (a, @pp) and h =
(dat, 0¢pgp). Then,

5R(eo, h) = %R(Co -+ th) = J dV[élPFE(I‘)DFp(Z> + ‘PFE(I‘)éDFP(Z)].

t=0
ROI
(34)
The Gateaux-differential of Dgp is computed to be
Enmax Enax 5 Enmax
ODpp = { EdSppp|  + J dESSpgp + J dEST ;’EP +) —lploT + J dEESZ,0pp
Emin Emin Emin L Emin
Enmax Enmax o5 Enmax
+ { ESo@pp|  + J dESSqp + J dET a(gFP +)  —[00]T + J dEEZ,0¢pp
Emin I;
Enin Enin ! Enin

= 0D¢p, dir (0%, Ppp) + ODEp, indir (% OPpp)

where 0Dpp gir(0at, @pp) is the direct change in the response due to the
change in the system parameter vector and dDgp jngir(® 0@pp) is the indir-
ect change in the response due to the perturbation in the dependent system
variable.
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The Gateaux-differential of Wgg(r) is found to be

OWpe(r) = %‘PFE(A + t5A,?(z) + t5?(z))
t=0
204 5E(2) X +y? 5?@)]
= —=+ — : (35)
A P 2 de?

The quantity 0Wpg(r) is thereafter laterally integrated over the X and Y
extents of the ROI, namely

264 88(z) P+ 08z
dxdyoWrg = dxdy¥ - — =
RE[B[Y v " le)';y o A 52 (Z) ! 2 62 (2)2

- Z(STA_(?;((ZZ))] || w0

5 e

ROIxy ROIx
Ini Iy,
254 8E(2) 5&(2)
= T—?—(‘Z)]I)I(Z)—leﬂz(Z) (36)

At this point the term 0A is set to zero. This term is only non-zero when
the Fermi-Eyges initial condition is perturbed. For the purpose of this work, no
such perturbation was included. Thus, the laterally integrated 6‘Pg is given as

— Iri(z) Ira(z
” dxdydWrg = 5 (2) [— f_;—() + izz—(z] . (37)
2@ 2@
The term 5?(2’) contains the unknown d¢pp via the implicit E, compu-
tation in the elastic scatter cross section. Continuing the Gateaux-differential
process results in

1

8E(z) = J(z — 2)26%,,(2)dZ where 6%, (z) = J 5%(Ea(2), w)(1 — p)du.

(38)

As the system parameters change, so does the Fokker-Planck flux ¢pp.
This in turn results in a change in the average depth-dependent energy
E,(z) of the beam which in turn results ultimately in changes in the FE
coefficients. To compute the effect of a change in the FP flux on the FE
coefficients, the elastic scatter cross section can be re-written to illustrate
the energy dependence by using the classical kinetic energy relationship
between speed and energy as
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1 1
Zo(Ea(2):1Na) = Y NiFi (16 Ai)E> (Zis o) 25 7
A a( u+2C;71)
3/2
2 1
here Fy(u,A;) (HEJFA_‘?) Fy(Ziymg) (Ziesz’)z d ¢, i=E
T 5 = is ;)= n .= .
where Fj(u,A; l—i-ﬁ 2\ Zi, My; 8Teomo, and ¢y,;=~Lql];

The Gateaux-differential of the elastic scatter cross section is

OZs(Eal2), 1o Na) = 3 Z (N; + tON;)Fy (1, A o (Ziy moy) ! !

2 2
icA (Ea(z) + tOE4(2)) (1 —u+ ﬁ)

t=0

1
= Z ONF (1, A)) Fa(Zi, mo;) 3 2
icA Ei(2) (1 e ))

OE,(2) 1 [ -2 n 4y, i 1

+ Z NiFy(p, Ai)F2(Zi, mop) 3
= B (1 -+ 225

= 5251(5NA\) + 5252(5Ea(z))’

?|Ea(2) " Ei(2)1 -+ 225

(39)

where 0N is the set of perturbations in the atomic density set previously
defined as Nj. It can be seen that here as well the change in the elastic
scatter cross section can be described as a direct change due to the atomic
composition in the tissue 0N and the change due to the change in the
beam energy spectrum. The last component is to obtain the relationship
between the change in the energy spectrum 0E,(z) and the change in the
flux itself 0¢pp. The Gateaux-differential of the average depth-dependent
energy is

0E,(z) =

> Eh (Z)
M@Lﬁmm_m@z

where the number of particles and the beam energy at a given depth are
defined as

J dEd@pp, (40)
0

N,(z) = | dE@gp(z, E) and (41)

SR

Ey(z) = JdEE(pFP(z, E). (42)
0

At this point the functional relationship between JR and the changes in
oa and d@pp can be obtained. The first step is to introduce the result from

Equation (39) into the Gateaux-differential of ? given in Equation (38),
yielding
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58 (2) = sz’(z V0% (d) = sz’(z _ 2y Jdu[azﬂ(aNA) + 6%0(SEa(2))](1 — 1)

5, (ONp) + 68,(0E4(2)).

(43)

The term 6%, does not contain any dependencies on the unknown d@pp

and contributes to the direct effect. The term 5?2 does on the other hand
contain a dependency on d¢@pp. Its d¢pp dependency is obtained by using
Equation (40), namely

68, = sz’(z -2
0

+
PE#) E(@) 1 — it gt

Jd,u(l —u) ZNiFl (1, Ai)F>(Zi, mo;)

2
icA E.(2) (1 - n+

OE,(2) 1 { -2 dcy 1

OE,(2')-1,(2")

- sz’(z  IYSE) () = sz’(z )LL) Jm dE <sz,) - ib((j))2> S0s(2, E).
0 0 0 r

The next step is to introduce the expression from Equation (43) into the
lateral ROI integration of 6Wgr from Equation (37). For simplicity of nota-
tion, let

YoM (7) = J dxdyW .
ROL(2)
Using this, R becomes
OR = J dZDFp(Z) J dXdyélPFE + J dZ\I—’?}?I"y(Z)éDFP(Z). (44)
ROL ROL, RO

Introducing in this expression the direct and indirect contributions

results in
OR = J dz{DFP(z)(s?(z) [_ﬂl_@ +Iiz_(z)”

ROL. &) &7 )

+ J dz‘Pﬁgl"y (2)[0Dgp, dir (00t) + ODgp, indir (0Qpp)]
ROL
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_ = @) Ia@)) b
= J dzDgp(2)0& 1(5NA){ —?(z) +_§2—(z)2 direct change due to da

RO
— I I
+ J dzDpp(2)0E%5(5ppp) | — f_l(z) —I—iz(zz — indirect change due to d¢pp
ROL &z) &(2)
+ J dz‘Pﬁngy (2)0Dgp, 4ir(0at, @pp) — direct change due to Ja
ROI

+ J dz‘PﬁEOI (2)0Dgp, indgir (o 0@ pp) — indirect change due to d@pp.
ROI

(46)

5.2. Relating d¢ to da

The expression in Equation (46) shows that the response change depends
on the changes in the system parameter vector da and the corresponding
change in the Fokker-Planck flux d¢pp. Since the Fokker-Planck flux and
the vector of system parameters are related through Equation (10) and its
associated boundary conditions it must also be that the perturbations in
both of these quantities are related. A first-order relationship between d¢pp
and Ja can be obtained by taking the Gateaux-differential of the Fokker-
Planck equation and it’s boundary conditions (Cacuci 2003). In this process
a new PDE is obtained for the unknown J¢pp as a function of the initial
operator L(a) and the perturbations in the system parameters oa. Given
that this PDE has to be solved for each new vector of system parameter
perturbations and the number of such vectors is large, this process is com-
putationally too expensive to implement in practice.

5.3. Adjoint sensitivity analysis procedure

An alternative to the procedure from subsection 5.2 is the Adjoint
Sensitivity Analysis Procedure (ASAP). ASAP aims to eliminate the
unknown value of d¢pp from the response change Equation (46). This is
done by constructing a new system called the adjoint system that is inde-
pendent of d¢ppp with the property that the solution of this system (denoted
by ¢') can be used to eliminate the unknown d¢pp from Equation (46). In
the process of constructing the adjoint system the boundary conditions that
ensure its unique solution will also have to be imposed. These must be
chosen such that (Cacuci 2003):
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e they are independent of d¢pp, da and Gateaux-derivatives with respect
to a, and

e the evaluation of boundary terms does not contain unknown values
of dppp.

5.4. Adjoint system derivation

The starting point of the adjoint system derivation is the inner product
between the adjoint flux and the operator acting on the perturbation d¢pp,
namely

1.7 BOppp  OSOpm O ( 8¢ ) }
i _ T FP _ P9 FP
(0", L(2)0ppp) = J dz J dEg [ 92 OF OE T OE + Za0@gp

o 0
(47)

At this point we extend ¢pp and consequently @z to the whole R?
plane with the condition that these quantities are zero everywhere outside
of the computational domain . Through partial integration along the z-
direction for the first term, and along the E-direction for the stopping
power and range straggling terms, Equation (47) is found to be equal to

i dp' ot 9.8
a)0Qpp) = JdE(/)Jr (0,E)d¢pp(0, E)+<fai+38f(pEfa—ETa—(g+Z Q@ 5(/)FP>
- (48)
[dE(/’T (0,E)0¢gp(0,E) + <LT(“O)(/’T’5(PFP>~
0

In the process of deriving Equation (48) the adjoint operator L' together
with its associated boundary conditions were found to be

oot et 0 ( 8(/))
ror_ Y9 g9
L'o" = 8Z+S(9E 3E T8E + X0 (49)
8(pT
BCE: > Lmin) — =y
CE: ¢'(z,Emin) = 0, PE |, . 0 (50)
BCS: ¢'(zmax, E) = 0. (51)

To achieve the desired d¢pp elimination from Equation (46) we note that
OR is linear in both da and d¢pp. This allows writing the Gateaux-differen-
tial of the response as (Cacuci 2003)

OR(e";h) = R (")0qpp + R, (€")dar. (52)
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The quantity denoted as R}, (e°)d¢pp, identified as

__ I’ (Z) 1,2(2)
RA()50wm = | dzDep(2)0E, (50w | — LN 4 2
o(€)0ppp Rllz zDpp(2)0&5( QDFP)[ 2(2)  E(2)
+ J dz‘P?g"y (2)0Dgp, indir (0@ p),
ROI

is itself also linear in d¢pp. Coupling this with the self-duality of Hilbert
spaces certifies the application of Riesz’s representation theorem. Using this
theorem the quantity R|(e”)d¢pp can be written as an inner product

between a quantity r' € # and d¢gp (Cacuci 2003), namely,
Rip(eo)é(pFP = (r', 0ppp). (53)
Identifying " as the right-hand side of the adjoint system allows writing
the Gateaux-differential of the response as
OR(e"sh) = (1", 0¢pp) + R} (e’)0a = (LT(2)p", 09pp) + R, (e°) 0. (54)

The inner product in the second equality has already been computed in
Equation (48). Thus,

SR(e": h) = (¢, L(@)3ppp) — J dE (0, )30 (0, E) + R (")ox.  (55)
0

The quantity L(a)0@gp can be derived by taking the Gateaux-differential
of the Fokker-Planck equation, and is found to be

a5S(PFP+ 0 <5T8(pFP

OE ' OE OE

L<“>5Q)FP = - [L;(“)Q)FP] oo = ) — 0Z,ppp.  (56)

Making use of this transforms dR(e%; h) to

SR ) = (¢", — [L(2)@pp] 6a) — J dEo' (0, E)50(0,E) + R.(¢")da,
0
(57)

where the first inner product is equal to

(o 9 d . ¢
(@", — [L, (o) ppp| Sat) = L dz JO dEo" {% OSQpp +%5T 8;’ — 0 pp |-

(58)

For simplicity, the quantity d¢(0,E) was set to zero in the case of this
work and R/(e°)da is the direct change that has been previously computed
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in Equation (46) as

R (&%) = J dZDFP(Z)5?1(5N,') [_If_,l(z)_f_iz(ZZ]
RO, E(z) E(z2)
+ J dz‘PﬁgI(z)éDFP,dir(éa)- (59)
ROIL

As can be seen from Equations (57) to (59) the goal of the ASAP has
been reached. The indirect change in the response due to the perturbation
of the Fokker-Planck flux d¢yp has been replaced in Equation (46) by the
inner product from Equation (58). Thus, for a given number N of different
vectors of system parameters a the computational expense has been
decreased from the initial N necessary solutions of the 1DFP system to just
two solutions, namely those of the adjoint and Fokker-Planck systems, with
a similar computational expense for both systems.

6. Results and discussion

This section details the computational set-up of the algorithm in
Subsection 6.1, the comparison between the dose calculation of our engine
and those of TOPAS and Bortfeld’s method in Subsection 6.2 and the
accuracy of the previously illustrated ASAP methodology for response
change computations in Subsection 6.3.

6.1. Computational set-up

The domain of the CT scan was discretized using an arbitrarily chosen
number of 51 bins in the X and Y direction and 100 bins in the Z direc-
tion. The spatial extent of the CT scan was set to —2 to 2cm in the X
and Y directions and 0 to 10cm in the Z direction. Within this geometry
a slab was placed along the depth of the tank with its depth and precise
position being variable. The slab had variable HU values set while the
rest of the tank was set to either 0 HU (water) or the arbitrarily chosen
value of 550 HU. The ROI was defined to be a box with variable extents
in all three directions. An illustration of this set-up can be seen in
Figure 5

In all test cases the beam started at the point of g, = (0,0,0) and
ended at 7.,y = (0,0,10). The tracking of the beam within the geometry
was performed using an in-house ray-tracing procedure based on work of
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Figure 5. lllustration of the CT scan, the slab with perturbed HU values, the ROl and the inci-
dent beam.

de Sutter et al. (Sundermann et al. 1998) with a maximal step size set to
0.01cm.”

The initial spread of the Gaussian ¢; from Equation (25) in X and Y was
set to 0.3 cm and the space angle correlation ¢ from Equation (25) was set to
zero. Due to the singularity in the angular spread variable of the coefficients
from Equation (25), g, could not be set to zero. However, it was found that
values below 10~ did not affect the resulting energy deposition distributions
and thus the angular spread was set to the dimensionless value of 107%. The
energy domain was fixed between E., = 1 MeV, Ey,, = 200 MeV with a
number of groups of NG =300. The coefficients of the energy initial condi-
tion from Equation (11) were set to correspond to a normal distribution and
were matched such that the number of particles was either 1 or 2 x 107.
Moreover, the initial beam average energy E, from Equation (12) was set to
100 MeV while the energy spread o from the same equation was set to 0.757
504 MeV. The energy spread value was chosen to match the standard value
that TOPAS initializes for a proton pencil beam.

6.2. Forward results

To gauge the accuracy of the reponse computation engine, it was bench-
marked against the TOPAS MC algorithm (Perl et al. 2012). In a homoge-
neous water tank the energy deposition can readily be converted to dose
deposition. Laterally integrating this three dimensional quantity results in
the dose-depth curve named integrated depth dose (IDD),

2While a von Neumann stability analysis was not performed, through empirical observations it was found that in
water the maximal step size for accurate, artifact free fluxes outputted by the CN scheme is 0.01 cm. This was
used in a wrapper function for the ray-tracing procedure to divide each segment into a corresponding number
of sub-segments.
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IDD(z) = JJX dedyD(x, ,2). (60)

The comparison against TOPAS and Bortfeld’s popular pencil beam algo-
rithm (Bortfeld 1997) can be seen in Figure 6 showing that our algorithm is
capable of accurately predicting the dose in the Bragg peak, the region of most
clinical interest. Our algorithm slightly over-estimates the dose in the entrance
region, due to the assumption that 100% of the energy released in nuclear
interactions is deposited locally. To confirm this, a comparison was performed
where nuclear interactions were deactivated in TOPAS. This result can be seen
in Figure 7 which shows near overlap between the two normalized IDDs. The
slight difference in range is attributed to the slighly different stopping powers
and straggling coefficients used. A refinement of the treatment of nuclear inter-
actions can be envisioned using convolutional methods or through more sim-
plistic fits to empirical data. However, this is not the purpose of this paper,
whose main focus is the sensitivity of the algorithm.

1e8 TOPAS vs Fermi-Eyges vs Bortfeld

TOPAS
-- Fermi-Eyges
7 —— Bortfeld

6

o

IDD (MeV/g cm?)
.,

w

0 1 2 3 4 6 7: 8 9 10

5
Depth (cm)

Figure 6. IDD of the in-house algorithm, TOPAS and Bortfeld’s model.

Electromagnetic interactions only comparison in water

1.0 —— Fermi-Eyges
~— TOPAS

0.8

Normalized IDD
o
o

o
kS

0.2

0.0

0 2 8 10

4 6
Depth (cm)

Figure 7. IDD of the in-house algorithm and TOPAS without nuclear interactions.
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6.3. Adjoint results

A variety of test cases for the response change computation was performed,
an overview of which can be seen in Table 1. For all test cases £, was set
to zero due to a lack of data for all other materials other than 0 HU.

Table 1. Overview of case numbers and the corresponding slab location and perturbation val-
ues, ROI values and maximal percentage errors between the re-computation and the adjoint
result.

Slab ROI extent .
Case Maximal
number Location (cm) Perturbation (HU) X (cm) Y (cm) Z (cm) percentage error
| [2, 3] [-40, 40] [-2, 2] [-2, 2] [0, 2] 0
1l [2, 3] [-40, 40] [-2, 2] [-2, 2] [2, 6.5] 1.1 x 107°
1] [2, 3] [-40, 40] [-2, 2] [-2, 2] [5, 6.5] 3.6 x 1073
n [2, 3] [-40, 40] [-0.3, 03] [-0.3, 03] [5, 6.5] 3.6 x1073
\% [2, 3] [-40, 40] [-0.3, 0] [-0.3, 0.3] [5, 6.5] 3.6 x 1073
\ [2, 3] [-400, 400] [-2, 2] [-2, 2] [7, 9] 3.0
Vv [2, 3] [-400, 400] [-0.3, 0.3] [-0.3, 0.3] [7, 9] 3.0
1 [4, 6] [-40, 40] [-2, 2] [-2, 2] [5, 6.5] 3.6 x 1073
VI [4, 6] [-40, 40] [-0.3, 0.3] [-0.3, 0.3] [5, 6.5] 3.6 x 1073
Vi [4, 6] [-400, 400] [-2, 2] [-2, 2] [7, 9] 17.7
VI [4, 6] [-400, 400] [-0.3, 0.3] [-0.3, 0.3] [7, 9] 17.7
6.3.1. Case |

First, a small range of [-40, 40] HU perturbations around the nominal slab
value of 550 HU was used. The slab was placed in the plateau region of the
energy deposition versus depth curve between 2 and 3 cm in depth. Given
this set-up if the ROI has dimensions X,Y € [—2,2],Z € [0,2] and under
the assumption of a forward propagating (not backscattered) flux then the
expectation is that the response change is identically zero. This corectness
test can be seen in Figure 8.

6.3.2. Case Il

Changing the ROI to be the box with X,Y € [-2,2],Z € [2,6.5] results in
Figure 9. There it can be seen that adjoint theory provides a first order approxi-
mation to the forward response. In this case the maximal percent error occurs
for the 510 HU slab perturbation and it is equal to ~ 1.1 x 1075%.

6.3.3. Case lll

In the case of proton therapy, it is likely that a ROI of practical interest is
the Bragg Peak region. Thus, the slab is maintained in its previous position
and the ROI is set to the box with X,Y € [-2,2],Z € [5,6.5]. This result
can be seen in Figure 10. Another scenario of interest could be the one in
which a tumor is surrounded by organs at risk. In this case, the ROI is
restricted to only part of the lateral extent. In Figure 11 the lateral extent
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Figure 8. Adjoint versus re-computation for a small HU range with a full lateral ROl in X and Y
and Z € [0,2].
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Figure 9. Adjoint versus re-computation for a small HU range with a full lateral ROl in X and Y,
Zc[2,65].

was constrained to X,Y € [—0.3,0.3] while the depth was kept to Z €
[5,6.5]. Both Figures 10 and 11 show that the adjoint method is capable of
accurately computing the response changes due to the slab in the ROI
down to a percentage error of 3.6 x 107°% that is likely clinically insignifi-
cant. This can be seen from the fact that a fraction that is typically deliv-
ered is on the order of 2 Gy which is equivalent to ~ 6.3 x 10° MeV g~

6.3.4. Case IV

Tests with asymmetric ROIs have also been performed. Restricting the ROI
such that X € [—0.3,0], Y € [—0.3,0.3] and keeping Z € [5,6.5] resulted in
a similar error (depicted as the same in Table 1 due to round-off) to the
previous test cases. The two curves for this case can be seen in Figure 12.
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Figure 10. Adjoint versus re-computation for a small HU range with a full lateral ROI in X and
Yand Z € [5, 6.5].
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Figure 11. Adjoint versus re-computation for a small HU range with a reduced lateral ROl in X
and Y and Z € [5, 6.5].
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Figure 12. Adjoint versus re-computation for a small HU range with a laterally asymmetric ROI
inXand Y and Z € [5, 6.5].
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6.3.5. Case V

Next to the small HU range, a large [-400, 400] HU perturbation range
around the nominal value of 0 HU was tested. The nominal value in this case
corresponded to a homogeneous water tank. This set-up simulates more clin-
ically relevant test-cases as the —400 HU value roughly corresponds to a tis-
sue similar to lung while a value of 400 HU correponds to bone. As in the
small perturbation range cases, ROIs with full and reduced lateral X and Y
extents were tested. Figure 13 illustrates the case when X € [-2,2], Y €
[—2,2],Z € [7,9] while Figure 14 illustrates the case when X €
[—0.3,0.3], Y € [-0.3,0.3], Z € [7,9]. It should be noted that as opposed to
the straight lines shown before, these figures do not contain straight lines.
This is due to the regions of discontinuity that appear in the Scheinder’s con-
version (Schneider, Bortfeld, and Schlegel 2000) from HU values to density

ROLEX € [-2,2],Y € [2,2],Z € [7,9]

—— Re-computation
—— Adjoint

@
S

N
@

N
-3

Energy deposited in ROI (MeV)
N
R

N
N

20

-400 -300 =200 -100 0 100 200 300 400
Slab perturbation (HU)

Figure 13. Adjoint versus re-computation for a large HU range with a laterally symmetric ROI
and Z € [7, 9].

ROI: X € [0.3,0.3],Y € [0.3,0.3],Z € [7,9]

—— Re-computation
- Adjoint

Energy deposited in ROI (MeV)

-400 -300 =200 -100 0 100 200 300 400
Slab perturbation (HU)

Figure 14. Adjoint versus re-computation for a large HU range with a laterally symmetric
reduced ROl and Z € [7, 9].
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Figure 15. lllustration of the discontinuity in Schneider's HU to density conversion curve.
Picture taken from (Schneider, Bortfeld, and Schlegel 2000). [The image is reproduced with
permission from IOP Publishing, Ltd.]

and atomic composition. The discontinuity for the density to HU converison
can be seen in Figure 15 and it is also why the range of 510-590 was chosen
initially, as in this range the afore mentioned conversion is continuous.

6.3.6. Case VI

Tests were also performed with a 2cm slab placed between 4 and 6cm
deep, in the vicinity of the BP. The same large and small variations in the
perturbation range together with ROI contractions were investigated. In the
case of a small perturbation range, good agreement was found for both full
and symmetrically reduced lateral X and Y extents with maximal percent-
age errors being 3.6 X 107°%. In the case of the large perturbation range,
the algorithm resulted in a moderate percentage error of 17%. This result is
not unexpected as adjoint theory provides a first order approximation to
the response change and it is expected that the approximation worsens as a
function of increasing perturbations (Figures 16-19).

7. Conclusion

In this paper we have developed a methodology for the approximate solu-
tion of the Linear Boltzmann Equation that takes heterogeneity in the
depth direction into account. This method requires the solution to two
PDEs, namely the one-dimensional FP equation and the FE equation. The
one-dimensional FP equation was numerically solved through a combin-
ation of the SIPG method using quadratic energy basis functions in energy
and the CN method in space. Using the 1DFP flux ¢gp the average depth-
dependent energy E,(z) of the beam is computed. This quantity is there-
after used in the computation of the depth-dependent FE coefficients which
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and Z € [7, 9].
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Figure 19. Adjoint versus re-computation for a large HU range with a laterally symmetric
reduced ROl and Z € [7, 9].

define the FE flux ¢p;. Using the product of these two fluxes complete
knowledge of the phase-space density of protons is obtained and hereby
our specific problem of charged particle transport is solved.

Using the phase-space density of protons, the response (which was
defined by the deposited energy in an arbitrary ROI) was computed. Good
agreement, especially in the clinically significant Bragg peak region, was
obtained in a homogeneous water tank when our algorithm was bench-
marked against TOPAS (taken as the reference algorithm) and Bortfeld’s
popular pencil beam algorithm.

Using functional analysis the adjoint system was derived and solved. The
changes in the response due to slabs placed along the depth of the tank
with different HU values were computed. These changes were compared
against the re-computation ones with relatively good results. Adjoint theory
provided (as expected) a first order approximation to the response change
curve. In the case of small slab perturbations the relative difference was
clinically insignificant. Even in cases of large HU perturbations, adjoint the-
ory resulted in relatively small to moderate errors of 3% to 17%.

Future work should focus both on improving the energy/dose deposition
component (forward) and on speeding up the response change computa-
tion (backward). To improve the forward component a better model is
needed for the inelastic nuclear interactions between the primary protons
and the irradiated tissue. Possible methods for approaching this would be a
convolution-based approach or the Monte-Carlo fit method outlined by
Soukup et al. (Soukup, Fippel, and Alber 2005). Moreover, it is clear that
our algorithm cannot in its current state account for lateral heterogeneities
and thus, a pencil beam splitting scheme is needed. A starting point for
this would be the well-performing scheme proposed by Yang et. al (Yang
et al. 2020). Another metric to improve on is speed. This is an area where
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our algorithm performed relatively well, with an average execution time of
0.1s for one pencil beam. Ultimately, we aim to reduce the execution time
down to the ms range. This can be achieved by implementing an adaptive
energy grid such that no empty energy groups are solved for. Moreover,
the process of tracking many beams through the CT scan is highly paralle-
lizable due to their independent nature.

The main drawback of the adjoint component is the long time presently
needed to compute the direct contribution to the response change due to
ON, versus the relatively small increase in accuracy it yields. Tabulating the
integrals involved should, similar to the forward component, yield signifi-
cant time reductions. Moreover, the necessary data for the absorption cross
section should be obtained. Another point of improvement is the inclusion
of perturbations in the initial values of the FE coefficients or of the FP
boundary condition coefficients. Such perturbations can be derived from
machine log-files (for example the difference in Monitor Unit values for a
point is related to a difference in the number of input protons and the dif-
ference in the spot positions is related to a different entry position and
angle of the beam) and are the way in which our algorithm can be used for
the purpose of patient-specific quality assurance.
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Appendix: Proof of separability

Unlike in the homogeneous geometry considered by Gebiack and Asadzadeh (2012), in our
more general, in-depth heterogeneous case it is not immediately straightforward that intro-
ducing the split from Equations (5) into (4) yields the Fermi-Eyges Equation (19) and the
1D Fokker-Planck Equation (10). The difficulty is that the transport cross section
% (z,Es(z)) depends on the depth-dependent mean energy E,(z). In the work of Gebdck
and Asadzadeh (2012), when also accounting for energy straggling this relation is defined
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implicitly via a line integral of the stopping power as E,(z) = Ey — [; S(Eq(2)))dZ’. We
define the average energy via Equation (26), which means that E,(z) depends on the
Fokker-Planck flux ¢pp(z, E), therefore the latter is present in the Y term, namely

;A)Y((PFE(I') Q)> Prp(2, E)) +

Qpp(r, Q LDFP(¢pp(z, E)) = 0. (A1)
FE(T>

¢rp(2,E)

i —A

However, since Equation (26) defines the average energy as only depending on the energy
integrated Fokker-Planck flux, the only independent variable E,(z) depends on is z.
Consequently, even though ¢p,(z, E) is present in the definition of E,;(z), Y does not have E
dependence. The general solution of Equation Al is therefore to equate each component to a
constant =4 € R, as shown in Equation A1l. Thus, the 1IDFP component is written out as

O¢rp _ 98(2, E) pp _ lazT(Z’ E)¢rp

Oz OE 2 OE2 + (Zﬂ(z’ E) + A)@FP =0, (Az)
while the Y (@pz(r, Q), ppp(2, E)) part reads
0 0 0 o o
gZFE o, g’;ﬁ +Q, gyFE — 2u(2.Ea(2)) (—ag? + —835’?) Ny P— (A3)
x y

The solution of Equation A3 is found by Geback and Asadzadeh (Geback and
Asadzadeh 2012) to be the usual FE solution ¢gz(r,Q) given in Equation (22) with a
multiplicative factor, namely

Pt Q2,7 # 0) = @pg(r, Q)e™. (A4)

This solution also clearly follows from the structure of Equation A3, containing the %
partial derivative and —A¢@p; terms, in addition to other linear partial non-z derivatives.

Due to the same structure, the solution of Equation A2 can similarly be written as

0pp(2E 1 # 0) = opp(z, E)e 7, (A5)

where @pp(z, E) is the solution to usual FP Equation (10) without the additional A term.

When multiplying ¢pz(r, Q, 4 # 0) and @gp(z,E, A # 0) it becomes clear that the value
of 4 does not affect the solution to Equation (4) and thus simply setting A=0 is a valid
choice, yielding the usual FE Equation (19) and FP Equation (10), even in the in-depth het-
erogeneous setting with exact average energy calculation. Since the boundary conditions
imply the existence of a unique solution, it is also guaranteed that the splitting proposed by
Geback and Asadzadeh (Geback and Asadzadeh 2012) in Equation (5) is exact in our more
general, in-depth heterogeneous case too.
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