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Abstract—Digital predistortion (DPD) is a popular technique to
enhance signal quality in wideband radio frequency (RF) power
amplifiers (PAs). With increasing bandwidth and data rates,
DPD faces significant energy consumption challenges during
deployment, contrasting with its efficiency goals. State-of-the-
art DPD models rely on recurrent neural networks (RNNs),
whose computational complexity hinders system efficiency. This
letter introduces DeltaDPD, exploring the dynamic temporal
sparsity of input signals and neuronal hidden states in RNNs
for energy-efficient DPD, reducing arithmetic operations and
memory accesses while preserving satisfactory linearization per-
formance. Applying a TM3.1a 200 MHz-BW 256-QAM OFDM
signal to a 3.5-GHz GaN Doherty RF PA, DeltaDPD achieves
−50.03 dBc in adjacent channel power ratio (ACPR), −37.22 dB
in normalized mean square error (NMSE) and −38.52 dB in error
vector magnitude (EVM) with 52% temporal sparsity, leading to
a 1.8× reduction in estimated inference power. The DeltaDPD
code is available at https://www.opendpd.com.

Index Terms—Digital predistortion (DPD), digital signal pro-
cessing (DSP), power amplifier (PA), recurrent neural network
(RNN), temporal sparsity.

I. INTRODUCTION

D IGITAL predistortion (DPD) is a popular method to lin-
earize wideband radio frequency (RF) power amplifiers

(PAs). Nevertheless, in modern radio digital backends, DPD
consumes a substantial portion of power [1]. This issue could
be further intensified by the potential incorporation of machine
learning (ML) techniques, such as recurrent neural networks
(RNNs), which, despite their promising capabilities, increase
power requirements.

Recent progress in ML-based long-term RNN-based DPD
for wideband PAs is detailed in [2], [3], [4], and [5]. However,
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the considerable computational complexity and memory needs
of RNN-based DPD systems present major challenges to their
efficient implementation in digital signal processing (DSP)
processors for wideband transmitters. This is especially rel-
evant for upcoming 5.5G/6G base stations or Wi-Fi 7 routers,
where limited power resources restrict real-time DPD model
computation.

Previous methods to tackle DPD energy consumption
include reducing the sample rate [6], utilizing a sub-Nyquist
feedback receiver in the observation path [7], dynamically
modifying model cross-terms based on input signal properties
[8], creating simplified computational pathways for DPD algo-
rithms [9], pruning the unimportant weight of fully connected
layer (FC) to induce static spatial weight sparsity [10] and
reducing the precision of DPD models [11].

This letter proposes a novel power-saving approach for
wideband DPD by inducing and exploiting dynamic temporal
sparsity [12] in RNN inputs and hidden states using the delta
network algorithm [13]. The proposed algorithm decreases
both memory access and arithmetic operations by deactivating
part of multiplication-and-accumulation (MAC) operations. It
facilitates the design of power-area-efficient RNN computing
hardware suitable for DPD deployment in resource-constrained
environments. The proposed method can potentially be applied
to various RNN-based DPDs.

II. DELTADPD ALGORITHM

In this work, we use JANET [14] and GRU [15] cells, as
shown in Fig. 1(a), which were adopted in recent DPD studies
[3], [4], [11], to verify the effectiveness of the DeltaDPD in
reducing power without significant linearization loss and its
adaptability to different RNN architectures. Both the JANET
and GRU cells are cascaded with an FC layer with two output
neurons as the output layer.

A. Delta Updating Rule

Neural networks (NNs) use dense-matrix-dense-vector mul-
tiplication (M × V) as illustrated in Fig. 1(b). When
processing continuous sequential signals using NNs, input
data samples φ and hidden states h of the network could
have high autocorrelation, causing small changes (∆) between
neighboring time steps at durations when the derivative of
data is low, leading to temporal sparsity in delta input ∆φ
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Fig. 1. (a) GRU and JANET cell structure with inputs φ and hidden states
h. (b) Vanilla network and (c) delta network M × V. (d) Unrolled DeltaDPD
network M × V in time.

and delta hidden state vectors ∆h, which can be used to
convert M × V into dense-matrix-sparse-vector multiplication
(M × SV). As depicted in Fig. 1(d), by defining thresholds
Θφ and Θh, DeltaDPD skips MAC operations and memory
access involving below-threshold ∆ vector elements and their
corresponding weight columns, where all gray elements are
skipped.

A sequential delta M × V can be derived by

yt = Wxt (1)
yt = W∆xt + yt−1 = W(xt − xt−1) + yt−1 (2)

where x can be either the RNN input φt or hidden state ht

vector at time t, W represents the weight matrices, and yt−1
is M × V result from the previous time step t − 1. In (1),
W∆xt becomes M × SV if only computations corresponding
to above-threshold ∆xt elements are kept, as given by

∆xt =

(
xt − x̃t−1, |xt − x̃t−1| > Θx

0, |xt − x̃t−1| ≤ Θx
(3)

where a piece of memory x̃ is used to buffer the previous state.
To prevent error accumulation over time by memorizing only
the last significant change, each kth scalar element x̃k of vector
x̃ only gets updated when the corresponding ∆xk exceeds the
threshold. This updating rule is defined by

x̃k
t−1 =

(
xk

t−1,
ˇ̌
xk

t − x̃k
t−1

ˇ̌
> Θx

x̃k
t−2,

ˇ̌
xk

t − x̃k
t−1

ˇ̌
≤ Θx.

(4)

B. Definition of DeltaDPD

Taking the classic GRU-RNN as an example, the preac-
tivation accumulation of DeltaGRU with input feature φt =�
It, Qt, |xt |, |xt |

3, sin θt, cos θt
�

can be derived by transforming
the original GRU equations into their delta forms by following
(1) and (2):

Mr,t = Wir∆φt + Whr∆ht−1 + Mr,t−1 (5)
Mz,t = Wiz∆φt + Whz∆ht−1 + Mz,t−1 (6)

Mnφ,t = Win∆φt + Mnφ,t−1 (7)
Mnh,t = Whn∆ht−1 + Mnh,t−1. (8)

The terms Mr, Mz, and Mn are the preactivation accumulation
of DeltaGRU’s reset gate r, update gate z, and new gate n,
initialized by the biases of gates Mr,0 = bir, Mz,0 = biz, Mnφ,0 =

bin, and Mnh,0 = bhn. Therefore, the DeltaGRU-based DPD is
defined as

rt = σ
�
Mr,t

�
(9)

zt = σ
�
Mz,t

�
(10)

nt = tanh
�
Mnφ,t + rt �Mnh,t

�
(11)

ht = (1 − zt) � ht−1 + zt � nt. (12)

The predicted DPD outputs are generated by a final FC layer�
Ît, Q̂t

�
= ŷt = Wŷht + bŷ. (13)

The same process can be used to convert the JANET algorithm
into a DeltaJANET-based DPD. The delta updating rules of
DeltaGRU and DeltaJANET both follow (3) and (4).

C. Theoretical Operation and Memory Access Savings

In DeltaGRU DPD, the arithmetic operations and memory
accesses are dominated by the M × V in (5)–(8). By further
considering the overhead in (3) and (4) an assuming all vectors
have length n and the weight matrices have dimensions n× n,
the dense/sparse computational cost Ccomp and memorial cost
Cmem for calculating M × V and M × SV are given as

Ccomp,dense = n2 (14)

Ccomp,sparse = (1 − Γ)n2 + 2n (15)

Cmem,dense = n2 + n (16)

Cmem,sparse = (1 − Γ)n2 + 4n (17)

where Γ is the overall temporal sparsity by considering zeros
in both ∆φ and ∆h. Therefore, the theoretical computation
speedup and memory access reduction of a DeltaDPD are
approximated as

Speedup ≈
n

(1 − Γ)n + 2
(18)

Memory Access Reduction ≈
n + 1

(1 − Γ)n + 4
. (19)

In RNN-based DPD tasks with 500–1000 parameters, the
value of n for an RNN structure typically ranges from 8 to
20. For example, in DeltaGRU-1067, n equals 15. Considering
the overhead terms in (15) and (17), only sparsity greater than
27% can lead to useful memory access reduction larger than 1
[see (19)]. Although we give the complete (18) and (19), for
easy comparison and presentation of results, we estimate the
number of active parameters during DeltaDPD inference by

#Active Params = #DeltaGRU Params × Γ

+ #FC Params. (20)

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Fig. 2 illustrates the experimental setup. The TM3.1a
5 × 40 MHz (200-MHz) 256-QAM OFDM baseband I/Q
signal with 10.01 dB peak-to-average power ratio (PAPR)
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TABLE I
LINEARIZATION PERFORMANCE OF DIFFERENT DPD MODELS EVALUATED WITH TM3.1A 200-MHZ FIVE-CHANNEL ×40-MHZ 256-QAM OFDM

SIGNALS SAMPLED AT 983.04 MHZ ALONGSIDE THEIR ESTIMATED DYNAMIC POWER CONSUMPTION IN 7 NM WITH
FP32 PARAMETER PRECISION [16]

Fig. 2. Setup for dataset acquisition and DPD performance measurement.

was emitted by R&S-SMW200A and amplified by a 3.5-GHz
GaN Doherty PA at 41.5-dBm average output power with
and without DPD. The output signal was digitized using an
R&S-FSW43 analyzer. Since this spectrum analyzer lacks error
vector magnitude (EVM) calculation capability, the EVM was
determined by comparing the input signal with the digitized
output signal instead of using the reference grid. The dataset,
comprising 98304 samples, was divided into 60%, 20%, and
20% for training, validation, and testing.

The end-to-end DPD learning process involves back-
propagation through a pretrained 2751-parameter −40.04-dB
normalized mean square error (NMSE) DGRU PA behavioral
model [18] with the newly measured PA dataset. The models
were trained for 200 epochs using the ADAMW optimizer
with an initial learning rate of 5E−3 with ReduceOnPlateau
decay and a batch size of 64.

B. Results and Discussion

Table I compares the NMSE, ACPR, and EVM results for
different DPD models alongside the number of MUL, ADD
operations, and 8-kB SRAM accesses. The estimation method
follows [11]. The DeltaGRU-573 DPD model with Θφ of 0,
Θh of 0.05 achieves an ACPR of −50.03 dBc, an NMSE

Fig. 3. Activated parameter scan of DPD models versus (a) ACPR (left) and
(b) ACPR (right). (c) NMSE. (d) Sparsity of 1067-parameter-GRU versus
EVM (left Y-axis) and estimated dynamic power (right Y-axis).

of −37.22 dB, and an EVM of −38.52 dB while estimated
to consume 6.41 nJ per inference in 7-nm technology. The
DeltaGRU-573 demonstrates the most considerable power
reduction while maintaining the ACPR better than −50 dBc,
as highlighted by the horizontal dashed lines in Fig. 3.

Fig. 3(a)–(c) shows the correlation between ACPR/NMSE
and estimated energy/inference against #active parameters of
DeltaGRU/DeltaJANET covering 300–1100 active parame-
ters. Even at a high temporal sparsity of around 70% with
around 400 active parameters, DeltaGRU and DeltaJANET
still maintain ACPR values better than −48 dB. Comparing
the performance of various Θφ, utilizing temporal sparsity
of input feature even close to 0 in the DPD task degrades
the linearization performance by 1.57 dB because the DPD
performance is highly sensitive to the I/Q sampling rate.
Fig. 3(d) presents the estimated energy per inference in 7 nm
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Fig. 4. Measured spectrum on the 200-MHz TM3.1a signal.

Fig. 5. (a) AM/AM and AM/PM characteristics. (b) Constellation map with
and without DPD for the 200-MHz OFDM signal.

of DeltaDPDs. The DeltaGRU-573 model realizes a 1.7×
power reduction over the DeltaGRU-1067 network.

Fig. 4 displays the measured spectrum with and without
DPDs, which confirms that the DeltaGRU-573 model achieves
ACPR of −50 dBc. Fig. 5 exhibits the AM/AM, AM/PM
characteristics and constellation map with and without DPDs.

C. Comparison to Prior Works

Due to power constraints in DPD applications, state-of-the-
art models are typically limited to around 1000 parameters [5],
making NN performance particularly susceptible to compres-
sion and sparsity of input compared to delta networks with
parameters more than 160 000 in other domains [12], [13].
The previous approaches of lightening the DPD model have
primarily relied on static spatial weight pruning of NN weights
[10], [19]. Using a 100-MHz OFDM signal, Liu et al. [10]
achieved an ACPR of −45.5 dBc with a pruned convolutional
NN-based DPD model containing 106 parameters, reduced
from 158. Li et al. [19] demonstrated an ACPR of −45.1
dBc at 200 MHz using a pruned phase-normalized time-delay
NN with 909 parameters. However, these unstructured pruning
methods create irregular distributions of nonzero values in
weight matrices, causing unbalanced workloads among hard-
ware arithmetic units and limiting real speedup or efficiency
gains in actual hardware implementations. In contrast, our
proposed DeltaDPD achieves a superior ACPR of −50.03
dBc at 200 MHz with only 573 parameters while maintaining
structure.

IV. CONCLUSION

This work introduces DeltaDPD, a novel method for energy-
efficient RF PA linearization that leverages dynamic temporal

sparsity. By reducing computational complexity and mem-
ory access compared to conventional approaches, DeltaDPD
achieves power savings while maintaining robust linearization
performance.
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