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a b s t r a c t

The synchronization of power generators is an important condition for the proper functioning of
a power system, in which the fluctuations in frequency and the phase angle differences between
the generators are sufficiently small when subjected to stochastic disturbances. Serious fluctuations
can prompt desynchronization, which may lead to widespread power outages. Here, we model the
stochastic disturbance by a Brownian motion process in the linearized system of the non-linear power
systems and characterize the fluctuations by the variances of the frequency and the phase angle
differences in the invariant probability distribution. We propose a method to calculate the variances
of the frequency and the phase angle differences. For the system with uniform disturbance-damping
ratio, we derive explicit formulas for the variance matrices of the frequency and the phase angle
differences. It is shown that the fluctuation of the frequency at a node depends on the disturbance-
damping ratio and the inertia at this node only, and the fluctuations of the phase angle differences
in the lines are independent of the inertia. In particular, the synchronization stability is related to
the cycle space of the network. We reveal the influences of constructing new lines and increasing
capacities of lines on the fluctuations in the phase angle differences in the existing lines. The results
are illustrated for the transmission system of Shandong Province of China. For the system with
non-uniform disturbance-damping ratio, we further obtain bounds of the variance matrices.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Power grids deliver a growing share of the energy consumed
n the world and are undergoing an unprecedented revolution be-
ause of the increasing integration of intermittent power sources
uch as solar and wind energy and the commercialization of
lug-in electric automobiles. These developments will change the
tructure of power sources and decrease carbon emissions dra-
atically, but they will also lead to new disturbances associated
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with fluctuations in energy production and load. These distur-
bances not only deteriorate the quality of the power supply but
may trigger loss of synchronization, which can result in serious
blackouts (Marris, 2008). This indicates the necessity to study
synchronization under stochastic disturbances.

Here, we focus on the synchronization of power systems under
stochastic disturbances. We explore the role of system parame-
ters in a framework of stochastic systems that can be extended
to other real complex networks with synchronization. In a syn-
chronous state of a power system, the frequencies of the syn-
chronous machines (e.g., rotor-generators driven by steam or gas
turbines) should all be equal or close to the nominal frequency
(e.g., 50 Hz or 60 Hz). Here, the frequency is the derivative of
the rotational phase angle and is equal to the rotational speed of
the synchronous machine in units of rad/s. The synchronization
stability is defined as the ability to maintain synchronization un-
der disturbances, which is also called transient stability (Kundur,
1994). The parameters that determine synchronization include
the power flows, inertia (Poolla et al., 2017) and damping co-
efficients (Motter et al., 2013; Nishikawa et al., 2015) of the
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ynchronous machines as well as the coupling strength (Fazlyab
t al., 2017) between the synchronous machines and the net-
ork topology, which can be optimized to enhance stability by

oad-frequency control or by constructing new power generators,
irtual inertia and transmission lines. In the analysis of the ex-
stence condition of a synchronous state (Dörfler & Bullo, 2012)
nd the linear (Motter et al., 2013; Nishikawa et al., 2015) and
onlinear stability of that state (Chiang et al., 1988; Menck et al.,
013; Zaborszky et al., 1988), the focus is on the synchronous
tate, on the local convergence or on the basin of attraction.
owever, in practice, the state of the power system never stays
t the synchronous state and is always fluctuating due to various
isturbances. If both the fluctuations of the frequency and the
hase angle difference are so large that the system cannot return
o the synchronous state, then the synchronization is lost. Hence,
he impact of the disturbances cannot be neglected and the size of
he fluctuations directly characterizes the stability of the system.

Robust control methods in load frequency control may be used
o improve the stability, where the disturbances are considered,
ee Trip et al. (2019, 2020), Xi et al. (2020). By these methods,
he power generation are controlled to balance the disturbances.
owever, besides the power generations, the stability of the sys-
em also depends on the network topology, line capacities, inertia
f the synchronous machines and so on, for which the values
annot be specified by the robust control methods. By modelling
he disturbances as inputs to the associated linearized system, the
luctuations are evaluated by the H2 norm of the input–output
inear system (Poolla et al., 2017; Tegling et al., 2015). However,
ecause the H2 norm equals the trace of a matrix (Doyle et al.,
989), which is a global metric for the synchronization stability,
he fluctuations of the frequency at each node, the phase angle
ifference in each line and their correlation can hardly be ex-
licitly characterized. Clearly, the nodes with serious fluctuations
n the frequencies and the lines with serious fluctuations in the
hase angle differences are vulnerable to disturbances. In physics,
he focus is on the propagation of the disturbances (Auer et al.,
017; Haehne et al., 2019; Kettemann, 2016; Zhang et al., 2019,
020) and the network susceptibility (Manik et al., 2017). For
xample, the statistics of the fluctuations at the nodes, e.g., the
ariance of the increment of the frequency distribution, can be
alculated via simulations by modelling the disturbances by ei-
her Gaussian or non-Gaussian noise (Haehne et al., 2019). With
erturbations added to the system parameters, the disturbance
rrival time and the vertex and edge susceptibility are estimated
n Zhang et al. (2020) andManik et al. (2017) respectively. The
mplitude of perturbation responses of the nodes is used to
tudy the emergent complex response patterns across the net-
ork (Zhang et al., 2019). By these investigations on fluctuations,

ntuitive insights on the impact of the system parameters, e.g., the
etwork topology and the inertia of synchronous machines, on
he spread of the disturbances are provided, which may help to
evelop practical guiding principles for real network design and
ontrol.
In this paper, we investigate the fluctuations of the frequency

t each node and the phase angle difference in each line in a linear
tochastic system. By modelling the disturbances by Gaussian
oise, we use the variance in the invariant probability distribution
o characterize the fluctuations and propose an efficient method
or the calculation of the variance by solving a Lyapunov equation
nstead of statistics with a large amount of simulations. Under
ssumptions of uniform disturbance-damping ratio at the nodes,
xplicit formulas for the variances of the fluctuations in the
requencies and phase angle differences are derived, which can
e used to tune the system parameters to improve the synchro-
ization stability. With these explicit formulas, the impact of the
etwork topology on the synchronization stability is considerably
larified.
The contribution of this paper includes:
 f

2

(i) a new metric, that is the variance in the invariant proba-
bility distribution of the frequencies at the nodes and the
phase angle differences in the lines, is proposed for the
analysis of the synchronization stability. With this metric,
the vulnerable nodes and lines can be identified effectively
based on solving a matrix Lyapunov equation;

(ii) under the assumption that the disturbance-damping ratio
is uniform, we derive an explicit formula of the variance
matrix of the frequency, which reveals the impact of the
inertia and the disturbance-damping ratio, and an explicit
formula of the variance matrix of the phase angle differ-
ences, which reveals the impact of the network topology
and the disturbance-damping ratio;

(iii) for non-uniform disturbance-damping ratio, an upper and
a lower bound of the variance matrices of the frequency
and the phase angle differences are deduced;

(iv) the impact of constructing new lines and increasing the
capacity of lines on the variance are investigated.

he findings of this paper provide directions for the optimiza-
ion of the droop control coefficients, the placement of virtual
nertia and energy storage, changes in the network topology,
nd changes in the capacity of lines in the power systems. The
ramework of this paper for the investigation of synchronization
tability may be extended to other networks with stochastic
isturbances and problems of synchronization.
This paper is organized as follows. The mathematical model of

he power system and the problem formulation are introduced in
ection 2. We propose a method to calculate the variance matri-
es of the invariant probability distribution of the frequency and
hase angle differences in Section 3. We derive explicit formulas
or the two matrices in Section 4. Based on the explicit formulas,
e deduce bounds of the variance matrices for the networks with
on-uniform disturbance-damping ratio in Section 5. We study
he role of the network topology in Section 6 with verification
sing a real network in Section 7. We conclude this paper with
erspectives in Section 8.

. Models and problem formulation

The power grid can be modelled by a graph G(V, E) with nodes
and edges E ⊂ V × V , where a node represents a bus and an

dge (i, j) represents the transmission line between nodes i and
. We focus on the transmission network and assume the lines
re lossless. We denote the number of nodes in V and edges in E
y n and m, respectively. The dynamics of the power system are
escribed by the following swing equations (Chiang et al., 1988;
enck et al., 2014; Zaborszky et al., 1988):

δ̇i = ωi, (1a)

iω̇i = Pi − diωi −

n∑
j=1

lij sin (δi − δj), (1b)

here δi and ωi denote the phase angle and the frequency de-
iation of the synchronous machine at node i; mi > 0 describes
he inertia of the synchronous generators; Pi denotes power gen-
ration if Pi > 0 and denotes power load otherwise; lij = b̂ijViVj
s the effective susceptance, where Vi is the voltage; di > 0 is
he damping coefficient with droop control. Since the dynamics
f the voltage and the frequency can be decoupled (Simpson-
orco et al., 2016), we restrict attention to modelling only the
ynamics of the frequency and assume that the voltage of each
ode is a constant. In practice, the voltage can be well controlled
y an Automatic Voltage Regulator (Kundur, 1994). This model is
ften applied to study transient stability and rotor angle sta-
ility (Dörfler & Bullo, 2012; Menck et al., 2014; Nishikawa &
otter, 2015). In this paper, we focus on the networks with the
ollowing assumption.
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ssumption 2.1. Assume the network G(V, E) is connected.

With Assumption 2.1, we easily obtain m ≥ n − 1. In special
case of m = n− 1, the network is acyclic and when m ≥ n, there
re cycles in the network.

.1. The synchronous state

The stable region of system (1) is analysed by Chiang et al.
1988) and Zaborszky et al. (1988). The stability analysis of a
ower system makes use of the concept of the synchronous state
hich satisfies, for i = 1, 2, . . . , n,

i(t) = ωsyn, and δi(t) = ωsynt + δ∗

i ,

here δ∗

i and the synchronized frequency ωsyn satisfy,

i − Diωsyn −

n∑
j=1

lij sin δ∗

ij = 0 for i = 1, . . . , n,

ωsyn −

∑n
i=1 Pi∑n
i=1 Di

= 0,

here δ∗

ij = δ∗

i − δ∗

j is the phase angle difference between nodes
and j, which are directly connected by transmission line (i, j).
he power flow in line (i, j) is lij sin δ∗

ij , which is determined by
he load frequency control (Kundur, 1994). ωsyn is the deviation of
he synchronized frequency from the nominal value of frequency.
here are three forms of load frequency control distinguished
rom fast to slow time-scales, i.e., primary, secondary and tertiary
requency control. Primary control maintains the synchronous
tate by droop control on a small time-scale. However, this syn-
hronized frequency may deviate from its nominal value in a
edium time-scale, which leads to ωsyn ̸= 0. Secondary control

estores the synchronized frequency to its nominal value such
hat ωsyn = 0 on a medium time-scale. With a prediction of
ower demand, tertiary control calculates the operating point
tabilized by primary and secondary control on a large time-scale,
hich concerns the security and economy of the power system.

n the control design for frequency synchronization, the power
nput Pi is determined in the secondary and tertiary control. Thus,
t is practical to assume that the power generation and load
re balanced in the study of frequency synchronization. Thus,
n
i=1 Pi = 0, which leads to ωsyn = 0.
Due to low line capacities, the synchronous state might not

exist. For the condition of the existence of the synchronous state,
we refer to Dörfler and Bullo (2014). For the number of the
synchronous states, see Baillieul and Byrnes (1982), Luxemburg
and Huang (1987).

2.2. The linearized model

Assume that there exists a synchronous state (δ∗, 0) for system
1), which can be linearized as(

δ̇
ω̇

)
=

(
0 In

−M−1Lc −M−1D

)(
δ
ω

)
, (3)

here δ = col(δi) ∈ Rn, In ∈ Rn×n is the identity matrix,
= col(ωi) ∈ Rn, M = diag(mi) ∈ Rn×n, D = diag(di) ∈ Rn×n,

and Lc = (̃lcij ) ∈ Rn×n is the Laplacian matrix of the network with
weight lij cos δ∗

ij generated by (δ∗, 0), which satisfies

lcij =

⎧⎨⎩
− lij cos δ∗

ij , i ̸= j,
−

∑
k̸=i

l̃cik , i = j. (4)

Note that the state variables in (3) are the deviations of the
phase angles and frequencies from the synchronous state (δ∗, 0).
3

By the second Lyapunov method, the stability of (δ∗, 0) can be
determined by the sign of the real part of the eigenvalues of
the system matrix of (3). The analysis of the eigenvalue of the
system matrix is also called small-signal stability analysis. It has
been proven that if lij cos δ∗

ij ≥ 0, then the system is stable at the
synchronous state (δ∗, 0) (Zaborsky et al., 1985), which leads to
the security condition

Θ =
{
δ ∈ Rn

⏐⏐ |δij| <
π

2
, ∀(i, j) ∈ E)

}
. (5)

It has been proven by Skar (1980) that for the power network
with a general network topology, the synchronous state in this
security range is unique. For the identification of the subset of
the n-torus where there exists a synchronous state, we refer
to Jafarpour et al. (2022).

2.3. Problem formulation

In real networks, the state of the power system always fluc-
tuates around the synchronous state due to various disturbances.
If the fluctuations are very large, the state may exit the stability
region of the synchronous state and lead to instability of the
system. A sign of desynchronization is that both the fluctuations
of the frequency and the phase angle difference are so large
that the system cannot return to the synchronous state. Many
factors influence the fluctuations, which include the parameters
of the transmission lines, the synchronous machines, the network
topology and the disturbances. The source of the disturbances are
also various, e.g., the renewable power generation, fault of the
devices in the network, etc. We focus on the following problem
in this paper.

Problem 2.2. How do the fluctuations of the frequency and the
phase angle differences depend on the parameters of the system
and the disturbances?

The solution of this problem provides insights for suppressing
the fluctuations by scientific parameter assignments. The choice
of a model for the fluctuations in a power system should be based
on the criteria that the model is realistic and that the subsequent
analysis is not too complex.

A realistic model of the actual disturbances affecting a power
system at each node requires an extensive system identification
procedure, including the collection of a large amount of data on
the fluctuations of the power system. The disturbances come from
both the loads and the various power sources, such as wind parks
and photovoltaic units. It has been shown that the probability dis-
tributions of disturbances are not Gaussian in several real power
grids, e.g., grids in North America and Europe, which leads to non-
Gaussian distribution of the frequency and is crucial to induce
desynchronization in the system, see Haehne et al. (2019), Schäfer
et al. (2018), Schmietendorf et al. (2017), Wolff et al. (2019), Xie
et al. (2011) etc. A model could then be a nonlinear stochastic
differential equation of the power system driven by either Brow-
nian motion or another process with independent increments.
However, the performance evaluation of such nonlinear stochas-
tic system requires either the numerical approximation of the
solution of a partial differential equation (Wang & Crow, 2013)
or a large amount of simulations for the statistics of the frequen-
cies (Haehne et al., 2019). This model is too complicated to obtain
an analytic probability distribution of the state of the power
system consisting of a large number of synchronous machines.

An alternative to the modelling approach described above is to
formulate a deterministic linear system obtained by linearization
of a nonlinear power system at a synchronous state. The deter-
ministic linear system is then transformed into a linear stochastic
differential equation driven by Brownian motion. Such models are
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ften used in control engineering and in mathematical finance,
nd these models are regarded as reasonable approximations of
ealistic models. Moreover, these models have a low algebraic
omplexity. It is well known that for a linear stochastic dif-
erential equation with a system matrix that is Hurwitz, there
xists an invariant probability distribution of the state that is
Gaussian probability distribution characterized by the mean
alue and the variance of the state (Kwakernaak & Sivan, 1972,
heorem 1.53)(Karatzas & Shreve, 1988, Theorem 6.7). For power
ystems, the fluctuations are described by the variance matrices
n the invariant probability distribution of the associated linear
tochastic system. The dependence on the system parameters
s indicated. The complexity of the performance of this model
s manageable. Though the analysis of the stochastic linearized
ystem is valid only for comparatively small disturbances, it still
rovides intuitive insights on the stability of the power system.
When subjected to disturbances, the state of the power sys-

em deviates from the synchronous state. Hence, we study the
eviation of the frequency and the phase angle difference from
he synchronous state, which is the state of the linearized system
f the nonlinear power system. We model the disturbances by
Brownian motion process, which is then an input to a linear

ystem, and study the stochastic system

dδ(t) = ω(t)dt, (6a)

ω(t) = −M−1(Lcδ(t) + Dω(t)
)
dt + M−1B̃dµ(t), (6b)

ith the state variable, system matrix and input matrix,

(t) =

[
δ(t)
ω(t)

]
, A =

[
0 In

−M−1Lc −M−1D

]
, B =

[
0

M−1B̃

]
, (7)

where the notations δ(t), ω(t), M,D, Lc are defined as for (3),
B = diag(bi) ∈ Rn×n where bi ∈ R and b2i is used to characterize
the strength of the disturbance; µ(t) = col(µi(t)) ∈ Rn is a vector
of n independent scalar Brownian motion processes µi, which are
also all independent of the initial state x(0). A Brownian motion
process has increments with a Gaussian probability distribution.
Here, we refer to lij as the line capacity of line ek, which is also
called the coupling strength between generators, and refer to
lcij = lij cos δ∗

ij as the weight of line ek. It is obvious that the
weights of the lines are determined by the line capacity and the
power flows at the synchronous state.

In the model (6), the disturbances denoted by µi(t) at node
i are assumed to be independent, which is reasonable because
the locations of the power generators, including renewable power
generators, are usually far from each other. Because the system
(6) is linear, at any time, the probability distribution of the state
is Gaussian. To address Problem 2.2, we focus on the variance
matrices of the frequency and of the phase angle difference
in the invariant probability distribution of the linear stochastic
system, which reflect the dependence of the fluctuations of the
frequency and the phase angle difference on the system param-
eters. When considering the variance matrix in the invariant
probability distribution, we set the output matrix so that

y = Cx, y =

[
yδ

yω

]
, C =

[
C̃⊤ 0
0 In

]
∈ R(m+n)×2n. (8)

The m elements in yδ are the phase angle differences in the m
lines, and the n elements in yω are the frequencies at the n nodes.
The matrix C̃ = (Cik) ∈ Rn×m is the incidence matrix of the
network, which is defined as

Cik =

⎧⎨⎩
+1, if node i is the begin of line ek,
−1, if node i is the end of line ek,

0, otherwise,

4

where the direction of line ek is specified arbitrarily without influ-
ence on the study below. By the complex network theory (Biggs,
1993), the incidence matrix C̃ satisfies

CRC̃⊤
= Lc, (9)

where R = diag(Rk) ∈ Rm×m is defined such that Rk = lcij is the
weight of line ek connecting nodes i and j.

Because x(t) is the deviation of the frequency and phase angle
difference from the synchronous state, it is natural to assume
that x(0) ∈ G(0,Q x0 ) where Q x0 ∈ R2n×2n. Problem 2.2 requires
the calculation of the invariant probability distribution of the
deviations of the frequencies and of the phase angle differences,
and requires an analysis of how this distribution depends on the
parameters of the power system in particular on the intensities
of the stochastic disturbances. It will be shown in Theorem 3.2
that the variance matrix in the invariant probability distribution
is independent of the initial distribution. Below we restrict atten-
tion to the computation of the invariant probability distribution
of the state of the linear stochastic power system. From that
distribution, the variances of the outputs can be computed.

3. Derivation of the variance matrices

We denote the variance matrix of the frequencies and the
phase angle differences at the invariant probability distribution
by

Q =

[
Q δ Q⊤

δω

Q δω Q ω

]
∈ R(m+n)×(m+n),

where Q δ ∈ Rm×m denotes the variance matrix of the phase
angle differences, Q ω ∈ Rn×n denotes the variance matrix of
the frequencies, and Q δω ∈ Rn×m denotes the covariance of
the phase angle differences and the frequencies. Based on the
theory of linear stochastic Gaussian systems, Q is derived by
solving a Lyapunov equation, as presented in Definition A.1 in
Appendix. However, for a linear stochastic power system, the
system matrix A is not Hurwitz. This is due to the singularity of
the Laplacian matrix Lc , which has a zero eigenvalue. Therefore,
the variance matrix Q cannot be calculated directly from the
corresponding Lyapunov equation. A coordinate transformation
is required. Before introducing the transformation, we present
a lemma for the symmetrizable matrix M−1Lc (Xi et al., 2020,
Appendix).

Lemma 3.1. Consider the Laplacian matrix Lc and the positive-
definite diagonal matrix M−1 in system (6). The matrix Lc has a
zero eigenvalue with eigenvector 1n ∈ Rn which is a vector with
all its elements equal to one and there exists an orthogonal matrix
U ∈ Rn×n such that

U⊤M−1/2LcM−1/2U = Λn, (10)

where Λn = diag(λi) ∈ Rn×n with 0 = λ1 < λ2 · · · λn being the
eigenvalues of the matrix M−1/2LcM−1/2, U =

[
u1 u2 · · · un

]
with ui ∈ Rn being the eigenvector corresponding to λi for i =

1, . . . , n. In addition, u1 = σM1/21n where σ is a constant.

Based on Lemma 3.1, we transform the coordinates of (δ, ω)
into the eigen-space as follows. Let x1 = (M−1/2U )−1δ, x2 =

(M−1/2U )−1ω and insert (10) into (6), we derive

dx1 = x2dt, (11a)

dx = −
(
Λ x + U⊤M−1DUx

)
dt + U⊤M−1/2B̃dµ(t), (11b)
2 n 1 2
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ith the state variable, system matrix and input matrix becom-
ng

e =

[
x1
x2

]
, Ae =

[
0 In

−Λn −U⊤M−1DU

]
,Be =

[
0

U⊤M−1/2B̃

]
,

(12)

nd initial distribution xe(0) ∈ G(0,Q xe0
) such that

xe0
= TQ x0T

⊤
∈ R2n×2n,

T =

[
(M−1/2U )−1 0

0 (M−1/2U )−1

]
∈ R2n×2n.

he output (8) becomes

= C exe, C e =

[
C̃⊤M−1/2U 0

0 M−1/2U

]
∈ R(m+n)×2n. (13)

ecause C̃ is an incidence matrix of the network, it satisfies
⊤1n = 0. Thus, C̃⊤M−1/2u1 = 0 since u1 = σM1/21n, which
eads to
⊤M−1/2U =

[
0 C̃⊤M−1/2u2 · · · C̃⊤M−1/2un

]
,

here the entries in the first column are all zero. So the entries in
he first column of C e are all zero. Because the diagonal matrixΛn
as a zero entry at position (1, 1), the entries of the first column
f Ae are also all zero. In addition, the entries of the first row of
e are all zero. Hence, we decompose the system matrix Ae, the
nput matrix Be, and the output matrix C e into

e =

[
0 A12
0 A2

]
, Be =

[
0
B2

]
, C e =

[
0 C2

]
, (14)

here A12 ∈ R1×(2n−1) and A2 ∈ R(2n−1)×(2n−1), B2 ∈ R(2n−1)×n

and C2 is the matrix obtained by removing the first column of
the output matrix in (13) so that

C2 =

[
C̃⊤M−1/2Û 0

0 M−1/2U

]
∈ R(m+n)×(2n−1), (15)

with Û =
[
u2 u3 · · · un

]
∈ Rn×(n−1). According to these

decompositions, the matrix Q xe0
is further rewritten as

Q xe0
=

[
Qe1 Q⊤

e12
Q e12 Q e2

]
, (16)

here Qe1 ∈ R, Q e12 ∈ R2n−1, Q e2 ∈ R(2n−1)×(2n−1).
In (14), A2 is obtained from Ae by removing the first column

nd the first row and B2 is obtained from Be by removing the first
ow. Since the eigenvalues of Ae all have non-positive real parts
nd rank(Ae) = 2n− 1, A2 is Hurwitz. With (12) and (14), A2 and
2 are further written into block matrices,

2 =

[
0 A22
A23 A24

]
, B2 =

[
0
B22

]
, (17)

here

22 =
[
0 In−1

]
∈ R(n−1)×n, A⊤

23 =
[
0 −Λn−1

]
∈ R(n−1)×n,

(18a)

24 = −U⊤M−1DU ∈ Rn×n, B22 = U⊤M−1/2B̃ ∈ Rn×n. (18b)

ere, Λn−1 = diag(λi, i = 2, . . . , n) ∈ R(n−1)×(n−1) is obtained
y removing the first column and the first row of the diagonal
atrix Λn. With the above notations, for the variance matrix of

he output of the system (6), we have the following theorem.

heorem 3.2. The variance matrix Q of the output y of the system
6) in the invariant probability distribution satisfies

= C Q C⊤, (19)
2 x 2 o

5

where C2 is defined in (15), Q x ∈ R(2n−1)×(2n−1) is the unique
solution of the following Lyapunov equation

A2Q x + Q xA
⊤

2 + B2B⊤

2 = 0, (20)

where A2, B2 are defined in (17) with blocks in (18).

roof. We decompose the state variable xe = (xe1 , x
⊤
e2 )

⊤ with
e1 ∈ R, xe2 ∈ R2n−1. From (11)–(12) and the decomposition of
atrices in (14), we obtain the stochastic process

xe2 (t) = A2xe2 (t)dt + B2dµ(t), (21)

here A2 is Hurwitz. From (14), it is seen that the entries in the
irst column of C e are all zero. Thus, the output y(t) satisfies

(t) = C exe(t) = C2xe2 (t), (22)

rom (16), we obtain the initial value of xe2 (0) ∈ G(0,Q e2 ). Con-
ider the stochastic process (21) with output in (22). Following
efinition A.1 in the Appendix, the variance of the output y(t) is

y(t) = C2eA2tQ e2e
A⊤
2 tC⊤

2 +

∫ t

0
C2eA2τB2B⊤

2 e
A⊤
2 τC⊤

2 dτ .

ith the Hurwitz condition of A2, we obtain the variance matrix
f y(t),

= lim
t→

Q y(t) =

∫
+∞

0
C2eA2τB2B⊤

2 e
A⊤
2 τC⊤

2 dτ ,

hich can be solved from (19) with

x =

∫
+∞

0
eA2τB2B⊤

2 e
A⊤
2 τdτ ,

hich is the Controllability Gramian of the pair (A2,B2) and is the
nique solution of the Lyapunov equation (20). □

It is seen that the invariant matrix Q is independent of the
nitial distribution of the original process x(t) defined in (6)–(7).
ith Theorem 3.2 and the formulation of A2 and B2 in (17)–(18),

he variance matrix Q x can be obtained by solving the Lyapunov
quation using Matlab and the variance matrix Q can be further
alculated from (19). Clearly, the larger the variances, the more
erious the fluctuations in the nodes and lines will be. Thus, from
he diagonal elements of Q , the vulnerable nodes and lines with
arge variances can be identified.

emark 3.3. If Q δ is needed only, the output is set for the system
11) as

= C exe, C e =

[̃
C⊤M−1/2U 0

]
∈ Rm×2n.

y removing the first column of C e, we obtain

2 =

[̃
C⊤M−1/2Û 0

]
∈ Rm×(2n−1) (23)

or the calculation of Q δ by (19). If Q ω is needed only, the output
s set for the system (11) as

= C exe, C e =
[
0 M−1/2U

]
∈ Rn×2n.

y removing the first column of C e, we obtain

2 =
[
0 M−1/2U

]
∈ Rn×(2n−1) (24)

or the calculation of Q ω by (19).
The variance of the frequency at a node can also be calculated

ia the H2 norm of the input–output system with the output
eing the frequency at this node. However, when considering
he variances of the frequencies at all the nodes, n Lyapunov
quations need to be solved. Similarly, when considering the
ariances of the phase angle differences, the solutions of m Lya-
unov equations are required. These computations have a high
omputational complexity. Furthermore, the correlation of the

utputs cannot be derived in this way.
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. Explicit formulas of the variance matrices for networks
ith uniform disturbance-damping ratio

Based on the following assumption, we derive the explicit
ormula of the solution Q .

ssumption 4.1. Consider the stochastic system (6). Assume
hat the uniform disturbance-damping ratio holds, in which there
xists a strictly positive number η ∈ (0, +∞) such that for all
odes i ∈ V , b2i /di = η.

In practice, in order to achieve fair power sharing, the droop-
ng coefficients di are often scheduled proportionally to the rating
f the power source. Thus, it is reasonable to expect that the
trength of the disturbance, that is characterized by b2i , is pro-
portional to the rating of the power source. On contrast to this
assumption, one says that the non-uniform disturbance-damping
ratio holds in the complementary case, or, equivalently, if there
exist i, j ∈ V with i ̸= j such that b2i /di ̸= b2j /dj.

To compute the variance matrix Q one has to first compute
the variance matrix Q x as stated next.

Lemma 4.2. We write the matrix Q x defined in Theorem 3.2 into
a block matrix,

Q x =

[
Q 1 Q 2
Q⊤

2 Q 3

]
,

where Q 1 ∈ R(n−1)×(n−1), Q 2 ∈ R(n−1)×n and Q 3 ∈ Rn×n. If
Assumption 4.1 holds and Q x satisfies the Lyapunov equation (20),
then

Q 1 =
1
2
ηΛ−1

n−1, Q 2 = 0, Q 3 =
1
2
ηIn, (25)

where Λn−1 is obtained from the matrix Λn by removing the first
column and the first row as in (18).

Proof. With the block matrices A2 and B2 in (17) and the
orresponding blocks A22, A23, A24 and B22 in (18), we derive from
he Lyapunov equation (20) that[
0 A22
A23 A24

][
Q 1 Q 2
Q⊤

2 Q 3

]
+

[
Q 1 Q 2
Q⊤

2 Q 3

][
0 A22
A23 A24

]⊤

+

[
0
B22

] [
0 B⊤

22

]
= 0

which yields

Q 2A
⊤

22 + A22Q⊤

2 = 0, (26a)

Q 1A
⊤

23 + Q 2A
⊤

24 + A22Q 3 = 0, (26b)

Q⊤

2 A
⊤

23 + Q 3A
⊤

24 + A23Q 2 + A24Q 3 = −B22B⊤

22. (26c)

The idea to solve the above equations is as follows. We first
assume Q 2 = 0, then solve Q 3 and Q 1 from (26b) and (26c) re-
spectively, finally we check whether these three matrices satisfy
all the equations in (26). If that is true, then from the uniqueness
of the solution of (20), we have obtained the solution Q x for (20).
From (26c) with the formula for A24 and B22 in (18) and Q 2 = 0,
we derive

Q 3U
⊤M−1DU + U⊤M−1DUQ 3 = U⊤M−1/2B̃̃B⊤M−1/2U

which has a unique solution

Q 3 =
1
2
U⊤D−1B̃2U ,

where the fact thatM, D, B̃ are diagonal matrices and B̃2
= B̃̃B⊤

are used. It is obvious that the diagonal entries of D−1B̃2
are
6

b2i /di = η for i = 1, . . . , n, which yields D−1B̃2
= ηIn. Thus

Q 3 =
1
2ηIn. From (26b) with the formulas for A23 and A22 in (18)

nd Q 2 = 0, we derive

1
[
0 −Λn−1

]
+

1
2
η

[
0 In−1

]
In = 0,

which leads to

−Q 1Λn−1 +
1
2
ηIn−1 = 0.

Thus, Q 1 =
1
2ηΛ

−1
n−1. In conclusion, by assuming Q 2 = 0, we

ave obtained the explicit formulas for Q 1 and Q 3 as presented
n (25). Furthermore, it can be verified that Q 1,Q 2 and Q 3 satisfy
26) which is equivalent to the Lyapunov equation (20). □

By Lemma 4.2, we derive the independence of the stochastic
rocess of the frequency to the phase angle differences in the
ines. In addition, an explicit formula for the variance matrix Q ω

of the frequencies at the nodes is deduced.

Theorem 4.3. Consider the system (6) with Assumption 4.1.

(i) The invariant probability distributions of the frequencies and
of the phase angle differences are independent, i.e., Q δω = 0.

(ii) The variance matrix of the frequencies is

Q ω =
1
2
ηM−1. (27)

Proof. (i) We take C2 in (15) as the output matrix for the
system (11). By Theorem 3.2, we obtain that the variance matrix
Q satisfies

Q = C2Q xC
⊤

2

=

[
η

2 C̃
⊤M−1/2ÛΛ−1

n−1Û
⊤M−1/2C̃ 0

0 η

2M
−1/2UU⊤M−1/2

]
rom which we obtain that the blocks of Q satisfy

δ =
η

2
C̃⊤M−1/2ÛΛ−1

n−1Û
⊤M−1/2C̃ , (28)

ω =
η

2
M−1/2UU⊤M−1/2, (29)

Q δω = 0.

Since the off-diagonal block matrix Q δω of the variance matrix Q
of the output (8) is a zero matrix and the stochastic process (7) is
Gaussian, the invariant probability distribution of the frequency
and the phase angle differences is independent.

(ii) Given the fact that U is an orthogonal matrix and M is a
diagonal matrix, (29) is simply rewritten into (27). □

In the proof, the fact is applied that two Gaussian distributed
random variables are independent if and only if their covariance
equals zero. Due to the independence between the frequencies
and the phase angle differences, Theorem 4.3(i) indicates that
the fluctuations of the frequencies and those of the phase-angle
differences have no stochastic relation with each other.

Formula (27) is verified in an example presented in Section 7.
This formula shows the dependence of the variances of the fre-
quencies at the nodes on the system parameters. First, the vari-
ance matrix Q ω is a diagonal matrix with M = diag(mi) ∈

Rn×n; thus, the frequencies in different nodes are independent in
the invariant probability distribution. Second, the variance of the
frequency at each node increases linearly with the disturbance-
damping ratio and is inversely proportional to the inertia of the
synchronous machine at this node. This shows the importance
of the inertia and the damping coefficient in suppressing the
frequency deviation in the power network. However, increasing
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he inertia at a node suppresses the fluctuations of the frequency
nly at this node, without any effect on the other nodes. The
ulnerable nodes are the ones with small inertia. Those nodes will
hen have large variances and these variances are not influenced
y the disturbances at the other nodes. Finally, the parameters,
he power generation and the loads, which determine the syn-
hronous state (δ∗, 0) and play roles in determining the value lcij
as shown in (4), the line capacity and the network topology are
all absent from the formula. It is surprising that these parameters
have no impact on the variances of the frequencies. This might be
due to the assumption of uniform disturbance-damping ratio in
Assumption 4.1. Whether this occurs in the systems without the
assumption still needs further study.

The trace of Q ω is derived directly from (27) as presented in
the following corollary, which is actually the H2 norm of a linear
nput–output system (Poolla et al., 2017).

orollary 4.4. From Theorem 4.3 one obtains that

trace(Q ω) =
η

2

n∑
i=1

1
mi

.

In order to reveal the dependence of the variances of the phase
ngle differences on the system parameters, we further deduce
he formula of Q δ based on Lemma 4.2. Before presenting this
xplicit formula, we first introduce a lemma for the properties of
he matrix Ĉ = R1/2C̃⊤M−1/2.

emma 4.5. Consider the symmetric matrix Ĉ Ĉ⊤
with Ĉ =

1/2C̃⊤M−1/2. There exists an orthogonal matrix W ∈ Rm×m for
m ≥ n such that

W⊤Ĉ Ĉ⊤W = Λm, Λm =

[
Λn−1 0
0 0

]
∈ Rm×m (30)

ith Λn−1 defined in Lemma 4.2. If we denote W = [w1, w2, . . . ,

n−1, wn, . . . ,wm], then the vector wi is the orthonormal eigen-
ector of Ĉ Ĉ⊤

corresponding to the nonzero eigenvalue λi+1 for
= 1, . . . , n − 1 and wi for i = n, . . . ,m are the orthonormal
igenvectors corresponding to the zero eigenvalue. For the case with
= n − 1, all the eigenvalues of Ĉ Ĉ⊤

are non-zero, and

Λm = Λn−1, W = [w1, w2, . . . ,wn−1].

Proof. For a connected graph, we have rank(̃C ) = n − 1, which
leads to rank(̂C ) = n − 1. Since the kernel of Ĉ Ĉ⊤X = 0 and
C⊤X = 0 are identical, rank(̂CĈ⊤

) = n−1. Based on Theorem A.2,
we only need to prove that the non-zero diagonal elements ofΛm

are the non-zero eigenvalues of Ĉ Ĉ⊤
. We obtain from (9) and (10)

that

U⊤Ĉ⊤ĈU = U⊤M−1/2C̃RC̃⊤
M−1/2U

= U⊤M−1/2LcM−1/2U = Λn.

With the left multiplication of ĈU to the above equation, we
obtain

CĈ⊤ĈU = ĈUΛn. (31)

We write U into the form
[
u1 u2 u3 · · · un

]
. From

Lemma 3.1 and C̃⊤1n = 0, we obtain C̃⊤M−1/2u1 = 0, which
leads to Ĉu1 = 0. Hence, we derive from (31) that

CĈ⊤ [̂
Cu2, Ĉu3, . . . , Ĉun

]
=

[
λ2Ĉu2 λ3Ĉu2 · · · λnĈun

]
,

which indicates that λi and Ĉui for i = 2, . . . , n are the eigenval-
ues and the corresponding eigenvectors of the matrix Ĉ Ĉ⊤

. □
7

Based on Lemma 4.5, we present the explicit formula for the
variance matrix Q δ in the following theorem.

Theorem 4.6. Consider the system (6) with Assumption 4.1.
The variance matrix of the phase angle differences in the invariant
probability distribution satisfies

Q δ =
1
2
ηR−1/2(Im −

m−n+1∑
i=1

X iX⊤

i

)
R−1/2 (32)

where {X i ∈ Rm, i = 1, 2, . . . ,m − n + 1} is an orthonormal basis
vector of the kernel of the matrix C̃R1/2 such that C̃R1/2X i = 0.
learly, because the inertia values are absent from the formula, they
ave no impact on the variance of the phase angle difference in each
ine.

roof. From (28), we obtain

δ =
η

2
C̃⊤M−1/2ÛΛ−1

n−1Û
⊤M−1/2C̃

by Theorem A.2

=
η

2
C̃⊤M−1/2(M−1/2LcM−1/2)†Û Û⊤M−1/2C̃

by [u1, Û ][u1, Û ]
⊤

= u1u⊤

1 + Û Û⊤
= In

=
η

2
C̃⊤M−1/2(M−1/2LcM−1/2)†(In − u1u⊤

1 )M
−1/2C̃

by C̃⊤M−1/2u1 = 0 obtained from Lemma 3.1

=
η

2
C̃⊤M−1/2(M−1/2LcM−1/2)†M−1/2C̃ (33)

by (9)

=
η

2
C̃⊤M−1/2(M−1/2C̃RC̃⊤M−1/2)†M−1/2C̃

here (·)† denotes the Moore–Penrose pseudo inverse of a ma-
rix. With Ĉ = R1/2C̃⊤M−1/2 as in Lemma 4.5, we further obtain

Q δ =
η

2
R−1/2Ĉ

(
Ĉ⊤Ĉ

)†
Ĉ⊤R−1/2. (34)

y Lemma 4.5 and left multiplying (30) by Ĉ⊤W , we get
⊤Ĉ Ĉ⊤W = Ĉ⊤WΛm,

hich indicates that the column vectors of Ĉ⊤W are the eigen-
ectors of Ĉ⊤Ĉ . We focus on the first n−1 eigenvectors Ĉ⊤

w1, . . . ,
⊤
wn−1 in matrix Ĉ⊤W , which are orthogonal. The normalization

f Ĉ⊤
wi for i = 1, . . . , n − 1 yields

−1/2
2 Ĉ⊤

w1, λ
−1/2
3 Ĉ⊤

w2, . . . , λ
−1/2
n Ĉ⊤

wn−1.

With these unit vectors, we obtain from Theorem A.2 that the
Moore–Penrose pseudo inverse of Ĉ⊤Ĉ satisfies(
Ĉ⊤Ĉ

)†
=

n∑
i=2

1
λ2
i
(̂C⊤

wi−1)(̂C
⊤
wi−1)⊤.

With (30), we further obtain

C
(
Ĉ⊤Ĉ

)†
Ĉ⊤

=

n∑
i=2

1
λ2
i
Ĉ Ĉ⊤

wi−1w
⊤

i−1Ĉ Ĉ
⊤

=

n∑
i=2

wi−1w
⊤

i−1

= Im −

m∑
i=n

wiw
⊤

i .

By Lemma 4.5, wi for i = n, . . . ,m are the orthonormal eigenvec-
tors corresponding to the zero eigenvalue such that w⊤

i Ĉ Ĉ
⊤
wi =

from which we obtain Ĉ⊤
w = 0. Since Ĉ⊤

= M−1/2C̃R1/2,
i
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CR1/2wi = 0 which indicates that the vectors wi for i = n, . . . ,m
form an orthonormal basis of the kernel of C̃R1/2. Define X i =

wi+n−1 for i = 1, . . . ,m − n + 1 to complete the proof. □

Corollary 4.7. If Assumption 4.1 holds and lcij = γ for all the lines,
the variance matrix Q δ becomes

Q δ =
η

2γ

(
Im −

m−n+1∑
i=1

X iX⊤

i

)
(35)

here X i becomes the orthonormal basis of the kernel of the inci-
ence matrix C̃ . Furthermore, the trace of Q δ is η

2γ (n − 1).

The proof follows directly from Theorem 4.6 with R = γ Im
nd

race
(m−n+1∑

i=1

X iX⊤

i

)
=

m−n+1∑
i=1

X⊤

i X i = m − n + 1.

he trace of Q δ has been obtained by the H2 norm of input–
output linear systems as in Poolla et al. (2017), Tegling et al.
(2015), which is consistent with the result in the above corollary.

Following the procedure described in Appendix A.3, the vector
X i can be calculated from the basis vectors of the kernel of
CR1/2. Due to the non-uniqueness of the basis vectors ξc for
c = 1, . . . ,m−n+1 of the kernel of C , the set of the orthonormal
basis vectors of the kernel of CR1/2 is also non-unique. However,
or the kernel, a set of orthonormal basis vectors can be obtained
rom any set of basis vectors by a linear transformation consisting
f an orthogonal matrix. Such a transformation does not influence
he calculation of the multiplication X iX⊤

i . The explicit formula
32) of Q δ describes the dependence of the variances of the phase
ngle differences on the system parameters. It is shown that the
ariances of the phase angle differences increase linearly as the
isturbance-damping ratio η increases. Because the variance of
he phase-angle differences does not depend on the inertia, the
ontrol objective of rotor angle stability hardly be improved by
hanging the virtual inertia. Here, the rotor angle stability is the
bility of the phase angles to maintain their coherence.
In particular, formula (32) reveals the role of the network

opology with weight lcij for line ek. In the complex network
heory, the kernel of C̃ is the cycle space of the graph G. Hence,
t follows from formula (32) that the stability of the power system is
elated to the cycle space of the graph. The way that changes in the
opology of the power network affect the variances of the phase angle
ifferences and hence stability can be investigated by a study of the
ycle space of the graph. In Section 6, we make a further study on
he impact of the network topology by studying the cycle space
f graphs.

. Bounds of the variance matrices for networks with non-
niform disturbance-damping ratio

In the previous sections, we discussed the roles of the param-
ters in systems with a uniform disturbance-damping ratio at the
odes. In this section, we present the findings for a system with
on-uniform ratios. We define η = max{ηi, i = 1, . . . , n} and
= min{ηi, i = 1, . . . , n} with ηi = b2i /di. For A,B ∈ Rn×n, we

ay that A ≤ B if the matrix A − B is semi-negative-definite.

Lemma 5.1. Define η = max{ηi, i = 1, . . . , n} and η =

in{ηi, i = 1, . . . , n} with ηi = b2i /di, and define β = (ηD)1/2 and
= (ηD)1/2. The solution Q x of the Lyapunov equation (20) sat-

sfies the following inequalities where the various matrices are also
efined

≤ Q ≤ Q , (36)
β x β

8

where

Q β =

∫
∞

0
eA2tB2B

⊤

2 e
A⊤
2 tdt, Q β =

∫
∞

0
eA2tB2B

⊤

2 e
A⊤
2 tdt

with B2,B2 ∈ R(2n−1)×n such that

B2 =

[
0

U⊤M−1/2β

]
, B2 =

[
0

U⊤M−1/2β

]
.

Proof. By the definition of β and β and ηdi ≤ b2i = ηidi ≤ ηdi)
for all the nodes, we obtain

ηdiag(di) = ββ⊤
≤ B̃̃B⊤

= diag(b2i ) ≤ ββ
⊤

= ηdiag(di).

Hence, with the definition of B2 in (17)

B2B
⊤

2 ≤ B2B⊤

2 ≤ B2B
⊤

2

hich leads to (36). □

Based on Lemma 5.1, we deduce bounds for Q ω and Q δ .

Theorem 5.2. Consider the system (6). The variance matrix Q ω of
the frequencies at the nodes satisfies
1
2
ηM−1

≤ Q ω ≤
1
2
ηM−1, (37)

the variance matrix Q δ of the phase angle differences in the lines
satisfies

1
2
ηQ̂ ≤ Q δ ≤

1
2
ηQ̂ , Q̂ = R−1/2(Im −

m−n+1∑
i=1

X iX⊤

i

)
R−1/2, (38)

here η and η are defined in Lemma 5.1 and X i is as defined in
Theorem 4.6.

roof. In Lemma 5.1, the matrices B2 and B2 are defined such
that the disturbance-damping ratio b2i /di = η and b2i /di = η for
ll the nodes respectively. Hence, using Lemma 4.2, Q β and Q β

are solved explicitly as

Q β =

[ 1
2ηΛ

−1
n−1 0

0 1
2ηI

]
, Q β =

[
1
2ηΛ

−1
n−1 0

0 1
2ηI

]
.

From (36), we obtain

C2Q βC
⊤

2 ≤ Q = C2Q xC
⊤

2 ≤ C2Q βC
⊤

2 , (39)

here C2 is the one in (15) or in (23) or in (24).
To prove (37), we consider the output as the frequency and

ake C2 in (24). Following the procedure to calculate the variances
f the frequencies in Theorem 4.3 with b2i /di = η and b2i /di = η

for all the nodes, we get

C2Q βC
⊤

2 =
1
2
ηM−1 and C2Q βC

⊤

2 =
1
2
ηM−1,

which lead to (37) with (39).
To prove (38), we consider the output as the phase angle

differences and insert C2 of (23) into (39), then obtain the upper
bound of Q δ from (33) such that

C2Q βC
⊤

2 =
1
2
ηC̃⊤M−1/2(M−1/2LcM−1/2)†M−1/2C̃ .

Following the procedure to deduce the explicit formula in (34),
we obtain

C⊤M−1/2(M−1/2LcM−1/2)†M−1/2C̃ = Q̂ .

Hence, the upper bound of Q δ satisfies C2Q βC
⊤

2 =
1
2ηQ̂ . Simi-

larly, the lower bound satisfies C2Q βC
⊤

2 =
1
2ηQ̂ . With these two

bounds and (39), we obtain (38). □
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It is well known that the diagonal elements of a semi-positive
definite symmetric matrix are all non-negative. Hence, the bounds
of the variances of the frequencies at the nodes and the phase
angle differences in the lines are derived directly from (37) and
(38).

Formula (37) reveals the factors that impact the variances
of the frequencies at nodes in networks with a non-uniform
disturbance-damping ratio. First, as in networks with a uniform
disturbance-damping ratio, the inertias of the synchronous ma-
chines locally impact the variances of the frequencies at the
nodes, and the network topology and the parameter lcij have
ittle impact because they are absent in the formula. Second,
n networks with a non-uniform disturbance-damping ratio, the
ariances of the frequencies will increase as the minimum value η

increases and decrease as the maximum value η decreases. Hence,
by decreasing all the disturbance-damping ratios, the variances
of the frequencies will be decreased, which is consistent with the
findings in networks with a uniform disturbance-damping ratio.
In addition, by decreasing the maximum value η, there are nodes
at which the variances of the frequencies will be decreased.

Formula (38) illustrates the roles played by the system pa-
rameters in determining the variances of the phase angle dif-
ferences in networks with a non-uniform disturbance-damping
ratio. First, the roles of the values η and η in determining the
variances of the phase angle differences are the same as that
in determining the variances of the frequencies. Decreasing the
largest disturbance-damping ratio can decrease the variances of
the phase angle differences at some lines. For example, energy
storage in combination with droop control, which affects the
parameter di at the relevant nodes, will directly decrease the
disturbance-damping ratios. Second, as in a network with a uni-
form disturbance-damping ratio, the inertia is absent from the
formula, and the role of the network topology is also reflected by
the basis of the cycle space. Hence, the inertia has little impact
on the variances of the phase angle differences, and by forming
small cycles, the variances of the phase angle differences can also
be effectively decreased in the network. Third, the impact of con-
structing new lines to form cycles and increasing the capacities
of the lines on the upper and lower bounds are the same as in
the networks with a uniform disturbance-damping ratio.

In regard to the impact of the scales of the power systems on
the stability, we have the following conclusion. From formulas
(27), (32), (37) and (38), we see that, if the scale of the network
is increased by constructing nodes that have small effects on the
power flows and possess disturbance-damping ratios close to η,
the fluctuations in the frequency or in the phase angle differences
in the network will not be dramatically increased or decreased.
Hence, the stability will be changed little by increasing the scale
of the network. This follows formula (27) for networks with a
uniform disturbance-damping ratio, which states that the newly
connected nodes with disturbance-damping ratios equal to η will
not bring fluctuations to the frequency at the other nodes. Since
δ∗

i ≈ δ∗

j for all the nodes, the newly connected nodes have
little influence on the phase angle difference in the synchronous
state, and it is indicated by formula (32) that the fluctuation
of the phase angle difference will not change greatly. Similarly,
for networks with a non-uniform disturbance-damping ratio, the
newly connected nodes with disturbance-damping ratios in the
set [η, η] will not change the bounds of the variance, as follows
rom the formulas (37) and (38). This conclusion is different
rom that obtained by a study of linear stability (Xi et al., 2017),
here the linear stability decreases if the scale of the network

ncreases. However, if nodes that consume a large amount of
ower and have large disturbance-damping ratios b2i /di are added
o the network, the variance of the frequency and the phase
ngle difference may increase because the weights of lines may
ecrease and the disturbances may propagate from these nodes
o the other nodes in the network.
9

Fig. 1. A network with two cycle-clusters and a single line.

. The role of the network topology

To fully explore the role of the network topology from the
ormula (32), we introduce three concepts for graphs,

efinition 6.1. Consider a connected and undirected graph G. (i)
single line is defined as a line that does not belong to any cycle;

ii) Line e1 is called a cycle-shared line of line e2 if there exists at
east one cycle containing both e1 and e2; (iii) A cycle-cluster is
subgraph of G obtained in the following way. One starts from a
ubgraph of one cycle and extends it by adding the lines in all the
ycles with which the subgraph has at least one line in common,
hen one obtains a cycle-cluster.

It is deduced that a graph is composed of cycle-clusters and
ingle lines, a line either belongs to a cycle-cluster or is a single
ine and in a cycle-cluster each pair of lines is cycle-shared lines.
n the following example, we explain the definitions and the
ormulation of the basis vectors of the cycle space.

xample 6.2. Consider the network show in Fig. 1. There are two
ycle-clusters, i.e., {e1, e2, e7} and {e4, e5, e6, e8, e9}, and a single
ine e3 that does not belong to any cycle. Each pair of lines in the
cycle-cluster {e1, e2, e7} is cycle-shared respectively, similarly for
the lines in the cycle-cluster {e4, e5, e6, e8, e9}. However, two lines
belonging to two different cycle-clusters are not cycle-shared,
because a cycle containing both of these two lines cannot be
found, for example e1 and e4. The directions of lines are specified
for the formulation of the incidence matrix C̃ and the calculation
of the basis vectors of the cycle space. The directions of all the
cycles are clock-wise. Following the procedure to calculate the
basis vectors of the cycle space in Appendix A.3, we get the basis
vectors of the cycle space of this network,
ξ1 =

[
−1 1 0 0 0 0 −1 0 0

]⊤,
ξ2 =

[
0 0 0 −1 1 0 0 0 1

]⊤, and
ξ3 =

[
0 0 0 0 0 1 0 −1 −1

]⊤ which are corre-
sponding to the fundamental cycles {e1, e2, e7}, {e4, e5, e9} and
{e6, e8, e9} respectively. Obviously, ξ1 is orthogonal to ξ2 and
ξ3. This indicates that the basis vectors corresponding the cy-
cles in different cycle-clusters are orthogonal. Due to the non-
uniqueness of the spanning tree selected to form the fundamental
cycles, the basis vectors are also non-unique. Thus the basis
vectors of the cycle space of the network in Fig. 1 can also be
ξ1 =

[
−1 1 0 0 0 0 −1 0 0

]⊤,
ξ2 =

[
0 0 0 −1 1 0 0 0 1

]⊤, and
ξ3 =

[
0 0 0 −1 1 1 0 −1 0

]⊤ which are corre-
sponding to the fundamental cycles {e1, e2, e7}, {e4, e5, e9} and
{e4, e6, e8, e5} respectively.

The network topology has two effects on the stability of the
power system: the power flows at the synchronous state (δ∗, 0)
and the variance of the phase angle differences. Formula (32)

indicates that the variance also depends on the power flows
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ecause Rk = lcij and lcij = lij cos δ∗

ij . This demonstrates the
onlinear character of the impacts of the network topology on
tability. A network can be constructed mathematically in two
teps, i.e., first connecting all the nodes to form a tree network
nd then constructing new lines or replacing the existing lines by
nes with larger capacities. By following these steps, in addition
o investigating the tree network, we reveal the role of the net-
ork topology by studying the impact of constructing new lines
nd increasing the capacity of the lines.
For the power flows, we have the following proposition.

roposition 6.3. Consider the power system (1) with a syn-
hronous state that satisfies the security condition (5). (i) If the
apacity of a single line is increased, then the power flows in all the
ther lines remain unchanged. (ii) If in a cycle-cluster a new line is
onstructed or the capacity of a line is increased, the power flows in
he lines that are not in this cycle-cluster, remain unchanged.

roof. Without loss of generality, we assume there three sub-
raphs in graph G, i.e., G1(V1, E1), G2(V2, E2) and G3(V3, E3) where
1(V1, E2) is either a cycle-cluster or single-line, V1 ∪V2 ∪V3 = V ,
1 ∪ E2 ∪ E3 = E , Ei ∩ Ej = ∅ for i ̸= j, V1 ∩V2 = {k}, V1 ∩V3 = {q}
nd V2 ∩ V3 = ∅. We prove that the power flows in the lines
n G2 remain unchanged when the capacity of a line is increased
r a new line is constructed in G1. In the power flow calculation,
e choose node k as the reference node with δk = 0. Thus, the
ower flow in the G1 and G2 is decoupled, where the power flows
n cycle-cluster G2 satisfy

i −
∑
j∈V2

lij sin (δi − δj) = 0, i ∈ V2 and i ̸= k,

δk = 0.

hat are not changed by adding new lines or increasing the
apacities of lines in cycle-cluster G1. Similarly, it is proven that
the power flows in G3 remain unchanged by constructing new
lines or increasing the capacity of the lines in G1. □

From Proposition 6.3, we obtain that the phase angle dif-
ferences δ∗

ij in lines at the synchronous state in a cycle-cluster
are independent of the power flows in the other cycle-clusters.
Hence, the weights lcij = lij cos δ∗

ij of lines in the cycle-cluster will
not be changed by adding lines or increasing line capacity in the
other cycle-clusters.

Based on the theory of the cycle space, we obtain the following
Corollary of Theorem 4.6.

Corollary 6.4. Consider the system (6) with Assumption 4.1.

(i) The invariant probability distribution of the phase angle dif-
ference in a single line connecting nodes i and j is independent
of those of the phase angle differences in all the other lines in
the network, and the variance of the phase angle differences
in this line is 1

2ηl
−1
cij .

(ii) According to the invariant probability distribution, the phase-
angle differences of all lines in a particular cycle cluster are
independent of the phase-angle differences of all lines which
are not in this cycle cluster.

(iii) Increasing the weight of a line or constructing new lines in
a cycle-cluster without changing the weights of all the other
lines decreases the variances of the phase angle differences in
the lines of this cycle-cluster.

(iv) For a cycle-cluster with only one cycle with lines in set Ec in
the graph, the variance of the phase angle differences in the
line connecting nodes i and j in this cycle-cluster is
η

2

(
l−1
cij − l−2

cij

( ∑
l−1
crq

)−1)
. (40)
(r,q)∈Ec

10
If lcij = γ for all the lines in this cycle, the variances of the
phase angle differences in these lines are η

2γ (1 −
1
N ) where N

is the length of the cycle.

roof. (i) For an acyclic network, it follows from (32) that the
ariance matrix of the phase angle difference is η

2R
−1 because the

cycle space of the acyclic network is empty. Thus, the variance in
line ek is 1

2ηl
−1
cij . For a network with cycles and single lines, with-

ut loss of generality, assume line e1 is a single-line. Following the
ethod to formulate the basis of the cycle space in Appendix A.3,

he base vector has the form ξi =
[
0 ξi,2 ξi,3 · · · ξi,m

]⊤

here ξi,j is either −1, 1 or 0, and X i has the form X i =

0 xi,2 xi,3 · · · xi,m
]⊤ obtained by Gram–Schmidt orthogo-

nalization of R−1/2ξi. Because the elements in the first column
and the first row of X iX⊤

i are all zero, we derive the indepen-
dence of the invariant probability distribution of the phase angle
difference in this line to those of the phase angle difference in all
the other lines. By (32), we obtain that the variance in this line is

η

2lcij
.
(ii) We partition the graph G into two sub-graphs, G1 and

G2, where G1 is either a cycle-cluster or a single line. If G1 is a
ingle line, we obtain this conclusion directly from Corollary 6.4(i)
irectly. We now consider the case where G1 is a cycle-cluster.

Denote the number of lines in these two sub-graphs by N and
−N , the number of fundamental cycles by m1 and m2, the lines

n G1 by e1, . . . , eN and those in G2 by eN+1, . . . , em respectively.
ere, m1 + m2 = m − n + 1. The basis vectors of the cycles in
1 have the form ξi =

[
ξi,1 ξi,2 · · · ξi,N 0 · · · 0

]⊤ for
i = 1, . . . ,m1 and those of the cycles in G2 have the form ξi =[
0 0 · · · 0 ξi,N+1 · · · ξi,m

]⊤ for i = m1 +1, . . . ,m−n+

. In these vectors, ξi,j are either 1, −1, or 0. By Gram–Schmidt
rthogonalization of R−1/2ξi, we get the orthonormal vectors
i =

[
xi,1 · · · xi,N 0 · · · 0

]⊤ for i = 1, . . . ,m1 and X i =

0 · · · 0 xi,N+1 · · · xi,m
]⊤ for i = m1+1, . . . ,m−n+1. It

is obvious that the entries in the first N columns and the first N
rows of the matrix

∑m−n+1
i=m1+1 X iX⊤

i are all 0. This indicates that the
lines in G2 have no contributions to the first N columns and the
first N rows of Q δ . Similarly, the lines in G1 have no contributions
to the last m − N columns and the last m − N rows of Q δ .
Hence, the invariant probability distribution of the phase angle
differences in the lines of G1 is independent of those in the lines
of G2.

(iii) The case in which the weight of a line in a cycle-cluster
increases is considered first. Assume the graph is a cycle-cluster,
where the weight of line e1 increases. Denote the dimension of
the kernel of C̃R1/2 by N , which equals m − n + 1. Thus, there
are N fundamental cycles in the cycle-cluster. The basis vectors
are chosen below. The basis vectors corresponding to the N − 1
fundamental cycles which do not include line e1 have the form
ξi =

[
0 ξi,2 ξi,3 · · · ξi,m

]⊤ for i = 1, . . . ,N − 1, where
ξi,q = 1, −1 or 0 for q = 2, . . . ,m and that corresponding
to the fundamental cycle which includes line e1 has the form
ξN =

[
ξN,1 ξN,2 · · · ξN,m

]⊤ where ξN,1 = 1 or − 1 and
ξN,q = 1, −1 or 0 for q = 2, . . . ,m. This can be done by
changing the basis vectors of the cycle space properly. By the
Gram–Schmidt orthogonalization of R−1/2ξi, we obtain X i =[
0 xi,2 xi,3 · · · xi,m

]⊤ for i = 1, . . . ,N−1 which is indepen-
dent of the weight l1 of line e1. The last unit vector XN can be ob-
tained by the normalization of the vector X ′

N = R−1/2ξN −α1X1−

· · ·−αN−1XN−1 where αi =
(R−1/2ξN )⊤X i

X⊤
i X i

. Because the first element

of X i is zero for i = 1, . . . ,N−1, αi is independent of l1. Hence X ′

N

has the form X ′
=

[
l−1/2

ξ x′ x′
· · · x′

]⊤

where
N 1 N,1 N,2 N,3 N,m
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N,q is independent of l1 for q = 2, . . . ,m. By the normalization
f X ′

N , we obtain XN = aX ′

N where a =
(
l−1
1 +

∑m
i=2 x

′

N,i
2)−1/2.

ence, the diagonal element of XNX⊤

N equals a2l−1
1 for i = 1

nd equals a2x′

N,i
2 for i = 2, . . . ,m. Inserting XNX⊤

N into (35),
e obtain the variance of the phase angle difference in line e1
hich equals 1

2η(l
−1
1 − a2l−2

1 ) and that in line eq which equals
1
2ηl

−1
q (1 − a2x′

N,q
2

−
∑N−1

i=1 x2i,q) for q = 2, . . . ,m. It is obvious
that if l1 increases, these variances decrease.

We next consider the case when a new line is constructed in
a cycle-cluster without changing the weight of all the other lines.
Assume line e1 is the new line. Following the above calculation,
we obtain that the variance in the line with weight lq equals
1
2ηl

−1
q (1 − a2x′

N,q
2
−

∑N−1
i=1 x2i,q). For the variances in lines before

constructing line e1, by choosing the basis vector corresponding
to the N −1 fundamental cycles which do not include line e1 and
the Gram–Schmidt orthogonalization of these vectors, we obtain
the variance in line eq with weight lq is 1

2ηl
−1
q (1 −

∑N−1
i=1 x2i,q) for

q = 2, . . . ,m. Clearly, the variance decreases after adding line e1.
(iv) The lines in the cycle are denoted by e1, e2, . . . , eN with

weights l1, l2, . . . , lN . Assume the direction of these lines are con-
sistent with the direction of the cycle. The vectors corresponding
to this cycle and the other cycles are denoted by ξ1 and ξi with
i = 2, . . . ,m − n + 1 respectively. Following Appendix A.3, we
obtain ξ1 =

[
1 1 · · · 1 0 · · · 0

]⊤ where the first N
elements equal to 1 and the last m − N elements equal to 0,
and ξi =

[
0 0 · · · 0 ξi,N+1 · · · ξi,m

]⊤ where the first N
elements are all 0 and the last m − N elements equal to either
0, 1 or −1. Obviously, the vector R−1/2ξ1 is orthogonal to the
vector R−1/2ξi for i = 2, . . . ,m − n + 1. By Gram–Schmidt
orthogonalization, we derive

X1 =

(∑N
k=1 l

−1
k

)−1/2 [
l−1/2
1 l−1/2

2 · · · l−1/2
N 0 · · · 0

]⊤

from R−1/2ξ1 and X i =
[
0 0 · · · 0 xi,N+1 · · · xi,m

]⊤ for
the linear subspace composed of the vectors R−1/2ξi with i =

2, . . . ,m − n + 1. Because the first N elements of X i for i =

2, . . . ,m − n + 1 are all 0, the matrix X iX⊤

i has no contributions
to the first N columns and the first N rows of Q δ . Hence, the
invariant probability distribution of the phase angle differences in
the lines of the cycle is independent from those in the other lines.
Further more, by (32), we obtain that the kth diagonal element of
Q δ for k = 1, . . . ,N is

η

2

(
l−1
k − l−2

k

( N∑
r=1

l−1
r

)−1
)

rom which we obtain (40) by replacing lk by lcij for line ek. If
lk = γ for k = 1, . . . ,N , we further get the first N diagonal
elements of Q δ equal to η

2γ (1 −
1
N ). □

Remark 6.5. From Proposition 6.3 and Corollary 6.4, we get the
following findings. (i) The variance of the phase angle difference in
a single line connecting nodes i and j is η

2 l
−1
cij , which is not influenced

y either constructing a new line without forming a cycle-cluster
hat includes this line or increasing the capacities of the other lines.
hus, a single line is likely to be a vulnerable line. This is because
either the construction of new lines nor the increase in the
apacity of the other lines changes the power flow lij sin δ∗

ij in
this line, which is stated in Proposition 6.3, and the invariant
probability distribution of the phase angle difference in the single
line is independent of those of the phase angle differences in
all the other lines, which is obtained from Corollary 6.4-(i). (ii)
Constructing new lines and increasing the capacities of lines in a
cycle-cluster have no impact on the variances of the phase angle
differences in the lines that are not in this cycle-cluster. This is
because constructing new lines or increasing the capacities of
11
lines in a cycle-cluster has no influence on the power flows in
other cycle-clusters and single lines, which is indicated by Propo-
sition 6.3, and the invariant probability distribution of the phase
angle differences in the lines of a cycle-cluster is independent
of those in the lines that are not in this cycle-cluster, which is
demonstrated by Corollary 6.4-(ii). (iii) By either increasing the
weights lcij of lines or constructing new lines without changing the
weights of the other lines in a cycle-cluster, the variances of the
phase angle differences in this cycle-cluster will decrease. (iv) For a
cycle-cluster with only one cycle with lines in set Ec in the graph, the
variance of the phase angle difference in the line connecting nodes
i and j can be calculated from (40). In addition, based on (iii), we
obtain that formula (40) provides a conservative estimation of the
variances in the lines in cycle-clusters, i.e., the variance in a line that
is in multiple cycles can be approximated by formula (40) by taking
the smallest cycle that includes this line.

These findings provide guidelines on how to reduce the neg-
ative effects of vulnerable lines and designing future power net-
works, which should have low variances in phase angle differ-
ences when subjected to stochastic disturbances from power
sources and power loads. The term remedy will be used for the
reduction of these negative effects. Changing a power network
by adding lines to form small cycles or by increasing the capacity
of particular lines will suppress the fluctuations in the phase
differences in the lines of the corresponding cycle-cluster. The
benefit of forming small cycles is that the fluctuations in the
phase angle differences decrease by O(1/N), where N denotes the
length of the cycle. This is consistent with the findings obtained
by studying the energy barrier of a nonlinear system with a cyclic
network in Xi et al. (2017). The fluctuations in the phase angle
differences can be decreased by replacing transmission lines with
small line capacities by ones with large line capacities. This is the
same rule as for the transient stability analysis of the Single Ma-
chine Infinite Bus (SMIB) model (Kundur, 1994) by the equal area
criterion. Because the variances of the phase angle differences
decrease linearly with the parameter lcij = lij cos δ∗

ij , the control
of the power flows to increase the value cos δ∗

ij can also decrease
the fluctuations of the phase angle differences in the lines. These
findings will be further explained in an example in Section 7.

7. Case study

In this section, we verify the formulas (27) and (32) for the
networks with uniform disturbance-damping ratio, the bounds
(37) and (38) for the variance matrices for the networks with non-
uniform disturbance-damping ratio and the findings presented
in Remark 6.5. We take the 500 KV transmission network of
Shandong Province of China (Ye et al., 2016) as an example.

Example 7.1. Consider the 500 KV transmission network of
Shandong Province as shown in Fig. 2. There are 5 nodes with
generators and 18 nodes with loads only. The nodes of squares
denote power generators and the nodes of cycles denote power
loads. Line e4 does not exist in practice, which is constructed
virtually in order to explain our findings. Before constructing line
e4, all the red lines are single lines and all the black lines are in a
cycle-cluster which has 6 fundamental cycles. After constructing
line e4, there is one more cycle-cluster, which is composed of
(e1, e2, e3, e4). We set mi = i for the generators and mi = 1 for
all the loads. We study the 7 cases with different settings of Pi, lij
and b2i /di as shown in Table 1.

In cases 1–3, it holds that the phase angle difference δ∗

ij = 0
because of Pi = 0 for all the nodes. Thus, when disturbances oc-
cur, the frequencies at the nodes and the power flows in the lines
fluctuate around zero. The weights of the lines satisfy l = l .
cij ij
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Table 1
Table describing the 7 cases in the example; line e4 is present in the network if the label is 1 and
not present if the label is 0.
Case Line Source Load Line lij b2i /di

e4 Pi Pi e23 others 1–5 others

1 0 0 0 10 10 1 1
2 1 0 0 10 10 1 1
3 1 0 0 20 10 1 1
4 0 3.6 −1 10 10 1 1
5 1 3.6 −1 10 10 1 1
6 1 3.6 −1 20 10 1 1
7 1 3.6 −1 20 10

√
i 1
f

o

Fig. 2. 500 KV transmission network of Shandong province, China.

The weights of the lines in Cases 4–6 are shown in Table 3, which
are calculated by solving the power flow equations. The variances
of the frequencies at the nodes and the phase angle differences
in the lines are presented in Tables 2 and 4, respectively. The
values in the tables are first calculated by formulas (27) and
(32) and then verified using Matlab following the procedure in
Theorem 3.2. In Cases 1–3, because δ∗

ij = 0 for all the lines in
the networks, the power flows are independent of the network
topology. In this case, the impact of the network topology alone
on the variance of the phase angle difference can be observed. In
Cases 4–6, because Pi is nonzero, updating the network topology,
such as constructing new lines and increasing the line capacities,
may change the weight lcij or the cycle space. Hence, the overall
impact of the network topology can be analysed. In cases 3 and
6, the capacity of line e23 is increased from 10 to 20 in order
to observe the changes of the variances in the other lines. This
line is selected because in Case 4 the variance in this line is the
largest one in the cycle-cluster that includes this line, as shown
in Table 4.

First, let us focus on the variances of the phase angle differ-
ences in the single lines. Lines e1 − e8 in cases 1, 4, and e5 − e8
n cases 2–3, 5–6 are single lines. It is verified in Table 4 that the
ariances of the phase angle differences in these lines equal η

2 l
−1
cij

ith the weights of the lines shown in Table 3. In particular, the
ariances in lines e5 − e8 are affected neither by constructing e4
n cases 2 and 5 nor by increasing the capacity of e23 in cases 3
nd 6. This verifies the finding in Remark 6.5-(i).
Second, by comparing the weights and the variances in the

ines in case 4 with those in case 5, it may be noted in Tables 3
nd 4 that both the weights and the variances in e5 − e29 are

not changed when e4 is constructed in case 5. This is because
these lines are not in the cycle-cluster that includes e4. Similarly,
by comparing the weights and the variances in the lines in case
5 with those in case 6, it is seen in Tables 3 and 4 that both
the weights and the variances in e − e are not influenced by
1 8

12
increasing the capacity of e23. This is due to the fact that these
lines are not in the cycle-cluster that includes e23. Thus, the
indings in Remark 6.5-(ii) is verified .

Third, we evaluate the findings in Remark 6.5-(iii). The effects
f constructing e4 have already been analysed, where the vari-

ances in the lines in the cycle-cluster of (e1, e2, e3, e4) all decrease
while those in the other lines are not affected. When comparing
the variances in the lines in case 2 with those in case 3 in Table 4,
it is found that the variances in e11, e14, e17 − e29 all decrease
after increasing the capacity of e23 from 10 to 20. We remark that
those in e9, e10, e12, e13 also decrease, which are not explicitly
shown in the table because of the limited precision. This indicates
that the variances of the lines in a cycle-clusters all decrease if
the capacity of a line in this cycle-cluster increases. However,
in practice, constructing new lines or increasing the capacity
of lines also changes the power flows, which further influence
the weight lcij . For example, when comparing the weights in
case 5 with those in case 6, it is shown in Table 3 that after
increasing the capacity of e23 in case 6, the weights of e24, e25, e26
decrease from 9.7528, 9.9266, 9.9978 to 9.6934, 9.8933, 9.9896
respectively. We remark that similar as in case 3, the variances in
e9, e10, e12, e15, e16 also decrease, which are not explicitly shown
due to the limitation of the precision. Although only some of the
weights decrease, as shown in Table 4, the variances in e9−e29 all
decrease. This is due to the fact that the negative impact brought
by the decrease in the weights cannot overcome the positive
impact brought by increasing the capacity of e23. However, if the
negative impact surpasses the positive impact, then the variance
will increase, which may happen in a subset of networks.

Finally, we verify the findings in Remark 6.5-(iv). We focus
on Cases 2–3 with δ∗

ij = 0 for all the lines that are not changed
by either constructing new lines or increasing the line capacity.
The cycle-cluster {e1, e2, e3, e4} includes a cycle. The basis vector
corresponding to this cycle is ξ1 = [−1, −1, −1, 1, 0, . . . , 0]⊤. By
scaling this vector to unit length, we obtain X1 = [−1/2, −1/2,
−1/2, 1/2, 0, . . . , 0]⊤. From formula (32), we obtain that the
diagonal elements Q δ at positions (1–4) are all 3/80, which is
consistent with the values shown in Table 4. Hence, the construc-
tion of e4 decreases the variances of the phase angle differences,
and the size of the decrease depends on the length of the cycle.
It is verified that the variances in e1 − e4 in cases 5 and 6 can
also be calculated by (40) for simplicity. Let us next focus on
the conservative estimation of the variances in the lines in a
cycle-cluster by formula (40). For example, the variance in e29
in case 2 can be approximated as 0.0333 for simplicity from
formula (40) by taking Ec = {e22, e28, e29}. This value is larger
than 0.0326 as shown in Table 4. Because constructing new
lines to form cycles or increasing the capacities of lines changes
the power flows, which may decrease the weights of the lines
in the cycle-cluster or even destroy the synchronization, it is
complicated to analyse how the variances of the lines of this
cycle-cluster change. However, in a real network, the phase angle
differences are usually small, and the weight lcij ≈ lij, which
is often assumed in the investigation of the synchronization of
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Table 2
The variances of the frequencies in the 7 cases in the example; 7L and 7U denote the lower and upper bounds in case 7;

√
5 ≈ 2.2236.

Case 1 2 3 4 5 6 7 8 9 10 11 12

1–6, 7L 1/2 1/4 1/6 1/8 1/10 1/2 1/2 1/2 1/2 1/2 1/2 1/2
7 0.5002 0.3012 0.2600 0.2275 0.1901 0.5107 0.5024 0.5054 0.5034 0.5002 0.5006 0.5038
7U

√
5/2

√
5/4

√
5/6

√
5/8

√
5/10

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

Case 13 14 15 16 17 18 19 20 21 22 23

1–6, 7L 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
7 0.5025 0.5002 0.5000 0.5000 0.5000 0.5000 0.5001 0.5004 0.5042 0.5003 0.5001
7U

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2

√
5/2
Table 3
The weights of the lines of the network in Cases (4–7) in the example.
Case e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

4 9.9499 7.8460 9.3295 – 9.9499 9.6561 9.8712 9.3295 9.9109 9.9945 9.8215 9.9193 9.7394 9.9549 9.9860
5 9.8530 9.3706 9.9602 9.6262 9.9499 9.6561 9.8712 9.3295 9.9109 9.9945 9.8215 9.9193 9.7394 9.9549 9.9860
6 9.8530 9.3706 9.9602 9.6262 9.9499 9.6561 9.8712 9.3295 9.9092 9.9941 9.8312 9.9209 9.7423 9.9607 9.9897

Case e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29

4 9.7337 9.9540 9.9086 9.7745 9.6346 9.9380 9.8829 9.4709 9.7528 9.9266 9.9978 9.9687 9.9965 9.9198
5 9.7337 9.9540 9.9086 9.7745 9.6346 9.9380 9.8829 9.4709 9.7528 9.9266 9.9978 9.9687 9.9965 9.9198
6–7 9.7430 9.9434 9.9271 9.7973 9.6722 9.9495 9.9069 19.6990 9.6934 9.8933 9.9896 9.9852 9.9984 9.9300
Table 4
The variances of the phase angle differences in the 7 Cases in the example; 7L and 7U denote the lower and upper bounds in case 7.
Case e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 0.0500 0.0500 0.0500 – 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0298 0.0394 0.0394 0.0340 0.0281
2 0.0375 0.0375 0.0375 0.0375 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0298 0.0394 0.0394 0.0340 0.0281
3 0.0375 0.0375 0.0375 0.0375 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0297 0.0394 0.0394 0.0339 0.0281
4 0.0503 0.0637 0.0536 – 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0302 0.0397 0.0403 0.0343 0.0283
5 0.0383 0.0396 0.0380 0.0389 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0302 0.0397 0.0403 0.0343 0.0283
6, 7L 0.0383 0.0396 0.0380 0.0389 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0301 0.0397 0.0402 0.0342 0.0283
7 0.0397 0.0444 0.0518 0.0530 0.0551 0.0566 0.0524 0.0904 0.0398 0.0397 0.0304 0.0398 0.0403 0.0354 0.0290
7U 0.0856 0.0884 0.0849 0.0869 0.1124 0.1158 0.1133 0.1198 0.0889 0.0883 0.0674 0.0888 0.0900 0.0765 0.0632

Case e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29

1 0.0262 0.0304 0.0292 0.0352 0.0343 0.0352 0.0302 0.0430 0.0430 0.0430 0.0430 0.0430 0.0326 0.0326
2 0.0262 0.0304 0.0292 0.0352 0.0343 0.0352 0.0302 0.0430 0.0430 0.0430 0.0430 0.0430 0.0326 0.0326
3 0.0262 0.0303 0.0291 0.0351 0.0341 0.0351 0.0300 0.0231 0.0424 0.0424 0.0424 0.0424 0.0325 0.0325
4 0.0267 0.0306 0.0296 0.0359 0.0353 0.0356 0.0305 0.0451 0.0440 0.0434 0.0431 0.0432 0.0327 0.0328
5 0.0267 0.0306 0.0296 0.0359 0.0353 0.0356 0.0305 0.0451 0.0440 0.0434 0.0431 0.0432 0.0327 0.0328
6, 7L 0.0267 0.0305 0.0293 0.0357 0.0350 0.0354 0.0302 0.0235 0.0436 0.0429 0.0426 0.0426 0.0326 0.0327
7 0.0272 0.0400 0.0383 0.0365 0.0352 0.0356 0.0303 0.0318 0.0456 0.0432 0.0426 0.0426 0.0326 0.0328
7U 0.0597 0.0683 0.0656 0.0799 0.0783 0.0792 0.0676 0.0525 0.0976 0.0960 0.0952 0.0952 0.0729 0.0731
l
T

power systems (Poolla et al., 2017; Tegling et al., 2015). In this
case, the negative influences on the weight can be neglected and
the variances decrease if new lines are constructed to form small
cycles or the capacities of the lines are increased. The reduction
in the variances can be approximated using (40).

In regard to the bounds of the variance matrices for the net-
orks with non-uniform disturbance-damping ratio, it is shown

or case 7 in Tables 2 and 4 that the variances of the frequencies
t the nodes and the phase angle differences in the lines are both
onstrained by the lower bound and the upper bound in (37) and
38) respectively. For the frequency, it is demonstrated that the
ariance at the node which possesses the largest disturbance-
amping ratio is closer to the upper bound and that at the
ode with the smallest disturbance-damping ratio is closer to the
ower bound. For example, the variance at node 5, which has the
argest disturbance-damping ratio η5 =

√
5, is 0.1901 which is

loser to the upper bound
√
5/10 = 0.2236. However, those

t the nodes 1, 6–23 with the smallest disturbance-damping
atio are all closer to the lower bound 1/2. For the phase angle
ifferences, the variance in the lines which connect nodes with
arger disturbance-damping ratio is usually larger. For example,
he variance in e8 is 0.0904 which becomes closer to the upper
ound 0.1198 compared with its value in case 6. However, the
ariances in the lines which are far away from the nodes with
13
arger disturbance-damping ratio are closer to the lower bounds.
his is seen from the variance in lines e26 − e29.
In regard to the vulnerable nodes, it is found in Table 2 that

nodes 1, 6–23 in cases 1–6 and node 6 in case 7 are the most
vulnerable nodes. The remedy methods include increasing the
inertia and decreasing the disturbance-damping ratio at these
nodes or their neighbour nodes. With respect to the vulnerable
lines, it is seen in Table 4 for cases 1–7 that the single lines
are usually the vulnerable lines, for example, lines e5 − e8. The
remedy method includes increasing the capacities of these lines
and constructing new lines to include these lines into cycles.

8. Conclusion

In this paper, based on a stochastic Gaussian system, we
have investigated the dependence of the fluctuations in a power
system on system parameters when subjected to stochastic dis-
turbances. The dynamics of turbine-governors of the synchronous
machines and that of voltage may be considered in the sys-
tem (Trip et al., 2019). By the method proposed in this paper, the
impact of the system parameters on the fluctuations of the fre-
quency and voltage at each node and the phase angle difference in
each line can be investigated. In that case, the system parameters
include the ones in the dynamics of the turbine-governor and
voltage besides those studied in this paper.
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A future investigation will address the deduction of explicit
formulas for the variance matrices of the frequencies at the nodes
and the phase angle differences in the lines in the network with
non-uniform disturbance-damping ratio and lossy transmission
lines.

Appendix

A.1. The variance matrix of a linear stochastic process

Definition A.1. Consider a linear stochastic system

dx(t) = Ax(t)dt + Bdµ(t), x(0) = x0,
y = Cx(t),

where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, x0 ∈ G(0,Q x0 ) is a Gaussian
andom variable where Q x0 ∈ Rn×n is the variance matrix of x0,
∈ Rz×n, µ ∈ Rm is standard Brownian motion, y ∈ Rz is the

utput. It follows from Kwakernaak and Sivan (1972, Theorem
.52) that the state x and y are Gaussian process, i.e., for all t > 0,

(t) ∈ G(0,Q x,tv(t)), y(t) ∈ G(0,Q y,tv(t))

here the variance matrix Q x,tv(t) ∈ Rn×n of x(t) is

x,tv(t) = eAtQ x0e
A⊤t

+

∫ t

0
eAτBB⊤eA

⊤τdτ

nd the variance matrix Q y,tv(t) ∈ Rz×z of y(t) satisfies Q y,tv(t) =

Q x,tv(t)C
⊤. The matrix Q x,tv(t) satisfies the matrix differential

quation

Q̇ x,tv(t) = AQ x,tv(t) + Q x,tv(t)A
⊤

+ BB⊤, (41a)

x,tv(0) = Q x0 . (41b)

n addition, if A is Hurwitz, then there exists an invariant distri-
ution of the stochastic processes x(t) and y(t) with asymptotic
ariance matrices

x = lim
t→∞

Q x,tv(t) =

∫
+∞

0
eAτBB⊤eA

⊤τdτ ,

nd Q y = CQ xC
⊤. The matrix Q x, which is called the control-

ability Gramian of the pair (A,B), is the unique solution of the
yapunov equation due to the Hurwitz condition (Doyle et al.,
989; Toscano, 2013),

Q x + Q xA
⊤

+ BB⊤
= 0. (42)

hich can be either derived from the limit of the differential
quation (41a) or from

Q x + Q xA
⊤

=

∫
+∞

0

d
dt

(eAtBB⊤eA
⊤t )dt

= (eAtBB⊤eA
⊤t )

⏐⏐⏐+∞

0
= −BB⊤.

A.2. The Moore–Penrose pseudo inverse of real symmetric matrices

Theorem A.2. Consider a real symmetric matrix S ∈ Rn×n. There
xists an orthogonal matrix V ∈ Rn×n such that
⊤SV = Σ

here Σ = diag(σi) ∈ Rn×n is a diagonal matrix with the diagonal
lements σi being the eigenvalues of S , the column vectors vi of V
re orthonormal eigenvectors of S corresponding to the eigenvalue
i. In addition, the Moore–Penrose pseudo inverse is defined by the
ormula

†
= VΣ†V⊤

=

n∑
σ ∗

i viv
⊤

i

i=1

14
where Σ †
= diag(σ ∗

i ) ∈ Rn×n with σ ∗

i = 1/σi if σi ̸= 0, otherwise
σ ∗

i = 0 (Horn & Johnson, 2013).

A.3. The basis vectors of the kernel of C̃R1/2

The cycle space of a graph is defined as the kernel of the
incidence matrix C̃ , which is a vector subspace in Rm. By graph
theory, we have rank(̃C ) = n − 1. Hence, the dimension of the
cycle space is m − n + 1. It is obvious that the cycle space of an
acyclic graph is an empty space. For a graph with cycles, the basis
for the cycle space is derived by the following method: Consider-
ing a cycle C with a set Ec of edges in the graph G, we specify a
direction for C; then, the vector ξc = [ξc,1, ξc,2, . . . , ξc,m]

⊤
∈ Rm

such that

ξc,k =

⎧⎨⎩
+1, if ek ∈ Ec with direction = the cycle direction,

−1, if ek ∈ Ec with direction ̸= the cycle direction,

0, otherwise.

belongs to the kernel of C̃ such that C̃ξc = 0 (Biggs, 1993). The
basis for the cycle space can be derived by taking the vectors
as ξc for c = 1, . . . ,m − n + 1 corresponding to the (m − n +

1) fundamental cycles (Diestel, 2000, Theorem 1.9.6) in the graph.
Because R is non-singular, the vectors R−1/2ξc for all the cycles
are the basis vectors of the kernel of C̃R1/2. The orthonormal basis
vectors X i are obtained by Gram–Schmidt orthogonalization of
the basis vectors R−1/2ξc . The fundamental cycles can be obtained
by the following method. Let T be a spanning tree of the graph G.
Then T has n− 1 edges and there are m− n+ 1 edges of G lying
outside of T . Then for each of these m−n+1 edges e ∈ E \ E(T ),
the graph T + e contains a cycle, which is a fundamental cycle.
Note that the basis vectors of the cycle space may not be unique
due to the non-uniqueness of the spanning tree.
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