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The synchronization of power generators is an important condition for the proper functioning of
a power system, in which the fluctuations in frequency and the phase angle differences between
the generators are sufficiently small when subjected to stochastic disturbances. Serious fluctuations
can prompt desynchronization, which may lead to widespread power outages. Here, we model the
stochastic disturbance by a Brownian motion process in the linearized system of the non-linear power
systems and characterize the fluctuations by the variances of the frequency and the phase angle
differences in the invariant probability distribution. We propose a method to calculate the variances
of the frequency and the phase angle differences. For the system with uniform disturbance-damping
ratio, we derive explicit formulas for the variance matrices of the frequency and the phase angle
differences. It is shown that the fluctuation of the frequency at a node depends on the disturbance-
damping ratio and the inertia at this node only, and the fluctuations of the phase angle differences
in the lines are independent of the inertia. In particular, the synchronization stability is related to
the cycle space of the network. We reveal the influences of constructing new lines and increasing
capacities of lines on the fluctuations in the phase angle differences in the existing lines. The results
are illustrated for the transmission system of Shandong Province of China. For the system with

non-uniform disturbance-damping ratio, we further obtain bounds of the variance matrices.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Power grids deliver a growing share of the energy consumed
in the world and are undergoing an unprecedented revolution be-
cause of the increasing integration of intermittent power sources
such as solar and wind energy and the commercialization of
plug-in electric automobiles. These developments will change the
structure of power sources and decrease carbon emissions dra-
matically, but they will also lead to new disturbances associated
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with fluctuations in energy production and load. These distur-
bances not only deteriorate the quality of the power supply but
may trigger loss of synchronization, which can result in serious
blackouts (Marris, 2008). This indicates the necessity to study
synchronization under stochastic disturbances.

Here, we focus on the synchronization of power systems under
stochastic disturbances. We explore the role of system parame-
ters in a framework of stochastic systems that can be extended
to other real complex networks with synchronization. In a syn-
chronous state of a power system, the frequencies of the syn-
chronous machines (e.g., rotor-generators driven by steam or gas
turbines) should all be equal or close to the nominal frequency
(e.g., 50 Hz or 60 Hz). Here, the frequency is the derivative of
the rotational phase angle and is equal to the rotational speed of
the synchronous machine in units of rad/s. The synchronization
stability is defined as the ability to maintain synchronization un-
der disturbances, which is also called transient stability (Kundur,
1994). The parameters that determine synchronization include
the power flows, inertia (Poolla et al., 2017) and damping co-
efficients (Motter et al., 2013; Nishikawa et al., 2015) of the
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synchronous machines as well as the coupling strength (Fazlyab
et al., 2017) between the synchronous machines and the net-
work topology, which can be optimized to enhance stability by
load-frequency control or by constructing new power generators,
virtual inertia and transmission lines. In the analysis of the ex-
istence condition of a synchronous state (Dorfler & Bullo, 2012)
and the linear (Motter et al., 2013; Nishikawa et al., 2015) and
nonlinear stability of that state (Chiang et al., 1988; Menck et al.,
2013; Zaborszky et al., 1988), the focus is on the synchronous
state, on the local convergence or on the basin of attraction.
However, in practice, the state of the power system never stays
at the synchronous state and is always fluctuating due to various
disturbances. If both the fluctuations of the frequency and the
phase angle difference are so large that the system cannot return
to the synchronous state, then the synchronization is lost. Hence,
the impact of the disturbances cannot be neglected and the size of
the fluctuations directly characterizes the stability of the system.

Robust control methods in load frequency control may be used
to improve the stability, where the disturbances are considered,
see Trip et al. (2019, 2020), Xi et al. (2020). By these methods,
the power generation are controlled to balance the disturbances.
However, besides the power generations, the stability of the sys-
tem also depends on the network topology, line capacities, inertia
of the synchronous machines and so on, for which the values
cannot be specified by the robust control methods. By modelling
the disturbances as inputs to the associated linearized system, the
fluctuations are evaluated by the #, norm of the input-output
linear system (Poolla et al., 2017; Tegling et al., 2015). However,
because the #; norm equals the trace of a matrix (Doyle et al,,
1989), which is a global metric for the synchronization stability,
the fluctuations of the frequency at each node, the phase angle
difference in each line and their correlation can hardly be ex-
plicitly characterized. Clearly, the nodes with serious fluctuations
in the frequencies and the lines with serious fluctuations in the
phase angle differences are vulnerable to disturbances. In physics,
the focus is on the propagation of the disturbances (Auer et al,,
2017; Haehne et al., 2019; Kettemann, 2016; Zhang et al., 2019,
2020) and the network susceptibility (Manik et al., 2017). For
example, the statistics of the fluctuations at the nodes, e.g., the
variance of the increment of the frequency distribution, can be
calculated via simulations by modelling the disturbances by ei-
ther Gaussian or non-Gaussian noise (Haehne et al., 2019). With
perturbations added to the system parameters, the disturbance
arrival time and the vertex and edge susceptibility are estimated
in Zhang et al. (2020) andManik et al. (2017) respectively. The
amplitude of perturbation responses of the nodes is used to
study the emergent complex response patterns across the net-
work (Zhang et al., 2019). By these investigations on fluctuations,
intuitive insights on the impact of the system parameters, e.g., the
network topology and the inertia of synchronous machines, on
the spread of the disturbances are provided, which may help to
develop practical guiding principles for real network design and
control.

In this paper, we investigate the fluctuations of the frequency
at each node and the phase angle difference in each line in a linear
stochastic system. By modelling the disturbances by Gaussian
noise, we use the variance in the invariant probability distribution
to characterize the fluctuations and propose an efficient method
for the calculation of the variance by solving a Lyapunov equation
instead of statistics with a large amount of simulations. Under
assumptions of uniform disturbance-damping ratio at the nodes,
explicit formulas for the variances of the fluctuations in the
frequencies and phase angle differences are derived, which can
be used to tune the system parameters to improve the synchro-
nization stability. With these explicit formulas, the impact of the
network topology on the synchronization stability is considerably
clarified.

The contribution of this paper includes:
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(i) a new metric, that is the variance in the invariant proba-
bility distribution of the frequencies at the nodes and the
phase angle differences in the lines, is proposed for the
analysis of the synchronization stability. With this metric,
the vulnerable nodes and lines can be identified effectively
based on solving a matrix Lyapunov equation;
under the assumption that the disturbance-damping ratio
is uniform, we derive an explicit formula of the variance
matrix of the frequency, which reveals the impact of the
inertia and the disturbance-damping ratio, and an explicit
formula of the variance matrix of the phase angle differ-
ences, which reveals the impact of the network topology
and the disturbance-damping ratio;

(iii) for non-uniform disturbance-damping ratio, an upper and
a lower bound of the variance matrices of the frequency
and the phase angle differences are deduced,;

(iv) the impact of constructing new lines and increasing the
capacity of lines on the variance are investigated.

(ii

=

The findings of this paper provide directions for the optimiza-
tion of the droop control coefficients, the placement of virtual
inertia and energy storage, changes in the network topology,
and changes in the capacity of lines in the power systems. The
framework of this paper for the investigation of synchronization
stability may be extended to other networks with stochastic
disturbances and problems of synchronization.

This paper is organized as follows. The mathematical model of
the power system and the problem formulation are introduced in
Section 2. We propose a method to calculate the variance matri-
ces of the invariant probability distribution of the frequency and
phase angle differences in Section 3. We derive explicit formulas
for the two matrices in Section 4. Based on the explicit formulas,
we deduce bounds of the variance matrices for the networks with
non-uniform disturbance-damping ratio in Section 5. We study
the role of the network topology in Section 6 with verification
using a real network in Section 7. We conclude this paper with
perspectives in Section 8.

2. Models and problem formulation

The power grid can be modelled by a graph G(V, £) with nodes
V and edges £ C V x V, where a node represents a bus and an
edge (i, j) represents the transmission line between nodes i and
j. We focus on the transmission network and assume the lines
are lossless. We denote the number of nodes in V and edges in £
by n and m, respectively. The dynamics of the power system are
described by the following swing equations (Chiang et al., 1988;
Menck et al., 2014; Zaborszky et al., 1988):

Si = wj, (1a)

n
mid; = Pi — diwo; — Y _ lysin (8 — &), (1b)

j=1
where §; and w; denote the phase angle and the frequency de-
viation of the synchronous machine at node i; m; > 0 describes
the inertia of the synchronous generators; P; denotes power gen-
eration if P; > 0 and denotes power load otherwise; I = b;V;V;
is the effective susceptance, where V; is the voltage; d; > 0 is
the damping coefficient with droop control. Since the dynamics
of the voltage and the frequency can be decoupled (Simpson-
Porco et al,, 2016), we restrict attention to modelling only the
dynamics of the frequency and assume that the voltage of each
node is a constant. In practice, the voltage can be well controlled
by an Automatic Voltage Regulator (Kundur, 1994). This model is
often applied to study transient stability and rotor angle sta-
bility (Dorfler & Bullo, 2012; Menck et al.,, 2014; Nishikawa &
Motter, 2015). In this paper, we focus on the networks with the

following assumption.



Z. Wang, K. Xi, A. Cheng et al.

Assumption 2.1. Assume the network G(V, &) is connected.

With Assumption 2.1, we easily obtain m > n — 1. In special
case of m = n — 1, the network is acyclic and when m > n, there
are cycles in the network.

2.1. The synchronous state

The stable region of system (1) is analysed by Chiang et al.
(1988) and Zaborszky et al. (1988). The stability analysis of a
power system makes use of the concept of the synchronous state
which satisfies, fori=1,2,...,n,

wi(t) = Wsyn, and §;(t) = Wsynt + 5,‘*1

where §; and the synchronized frequency wsy, satisfy,

n
P; — Diwgyn — ZlijsinS; =0 fori=1,...,n,
j=1
n
nop;
Wsyn %L_lDI =0,
i=1 -1

where 81?]“. =4 — 8}“ is the phase angle difference between nodes
i and j, which are directly connected by transmission line (i, j).
The power flow in line (i, j) is [ sin 8; which is determined by
the load frequency control (Kundur, 1994). wyy, is the deviation of
the synchronized frequency from the nominal value of frequency.
There are three forms of load frequency control distinguished
from fast to slow time-scales, i.e., primary, secondary and tertiary
frequency control. Primary control maintains the synchronous
state by droop control on a small time-scale. However, this syn-
chronized frequency may deviate from its nominal value in a
medium time-scale, which leads to wsy, # 0. Secondary control
restores the synchronized frequency to its nominal value such
that wyy, = 0 on a medium time-scale. With a prediction of
power demand, tertiary control calculates the operating point
stabilized by primary and secondary control on a large time-scale,
which concerns the security and economy of the power system.
In the control design for frequency synchronization, the power
input P; is determined in the secondary and tertiary control. Thus,
it is practical to assume that the power generation and load
are balanced in the study of frequency synchronization. Thus,
>, P; = 0, which leads to wsy, = 0.

Due to low line capacities, the synchronous state might not
exist. For the condition of the existence of the synchronous state,
we refer to Dorfler and Bullo (2014). For the number of the
synchronous states, see Baillieul and Byrnes (1982), Luxemburg
and Huang (1987).

2.2. The linearized model

Assume that there exists a synchronous state (§*, 0) for system
(1), which can be linearized as

$ 0 I, s
(2)=(wrn ) (2):

where § = col(§;) € R", I, € R™" is the identity matrix,
® = col(w) € R", M = diag(m;) € R™", D = diag(d;) € R™",
and L =(Ig;) € R™" is the Laplacian matrix of the network with
weight [ cos 5 generated by (8%, 0), which satisfies

_ —ll-jcosﬁ;, i#j,
]

G =Y g i=1. (4)

ki

Note that the state variables in (3) are the deviations of the
phase angles and frequencies from the synchronous state (§*, 0).
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By the second Lyapunov method, the stability of (§*, 0) can be
determined by the sign of the real part of the eigenvalues of
the system matrix of (3). The analysis of the eigenvalue of the
system matrix is also called small-signal stability analysis. It has
been proven that if ;; cos 8;;. > 0, then the system is stable at the
synchronous state (8%, 0) (Zaborsky et al., 1985), which leads to
the security condition

O = s eR"| 18] < . Y(i.j) € o)}, 5)

It has been proven by Skar (1980) that for the power network
with a general network topology, the synchronous state in this
security range is unique. For the identification of the subset of
the n-torus where there exists a synchronous state, we refer
to Jafarpour et al. (2022).

2.3. Problem formulation

In real networks, the state of the power system always fluc-
tuates around the synchronous state due to various disturbances.
If the fluctuations are very large, the state may exit the stability
region of the synchronous state and lead to instability of the
system. A sign of desynchronization is that both the fluctuations
of the frequency and the phase angle difference are so large
that the system cannot return to the synchronous state. Many
factors influence the fluctuations, which include the parameters
of the transmission lines, the synchronous machines, the network
topology and the disturbances. The source of the disturbances are
also various, e.g., the renewable power generation, fault of the
devices in the network, etc. We focus on the following problem
in this paper.

Problem 2.2. How do the fluctuations of the frequency and the
phase angle differences depend on the parameters of the system
and the disturbances?

The solution of this problem provides insights for suppressing
the fluctuations by scientific parameter assignments. The choice
of a model for the fluctuations in a power system should be based
on the criteria that the model is realistic and that the subsequent
analysis is not too complex.

A realistic model of the actual disturbances affecting a power
system at each node requires an extensive system identification
procedure, including the collection of a large amount of data on
the fluctuations of the power system. The disturbances come from
both the loads and the various power sources, such as wind parks
and photovoltaic units. It has been shown that the probability dis-
tributions of disturbances are not Gaussian in several real power
grids, e.g., grids in North America and Europe, which leads to non-
Gaussian distribution of the frequency and is crucial to induce
desynchronization in the system, see Haehne et al. (2019), Schafer
et al. (2018), Schmietendorf et al. (2017), Wolff et al. (2019), Xie
et al. (2011) etc. A model could then be a nonlinear stochastic
differential equation of the power system driven by either Brow-
nian motion or another process with independent increments.
However, the performance evaluation of such nonlinear stochas-
tic system requires either the numerical approximation of the
solution of a partial differential equation (Wang & Crow, 2013)
or a large amount of simulations for the statistics of the frequen-
cies (Haehne et al., 2019). This model is too complicated to obtain
an analytic probability distribution of the state of the power
system consisting of a large number of synchronous machines.

An alternative to the modelling approach described above is to
formulate a deterministic linear system obtained by linearization
of a nonlinear power system at a synchronous state. The deter-
ministic linear system is then transformed into a linear stochastic
differential equation driven by Brownian motion. Such models are
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often used in control engineering and in mathematical finance,
and these models are regarded as reasonable approximations of
realistic models. Moreover, these models have a low algebraic
complexity. It is well known that for a linear stochastic dif-
ferential equation with a system matrix that is Hurwitz, there
exists an invariant probability distribution of the state that is
a Gaussian probability distribution characterized by the mean
value and the variance of the state (Kwakernaak & Sivan, 1972,
Theorem 1.53)(Karatzas & Shreve, 1988, Theorem 6.7). For power
systems, the fluctuations are described by the variance matrices
in the invariant probability distribution of the associated linear
stochastic system. The dependence on the system parameters
is indicated. The complexity of the performance of this model
is manageable. Though the analysis of the stochastic linearized
system is valid only for comparatively small disturbances, it still
provides intuitive insights on the stability of the power system.

When subjected to disturbances, the state of the power sys-
tem deviates from the synchronous state. Hence, we study the
deviation of the frequency and the phase angle difference from
the synchronous state, which is the state of the linearized system
of the nonlinear power system. We model the disturbances by
a Brownian motion process, which is then an input to a linear
system, and study the stochastic system

da(t) = w(t)dt, (6a)
de(t) = —M~" (Lc8(t) + Deo(t))dt + M~ 'Bdp(t), (6b)

with the state variable, system matrix and input matrix,

X(t) = [(i((tt))} A= [—Mo_lLC —IVIIn_lD]’ B= [M(_)]E]’ (7)

where the notations §(t), @(t), M, D, L. are defined as for (3),
B = diag(bh;) € R™" where b; € R and bi2 is used to characterize
the strength of the disturbance; u(t) = col(u;(t)) € R" is a vector
of n independent scalar Brownian motion processes u;, which are
also all independent of the initial state #(0). A Brownian motion
process has increments with a Gaussian probability distribution.
Here, we refer to I; as the line capacity of line ey, which is also
called the coupling strength between generators, and refer to
IC,.]. = ljcos 6;]‘. as the weight of line ey. It is obvious that the
weights of the lines are determined by the line capacity and the
power flows at the synchronous state.

In the model (6), the disturbances denoted by u;(t) at node
i are assumed to be independent, which is reasonable because
the locations of the power generators, including renewable power
generators, are usually far from each other. Because the system
(6) is linear, at any time, the probability distribution of the state
is Gaussian. To address Problem 2.2, we focus on the variance
matrices of the frequency and of the phase angle difference
in the invariant probability distribution of the linear stochastic
system, which reflect the dependence of the fluctuations of the
frequency and the phase angle difference on the system param-
eters. When considering the variance matrix in the invariant
probability distribution, we set the output matrix so that

~T
y=cx, y=|Y| ¢c=|C Ofcprmmman (8)
® 0 I,

The m elements in y; are the phase angle differences in the m
lines, and the n elements iny,, are the frequencies at the n nodes.
The matrix C = (Cyi) € R™™ is the incidence matrix of the
network, which is defined as

+1, if node i is the begin of line e,
Gk = { —1, if node i is the end of line ey,
0, otherwise,
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where the direction of line ey, is specified arbitrarily without influ-
ence on the study below. By the complex network theory (Biggs,
1993), the incidence matrix C satisfies

CRC' =1L, 9)

where R = diag(Ry) € R™™ is defined such that R, = Iqj is the
weight of line e, connecting nodes i and j.

Because x(t) is the deviation of the frequency and phase angle
difference from the synchronous state, it is natural to assume
that x(0) € G(0, Q,,) where Q,, € R*™?". Problem 2.2 requires
the calculation of the invariant probability distribution of the
deviations of the frequencies and of the phase angle differences,
and requires an analysis of how this distribution depends on the
parameters of the power system in particular on the intensities
of the stochastic disturbances. It will be shown in Theorem 3.2
that the variance matrix in the invariant probability distribution
is independent of the initial distribution. Below we restrict atten-
tion to the computation of the invariant probability distribution
of the state of the linear stochastic power system. From that
distribution, the variances of the outputs can be computed.

3. Derivation of the variance matrices

We denote the variance matrix of the frequencies and the
phase angle differences at the invariant probability distribution

by

Q; Q;rw] (m+n)x(m+n)
= eR s
Q |:Q8a) Qw

where Qs € R™ denotes the variance matrix of the phase
angle differences, Q, € R™" denotes the variance matrix of
the frequencies, and Q;, € R"™™ denotes the covariance of
the phase angle differences and the frequencies. Based on the
theory of linear stochastic Gaussian systems, Q is derived by
solving a Lyapunov equation, as presented in Definition A.1 in
Appendix. However, for a linear stochastic power system, the
system matrix A is not Hurwitz. This is due to the singularity of
the Laplacian matrix L., which has a zero eigenvalue. Therefore,
the variance matrix Q cannot be calculated directly from the
corresponding Lyapunov equation. A coordinate transformation
is required. Before introducing the transformation, we present
a lemma for the symmetrizable matrix ML, (Xi et al., 2020,
Appendix).

Lemma 3.1. Consider the Laplacian matrix L. and the positive-
definite diagonal matrix M~ in system (6). The matrix L. has a
zero eigenvalue with eigenvector 1, € R" which is a vector with
all its elements equal to one and there exists an orthogonal matrix
U € R™" such that

UM '2L.M~ 12U = A, (10)

where A, = diag(A;) € R™" with 0 = Ay < Ay --- Ay, being the
eigenvalues of the matrix M~ "?L.M~ "2, U = [ uwy - wy
with u; € R" being the eigenvector corresponding to A; for i =
1, ..., n. In addition, u; = cM'?1,, where o is a constant.

Based on Lemma 3.1, we transform the coordinates of (4, @)
into the eigen-space as follows. Let x, = (M~ Y2U)718, x, =
(M~2U)"'w and insert (10) into (6), we derive
dx; = x,dt,

dx, = —(Aux; + UTM™'DU;)dt + UTM~/?Bdp(t),

(11a)
(11b)
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with the state variable, system matrix and input matrix becom-
ing

L. _ 0 I, _ 0 -
Xe = |:x2:| , Ae = |:_An _UTM1DU] , Be = |:UTM1/ZB ,

(12)
and initial distribution x.(0) € G(O0, QXEO) such that
Qxeo — TQXOTT c R2n><2n’
_ (M_l/zu)il 0 2nx2n
T = [ 0 (M~12y)-! eR .
The output (8) becomes
=T =172
_ _ CM U 0 (m+n)x2n
y=Cex, C.= |: 0 MI/ZU] eR . (13)

Because C is an Elcidence matrix of the network, it satisfies
€'1, = 0. Thus, C'M~"2u; = 0 since u; = oM"*1,, which
leads to

C'M U = [o ¢ M~ u, ETM*”Zun] ,

where the entries in the first column are all zero. So the entries in
the first column of C, are all zero. Because the diagonal matrix A,
has a zero entry at position (1, 1), the entries of the first column
of A, are also all zero. In addition, the entries of the first row of
B, are all zero. Hence, we decompose the system matrix A, the
input matrix B,, and the output matrix C, into

0 Ap 0
Ae = |:0 AZ] P Be = |:B2] s Ce = [0 CZ] s (14)

where A;; € R>@-1 apd A, € RE-1x@2n-1) B, ¢ R@n—1)xn
and C, is the matrix obtained by removing the first column of
the output matrix in (13) so that

~T _l/zA
_|cCM U 0 (m+n)x(2n—1)
C, = [ 0 M‘l/zU:| eR , (15)
with U = [uz u; - u,| € R According to these
decompositions, the matrix Qy, is further rewritten as
Q, Q.

Q. :[ ! €12 |, (16)

X 0 Qe12 QEZ

where Qel €R, Q'E12 c RZn—l’ Qez c R@n—1)x(2n-1)

In (14), A, is obtained from A, by removing the first column
and the first row and B, is obtained from B, by removing the first
row. Since the eigenvalues of A, all have non-positive real parts
and rank(A,) = 2n — 1, A, is Hurwitz. With (12) and (14), A; and
B, are further written into block matrices,

0 Ay 0
A = B, = 17
2 |:A23 A24i| » 2 |:Bzzj| ’ a7
where
Ay = [0 In,1] € R(rhUXH, A;r3 = [0 —An,]] € R(n—])xn7
(18a)

Ay = —-UTM'DU € R™, By, = UM 2B e R™.  (18b)

Here, A,_; = diag(x;,i = 2,...,n) € RO=Dx("=1 j5 obtained
by removing the first column and the first row of the diagonal
matrix A,. With the above notations, for the variance matrix of
the output of the system (6), we have the following theorem.

Theorem 3.2. The variance matrix Q of the output y of the system
(6) in the invariant probability distribution satisfies

Q =C,Q,C;, (19)
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where C, is defined in (15), Q, € RZ"1x@=1 js the unique
solution of the following Lyapunov equation

AQ, + Q,A] +B;B] =0, (20)

where A, B, are defined in (17) with blocks in (18).
Proof. We decompose the state variable X, = (x,, ;)" with
Xe, € R, X, € R?"! From (11)-(12) and the decomposition of
matrices in (14), we obtain the stochastic process

dx, (t) = Axxe, (t)dt + Bydpu(t), (21)

where A, is Hurwitz. From (14), it is seen that the entries in the
first column of C, are all zero. Thus, the output y(t) satisfies

¥(t) = Cexe(t) = Cax,, (1), (22)

From (16), we obtain the initial value of x.,(0) € G(0, Q., ). Con-
sider the stochastic process (21) with output in (22). Following
Definition A.1 in the Appendix, the variance of the output y(t) is

t
T T
Q,(t) = Ce™'Q,,eh2 '] +/ C,e""B,B] e27C; dr.
0
With the Hurwitz condition of A,, we obtain the variance matrix
of y(t),

+00
Q =limQ,(1) :/O cze"ﬂBszTeAszcszr,
which can be solved from (19) with
+00 T
Q, = f e™2"B,B] ™ "dr,
0

which is the Controllability Gramian of the pair (A,, B;) and is the
unique solution of the Lyapunov equation (20). O

It is seen that the invariant matrix Q is independent of the
initial distribution of the original process x(t) defined in (6)—(7).
With Theorem 3.2 and the formulation of A, and B, in (17)-(18),
the variance matrix Q, can be obtained by solving the Lyapunov
equation using Matlab and the variance matrix Q can be further
calculated from (19). Clearly, the larger the variances, the more
serious the fluctuations in the nodes and lines will be. Thus, from
the diagonal elements of Q, the vulnerable nodes and lines with
large variances can be identified.

Remark 3.3. If Q; is needed only, the output is set for the system
(11) as

y=Cex,, C.= [ETM71/2U O:I € R™",

By removing the first column of C., we obtain
C; = [ETM*Wﬁ 0] € R™G-D (23)

for the calculation of Q by (19). If Q,, is needed only, the output
is set for the system (11) as

C.=[0 M U] eRrV™

By removing the first column of C., we obtain

C;=[0 M 'Vu]ermerb (24)
for the calculation of Q, by (19).

The variance of the frequency at a node can also be calculated
via the #; norm of the input-output system with the output
being the frequency at this node. However, when considering
the variances of the frequencies at all the nodes, n Lyapunov
equations need to be solved. Similarly, when considering the
variances of the phase angle differences, the solutions of m Lya-
punov equations are required. These computations have a high
computational complexity. Furthermore, the correlation of the
outputs cannot be derived in this way.

y = Cex.,
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4. Explicit formulas of the variance matrices for networks
with uniform disturbance-damping ratio

Based on the following assumption, we derive the explicit
formula of the solution Q.

Assumption 4.1. Consider the stochastic system (6). Assume
that the uniform disturbance-damping ratio holds, in which there
exists a strictly positive number n € (0, +o00) such that for all
nodes i € V, b?/d; = 1.

In practice, in order to achieve fair power sharing, the droop-
ing coefficients d; are often scheduled proportionally to the rating
of the power source. Thus, it is reasonable to expect that the
strength of the disturbance, that is characterized by b,.z, is pro-
portional to the rating of the power source. On contrast to this
assumption, one says that the non-uniform disturbance-damping
ratio holds in the complementary case, or, equivalently, if there
exist i, j € V with i # j such that b?/d; # b? /d;.

To compute the variance matrix Q one has to first compute
the variance matrix Q, as stated next.

Lemma 4.2. We write the matrix Q, defined in Theorem 3.2 into
a block matrix,

_Je, @
o-lgt o

where Q; € RDx0-1 q, e RO-DX" gnd Q5 e R™" If
Assumption 4.1 holds and Q, satisfies the Lyapunov equation (20),
then

1 _ 1
Q, = inAn_lp Q. =0, Qs =l (25)

where A,_ is obtained from the matrix A, by removing the first
column and the first row as in (18).

Proof. With the block matrices A, and B, in (17) and the

corresponding blocks Aj;, Az3, A4 and By; in (18), we derive from
the Lyapunov equation (20) that

0 An||Q Q; n Q, Q[0 Ay]"
Az Au||Q) Q; Q) Q;||Axn Ay

+ [Bgz] [0 Bl,]=0

which yields
Q,A}, +A»Q; =0, (26a)
Q.AJ; + QA +AnQ; =0, (26b)
Q;AJ; + Q3Aj, + AQ, + AQ; = —ByBj,. (26¢)

The idea to solve the above equations is as follows. We first
assume Q, = 0, then solve Q; and Q; from (26b) and (26c¢) re-
spectively, finally we check whether these three matrices satisfy
all the equations in (26). If that is true, then from the uniqueness
of the solution of (20), we have obtained the solution Q, for (20).
From (26¢) with the formula for A4 and B,, in (18) and Q, = 0,
we derive

Q,U™M~'DU + UM~ 'DUQ, = UTM~ BB MU
which has a unique solution
1 ~
Q.= 5UTD”BZU,
~~T

where the fact that M, D, Bare diagonal matrices and Ez = BB
. . . . ~2
are used. It is obvious that the diagonal entries of D~'B" are
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bf/di = nfori = 1,...,n, which yields D‘1§2 = nl,. Thus
Q; = %r;ln. From (26b) with the formulas for A3 and Ay, in (18)
and Q, = 0, we derive

1
Q1 [0 _An—l] + 577 [0 In—]]’n = 03
which leads to
1
_Q1An71 + E’]Infl =0.

Thus, Q; = %77/1,;]1- In conclusion, by assuming Q, = 0, we
have obtained the explicit formulas for Q; and Q5 as presented
in (25). Furthermore, it can be verified that Q ;, @, and Q5 satisfy
(26) which is equivalent to the Lyapunov equation (20). O

By Lemma 4.2, we derive the independence of the stochastic
process of the frequency to the phase angle differences in the
lines. In addition, an explicit formula for the variance matrix Q,
of the frequencies at the nodes is deduced.

Theorem 4.3. Consider the system (6) with Assumption 4.1.

(i) The invariant probability distributions of the frequencies and
of the phase angle differences are independent, i.e., Q5, = 0.
(ii) The variance matrix of the frequencies is

1
Q, = 5nM”. (27)

Proof. (i) We take C, in (15) as the output matrix for the
system (11). By Theorem 3.2, we obtain that the variance matrix
Q satisfies

Q =CQ,C;
1M U AL U M YC 0
_ n
- 0 %M—I/ZUUTM—l/Z
from which we obtain that the blocks of Q satisfy
N=T 195 a1 5T 127
Q=5CM 2uA U MTYAC, (28)
Q, = gM_l/ZUUTM_l/Z, (29)
Qéw =0.

Since the off-diagonal block matrix Q,, of the variance matrix Q
of the output (8) is a zero matrix and the stochastic process (7) is
Gaussian, the invariant probability distribution of the frequency
and the phase angle differences is independent.

(ii) Given the fact that U is an orthogonal matrix and M is a
diagonal matrix, (29) is simply rewritten into (27). O

In the proof, the fact is applied that two Gaussian distributed
random variables are independent if and only if their covariance
equals zero. Due to the independence between the frequencies
and the phase angle differences, Theorem 4.3(i) indicates that
the fluctuations of the frequencies and those of the phase-angle
differences have no stochastic relation with each other.

Formula (27) is verified in an example presented in Section 7.
This formula shows the dependence of the variances of the fre-
quencies at the nodes on the system parameters. First, the vari-
ance matrix Q, is a diagonal matrix with M = diag(m;) €
R™™; thus, the frequencies in different nodes are independent in
the invariant probability distribution. Second, the variance of the
frequency at each node increases linearly with the disturbance-
damping ratio and is inversely proportional to the inertia of the
synchronous machine at this node. This shows the importance
of the inertia and the damping coefficient in suppressing the
frequency deviation in the power network. However, increasing
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the inertia at a node suppresses the fluctuations of the frequency
only at this node, without any effect on the other nodes. The
vulnerable nodes are the ones with small inertia. Those nodes will
then have large variances and these variances are not influenced
by the disturbances at the other nodes. Finally, the parameters,
the power generation and the loads, which determine the syn-
chronous state (8%, 0) and play roles in determining the value ICU.
as shown in (4), the line capacity and the network topology are
all absent from the formula. It is surprising that these parameters
have no impact on the variances of the frequencies. This might be
due to the assumption of uniform disturbance-damping ratio in
Assumption 4.1. Whether this occurs in the systems without the
assumption still needs further study.

The trace of Q, is derived directly from (27) as presented in
the following corollary, which is actually the #, norm of a linear
input-output system (Poolla et al., 2017).

Corollary 4.4. From Theorem 4.3 one obtains that

n

trace(Q,) = 2 2m

In order to reveal the dependence of the variances of the phase
angle differences on the system parameters, we further deduce
the formula of Q; based on Lemma 4.2. Before presenting this
explicit formula, we first introduce a lemma for the properties of
the matrix C = Rl/zzTM_l/Z.

Lemn_ll_a 4.5. Consider the symmetric matrix CC' with € =
RY2C M~ There exists an orthogonal matrix W € R™™ for
m > n such that

AT A1 O
wTcCc w = A, Am=[ 31 0

] € R™M (30)
with A,_, defined in Lemma 4.2. If we denote W = [wq, wy, ...,
Wp_1, Wy, ..., Wy, then the vector w; is the orthonormal eigen-
vector of CCT corresponding to the nonzero eigenvalue X\, for
i=1,...,n—1and w; fori = n,...,m are the orthonormal
eigenvectors corresponding to the zero eigenvalue. For the case with
m = n — 1, all the eigenvalues ofEET are non-zero, and

Ay = Ap_, = [wq, Wy, ..., Wy_1].

Proof. For a connected graph, we have rank(E) = n — 1, which
lg_f_lds to rank(E) =n-—1. :S\i’r\lg_e the kernel of EETX = 0 and
C X = 0 are identical, rank(CC ) = n—1. Based on Theorem A.2,
we only need to prove that the non-zero diagonal elements of A,

are the non-zero eigenvalues of CC' . We obtain from (9)and (10)
that

UTC'Cu = uT™M~V2CRC M~ "2U
=U"M "’ LM~ U = A,.

With the left multiplication of CU to the above equation, we
obtain

cc'cu =cua,. (31)
We write U into the form [uy u, u3 u,]. From
Lemma 3.1 and €1, = 0, we obtain C' M~"2u; = 0, which
leads to Cu; = 0. Hence, we derive from (31) that

/C\’C\T [/C\uz, Eu;,, A ,?un] = [}\.zfuz )\36112 Anfun] s

which indicates that A; and Eu, fori=2,...,nare the elgenval—
ues and the corresponding eigenvectors of the matrix CC O

o~ fmT A T
c(cTc) ¢ =
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Based on Lemma 4.5, we present the explicit formula for the
variance matrix Q; in the following theorem.

Theorem 4.6. Consider the system (6) with Assumption 4.1.
The variance matrix of the phase angle differences in the invariant
probability distribution satisfies

m—n+1

1
Q=5 nR™2(1 Z XX )R (32)

where {(X; e R™,i=1,2,. — n + 1} is an orthonormal basis
vector of the kernel of the mamx CR'2 such that CRWX, =0.
Clearly, because the inertia values are absent from the formula, they
have no impact on the variance of the phase angle difference in each
line.

Proof. From (28), we obtain
NeT o 1275 41 73T ag—1/2F
Q=5CM PUA U MTVAC
by Theorem A.2
= D&M (M LM ) GO M
by [uy, Ulluy, 01" = wu] + 00" =1,

— gETM—l/z(M—l/zLCM—l/z)T(In -1/2¢

—wu M
by ETM’]/zul = 0 obtained from Lemma 3.1

_ gETM’]/Z(M’”ZLCM’VZ)TM’I/ZE (33)
by (9)

- gETM*W(M”/ZERETM*W)TM”/ZE

where () denotes thTe Moore-Penrose pseudo inverse of a ma-
trix. With € = RY2C M~ as in Lemma 4.5, we further obtain

AT~ T
Q; = gR‘”ZC(CTC> C'R2 (34)
By Lemma 4.5 and left multiplying (30) by fTW, we get
¢'cC'w=C'wa,,
which mdlcates that the column vectors of C W are tt_ll_e eigen-
vectors ofC C. We focus on the first n—1 eigenvectors C  wq, ...,

C wn 11in matrGC W, which are orthogonal. The normalization

ofC w;fori=1,...,n—1yields
32wy, A l/zc wa. .. A2 Wy

With these unit vectors, we obtaianrom Theorem A.2 that the
Moore-Penrose pseudo inverse of C C satisfies

n
T T 1 -7
c c) - Clwi )€ wiy)T
( 2 5@ w0
With (30), we further obtain

n
1 ~~ PR
—CCij,lwI CCT =
)Lz i—1

i=2 i

m
— E w,—w,T.
i=n

By Lemma 4.5, w; fori = n, ..., m are the orthonormal eige_zl_nvec—

tors corresponding to the zero eigenvalue such that w;"C C w =
. . AT . ~T 127

0 from which we obtain C w; = 0. Since C = M~ Y2CR'?,

n

T
E Wi-1W;_4
i=2
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CR'?w; = 0 which indicates that the vectors w; fori=n, ..., m
form an orthonormal ba51s of the kernel of CR'2. Define XI =

wiyp—1 fori=1,...,m —n+ 1 to complete the proof. O
Corollary 4.7. If Assumption 4.1 holds and lc,-j = y for all the lines,
the variance matrix Q ;5 becomes

n m—n+1
Q=5(n— Y XX/) (35)

2y

where X; becomes the orthonormal basis of the kernel of the inci-
dence matrix C. Furthermore, the trace of Q is %(n -1

The proof follows directly from Theorem 4.6 with R = yI
and

m—n+1 m—n+1
trace( Y XX[)= Y X/ Xi=m-n+1.
i=1 i=1

The trace of Qs has been obtained by the #? norm of input-
output linear systems as in Poolla et al. (2017), Tegling et al.
(2015), which is consistent with the result in the above corollary.

Following the procedure described in Appendix A.3, the vector
X; can be calculated from the basis vectors of the kernel of
CR'2. Due to the non-uniqueness of the basis vectors & for
¢ =1,...,m—n+1 of the kernel of C, the set of the orthonormal
basis vectors of the kernel of CR"? is also non-unique. However,
for the kernel, a set of orthonormal basis vectors can be obtained
from any set of basis vectors by a linear transformation consisting
of an orthogonal matrix. Such a transformation does not influence
the calculation of the multiplication X,X,T. The explicit formula
(32) of Q4 describes the dependence of the variances of the phase
angle differences on the system parameters. It is shown that the
variances of the phase angle differences increase linearly as the
disturbance-damping ratio n increases. Because the variance of
the phase-angle differences does not depend on the inertia, the
control objective of rotor angle stability hardly be improved by
changing the virtual inertia. Here, the rotor angle stability is the
ability of the phase angles to maintain their coherence.

In particular, formula (32) reveals the role of the network
topology with welght l for line e;. In the complex network
theory, the kernel of c 1s the cycle space of the graph G. Hence,
it follows from formula (32) that the stability of the power system is
related to the cycle space of the graph. The way that changes in the
topology of the power network affect the variances of the phase angle
differences and hence stability can be investigated by a study of the
cycle space of the graph. In Section 6, we make a further study on
the impact of the network topology by studying the cycle space
of graphs.

5. Bounds of the variance matrices for networks with non-
uniform disturbance-damping ratio

In the previous sections, we discussed the roles of the param-
eters in systems with a uniform disturbance-damping ratio at the
nodes. In this section, we present the findings for a system with
non-uniform ratios. We define 3 = max{»n;,i = 1,...,n} and
n = min{n;,i = 1,...,n} with n; = b?/d;. For A, B € R™", we
say that A < B if the matrix A — B is semi-negative-definite.

Lemma 5.1. Define 5 = max{n,i = 1,...,n} and n =
min{n;, i = 1,...,n} with n; = b?/d;, and define B = (7D) ‘/2 and
B = (yD)'/%. The solution Q, of the Lyapunov equation (20) sat-
isfies the following inequalities where the various matrices are also
defined

Qs =Q =Q3 (36)

Automatica 151 (2023) 110884
where
= =T AT o T
Q; = / MUB,B) M dr, Q, = f Mg BTNt
0 = 0

with By, B, € R?"~D*" sych that

— 0 0
B, = |:UTM—1/ZE:| , B, = [UTM”/ZE] .
Proof. By the definition ofﬁ and E and ﬁdi < bi2 = nid; < 7nd;)

for all the nodes, we obtain

ndiag(d;) = BB < BB )< BB
Hence, with the definition of B, in (17)

= diag(b; = 7ndiag(d;).

B,B] <B,B; < EZEI
which leads to (36). O

Based on Lemma 5.1, we deduce bounds for Q, and Q.

Theorem 5.2. Consider the system (6). The variance matrix Q,, of
the frequencies at the nodes satisfies

LM~ <q, < igm~ (37)
Zﬁ =Qu = 27) ,
the variance matrix Q4 of the phase angle differences in the lines
satisfies

m—n+1
— Y XX[)RT'2(38)

-~

1~ ~
Q Q=57 Q=R"(I

N \

where n and 7 are defined in Lemma 5.1 and X; is as defined in
Theorem 4.6.

Proof. In Lemma 5.1, the matrices B, and B, are defined such
that the disturbance-damping ratio b;/d; = n and b,-2 /di = 7 for
all the nodes respectively. Hence, using Lemma 4.2, Q4 and Qs
are solved explicitly as

1 -1 — 4=
Q; = fﬁAnfl 0 Q;= %nAnj1 0
(A 0 L N 0 ]

From (36), we obtain
€:Q4C; <Q =Q,C; < C2QpC5, (39)
where C, is the one in (15) or in (23) or in (24).

To prove (37), we consider the output as the frequency and
take C, in (24). Following the procedure to calculate the variances
of the frequencies in Theorem 4.3 with b?/d; = 77 and b?/d; = n
for all the nodes, we get B
1_

nM

and C,QzC; = 57

T 1 -
CZQECZ = EEM

which lead to (37) with (39).

To prove (38), we consider the output as the phase angle
differences and insert C, of (23) into (39), then obtain the upper
bound of Q; from (33) such that

1_~ ~
C2Qz€] = 57C MM 2LM )M,
Following the procedure to deduce the explicit formula in (34),
we obtain
ETM’VZ(M’”ZL M”/Z)TM*]/ZE _ a

Hence, the upper bound of Q; satisfies CZQﬂC2 = ZnQ Simi-
larly, the lower bound satisfies CzQﬁC2 = 2’7Q With these two
bounds and (39), we obtain (38). O
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It is well known that the diagonal elements of a semi-positive
definite symmetric matrix are all non-negative. Hence, the bounds
of the variances of the frequencies at the nodes and the phase
angle differences in the lines are derived directly from (37) and
(38).

Formula (37) reveals the factors that impact the variances
of the frequencies at nodes in networks with a non-uniform
disturbance-damping ratio. First, as in networks with a uniform
disturbance-damping ratio, the inertias of the synchronous ma-
chines locally impact the variances of the frequencies at the
nodes, and the network topology and the parameter I, have
little impact because they are absent in the formula. Second,
in networks with a non-uniform disturbance-damping ratio, the
variances of the frequencies will increase as the minimum value »
increases and decrease as the maximum value 77 decreases. Hence,
by decreasing all the disturbance-damping ratios, the variances
of the frequencies will be decreased, which is consistent with the
findings in networks with a uniform disturbance-damping ratio.
In addition, by decreasing the maximum value 7, there are nodes
at which the variances of the frequencies will be decreased.

Formula (38) illustrates the roles played by the system pa-
rameters in determining the variances of the phase angle dif-
ferences in networks with a non-uniform disturbance-damping
ratio. First, the roles of the values n and 7 in determining the
variances of the phase angle differences are the same as that
in determining the variances of the frequencies. Decreasing the
largest disturbance-damping ratio can decrease the variances of
the phase angle differences at some lines. For example, energy
storage in combination with droop control, which affects the
parameter d; at the relevant nodes, will directly decrease the
disturbance-damping ratios. Second, as in a network with a uni-
form disturbance-damping ratio, the inertia is absent from the
formula, and the role of the network topology is also reflected by
the basis of the cycle space. Hence, the inertia has little impact
on the variances of the phase angle differences, and by forming
small cycles, the variances of the phase angle differences can also
be effectively decreased in the network. Third, the impact of con-
structing new lines to form cycles and increasing the capacities
of the lines on the upper and lower bounds are the same as in
the networks with a uniform disturbance-damping ratio.

In regard to the impact of the scales of the power systems on
the stability, we have the following conclusion. From formulas
(27), (32), (37) and (38), we see that, if the scale of the network
is increased by constructing nodes that have small effects on the
power flows and possess disturbance-damping ratios close to 7,
the fluctuations in the frequency or in the phase angle differences
in the network will not be dramatically increased or decreased.
Hence, the stability will be changed little by increasing the scale
of the network. This follows formula (27) for networks with a
uniform disturbance-damping ratio, which states that the newly
connected nodes with disturbance-damping ratios equal to n will
not bring fluctuations to the frequency at the other nodes. Since
8 ~ 4§ for all the nodes, the newly connected nodes have
little influence on the phase angle difference in the synchronous
state, and it is indicated by formula (32) that the fluctuation
of the phase angle difference will not change greatly. Similarly,
for networks with a non-uniform disturbance-damping ratio, the
newly connected nodes with disturbance-damping ratios in the
set [n, ] will not change the bounds of the variance, as follows
from the formulas (37) and (38). This conclusion is different
from that obtained by a study of linear stability (Xi et al., 2017),
where the linear stability decreases if the scale of the network
increases. However, if nodes that consume a large amount of
power and have large disturbance-damping ratios b,.2 /d; are added
to the network, the variance of the frequency and the phase
angle difference may increase because the weights of lines may
decrease and the disturbances may propagate from these nodes
to the other nodes in the network.
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Fig. 1. A network with two cycle-clusters and a single line.

6. The role of the network topology

To fully explore the role of the network topology from the
formula (32), we introduce three concepts for graphs,

Definition 6.1. Consider a connected and undirected graph G. (i)
A single line is defined as a line that does not belong to any cycle;
(ii) Line e is called a cycle-shared line of line e, if there exists at
least one cycle containing both e; and e5; (iii) A cycle-cluster is
a subgraph of G obtained in the following way. One starts from a
subgraph of one cycle and extends it by adding the lines in all the
cycles with which the subgraph has at least one line in common,
then one obtains a cycle-cluster.

It is deduced that a graph is composed of cycle-clusters and
single lines, a line either belongs to a cycle-cluster or is a single
line and in a cycle-cluster each pair of lines is cycle-shared lines.
In the following example, we explain the definitions and the
formulation of the basis vectors of the cycle space.

Example 6.2. Consider the network show in Fig. 1. There are two
cycle-clusters, i.e., {eq, e2, e7} and {eq, es, eg, €g, €9}, and a single
line e5 that does not belong to any cycle. Each pair of lines in the
cycle-cluster {eq, e, e;} is cycle-shared respectively, similarly for
the lines in the cycle-cluster {e4, es, eg, es, eg}. However, two lines
belonging to two different cycle-clusters are not cycle-shared,
because a cycle containing both of these two lines cannot be
found, for example e; and e4. The directions of lines are specified
for the formulation of the incidence matrix € and the calculation
of the basis vectors of the cycle space. The directions of all the
cycles are clock-wise. Following the procedure to calculate the
basis vectors of the cycle space in Appendix A.3, we get the basis
vectors of the cycle space of this network,

&=[-1 10000 -1 0 Q]T,

&=[0 0 0 -1 1 0 0 0 1] ,and

& =[0 0000 1 0 —1 —1]T which are corre-
sponding to the fundamental cycles {ei, e;, e;}, {es, s, e9} and
{es, es, eq} respectively. Obviously, &, is orthogonal to &, and
&;. This indicates that the basis vectors corresponding the cy-
cles in different cycle-clusters are orthogonal. Due to the non-
uniqueness of the spanning tree selected to form the fundamental
cycles, the basis vectors are also non-unique. Thus the basis
vectors of the cycle space of the network in Fig. 1 can also be
&=[-1 10000 -1 0 0],

&=[0 00 -1 1 0 0 0 1], and

& =000 -1 1 1 0 -1 O]T which are corre-
sponding to the fundamental cycles {eq, e2, e7}, {es, €5, €9} and
{es, €, e, €5} respectively.

The network topology has two effects on the stability of the
power system: the power flows at the synchronous state (6%, 0)
and the variance of the phase angle differences. Formula (32)
indicates that the variance also depends on the power flows
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because R, = lc,-j and lcl.j = ljcos 8;‘ This demonstrates the
nonlinear character of the impacts of the network topology on
stability. A network can be constructed mathematically in two
steps, i.e., first connecting all the nodes to form a tree network
and then constructing new lines or replacing the existing lines by
ones with larger capacities. By following these steps, in addition
to investigating the tree network, we reveal the role of the net-
work topology by studying the impact of constructing new lines
and increasing the capacity of the lines.
For the power flows, we have the following proposition.

Proposition 6.3.  Consider the power system (1) with a syn-
chronous state that satisfies the security condition (5). (i) If the
capacity of a single line is increased, then the power flows in all the
other lines remain unchanged. (ii) If in a cycle-cluster a new line is
constructed or the capacity of a line is increased, the power flows in
the lines that are not in this cycle-cluster, remain unchanged.

Proof. Without loss of generality, we assume there three sub-
graphs in graph g, ie., G1(V1, &€1), G2(V1, &) and G3(Vs, €3) where
G1(V1, &) is either a cycle-cluster or single-line, ViUV, UV =V,
SUSHUE =E,5NE = @ fori#j,viNyv, ={k}, viNVvs ={q}
and Vv, N V3 = @. We prove that the power flows in the lines
in G, remain unchanged when the capacity of a line is increased
or a new line is constructed in G;. In the power flow calculation,
we choose node k as the reference node with §; = 0. Thus, the
power flow in the G; and G, is decoupled, where the power flows
in cycle-cluster G, satisfy

P; — Zlijsin(&- —6)=0,ieV, and i#k,
i€V
S8k =0.

that are not changed by adding new lines or increasing the
capacities of lines in cycle-cluster G;. Similarly, it is proven that
the power flows in Gz remain unchanged by constructing new
lines or increasing the capacity of the lines in G;. O

From Proposition 6.3, we obtain that the phase angle dif-
ferences 5;; in lines at the synchronous state in a cycle-cluster
are independent of the power flows in the other cycle-clusters.
Hence, the weights I, = I;; cos 8; of lines in the cycle-cluster will
not be changed by adding lines or increasing line capacity in the
other cycle-clusters.

Based on the theory of the cycle space, we obtain the following
Corollary of Theorem 4.6.

Corollary 6.4. Consider the system (6) with Assumption 4.1.

(i) The invariant probability distribution of the phase angle dif-
ference in a single line connecting nodes i and j is independent
of those of the phase angle differences in all the other lines in
the network, and the variance of the phase angle differences
in this line is %nl;ﬁl.

(ii) According to the invariant probability distribution, the phase-
angle differences of all lines in a particular cycle cluster are
independent of the phase-angle differences of all lines which
are not in this cycle cluster.

(iii) Increasing the weight of a line or constructing new lines in
a cycle-cluster without changing the weights of all the other
lines decreases the variances of the phase angle differences in
the lines of this cycle-cluster.

(iv) For a cycle-cluster with only one cycle with lines in set & in
the graph, the variance of the phase angle differences in the
line connecting nodes i and j in this cycle-cluster is

FE - (X w) )

(r.q)e&c

(40)
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If lqj = y for all the lines in this cycle, the variances of the
phase angle differences in these lines are %(1 - ﬁ) where N
is the length of the cycle.

Proof. (i) For an acyclic network, it follows from (32) that the
variance matrix of the phase angle difference is %R” because the
cycle space of the acyclic network is empty. Thus, the variance in
line ey is %nlc‘ul. For a network with cycles and single lines, with-
out loss of generality, assume line e; is a single-line. Following the
method to formulate the basis of the cycle space in Appendix A.3,
the base vector has the form & = [0 &, &3 E,-,m]T
where & is either —1, 1 or 0, and X; has the form X; =
[O Xio2 Xi3 xi_m]T obtained by Gram-Schmidt orthogo-
nalization of R™"2&,. Because the elements in the first column
and the first row of X;X;" are all zero, we derive the indepen-
dence of the invariant probability distribution of the phase angle
difference in this line to those of the phase angle difference in all
the other lines. By (32), we obtain that the variance in this line is

(ii) We partition the graph G into two sub-graphs, G; and
G,, where G, is either a cycle-cluster or a single line. If G; is a
single line, we obtain this conclusion directly from Corollary 6.4(i)
directly. We now consider the case where G; is a cycle-cluster.
Denote the number of lines in these two sub-graphs by N and
m— N, the number of fundamental cycles by m; and m, the lines
in G; by ey, ..., ey and those in G, by ey, ..., e, respectively.
Here, m;y + my, = m — n + 1. The basis vectors of the cycles in
Gy have the form & = [&1 & &v 0 .- O]T for
i=1,...,m; and those of the cycles in G, have the form §;
[0 0 0 &inp S,-,m]T fori=m;+1,...,m—n+
1. In these vectors, &;; are either 1, —1, or 0. By Gram-Schmidt
orthogonalization of R’]/zfji, we get the orthonormal vectors
Xi = [xi1 0o --- O]Tforizl,...,mlandx,-
[0 0 XNt Xim]' fori=mi+1,...,m—n+11t
is obvious that the entries in the first N columns and the first N
rows of the matrix """, X;X] are all 0. This indicates that the
lines in G, have no contributions to the first N columns and the
first N rows of Q. Similarly, the lines in G; have no contributions
to the last m — N columns and the last m — N rows of Q.
Hence, the invariant probability distribution of the phase angle
differences in the lines of G, is independent of those in the lines
of gz.

(iii) The case in which the weight of a line in a cycle-cluster
increases is considered first. Assume the graph is a cycle-cluster,
where the weight of line e; increases. Denote the dimension of
the kernel of CR'/? by N, which equals m — n + 1. Thus, there
are N fundamental cycles in the cycle-cluster. The basis vectors
are chosen below. The basis vectors corresponding to the N — 1
fundamental cycles which do not include line e; have the form

Xi,N

Ei = [O &'72 E,‘_]3 ‘;‘,-,m]T fori = 1,...,N — 1, where
&g = 1,—1or0forq = 2,...,m and that corresponding
to the fundamental cycle whic_p includes line e; has the form
Ev = [Ena Ena Evm| where &1 = 1or — 1 and

&vg = 1,—1or 0 for q 2,...,m. This can be done by
changing the basis vectors of the cycle space properly. By the
Gram-Schmidt orthogonalization of R™'2&, we obtain X; =
[0 xi2 X3 x,-,m]T fori =1, ..., N—1whichis indepen-
dent of the weight I, of line e;. The last unit vector Xy can be ob-
tained by the normalization of the vector Xy = R™"/2&y —a; X —
%. Because the first element
i 1

of X;is zerofori = 1,...,N—1, o; is independent of 1. Hence X}
has the form X}, = [IIWSNJ

coo—an_1XN-1 where o =

T
/ / /
XNy XN3 xN.m] where
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x,’\,yq is independent of [ for ¢ = 2, ..., m. By the normalization
of X}, we obtain Xy = aXy where a = (I + 1, xj\,,iz)*]/2
Hence, the diagonal element of XNX equals azl’1 fori = 1

and equals a? Xy 2 fori = 2,...,m. Inserting XNXN into (35),
we obtain the varlance of the phase angle difference in line e;
which equals 277(1 1 azl 2y and that in lme eq which equals
i1 = axy f = YL 11 x7,) for ¢ = 2,...,m. It is obvious
that if I mcreases these varlances decrease
We next consider the case when a new line is constructed in
a cycle-cluster without changing the weight of all the other lines.
Assume line e; is the new line. Following the above calculation,
we obtain that the variance in the line with weight I; equals
2771 (1 — a?x), q - Z?]ﬂ] 2q) For the variances in lmes before
constructing line ey, by choosing the basis vector corresponding
to the N — 1 fundamental cycles which do not include line e; and
the Gram-Schmidt orthogonalization of these vectors, we obtain
the variance in line e, with weight I; is %nlf(l — Zf\’ 11 xz ) for
q =2, ...,m. Clearly, the variance decreases after adding lme e.
(iv) The lines in the cycle are denoted by eq, e, ..., ey with
weights I4, I, ..., Iy. Assume the direction of these lines are con-
sistent with the direction of the cycle. The vectors corresponding
to this cycle and the other cycles are denoted by &, and &; with
i=2,...,m—n+ 1 respectively. Following Appendix A.3, we
obtain & = [1 1 -~ 1 0 where the first N
elements equal to 1 and the last m — N elements equal to O,
and§=1[0 © 0 &N ‘;‘i_m]T where the first N
elements are all 0 and the last m — N elements equal to either
0, 1 or —1. Obviously, the vector R™'/2£, is orthogonal to the
vector R™"2¢ for i = 2,...,m — n + 1. By Gram-Schmidt
orthogonalization, we derive

~1/2

(Zgzl lk—l) / [1171/2 l;l/z O]T
from R~/2¢, and X; = [0 0 0 Xinet Xim] " for
the linear subspace composed of the vectors R—l/zg,. with i =
2,...,m — n + 1. Because the first N elements of X; for i
2,...,m—n++1are all 0, the matrix X,-X,T has no contributions
to the first N columns and the first N rows of Q. Hence, the
invariant probability distribution of the phase angle differences in
the lines of the cycle is independent from those in the other lines.
Further more, by (32), we obtain that the kth diagonal element of
Q;fork=1,...,Nis

S )

from which we obtain (40) by replacing I by I
Ik = yfork =1,
elements of Qs equal to

'* o

- for line eg. If
N we further get the first N diagonal
w(1—§). O

Remark 6.5. From Proposition 6.3 and Corollary 6.4, we get the
following findings. (i) The variance of the phase angle difference in
a single line connecting nodes i and j is ”lC , which is not influenced
by either constructing a new line without forming a cycle-cluster
that includes this line or increasing the capacities of the other lines.
Thus, a single line is likely to be a vulnerable line. This is because
neither the construction of new lines nor the increase in the
capacity of the other lines changes the power flow [; sin 8; in
this line, which is stated in Proposition 6.3, and the invariant
probability distribution of the phase angle difference in the single
line is independent of those of the phase angle differences in
all the other lines, which is obtained from Corollary 6.4-(i). (ii)
Constructing new lines and increasing the capacities of lines in a
cycle-cluster have no impact on the variances of the phase angle
differences in the lines that are not in this cycle-cluster. This is
because constructing new lines or increasing the capacities of
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lines in a cycle-cluster has no influence on the power flows in
other cycle-clusters and single lines, which is indicated by Propo-
sition 6.3, and the invariant probability distribution of the phase
angle differences in the lines of a cycle-cluster is independent
of those in the lines that are not in this cycle-cluster, which is
demonstrated by Corollary 6.4-(ii). (iii) By either increasing the
weights I, of lines or constructing new lines without changing the
weights of the other lines in a cycle-cluster, the variances of the
phase angle differences in this cycle-cluster will decrease. (iv) For a
cycle-cluster with only one cycle with lines in set & in the graph, the
variance of the phase angle difference in the line connecting nodes
i and j can be calculated from (40). In addition, based on (iii), we
obtain that formula (40) provides a conservative estimation of the
variances in the lines in cycle-clusters, i.e., the variance in a line that
is in multiple cycles can be approximated by formula (40) by taking
the smallest cycle that includes this line.

These findings provide guidelines on how to reduce the neg-
ative effects of vulnerable lines and designing future power net-
works, which should have low variances in phase angle differ-
ences when subjected to stochastic disturbances from power
sources and power loads. The term remedy will be used for the
reduction of these negative effects. Changing a power network
by adding lines to form small cycles or by increasing the capacity
of particular lines will suppress the fluctuations in the phase
differences in the lines of the corresponding cycle-cluster. The
benefit of forming small cycles is that the fluctuations in the
phase angle differences decrease by O(1/N), where N denotes the
length of the cycle. This is consistent with the findings obtained
by studying the energy barrier of a nonlinear system with a cyclic
network in Xi et al. (2017). The fluctuations in the phase angle
differences can be decreased by replacing transmission lines with
small line capacities by ones with large line capacities. This is the
same rule as for the transient stability analysis of the Single Ma-
chine Infinite Bus (SMIB) model (Kundur, 1994) by the equal area
criterion. Because the variances of the phase angle differences
decrease linearly with the parameter I, = I;cos 8* the control
of the power flows to increase the value cos 8’; can also decrease
the fluctuations of the phase angle differences in the lines. These
findings will be further explained in an example in Section 7.

7. Case study

In this section, we verify the formulas (27) and (32) for the
networks with uniform disturbance-damping ratio, the bounds
(37) and (38) for the variance matrices for the networks with non-
uniform disturbance-damping ratio and the findings presented
in Remark 6.5. We take the 500 KV transmission network of
Shandong Province of China (Ye et al,, 2016) as an example.

Example 7.1. Consider the 500 KV transmission network of
Shandong Province as shown in Fig. 2. There are 5 nodes with
generators and 18 nodes with loads only. The nodes of squares
denote power generators and the nodes of cycles denote power
loads. Line e, does not exist in practice, which is constructed
virtually in order to explain our findings. Before constructing line
ey, all the red lines are single lines and all the black lines are in a
cycle-cluster which has 6 fundamental cycles. After constructing
line ey4, there is one more cycle-cluster, which is composed of
(e1, ez, e3, e4). We set m; = i for the generators and m; = 1 for
all the loads. We study the 7 cases with different settings of P;, I;;
and b?/d; as shown in Table 1.

In cases 1-3, it holds that the phase angle difference 8;} =0
because of P; = 0 for all the nodes. Thus, when disturbances oc-
cur, the frequencies at the nodes and the power flows in the lines

fluctuate around zero. The weights of the lines satisfy lqj = I
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Table describing the 7 cases in the example; line e4 is present in the network if the label is 1 and

not present if the label is 0.

Case Line Source Load Line [; b?/d;
€4 p; P; ex3 others 1-5 others

1 0 0 0 10 10 1 1
2 1 0 0 10 10 1 1
3 1 0 0 20 10 1 1
4 0 3.6 -1 10 10 1 1
5 1 3.6 -1 10 10 1 1
6 1 3.6 -1 20 10 1 1
7 1 36 -1 20 10 Vi 1

Fig. 2. 500 KV transmission network of Shandong province, China.

The weights of the lines in Cases 4-6 are shown in Table 3, which
are calculated by solving the power flow equations. The variances
of the frequencies at the nodes and the phase angle differences
in the lines are presented in Tables 2 and 4, respectively. The
values in the tables are first calculated by formulas (27) and
(32) and then verified using Matlab following the procedure in
Theorem 3.2. In Cases 1-3, because §;; = 0 for all the lines in
the networks, the power flows are independent of the network
topology. In this case, the impact of the network topology alone
on the variance of the phase angle difference can be observed. In
Cases 4-6, because P; is nonzero, updating the network topology,
such as constructing new lines and increasing the line capacities,
may change the weight lc,j or the cycle space. Hence, the overall
impact of the network topology can be analysed. In cases 3 and
6, the capacity of line e,3 is increased from 10 to 20 in order
to observe the changes of the variances in the other lines. This
line is selected because in Case 4 the variance in this line is the
largest one in the cycle-cluster that includes this line, as shown
in Table 4.

First, let us focus on the variances of the phase angle differ-
ences in the single lines. Lines e; — eg in cases 1, 4, and e; — eg
in cases 2-3, 5-6 are single lines. It is verified in Table 4 that the
variances of the phase angle differences in these lines equal %lc‘y_l
with the weights of the lines shown in Table 3. In particular, the
variances in lines es — eg are affected neither by constructing ey
in cases 2 and 5 nor by increasing the capacity of e,3 in cases 3
and 6. This verifies the finding in Remark 6.5-(i).

Second, by comparing the weights and the variances in the
lines in case 4 with those in case 5, it may be noted in Tables 3
and 4 that both the weights and the variances in es — e9 are
not changed when e, is constructed in case 5. This is because
these lines are not in the cycle-cluster that includes e4. Similarly,
by comparing the weights and the variances in the lines in case
5 with those in case 6, it is seen in Tables 3 and 4 that both
the weights and the variances in e; — eg are not influenced by
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increasing the capacity of ep3. This is due to the fact that these
lines are not in the cycle-cluster that includes e,3. Thus, the
findings in Remark 6.5-(ii) is verified .

Third, we evaluate the findings in Remark 6.5-(iii). The effects
of constructing e, have already been analysed, where the vari-
ances in the lines in the cycle-cluster of (eq, e, e3, e4) all decrease
while those in the other lines are not affected. When comparing
the variances in the lines in case 2 with those in case 3 in Table 4,
it is found that the variances in eqq, e14, €17 — €9 all decrease
after increasing the capacity of e,3 from 10 to 20. We remark that
those in eg, eqg, €12, €13 also decrease, which are not explicitly
shown in the table because of the limited precision. This indicates
that the variances of the lines in a cycle-clusters all decrease if
the capacity of a line in this cycle-cluster increases. However,
in practice, constructing new lines or increasing the capacity
of lines also changes the power flows, which further influence
the weight lcij. For example, when comparing the weights in
case 5 with those in case 6, it is shown in Table 3 that after
increasing the capacity of e,3 in case 6, the weights of e,4, €35, €26
decrease from 9.7528, 9.9266, 9.9978 to 9.6934, 9.8933, 9.9896
respectively. We remark that similar as in case 3, the variances in
eq, €10, €12, €15, €16 also decrease, which are not explicitly shown
due to the limitation of the precision. Although only some of the
weights decrease, as shown in Table 4, the variances in eg — e,g all
decrease. This is due to the fact that the negative impact brought
by the decrease in the weights cannot overcome the positive
impact brought by increasing the capacity of e3. However, if the
negative impact surpasses the positive impact, then the variance
will increase, which may happen in a subset of networks.

Finally, we verify the findings in Remark 6.5-(iv). We focus
on Cases 2-3 with 8; = 0 for all the lines that are not changed
by either constructing new lines or increasing the line capacity.
The cycle-cluster {e1, e, e3, e4} includes a cycle. The basis vector
corresponding to this cycleis §; = [-1,-1,-1,1,0,..., 0]T. By
scaling this vector to unit length, we obtain X; = [-1/2, —1/2,
—-1/2,1/2, 0,...,0]T. From formula (32), we obtain that the
diagonal elements Q; at positions (1-4) are all 3/80, which is
consistent with the values shown in Table 4. Hence, the construc-
tion of e4 decreases the variances of the phase angle differences,
and the size of the decrease depends on the length of the cycle.
It is verified that the variances in e; — e4 in cases 5 and 6 can
also be calculated by (40) for simplicity. Let us next focus on
the conservative estimation of the variances in the lines in a
cycle-cluster by formula (40). For example, the variance in e,q
in case 2 can be approximated as 0.0333 for simplicity from
formula (40) by taking & = {es, €yg, €29}. This value is larger
than 0.0326 as shown in Table 4. Because constructing new
lines to form cycles or increasing the capacities of lines changes
the power flows, which may decrease the weights of the lines
in the cycle-cluster or even destroy the synchronization, it is
complicated to analyse how the variances of the lines of this
cycle-cluster change. However, in a real network, the phase angle
differences are usually small, and the weight l; =~ lj, which
is often assumed in the investigation of the synchronization of
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Table 2

The variances of the frequencies in the 7 cases in the example; 7L and 7U denote the lower and upper bounds in case 7; /5 ~ 2.2236.
Case 1 2 3 4 5 6 7 8 9 10 11 12
1-6, 7L 1/2 1/4 1/6 1/8 1/10 1/2 1/2 1/2 1/2 1/2 1/2 1/2
7 0.5002 0.3012 0.2600 0.2275 0.1901 0.5107 0.5024 0.5054 0.5034 0.5002 0.5006 0.5038
7U V5/2 V5/4 V5/6 V/5/8 V/5/10 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2
Case 13 14 15 16 17 18 19 20 21 22 23
1-6, 7L 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
7 0.5025 0.5002 0.5000 0.5000 0.5000 0.5000 0.5001 0.5004 0.5042 0.5003 0.5001
7U V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2 V5/2

Table 3

The weights of the lines of the network in Cases (4-7) in the example.
Case ey e e3 ey es [ ey eg €9 €10 en e €13 €14 €1s
4 9.9499 7.8460 9.3295 - 9.9499 9.6561 9.8712 9.3295 9.9109 9.9945 9.8215 9.9193 9.7394 9.9549 9.9860
5 9.8530 9.3706 9.9602 9.6262 9.9499 9.6561 9.8712 9.3295 9.9109 9.9945 9.8215 9.9193 9.7394 9.9549 9.9860
6 9.8530 9.3706 9.9602 9.6262 9.9499 9.6561 9.8712 9.3295 9.9092 9.9941 9.8312 9.9209 9.7423 9.9607 9.9897
Case €16 €17 e €19 €20 €21 €2 €23 €24 €25 €26 €27 €28 €29
4 9.7337 9.9540 9.9086 9.7745 9.6346 9.9380 9.8829 9.4709 9.7528 9.9266 9.9978 9.9687 9.9965 9.9198
5 9.7337 9.9540 9.9086 9.7745 9.6346 9.9380 9.8829 9.4709 9.7528 9.9266 9.9978 9.9687 9.9965 9.9198
6-7 9.7430 9.9434 9.9271 9.7973 9.6722 9.9495 9.9069 19.6990 9.6934 9.8933 9.9896 9.9852 9.9984 9.9300

Table 4

The variances of the phase angle differences in the 7 Cases in the example; 7L and 7U denote the lower and upper bounds in case 7.
Case ey e e3 [ es [ e7 eg () e e ez €13 €14 €1s
1 0.0500 0.0500 0.0500 - 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0298 0.0394 0.0394 0.0340 0.0281
2 0.0375 0.0375 0.0375 0.0375 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0298 0.0394 0.0394 0.0340 0.0281
3 0.0375 0.0375 0.0375 0.0375 0.050 0.050 0.050 0.050 0.0394 0.0394 0.0297 0.0394 0.0394 0.0339 0.0281
4 0.0503 0.0637 0.0536 - 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0302 0.0397 0.0403 0.0343 0.0283
5 0.0383 0.0396 0.0380 0.0389 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0302 0.0397 0.0403 0.0343 0.0283
6, 7L 0.0383 0.0396 0.0380 0.0389 0.0503 0.0518 0.0507 0.0536 0.0397 0.0395 0.0301 0.0397 0.0402 0.0342 0.0283
7 0.0397 0.0444 0.0518 0.0530 0.0551 0.0566 0.0524 0.0904 0.0398 0.0397 0.0304 0.0398 0.0403 0.0354 0.0290
7U 0.0856 0.0884 0.0849 0.0869 0.1124 0.1158 0.1133 0.1198 0.0889 0.0883 0.0674 0.0888 0.0900 0.0765 0.0632
Case €16 e17 e1s €19 €20 €1 €22 €23 €24 €25 €26 €7 € €29
1 0.0262 0.0304 0.0292 0.0352 0.0343 0.0352 0.0302 0.0430 0.0430 0.0430 0.0430 0.0430 0.0326 0.0326
2 0.0262 0.0304 0.0292 0.0352 0.0343 0.0352 0.0302 0.0430 0.0430 0.0430 0.0430 0.0430 0.0326 0.0326
3 0.0262 0.0303 0.0291 0.0351 0.0341 0.0351 0.0300 0.0231 0.0424 0.0424 0.0424 0.0424 0.0325 0.0325
4 0.0267 0.0306 0.0296 0.0359 0.0353 0.0356 0.0305 0.0451 0.0440 0.0434 0.0431 0.0432 0.0327 0.0328
5 0.0267 0.0306 0.0296 0.0359 0.0353 0.0356 0.0305 0.0451 0.0440 0.0434 0.0431 0.0432 0.0327 0.0328
6, 7L 0.0267 0.0305 0.0293 0.0357 0.0350 0.0354 0.0302 0.0235 0.0436 0.0429 0.0426 0.0426 0.0326 0.0327
7 0.0272 0.0400 0.0383 0.0365 0.0352 0.0356 0.0303 0.0318 0.0456 0.0432 0.0426 0.0426 0.0326 0.0328
7U 0.0597 0.0683 0.0656 0.0799 0.0783 0.0792 0.0676 0.0525 0.0976 0.0960 0.0952 0.0952 0.0729 0.0731

power systems (Poolla et al., 2017; Tegling et al., 2015). In this
case, the negative influences on the weight can be neglected and
the variances decrease if new lines are constructed to form small
cycles or the capacities of the lines are increased. The reduction
in the variances can be approximated using (40).

In regard to the bounds of the variance matrices for the net-
works with non-uniform disturbance-damping ratio, it is shown
for case 7 in Tables 2 and 4 that the variances of the frequencies
at the nodes and the phase angle differences in the lines are both
constrained by the lower bound and the upper bound in (37) and
(38) respectively. For the frequency, it is demonstrated that the
variance at the node which possesses the largest disturbance-
damping ratio is closer to the upper bound and that at the
node with the smallest disturbance-damping ratio is closer to the
lower bound. For example, the variance at node 5, which has the
largest disturbance-damping ratio s = +/5, is 0.1901 which is
closer to the upper bound +/5/10 = 0.2236. However, those
at the nodes 1, 6-23 with the smallest disturbance-damping
ratio are all closer to the lower bound 1/2. For the phase angle
differences, the variance in the lines which connect nodes with
larger disturbance-damping ratio is usually larger. For example,
the variance in eg is 0.0904 which becomes closer to the upper
bound 0.1198 compared with its value in case 6. However, the
variances in the lines which are far away from the nodes with
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larger disturbance-damping ratio are closer to the lower bounds.
This is seen from the variance in lines ey — exq.

In regard to the vulnerable nodes, it is found in Table 2 that
nodes 1, 6-23 in cases 1-6 and node 6 in case 7 are the most
vulnerable nodes. The remedy methods include increasing the
inertia and decreasing the disturbance-damping ratio at these
nodes or their neighbour nodes. With respect to the vulnerable
lines, it is seen in Table 4 for cases 1-7 that the single lines
are usually the vulnerable lines, for example, lines es — eg. The
remedy method includes increasing the capacities of these lines
and constructing new lines to include these lines into cycles.

8. Conclusion

In this paper, based on a stochastic Gaussian system, we
have investigated the dependence of the fluctuations in a power
system on system parameters when subjected to stochastic dis-
turbances. The dynamics of turbine-governors of the synchronous
machines and that of voltage may be considered in the sys-
tem (Trip et al., 2019). By the method proposed in this paper, the
impact of the system parameters on the fluctuations of the fre-
quency and voltage at each node and the phase angle difference in
each line can be investigated. In that case, the system parameters
include the ones in the dynamics of the turbine-governor and
voltage besides those studied in this paper.
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A future investigation will address the deduction of explicit
formulas for the variance matrices of the frequencies at the nodes
and the phase angle differences in the lines in the network with
non-uniform disturbance-damping ratio and lossy transmission
lines.

Appendix

A.1. The variance matrix of a linear stochastic process

Definition A.1. Consider a linear stochastic system
dx(t) = Ax(t)dt + Bdu(t), x(0) = xo,
y = Cx(t),

where x € R", A € R™", B € R™™, %y € G(0, on) is a Gaussian
random variable where Q,, € R™" is the variance matrix of xo,
C € R®", u € R™ is standard Brownian motion, y € R? is the
output. It follows from Kwakernaak and Sivan (1972, Theorem
1.52) that the state x and y are Gaussian process, i.e., for all t > 0,

X(t) € 6(07 Qx,tv(t))’ y(t) € G(O, Qy,rv(t))
where the variance matrix Q, ,(t) € R™" of x(t) is

t
Qx,w(t)=e’“one"T’+/ ATBB A Tdr
0

and the variance matrix Q, .,(t) € R*** of y(t) satisfies Q,, ,,(t) =
CQx,w(t)CT. The matrix Q, ,,(t) satisfies the matrix differential
equation

Qo(t) = AQ, 1, (t) + Q,(,(t)A" +BB", (41a)
Q.,(0)=Q,,. (41b)

In addition, if A is Hurwitz, then there exists an invariant distri-
bution of the stochastic processes x(t) and y(t) with asymptotic
variance matrices

+00
Q= lim Q. (t) = / eATBBTeA Tdr,
— 00 0

and Q, = CQXCT. The matrix Q,, which is called the control-
lability Gramian of the pair (A, B), is the unique solution of the
Lyapunov equation due to the Hurwitz condition (Doyle et al.,
1989; Toscano, 2013),

AQ, +QA" +BB" =0. (42)

which can be either derived from the limit of the differential
equation (41a) or from

+o00
AQ, +QAT = / %(e’”BBTeATt)dt
0
— (A'BBTA™)

+o0
= —BB'.
0

A.2. The Moore-Penrose pseudo inverse of real symmetric matrices

Theorem A.2. Consider a real symmetric matrix S € R"™ ", There
exists an orthogonal matrix V. € R™" such that

visv=x

where X = diag(o;) € R™" is a diagonal matrix with the diagonal
elements o; being the eigenvalues of S, the column vectors v; of V
are orthonormal eigenvectors of § corresponding to the eigenvalue
oi. In addition, the Moore-Penrose pseudo inverse is defined by the
formula

n
st=vzivT =) ofvi]
i=1
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where X = diag(o;*) € R™" with o = 1/0; if 0; # 0, otherwise
o = 0 (Horn & Johnson, 2013).

A.3. The basis vectors of the kernel of CR'2

The cycle space of a graph is defined as the kernel of the
incidence matrix C, which is a vector subspace in R™. By graph
theory, we have rank(C) = n — 1. Hence, the dimension of the
cycle space is m — n + 1. It is obvious that the cycle space of an
acyclic graph is an empty space. For a graph with cycles, the basis
for the cycle space is derived by the following method: Consider-
ing a cycle ¢ with a set & of edges in the graph G, we specify a

direction for C; then, the vector & = [&.1, &2, ..., &.m]" € R™
such that

+1, if ex € £ with direction = the cycle direction,
‘i‘_c,k = { —1, ife €& with direction # the cycle direction,

0, otherwise.

belongs to the kernel of C such that C§. = 0 (Biggs, 1993). The
basis for the cycle space can be derived by taking the vectors
as § forc = 1,...,m —n+ 1 corresponding to the (m —n +
1) fundamental cycles (Diestel, 2000, Theorem 1.9.6) in the graph.
Because R is non-singular, the vectors : 2§C for all the cycles
are the basis vectors of the kernel of CR'/2. The orthonormal basis
vectors X; are obtained by Gram-Schmidt orthogonalization of
the basis vectors R~'/?&.. The fundamental cycles can be obtained
by the following method. Let 7 be a spanning tree of the graph g.
Then 7 has n — 1 edges and there are m — n + 1 edges of G lying
outside of 7. Then for each of these m —n+ 1 edges e € £\ £(T),
the graph 7 + e contains a cycle, which is a fundamental cycle.
Note that the basis vectors of the cycle space may not be unique
due to the non-uniqueness of the spanning tree.
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