

Delft University of Technology

Towards Finite-Time Consensus with Graph Convolutional Neural Networks

Iancu, A.; Isufi, E.

Publication date
2020
Document Version
Final published version
Published in
28th European Signal Processing Conference (EUSIPCO 2020)

Citation (APA)
Iancu, A., & Isufi, E. (2020). Towards Finite-Time Consensus with Graph Convolutional Neural Networks. In
28th European Signal Processing Conference (EUSIPCO 2020) (pp. 2145-2149). Eurasip.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Towards Finite-Time Consensus with Graph
Convolutional Neural Networks

Bianca Iancu and Elvin Isufi
Intelligent Systems Department, Delft University of Technology, Delft, The Netherlands

E-mails: a.iancu-1@student.tudelft.nl; e.isufi-1@tudelft.nl

Abstract—This work proposes a learning framework for dis-
tributed finite-time consensus with graph convolutional neural
networks (GCNNs). Consensus is a central problem in distributed
and adaptive optimisation, signal processing, and control. We
leverage the link between finite-time consensus and graph filters,
and between graph filters and GCNNs to study the potential of a
readily distributed architecture for reaching consensus. We have
found GCNNs outperform classical graph filters for distributed
consensus and generalize better to unseen topologies such as
distributed networks affected by link losses.

Index Terms—Finite-time consensus, graph convolutions,
graph signal processing, graph neural networks.

I. INTRODUCTION

Distributed average consensus is a fundamental problem in
signal processing, sensor networks, and multi-agent control
[1]–[7]. A first approach to reach consensus is through dis-
tributed iterative solvers, such as randomized gossip [8] or
methods of multipliers [9]. These methods reach consensus at
steady-state and their convergence rate is dominated by the
network topology. A more recent direction considers reaching
consensus within a finite number of iterations and frames this
problem as a graph filtering operation [10].

The first work to formalize finite-time consensus through
graph filters is [11]. This work uses the finite impulse response
(FIR) graph filters and designs the filter coefficients by relying
on the graph spectrum. Conditions on when the latter is
feasible are further analyzed in [12], [13]. A main limitation
of these theoretical contributions is that the filter coefficients
depend on the specific eigenvalues of the graph Laplacian
matrix. The cost of computing the eigendecomposition limits
also their applicability to graphs of small dimensions. The
designed filters suffer also from numerical issues due to the
finite-precision of the eigenvalues. Besides the theoretical
insights, the practical benefit of these works is to approximate
better consensus in a finite number of iterations compared
with the other distributed solvers. The fastest converging filter
is the edge varying graph filter [14], which differently from
FIRs exploits also nodes’ locality and sparsity to enhance the
degrees of freedom. However, the edge varying graph filter
requires a fixed labeling in both design and implementation
phase and the graph structure to be fixed; both assumptions
that might be infeasible in practical distributed settings or
when the topology changes slightly (e.g. nodes and links that
fail).

In this paper, we address distributed finite-time consensus as
a learning problem on graphs. We employ a distributed graph

convolutional neural network (GCNN) to learn the consensus
function in a data-driven fashion. GCNNs can be thought of
as extending to graphs conventional CNNs, where the spatial
convolutional filters are substituted by graph convolutional
filters [15], [16]. By having the FIR graph filter as their
integral part, GCNNs link directly to finite-time consensus
if the activation functions leave unaffected the distributed
implementation. The coupling graph filter-activation function
also facilitates the transferability of GCNNs to graphs that
deviate slightly from the ones they were trained on [17]. The
main research question we address is how do GCNNs behave
for distributed finite-time consensus. Our preliminary results
show the potential of the GCNNs to outperform FIRs for
reaching consensus. The improved performance is sensitive to
the activation function and to the graph topology. Parametric
activation functions should be employed when the GCNN with
non-parametric ones (e.g., ReLU) has limited discriminatory
power or when the communication complexity is limited. Also,
better connected graphs yield a better performance. Finally,
we observed GCNNs are more robust than FIRs in reaching
consensus over graphs affected by link losses.

This paper is organized as follows. Section II recalls some
background material about graph signal processing and dis-
tributed consensus with graph filters. Section III details the
architecture and nonlinearities under study. The numerical
experiments are reported in Section IV, while the paper
conclusions in Section V.

II. BACKGROUND

We start with some basic concepts from graph signal
processing and then we continue with graph filters and their
link to distributed consensus.

A. Graph signal processing

Consider a graph G = (V, E) with vertex set V =
{v1, v2, ..., vN} of cardinality |V| = N and edge set E ⊆ V×V
of cardinality |E| = M . An edge is a tuple eij = (vi, vj)
connecting nodes vi and vj . The neighborhood of node vi is
the set of nodes connected to vi, i.e., Ni = {vj |(vi, vj) ∈ E}.
Associated with G is an N × N matrix S, named the graph
shift operator (GSO) matrix, whose sparsity pattern matches
the graph structure. The entry (i, j) of S is [S]i,j = si,j 6=
0, if i = j or (i, j) ∈ E . Commonly used GSOs are the adja-
cency matrix A, the graph Laplacian matrix L (for undirected
graphs), or their normalized and translated forms.

2145978-9-0827-9705-3 EUSIPCO 2020

On the vertices of G, we define a graph signal x =
[x1, x2, ..., xN]> ∈ RN , whose i-th component xi is the signal
value of node vi. The GSO can be used to represent the
signal in the graph spectral domain. For this, consider the
eigendecomposition S = UΛU−1 with eigenvectors U =
[u1, . . . ,uN] and eigenvalues Λ = diag(λ1, . . . , λN). The
graph Fourier transform (GFT) of x is defined as x̂ = U−1x,
where x̂i quantifies how much eigenvector ui contributes to
the variation of signal x over the graph [10], [18]. As we
shall see in the sequel, this Fourier decomposition plays a
role in approaching consensus from a spectral perspective. For
completeness, the inverse GFT is x = Ux̂ and the eigenvalues
Λ are referred to as the graph frequencies.

B. Consensus as graph signal filtering

Consider the signal x and the consensus version x̄ = x̄1,
with x̄ being the mean of x and 1 the vector of all ones. We can
think of x̄ as a signal whose GFT coefficients ˆ̄x are such that
the combined eigenvectors yield the DC component. For the
GSO being the graph Laplacian S = L, this is straightforward
since eigenvector u1 associated to the smallest eigenvalue
λ1 = 0 is constant, i.e., u1 = 1/

√
N1. Only the first coeffi-

cient ˆ̄x1 is necessary to represent the consensus signal, while
all other coefficients can be null, ˆ̄x2 = . . . = ˆ̄xN = 0. For S
being the adjacency matrix or any other graph representation
matrix that does not have a constant eigenvector, vector ˆ̄x will
have more than one entry (if not all) non-zero to represent the
constant signal.

We can think of consensus as a graph filter that takes an
heterogeneous graph signal x and filters it to return the con-
stant mean signal x̄ = x̄1 over the nodes [11]. A graph filter
matrix H(S) w.r.t. the GSO S is defined as the polynomial
matrix of order K

H(S) =

K∑
k=0

hkS
k (1)

that takes as input a graph signal x to return the output
signal y = H(S)x. Vector h = [h0, . . . , hK]> contains the
K+1 filter coefficients. Exploiting the GFT, we can write the
input-output graph filtering relation as ŷ = H(Λ)x̂, where
the diagonal matrix H(Λ) =

∑K
k=0 hkΛ

k contains the filter
frequency response on the main diagonal. Reaching consensus
with graph filters of the form in (1) accounts for learning the
filter parameters h such that the signal is low-pass filtered to
pass only the DC component.

Another advantage of (1) is its readily distributed imple-
mentation. In building the output y, we need to compute
the terms Sx,S2x, . . . ,SKx. By exploiting the recursion
Skx = S(Sk−1x) = Sx(k−1), node i can compute the shifted
signal x(k) by exchanging previous shift information x(k−1)

with its direct one-hop neighbors Ni, since the shift operator
is local. This recursive implementation allows for a distributed
communication and computational cost of order O(MK) [12].

The main benefit of (1) is that, under appropriate conditions
on the spectrum of S [13], coefficients h can be designed
to achieve exact finite-time consensus in at most K = N

iterations [11], [19]. However, their applicability is limited to
simple (cyclic or star) graphs, since these approaches require
high numerical precision of the eigenvalues. An approach to
tackle the numerical issues is to consider a different graph filter
in (1), such as ARMA [20], node varying [12], or edge varying
[21]. Of particular interest is the so-called edge varying
graph filter [21], which substitutes scalars hk with N × N
coefficient matrices Hk in which entry (i, j) is the coefficient
applied to edge eij . In this case, finite-time consensus can be
approximated with higher accuracy compared with (1), but the
graph structure and its labeling should be fixed. The latter is
also practically non-transferable to a slightly different graph,
such as a graph affected by link losses.

Employing instead a GCNN with filters of the form in
(1) does not require the GSO eigendecomposition, a fixed
labeling, and it is better transferable to unseen graphs than
the linear graph filter [17].

III. METHODS

In this section, we first detail the GCNN architecture and
the activation functions under study. Then, we discuss two
properties of the GCNN, namely, the permutation equivariance
and transference to unseen graphs and their suitability to
distributed consensus.

Architecture. We consider a GCNN composed of L graph
convolutional layers followed by a per node fully connected
layer –Figure 1. Each graph convolutional layer comprises a
bank of graph filters [cf. (1)] and a nonlinearity. At layer l,
the GCNN takes F input features {xgl−1}Fg=1 and produces
other F output features {xfl }Ff=1. Each input feature xgl−1 is
treated as graph signals and processed by a parallel bank of
F graph filters {Hfg

l }f of the form (1). The filter outputs
are then aggregated over the input index g to yield the f -th
intermediate feature

zfl =

F∑
g=1

Hfg
l (S)xgl−1 =

F∑
g=1

K∑
k=0

hfgkl S
kxgl−1, for f ∈ {1, . . . , F}.

(2)
The intermediate feature zfl is another graph signal whose
i-th entry [zfl]i is associated with node vi. The latter is
subsequently passed through an activation function σ(·) to
yield the f -th output of the l-th convolutional layer

xfl = σ(zfl), for f ∈ {1, . . . , F}. (3)

Layer l is characterized by the F 2 coefficient vectors hfgl =

[hfg0l , . . . , h
fg
Kl]
> of filters Hfg

l (S) in (2). Remark the number
of input and output features do not need to be the same, but
we assume so to ease notation.

The input feature of layer l = 1 is the graph signal x0 := x
for which we want to reach consensus. The output features of
layer L, x1

L, . . . ,x
F
L , represent the final convolutional features.

The latter can also be seen as a collection of F graph signals,
where on node vi we have the F × 1 feature vector χLi =

2146

Graph signal:
x = [x1, …, xN]

σ(·) …

Input Graph Convolutional Layers and Activation Functions Fully Connected Layer Per Node

MSE

MSE

σ(·)

Fig. 1: Distributed GCNN architecture for finite-time consensus. The input is a graph signal x, which is filtered by a filter
bank of F FIR graph filters [cf. (1)] and then passed through and activation function σ(·). This forms a graph convolutional
layer, which is cascaded L times. The final convolutional features are concatenated per node and passed to a per-node fully
connected layer to compute the final output. This output is used during training the minimze the mean squared error (MSE).

[x1Li, . . . , x
F
Li]
>. Each node locally combines the features χLi

with a one-layer perceptron1 to build the final scalar output

yi = h>FCχLi (4)

where hFC = [h1, . . . , hF]> is the F × 1 vector of parameters
in the local fully connected layer. Vector hFC is shared
among all nodes to keep the number of trainable parameters
independent from the graph dimensions.

Activation functions. If the activation functions in the con-
volutional layers were local, the GCNN would be readily
distributable. In fact, all filters {Hfg

l (S)}fgl are distributable,
as discussed in Section II-B. The last fully connected layer
leaves unaffected the distributed implementation since it is
local over the nodes. In this work, we study the effect of three
activation functions for distributed consensus: the pointwise
ReLU, the pointwise kernel [22], and the local max [23].

ReLU: The rectified linear unit is pointwise on each scalar
entry xi of the feature vector x and it is defined as

σ(x) = max(0,x). (5)

Kernel: The pointwise kernel activation function considers
a one-dimensional dictionary d = [d1, . . . , dD]> of D atoms
sampled uniformly around zero. Any scalar feature xi of node
vi is combined with all elements of d to build the parametric
nonlinear features

σ(xi) =

D∑
j=1

hjκ(xi, dj) (6)

where hσ = [h1, . . . , hD]> is a D × 1 vector of trainable
parameters and κ(xi, dj) is a one-dimensional kernel between
feature value xi and dictionary atom dj . Following [22], we
employ the Gaussian kernel function κ(xi, dj) = exp

(
−γ(xi−

dj)
2
)
, where γ is a tuneable parameter.

Max local: Differently from the above two, the max local
activation function is not pointwise at node vi but takes into
account also feature values at neighboring nodes Ni. Let x
be an N × 1 graph signal feature on which we want to apply
the max local activation function. Then, the output of a local

1Each node can also consider a local multi-layer perceptron to combine the
features in χLi.

max operator max(S,x) applied to signal x is another graph
signal z whose i-th entry zi is the maximum value in the
neighboorhood, i.e., zi = [max(S,x)]i = max

(
{xj : vj ∈

Ni}
)
. The max local activation function for the feature signal

x builds the parametric features

σ(x) = h0 max(0,x) + h1max(S,x). (7)

with trainable parameters hσ = [h0, h1]>. The ReLU term
nonlinearizes also the node features. In [23], the authors
extended (7) to a neighborhood of order K. This choice,
however, is not distributable and we shall not discuss it further.

The above activation functions leave unaffected the commu-
nication and computational costs of the GCNN, which remain
governed by the cost of running all graph filters [cf.(1)]. For an
architecture of F features per layer and L graph convolutional
layers the cost is of order at most O(F 2LMK).

Parameter training. If the ReLU nonlinearity is used, the
total number of parameters of the GCNN is F 2(L− 1)(K +
1)+F (K+1)+F . This divides as: i) F (K+1) parameters for
the F filters in the first graph convolutional layer; ii) F 2(K+
1)(L−1) for the parameters of the F 2 filters in the remaining
L−1 graph convolutional layers; and iii) F parameters in the
final fully-connected layer. Instead, if the kernel or the max
local activation functions are used, we should also consider
the parameters in hσ . This adds DL or 2L parameters for the
kernel or the max local activation function, respectively.

By grouping all parameters into set H =
{hfgl ; hσl; hFC}lfg , we can consider the GCNN as a
mapping Φ(·) that takes as input a graph signal x, a GSO S,
and a set of parameters H to produce the output

Φ(x; S;H) := ỹ. (8)

The output (8) is computed for a training set T = {(xr,yr)}
of |T | = R pairs, where the input xr is a graph signal and
yr is the vector containing the consensus signal x̄r for all
nodes; i.e., yr = x̄r1. The goal of the GCNN is to learn
the distributed averaging function from examples in T and
extrapolating it to unseen graph signals x /∈ T .

As a loss function, we considered the averaged mean
squared error (MSE) between the GCNN output ỹr and the

2147

20 25 30 35 40
Filter Order

10 2

10 3

RM
SE

FIR
GCNN - ReLU
GCNN - Kernel
GCNN - Max

(a)

0.05 0.10 0.15 0.20 0.25
SBM: inter-community probability

10 2

10 3

RM
SE

FIR
GCNN - ReLU

(b)

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Probability of edge removal

10 2

10 3

RM
SE

FIR
GCNN - ReLU
GCNN - Kernel
GCNN - Max

(c)

Fig. 2: Root mean square error (RMSE) of the GCNN and FIR graph filters for reaching finite-time consensus. (a) Comparison
of different filter orders (iterations) and nonlinearities. (b) Performance of the FIR and GCNN with ReLU nonlinearity as a
function of the graph connectivity. (c) Robustness of the different models as a function of link loss probability.

label yr; i.e.,

L =
1

R

R∑
r=1

‖yr − ỹr‖22. (9)

This loss is minimized w.r.t. parameters in H using standard
backpropagation with stochastic gradient descent or any other
preferred descent method.
Equivariance and transference. The coupling graph filter-
activation function embodies the GCNN with two important
properties, namely, permutation equivariance and transference
to unseen graphs. Permutation equivariance implies that the
processing of a graph signal with the GCNN is independent
of node labeling. This is satisfactory for distributed consensus
because we would like to train the GCNN on a graph G and
deploy it on any permuted version of G. Although permuta-
tion equivariance restricts the family of activation functions,
pointwise nonlinearities and the max local nonlinearity are
permutation equivariant [23].

The transference of the GCNN to unseen graphs is essential
for distributed consensus since in practical scenarios communi-
cation links are prone to perturbations. Transference properties
of the graph filters [cf. (1)] and of the GCNN [cf. (8)] are
recently linked with their ability to be robust to perturbations
[17], [24]. Next, we investigate this property for consensus
and observe that GCNNs have a better transference to unseen
graphs compared with the FIR filter (1).

IV. NUMERICAL RESULTS

We evaluate the impact of the three activation functions,
ReLU (5), kernel (6), and localized max (7), for the GCNN
architecture (8) and compare their performance with the FIR
graph filter (1). Our goal is to highlight the benefits and
limitations of the different activation functions as well as
provide preliminary insights on the GCNN behavior when
employed for distributed consensus. In specific, the research
questions we aim to answer are:

RQ.1 What is the impact of the activation function and filter
order on the GCNN?

RQ.2 What is the impact of the graph connectivity when
learning the GCNN consensus function?

RQ.3 How do different activation functions behave when the
GCNN is deployed on different graphs?

Setup. We considered an undirected stochastic block model
(SBM) graph of N = 100 nodes divided into C = 5 communi-
ties with intra- and inter-community probabilities p = 0.8 and
q = 0.1, respectively. The graph signals are generated from
a normal distribution N (0, I). We generated 2500 samples
and split them into 80%, 10%, 10% training, validation and
test sets, respectively. We averaged the performance across
10 different graph realizations and 10 different data splits
for each graph. The GSO is the normalized adjacency matrix
S = A/λmax(A), where λmax(A) is the maximum eigenvalue
of the adjacency matrix2. The considered architecture is a two
layer GCNN with F = 32 features per layer followed by a
per-node fully connected layer. To train the parameters, we
considered the ADAM optimizer with learning rate 0.001 and
forgetting factors β1 = 0.9 and β2 = 0.999 for 400 epochs and
batch size of 100 samples. For the kernel activation function,
we considered the same parameters as in [22].

Non-linearity and filter order. We analyzed the three ac-
tivation functions in Section III and filter orders in the set
K ∈ {20, 25, 30, 35, 40}. Since for consensus we want the
filters to approximate a strongly low-pass transfer function,
low filter orders (e.g., K ∈ {1, . . . , 5} as used for classifica-
tion) significantly affect the performance. From Fig. 2a, we
see the ReLU and the local max activation functions achieve
a significantly lower root MSE compared with the kernel
activation function but also with the FIR graph filter. The
local max performs better than ReLU only for the lowest order
K = 20, which goes in line with the classification results in
[23]. When the filter order K increases, hence the degrees of
freedom, adding a parametric nonlinearity is a disadvantage.
In fact, the kernel activation function (6) has D = 20 extra

2We also experimented with the Laplacian as GSO but its performance was
consistently worse compared with the normalized adjacency matrix.

2148

parameters per layer and yields a worse performance compared
with the local max which has two additional parameters.
These observations suggest that parametric activation functions
should be preferred when a GCNN architecture with non-
parametric ones has a low discriminatory power or when the
communication cost is limited.

Graph connectivity. To analyze the impact of the graph con-
nectivity when learning the consensus function, we evaluated
the inter-community edge formation probability in the interval
q ∈ [0.05, 0.25]. In Fig. 2b, we compare directly the ReLU
nonlinearity for K = 25 with the FIR graph filter since it was
the best performing architecture. For both methods, we observe
a lower RMSE when the communities are better connected.
This finding is intuitively satisfying for distributed consensus,
as the better connected the communities the easier nodes get
information from further away neighbors.

Robustness. In this last experiment, we analyze the robustness
of the different methods when transferred to graphs affected
by link losses. For each method, we considered the best
performing order. From the trained graph G, we randomly
removed edges with probabilities in the interval [0.025, 0.15].
Fig. 2 illustrates the performance averaged over 10 additional
realizations. All GCNN models outperform the FIR. It is,
however, remarkable that the kernel activation function is quite
robust to link losses compared with the rest. We attribute this
behavior to the increased degrees of freedom, which trade
performance with robustness.

V. CONCLUSIONS AND FUTURE WORK

We proposed a data-driven framework for addressing finite-
time consensus with GCNNs. We exploited the link between
consensus, graph convolutional filters, and GCNNs to propose
a method that is readily distributable if the activation functions
are properly chosen and the multilayer perceptron is applied
per node. Our preliminary results suggest: i) parametric ac-
tivation functions should be employed when the distributed
graph filters embedded into a non-parametric nonlinearity have
limited discriminatory power –the latter is often linked to com-
munication complexity (i.e., filter order); ii) better connected
graphs facilitate learning the consensus function –our rationale
is the improved performance is because each node gets easier
the information from all other nodes; iii) GCNNs generalize
better to unseen graphs compared with FIR graph filters. These
preliminary observations show the potential of the GCNNs
for finite-time consensus rather than being conclusive. Three
interesting research directions should be addressed in future
work. First, theoretical research is needed to investigate the
limits of GCNN for finite-time consensus and link them with
the graph spectrum. Second, extensive results in different
graphs are needed to validate our observations. Third, it is
worth investigating an asynchronous implementation since
the latter has often shown superior performance compared
with the synchronous one. This work, nevertheless, shows
GCNNs overcome by a margin FIR graph filters for finite-
time consensus.

REFERENCES

[1] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[2] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
transactions on automatic control, vol. 31, no. 9, pp. 803–812, 1986.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[5] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[6] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
and consensus using linear iterative strategies,” IEEE journal on selected
areas in communications, vol. 26, no. 4, pp. 650–660, 2008.

[7] S. Pequito, S. Kruzick, S. Kar, J. M. Moura, and A. P. Aguiar, “Optimal
design of distributed sensor networks for field reconstruction,” in 21st
European Signal Processing Conference (EUSIPCO 2013). IEEE, 2013,
pp. 1–5.

[8] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM Transactions on Networking (TON), vol. 14,
no. SI, pp. 2508–2530, 2006.

[9] T. Sherson, R. Heusdens, and W. B. Kleijn, “On the distributed method
of multipliers for separable convex optimization problems,” IEEE Trans-
actions on Signal and Information Processing over Networks, vol. 5,
no. 3, pp. 495–510, 2019.

[10] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” vol. 30, no. 3, pp. 83–98, May 2013.

[11] A. Sandryhaila, S. Kar, and J. M. Moura, “Finite-time distributed con-
sensus through graph filters,” in Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp.
1080–1084.

[12] S. Segarra, A. G. Marques, and A. Ribeiro, “Optimal graph-filter design
and applications to distributed linear network operators,” vol. 65, no. 15,
pp. 4117–4131, Aug. 2017.

[13] M. Coutino, E. Isufi, T. Maehara, and G. Leus, “On the limits of finite-
time distributed consensus through successive local linear operations,”
in 2018 52nd Asilomar Conference on Signals, Systems, and Computers.
IEEE, 2018, pp. 993–997.

[14] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” IEEE Transactions on Signal Processing, vol. 67, no. 9, pp.
2320–2333, 2019.

[15] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional neural
network architectures for signals supported on graphs,” vol. 67, no. 4,
pp. 1034–1049, Feb. 2019.

[16] E. Isufi, F. Gama, and A. Ribeiro, “Edgenets: Edge varying graph neural
networks,” arXiv preprint arXiv:2001.07620, 2020.

[17] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph
neural networks,” arXiv:1905.04497v2 [cs.LG], 4 Sep. 2019. [Online].
Available: http://arxiv.org/abs/1905.04497

[18] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” vol. 61, no. 7, pp. 1644–1656, Apr. 2013.

[19] S. Sundaram and C. N. Hadjicostis, “Finite-time distributed consensus
in graphs with time-invariant topologies,” in 2007 American Control
Conference. IEEE, 2007, pp. 711–716.

[20] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving
average graph filtering,” vol. 65, no. 2, pp. 274–288, Jan. 2017.

[21] M. Coutino, E. Isufi, and G. Leus, “Advances in distributed graph
filtering,” vol. 67, no. 9, pp. 2320–2333, May 2019.

[22] S. Scardapane, S. Van Vaerenbergh, D. Comminiello, and A. Uncini,
“Improving graph convolutional networks with non-parametric activa-
tion functions,” in 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE, 2018, pp. 872–876.

[23] L. Ruiz, F. Gama, A. G. Marques, and A. Ribeiro, “Invariance-preserving
localized activation functions for graph neural networks,” arXiv preprint
arXiv:1903.12575, 2019.

[24] R. Levie, E. Isufi, and G. Kutyniok, “On the transferability of spectral
graph filters,” in 13th Int. Conf. Sampling Theory Applications. Bor-
deaux, France: IEEE, 8-12 Jul. 2019, pp. 1–5.

2149

