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SUMMARY

Steel is found irreplaceable in many industrial applications. It is currently predicted that

steel consumption will increase significantly in the coming decades. Humanity is ex-

pected to produce more and more steel-based products, such as cables, cars, railways,

bridges, stadiums, skyscrapers, etc. The increased demand will pose a serious challenge

to steel-producing companies. At the same time, these companies strive to reduce the

amount of carbon emissions which are released during the majority of steel-making pro-

cesses. Thus, the steel-producing corporations currently carry out a lot of reforms aimed

at improving production efficiency and making plants environmentally friendly.

Continuous casting is a very important part of the steel-making process. During the

continuous casting process, steel solidifies and takes the correct shape. There are several

important nodes in this process, e.g. the tundish, the mold, the turning zone, etc. Given

that the mold is the first stage where the solidification starts, a deep understanding of all

physical phenomena in the mold flow could potentially help researchers to increase the

process efficiency and the quality of final products. Originally, the mold flow is highly

turbulent and unstable due to various physical processes arising simultaneously inside

the mold. To control the flow, one of the tools widely used in the steel-making industry

is the electromagnetic brake (EMBr).

The work of the EMBr is based on magnetohydrodynamic (MHD) principles. A strong

magnet is used to impose an external magnetic field on the flow of liquid steel which is

highly electrically conductive. Hence, the generated electric current inside the liquid

steel results in an active Lorentz force affecting the flow. The most optimal and efficient

configuration of the EMBr remains an open question as well as a full understanding of

processes caused by EMBr. In particular, it is not clear whether the electric interaction

between the solidified shell (which has also a relatively high electrical conductivity) and

the turbulent flow of liquid steel is significant.

In order to investigate the above-mentioned phenomena related to the interaction

between liquid steel and the solidified shell, several important steps have to be taken.

First, due to the limitations of MHD experiments, a numerical MHD solver is needed.

Second, this MHD solver should be able to predict the solid-liquid MHD interaction, for

example, using a specific method called conjugate MHD. Magnetohydrodynamic turbu-

lence should be also taken into account. Third, fundamental physics phenomena lying

behind the solid-liquid MHD interaction must be clarified. Hence, in this dissertations,

we are primarily addressing these points. We developed and implemented a numerical

magnetohydrodynamic solver capable to predict a wide range of MHD phenomena in-

cluding the solid-liquid MHD interaction. Our solver was successfully validated against

xi
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several reference cases and used to conduct all simulations presented in this disserta-

tion. In order to gain a fundamental understanding of physics lying behind the solid-

liquid MHD interaction, we first studied this effect in a simplified geometric configura-

tion. Remarkably, we found that changes in electrical conductivity of the solid walls led

to the appearance of the transitional flow regime. Stronger changes in electrical conduc-

tivity resulted in full turbulence suppression and then turbulence regeneration. Further

investigation of the solid-liquid MHD interaction in the casting mold demonstrated the

strong impact on the double-roll flow structure and on the sub-meniscus zone. There-

fore, all attempts to increase the efficiency of the casting process via the EMBr should

account for the presence of the solidified shell.

We hope that our work will help both fundamental researchers and engineers who

work with magnetohydrodynamic flows of liquid metals to better understand the MHD

phenomena.



SAMENVATTING

Staal is een onvervangbaar materiaal voor veel industriële processen. Er wordt voor-

speld dat het gebruik van staal in de komende jaren alleen maar zal toenemen doordat

de mensheid steeds meer staalproducten zal maken, zoals bijvoorbeeld kabels, auto’s,

spoorrails, bruggen, stadions, wolkenkrabbers, enz. De groter wordende vraag naar staal

zal een grote uitdaging voor staalproducenten worden. Tegelijkertijd moeten deze be-

drijven de emissies van CO2 en andere broeikasgassen, die vrijkomen bij het productie-

proces terugdringen. Staalproducenten maken daarom veel aanpassingen in de fabrie-

ken om ze efficiënter en milieuvriendelijker te maken.

Continugieten is een zeer belangrijk onderdeel van het staalproductieproces. Tijdens

het continugietproces stolt het staal en krijgt het de juiste vorm. Er zijn verschillende

belangrijke onderdelen in dit proces, bijv. de tundish, de gietvorm, de draaizone, enz.

Aangezien in de gietvorm de stolling begint, zou het begrip van alle fysische verschijn-

selen in de stroming in de gietvorm onderzoekers kunnen helpen om de kwaliteit van

de producten te verbeteren. Oorspronkelijk is de stroming in de gietvorm zeer turbulent

en onstabiel ten gevolge van verschillende fysische processen die zich gelijktijdig in de

gietvorm voordoen. Om de stroming te beheersen, wordt in de staalindustrie op grote

schaal gebruik gemaakt van de elektromagnetische rem (EMBr, Electro Magnetic Brake).

De werking van de EMBr is gebaseerd op magnetohydrodynamische (MHD) princi-

pes. Een sterke magneet wordt gebruikt om een extern magnetisch veld op te leggen aan

de stroom van vloeibaar staal, die sterk elektrisch geleidend is. De opgewekte elektrische

stroom in het vloeibare staal resulteert in een actieve Lorentz-kracht op de stroming. De

meest optimale en efficiënte configuratie van de EMBr blijft een open vraag, evenals een

volledig begrip van de processen die worden veroorzaakt door de EMBr. Het is niet dui-

delijk of de elektrische interactie tussen de mantel van gestold ijzer (die ook een relatief

hoog elektrisch geleidingsvermogen heeft) en de turbulente stroom van vloeibaar staal

significant is.

Om bovengenoemde interactie tussen vloeibaar staal en het gestolde ijzeren om-

hulsel te onderzoeken, moeten verschillende belangrijke stappen worden ondernomen.

Ten eerst is, vanwege de beperkingen van MHD experimenten, een numerieke MHD

aanpak nodig. Ten tweede moet deze numerieke MHD solver in staat zijn om de vast-

vloeistof MHD interactie te voorspellen, bijvoorbeeld met behulp van een specifieke

methode die “conjugate MHD” wordt genoemd. Magnetohydrodynamische turbulentie

moet ook mee worden genomen. Ten derde moeten de fundamentele fysische fenome-

nen achter de vast-vloeibaar MHD interactie opgehelderd worden.

Vandaar dat we in dit proefschrift vooral deze punten behandelen. We hebben een

xiii
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numerieke magnetohydrodynamische solver ontwikkeld en geïmplementeerd die in staat

is om een breed scala van MHD fenomenen te voorspellen, waaronder de vast-vloeibaar

MHD interactie. Onze solver werd met succes gevalideerd tegen verschillende voorbeel-

den uit de literatuur en gebruikt om alle simulaties uit te voeren die in dit proefschrift

worden gepresenteerd. Om begrip te krijgen van de fysica die schuilgaat achter de vast-

vloeibaar MHD interactie, hebben we dit effect eerst bestudeerd in een eenvoudige ge-

ometrische configuratie. Opmerkelijk was dat veranderingen in elektrisch geleidings-

vermogen van de vaste wanden leidden tot het verschijnen van het laminar-turbulente

overgangsregime. Sterkere veranderingen in elektrisch geleidingsvermogen resulteer-

den in volledige onderdrukking van turbulentie en vervolgens tot het opnieuw verschij-

nen van turbulentie. Verder onderzoek van de vast-vloeibaar MHD interactie in de giet-

vorm toonde de sterke invloed aan op de dubbele rol stromingsstructuur en op de sub-

meniscus zone. Daarom moeten alle pogingen om de efficiëntie van het gietproces via

de EMBr te verhogen, rekening houden met de aanwezigheid van de gestolde schil. Wij

hopen dat ons werk zowel fundamentele onderzoekers als ingenieurs die werken met

magnetohydrodynamische stromingen van vloeibare metalen zal helpen om de MHD

fenomenen beter te begrijpen.
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2 INTRODUCTION

1.1. APPLICATION BACKGROUND

Figure 1.1: Schematic view of the continuous casting setup.

Prior to the invention of continuous casting (CC) technology, steel was poured into

ingots using stationary molds. Such an operation was excessively costly and time-

consuming, and, in the middle of the 18th century, Sir Henry Bessemer came up with

the first idea of a continuous casting process [1]. However, the technological level at that

time was not sufficient to implement such a large-scale project, and thus the first real

continuous casting facilities were not built until the 1950s [2].

A schematic view of a continuous casting process is presented in Fig. 1.1. Several

parts of the CC can be distinguished [3]. Liquid steel starts its way down from a ladle

located at the top of the facility. The ladle is connected to a tundish which plays the

role of an additional reservoir and a flow rate controller. Next, the liquid steel goes to a

mold through a submerged entry nozzle (SEN). The mold performs several crucial func-

tions, such as forming a casting shape, correcting the strand surface quality, and cooling

the liquid steel via water-cooled walls. The resulting solidifying shell is moved down to

a turning zone by support rolls. To continue the formation of the solidifying shell, an

additional spray cooling system is applied in the turning zone. By reaching the cutoff

point, the solidification process is completed and the shell is split into slabs. The slabs

are further cooled to reach an acceptable temperature level and finally moved to storage.

The importance of the processes occurring in the mold has been already mentioned,

and thus the mold represents one of the most critical nodes [4]. Naturally, there are many

processes that can dramatically affect the final quality of slabs, such as separation of the

solid shell, involvement of a slag layer, bubbles, etc., [5, 6]. A limited number of con-
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trol tools are available in order to reduce the impact of the aforementioned interactions.

Among the available options, particular attention is devoted to an electromagnetic brake

(EMBr) which is able to suppress turbulence in the flow in the mold via an imposed ex-

ternal magnetic field [7]. Application of the electromagnetic brake becomes possible due

to the electrically conductive nature of liquid metals and can be physically described in

the framework of magnetohydrodynamics (MHD). The EMBr use is very common in the

steel casting industry, but many open questions, especially related to MHD turbulence

phenomena, still remain. To fully address these gaps, a new generation of studies has to

be conducted. Thus, there are several important points that should be highlighted:

• Given the limitations of the measurement techniques in liquid steel flows as well

as the enormous costs of the experimental setup, numerical MHD simulations ap-

pear as the most optimal and viable method.

• An MHD solver should be able to simulate solid-liquid MHD interactions. In order

to do that, it is necessary to implement a specific method called conjugate MHD.

The additional impact of the magnetohydrodynamic turbulence should be also

taken into account.

• A detailed understanding of phenomena underlying solid-liquid MHD interac-

tions must be obtained.

In this chapter, we discuss the main principles of magnetohydrodynamic flow and

how to implement these principles in numerical solvers. Next, the MHD turbulence phe-

nomenon is considered. Finally, we discuss the impact of the EMBr on a turbulent liquid

metal flow in a casting mold.

1.2. FIELD OF RESEARCH

1.2.1. ONE-WAY COUPLED MAGNETOHYDRODYNAMICS

Magnetohydrodynamics describes the physics of electrically conductive fluid flows

within the scope of both classical fluid dynamics and electromagnetism [8]. This phe-

nomenon is widely found in space (astrophysical jets, nebulae) and on Earth (the geo-

magnetic dynamo) [9–13]. Technological implementation of MHD processes was found

extremely useful in the following industrial applications: micro-pumps, sensors, crys-

tal growth, fusion reactors, and the above-mentioned continuous casting [14–23]. In

the latter case, magnetohydrodynamics determines the interplay between an electrically

conductive incompressible fluid, i.e. a liquid metal, and an imposed external magnetic

field. This interplay results in the occurrence of the Lorentz force affecting the fluid

flow [24]. Given the dominant magnetic diffusivity of the liquid metals, the magnetic

Reynolds number is small. Hence, an induced secondary magnetic field, arising from

the generated electric current inside the electrically conductive fluid, can be neglected

[25]. Following this statement, the one-way coupled magnetohydrodynamic governing
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equations, i.e. the low magnetic Reynolds number, can be formulated as:

∇·u = 0 (1.1)

∂u

∂t
+ (u ·∇)u =− 1

ρ
∇p +ν∇2u+ 1

ρ
(j×B)︸ ︷︷ ︸

FL

(1.2)

j =σ(−∇φ+u×B) (1.3)

∇2φ=∇· (u×B) (1.4)

where u, B, j, FL, p, φ, ν, ρ, σ are the fluid velocity, the imposed magnetic field, the

current density, the Lorentz force, the pressure, the electric potential, the kinematic

viscosity, the density,the electrical conductivity respectively. To characterize the MHD

flow, the crucial non-dimensional numbers are introduced, namely the Hartmann num-

ber H a = BL
√

σ
ρν , the Reynolds number Re = uL

ν , and the magnetic Reynolds number

Rem = uL
η , where L and η are the characteristic length and the magnetic diffusivity re-

spectively.

Analytical solutions of equations (1.1) - (1.4) can be obtained only for relatively sim-

ple MHD flows, such as laminar flow in a channel, duct, and pipe [26–28]. To explore

more complex flow physics in various geometrical configurations, researchers mostly

use numerical simulations or experiments. Although studying MHD phenomena via

numerical frameworks is more affordable compared to conducting real experiments,

MHD modules in general-purpose commercial fluid flow simulation codes usually lack

the ability to model application-specific physical phenomena. At the same time, these

physical phenomena can play a decisive role under certain conditions. For example, ne-

glecting influence of the electrically conductive solidified shell in the casting mold leads

to incorrect prediction of the flow structure [29]. It is also an open question whether the

impact of the EMBr on fluctuations on the meniscus free surface is significant [30]. In

order to predict the above-mentioned phenomena, the development of an appropriate

magnetohydrodynamic code becomes a vital task.

Several important points should be taken into account during the code implementa-

tion. First, one has to fulfill the conservation of the current density in order to avoid nu-

merical instabilities, especially at high Hartmann numbers [31, 32]. Second, modeling

of electrically conductive walls requires either resolving the conjugate fluid-solid cur-

rent density transport or mimicking this transport via special boundary conditions [33].

Third, multiphase magnetohydrodynamics is often described in the framework of the

modified Volume of Fluid method or by introducing the Lagrangian approach [34, 35].

Finally, the code must be validated with appropriate benchmark solutions. However,

most of the available MHD benchmarks concentrate either on reproducing the influence

of different H a or determining the effect of the heat transfer [36–40]. This dissertation

presents the new generation of MHD benchmarks and describes in detail the novel nu-

merical implementation of arbitrary electrically conducting walls and multiphase phe-

nomena.
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1.2.2. MAGNETOHYDRODYNAMIC TURBULENCE

The vast majority of magnetohydrodynamic flows in industrial low-Rem MHD applica-

tions are highly turbulent. Even dealing with "normal" turbulence significantly increases

the complexity of a physical system, while the additional magnetic interaction brings

new challenges. The impact of the applied magnetic field on low-Rem turbulent flow

can be expressed in terms of the following two principal mechanisms. First, the Lorentz

force affects the mean flow and changes the flow structure. Second, the dissipation

mechanism affects turbulence fluctuations themselves. Depending on the Hartmann

and Reynolds numbers, the impact of these two principal mechanisms can be essential

[41].

To investigate fundamental characteristics of MHD turbulence, flow in simplified

configurations, such as a duct or a channel, are considered. Using these geometries

is relatively simple but allows the reproduction of the main key features of magneto-

hydrodynamics, such as the Hartmann layer formation. Furthermore, the aforemen-

tioned configurations are geometrically close to those used in real industrial applica-

tions [21, 23]. Experimental studies, conducted for these configurations, clearly demon-

strated the damping effect due to the application of an external magnetic field to a tur-

bulent flow of a liquid metal [42–45]. The strongest damping effect was observed for a

transverse orientation of the magnetic field, implying active involvement of both Lorentz

force and Joule dissipation. By reducing the ratio R = Re/H a, the magnetic suppression

eventually transformed turbulent flow into a laminar flow. Thus, experiments provided

the basic concept of the magnetic field influence while further analysis is complicated

due to the lack of visualization [46].

Recent progress in high-performance computing has advanced the use of numeri-

cal simulations as the main tool for studying MHD turbulence. However, serious con-

cerns have arisen related to the capacities of existing numerical methods to correctly

determine the contribution of a magnetic field to turbulence [47]. Significant efforts

have been made to expand the most effective Reynolds-Averaged-Navier-Stokes (RANS)

turbulence models to incorporate MHD interactions. Modifications for k − ϵ and k −ω
SST models have been successfully introduced, validated, and used in industrial appli-

cations [29, 48–50]. Detailed investigations have been conducted in the framework of

the Large Eddy Simulations method (LES). Sub-grid scale (SGS) models relying on the

dynamical procedure, such as the dynamic Smagorinsky model or WALE, demonstrated

significantly better accuracy compared to the classical models based on the constant co-

efficients for sub-grid contribution. Correct behavior of dynamic SGS models is caused

by the ability to be locally adapted according to changes in the dissipation rate [51–55].

Meanwhile, Direct Numerical Simulations (DNS) remain the most accurate but compu-

tationally expensive method [54].

Following the expansion of the numerical methods, low-Rem MHD turbulence has

been widely studied numerically, and fundamental analyses have been carried out [46,

56–60]. In particular, a detailed discussion was devoted to the pronounced anisotropy
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promoted by the imposed magnetic field. Meanwhile, it was discovered that the transi-

tion process between the turbulent and the laminar state was not immediate. The so-

called patterned turbulence phenomenon is characterized by the formation of coexist-

ing separate laminar and turbulent spots in the vicinity of the walls [61–63]. Previously,

this phenomenon was observed only for electrically insulated walls. In this investiga-

tion, we analyze the impact of electrically conductive walls on a turbulent MHD flow,

and we demonstrate the onset of a double transition between the turbulent and laminar

flow regimes.

1.2.3. THE MAGNETOHYDRODYNAMIC FLOW IN A CONTINUOUS CASTING MOLD

Figure 1.2: Schematic view of a liquid metal flow in a casting mold (left). The possible application of an elec-
tromagnetic brake (right). The magnetic field influence is shown in blue.

We now revisit the continuous casting process and discuss the application of the

electromagnetic brake. The continuous casting mold is one of the last steps in the CC

process after which the quality of the steel can not be improved significantly [64]. On-

going research attempts have been made to increase production efficiency and to re-

move all unnecessary interactions from the mold flow [5, 6, 65–67]. Given the challeng-

ing operating conditions of the real casting process, most of the studies are focused on

laboratory-scale casting facilities [68, 69]. The liquid-metal flow in the mold can be gen-

erally characterized by the presence of two smaller rolls close to the meniscus and two

bigger rolls below the submerged-entry nozzle (SEN), Fig. 1.2. The present pattern is

known as the double-roll flow structure and its behavior is critical to the entire process

[65]. Multiple aspects of the double-roll flow have been reported to have a strong effect

on the final product. One of the critical areas is the meniscus zone where the liquid slag

is formed. High velocities occurring in the sub-meniscus zone can potentially capture

the slag particles from the surface and involve them in the downstream flow [66]. The

other critical aspect is related to bottom rolls where the strong jets can damage the so-
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lidifying shell by imprinting, for instance, argon bubbles emerging from the SEN [70].

Consequently, controlling the liquid steel flow in the casting mold becomes a highly pri-

oritized task.

It was found that the application of an external magnetic field could be used to con-

trol the flow. Currently, one can distinguish two ways to apply the magnetic field. First,

application of a static field based on a direct current and generation a Lorentz force op-

posing the flow direction, i.e. the electromagnetic brake [71]. Second, application of a

moving field based on an alternating current and generation a rotation flow in the mold,

i.e. electromagnetic stirring [72]. In this investigation, we primarily focus on the electro-

magnetic brake. Given the contactless interaction between the magnetic field and the

liquid metal, the EMBr represents an efficient and suitable tool. Since the first concep-

tion of EMBr, the device has been experimentally studied in order to expand its possible

application area [73]. However, these studies were difficult due to need to use a liquid

metal that hampers measurements. In past, to ease operation conditions, researchers

used mercury instead of liquid steel. Later, mercury was replaced by an eutectic alloy of

Gallium-Indium-Tin (GaInSn), which is much safer [74, 75]. Nevertheless, only limited

information about the potential impact of the EMBr can be extracted from experiments,

while numerical simulations provide a deeper insight into the flow physics [76, 77].

There are multiple electromagnetic brake configurations but the most effective lay-

outs are the following: the single-ruler layout where the magnet is positioned slightly

below the SEN, and the double-ruler layout where an additional magnet is positioned at

the meniscus area, Fig. 1.2 [78–81]. Other geometric and flow parameters, such as the

immersion depth of the SEN, mold dimensions, the casting speed, and the strength of

the magnetic field contribute to the flow behavior as well [35, 77, 82–85]. In this inves-

tigation, we focus on the interaction between the the solidified shell and the flow in a

continuous casting mold.

1.3. RESEARCH OBJECTIVES
In the above referenced works, the presence of arbitrary electrically conductive walls/

shell is usually neglected in both fundamental and engineering MHD studies. Never-

theless, the limited available knowledge demonstrates that the MHD flow can undergo

dramatic changes in the presence of conductive walls. Given the widespread use of such

walls in real applications, a thorough study should be conducted. Modeling the interac-

tions between an electrically conductive fluid and electrically conductive walls lies out-

side the capability of conventional algorithms, and hence a tailored numerical method

has to be developed. Validation against existing analytical solutions or benchmarks must

be conducted prior to further analysis. Once the appropriate numerical tool is com-

pleted, it is crucial to investigate the fundamental flow physics to understand how MHD

turbulence is influenced by the presence of conductive walls. To do that, a simplified

geometry (rectangular duct) is used where all main MHD flow aspects can be captured.

Next, the obtained understanding of the fundamental flow physics is applied to the con-
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tinuous casting flow to investigate the impact of the electrically conductive solidified

shell.

Our research questions are formulated as follows:

1. How to model the interaction between electrically conductive walls and an elec-
trically conductive flowing fluid?

2. How does the presence of electrically conductive walls affect the MHD turbulent
flow?

3. What is the influence of an electrically conductive shell on the MHD liquid metal
flow structure in a continuous casting mold?

1.4. OUTLINE
We numerically investigate a one-way coupled magnetohydrodynamic liquid metal flow

subjected to an external constant magnetic field, in Chapters 2, 3, 4, and 5. These chap-

ters are self-contained articles that have been published in scientific journals. Detailed

discussions about the applied numerical methods and schemes are presented in each

chapter.

In Chapter 2 we address the problem of developing an appropriate numerical solver to

model various magnetohydrodynamic flows. The following MHD cases are considered:

a laminar flow in an insulated or partially conductive duct, a laminar back-step flow, a

multiphase cavity flow, and a rising bubble. A comprehensive discussion of the imple-

mented methods is provided as well as validation of the solver against existing bench-

marks.

In Chapter 3 we briefly discuss how the presence of electrically conductive walls affects

a turbulent MHD flow in a rectangular duct. A novel flow regime is observed, namely the

gradual flow laminarization and the subsequent turbulence recovery.

In Chapter 4 we further continue the discussion started in Chapter 3. The analysis of

second-order moments, turbulent kinetic energy budgets, energy spectrum, and turbu-

lence anisotropy is demonstrated. We additionally illustrate the main principle of inter-

action between the current density redistribution mechanism and turbulence.

In Chapter 5 we study the MHD flow in a casting mold augmented with electrically con-

ductive walls representing the solidified shell. A wide range of wall conductivity values

is considered. Particular attention is given to changes in the double-roll flow structure

and at the meniscus zone.

In Chapter 6 we conclude the dissertation with an overview of the achieved results. Fur-

ther research opportunities are also described.
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2
THE MAGNETOHYDRODYNAMIC

SOLVER AND NUMERICAL

BENCHMARKS

There is a continuous need for an updated series of numerical benchmarks dealing with various

aspects of the magnetohydrodynamics (MHD) phenomena (i.e. interactions of the flow of an electri-

cally conducting fluid and an externally imposed magnetic field). The focus of the present study is

numerical magnetohydrodynamics (MHD) where we have performed an extensive series of simula-

tions for generic configurations, including: (i) a laminar conjugate MHD flow in a duct with varied

electrical conductivity of the walls, (ii) a back-step flow, (iii) a multiphase cavity flow, and (iv) a

rising bubble in liquid metal. All considered benchmark situations are for the one-way coupled

MHD approach, where the induced magnetic field is negligible. The governing equations describ-

ing the one-way coupled MHD phenomena are numerically implemented in the open-source code

OpenFOAM. The novel elements of the numerical algorithm include fully-conservative forms of the

discretized Lorentz force in the momentum equation and divergence-free current density, the con-

jugate MHD (coupling of the wall/fluid domains), and, finally, the multi-phase MHD. The multi-

phase phenomena are simulated with the Volume of Fluid (VoF) approach. The presented extensive

numerical benchmarks are expected to be potentially useful for developers of the numerical codes

used to simulate various types of the complex MHD phenomena.

Published as: A. Blishchik, M. van der Lans, S. Kenjereš, An extensive numerical benchmark of the var-
ious magnetohydrodynamic flows. International Journal of Heat and Fluid Flow 90, 108800, 2021, doi:
10.1016/j.ijheatfluidflow.2021.108800
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2.1. INTRODUCTION
One of the pre-requisites to be able to deal with advanced physical transport phenomena

involving the magnetohydrodynamics (MHD) interactions is to have a well-validated

and numerically efficient computer code. This still poses a quite challenging task due

to a lack of advanced experimental studies that can provide detailed insights into the

flow and electromagnetic parameters that can be used to validate computer codes. The

essence of the MHD phenomena is usually associated with a flow of highly electrically

conducting liquid metals, which are, due to their non-transparency, notoriously difficult

to study with standard laser-based optics diagnostics tools.

To validate MHD numerical models, we have to rely on analytical solutions that are

based on significant simplifications. In the present manuscript, we are revisiting and

proposing an extensive list of possible benchmark cases available in the open literature

dealing with various aspects of the MHD phenomena. One of the simplest numerical

MHD benchmarks is a fully developed laminar channel, duct, or pipe flow subjected to

a uniform magnetic field of different orientations, for which an exact analytical solution

exists, [1], [2]. The effects of the non-uniform longitudinal magnetic field on a lami-

nar flow of electrically conducting fluid in a pipe were recently numerically simulated

in [3]. The open-source computer code OpenFOAM was used and good agreement was

obtained between simulations and experiments. The MHD flow in a duct with very thin

electrically conducting walls was presented in [4]. Instead of fully resolving the wall re-

gion, a special type of boundary conditions was applied at the wall/fluid interface that

takes into account a finite wall conductivity, as proposed in [5]. It should be noted that

this approach can be applied only for a very thin wall thickness and small conductance

ratios.

Fusion engineering and technology-related research include numerous topics deal-

ing with the MHD phenomena. Smolentsev et al.[6] provided an extensive review of

MHD codes for fusion applications and selected benchmark problems of importance

for fusion applications. The proposed benchmarks covered a series of 2D and 3D steady

and developing MHD flows in both laminar and turbulent regimes, and the final case

also included the effects of thermal buoyancy. Gajbhiye et al.[7] validated their general-

purpose solver by analyzing the free convection in a cubical enclosure under a uniform

magnetic field and the electro-magnetically driven flow in a toroidal duct. The commer-

cial ANSYS-CFX finite-volume based code was used to simulate a water-cooled lithium

lead (WCLL) breeding blanket module subjected to a strong uniform magnetic field, [8].

The commercial multi-physics finite-element code COMSOL was successfully applied

to simulate transient natural convection phenomena under influence of the imposed

uniform magnetic field, [9].

Validation of the multi-phase MHD flows is a challenging topic. The number of

validation studies dealing with multi-phase MHD phenomena is significantly smaller

compared to single-phase MHD phenomena. The analytical solutions for the multi-

phase MHD situations are very scarce. One of the recently proposed analytical solu-
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tions for a 2D multi-phase MHD flow is presented in [10], where the elevation of the

liquid-metal/air interface due to the presence of an imposed magnetic field is analyt-

ically solved. Numerical simulations of a rising bubble in the liquid metal subjected

to an external homogeneous magnetic field of different strengths were studied in [11].

The finite-difference code was used and the terminal bubble velocity dependency on

the strength of the imposed magnetic field was analyzed.

The main goal of the present study is to obtain and validate results from our newly

developed OpenFOAM solver over a range of various magnetohydrodynamic flows, and

based on these findings, to propose an extensive numerical MHD benchmark, which can

be potentially useful for developers of the computer codes for simulations of the MHD

phenomena. We are primarily focusing on the influence of the finite electric conductiv-

ity of surrounding walls and the multiphase aspects of the MHD phenomena. We have

analyzed the following situations: (i) a laminar duct flow with finite conductivity of sur-

rounding walls, (ii) a laminar back-step flow, (iii) a shallow 2D multi-phase cavity, and,

finally, (iv) a rising bubble in the liquid metal. For all mentioned cases we performed a

detailed comparative assessment against available analytical solutions or/and numeri-

cal results presented in the literature.

2.2. GOVERNING EQUATIONS AND NUMERICAL DETAILS

2.2.1. GOVERNING EQUATIONS FOR A SINGLE-PHASE MHD
We consider an incompressible electrically conductive fluid with liquid metal proper-

ties. The fluid is affected by the imposed external (constant) magnetic field through the

Lorentz force. Conservation of mass and momentum are used to describe the MHD flow

(under the assumption that the imposed magnetic field is known), and are written as:

∇·U = 0 (2.1)

∂U

∂t
+ (U ·∇)U =− 1

ρ
∇p +ν∇2U+ 1

ρ
(J×B) (2.2)

where U is velocity, p is pressure, ν is the kinematic viscosity, ρ is density, J is the cur-

rent density, and B is the imposed magnetic field. In the momentum equation, the MHD

interactions are accounted for through the Lorentz force term. In addition to the veloc-

ity and pressure, also the current density (J) needs to be calculated. For the one-way

coupled MHD phenomena, i.e. when the following conditions are valid:

Rem = U L

λ
<< 1 (2.3)

where Rem is the magnetic Reynolds number, L is the characteristic length and λ is the

magnetic diffusion, ν is the kinematic viscosity, Ohm’s law for a moving conducting fluid

is used:

J =σ(−∇φ+U×B) (2.4)
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where σ is the electrical conductivity of the fluid. By imposing the divergence-free cur-

rent density condition in Ohm’s law, i.e.

∇· J = 0 (2.5)

the final Poisson’s equation for the electric potential (φ) is obtained and can be written

as:

∇2φ=∇· (U×B) (2.6)

In addition to Rem (given in Eqn. (2.3)), the hydrodynamic Reynolds and Hartmann

number are used as typical MHD non-dimensional parameters:

Re = U L

ν
, H a = BL

√
σ

ρν
(2.7)

2.2.2. GOVERNING EQUATIONS FOR A MULTI-PHASE MHD:
VOLUME OF FLUID METHOD

In the current study, the Volume of Fluid (VoF) method is applied to the multi-phase

MHD flow simulations. In addition to the Lorentz force, also the surface-tension and

gravitational forces need to be included into the momentum equation:

∂U

∂t
+ (U ·∇)U =−

1

ρav
∇p +νav∇2U+

1

ρav

(
(J×B)+ fg +γk∇α)

(2.8)

where fg is the gravity force term, γ is the surface tension, k is the curvature of the in-

terface (calculated as k = ∇ · ∇α
|∇α| ), νav is the phase averaged viscosity (calculated as

νav =α ·ν1+(1−α) ·ν2, where ’1’ and ’2’ are phase indicators), ρav is the phase averaged

density (calculated as ρav =α ·ρ1+(1−α) ·ρ2) and the volume fraction α is described by

the following transport equation:

∂α

∂t
+∇· (αU)+∇· (Urα(1−α)

)= 0 (2.9)

where Ur is the artificial compression velocity used for the interface sharpening, which

is calculated as:

Ur = n f mi n
[
Cα

|ψ|
|S f |

,max
( |ψ|
|S f |

)]
(2.10)

where nf is the normal vector of the cell surface, ψ is the mass flux through the face,

S f is the cell surface area, and Cα is a coefficient that is used to control the interface

thickness. There is no artificial interface compression when Cα = 0. In order to control
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the spurious velocities which appear near the interface due to the sharp change ofα, the

volume fraction function is smoothed by the following Laplacian filter [12], [13]:

α̃c =
∑n

f =1(α f S f )∑n
f =1 (S f )

(2.11)

where α̃ is the resulting smooth volume fraction function, while subscripts c and f indi-

cate the cell center and cell face, respectively. Using the smooth function α̃ in Eqn. (2.9),

instead of the original function α will suppress these parasitic velocities. In the current

study, the filter (2.11) is applied twice for each time step.

2.2.3. NUMERICAL DETAILS

THE CONSERVATIVE FORM OF THE LORENTZ FORCE

The additional Lorentz force in the momentum equation is traditionally treated in a

non-conservative way (i.e. by applying the volume integration of the source term). This

can potentially lead to significant numerical errors, especially for flow regimes with high

Hartmann numbers. Similarly, the total electric current density must be conserved too.

Both of these requirements are achieved through the application of the Four Steps Pro-

jection Method (FSPM) proposed by [14], which can be summarized through the follow-

ing four steps:

1. Calculate the magnetic flux at cell faces:

ψmhd =σ f (U×B) f ·Sf (2.12)

where the cell -face electric conductivity (σ f ) is calculated by applying the harmonic av-

erage between different phases, and (Sf) is the cell surface area vector.

2. Use Eqn. (2.12) to solve the discretized electrical potential equation and find elec-

tric potential (φ) at the cell centers:

m∑
f =1

σ f ∇n f φ · |Sf| =
m∑

f =1
ψmhd (2.13)

where ’m’ indicates the number of cell faces.

3. Calculate the current density flux at cell faces using the surface-normal gradient of

electric potential (φ):

Jn =−σ f ∇n f φ · |Sf|+ψmhd (2.14)

where (Jn) is the cell face normal component of the current density.
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4. Finally, use the current density flux from Eqn. (2.14) and calculate the fully conser-

vative form of the Lorentz force as:

(J×B)c =− 1

Ωc

m∑
f =1

(Jn) f (B f × rf)− rc × 1

Ωc

m∑
f =1

(Jn) f B f (2.15)

where (Ωc ) is the volume of cell, (rc) is the cell center distance vector and (rf) is the face

center distance vector.

CONJUGATE MHD: TAKING INTO ACCOUNT ELECTRIC CONDUCTIVITY AND THICKNESS OF

SURROUNDING WALLS

Interface

Fluid Solidϕ
L

ϕ
S

J
L
J
S

Figure 2.1: Sketch of the fluid/wall interface condition for the conjugate MHD problem.

The finite electric conductivity and finite thickness of surrounding walls have a signif-

icant impact on the fluid flow. This is due to the effects of the current density transfer

between a liquid layer and solid walls, which is directly influencing the intensity and

direction of the local Lorentz force in the near-wall region. To include the fluid/wall

interface effects, we have developed an approach similar to traditional conjugate heat

transfer, but now instead of the heat flux transfer, we focus on the distribution of the

electric potential and current density in both domains. Transport equations of the elec-

tric potential in liquid (L) and solid (S) wall domains can be written as:

∇· (σL∇φL) =∇· (σL(U×B)
)

(2.16)

∇· (σS∇φS ) = 0 (2.17)

Note that the source term (the RHS of Eqn. (2.17) is absent for the solid wall domain.

Along the fluid/wall interface (Fig. 2.1), the conservation and continuity of the electric

current density (J) need to be kept. This is achieved by imposing following set of the

boundary conditions at the interface:

σL
∂φL

∂n
=σS

∂φS

∂n
(2.18)

φL =φS (2.19)
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The electric current density in the computational cell center is calculated in the same

manner for both liquid and solid part of computational domain as:

Jc[L,S] =
1

Ωc

m∑
f =1

(
(Jn, f )[L,S] · rf

)
− rc · 1

Ω

m∑
f =1

(Jn, f )[L,S] (2.20)

where the harmonic average is used to interpolate the electric conductivity at the inter-

face, needed for calculation of the current density flux at the cell faces (Jn, f ).

THE COMPUTER CODE

The integrated MHD solver, which includes all above-listed transport equations, for both

single- and multi-phase MHD phenomena is based on the finite-volume open-source

computer code OpenFOAM-extend 4.0, [15]. Coupling between pressure and velocity

field is performed with the PISO algorithm, [16].

2.3. APPLICATIONS: TEST CASES

2.3.1. LAMINAR DUCT FLOW WITH CONJUGATE MHD
In the first test case, we address a laminar pressure-driven flow of an electrically con-

ducting fluid in the rectangular duct subjected to a transverse magnetic field, Fig. 2.2.

Figure 2.2: Sketch of the simulated domain for a laminar MHD flow in a duct with Hartmann walls with finite
electric conductivity, subjected to a transverse magnetic field.

The duct has the square cross-section (where L- is the half-width), length of 20L and

ds is the thickness of side-walls (Hartmann walls). The Reynolds number is kept con-

stant at Re = 10 and the Hartmann number is varied in the 0 ≤ H a ≤ 104 range. At the

inlet, a uniform velocity profile is imposed. At all walls, the no-slip velocity boundary

conditions are applied. At the outlet, a zero-pressure boundary condition is imposed.

The uniform transverse magnetic field is imposed. To deal with the finite-thickness sur-

rounding walls, we introduce characteristic wall conductance parameter, defined as:

Cd = (σS ds )/(σLL) . (2.21)
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Figure 2.3: The contours of the streamwise velocity (top row) and electric potential with current density
streamlines (bottom row) in the center of the conjugate MHD duct flow: (a), (e) Ha = 0. (b), (f) Ha = 100,
fully insulated walls (Cd = 0). (c), (g) Ha = 100, arbitrary conductive walls (Cd = 0.1). (d), (h) Ha = 100, fully
conductive walls (Cd →∞).

Three types of electric boundary conditions for the walls perpendicular to the magnetic

field (Hartmann walls) are considered: (i) arbitrary conductive walls with varied wall

conductance parameter (0.005 ≤Cd ≤ 40), (ii) fully electrically insulated walls (∂φ/∂n = 0

and dS = 0), and finally, (iii) fully conductive walls (φ= 0 and dS = 0). The walls parallel

to the magnetic field (Shercliff walls) are considered as electrically insulated for all cases.

Although the final steady-state results are validated against analytical solutions, the solu-

tion procedure is performed in a time-dependent mode. This time-dependent approach

is not numerically efficient, but our final goal is to have a well-validated solver able to

simulate MHD phenomena in transient flow regimes, so we adopted a time-dependent

solution approach for all benchmark cases presented here. The second-order central dif-

ference scheme (CDS) is applied for both convective and diffusive terms of discretized

momentum equation, whereas the second-order backward scheme is used for time in-

tegration.

For all simulations the same hexahedral non-uniform orthogonal mesh is used with

(Nx×Ny×Nz = 80×100×100)fluid control volumes for the fluid domain and (Nx×Ny×
Nz = 80× 10× 100)solid for the solid domain, respectively. In making the spatial distri-

bution of the non-uniform mesh, special attention is devoted that the characteristic

Hartmann and Shercliff boundary layers (with a typical thickness of δH a = L/H a and

δSh = L/H a1/2) are properly resolved. This is achieved by placing between 5 and 10 con-

trol volumes with a typical grid expansion ratio of 1.14 in the region bounded by the wall

and the edge of the boundary layer (at δH a).

Contours of the calculated streamwise velocity and electric potential- after reaching
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Figure 2.4: The streamwise velocity profiles along y-axis (between Hartmann walls) and z-axis (between Sher-
cliff walls) in the duct at various Cd and H a.

a steady state in the center of the duct (x = 10L) - are shown in Fig. 2.3. For the MHD neu-

tral case (H a = 0) the velocity exhibits a typical symmetric parabolic-like distribution,

Fig2.3(a). By imposing the transverse magnetic field (H a = 100) and by keeping all duct

walls electrically insulated, a flattening of the velocity distribution occurs in the central

part of the duct, whereas thin Hartmann boundary layers are generated along opposite

vertical walls, Fig. 2.3(b). Next, by keeping the same strength and direction of the im-

posed magnetic field, and by changing electric properties of the vertical walls from fully

insulated to walls with a finite thickness and conductivity (i.e. Cd = 0.1), we observe a
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Figure 2.5: Numerical mesh dependency on the streamwise velocity profiles along z-axis in a conjugate MHD
duct, Cd = 0.5, H a = 50.

dramatic reorganization of the velocity with peaks in the proximity of the Shercliff walls,

Fig. 2.3(c). Finally, by making Hartmann walls fully electrically conducting (Cd → ∞),

the velocity distribution with two peaks is still present, Fig. 2.3(d). The electric poten-

tial contours exhibit close to a linear distribution in the vertical direction for electrically

insulated and finite-conductivity Hartmann walls, Figs.2.3(f, g). In contrast to this, the

perfectly electrically conducting Hartmann walls impose almost a uniform distribution

in the central part of the duct, Fig. 2.3(h).

The numerical solutions are compared next against the following analytical solu-

tions: (1) Shercliff’s solution for the electrically insulated walls, [2], (2) Hunt’s solution for

the electrically fully conductive walls, [17], and (3) Sloan’s solution for the walls with the

arbitrary electrical conductivity and thickness, [18]. For all simulated cases, an excellent

agreement between present numerical simulations and analytical solutions is obtained,

confirming an adequate implementation and validation of the conjugate MHD solver,

Fig. 2.4.

To illustrate the sensitivity of the numerical solution, we perform a mesh dependency

study with three mesh levels: (i) the coarse mesh (M1), (Nx×Ny×Nz = 40×50×50)fluid

and (Nxs ×Nys ×Nzs = 40×5×50)solid = (0.11×106)total CVs, (ii) the present mesh (M2)

(Nx×Ny×Nz = 80×100×100)fluid and (Nxs×Nys×Nzs = 80×10×100)solid = (0.88×106)total

CVs and (iii) the fine mesh (M3) (Nx×Ny×Nz = 160×200×200)fluid and (Nxs×Nys×Nzs =
160×20×200)solid = (7.04×106)total CVs. As it can be seen in Fig. 2.5, a very good agree-

ment with the analytical solution is obtained for the intermediate (M2) and fine mesh

(M3), and that a slight underprediction of the double peaks is observed for the coarse

mesh (M1). To test possible limits of the numerical stability and accuracy, two addi-

tional high values of H a = 5000 and 10000 are simulated for the case with finite electri-

cally conducting walls (Cd = 0.05), Fig. 2.6. For such high values of H a, very strong wall

jets are generated along Shercliff walls. With a proper mesh refinement in the proximity

of walls, i.e. (Nx×Ny×Nz = 100×180×180)fluid control volumes for the fluid domain and
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Figure 2.6: The streamwise velocity profiles along z-axis (between Shercliff walls) in the duct with arbitrary
conductivity walls, (Cd = 0.05) for H a = 5×103 (a) and H a = 104 (b), respectively.

(Nx×Ny×Nz = 100×15×180)solid for the solid domain, Again, a very good agreement is

obtained between numerical simulations and analytical solutions for both values of H a,

additionally proving the accuracy and numerical stability of the algorithm.

2.3.2. THE 2D MHD LAMINAR BACK-STEP FLOW

Next, we consider the two-dimensional backward-facing step flow in a laminar flow

regime subjected to a uniform vertical magnetic field, Fig. 2.7.

Figure 2.7: The sketch of the simulation domain of the 2D laminar MHD back-step test case.

In contrast to the previous case, this configuration is expected to produce a more

complex flow pattern with a well-defined recirculation region in the lower part of the

domain. The channel height is L and its length is 15L. The lower and upper boundaries

of the channel are no-slip walls. The upper half of the left boundary is the inlet, while

the lower half is the solid wall. The inlet velocity is defined as:

u(x = 0, y) =
{

12(y −1)(1−2y), L/2 < y < L

0, 0 < y < L/2
(2.22)

For the right boundary, a simple zero-gradient condition is imposed. All walls are treated

as perfectly electrically insulated. The simulation domain and all boundary conditions

are selected such that they match exactly the numerical study of [19], who applied an
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Figure 2.8: The contours of the non-dimensional horizontal (streamwise) velocity (u/u0) for Re = 800 and
different H a. (a) H a = 0, (b) H a = 5, (c) H a = 10, (d) H a = 50.

Figure 2.9: Same as in the previous figure, only now the zoom-in regions in the proximity of the inlet are shown
with superimposed streamlines.

MHD extension of the Local Radial Basis Function Collocation Method (LRBFCM). The

entire simulation domain is represented by an orthogonal numerical mesh with (Nx×
Ny = 600×50) = (3×104)total control volumes. Two values of the Reynolds number are

simulated (Re = 300 and 800, where Re = ux L/ν) over a range of Hartmann numbers

(0 ≤ Ha ≤ 50). The second-order linear upwind differential scheme is used for convective

terms, the second-order central differencing scheme (CDS) is used for diffusion terms,

and the second-order backward scheme for the time integration.

The contours of the non-dimensional streamwise velocity (u/u0 where u0 =
(
ux

) |x=0,

i.e. the inlet integrated velocity profile), at Re = 800 and different strengths of the im-

posed magnetic field (H a = 0, 5, 10 and 50) are shown in Fig. 2.8. It can be seen that with a

magnetic field increase, the recirculation length reduces, and flow becomes much more
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Figure 2.10: The vertical profiles of the non-dimensional horizontal (u/u0) and vertical (v/u0) velocity com-
ponents at various H a and two values of Re: Re = 300 (a-b) and Re = 800 (c-d). Comparison between the
reference study based on the Local Radial Basis Function Collocation Method (LRBFCM) [19] and the present
Finite Volume Method (FVM) results.

uniform. At H a = 0, two large recirculation regions along the upper and lower walls are

generated. With H a increase, the recirculation region along the upper wall disappears,

while the recirculation long the lower wall is still present, but its length is significantly re-

duced. This reduction of the recirculation region is further illustrated in zoom-in plots,

where we superimposed contours of the streamwise velocity and streamlines, as shown

in Fig. 2.9. At the highest value of H a = 50, the recirculation can be observed only in

a very small region attached to the lower part of the inlet plane. A comparison of ob-

tained profiles of horizontal (u/u0) and vertical (v/u0) velocity components at the exit

plane with values presented in the literature [19], are shown in Fig. 2.10. It can be seen

that the horizontal velocity profiles become flatter with the magnetic field increase for

both Reynolds numbers. The vertical velocity component almost completely disappears

at higher values of H a. A very good agreement between the present profiles and results

from the literature ([19]) is obtained for all presented cases.

To demonstrate that the obtained results at present mesh of (Nx×Ny = 600×50) (M2)

(3×104 CVs) are grid independent, one coarser (Nx×Ny = 300×25) (M1) (0.75×104 CVs)

and one finner (Nx×Ny = 1200×100) (M3) (1.2×105 CVs) numerical mesh are generated,

and results are compared in Fig. 2.11. A good agreement between different mesh levels



2

30 CHAPTER 2

Table 2.1: The reattachment position (at y/L = 0 for Re = 300 and 800, and 0 ≤ H a ≤ 100).

present LRBFCM, [19]

Re Ha x/L x/L

300 0 3.57 3.57

5 2.56 2.55

10 1.28 1.28

50 0.02 0.02

100 0.007 0.01

800 0 6.07 6.1

5 5.46 5.48

10 2.93 2.93

50 0.07 0.07

100 0.01 0.01
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Figure 2.11: The non-dimensional horizontal (u/u0) and vertical (v/u0) velocity profiles at the exit plane for
various meshes at Re = 800 and H a = 5 compared to the reference solution (LRBFCM, [19]).

is obtained, with a slight overprediction of the local maxima of the non-dimensional

vertical velocity (v/u0) at y/L = 0.7 for the coarse mesh.

2.3.3. THE MULTI-PHASE TWO-DIMENSIONAL SHALLOW CAVITY FLOW WITH

MHD
The first example of the MHD multi-phase test case is a shallow cavity subjected to com-

bined effects of the imposed non-uniform magnetic field and electric potential differ-

ence. The two-dimensional cavity with characteristic length L and partially filled with

the electrically conductive liquid (where d is the liquid layer height and d << L) is shown

in Fig. 2.12. The upper part of the cavity if filled with air (σai r =O (10−15) S/m, i.e. negli-

gible electric conductivity).

The external magnetic field is aligned with the negative z-direction (perpendicular
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Figure 2.12: The sketch of the simulation domain of a two-dimensional multi-phase MHD cavity test case.

to the cavity) and its linear distribution is defined as:

B =−b0(1+αb · x)ẑ (2.23)

where αb = 0.1 defines a distribution parameter. The no-slip velocity boundary con-

dition is imposed at all walls (i.e. bottom and side-walls). The gravity force is aligned

with the negative y-coordinate direction. The side-walls are kept at constant (but dif-

ferent) electric potential (φ1 = − 1
2∆φ, φ2 = 1

2∆φ, where ∆φ is the imposed electric po-

tential difference). The bottom wall is perfectly electrically insulated (∂φ/∂n = 0 and

Cd = 0). Because of the imposed magnetic field and electric potential difference, the

generated Lorentz force within the fluid will drive the flow. This fluid motion will be op-

posed by a joint combination of the viscous, gravitational, and surface tension forces.

To account for additional free-surface related physical mechanisms, the following set of

non-dimensional parameters is introduced, [10]:

Re∗ = U∗d

ν
, H a∗ = b0d

√√√√σαb

µ
, Bo∗ = ρg d 2

γ
, C a∗ = ρνU∗

γ
(2.24)

In addition to the redefined Reynolds (Re∗) and Hartmann (H a∗), also the Bond (Bo∗)

and capillary (C a∗) numbers are introduced. The characteristic non-dimensional veloc-

ity is calculated as:

U∗ = σ∆φb0αbd A

ρν
(2.25)

Because of the large number of possibilities based on the various combinations of char-

acteristic non-dimensional numbers, in the present chapter we kept constant Re∗ = A

and H a∗ = 1, while we change Bo∗ and C a∗. We also kept the identical aspect ratio

of the domain, A = d/L = 0.1. The two-dimensional orthogonal, non-uniform mesh

(Nx×Ny = 50×200) with rectangular control volumes is used. The central differencing

scheme (CDS) is used for the diffusive and convective terms of transport equations. The

time integration is performed with the second-order backward scheme. For this partic-

ular case, the different values of the interface compression coefficient (0 ≤ Cα ≤ 1) did
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(a)

(b)

Figure 2.13: The velocity vector distribution (a) and contours of the non-dimensional horizontal (x-
component) velocity (Ux /U∗) in the 2D MHD cavity, Re∗ = A, H a∗ = 1,Bo∗ = A2,C a∗ = A4.
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Figure 2.14: The free-surface elevation for various (a) C a and (b) Bo. Comparison between the present simu-
lations (CFD) and analytical solution of [10].

not have any significant impact on the obtained solutions due to a smooth free-surface

deformation. The local variation of the resulting Lorentz force generates the flow of elec-

trically conducting fluid (initially at rest) in the lower part of the cavity with characteristic

elevation of the free surface, as shown in Fig. 2.13.

This non-dimensional vertical elevation (h/d) of the free-surface, as a function of

C a∗ and Bo∗ numbers, is shown in Fig. 2.14. It can be seen that an excellent match be-

tween the present numerical results (CFD) and analytical solutions is obtained for all cal-

culated cases. Note that a vertical elevation of the free-surface increases with an increase
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Figure 2.15: The profiles of the velocity components in the proximity of the side-wall extracted along the y =
d/2 line (a), (b), and in the center of the cavity extracted along the x = 0 line (c): Re∗ = A, H a∗ = 1,Bo =
A2,C a = A4.
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Figure 2.16: The mesh-dependency of the non-dimensional free-surface elevation (h/d) for Re∗ = A, H a∗ =
1,Bo = A2,C a = A4.

in both C a∗ and Bo∗. The horizontal profiles of the non-dimensional horizontal (u/u∗)

and vertical (v/u∗) velocity in the proximity of the left-wall are shown in Figs.2.15a,b, re-

spectively. The vertical profile of the non-dimensional horizontal velocity at the central

vertical line is shown in Fig. 2.15 (c). Again, an excellent agreement between the present
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simulation (CFD) and analytical solution from the literature ([10]) is obtained, proving

the capability of the MHD multi-phase solver.

To confirm that the presented solutions are grid independent, we analyzed the non-

dimensional free-surface elevation (h/d) for three mesh sizes: (i) the coarse mesh (M1)

(Nx×Ny = 25×100), (ii) the intermediate (previously presented results) mesh (M2) (Nx×
Ny = 50×200), and (iii) the fine mesh (M3) with (Nx×Ny = 100×400). A good agreement

between results at different mesh resolutions confirms the full mesh convergence of the

presented results, Fig. 2.16.

2.3.4. THE 3D RISING GAS BUBBLE IN LIQUID METAL SUBJECTED TO A LON-
GITUDINAL MAGNETIC FIELD

A rising gas bubble (with an initial diameter db = L/2) is submerged into the liquid metal

confined in the 3D rectangular box (with height 3L, width and depth L) is analyzed next,

Fig. 2.17. This test case is based on the study of [11].

Figure 2.17: The sketch of the simulation domain for the rising bubble in a liquid metal subjected to an external
(axial) magnetic field.

All boundary surfaces are electrically insulated walls (∂φ/∂n = 0,Cd = 0) with im-

posed no-slip boundary conditions. The external magnetic field is aligned with the y-

coordinate and the gravity is oriented in the opposite direction. The problem is fully

defined with the following set of non-dimensional parameters:

G = gρ2
G d 3

b

µ2
G

, Γ= γρG d

µ2
G

, H a = Bdb

√√√√σL

µL
(2.26)

where G is the Galilei number, Γ is the Tension number, and subscripts (G) and (L) indi-

cate the gas and liquid phase, respectively. The non-dimensional velocity, pressure, and
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Figure 2.18: The bubble shape (extracted as the isosurface of the volume fraction α= 0.5) with superimposed
streamlines of the total current density (a), (b) contours of the non-dimensional vertical velocity (uy /u∗) in the
central vertical plane, (c) contours of the non-dimensional pressure field (p/p∗) in the central vertical plane -
all at t/t∗ = 0.02 and for H a = 50.

Figure 2.19: The bubble shape (identified as the isosurface of the volume fraction α = 0.5) and its location at
time instant t/t∗ = 0.025 for various Ha: H a = 0,50,100,200 (a-d), respectively.

time are defined as:

u∗ =µG /(ρG db), p∗ =µ2
G /(ρG d 2

b ), t∗ = ρG d 2/µG (2.27)

We kept constant G = 4 · 104, Γ = 2 · 106 and varied 0 ≤ H a ≤ 200 to study the influ-

ence of the magnetic field strength on the rising bubble behavior. The electrical con-

ductivity ratio is σG /σL = 2.49 · 10−7. The orthogonal mesh is created with the mesh

size (Nx ×Ny ×Nz = 60×180×60), identical to the mesh used in [11]. The second-order

linear-upwind scheme is used for the convective terms in both momentum and volume

fraction equations, whereas the backward scheme is used for time integration. Because

of a sharp jump of the electrical properties at the phase interface, we have applied the
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Figure 2.20: Terminal bubble velocity at various H a. Comparison with the finite-difference (FDM) results of
[11].

harmonic interpolation scheme for the electric conductivity. For this case, the interface

compression coefficient (Cα) had a stronger effect on the final shape of the rising bubble.

The selected value of Cα = 0.1 proved to be a good choice for both multi-phase bench-

marks presented here.

The obtained characteristic bubble shape, current density streamlines, contours of

the vertical velocity, and pressure in the central vertical plane at an arbitrary time instant

t/t∗ = 0.02 and for H a = 50, are shown in Fig. 2.18. The current density streamlines form

close loops around the bubble with opposite directions above and below the bubble. The

velocity contours portray an updraft region in the center of the domain - above and be-

low the bubble, whereas the down-drafts are generated along the side-walls. Contours

of the pressure exhibit almost linear distribution in the vertical direction, with small de-

viations in the proximity of the bubble surface. It can be seen that the resulting shape

of the bubble strongly depends on the imposed magnetic field strength, Fig. 2.19. The

higher H a leads to the bubble stretching in the direction of the imposed magnetic field

(y-direction) and to a reduction of its rising velocity. We compare our results with a nu-

merical study of [11] who applied the finite-difference (FDM) multi-phase MHD code.

Comparison of the computed terminal velocity for different values of H a is shown in

Fig. 2.20. After an initial slight increase in the terminal velocity for intermediate values of

H a < 50, a gradual decrease is obtained with a further increase of the imposed magnetic

field. The agreement between the current simulations and data presented in [11] is good

up to H a = 50. After reaching this peak value, larger differences are observed, but qual-

itatively similar trends are observed. Differences for larger values of H a number can be

partially explained by the use of different discretization approaches (the present finite-

volume vs. finite-difference of [11]), the application of different convective schemes (the

present second-order linear-upwind vs. the third-order UTOPIA scheme of [11]), as well

as due to the absence of the mesh-dependency study of [11]). We also performed addi-

tional simulations with a second-order quadratic-upwind scheme for convective terms
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Table 2.2: The non-dimensional terminal velocity at H a = 50 and H a = 200 for different meshes. Comparisons
with values presented in the finite-differences based method (FDM) of [11].

Ha
The non-dimensional

terminal velocity, (uy /u∗)
Present

Shibasaki

et al.[11]

50 mesh (M1) 143.3

mesh (M2) 147.8 152

mesh (M3) 149.9

200 mesh (M1) 41.3

mesh (M2) 42.1 58

mesh (M3) 42.5

in momentum equations, but this resulted in marginal differences of rising velocity (less

than 1%) compared to the linear-upwind scheme.

Finally, we complete a mesh-dependency study for two different Hartmann numbers

H a =50 and 200, and three meshes: (i) the coarse mesh (M1) (Nx×Ny×Nz = 30×90×
30) = (0.081× 106)total CVs, (ii) the present mesh (M2) (Nx×Ny×Nz = 60× 180× 60) =
(0.64×106)total CVs and (iii) the fine mesh (M3) (Nx×Ny×Nz = 120×360×120) = (5.1×
106)total CVs. Results in Table. 2.2 demonstrate that the finest mesh (M3) provides the

best agreement with the reference data. However, the difference in terminal velocity

values between intermediate (M2) and fine (M3) mesh is only 1%, while the total number

of CVs is four times larger. Based on this small difference, we conclude that results are

grid independent already at the mesh (M2).

2.4. SUMMARY AND CONCLUSION
We have presented a comprehensive numerical benchmark study addressing a range of

single- and multi-phase one-way coupled MHD flows. The single-phase cases included

the conjugate MHD flows in ducts with varied electric conductivity of the wall, and the

laminar back-step flow subjected to a transverse magnetic field. The multi-phase cases

covered a two-dimensional MHD cavity and a rising bubble in a liquid metal flows - both

simulated with the volume of fluid (VoF) approach. We have implemented an extended

set of MHD transport equations in the open-source code OpenFOAM. Our particular

focus was to extend the existing set of MHD benchmarks and to provide a detailed com-

parison with similar studies in the literature. For the multi-phase flows, we have intro-

duced a recently proposed analytical solution of a two-dimensional partially-filled cavity

flow subjected to an external magnetic field. An excellent agreement was obtained for all

cases for which analytical solutions are available. For considered test cases without an-

alytical solutions, a very good agreement was obtained with available numerical studies

from the literature. It is concluded that here developed and validated version of the com-

puter code can be used for advanced fundamental and industrial/technological studies
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involving various aspects of the MHD phenomena.
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3
THE TRANSITIONAL

MAGNETOHYDRODYNAMIC FLOW IN

AN ELECTRICALLY CONDUCTIVE

SQUARE DUCT

We present results of a series of numerical simulations of an initially fully developed turbulent

flow of a liquid metal in a long duct under the influence of a constant uniform transverse mag-

netic field and various wall conductances (ranging from perfectly insulated to perfectly conducting

walls). The changes in the wall conductance caused the appearance of novel flow regimes charac-

terized by the co-existence of locally turbulent/laminar flow regions and a non-monotonic behav-

ior of the corresponding wall-friction coefficients. In contrast to the situation where an increase of

the imposed magnetic field will lead to continuous suppression of turbulence and final complete re-

laminarization of the flow, in a specific range of wall-conducting parameters, we also observe an ap-

parent partial and complete turbulence regeneration from the magnetohydrodynamic-suppressed

laminar state.

Published as: A. Blishchik, S. Kenjereš, Observation of a novel flow regime caused by finite electric wall con-
ductance in an initially turbulent magnetohydrodynamic duct flow. Physical Review E 104, L013101, 2021, doi:
10.1103/PhysRevE.104.L013101
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3.1. INTRODUCTION
Starting from the pioneering theoretical and experimental studies of [1, 2], the Magne-

tohydrodynamic (MHD) interactions (i.e. interactions between the flow of an electri-

cally conducting fluid (liquid metal, electrolyte, or plasma) and an imposed magnetic

field) play an important role in numerous physical phenomena in nature and technology

(e.g. origin of planetary magnetic fields, continuous casting, crystal growth, liquid-metal

blankets in fusion reactors, etc., [3]). Despite the progress of various experimental tech-

niques in classical fluid mechanics in recent years, MHD-related experiments are still

very challenging, especially if the local multi-physics information is needed (e.g. simul-

taneous measurements of the instantaneous velocity and its gradients, pressure, electric

potential, and total current density). Experimental difficulties are caused by the non-

transparency of liquid metals, limited spatial and temporal resolution, as well as the

inherently three-dimensional nature of interactions between the velocity and electro-

magnetic fields. Recent progress in the eddy-resolving numerical simulation techniques,

such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) approach,

have opened additional possibilities for analysis of complex MHD interactions, [4],[5].

The advanced numerical simulations of MHD phenomena can provide detailed insights

into local reorganization of the flow, turbulence and corresponding electric potential

and total current density, and their cross-correlations. The latter are notoriously diffi-

cult to get from the current experimental approaches, and of crucial importance for the

development of the Reynolds-averaging based class of turbulence models suitable for

practical industrial and technological applications, [6–8].

In the great majority of cases presented in the literature, the central focus of the MHD

numerical research aims to determine the transient and turbulent flow characteristics

in generic configurations such as pipe, duct, and channel flow, subjected to an exter-

nal (uniform or partially imposed) magnetic field of different strength and orientation,

where the walls are assumed to be perfectly electrically insulated or conducting, [9–13].

However, in practical conditions, one has also to deal with the finite thickness and elec-

trical conductivity of surrounding walls, which can significantly alter the electric current

behavior in the entire configuration. This alternation of electric current will affect the

distributions of the Lorentz force, and consequently, the velocity components. The in-

clusion of surrounding walls with a finite thickness and electric conductivity is associ-

ated with numerous difficulties in both experimental and numerical studies. For experi-

ments, multiple modular setups are required to study the influence of walls with various

parameters. For simulations, advanced numerical solvers need to be developed, which

can include also solid wall regions (in addition to the flow domain) for calculations of

the electric current, and potential (so-called conjugate MHD phenomena). Although

the distinct effects of finite wall thickness and electric wall conductivity on a laminar

MHD flow were thoroughly investigated by Hunt [14], studies reporting on the effects of

a wide range of aforementioned wall parameters on MHD turbulent flow are scarce in

the literature. The impact of specific wall conductivity values in a combination with dif-
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ferent magnetic field orientations on a laminar MHD duct flow was demonstrated in a

numerical research of [15]. The formation of the M-shape velocity profile, typical to the

duct flow with conductive walls, was observed. Effects of electrically conducting walls

on rotating magnetoconvection were analyzed in numerical simulations of [16]. It was

shown that initially oscillatory magnetoconvection can become steady when electrically

conducting walls were imposed. The instabilities in an MHD duct flow with a constant

wall conductivity were numerically and experimentally studied in [17], [18], respectively.

The onset of instabilities and jet detachments were found in a good agreement between

the experiments and simulations. In experimental studies of [19], measurements of the

single- and multi-phase MHD flows in rectangular channels were performed. When one

of the electrically insulated walls was replaced with a copper plate (finite conductance),

a suppression of the turbulence intensity was observed. Numerical studies of the lin-

ear stability of fully developed MHD flow in a square duct with insulating Shercliff walls

and thin electrically conducting Hartmann walls subjected to a uniform magnetic field

were presented in [20]. The main conclusion was that the wall conductance ratio deter-

mined flow stabilization or destabilization - depending on the strength of the imposed

magnetic field.

The main motivation of the present chapter is to fill an existing gap in the literature;

we seek to provide a detailed insight into the effects of finite electric conductivity of sur-

rounding walls on a turbulent MHD flow.

3.2. GOVERNING EQUATIONS AND NUMERICAL DETAILS
We consider a single-phase flow of an incompressible electrically conductive fluid in

an initially fully developed turbulent regime, subjected to the homogeneous transverse

magnetic field. Because of the magnetic Reynolds number Rem = U ·D/λ << 1 condi-

tion (where U is characteristic velocity, D is characteristic length-scale, and λ = 1/µ0σ

is the magnetic diffusivity), the one-way coupled MHD approach is used. The flow is

described by conservation of mass, momentum, and Ohm’s law for the moving media,

respectively:

∇·u = 0 (3.1)

∂u

∂t
+ (u ·∇)u =− 1

ρ
∇p +ν∇2u+ 1

ρ
(j×B)︸ ︷︷ ︸

FL

(3.2)

j =σ(−∇φ+u×B) (3.3)

where u is velocity, p is pressure, j is current density, φ is the electric potential, B is

the imposed magnetic field, FL is Lorentz force, ν is kinematic viscosity, ρ is density, σ

is electrical conductivity. By imposing the ∇ · j = 0, the Ohm’s law reduces to a simple

Poisson equation for the electric potential as:

∇2φ=∇· (u×B) (3.4)
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Figure 3.1: Sketch of the simulation domain for the conjugate MHD duct flow.

In contrast to the governing transport equations for mass and momentum, which are

applied for the fluid domain, the electric potential equation needs to be extended as

well to the surrounding walls of a finite thickness (d) and conductivity (σS ). Note that the

interface condition needs to be satisfied, i.e. φL =φS and σL∂φL/∂n =σS∂φS /∂n, where

L and S indicate liquid (fluid) and solid (wall) domains, respectively, and n is the wall-

normal. The problem is fully defined by two characteristic non-dimensional parameters:

Reynolds (Re =U ·D/ν) and Hartmann (Ha = B ·D
√
σ/ρν) numbers.

To be able to simultaneously solve the distribution of governing parameters (φ and j)
in both fluid and wall regions, as well to conserve the current density, we have developed

the integrated conjugate MHD solver by combining the Four Steps Projection Method

(FSPM), proposed in [21], and the grid-coupling approach to match the fluid and wall

regions. A finite-volume in-house code based on the open-source OpenFOAM-Extend

is applied to solve a discretized form of the transport equations, Eqn. (3.3 - 3.4). The

second-order central differencing scheme (CDS) is applied for both diffusive and con-

vective terms, while the time-integration is performed by the second-order backward

scheme. For additional numerical details, see [22].

All simulations are performed for the configuration shown in Fig. 3.1. We analyze

the turbulent flow of an electrically conducting fluid (σL) in a long duct (L = 40 D) with

a square cross-section (D×D), surrounded by two walls with a finite thickness (d/D =

0.05), and an arbitrary electric conductivity (σS ). The remaining upper- and lower-walls

(Shercliff walls), parallel to the imposed magnetic field, are electrically insulated. At all

walls, the no-slip velocity boundary condition is imposed. The flow is driven by the im-

posed pressure gradient in the streamwise x-direction (periodic boundary condition),

whereas the uniform magnetic field is imposed in the transverse y-direction. The left-

and right-surrounding walls (Hartmann walls), perpendicular to the imposed magnetic

field, are characterized by a finite thickness and an arbitrary electric conductivity. These

wall characteristics are incorporated into a single wall conductance ratio parameter, de-

fined as Cd = (σS ·d)/(σL ·D). In the present study, we covered an extensive range of the

wall conductance parameter, i.e. 0 ≤ Cd < ∞, where Cd = 0 indicates fully electrically
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insulating walls, and Cd → ∞ indicates the fully electrically conducting walls, respec-

tively. For these two cases, boundary conditions for the electric potential are defined as:

(i) ∂φ/∂y = 0 at y = 0 and y = D; ∂φ/∂z = 0 at z = 0 and z = D for perfectly electrically

insulated walls (all walls); (ii) φ = 0 at y = 0 and y = D for perfectly conducting (side)

walls.

We apply the wall-resolving dynamic large-eddy simulation (LES) approach to cap-

ture the instantaneous turbulence structures. It serves as the best compromise between

accuracy in capturing the instantaneous flow physics, and the total computational costs

(in comparison to the fully resolving direct-numerical simulations (DNS),[23, 24]). The

dynamic LES adopted here automatically takes into account the local effects of the Lorentz

force generated, through local adjustment of the Smagorinsky coefficient,[4, 8]. The nu-

merical mesh contains (Nx ×Ny ×Nz = 720×80×80)fluid and (Nx ×Ny ×Nz = 720×12×
80)wall non-uniformly distributed control volumes in the fluid and wall regions, respec-

tively. Special attention is devoted to having a proper resolution of boundary layers along

the surrounding walls for all flow regimes. The Hartmann and Shercliff layer criteria

(with a typical thickness of δH a = D/H a and δSh = D/H a1/2) have been accomplished

with 10 points in the Hartmann layer and 25 points in the Shercliff layer. These criteria

correspond to ∆[y, z]+w all < 1.

3.3. RESULTS AND DISCUSSION
We start our analysis by validating the dynamic LES approach adopted here against the

fully resolved direct numerical simulation (DNS) results for a non-MHD duct flow (Ha =
0, [25]) and an MHD duct flow with perfectly electrically insulating walls (Cd = 0, Ha =
21.1, [10]) - both in a fully developed turbulent regime at Re = 5602. The profiles ob-

tained for the long-term time-averaged streamwise velocity fluctuations and the mean

streamwise velocity component (characteristic log-law distributions) are shown in Fig.

3.2. For both the non-MHD (H a = 0) and MHD cases (H a = 21.1), predicted profiles are

in very good agreement with DNS results from the literature. Characteristic peak values

in the proximity of walls are properly captured, as well as the entire distribution towards

the duct center - confirming the accuracy of the adopted simulation approach. Next, we

move to perform a series of simulations by changing the wall-conductance ratio param-

eter (Cd ) over an extensive range of values, varying from the electrically insulated to the

perfectly electrically conducting walls, i.e. 0 ≤ Cd < ∞. All remaining flow parameters

(Re and Ha) are kept unchanged.

The first distinct feature of the profiles of the non-dimensional streamwise fluctuat-

ing velocity is their peculiar non-monotonic behavior, Fig. 3.2. The characteristic peak

values in the proximity of the duct walls are observed for the non-MHD case, with fully

symmetric distributions along the Shercliff and Hartmann walls. Activation of the mag-

netic field, with fully electrically insulated walls (Cd = 0), leads to small suppression of

the peak value in the proximity of the Shercliff wall, and a significant suppression in the

proximity of the Hartmann wall. By slightly increasing the wall conductivity (Cd = 0.05),
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Figure 3.2: Comparison of the present dynamic LES and DNS results from the literature for a non-

MHD ((◦◦◦) - H a = 0, [25]) and MHD ((◦◦◦) - H a = 21.2, Cd = 0, [10]): (a) the vertical profiles in the

proximity of the Shercliff walls, (b) the horizontal profiles in the proximity of the Hartmann walls

of the non-dimensional streamwise velocity fluctuations (urms). The zoom-ins show the log-law

distribution of the mean streamwise velocity component. The present dynamic LES is indicated

as follows: (—–) - H a = 0; (—–) - Ha = 21.2, Cd = 0; (−−− −−−) - Ha = 21.2, Cd = 0.05; (—–) - Ha = 21.2,

Cd = 0.25; (—–) - Ha = 21.2, Cd = 0.5; (−−− −−−) - Ha = 21.2, Cd = 5; (—–) - Ha = 21.2, Cd →∞.

a small suppression of the peak values is observed in the proximity of both Hartmann

and Shercliff walls, whereas the values in the duct center are unaffected. With Cd = 0.25,

suppression of the peak value is obtained in the proximity of the Shercliff walls. The lo-

cation of the peak is shifted farther from the wall (i.e. at z/L = 0.1), and the value in the

center of the duct significantly increased, Fig. 3.2(a). In contrast to this behavior (for

the same Cd = 0.25), the profile of streamwise velocity fluctuation in the vicinity of the

Hartmann wall produced a peak value above that of Cd = 0.05, which is now shifted to-

wards the duct center, with higher values also in the central part of the duct, Fig. 3.2(b).

For Cd = 0.5, a remarkable increase is observed at both locations. The value at the duct

center reaches identical values as for the non-MHD case (i.e. H a = 0). For Cd = 5, a less

dramatic reorganization is taking place, characterized by the movement of the peak lo-

cation closer to the walls, whereas the values in the duct center remain unaffected. With

a further increase of Cd → ∞, there are no visible additional changes in the profiles at

both locations, indicating that a saturation point was reached.

To provide additional insights in this remarkable non-monotonic behavior of the

streamwise velocity fluctuations, we calculate the skin friction coefficients C f = τ/
(
0.5ρU 2

)
at the Hartmann and Shercliff walls over a wide range of Cd , Fig. 3.3. Starting from a

fully developed turbulent (T) state at H a = 0, activation of the uniform transverse mag-

netic field at H a = 21.2 with perfectly electrically insulating walls (Cd = 0), generates

suppression of C f at the Shercliff walls and an enhancement at the Hartmann walls.
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Figure 3.3: Dependency of the friction coefficient (C f ) at the Shercliff (□□□) and Hartmann (□□□) duct

walls on the wall-conductance parameter (Cd ) for fixed Re = 5602 and H a = 21.2. One repre-

sentative of each characteristic flow regime are selected: (T) - fully turbulent, (T-L) - turbulent to

laminar transition, (L) - fully laminar, (L-T) - laminar to turbulent transition, respectively. In the

current plot, the value of C f at Cd →∞ regime has been assigned to a finite value of Cd instead

of infinity. Furthermore, we indicate C f values for the non-MHD case (Ha=0): (□□□−−− −−−) -present

study, (⋄⋄⋄) - experimental correlation of [26].

With a further increase of the wall conductivity, a gradual reduction in C f is observed

for both Hartmann and Shercliff walls (up to Cd = 0.05). After reaching Cd = 0.05, a

more rapid suppression occurs for both walls, resulting in local minimum values in the

0.1 ≤ Cd ≤ 0.2) range. The plots of the instantaneous streamwise velocity contours por-

tray a stable fully symmetrical distribution without any traces of the locally occurring

intermittency, indicating a complete re-laminarization (L) of the flow, Fig. 3.3. After

reaching Cd > 0.2, both friction coefficients start to increase. Analysis of the instanta-

neous streamwise velocity contours confirms the re-appearance of the intermittent flow

features. The slope of the C f for the Shercliff walls is much steeper compared to the

Hartmann walls, resulting in a characteristic cross-over at approximately Cd = 1. For

Cd > 1, the friction coefficient at the Shercliff walls takes over its counterpart along the

Hartmann walls and a fully recovered turbulent state is present. Additional cross-over

can be observed at Cd = 5 where the C f along the Shercliff walls reaches the C f of the

non-MHD case. After Cd = 5, characteristic slopes are much less steep, indicating con-

vergence towards the final asymptotic states. The values of C f when Cd → ∞, show

an increase compared to the neutral non-MHD (Ha = 0) case for the Shercliff walls. In

contrast to the Shercliff walls, C f for the Hartmann walls reaches values close to the neu-
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Figure 3.4: The instantaneous coherent structures in the MHD duct flow identified as isosurfaces

of the second-invariant of the velocity-gradient tensor (Q-criterion, Q=1 s−2), colored with the

streamwise velocity at Re=5602 and Ha=21.2: (a) Cd = 0, (b) Cd = 0.05, (c) Cd = 0.1, (d) Cd = 0.15,

(e) Cd = 0.25, (f) Cd = 0.5, (g) Cd = 1.5, (h) Cd →∞.

tral case. It can be concluded that C f behavior along the Hartmann and Shercliff walls

portrays complex behavior indicating a significant flow and turbulence reorganization.

Starting from a fully developed turbulent flow regime for the neutral non-MHD case, by

changing solely the wall-conductance, the partial or complete re-laminarization can be

observed, followed by a rapid recovery of the intermittent states. Finally, for the Cd →∞,

the fully developed turbulence is recovered. Both of the previously analyzed quantities -

the friction coefficients along the walls (Fig. 3.3) and profiles of the RMS of the stream-

wise fluctuations (Fig. 3.2)- are long-term time-averaged quantities. We also partially

addressed some of the instantaneous flow features by plotting contours of the stream-

wise velocity in the characteristic central plane (inserts of Fig. 3.3).

To provide detailed insights into a full three-dimensional flow and turbulence struc-

tures, we calculate the second-invariant of the velocity-gradient tensor parameter (so-

called Q-criterion), and apply this criterion to identify instantaneous features over a wide

range of 0 ≤ Cd <∞, Fig. 3.4. The plots reveal a very dense population of the coherent

structures in the proximity of the Shercliff walls at the Cd = 0, Fig. 3.4(a). By changing the

wall conductivity (Cd = 0.05 and Cd = 0.1) a distinct clustering of the coherent structures

along the Shercliff walls is observed with a clear reduction of their spatial extent in the

streamwise direction, Figs. 3.4(b) and (c). These distributions of the coherent structures

exhibit similar patterns (patterned turbulence) as previously observed in standard MHD

channels with electrically insulated walls (Cd = 0) when the strength of the imposed

magnetic field is increased, [12]. At Cd = 0.15, there is total suppression of the coherent

structures, confirming full re-laminarization of the flow, Fig. 3.4(d). For Cd = 0.25, re-

appearance of coherent structures in the central part of the duct takes place, confirming

localized turbulence production, Fig. 3.4(e). By further increasing Cd = 0.5, the coher-

ent structures start to occupy regions closer to the Shercliff walls, Fig. 3.4(f). This trend

continues for higher values of Cd = 1.5, where coherent structures are rapidly expanding

towards the wall regions (in both directions), producing even more dense distributions

compared to the Cd = 0 case, Figs. 3.4(g) and (a). It should be noted that this is the range
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Figure 3.5: Contours of the long-term time-averaged streamwise velocity (a-b-c), non-dimensional

electric potential (φ∗ = φ/U0BD) with iso-lines of electric current (d-e-f), the streamwise com-

ponent of the non-dimensional Lorentz force (FL∗
x = FL

x /σUoB2) (g-h-i), and non-dimensional

turbulent kinetic energy (TKE = 0.5u
′2
i /U2

0) (j-k-l) in the central vertical plane (x/L = 20), for the

fixed Re=5602, H=21,2, and various wall conductances: Cd = 0 (-first column), Cd = 0.25 (-second

column) and Cd →∞ (-third column).

of Cd where C f plots indicate a cross-over between the Hartmann and Shercliff walls,

Fig. 3.3. There are no significant differences in coherent structure distributions between

Cd = 1.5 (Fig. 3.4(g)) and the case with perfectly conducting walls, Cd →∞ (Fig. 3.4(h)).

To provide a possible origin of the observed changes of flow regimes - from ini-

tially fully turbulent, then partial and complete relaminarization, and finally, return to

fully recovered turbulence - we next analyze complex mechanisms along the following

flow/electromagnetic field interaction pathways:
[

u
×B−−→∇φ→ e → j

×B−−→ FL → u
]

(where

e is the generated electric field). We plot contours of the mean streamwise velocity, elec-

tric potential, total current density, as well as resulting streamwise Lorentz force and

turbulent kinetic energy - all in the central vertical plane (L = 20 D), Fig. 3.5. For the

fully insulated walls (Cd = 0), the mean streamwise velocity contours show a clear sup-
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pression along the central horizontal line, Fig. 3.5(a). The electric potential exhibits a

nearly linear distribution in the vertical direction, Fig. 3.5(d). The total current stream-

lines form characteristic double loops which are closed within the fluid domain, with

the highest density in the proximity of the Hartmann walls, Fig. 3.5(d). These regions

coincide with locations where the horizontal Lorentz force is highest, Fig. 3.5(g), due

to mutual perpendicular orientation between the total current and imposed magnetic

field (note that the solid black line indicates the zero value of the FL∗
x ) resulting in a sig-

nificant reduction of turbulence here, Fig. 3.5(j). In contrast to this behavior, in the

proximity of the Shercliff walls, the Lorentz force is much weaker, and the resulting tur-

bulent kinetic energy is almost unaffected in comparison to the non-MHD case. The

imprints of the generated Lorentz force on the mean streamwise velocity are shown in

Fig. 3.5(a), where a transition from a full diagonal symmetrical distribution (for the non-

MHD case) towards symmetry along the central vertical line is obtained. By replacing

the fully insulated Hartmann walls with walls with the finite conductance (Cd = 0.25),

different distributions of the mean velocity are obtained, showing two distinct regions

aligned with the Shercliff walls, Fig. 3.5(b). Note that the selected value of Cd = 0.25 is for

the case for which a local turbulence reoccurrence happens (as illustrated in Fig. 3.4(e)).

The total current streamlines are now entering the sidewalls and electric potential starts

to increase gradients in the corner regions, Fig. 3.5(e). The resulting positive stream-

wise Lorentz force is confined within much thinner Hartmann boundary layers, while

the significant negative Lorentz force is generated in the duct center, Fig. 3.5(h). The

regions with the positive streamwise Lorentz force disappear entirely for Cd → ∞, Fig.

3.5(i). The strong shear originating from the ’M-shaped’ velocity profiles re-introduces

the turbulence seed-regions farther away from the boundary layer regions, generating

the four distinct islands of the elevated turbulence, Fig. 3.5(k). With further increase

of Cd , these regions expand toward walls, producing final (Cd → ∞) turbulence distri-

bution as shown in Fig. 3.5(l). In contrast to Cd = 0 case (Fig. 3.5(j), the turbulence

along the Hartmann walls is augmented - in both intensity and area that occupies. The

turbulence along the Shercliff walls now covers a significantly smaller area, Fig. 3.5(l).

Despite this locally enhanced turbulence region the friction coefficient (C f ) along the

Hartmann walls is smaller than along the Shercliff walls, Fig. 3.3. This confirms that the

observed non-monotonic changes in the friction coefficients along the Hartmann and

Shercliff walls are the result of combined effects of the generation of the distinct wall-jet

regions in the proximity of the Shercliff walls (i.e. M-shaped mean streamwise velocity

profiles) and turbulence reorganization. Our argument that the combined effects are re-

sponsible for the observed novel regimes are also supported by the fact that a monotonic

behavior of the friction coefficient versus wall-conductance dependency (i.e. continu-

ously increasing for the Shercliff walls and continuously decreasing for the Hartmann

walls) is obtained for the laminar MHD duct cases with changing wall conductance in

the 0 ≤Cd <∞ range, [22].
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3.4. SUMMARY AND CONCLUSION
In summary, we numerically investigated the influence of varying the electric conduc-

tance of surrounding duct walls on the initially fully developed turbulence subjected to

a transverse constant uniform magnetic field. We analyzed the instantaneous and long-

term time-averaged features of the flow, turbulence, electric potential, total current den-

sity, and resulting Lorentz force. The instantaneous coherent structures portray distinct

regimes characterized by a co-existence of the turbulent and laminar flow regimes, a

complete relaminarization, as well as a partial and complete turbulence regeneration.

This non-monotonic behavior was also reflected in the distributions of the friction coef-

ficients along the Hartmann and Shercliff walls. The initially higher values of C f along

the Hartmann walls and lover values along the Shercliff walls for Cd = 0 are inverted for

Cd →∞. The characteristic cross-over occurred when Cd ≈ 1. This behavior is explained

in terms of the combined reorganization of the main flow (wall jets) and local turbu-

lence. The presented results can be directly applicable for the electromagnetic braking

in continuous casting of liquid steel and design of the liquid metal blankets in a new

generation of fusion reactors. Finally, with the present study, we would like to motivate

a new generation of the MHD experiments in generic configurations based on here pre-

sented working conditions.
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4
TURBULENCE SUPPRESSION AND

REGENERATION IN A

MAGNETOHYDRODYNAMIC DUCT

FLOW

In the current chapter, we present a series of numerical simulations describing a turbulent magneto-

hydrodynamic (MHD) flow subjected to a transverse magnetic field in a square duct with arbitrary

electrically conductive walls. The characteristic flow and electromagnetic non-dimensional param-

eters (Reynolds and Hartmann number, respectively) were fixed, while the wall conductivity ratio

(Cd ) was varied from the perfectly electrically insulated (Cd = 0) to perfectly electrically conduct-

ing (Cd →∞). The obtained results confirmed a significant impact of the conductivity of the sur-

rounding walls on the flow and turbulence reorganization. We have observed that the initially fully

developed turbulence regime was gradually suppressed in the 0 ≤ Cd < 0.15 range, while the fully

laminarized state was obtained at Cd = 0.15. We found that the process of turbulence suppression

was accompanied by the appearance of the patterned turbulence phenomenon in the proximity of

the walls parallel to the magnetic field direction. With a further increase of the wall conductivity

parameter (0.15 < Cd <∞), we have observed a complete turbulence regeneration. We found that

this turbulence regeneration was caused by the local reorganization of the total current density loops

near the electrically conducting walls.

Published as: A. Blishchik, S. Kenjereš, Turbulence suppression and regeneration in a magnetohydrody-
namic duct flow due to influence of arbitrary electrically conductive walls, Physics of Fluids 34, 045101, 2022,
doi:10.1063/5.0084442

55



4

56 CHAPTER 4

4.1. INTRODUCTION
Starting from the pioneering works of Hartmann [1] and Alfvén [2], the research field of

magnetohydrodynamics (MHD), which addresses interactions between the flow of an

electrically conducting fluid and imposed magnetic field, significantly advanced in var-

ious fields of the fundamental (plasma) physics and technological applications such as:

a new generation of fusion reactors [3–5], continuous casting [6, 7], microfluidic systems

[8–10], etc. The majority of the MHD turbulence-related studies presented in the liter-

ature addressed relatively simple flow geometries including the plane channels, pipes,

or ducts [11]. However, the experimental studies of the MHD turbulence are associated

with numerous difficulties due to the non-transparent nature of the working fluids char-

acterized by high electrical conductivity (e.g. liquid metals), which requires novel mea-

suring techniques. Additional challenges regarding experimental studies are associated

with the potentially high temperatures (continuous casting), and suitable magnetic field

generators able to provide sufficiently strong magnetic fields. These experimental chal-

lenges can be easily removed in numerical studies of the MHD phenomena. However,

the numerical studies need to be based on the specific additional pre-requirements for

the MHD extended Navier-Stokes solver. This includes the conservative form of the pres-

sure and Lorentz force terms in the momentum equation, and the divergence-free con-

ditions of the magnetic induction and total current density, respectively. Furthermore,

the proper treatment of the MHD turbulence needs to be performed [12, 13].

To begin with the Reynolds-Averaged Navier-Stokes (RANS) turbulence modeling ap-

proach, additional MHD extensions of the two-equations eddy-viscosity based models

were proposed [14]. The proposed model was able to correctly describe the turbulence

suppression due to imposed magnetic field. The one-equation RANS turbulence model

for quasi-two-dimensional turbulent MHD flow was presented by Smolentsev et al. [15].

The modified variant of the k−ω SST turbulence model with additional MHD anisotropy

parameter [16] was presented by Miao et al. [17], and applied for simulations of the con-

tinuous casting. The full second-moment Reynolds-stress turbulence closure with MHD

extensions was presented by Kenjereš et al. [18]. The model performances were studied

in simulating turbulent channel flows subjected to external magnetic fields of different

orientations. A good agreement with available DNS and experimental data was obtained

over an extended range of Reynolds and Hartmann numbers.

In recent years, impressive progress was made in applying the high-fidelity eddy-

resolving simulations (DNS and LES) of the MHD turbulence. Different subgrid clo-

sures (SGS) were tested in LES simulations of the turbulent MHD channel flow [19]. The

dynamic Smagorinsky and originally developed coherent structures based SGS models

demonstrated their accuracy and numerical robustness. A combined DNS/LES study

was performed by Krasnov et al. [20] where the impact of the uniform spanwise oriented

magnetic field on the turbulent MHD channel flow was analyzed. The increased strength

of the imposed magnetic field reduced velocity fluctuations, and finally have produced

the full flow laminarization. The DNS study of the turbulent MHD duct was conducted
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by Chaudhary et al. [21]. It was observed that the stronger suppression of the turbulence

occurred in the proximity of the side walls perpendicular to the imposed magnetic field.

Krasnov et al. [22] performed the DNS simulations of the turbulent MHD duct flow at

very high Reynolds numbers and found a relatively wide range of Hartmann numbers

for which the flow was neither fully laminar nor fully turbulent, but with a distinct lam-

inar core. This coexistence of the laminar and turbulent parts of the flow (patterned

turbulence) was also addressed in DNS studies of evolving MHD duct and pipe flows by

Krasnov et al. [23] and Zikanov et al. [24]. It was demonstrated that using a sufficiently

long computational domain was crucial in reproducing the patterned turbulence pat-

terns. The decay of the honeycomb-generated turbulence in a duct due to influence of

the imposed transverse magnetic field was studied by Zikanov et al. [25]. The paradox-

ical observation of the high-amplitude velocity fluctuations was explained in terms of

the large-scale quasi-two-dimensional flow structures forming, which survived the mag-

netic suppression. Compressible MHD turbulence was studied by Yang et al. [26]. The

authors investigated which turbulence theories proposed for the incompressible cases

would be also valid for compressible cases. An alternative approach to simulate mag-

netohydrodynamic flows, namely the one-stage simplified lattice Boltzmann method,

was proposed by De Rosis et al. [27]. The accuracy and computational efficiency of this

method were demonstrated, making it a good alternative approach for predicting MHD

flows.

Despite this extensive number of the numerical studies in the literature dealing with

the turbulent MHD flows, the prevailing majority of the considered cases were with elec-

trically insulated surrounding walls. However, it was recognized that a significant flow

reorganization can be generated when the electrically insulated walls were replaced with

the walls of a finite electrical conductance [28]. The laminar MHD duct flow with arbi-

trary electrically conducting walls was numerically simulated by Sterl [29], and genera-

tion of the M-shaped velocity profile was reported. The linear stability analysis of the

MHD duct flow was performed by Arlt et al. [30], and a strong dependency between

the flow instabilities and imposed Hartmann walls conductance ratio was found. The

MHD duct flows in laminar and turbulent flow regimes at various Hartmann numbers

and with a constant value of the wall conductance were presented by Thomas et al. [31].

The onset of the flow instabilities was investigated and a good agreement between sim-

ulations and experiments [32] was obtained. Besides the channel and duct flows, effects

of the various wall conductances were also analyzed in different configurations. Effects

of the electrically conducting walls on the rotating magnetoconvection were analyzed

by Zhang et al.[33]. When electrically insulated walls were replaced by the walls of fi-

nite conductivity, the flow oscillations were suppressed. The MHD mixed convection in

micro-channels with one electrically conducting and one electrically insulated wall was

analyzed by Akinshilo [34]. It was concluded that an increase in the radiation parameter

produced a temperature decrease, with a stronger effect taking place near the electrically

conducting wall.
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In the present chapter, we focus on filling the existing gap in the literature dealing

with a systematic investigation of effects of the finite electrical conductivity of the side

walls in the initially fully developed turbulent flow regime in a square duct. The present

contribution is a significantly extended version of our initial findings [35].

4.2. GOVERNING EQUATIONS AND NUMERICAL DETAILS

4.2.1. ONE-WAY COUPLED MHD FLOW AND TURBULENCE MODELING

In the present chapter, a turbulent flow of an incompressible electrically conductive fluid

is considered. The fluid is subjected to an external uniform magnetic field (constant in

time), which results in the generation of the active Lorentz force. The conservation laws

of the mass and momentum can be formulated as:

∂ui

∂xi
= 0 (4.1)
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where ui is velocity, p is pressure, ν is the kinematic viscosity, ρ is density, and F L
i =

ϵi j k J j Bk is the resulting Lorentz force (where J j is the instantaneous total electric cur-

rent density and Bk is the imposed magnetic field.) Considering the highly turbulent

flow, we introduce the Large Eddy Simulation (LES) approach to simulate instantaneous

flow and electromagnetic interactions by introducing the following set of the spatially-

filtered transport equations:

∂ui

∂xi
= 0 (4.3)

∂ui

∂t
+u j

∂ui

∂x j
=− 1

ρ

∂p

∂xi
+ν∂

2ui

∂x2
j

−
∂τ

sg s
i j

∂x j
+ 1

ρ
F

L
i (4.4)

where ( ) indicates the spatial filtering and τsg s
i j is the sub-grid scale (SGS) stress tensor,

which is calculated as:

τ
sg s
i j =−2νsg s Si j , νsg s = (CS∆)2(2Si j Si j )

1
2 (4.5)

where νsg s is the sub-grid scale viscosity, Si j is the strain rate tensor, CS is the Smagorin-

sky parameter, and ∆ is the filter length. The evaluation of CS becomes crucial since the

widely-used approach implying the constant Smagorinsky parameter [36] is not suitable

for the present type of flow. It is recognized that the strong influence of the magnetic

field affects not only the flow structure but also the turbulence [37]. At the same time,

the dynamic determination of CS is proved to be capable of reproducing this influence
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[20]. Thus, the dynamic approach originally proposed by Lily [38] has been adopted in

our work as follows:

C 2
S = 1

2

àLi j Mi jáMi j Mi j
(4.6)

Li j = �ui u j + ũi ũ j (4.7)

Mi j =∆2 �S Si j + ∆̃2S̃ S̃i j (4.8)

where (̂) indicates the averaging over the cell faces, (˜) indicates the second filtering

operation, and ∆̃= 2∆ is the second filter length. Finally, the filtered Lorentz force in the

extended momentum equation is calculated as:

F
L
i = ϵi j k J j Bk (4.9)

where J i is the filtered total current density and Bk is the uniform magnetic field. In the

present study, we are dealing with the highly electrically conducting fluid (liquid metal)

implying that the induced magnetic field can be neglected. Consequently, the one-way

MHD coupling approach for the moving electrically conducting fluid can be formulated

as:

Rem = u0D

λ
<< 1 (4.10)

J i =σ
(
− ∂φ

∂xi
+ϵi j k u j Bk

)
(4.11)

where Rem is the magnetic Reynolds number, u0 is the inlet bulk velocity, D is the char-

acteristic length, λ is the magnetic diffusivity, σ is the electrical conductivity of the fluid,

Ji is the total current density, andφ is the electric potential. To find the electric potential,

the Poisson equation, obtained by substituting the zero-divergence total current density

condition into Eqn. (4.11), is used:

∂2φ

∂x2
i

= ∂

∂xi
(ϵi j k u j Bk ) (4.12)

Finally, to define the flow regimes, the following non-dimensional numbers need to be

introduced:

Re = u0D

ν
, H a = BD

√
σ

ρν
(4.13)

where Re is the Reynolds number and H a is the Hartmann number.
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4.2.2. ARBITRARY ELECTRICALLY CONDUCTIVE WALLS

Continuous contact of a moving electrically conductive fluid subjected to an external

magnetic field, with surrounding electrically conductive walls, leads to the transfer of the

electric current density between the fluid/wall interface. To model this phenomenon, we

have applied our recently developed conjugated MHD method [39] based on splitting

the computation domain into liquid and solid sub-domains. Consequently, the Poisson

equation is solved separately for each sub-domain as:

∂

∂xi

(
σL

∂φL

∂xi

)
= ∂

∂xi
(ϵi j kσLu j Bk ) (4.14)

∂
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(
σS

∂φS

∂xi

)
= 0 (4.15)

where subscript L marks the liquid sub-domain values and S marks the solid sub-domain

values. In order to characterize the flow regimes with electrically conductive walls, we

introduce the following wall conductivity ratio parameter:

Cd = σS dw

σLD
(4.16)

where dw is the characteristic thickness of the wall.

4.2.3. NUMERICAL DETAILS

The discretized forms of the above-listed transport equations (Eqn. (4.3 - 4.15) were

solved by our in-house finite-volume code ([39]) based on the open-source library Open-

FOAM, [40]. The calculation of the Lorentz force is based on the Four Steps Projec-

tion Method [41], which fulfills the zero-divergence condition of the total electric cur-

rent density on all cell faces. The second-order central differencing scheme (CDS) was

used for spatial discretization, and the second-order backward scheme for temporal dis-

cretization. To obtain the electric potential values at the interface between the solid

and fluid sub-domains, the weighted-flux scheme was applied [42]. Finally, coupling

between the velocity and pressure fields was established through the PISO algorithm,

[43].

4.3. GEOMETRY AND FLOW REGIMES

4.3.1. GEOMETRY AND MESH

The entire computational domain consists of two main parts: (i) the long square duct

representing the liquid metal sub-domain, and (ii) two arbitrary conductive finite walls

representing the solid sub-domain, Fig. 4.1. The width of the square duct is D , the thick-

ness of the conductive wall is dw , and the length of the entire domain is L. It should be

noted that special attention should be devoted to the length of the domain in terms of
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Figure 4.1: Sketch of the computational domain (not to scale). The grey color indicates finite arbitrary conduc-
tive walls (solid domain), while the white color indicates the liquid domain.

proper capturing of the coexisting laminar and turbulence regions (so-called patterned

turbulence, [11]) and therefore the specific length of L = 40D was chosen. To carry out

the simulations, the orthogonal hexahedral non-uniform mesh was created. The nu-

merical mesh was split into two sub-domains with the following distribution of control

volumes: (Nx×Ny×Nz = 720×80×80)liquid and (Nx×Ny×Nz = 720×12×80)solid, respec-

tively. To exclude numerical errors on the interface between solid and liquid regions,

the size of the first cells on each side was equal. Additional mesh requirement is asso-

ciated with the proper numerical resolving of the Hartmann (walls perpendicular to the

imposed magnetic field) and Shercliff (walls aligned with the imposed magnetic field)

boundary layers. The mesh was refined in the boundary layers with the following set of

the non-dimensional wall-distance parameters: ∆y+
w all = 0.77 and ∆z+

w all = 0.79. Such

a refinement corresponds to approximately 9 mesh points for the Hartmann layer and

over 20 mesh points for the Shercliff layer. The coarser mesh was applied in the core

region with the following set of the parameters: ∆y+
cor e = 11 and ∆z+

cor e = 10.7. A cell-to-

cell expansion ratio of kexp ≈ 1.05 was used in the y- and z-directions. An uniform mesh

distribution was imposed in the streamwise x-direction with ∆x+ = 21.

4.3.2. BOUNDARY CONDITIONS AND FLOW REGIMES

The turbulent flow of the liquid metal is continuously driven in the x-direction by the

pressure gradient. In order to maintain turbulence in the duct, periodic boundary con-

ditions were imposed at the inlet and outlet of the duct. All other surfaces act as walls

with no-slip velocity boundary conditions. The external constant uniform magnetic field

is aligned with the y-direction, Fig. 4.1. The arbitrary electrically conductive finite walls

are placed perpendicular to the imposed magnetic field (Hartmann walls). The top and

bottom walls parallel to the magnetic field (Shercliff walls) were kept as fully electrically

insulated ((∂φ)/(∂n) = 0 and Cd = 0). The used arrangement of the conductive and in-

sulated walls was theoretically postulated to be able to potentially impose significant
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changes on flow and turbulence reorganization, [12].

Table 4.1: The overview of the flow conditions simulated in the present work.

Re Ha Cd , Hartmann walls

5602 0 -

21.2 0

0.05

0.1

0.15

0.25

0.5

5

∞

To focus primarily on the wall conductivity effects, the Reynolds and Hartmann num-

ber were fixed, Re = 5602 and H a = 21.2. This set of the non-dimensional parameters

proved to be sufficient to impose a significant flow and turbulence reorganization of the

initially fully developed turbulence when all duct walls were electrically insulated, [21].

We have considered a wide range of the wall conductivity parameter (Cd ), ranging from

the fully electrically insulated to fully electrically conducting, i.e. 0 ≤ Cd ≤ ∞. For the

asymptotic wall conductivities the solid sub-domains can be excluded. The additional

neutral case at H a = 0 was also considered for validation purposes. An overview of all

performed simulations is presented in Table. 4.1. To obtain fully convergent first- and

second-moments statistics, we have used a time-averaging period of 300 flow-through

times. This period equals to approximately 3 months of real-time using 32 cores of 2.6

GHz Intel Xeon E5-2697A v4.

4.4. RESULTS AND DISCUSSION

4.4.1. REORGANIZATION IN THE FLOW STRUCTURE

We start our analysis by showing the instantaneous flow features (arbitrary time) in the

forms of the iso-surfaces of the second invariant of the velocity gradient tensor (Q-criterion),

Fig. 4.2. It can be seen that a dense pattern is observed for the pure hydrodynamic case

(H a = 0), Fig. 4.2(a). Activation of the magnetic field for the electrically perfectly insu-

lated walls (Cd = 0) leads to a suppression of coherent structures in the proximity of the

Hartmann walls and in the duct center, Fig. 4.2(b). The distribution of coherent struc-

tures near the top Shercliff wall shows localized turbulent puffs, which are the first in-

dicators of the patterned turbulence formation. The presence of these puffs is expected

because of the present value of Re/H a = 264 being close to the approximate transition

limit of Re/H a = 250 determined by Zikanov et al.[11] for the patterned MHD turbu-
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lence.

With the activation of the finite electrical conductivity of the Hartmann walls, even

relatively low value of the conductivity ratio parameter (Cd = 0.05) produced a signifi-

cant turbulence suppression, Fig. 4.2(c). Now, the coherent structures are less dense in

the vicinity of the Shercliff walls and almost vanished near the Hartmann walls. More-

over, in contrast to the case of the fully electrically insulated walls (Cd = 0), the clustering

of turbulent puffs near the Shercliff walls is more pronounced. This behavior is further

enhanced at Cd = 0.1, where distinct morphology of laminar and turbulent spots can be

observed, Fig. 4.2(d). The full laminarization occurs at Cd = 0.15, Fig. 4.2(e). The here

observed patterned turbulence phenomenon is a well-recognized feature of the charac-

teristics turbulent to laminar suppression of the MHD turbulence, as previously reported

in [23],[11]. However, the appearance of this regime was always associated with a contin-

uous increase of the magnetic field strength but not with the fixed H a and variable Cd .

The onset of patterned turbulence is sensitive to the length of the computational domain

(required to be at least eighty half-widths of the duct, as shown in [23]). A significantly

reduced horizontal extension of the computational domain can artificially suppress the

turbulent puffs producing a fully laminarized flow regime. To be able to properly resolve

the coexistence of the laminar/turbulent flow regimes within the duct, the length of the

square duct was selected to satisfy this condition, i.e. L = 40D . With a further increase

of Cd = 0.25, the turbulent puffs reappear, as shown in Fig. 4.2(f). This turbulence re-

generation process is characterized by the appearance of clusters of turbulence puffs in

the duct center. At Cd = 0.5, the clusters of turbulent puffs expand towards the Hart-

mann walls, Fig. 4.2(g). After reaching Cd = 5, the coherent structures are significantly

denser than for the case of the electrically insulated walls (Cd = 0), as it can be seen in

Fig. 4.2(h). Finally, when Cd → ∞, the turbulence state is fully recovered portraying a

very dense distribution of coherent structures, Fig. 4.2(i).

Next, we focus on the long-term time-averaged flow characteristics. The contours of

the mean velocity magnitude spatially averaged over the entire duct length, for different

values of Cd , are shown in Fig. 4.3. The velocity distribution for the MHD neutral case ex-

hibits a fully symmetrical pattern with the maximum value in the duct center, Fig. 4.3(a).

Activation of the magnetic field for the duct with electrically insulated walls (Cd = 0) pro-

duced elongation of the mean velocity magnitude towards the Shercliff walls, Fig. 4.3(b).

By replacing the electrically insulated Hartmann walls with the weekly conducting ones

(Cd = 0.05), further elongation of the high-velocity region towards the Shercliff walls and

further reduction from the Hartmann walls was obtained, Fig. 4.3(c). At Cd = 0.15, an

interesting flow reorganization occurred, Fig. 4.3(d). It can be seen that the two distinct

regions with elevated velocity magnitude were generated in the proximity of Shercliff

walls. This distribution is a consequence of the flow laminarization, as previously il-

lustrated in Fig. 4.2(d). When a partial regeneration of the turbulence was obtained at

Cd = 0.25, the wall jets in the proximity of Hartmann walls start to be elongated in the

y-direction, forming two distinct ellipsoid-like regions, Fig. 4.3(e). For Cd = 0.5, a fur-
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(a) H a = 0

x

z

By

(b) Cd = 0 (f) Cd = 0.25

(c) Cd = 0.05 (g) Cd = 0.5

(d) Cd = 0.1 (h) Cd = 5

(e) Cd = 0.15 (i) Cd →∞

Figure 4.2: The side-view of the iso-surfaces of the second-invariant of the velocity gradient (Q-criterion, Q
= 0.8 s−2) colored by instantaneous non-dimensional velocity magnitude (|u|/u0) at (a) H a = 0, and (b-h)
H a = 21.2, 0 ≤ Cd < ∞. Note that the scale factor of Lscale = 0.4 is applied in the x-direction for a better
visibility.

ther reduction of these distinct wall jet regions is obtained, Fig. 4.3(f). From Cd = 5 to

Cd → ∞, just marginal changes can be observed, indicating the saturation regime was

achieved already at the previous value of Cd , Figs. 4.3(g-h).

It is interesting to note that the previous studies dealing with laminar MHD flows and

electrically conductive walls demonstrated a gradual change of the velocity pattern with

an increase of the wall conductivity[28],[29],[39]. In the laminar MHD duct flows, there

were no sudden transitions occurring between Cd = 0.05, Cd = 0.15 and Cd = 0.25. Here,

we postulate that observed non-monotonic behavior of the mean velocity magnitude are

the consequence of the initial re-laminarization and re-appearance of the turbulence in

the duct. To confirm this, we have evaluated the profiles of the non-dimensional mean

streamwise velocity along the central vertical (between Shercliff walls) and horizontal

(between Hartmann walls) cross-sections, Fig. 4.4. The DNS results of [44] for the non-

MHD case (H a = 0) in the square duct flow were used as a reference for validation of our

simulations. It can be seen that a good agreement was obtained for the reference case.

With changes in the electrical conductivity of the side walls, significant deviations from

the classic log-law distribution were obtained in the vertical cross-section, Fig. 4.4(a).

Already at Cd = 0 and Cd = 0.05, the vertical profiles exhibited re-laminarization trends.

The laminarized state was obtained at Cd = 0.15. After this point, a further increase of
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(a) H a = 0 (b) Cd = 0 (c) Cd = 0.05 (d) Cd = 0.15
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(e) Cd = 0.25 (f) Cd = 0.5 (g) Cd = 5 (h) Cd →∞

Figure 4.3: The time- and spatially-averaged (along the entire duct length) non-dimensional velocity magni-
tude distribution in the vertical cross-section: (a) H a = 0, and (b-h) H a = 21.2, 0 ≤Cd <∞.
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Figure 4.4: Dependency of the time-averaged non-dimensional streamwise velocity u+ = u/uτ versus the non-
dimensional wall distance [y, z]+ = uτ[y, z]/ν along the central vertical (between the Shercliff walls) (a) and
horizontal (between the Hartmann walls) (b) cross-sections.

Cd reversed this behavior, resulting in distributions closer to the neutral log-law behav-

ior, confirming the turbulence re-appearance. The horizontal profiles (i.e. between the

Hartmann walls) were showing much less variation, Fig. 4.4(b). Even for the Cd = 0.15
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(a) H a = 0 (b) Cd = 0 (c) Cd = 0.05 (d) Cd = 0.15

y
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(e) Cd = 0.25 (f) Cd = 0.5 (g) Cd = 5 (h) Cd →∞

Figure 4.5: The time-averaged two-dimensional (y- and z- components) velocity streamlines indicating the
secondary motions in the vertical (the x-component) cross-section at (a) H a = 0, and (b-h) H a = 21.2, 0 ≤
Cd <∞.

(a) H a = 0 (b) Cd = 0 (c) Cd = 0.05 (d) Cd = 0.15

y

z

By

(e) Cd = 0.25 (f) Cd = 0.5 (g) Cd = 5 (h) Cd →∞

Figure 4.6: The contours of the time-averaged non-dimensional electric potential superimposed with the total
current density streamlines in the vertical (the x-component) cross-section at (a) H a = 0, and (b-h) H a = 21.2,
0 ≤Cd <∞.

value, the deviation from the characteristic log-law distribution was just marginal.

Effects of the wall conductivity on the secondary motion (long-term time- and spatially-



4.4. RESULTS AND DISCUSSION

4

67

(a) H a = 0 (b) Cd = 0 (c) Cd = 0.05 (d) Cd = 0.15
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(e) Cd = 0.25 (f) Cd = 0.5 (g) Cd = 5 (h) Cd →∞

Figure 4.7: The time-averaged non-dimensional streamwise Lorentz force contours in the vertical (the x-
component) cross-section at (a) H a = 0, and (b-h) H a = 21.2, 0 ≤Cd <∞.

(a) H a = 0 (b) Cd = 0 (c) Cd = 0.05 (d) Cd = 0.15
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By

(e) Cd = 0.25 (f) Cd = 0.5 (g) Cd = 5 (h) Cd →∞

Figure 4.8: The resolved non-dimensional turbulent kinetic energy contours in the vertical (the x-component)
cross-section at (a) H a = 0, and (b-h) H a = 21.2, 0 ≤Cd <∞.

averaged y- and z-velocity components) are shown in Fig. 4.5. For the MHD neutral case,

a full diagonal symmetrical distribution was generated with eight identical size eddies,

Fig. 4.5(a). This diagonal symmetry was broken with activation of the magnetic field
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for the case where all walls were electrically insulated (Cd = 0), Fig. 4.5(b). The eddies

in the proximity of Shercliff walls were suppressed, while the eddies in the proximity of

the Hartmann walls got elongated in the y-direction. By replacing the electrically in-

sulated with electrically conducting walls (i.e. Cd = 0.05), the eddies located near the

Shercliff walls slightly expanded, Fig. 4.5(c). For Cd = 0.15, because of a sudden flow

re-laminarization, there were no secondary motions generated, Fig. 4.5(d). With fur-

ther increase of Cd (0.25 ≤ Cd ≤ 0.5) and turbulence regeneration, the secondary flow

patterns reappeared, Figs. 4.5(e-h). Now, the eddies are differently organized, and the

diagonal symmetry was replaced by the central vertical line symmetry. For Cd = 0.25

and 0.5, the eddies are oriented in the direction of the imposed magnetic field (i.e. the

y-direction), Figs. 4.5(e-f). With a further increase of the wall conductivity, the eddies

in the proximity of the Shercliff walls were suppressing the ones along the Hartmann

walls, Fig. 4.5(g). Again, the condition of the perfectly conducting walls just marginally

changed the morphology of secondary motion eddies, Fig. 4.5(h).

To provide detailed insights into the origins of the flow reorganization, we focus on

distributions of the electromagnetic parameters. The contours of the mean electric po-

tential with superimposed streamlines of the total current density are plotted in Fig. 4.6.

By evaluating the case of the fully electrically insulated walls, it can be seen that a linear

distribution between the Shercliff walls is obtained with fully closed loops of the total

current density within the fluid region, Fig. 4.6(b). Activation of the electrically conduct-

ing walls leads to a gradual reduction of the local maximum/minimum electric potential

zones near the Shercliff walls, Figs. 4.6(c)-(h). Furthermore, the loops of the total current

density also penetrate the solid domains. With a Cd increase, the resistance to the cur-

rent transfer within the walls is significantly reduced, resulting in the gradual changes

of the current density loops in the proximity of the Hartmann walls. These changes in

the current density behavior immediately contribute to the Lorentz force distribution,

as shown in Fig. 4.7. For the Cd = 0 case, the contours of the most dominant stream-

wise component of the Lorentz force show high positive contributions in the proximity

of the Hartmann walls, Fig. 4.7(b). Further away from the walls, the streamwise compo-

nent of the Lorentz force becomes negative. The regions near the Shercliff walls are less

affected since the direction of the current density is mainly parallel to the imposed mag-

netic field. An increase in the Hartmann walls conductivity (0.05 ≤Cd ≤ 0.5) leads to the

significant reduction of regions with positive values and appearance of strongly negative

regions in the duct center, Figs. 4.7(c-f). For Cd = 5 and Cd → ∞, these high positive

regions along the Hartmann walls have disappeared, and a large region with the strong

negative contributions is present in the large portion of the duct center, Fig. 4.7(g-h).

4.4.2. THE IMPACT ON THE TURBULENCE FEATURES

Next, we focus on the turbulence parameters. The contours of the long-term time- and

spatially-averaged (in the streamwise direction) resolved turbulent kinetic energy in the

vertical cross-section are shown in Fig. 4.8. The typical fully symmetrical distribution
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with enhanced turbulence region in the proximity of walls was obtained for the neutral

case, Fig. 4.8(a). With the MHD activation, for the Cd = 0 case, a strong suppression is

obtained in the proximity of the Hartmann walls, whereas the suppression in the proxim-

ity of the Shercliff walls was less, Fig. 4.8(b). With a further increase of the Cd = 0.05, the

turbulence suppression continued, making both the wall and center of duct regions less

turbulent, Fig. 4.8(c). For Cd = 0.15 a full flow relaminarization occurred, Fig. 4.8(d).

An interesting distribution of the resolved turbulent kinetic energy was obtained for

Cd = 0.25, Fig. 4.8(e). The localized spots placed at approximately halfway between

the walls and the duct center can be seen, confirming the localized turbulence regener-

ation. For Cd = 0.5, these localized turbulence regions expanded further, now covering

the entire duct center region too, Fig. 4.8(f). At Cd = 5, this process of the turbulence

regeneration continued with locally enhanced spots in the proximity of walls, Fig. 4.8(g).

Now, in contrast to the relaminarization process, the regions in the proximity of the Hart-

mann walls were significantly more turbulent compared to the regions in the proximity

of the Shercliff walls. The identical trend with marginal modification was also present at

Cd →∞, confirming the turbulence sustenance, Fig. 4.8(h). The recovery of the turbu-

lence is correlated to the Lorentz force redistribution and its impact on the flow: two jets

directly contribute to the turbulence level in the proximity of the Shercliff walls, while

the excessively strong Lorentz force augments the velocity gradient in the proximity of

the Hartmann walls. The profiles of the non-dimensional RMS of the velocity com-

ponent fluctuations along the central vertical and horizontal intersections for different

values of Cd are shown in Fig. 4.9. Note that additional DNS data were also plotted for

the non-MHD [44] and the MHD case with Cd = 0 [21]. It can be seen that a good agree-

ment between our LES and DNS data from the literature was obtained. For the RMS

profiles for all velocity components along the central vertical line exhibit qualitatively

similar behavior: a continuous decrease in the 0 ≤ Cd ≤ 0.15 range, a full relaminariza-

tion at Cd = 0.15, and a continuous increase in the 0.25 ≤Cd <∞ range, Figs. 4.9(a,c,e).

It should be noted that after the turbulence regeneration, the obtained peak RMS value

in the wall proximity of all velocity components were smaller than corresponding val-

ues for the initial non-MHD case. Furthermore, in this turbulence regeneration phase

(i.e. for Cd ≥ 0.25), all RMS profiles along the central vertical line exhibit characteristic

double peaks. The second peaks were located close to the duct center are asymptotically

approaching the non-MHD values and are higher than the reference MHD case with the

fully insulated walls (Cd = 0). The profiles of the RMS of the velocity components along

the central horizontal line show a different behavior, Figs. 4.9(b,d,f). There are no sec-

ondary peaks observed, and for Cd ≥ 5, in comparison to the non-MHD case, all RMS

values show higher values in the region between the near-wall peak location and the

center of the duct (0.15 ≤ y/D ≤ 0.5).

The profiles of the turbulent shear stress components are shown in Fig. 4.10. The

vertical profiles of the u ′w ′ component show monotonous damping of the peak val-

ues in the proximity of the Shercliff wall until a full relaminarization was obtained (0 ≤
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Figure 4.9: The profiles of non-dimensional RMS of the velocity fluctuations (u′, v ′ and w ′) along the central
horizontal and vertical intersections in the proximity of the (a,c,e) Shercliff and (b,d,f) Hartmann walls.

Cd ≤ 0.15), Fig. 4.10(a). During the turbulence regeneration process, the near-wall peaks

gradually increase until the saturation point was reached at Cd = 5. Interestingly, during
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Figure 4.10: The non-dimensional time-averaged profiles of non-diagonal components of the Reynolds stress
tensor u′w ′ and u′v ′ along the central vertical and horizontal intersections in the proximity of the (a) Shercliff
and (b) Hartmann walls.

the process of the turbulence reappearance and sustenance (0.25 ≤ Cd → ∞), charac-

teristic negative contributions of the shear stress were obtained in the 0.2 ≤ z/D ≤ 0.5

region. This behavior of the vertical profiles, as well the double-peak behavior of the

vr ms and wr ms components (already discussed in Fig. 4.9, can be explained in terms of

the double-jet M-shape formation in the proximity of the Shercliff walls, as illustrated in

Fig. 4.3(e-h). The horizontal profiles of the u ′v ′ turbulent stress component exhibited

a qualitatively different behavior, Fig. 4.10(b). Here, after the initial effective suppres-

sion (0 ≤Cd ≤ 0.15), an effective recovery occurred, resulting in the rapid increase of the

shear stress component. Now, the peak values in the wall proximity reached values of

the non-MHD case (albeit with their locations moved farther away from the Hartmann

wall). Furthermore, the values of the u ′v ′ were surpassing values for the neutral non-

MHD case in (5 ≤Cd →∞) range.

Next, we move to analyze the budget of the turbulent kinetic energy transport equa-

tion. By introducing the long-term time-averaging 〈 〉 and fluctuating (′) operators, the

equation can be written in the general form as:

〈u j 〉
∂k

∂x j︸ ︷︷ ︸
Convecti on

=−〈u′
i u′

j 〉
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Figure 4.11: The profiles of non-dimensional turbulent kinetic energy budget terms (production, MHD gain
and MHD loss) extracted along the central vertical and horizontal intersections in the proximity of the (a,c,e)
Shercliff and (b,d,f) Hartmann walls.

The distributions of the turbulent kinetic energy budget terms (scaled with u3
0/D)

along the central vertical and horizontal intersections of the central vertical plane are

presented in Figs. 4.11 and 4.12. This separation of the term contributions is done to

provide a better overview of the physical mechanism of the energy distribution. The
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Figure 4.12: The profiles of the non-dimensional turbulent kinetic energy budget terms (turbulent diffusion,
viscous diffusion and dissipation) along the central vertical and horizontal intersections in the proximity of the
(a,c,e) Shercliff and (b,d,f) Hartmann walls.

contributions of the pressure and subgrid diffusion, as well as subgrid dissipation are

not shown due to their negligible contributions compared with the remaining terms. For

comparative purposes, we also have plotted budget contributions of the fully insulated

case (Cd = 0) from the literature [21]. It can be concluded that for all presented bud-
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get contributions, a generally good agreement between the present results and results

from the literature [21] were obtained. Some minor local differences (e.g. for turbulent

diffusion and viscous dissipation) can be explained in terms of different numerical ap-

proaches used.

Starting from the mechanical production term, it can be seen that the activation of

the imposed magnetic field suppresses the characteristic near-wall peak values in the

proximity of both walls until the full relaminarization is achieved (0 ≤ Cd ≤ 0.15), Fig.

4.11(a,b). With further increase of Cd , the production contribution increases, the final

peak value (at Cd →∞) in the proximity of the Hartmann wall now exceeds the value in

the proximity of the Shercliff wall. When compared to the peak values for the Cd = 0 case,

the peak value for Cd →∞ in the proximity of the Hartmann wall shows an increase of

almost factor four (Fig. 4.11(b)), whereas the peak value in the proximity of the Shercliff

wall was reduced by approximately 60%, Fig. 4.11(a).

The qualitative similar behavior of the production term is also observed for profiles

of the MHD gain (Figs. 4.11(c,d)) and MHD loss budget terms (Figs. 4.11(e,f)). However,

in contrast to the production term, the MHD budget contributions changed less signifi-

cantly in response to the varied wall conductivity, especially in the proximity of the Hart-

mann wall, Fig. 4.11(d). The peak values of the MHD gain term for Cd = 5 and Cd →∞
in the vicinity of the Hartmann wall are now slightly enhanced (approximately 20%) in

comparison to the Cd = 0 case. In contrast, the MHD loss term peak in the proximity

of the Hartmann wall almost doubled for Cd → ∞ when compared to the Cd = 0, Fig.

4.11(f). By comparing the order of magnitude between the production (Figs. 4.11(a,b))

and MHD gain budget (Fig.4.11(c,d)) terms, we can conclude the flow reorganization

(because of the presence of the mean velocity gradient in the production term) has a

leading role with respect to the pure turbulence contributions and their interaction with

the imposed magnetic field.

The profiles of the turbulent and viscous diffusion demonstrate significant contribu-

tions only in the proximity of the walls, Figs. 4.12(a,b,c,d). In the vicinity of the Shercliff

wall, the final Cd →∞ almost halved in comparison to the Cd = 0 case, Fig. 4.12(a). In

contrast to that behavior, for identical values of Cd , the profiles of the turbulent diffusion

near the Hartmann wall were augmented for a factor three, Fig. 4.12(b). The qualitative

similar trends were observed also for the viscous diffusion terms, Figs. 4.12(c,d). Fi-

nally, the dissipation profiles in the proximity of the Shercliff wall show lower values for

Cd →∞ than for Cd = 0 case, Fig. 4.12(e). In contrast, a significant augmentation was

obtained in the vicinity of the Hartmann wall for Cd →∞, Fig. 4.12(f). This behavior was

expected due to a balance between the viscous diffusion and dissipation budget terms

at the duct walls.

Next, we analyze the turbulence anisotropy states by plotting the Lumley’s turbu-

lence triangles ([45]) for the turbulent stress components extracted along the central

vertical and horizontal intersections, Figs. 4.13(a,c), respectively. Here, ξ and η are the

second and third-invariants of the anisotropy tensor bi j , defined as:
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Figure 4.13: The anisotropy distribution of the turbulence (Lumley triangle) extracted along the central vertical
(in the proximity of the Shercliff wall) (a) and horizontal (in the proximity of the Hartmann wall) (c) profiles of
the vertical cross-section of the duct. The zoom-in of the zone indicating one-component turbulence for the
Shercliff and Hartmann regions is presented in (b) and (d) correspondingly. The following notation is used for
the turbulence states: ISO - isotropic, 2C - two-component, 1C - one-component, AX - axisymmetric.
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6η2 = bi j b j i , 6ξ3 = bi j b j k bki , bi j =
u

′
i u

′
j

2k
− 1

3
δi j (4.18)

Starting from the entire map of turbulence state distributions for the neutral (non-

MHD) case one can observe typical two-component (2C) region close to the walls, fol-

lowed by the one-component (1C) state, and the final axisymmetric state (AX), Figs.

4.13(a,c). Then, to provide a better insight into turbulence state reorganization caused

by the imposed electrical conductivity of the duct side walls, we provide zoom-ins in the

proximity of the one-component turbulence state point (1C) for profiles extracted along

the vertical and horizontal central intersections, respectively, as shown in Figs. 4.13(b,d).

The minimum of the turbulence anisotropy (defined in terms of the farthest distance

from the 1C limit point) was obtained for H a = 0 case for both walls. In the vicinity of the

Shercliff wall, an increase in the electrical wall conductivity leads to the anisotropy in-

crease in 0 ≤Cd < 0.25 range, Fig. 4.13(b). The peak is achieved at Cd = 0.25 after which

a decrease is obtained in 0.25 <Cd <∞ range. Despite this reduction in the turbulence

anisotropy, the final Cd → ∞ value is still more anisotropic than the Cd = 0 situation.

The turbulence anisotropy in the proximity of the Hartmann wall showed a different be-

havior, Fig. 4.13(d). Now, an enhancement of turbulence anisotropy was observed only

in the relatively narrow region 0 ≤ Cd < 0.05. At Cd = 0.05 the peak value was reached,

followed by a gradual decrease as Cd increased. In contrast to the Shercliff wall, the

anisotropy value in the vicinity of the Hartmann wall at Cd → ∞ is much closer to the

neutral case (H a = 0) value.

Finally, we performed the analysis of the time series of the instantaneous streamwise

velocity sampled at characteristic monitoring locations in the duct center and in prox-

imities of the Shercliff and Hartmann walls. for different values of the Cd , Fig. 4.14. It can

be seen that the instantaneous behavior in the duct center is just slightly affected by im-

posed changes of the Cd parameter, Fig. 4.14(a). The instantaneous response is different

for the near-wall locations, Fig.4.14(b,c). Here, the imprints of the patterned turbulence

structures are particularly visible in the form of quasi-periodic signals for the Cd = 0.1

case. Corresponding power spectra density (PSD) distributions [46] are shown in Fig.

4.15. The characteristic slopes of −5/3 (Kolmogorov inertial range) and −16/3 (dissipa-

tion range) do not show any significant changes with imposed Cd variation in the duct

center, Fig. 4.15(a). A sudden appearance of the leading frequency f = 0.02 Hz can be

seen for Cd = 0.1, which corresponds to the characteristic quasi-periodic signal shown in

Fig. 4.14(a). At the location in the proximity of the Shercliff wall, notable differences are

obtained for the Cd = 0.25, where the inertial range started at the lower frequencies, and

where the dissipative range slope becomes less steep, Fig. 4.15(b). In the vicinity of the

Hartmann wall, the observed changes in characteristic slopes were more pronounced,

Fig. 4.15(c). The inertial range started at lower frequencies already at Cd = 0, while the

dissipation range slope was less rapid at Cd = 0.1. With a further increase in Cd , the slope

of −16/3 in the dissipation range was recovered.
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Figure 4.14: The time series of the non-dimensional instantaneous streamwise (x-component) velocity in the
center of the duct with the following coordinates py z (0.5,0.5) (a), in the proximity of the Shercliff wall with
the following coordinates py z (0.5,0.1) (b), and in the proximity of the Hartmann wall with the following co-
ordinates py z (0.1,0.5) (c). The following indication is used: (—–) - H a = 0, (—–) - H a = 21.2, Cd = 0, (—–) -
H a = 21.2, Cd = 0.1, (—–) - H a = 21.2, Cd = 0.15, (—–) - H a = 21.2, Cd = 0.25, (—–) - H a = 21.2, Cd →∞,
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Figure 4.15: The power spectral density of the non-dimensional instantaneous streamwise (x-component) ve-
locity for different values of Cd at locations shown in the previous figure. Note that due to better visibility, the
vertical axis was shifted down for one decade for each consecutive plot.
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4.5. SUMMARY AND CONCLUSION
We have performed a numerical study of the turbulent magnetohydrodynamic square

duct flow with arbitrary electrically conducting Hartmann walls subjected to a transverse

uniform magnetic field. We have assumed the one-way coupling between the fluid flow

and imposed magnetic field, and have applied Large Eddy Simulation with the dynamic

Smagorinsky subgrid closure to account for the turbulence. We have varied the typical

wall conductance ratio over a wide range of 0 ≤Cd →∞, for fixed values of the Reynolds

(Re = 5602) and Hartmann (H a = 21.2) numbers (both selected to provide a fully devel-

oped turbulence regime). The variation of the electrical conductance of the Hartmann

walls has introduced significant flow and turbulence reorganization, which can be clas-

sified into the following three stages. The first stage corresponds to the 0 ≤ Cd < 0.15

range, and was characterized by a gradual suppression of the velocity fluctuations and

appearance of the patterned turbulence clusters in the vicinity of the Shercliff walls. The

second stage was obtained at Cd = 0.15, when a full flow laminarization occurred. The

final third stage was obtained in the 0.15 < Cd → ∞ range, when a turbulence regen-

eration (triggered in the regions between the Hartmann walls and the duct center) and

sustenance was observed.

The flow morphology, including the secondary flow patterns, went through signif-

icant alternation along all three stages. The analysis of the turbulent kinetic energy

budgets have provided detailed insight into mechanisms behind the MHD induced flow

relaminarization and final turbulence regeneration (i.e. due to the interplay between

the flow reorganization and local distribution of the current density). For the perfectly

electrically conducting Hartmann walls, the turbulence reached level close to the non-

MHD situation (i.e. H a = 0), confirming the full turbulence regeneration after an initial

MHD induced suppression. The maximum of the turbulence anisotropy was reached at

Cd = 0.05 and Cd = 0.25 in proximities of the Hartmann and Shercliff walls, respectively.

The slopes of the power spectra density distributions were mostly affected in the inter-

mediate range of Cd in the proximity of the Hartmann walls. The provided numerical

results also intended to motivate additional experimental studies in the similar range

of the Re/H a working parameters to provide the final answers on turbulence regenera-

tion triggered by the changes of the electrical conductance of the Hartmann walls. The

importance of the finite electrical conductance of the Hartmann walls can find direct ap-

plications in the flow and turbulence control during the continuous casting and in liquid

metal blankets of the new generation of the fusions reactors.
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5
EFFECTS OF ELECTRICALLY

CONDUCTIVE WALLS ON A

TURBULENT

MAGNETOHYDRODYNAMIC FLOW IN

A CONTINUOUS CASTING MOLD

In the present chapter, we have performed a series of numerical simulations of the turbulent liquid

metal flow in a laboratory-scale setup of the continuous casting. The liquid metal flow was subjected

to an external non-uniform magnetic field reproducing a realistic electromagnetic brake (EMBr)

effect. The focus of this chapter was on the effects of the finite electrical conductivity of Hartmann

walls on the flow and turbulence in the mold. The results obtained for the neutral (non-MHD) and

MHD cases over a range of the imposed EMBr strengths - all for the perfectly electrically insulated

walls - were compared with the available Ultrasound Doppler Velocimetry (UDV) measurements. A

good agreement between simulations and experiments was obtained for all simulated cases. Next,

we completed a series of simulations including a wide range of the finite electrical conductivities

(ranging from weakly to perfectly conducting wall conditions) of the Hartmann walls for a fixed

value of the imposed EMBr. The obtained results demonstrated a significant influence of the electric

wall conductivities on the flow and turbulence reorganization.

Published as: A. Blishchik, I. Glavinić, T. Wondrak, D. van Odyck, S. Kenjereš, Effects of electrically conductive
walls on turbulent magnetohydrodynamic flow in a continuous casting mold, International Journal of Heat
and Fluid Flow 95, 108967, 2022, doi: 10.1016/j.ijheatfluidflow.2022.108967
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5.1. INTRODUCTION
Steel casting is one of the most important industrial processes that fills humanity’s needs

in this material widely used in a range of technological applications. Nowadays, the great

majority of the produced steel is obtained with continuous casting (CC) technology. Al-

though the continuous casting has been actively used since the 1950s, incessant efforts

to improve the efficiency of the entire process and specific crucial parts are being made.

One of these crucial parts is the transport of the highly turbulent liquid metal flow from a

tundish to a casting mold through a submerged entry nozzle. It is recognized that various

destructive phenomena occurring in the mold are responsible for a significant reduction

of the product quality [1]. These phenomena include excessively strong double-roll flow

patterns or entrainment and entrapping of the slag particles from the mold free-surface.

To make such a sensitive process more stable, several control tools, including in particu-

lar, the electromagnetic brake (EMBr), are used. The application of the electromagnetic

brake, as an elegant non-invasive Magnetohydrodynamics (MHD) based control mech-

anism, is possible because of a high electrical conductivity of the liquid steel (σ=O (106)

S/m), which will produce electric current within the fluid when subjected to an external

magnetic field. Finally, interactions of the generated electric current and imposed mag-

netic field will produce a Lorentz force which will locally affect the velocity field, [2–4].

Experimental studies of the MHD phenomena of continuous casting are challenging

due to the presence of extremely high temperatures of the liquid steel (approx. 1500◦C).

To circumvent these high temperatures, experiments utilizing alloys (such as galinstan,

GaInSn) that are in a liquid state at room temperatures are designed, [5]. The remaining

problem with this and similar alloys is their opaqueness, which prevents them from ap-

plications of the classic laser optics diagnostics tools such as Laser Doppler Anemometry

(LDA) and Particle Imaging Velocimetry (PIV).

Despite numerous challenges, significant research progress was made during the last

decade. Many numerical and experimental studies focusing on the EMBr mechanism

have been reported in the literature. In the numerical studies of [6], Large Eddy Simula-

tion (LES) method was used to analyze the effects of the EMBr vertical position. It was

demonstrated that by applying a magnetic field across the port stronger jets were cre-

ated, while a double-ruler brake significantly suppressed turbulence intensity. Effects of

the imposed magnetic field strength and depth of the submerged nozzle were numeri-

cally investigated in [7]. When the magnetic field strengthened, the typical double-roll

flow pattern was moved up, whereas the deeper SEN resulted in moving these rolls down.

An interesting combination of the LES and a zero-dimensional model was applied in nu-

merical studies of the origin of the self-sustained oscillations in a thin cavity mimicking

the simplified continuous casting setup, [8]. The multi-phase simulations of effects of

the argon bubbles injection on the removal of the inclusion at the meniscus (top sur-

face) were investigated in [9] and [10]. It was shown that the injection of smaller bubbles

resulted in larger inclusions. Furthermore, by increasing the flow rate of injected bubbles

the meniscus velocity was also increased.
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In [11] authors reported on experiments with the Ultrasound Doppler Velocimetry

(UDV) sensors, which they used to analyze the specific nozzle shape in generating a

swirling flow. The same measuring technique was also used in [12] where the focus was

on the imposed magnetic field effects on the resulting flow structure and turbulence. To

be able to track the presence of the injected argon bubbles in the mold, a novel magnetic

induction tomography (MIT) experimental technique was introduced in [13]. The im-

proved multi-phase capabilities of the MIT sensors, able to provide both the phase and

amplitude data, were recently reported in [14]. Considering the control theory, the ini-

tial attempts of creating the control loop for the continuous casting process were mainly

focused on maintaining the level of the liquid metal in the mold, [15]. In the more recent

work of [16], the concept of the industrial real-time controller, capable of adjusting flow

structure, was proposed.

It should be noted that in a great majority of studies reported in the literature dealing

with continuous casting assumed the presence of the fully electrically insulated walls.

However, in the real-scale industrial continuous-casting mold, working conditions can

significantly deviate from this assumption (e.g. due to a formation of the solidifying

shells in the proximity of the walls). A very few numerical and experimental studies ad-

dressed the effects of the electric wall conductivities, e.g.[17], [18]. In these studies, a

single value of the characteristic ratio of the wall/fluid conductivities was considered,

and it was concluded that a finite wall conductivity had a significant impact on the

flow. The effects of different configurations of the wide and narrow conductive walls

in a continuous-casting mold were numerically investigated in [19]. The authors con-

sidered also a single value of the finite wall conductivity ratio in addition to perfectly

insulated and perfectly conductive walls. The turbulent flow in the mold was reported

to be strongly suppressed in the case of the conductive walls. The impact of the various

imposed magnetic field strengths on the meniscus flow in a continuous-casting mold

was presented in [20]. Again, the walls with just a single value of the characteristic wall

conductivity ratio were used. The strong effect of the meniscus flow acceleration and

braking was demonstrated depending on the strength of the imposed magnetic field.

For generic MHD configurations (i.e. flows in rectangular channels or pipes), it was

demonstrated that a change of the wall conductance can have significant impact on the

flow and turbulence reorganization, as shown in [21],[22], [23], [24]. This lack of a wider

range of studies dealing with the effects of the electrically conducting walls is associated

with partial challenges in creating and executing proper working conditions. The ex-

perimental difficulties are associated with a necessity to have a complex multi-modular

structure of the setup allowing a simple replacement of the walls. For the computer sim-

ulations, the particular challenges are in the necessity to integrate both fluid and solid

wall domains (so-called conjugate MHD [25]), which requires the development of ad-

vanced numerical algorithms.

In the present work, to fill the existing gap in the literature regarding the possible ef-

fects of the finite wall conductivity ratios on the flow and turbulence reorganization, we
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will perform a series of numerical simulations of an existing laboratory-scale continu-

ous casting setup. Currently, the wall conductivity ratio is not considered as a control

mechanism in a real continuous casting process. However, we will demonstrate that ac-

counting for various values of the wall conductivity ratio at the design stage of a CC setup

can significantly change the flow pattern. First, we will perform simulations of the non-

MHD case and MHD case with perfectly electrically insulated walls over a range of EMBr

(i.e. different values of the imposed current to generate localized spatial distribution of

the magnetic field) and will compare results with the available experimental data. Sec-

ond, we will perform a detailed parametric study of various electric conductivities of the

Hartmann walls for a fixed value of the EMBr strength, and will report on the flow and

turbulence reorganization.

5.2. GOVERNING EQUATIONS AND NUMERICAL DETAILS

5.2.1. GOVERNING EQUATIONS FOR A TURBULENT ONE-WAY COUPLED MHD
FLOW

An incompressible single-phase electrically conductive fluid is considered. The fluid is

subjected to the external constant non-uniform magnetic field resulting in the appear-

ance of the contributing Lorentz force. The flow of an electrically conducting fluid can

be described by conservation of the mass and momentum, as follows:

∇·U = 0 (5.1)

∂U

∂t
+ (U ·∇)U =− 1

ρ
∇p +ν∇2U+ 1

ρ
FL (5.2)

where U is velocity, p is pressure, ν is the kinematic viscosity, ρ is density, and FL is the

Lorentz force. The liquid metal flow in continuous casting mold is expected to be highly

turbulent
(
Re =O (104 −105)

)
, and special attention should be devoted to the correct tur-

bulence prediction. In the present study, we adopt the dynamic Large Eddy Simulation

(LES) approach. In the LES, spatially filtered governing equations Eqn. (5.1) and Eqn.

(5.2) can be written as:

∇·U = 0 (5.3)

∂U

∂t
+ (

U ·∇)
U =− 1

ρ
∇p∗+ν∇2U−∇·τsg s + 1

ρ
FL (5.4)

where (τsg s ) is the sub-grid scale (SGS) stress tensor, (’ ’) is the spatially filtered value,

and p∗ = p + 1
3τ

′I is the modified pressure. In order to close Eqn. (5.4), the linear depen-

dency of the SGS stress tensor on the strain rate is introduced:

τ
sg s
i j =−2νsg s Si j , νsg s = (CS∆)2

(
2Si j Si j

) 1
2

(5.5)
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where Cs is the Smagorinsky coefficient, Si j is the strain rate tensor, νsg s is the sub-grid

scale turbulent viscosity. Assuming Cs to be a constant would be not correct, consid-

ering the strong influence of the magnetic field on the flow fluctuations, [26]. Hence,

the dynamic approach proposed by Lily [27], representing the local calculation of Cs , is

applied as follows:

C 2
S = 1

2

〈〈Li j Mi j 〉〉
〈〈Mi j Mi j 〉〉

(5.6)

Li j = �U iU j +Ũ iŨ j (5.7)

Mi j =∆2 �S Si j + ∆̃2S̃ S̃i j (5.8)

where ∆ is the main filter (∆ = (∆x∆y∆z )1/3), ∆̃ is the second filter (∆̃ = 2∆) and ’〈〈...〉〉’
indicates the local spatial averaging operation over the cell faces.

The accounting of the MHD interactions is accomplished through the Lorentz force

term, formulated as:

FL = J×B (5.9)

where J is the current density, and B is the constant imposed magnetic field. To calculate

the new additional unknown variable J, we refer to the liquid metal nature of the fluid

implying the extremely high magnetic diffusion and subsequently the very low magnetic

Reynolds number:

Rem = U D

λ
<< 1 (5.10)

where Rem is the magnetic Reynolds number, D is the characteristic length and λ is the

magnetic diffusion. Following the statement in Eqn. 5.10, the one-way coupling MHD

approach can be applied starting from the Ohm law for the moving conducting fluid as:

J =σ
(
−∇φ+U×B

)
(5.11)

whereσ is the electrical conductivity of the fluid andφ is the electric potential. By substi-

tuting the divergence-free condition for the current density into Eqn. (5.11), the Poisson

equation for the electric potential can be formulated as:

∇2φ=∇· (U×B
)

(5.12)

The pressure-driven MHD flows are defined with two characteristic non-dimensional

numbers, Reynolds and Hartmann numbers that are calculated as:

Re = U D

ν
, H a = BD

√
σ

ρν
(5.13)

To conserve J, the Four Steps Projection Method (FSPM), proposed by [28], is imple-

mented in our code. Further key details of the numerical implementation are given in

our recent work [23].
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5.2.2. MODELING OF THE FINITE ELECTRICALLY CONDUCTIVE WALLS

Taking into account the finite electrical conductivity and finite thickness of surrounding

walls is not a trivial task, and requires a specific approach aimed at predicting the electric

potential and current density transfer between fluid and wall domains. In the present

study, we use our recently developed conjugate MHD method. Here, a brief summary

of this approach is provided, while the complementary steps of the algorithm, as well as

the thorough validation, can be found in [23]. The conjugate MHD method is generally

based on splitting fluid and wall regions into different computation domains, where the

Poisson’s equation for the electric potential in different domains is formulated as:

∇·
(
σL∇φL

)
=∇· (σL

(
U×B

))
(5.14)

∇·
(
σS∇φS

)
= 0 (5.15)

where subscripts L and S indicate the liquid and solid domain, respectively. The spe-

cific weighted flux interpolation scheme is used to obtain the electric potential at the

interface, [29]:

φi [L,S] = wφL + (1−w)φS , w = rSσL

rLσS + rSσL
(5.16)

where r is the corresponding first cell-center distance from the interface. For the conju-

gate MHD problems, it is convenient to introduce additional non-dimensional param-

eter (Cd )) representing the characteristic electrical conductivities and thickness ratios

as:

Cd = σS dw

σLD
(5.17)

where dw is the characteristic thickness of the wall and D is the characteristic length-

scale of the fluid domain.

5.2.3. THE COMPUTER CODE

To carry out the simulations, we used our in-house finite-volume MHD solver based on

the open-source library OpenFOAM [30]. The solver includes all described conjugate

MHD equations, [23]. The spatial discretization for the convective and diffusive term

is performed by using the second-order central differencing scheme (CDS), while the

second-order temporal discretization is accomplished by using the backward scheme.

The PISO algorithm [31] is applied to couple pressure and velocity fields.

5.3. MINI-LIMMCAST SETUP AND BOUNDARY CONDITIONS

5.3.1. EXPERIMENTAL SETUP

In the present study, the geometry used for the numerical simulations is based on the

most recent version of the laboratory-scaled mold of a continuous caster at Mini-LIMMCAST



5.3. MINI-LIMMCAST SETUP AND BOUNDARY CONDITIONS

5

89

Figure 5.1: Sketch of the experimental setup, [32]. Note that the setup dimensions are defined in millimeters.

(Liquid Metal Model for Continuous Casting) facility located at Helmholtz–Zentrum Dres-

den–Rossendorf (HZDR), [32]. The experimental details are only briefly provided here,

while the detailed information is available in [32]. The eutectic alloy galinstan (GaInSn)

is used as a model of liquid steel since it is liquid at room temperature, and has simi-

lar physical and electrical properties to liquid steel. Liquid metal is continuously driven

from the reservoir to the tundish, where it enters the mold through the submerged entry

nozzle (SEN), and then moves back to the reservoir. The flow rate through the SEN is con-

trolled by the stopper rod, while the liquid metal level in the mold is kept constant. Two

coils, one adjacent to each wide face of the mold, generate the electromagnetic braking

(EMBr) effect 0.075 m below the free surface, Fig. 5.1. The strength of the generated mag-

netic field depends on the electric current through the coils and can reach up to B = 0.4

T for the maximum current of I = 600 A. Walls in the experiment are considered as elec-

trically insulated, i.e. Cd = 0. Velocity measurements are performed by using Ultrasound

Doppler Velocimetry (UDV) with an array of ten ultrasound transducers on the upper

part of the narrow wall. One should take into account that UDV can measure the veloc-

ity along the entire length of the beam but only the component in the axial direction of

each transducer (the x-component for the present case) and the velocities are spatially

averaged depending on the diameter of the ultrasound beam (which is 8 mm for the

present setup).

5.3.2. NUMERICAL SETUP

There is no need to consider a tundish and a reservoir in the numerical study, and conse-

quently, the setup can be greatly simplified. The numerically simulated Mini-LIMMCAST

domain will include the submerged entry nozzle with a bifurcated port and a rectangu-

lar mold, as shown in Fig. 5.2(a). The numerically simulated geometry is identical to

the experimental setup: (i) the distance from the outlet to the meniscus L = 0.612 m, (ii)

the width of the mold W = 0.3 m, (iii) the half-thickness of the mold D = 0.0175 m. It

is important to note that these dimensions are valid only in the case of the electrically
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Figure 5.2: Sketch of the numerical setup: (a) a side view of the entire mold, (b) a top view (from meniscus) of
the mold (note that only half of domain is shown).

insulated solid walls. By inserting inside the mold two finite, electrically conducting,

and perpendicular to the y-direction walls with the finite wall thickness dw = 5× 10−4

m, resulting half-thickness of the mold will be reduced to D = 0.017 m, Fig. 5.2(b). The

SEN immersion depth hi m = 0.35 m remains constant. The numerically simulated port

shapes are slightly less round than in original experiments resulting in a superior mesh

quality (much less skewed control volume mesh in the proximity of the port). Note that

this slight change of the port shape has not produced any notable changes in the flow

and turbulence predictions.

5.3.3. MESH AND BOUNDARY CONDITIONS

The constant flow rate obtained from the experiment Q f low = 7.17× 10−5 m3/s is im-

posed at the inlet, and the zero-pressure boundary condition at the outlet. Although the

bifurcated port is a natural turbulence generator, the turbulent structures need to be ini-

tialized before the port to mimic the real conditions where the flow is already turbulent

in the SEN because of the flow disturbances generated by the stopper rod. In the present

chapter, a fully developed turbulence state is obtained by imposing periodic boundary

conditions at the upper part of the inlet segment. The no-slip velocity boundary con-

dition is applied at all walls. The meniscus is modeled by imposing the slip boundary

conditions. This approach proved to be the most numerically efficient and accurate be-

cause of a relatively small free-surface deformation observed in the experiments. We

also conducted a series of additional test simulations to ensure that the meniscus fluc-

tuations were marginal. These results are presented in Appendix A. Lastly, to generate

electro-magnetic braking in the mold, the external magnetic field spatial distribution
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(a) (b)

Figure 5.3: (a) The contours of the By component of the magnetic field in the central vertical cross-section
(y = 0 m); (b) the vertical profile of the By component of the magnetic field; Note that shown magnetic field is
for imposed electric current of I = 375 A.

Table 5.1: List of simulations performed in the present study.

Group Re Ha EMBr (in A) Cd (Hartmann walls)

I 32000 0 0 0

68 100 0

142 225 0

210 375 0

II 32000 142 225 0.025

142 225 0.05

142 225 0.1

142 225 0.15

142 225 0.2

142 225 0.5

142 225 1

142 225 5

142 225 ∞

is imposed based on the measured By component of the external magnetic field in the

z-coordinate direction, as indicated in Fig. 5.3.

We divide our simulations into two groups. The first group includes the electrically
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Figure 5.4: The numerical mesh in the upper-left part of the mold. The fluid region is colored by grey, the solid
region is colored by orange.

insulating walls (Cd = 0,∂φ/∂n = 0) and direct comparisons with the experiments over

a range of imposed electric current (0 ≤ I ≤ 375 A) and resulting magnetic field strength

(0 ≤ H a ≤ 210). The second group of simulations includes activation of the conjugate

MHD where the electrical conductance of the Hartmann walls is varied over a wide range

of the conductance wall parameter (0.025 ≤ Cd ≤ 5) with a fixed value of the imposed

current of I = 225 A. Note that the wall conductivity ratio of the solidifying shell form-

ing on the walls during the real size caster is Cd ≈ 0.125. Additionally, the extreme case

with Cd →∞ is considered as well (where φ = 0 boundary condition is imposed), indi-

cating the fully electrically conducting walls. The experimental data are not available for

the second group of simulations but generated numerical results are intended to guide

the design of a new generation of experimental setups with a finite conductance of the

Hartmann walls. An overview of performed simulations is given in table 5.1.

For the conjugate MHD cases (i.e. a finite Cd ), the computational domain contains

the fluid occupying and solid-wall (two Hartmann walls) regions. ICEM CFD meshing

software is used to generate a block-structured non-uniform mesh containing regular

hexagonal control volumes (CVs). The fluid domain is represented by ML ≈ 4×106 con-

trol volumes (29 nodes across the port in the horizontal direction), while the solid-wall

domain contains MS ≈ 5× 105 control volumes, Fig. 5.4. The mesh refinement is ap-

plied in the proximity of the walls, meniscus at the top, as well as around the entrance

ports of the nozzle. In the present study, we apply the Spalding wall functions for the
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wall treatment [33]. To check the grid dependency of obtained solutions two additional

numerical meshes are also considered: the coarse mesh, with ML,coar se ≈ 2×106 CVs (15

nodes across the port in the horizontal direction), the fine mesh ML, f i ne ≈ 6×106 CVs

(45 nodes across the port in the horizontal direction), Appendix B. The Courant number

Co = (∆t/2V )
∑

f aces |ψi | ≈ 1 is kept for all simulations (note that V is the cell volume and

ψ is the face volumetric flux).

5.4. RESULTS AND DISCUSSION

5.4.1. VALIDATION WITH THE EXPERIMENT FOR THE ELECTRICALLY INSU-
LATED WALLS

(a) No MHD (b) I = 100 A.

X

Z

By

(c) I = 225 A. (d) I = 375 A.

Figure 5.5: The contours of time-averaged velocity magnitude superimposed with the velocity streamlines
(white lines) in the central vertical (y = 0 m) cross-section (upper half of the mold) for the range of EMBr
strength and fixed Cd = 0 (electrically insulated walls).

We start our analysis by comparing numerical simulations and experimental results

for cases with the electrically insulated walls (group I results as listed in Table 5.1). The

most salient long-term averaged flow features are shown in Fig. 5.5, where we select the

central vertical cross-section and superimpose the streamlines and contours of the ve-

locity magnitude for various strengths of the imposed EMBr (i.e. 0 ≤ I ≤ 375 A). To obtain

a reliable convergence of the first- and second-moments of the velocity field statistics,

we perform averaging over 120 s after the initial flow establishment. This period equals
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Figure 5.6: A sketch of the locations in the central-vertical plane (y = 0 m) for which characteristic velocity
profiles are extracted along the following coordinates: x = 0.04, 0.06, 0.08 and 0.1 m.

to approximately 3 days of real-time using 96 cores of 2.6 GHz Intel Xeon E5-2697A v4.

It can be seen that flow has a typical double-roll structure in the upper and lower parts

of the mold. By imposing the electric current of I = 100A, Fig. 5.5(b), the centers of the

lower rolls are more shifted in the negative z-direction compared to the neutral case, Fig.

5.5(a), while the upper rolls stay unaffected. With further increase of the applied cur-

rent, the lower rolls are significantly reduced and their centers are moved closer to the

inlet port, Figs. 5.5(c),(d). In contrast, locations of centers of upper rolls are just slightly

affected by imposed changes of electric current.

Next, we compare measured and numerically obtained vertical profiles of the mean

streamwise (in the x-coordinate direction) velocity component in the central vertical

plane (y = 0 m) at characteristic horizontal locations: x = 0.04,0.06,0.08,0.1 m, as il-

lustrated in Fig. 5.6. To make a direct comparison between measurements and numer-

ical simulations, we also perform spatial averaging of simulations data in a form of the

cylindrical shape (mimicking UDV beam) with typical radius of rav = 4×10−3 m and the

height hav = 0.5×10−3 m.

The comparison between velocity profiles for various strengths of the imposed elec-

tric currents is shown in Fig. 5.7. The profiles exhibit typical behavior of a spreading

jet with a characteristic peak diminishing with the distance from the nozzle. For the

neutral case (I = 0 A), a good agreement is obtained at all locations, Fig. 5.7(a). With

the magnetic field activation, the jet angle changes because of the Lorentz force effect.

This results in a characteristic jet peak increase in magnitude, with its location closer to

the meniscus, and stronger penetration within the mold, Fig. 5.7(b-d). Similar behav-

ior of the flow was previously also observed in experimental studies of [32]. An overall

good agreement is obtained at practically all considered locations. Some differences in
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(a) I = 0 A. (b) I = 100 A.

(c) I = 225 A. (d) I = 375 A.

Figure 5.7: The profiles of the time- and spatially-averaged horizontal (x-direction) velocity component at char-
acteristic locations indicated in Fig. 5.6 in the range 0 ≤ I ≤ 375 A and fixed Cd = 0. The following indication is
used: (—–) - the present numerical study, (□□□) - the experimental results.

the proximity of the meniscus at x = 0.04, 0.06 and 0.08 m locations are visible for the

strongest applied current of I = 375 A, Fig. 5.7(d). This can be possibly explained by

the formation of the oxide layer at the meniscus in the experiment. The oxide layer can

potentially impact the flow distribution acting as a "floating wall". However, this as-

sumption requires further investigation which can be conducted as a continuation of

this work. Note that all results presented here are for the intermediate numerical mesh
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(a) No MHD (b) Cd = 0 (c) Cd = 0.05

X

Z

By

(d) Cd = 0.15 (e) Cd = 0.5 (f) Cd →∞

Figure 5.8: The superimposed contours of the long-term time-averaged velocity magnitude and streamlines
(white lines) in the central vertical (y = 0 m) cross-section (upper half of the mold) for the range of Cd param-
eter and the specific EMBr strength of I = 225 A.

since it proved to be adequate, as shown in the grid dependency analysis in Appendix B.

5.4.2. THE INFLUENCE OF THE WALL CONDUCTIVITY ON THE FLOW STRUC-
TURE

To study the effects of the finite electrical conductivity of the Hartmann walls on flow

and turbulence, we perform a series of numerical simulations from group II (Table. 5.1),

where we vary the wall conductance ratio with a fixed imposed electric current of I = 225

A. This intermediate current intensity is selected since it proved enough to impose some

significant effects on the flow and turbulence for the electrically insulated walls. The

long-term time-averaging is performed for 100 s, which proved to be sufficient to get

reliable convergence of the flow statistics. This period equals to approximately 1 week of

real-time using 96 cores of 2.6 GHz Intel Xeon E5-2697A v4.

The mean velocity fields in the central vertical plane for different values of the wall

conductance parameter are shown in Fig. 5.8. To make easier comparisons between dif-

ferent cases, we also plot results of the neutral case (Ha=0), Fig. 5.8(a), as well as the case

with electrically insulated walls (Cd = 0), Fig. 5.8(b) that are already discussed above. It

is striking that even a relatively small wall conductance parameter (Cd = 0.05) leads to

a significant flow reorganization, as shown in Fig. 5.8(c). The upper and lower rolls are

significantly reduced in the vertical direction. The centers of the upper rolls are shifted



5.4. RESULTS AND DISCUSSION

5

97

225

Cd

(a) (b)

Figure 5.9: Dependency of the maximum magnitude of the mean velocity in the vertical (y = 0 m) cross-section
with the horizontal coordinates of (a) x = 0.04 m and x = 0.06 m and (b) x = 0.08 m and x = 0.1 m on the wall
conductivity ratio parameter Cd at the specific EMBr strength of I = 225 A. The relative position of the cross-
sections is indicated in Fig. 5.6.

By

(a) No MHD (b) Cd = 0 (c) Cd = 0.05

(d) Cd = 0.15 (e) Cd = 0.5 (f) Cd →∞

Figure 5.10: The contours of the time-averaged horizontal velocity at the meniscus for the range of Cd param-
eters and the specific EMBr strength of I = 225 A.

away from the SEN, while the situation is opposite for the lower rolls. The penetrative

depth of the incoming angular jet also increased. With further increase of the Cd = 0.15,

much weaker upper and lower rolls are generated, Fig. 5.8(d). At the same time, the

penetrative depth of the angular incoming jets also weakens. This reduction of the pen-

etrative depth is even more clear for Cd = 0.5 case, while the incoming jet angle stays

unchanged. Finally, for the fully conducting Hartmann walls, the upper rolls can not be

observed anymore, and the penetrative depth of the incoming jet is reduced further, Fig.

5.8(e).

To provide a more detailed way of comparing the observed changes of the flow, we ex-

tract the maximum of the mean velocity magnitude in the central vertical plane (y = 0 m)
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Figure 5.11: Dependency of the meniscus maximum mean horizontal (x) velocity on the wall conductivity ratio
Cd , at the specific EMBr strength of I = 225 A. The relative position of the cross-sections is indicated in Fig. 5.6.

along the selected vertical profiles at fixed values of x=0.04, 0.06, 0.08 and 0.1 m, respec-

tively, as illustrated in Fig. 5.9. We focus on the effects of the wall conducting ratio (Cd )

for a fixed value of applied current I = 225 A) and show obtained results in Fig. 5.9. For

all four locations, we observe a distinct non-linear behavior. For the first location (x=0.04

m), the initial value of the neutral case initially increases until reaching a peak value (at

Cd = 0.1), followed initially by a gradual decrease before reaching a final value (note that

there is a slight increase as Cd →∞). The remaining three locations (x=0.06, 0.08, and

0.1 m) - all show qualitatively similar behavior, starting with an initial suppression of the

maximum of the velocity magnitude immediately upon activation of the magnetic field

for the electrically insulated case (Cd = 0). All distributions are reaching the local peak

in the 0.01 ≤Cd ≤ 0.1 interval, followed by initially very rapid decay (up to Cd = 1). After

that value, a gradual mild increase is observed with a further increase of Cd . The slopes of

the 〈Umax〉 versus Cd curves are showing the largest gradients at distances farther away

from the SEN, i.e. at x = 0.08 and 0.1 m The observed non-monotonic behavior of the

local maxima of the velocity magnitude can be explained in terms of the double rolls re-

organization. and the corresponding stretching of the incoming jets. Also, this behavior

should be included in the analysis of optimization of the incoming jet spreading, since

too strong jets can distort the solidifying regions along the vertical walls. To achieve a

stable double roll flow structure and significantly reduced penetrative strength of the

incoming jets, one has to keep the wall conductance ratio parameter close to unity.

Another important flow region for continuous casting is the meniscus zone. Here,

strong upper rolls can break the upper slag layer at the top surface and cause unwanted

entrainment of impurities towards the rest of the mold. Because of its importance, we

analyze next the effects of the wall conductivities on the flow at the meniscus, Fig. 5.10.

Here, we plot the contours of the horizontal mean velocity 〈Ux〉 to capture potential
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(a) Cd = 0 (b) Cd = 0.15

Figure 5.12: Visualization of the three-dimensional time-averaged electric current density streamlines in the
vicinity of the bottom right corner of the SEN port for the electrically insulated (Cd = 0) (a) and Hartmann walls
with finite conductivity (Cd = 0.15) (b). Note that color indicates distribution within the flow region (blue) or
solid wall (red).

(a) No MHD (b) Cd = 0 (c) Cd = 0.05

X

Z

By

(d) Cd = 0.15 (e) Cd = 0.5 (f) Cd →∞

Figure 5.13: The contours of the time-averaged electric potential in the central vertical (y = 0 m) cross-section
(upper half of the mold) for the range of Cd parameters and fixed EMBr strength of I = 225 A.

changes in the flow direction caused by the various wall conductivities. For the non-

MHD case, the flow at the meniscus is directed towards the SEN, Fig. 5.10(a). By activat-

ing the magnetic field and increasing the wall conductivity the horizontal velocity grad-
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ually weakens (Figs. 5.10(b)-(d)), till a critical value of Cd = 0.5 is achieved, causing the

flow reversal, Fig. 5.10(e). Further increase in Cd produces even stronger reversed flow

at the meniscus, Fig. 5.10(f). To provide a more quantitative insight into the strength of

the flow at the top surface, we extract the maximum values of the horizontal velocity for

various wall conductivities, as shown in Fig. 5.11. It can be seen that very similar values

are obtained for the non-MHD and MHD with Cd = 0. Further increase of the Cd results

in a rapid suppression, with an almost non-moving top surface for the Cd ≈ 0.5. It can be

concluded that the most efficient suppression of the horizontal velocity at the meniscus

is obtained in the 0.2 ≤ Cd ≤ 1 range, which is useful information for a future design on

the continuous casting set-ups.

One should note the main difference in the MHD interaction mechanism between

simulations from the above-mentioned groups I and II. For the cases belonging to group

I, the resulting Lorentz force distribution is directly affected by strength of the imposed

EMBr (i.e. strength of the magnetic field). In contrast to this, for the cases belonging

to group II, the resulting Lorentz force is additionally affected by rearrangement of the

current density streamlines caused by the finite electrical conductivity of the walls. Now,

instead of having fully closed loops of the electric current density streamlines within the

fluid domain (for the electrically insulated walls), the electric current also penetrates

solid walls, as shown in Fig. 5.12. With higher wall conductivity, the more current den-

sity enters the solid region, and current streamlines now loop over both flow and wall

domains. This reorganization of the electric current density changes the local Lorentz

force distribution, and finally, the velocity field.

To provide additional insights into underlying MHD variables, contours of the mean

electric potential in the central vertical plane are shown in Fig. 5.13. Starting from the

fully electrically insulated case (Cd = 0), it can be seen that local maxima and minima co-

incide with the locations of the flow loops, Fig. 5.13(b). By increasing Cd , these distinct

regions get reduced in size, Fig. 5.8(c)-(f). This behavior is expected since the source of

electric potential is the cross product of the magnetic field and local velocity, and distri-

butions of electrical potential closely follow the above-analyzed velocity fields shown in

Fig. 5.8. Previous studies indicate that the flow in the mold can be influenced by sev-

eral control mechanisms, such as argon bubbles injections [34], different strength of the

magnetic field [20], [35], [36], and the position of the stopper-rod [37]. The mechanism

presented in this work, which consists in using various Cd , differs qualitatively from the

mechanisms previously reported in the literature and can be potentially used to obtain

a necessary flow structure.

Previous studies indicate that the flow in the mold can be influenced by several con-

trol mechanisms, such as argon bubbles injections [34], different strength of the mag-

netic field [20], [35], [36], and the position of the stopper-rod [37]. The mechanism pre-

sented in this work, which consists in using various Cd , differs qualitatively from the

mechanisms previously reported in the literature and can be potentially used to obtain

a necessary flow structure.
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5.4.3. THE INFLUENCE OF THE WALL CONDUCTIVITY ON THE TURBULENCE

AND INSTANTANEOUS COHERENT STRUCTURES

Next, we move to analyze in detail the effects of the wall conductance also on the re-

solved turbulence. The contours of the long-term time-averaged resolved turbulent ki-

netic energy (TKE) are shown in Fig. 5.14. It can be seen that the predominantly turbu-

lent regions are generated in the bifurcating jet regions for all considered wall conductiv-

ities. In addition, for the non-MHD case, the TKE is also high inside the port where the

remaining incoming flow after bifurcations impinges on the bottom part. Compared

to the neutral no-MHD case, Fig. 5.14(a), activation of the magnetic field causes an

extension of the turbulence dominated regions towards the sidewalls and in the prox-

imity of the top surface, while the strong suppression is observed inside the SEN, Fig.

5.14(b). Activation of the finite wall conductance, even with a relatively low value of

Cd = 0.05, significantly alters this initial distribution and a significant reduction of tur-

bulent regions can be observed, Fig. 5.14(c). Further increase of the wall conductance

(i.e. 0.15 ≤ Cd →∞) produces just marginal effects on the TKE distribution, indicating

that a saturation point of turbulence reorganization and suppression is achieved, as seen

in Figs. 5.14(d-f).

(a) No MHD (b) Cd = 0 (c) Cd = 0.05

X

Z

By

(d) Cd = 0.15 (e) Cd = 0.5 (f) Cd →∞

Figure 5.14: The contours of the long-term time-averaged resolved turbulent kinetic energy (TKE) in the central
vertical (y = 0 m) cross-section (upper half of the mold) for the range of Cd parameters and fixed EMBr strength
of I = 225 A.

We close our analysis by finally providing some detailed insights into instantaneous

flow and turbulence behavior for different wall conductivities. To represent qualitatively

the instantaneous three-dimensional flow structures, we adopt the Q-criterion (i.e. the

second-invariant of the velocity gradient tensor), as shown in Fig. 5.15. The non-MHD

case exhibits the most dense patterns, indicating a strong interaction between the bifur-
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(a) No MHD (b) Cd = 0 (c) Cd = 0.05

Y
X

Z

(d) Cd = 0.15 (e) Cd = 0.5 (f) Cd →∞

Figure 5.15: The isosurfaces of the second-invariant of the velocity gradient tensor (Q-criterion, Q = 20 s−2)
colored by instantaneous velocity magnitude for the range of Cd parameters and fixed EMBr strength of I = 225
A.

cating jets and the free surface regions, Fig. 5.15(a). Activation of the EMBr with Cd = 0

generates less populated coherent structure regions with distinct asymmetrical distri-

bution of the bifurcating jets, Fig. 5.15(b). Note that size of coherent structures in the

bifurcating jets increases in comparison with the neutral case. In contrast to the fully

electrically insulated walls (Cd = 0) case, the embedding of electrically conducting walls

with Cd = 0.05 almost eliminates the long cylindrical-shaped vortices, while remaining

coherent structures are mainly concentrated in the bifurcating jets, Fig. 5.15(c). With

further increase of Cd , the coherent structures are suppressed and clustered in the hori-

zontally reduced bifurcating jet regions, Fig. 5.15(d-f).

To provide information on the temporal behavior of the bifurcating jets for differ-

ent values of the wall conductivities, we analyze the time-series of the velocity magni-

tude at a particular monitoring point (similar to [38, 39]): (i) the ’jet’ probe located in

the jet proximity with the following coordinates p j (0.1,0,0.54) m, and (ii) the ’menis-

cus’ probe located in the proximity of the top surface with the following coordinates

pm(0.1,0,0.605) m, as indicated in Fig. 5.16. The selected monitoring locations are

placed in flow regions that are the most sensitive to the flow oscillations.

The time evolutions (over a time interval of 70 s) of the velocity magnitude at charac-

teristic monitoring points, for various values of Cd , are shown in Fig. 5.17. The presented

signals illustrate the large-scale vertical (along the z-direction) oscillations of jets ema-

nating from the SEN. It can be seen that both the magnitude and the frequency of pre-
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Figure 5.16: The locations of selected monitoring points (probes) in the jet and close to meniscus regions -
both in the central vertical (y = 0 m) cross-section.
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(b) The jet probe.

Figure 5.17: Time series of velocity magnitude for the various Cd parameters and fixed EMBr strength of I = 225
A in two monitoring points (as indicated in Fig. 5.16): (a) the meniscus probe; (b) the jet probe. The following
lines are used: (—–) - no MHD (I = 0 A) case; (—–) - I = 225 A, Cd = 0; (—–) - I = 225 A, Cd = 0.15; (—–) - I = 225
A, Cd = 0.5; (—–) - I = 225 A, Cd →∞.

sented signals are significantly modified by changing Cd . We calculate the power spec-

tral density (PSD) of these signals by performing a discrete Fourier transformation, and

results are shown in Fig. 5.18. Note that to get a better overview of distributions, each

spectrum after the non-MHD case is shifted relative to the previous one with a factor

of 1/10. For both the sub-meniscus and jet probes, we also indicate characteristic -5/3



5

104 CHAPTER 5

P
S
D
	[
m
2
/s
]

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

	

Frequency	[Hz]

0.01 0.1 1 10

	

no	MHD
Cd	=	0

Cd	=	0.15

Cd	=	0.5

Cd	→	∞
-5/3	slope
-10/3	slope

(a)

P
S
D
	[
m
2
/s
]

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

	

Frequency	[Hz]

0.01 0.1 1 10

	

no	MHD
Cd	=	0

Cd	=	0.15

Cd	=	0.5

Cd	→	∞
-5/3	slope
-10/3	slope

(b)

Figure 5.18: Dependency of the power spectral density (PSD) on the frequency at (a) the meniscus probe and
(b) the jet probe (locations are shown in Fig. 5.16) for the range of Cd parameters and fixed EMBr strength of
I = 225 A.

Kolmogorov (black dashed lines) and -10/3 viscous dissipation (black dot lines) slopes.

It can be seen that both slopes are followed at both monitoring locations for the neu-

tral non-MHD case, Figs. 5.17(a) and (b). For the sub-meniscus probe, activation of the

EMBr with Cd = 0 introduces a significant extension of -5/3 slope (inertial) region (i.e.

it starts earlier at significantly lower frequencies, f ≈ 1 Hz), while -10/3 viscous dissi-

pation region is significantly reduced, Figs. 5.18(a). With a further increase of Cd , the

-10/3 slope can not be observed anymore while the -5/3 slope (inertial cascade range)

still extends over a significant range of frequencies (i.e. 0.2 ≤ f ≤ 10 Hz). The PSD at

the jet probe location for the non-MHD case also exhibits both -5/3 and -10/3 slopes,

Fig. 5.18(b). However, in contrast to the sub-meniscus probe, here the -10/3 slope still

can be observed for up to Cd = 0.5. Both the inertial and dissipation range are shifted

to the lower frequencies with an increase of the wall conductivity ratio, similarly to the

sub-meniscus location.

To obtain and compare distinct frequencies of the flow, we extract this information

from the above-presented PSD plots and collect them in Table.5.2. For the sub-meniscus

probe, a dominant frequency of f1 = 0.07 Hz is observed for the non-MHD case. With

EMBr activation, this dominant frequency shifts to f1 = 0.042 Hz. These relatively low

frequencies indicate the presence of the extremely long-time preserving unsteady flow

behavior, which implies that special care should be taken for a proper collection of the

flow first- and second-moments. For Cd = 0.15, the most dominant frequency is sig-

nificantly shifted to f1 = 0.21 Hz, followed with appearance of secondary frequencies at

f2 = 0.12 Hz and f3 = 0.25 Hz, respectively. Finally, for Cd = 0.5 and Cd →∞ cases, the
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Table 5.2: List of dominant and secondary frequencies based on the power spectral density at the meniscus
probe and the jet probe. The position of the probes is shown in Fig. 5.16.

Cd ,

Hartmann walls

Meniscus probe,

frequency, Hz

Jet probe,

frequency, Hz

no MHD f1 = 0.07 f1 = 0.15

0 f1 = 0.042 f1 = 0.035

0.15

f1 = 0.21

f2 = 0.12

f3 = 0.25

f1 = 0.17

f2 = 0.61

f3 = 1.2

0.5

f1 = 0.12

f2 = 0.087

f3 = 0.18

f1 = 0.21

f2 = 0.16

f3 = 0.11

∞ f1 = 0.03

f2 = 0.057

f1 = 0.06

f2 = 0.087

dominant frequencies are shifted back to f1 = 0.12 Hz and f1 = 0.03 Hz, respectively.

For the jet probe, the imposing the EMBr with Cd = 0 again produces a reduction of

the dominant frequency compared to the neutral non-MHD case, i.e. from f1 = 0.15 Hz

to f1 = 0.035 Hz. With further increase of Cd = 0.15 and Cd = 0.5, multiple secondary

frequencies ( f2 and f3) are also observed. Finally, for Cd →∞, the most dominant fre-

quency is shifted back to f1 = 0.06 Hz. To conclude, the jet probe indicates the existence

of the long-term low-frequency flow oscillations for the non-MHD and fully electrically

insulated MHD case (Cd = 0). Activation of the finite wall conductance removes these

long-term fluctuations (Cd = 0.15 and 0.5). However, application of the perfectly con-

ducting walls (Cd →∞) promotes again a return of long-term low-frequency flow oscil-

lations.

5.5. SUMMARY AND CONCLUSION

We have presented a comprehensive numerical study on the effects of the electric wall

conductivity on behavior of a turbulent electrically conducting liquid alloy flow sub-

jected to an external magnetic field - mimicking the experimental setup of the Mini-

LIMMCAST casting mold. We have applied an advanced in-house developed conjugate

MHD extended Navier-Stokes solver based on open-source OpenFOAM code. The solver

is based on the inductionless assumption of the generated magnetic field (i.e. one-way

coupling between the momentum and imposed magnetic field) in a combination with



5

106 CHAPTER 5

the Large-Eddy Simulation approach employing the dynamic subgrid closure for unre-

solved turbulent stresses. We have performed a series of numerical simulations that in-

clude the neutral (non-MHD) and MHD cases with various imposed EMBr (latter with

the fully electrically insulating walls) and compared obtained results with the experi-

mental data. A good agreement between simulations and experiments of the charac-

teristic horizontal component of the mean velocity profiles at different locations is ob-

tained for both non-MHD and MHD cases for various strengths of the imposed EMBr

for fully electrically insulated walls. Next, we considered an extensive range of the wall

conductivity ratio parameter (0.025 ≤ Cd <∞) and analyzed its effects on the flow and

turbulence inside the mold. We have shown that with increasing the wall conductivity

ratio of the Hartmann walls a significant reorganization of the initial double-roll flow

structure takes place. This flow reorganization was also followed by significant sup-

pression of the flow oscillations. We have observed a non-monotonic behavior of the

mean velocity magnitude maximum at all selected profiles in the central vertical plane.

This non-monotonic behavior also indicated generation of the enhanced side-jets in the

0.025 ≤ Cd < 1 range, while the strongest mean velocity suppression was obtained for

Cd ≈ 1. In addition, we have demonstrated that the velocity in the proximity of the top

surface (i.e. the sub-meniscus region) showed high sensitivity to the presence of the elec-

trically conducting walls. The maximum velocity was obtained in the 0.2 ≤Cd ≤ 1 range,

whereas the flow reversal was taking place with a further increase of Cd . The power

spectral density analysis of the instantaneous velocity magnitude at two characteristic

monitoring locations, placed in the side-jet and the vicinity of the meniscus revealed

the existence of flow oscillations with a very low frequency for the neutral (non-MHD)

and MHD case with perfectly electrically insulated walls (Cd = 0). This low frequency

was not observed for the MHD cases with 0.15 ≤ Cd ≤ 0.5. However, for the perfectly

electrically conducting walls case (Cd →∞), the long-term low-frequency flow oscilla-

tion reappeared. Practical implementation of various Cd can be possible by changing

the mold parameters such as the mold width, though high values of the wall conduc-

tivity ratio (Cd > 1) will be challenging to achieve. The alternative way will be changing

the size of the EMBr. The presented results can provide important designing guidelines

for the new generation of the laboratory- and real-scale industrial continuous casting

setups.
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6.1. CONCLUSIONS
The use of electrically conductive fluids, such as liquid metals, is common in various in-

dustrial applications. The high electrical conductivity of these fluids give an opportunity

to interact with them in a non-invasive way. By imposing an external magnetic field, an

additional force on the flow is produced. This interaction can be described using mag-

netohydrodynamic (MHD) principles, and its application is found to be a key factor to

control unstable industrial flows. Given the cost and temperature/storage conditions of

liquid metals, numerical simulations are considered to be the preferred method to in-

vestigate MHD mechanisms. This dissertation describes the numerical research of dif-

ferent MHD mechanisms in industrial (continuous casting) and simplified flow setups,

primarily focusing on MHD turbulence and the influence of electrically conductive sur-

rounding walls.

In Chapter 2, we presented the details of our computational code based on the open-

source library OpenFOAM. The development of an accurate and advanced MHD code is

a crucial task for the present research since existing commercial codes have limited capa-

bilities (e.g. implementation of new algorithms or models). To simulate such flows, each

numerical method and model implemented in our solver was thoroughly validated. The

code was developed under the assumption of a high magnetic diffusivity of the liquid

metal (low-Rem formulation), and therefore a Poisson equation for the electric poten-

tial was discretized and solved. To conserve current density at cell faces, the Four Steps

Projection Method (FSPM) was implemented. FSPM is known to be an accurate and ef-

ficient method based on the conservative formulation of the Lorentz force. Validation of

FSPM was conducted by simulating classical cases including MHD flow in a duct and a

back-step MHD flow. The next part of the benchmark was devoted to multiphase MHD

modeling. To simulate the liquid surface of different electrically conductive fluids, we

implemented a modified Volume of Fluid method. The impact of the spurious currents

was suppressed by the application of a Laplacian filter. Validation was performed by sim-

ulating MHD cavity flow and a raising gas bubble in a conductive liquid metal exposed

to a magnetic field.

After implementing fundamental magnetohydrodynamic methods, we approached

the first research question: How to model the interaction between electrically conduc-

tive walls and an electrically conductive flowing fluid? Several concepts to model the

interaction between electrically conductive walls and an electrically conductive flowing

fluid have been generally discussed. Based on that discussion, we developed and im-

plemented a method which we called conjugate MHD. This method is essentially based

on splitting the computational domain into sub-domains: the liquid sub-domain and

solid sub-domains. The explicit advantage of the conjugate MHD method is that any ge-

ometry with any thickness/conductivity can be modeled, which is not the case for other

methods reproducing wall conductivity. Validation of the conjugate MHD method was

performed by modeling laminar/turbulent MHD flow in a duct with finite arbitrary elec-

trically conductive walls. Hence, we answered our first research question. To conclude,
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we developed, implemented, and validated the advanced numerical MHD code capable

to deal with a broad range of magnetohydrodynamic flows. This solver is used in the

next chapters.

In Chapter 3, we approached the second research question: How does the presence

of electrically conductive walls affect the MHD turbulent flow? To answer this question,

we investigated the impact of a wide range of wall conductivity ratios Cd on turbulent

MHD flow in a square duct with an external transverse magnetic field. The Reynolds

number Re and the Hartmann number H a were fixed as constants in order to focus

entirely on the Cd influence. Our main finding is that as the wall conductivity ratio

increases the turbulent flow undergoes a rapid laminarization process until reaching a

fully laminar state at Cd = 0.15. However, a further increase of Cd does not maintain the

laminar state. Instead, we observed the gradual recurrence of turbulence at Cd ≥ 0.25,

and the return to the highly-turbulent state at Cd = 5. Remarkably, a further increase of

the wall conductivity ratio up to Cd →∞ results in a higher turbulence level compared

even to the neutral case at H a = 0. It is also important to emphasize the difference be-

tween the classical MHD damping mechanism and the present novel turbulent-laminar-

turbulent transition phenomena. Unlike the classical MHD damping mechanism which

affects the turbulence due to the increase of the magnetic field, the novel flow regime is

observed at a constant magnetic field strength.

In Chapter 4, we continued with the second research question and further investi-

gated the fundamental properties of the turbulent-laminar-turbulent transition due to

the change in the wall conductivity ratio Cd . We found that the flow laminarization is

accompanied by the appearance of a patterned turbulence phenomenon. Separate tur-

bulent puffs and spots can be identified in the proximity of walls parallel to the magnetic

field. The patterned turbulence phenomenon becomes more pronounced as the wall

conductivity ratio approaches the critical value of Cd = 0.15. The subsequent turbulence

regeneration does not follow the same trend. Turbulence structures start forming closer

to the flow core and near the walls perpendicular to the magnetic field. Special atten-

tion in this chapter was also devoted to the understanding of the origin of the transition

mechanism. It was found that the change of the wall conductivity caused a reduction

of the electric potential gradient. In turn, this leads to the reorganization of the current

density which is directly linked to the Lorentz force. By analyzing the turbulent kinetic

energy budgets, we found that such an alteration of the Lorentz force had a strong im-

pact on the velocity gradient and therefore on the production term. Thus, based on the

discussion in Chapter 2 and Chapter 3, we can conclude that the presence of electri-

cally conductive walls significantly affects the turbulent MHD flow and can suppress or

promote MHD turbulence.

In Chapter 5, we directly approached the third research question: What is the influ-

ence of an electrically conductive shell on the MHD liquid metal flow structure in a con-

tinuous casting mold? The flow in the mold was exposed to the electromagnetic brake

influence. The shell was mimicked by embedding electrically conductive walls inside
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the mold. To validate our results, we used experimental data provided by Helmholtz-

Zentrum Dresden Rossendorf. It was found that an increase of the shell conductivity sig-

nificantly affected the double-roll flow structure, gradually transforming it into a single-

roll structure. Remarkably, the subsequent change in velocity values in the jets coming

out of the submerged entry nozzle (SEN) occurred non-monotonically. The maximum

was reached in the range 0.025 ≤Cd < 0.1, while the minimum occurred at Cd ≈ 1. This

was directly linked to the rearrangement in the double-roll pattern. At low Cd , squeezed

but elongated rolls formed, while at moderate Cd the rolls became smaller. The appear-

ance of strong jets at small Cd can be potentially problematic in terms of the shell struc-

tural integrity and should be taken into account. The meniscus area was also found to be

influenced by the shell conductivity. In particular, an increase of Cd led to a reverse flow

at the meniscus. The minimum meniscus velocity was achieved at Cd ≈ 1. An analysis

of impact of the shell conductivity on the turbulence demonstrated a strong turbulence

suppression while increasing Cd . Thus, the strong influence of an electrically conductive

shell on the MHD liquid metal flow structure in a continuous casting mold was found.

To conclude, we emphasize two main points. First, it is crucial to account for electri-

cally conductive solid walls and structures in simulations and experiments, to properly

account for their presence in a real-life MHD processes. Considering continuous cast-

ing, their neglect can lead to incorrect predictions of flow behavior in the critical zones.

Second, the introduction of electrically conductive walls in setups potentially opens a

wide range of opportunities to control MHD flows. In particular, it can be used to con-

trol highly unstable turbulent flows.

6.2. FUTURE OPPORTUNITIES
In this section, we present future research opportunities that can extend the present

work.

6.2.1. THE INFLUENCE OF THE CORRELATION R - Cd ON TURBULENT FLOW

IN AN ELECTRICALLY CONDUCTIVE DUCT

The patterned turbulence phenomenon in classical turbulent MHD duct flow with fully

electrically insulated walls (Cd = 0) is known to be sensitive to the ratio R = Re/H a [1].

This sensitivity can be expressed in the form of a dependency between the flow regime

and the R value, Fig. 6.1. There are five flow regimes in total and two of them are as-

sociated with the patterned turbulence. Although the limits and ranges presented are

clearly approximate, they provide researchers with an estimate of when to expect the

transition. In this dissertation, we considered a different setup, namely R was a constant

while Cd was varied. Similar to the R-map, the dependency between flow regimes and

Cd can be portrayed as a Cd -map, Fig. 6.2. Given that both the R-map and the Cd -map

are correlated to each other, several research opportunities can be formulated. First, it

is expected that by increasing or decreasing the R value (relative to the present value of
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R = 265), the Cd -map will undergo significant changes. For example, we think that an in-

crease of R could strongly reduce or even remove the patterned turbulence regimes from

the Cd -map. Similarly, a decrease of R could enhance the patterned turbulence regimes.

Second, the reverse influence of Cd on the R-map should not be underestimated. By

keeping Cd constant and changing the R parameter, a different distribution of regimes

could be obtained. Since full-scale CFD simulations of all possible correlations between

Cd and R take a lot of time, the careful application of machine learning techniques could

help researchers to generally characterise regimes.

6.2.2. THE CUMULATIVE IMPACT OF THE CASTING SPEED, THE SHELL CON-
DUCTIVITY, AND THE NON-UNIFORM SHELL THICKNESS

An electrically conductive shell is formed in the casting mold due to the cooling pro-

cesses. In this work, we already described the importance of the electrical conductivity

of the shell. However, there are several additional factors and properties that should

be taken into account. Proper consideration of these factors could extend the present

work and complement the existing knowledge. First, the shell is moved down by support

rolls during the casting process. This is an essential operation to transport the solidi-

fied shell for further processing. The velocity at which the transportation takes place is

called the casting speed uc . Although the casting speed is relatively small, an influence

of the so-called "moving walls" on the flow in the mold is to be expected. Second, while

solidifying, the shell maintains a non-uniform thickness. The shell in the proximity of

the meniscus is thinner compared to the shell in the proximity of the outlet. This non-

uniform thickness will have a direct impact on the wall conductivity ratio Cd . Further-

more, changes in the electrical conductivity of the shell due to temperature differences

will also be relevant [2]. Thus, the combined interaction of the moving non-uniform

electrically conductive shell could potentially affect the flow in a more complex way, Fig.

6.3.
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Figure 6.3: Sketch of the solidified shell.

6.2.3. OPTIMISATION OF LIQUID METAL BLANKET DESIGNS

A breeding blanket (BB) system is known to be one of the most challenging parts of a

fusion reactor. The BB system stays in a contact with fusion plasma and undergoes ex-

treme thermal loads. In order to keep the BB system stable, heat has to be removed.

Liquid metals are widely used in such a case due to their relatively high thermal conduc-

tivity. However, given a strong magnetic field in a fusion reactor, magnetohydrodynamic

effects also play an important role in addition to thermal effects [3].

The optimization of processes in liquid metal blankets can potentially benefit energy

performance and equipment costs. The liquid metal blankets contain various geomet-

rical elements such as ducts, pipes, and bends. Conducting real- or laboratory-scaled

experiments aimed at the optimization of such elements is costly, and these experimen-

tal facilities are also difficult to operate. Thus, simulations remain the most affordable

choice. Considering numerical simulations, special attention should be devoted to the

fluid-solid MHD interactions which occur due to the strong magnetic field and arbitrary

electrical conductivity of solid parts. A high level of turbulence in a flow of a liquid metal
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should be also taken into account. The numerical conjugate MHD solver presented in

this dissertation can be used for such a study. Our solver can accurately simulate turbu-

lent MHD flows as well as fluid-solid MHD interactions.

6.2.4. INVESTIGATION OF BATH-ALUMINIUM INTERFACE INSTABILITIES IN

A HALL– HÉROULT CELL

The Hall–Héroult process is the main industrial process for smelting aluminum. The

process is based on generating Joule heating due to the high resistivity of the bath layer

in an anode-cathode system. The efficiency of the system strongly depends on the so-

called anode-cathode distance (ACD) which should be as small as possible, Fig. 6.4.

However, the possible decrease in the ACD is associated with technological limitations

caused by the instabilities at the bath-aluminum interface. These instabilities occur due

to a coupled impact of hydrodynamic and magnetohydrodynamic forces. For example,

an electric current flowing inside and outside the system creates a strong non-uniform

magnetic field which contributes to the Lorentz force. Such a phenomenon is extremely

difficult to investigate in an experimental facility. Hence, a multiphase magnetohydro-

dynamic solver is necessary to study possibilities for lowering ACD in new or existing

industrial facilities. The solver presented in this dissertation is capable to solve this type

of multiphase MHD flows using the Volume of Fluid framework. Such simulations can be

computationally costly but potentially can provide a deeper insight into the flow physics

at the interface.

Figure 6.4: Sketch of a Hall– Héroult cell [4].
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The spatial-temporal contours of the meniscus free surface fluctuations are shown

in Fig. A.1. The free surface was modeled by applying the modified Volume of Fluid

method. It can be seen that the fluctuations become more intense as the Hartmann

number increases. However, even at H a = 210, the amplitude of the fluctuations does

not exceed the limit of 4 mm. Therefore, it can be concluded that the replacement of the

free surface with the slip wall does not affect the flow in the mold significantly.

(a) No MHD (b) Ha = 68

(c) Ha = 142 (d) Ha = 210

Figure A.1: Spatial-temporal plots of the meniscus fluctuations at Re = 50000 and at various H a.
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The investigation of the mesh influence on the obtained solution is shown in Fig.

B.1, for the case with the EMBr strength of I = 375 A. Three already mentioned grids

have been tested: the coarse mesh ML,coar se , the intermediate mesh ML , and the fine

mesh ML, f i ne . As it can be seen, the difference between the ML and ML, f i ne is marginal,

and therefore the results obtained with the intermediate mesh can be declared as the

grid-independent.

Figure B.1: The profiles of the long-term time- and spatially-averaged horizontal velocity obtained at various
grids at I = 375 A and Cd = 0. The following notation is used: (□□□) - the experimental results; (−−− −−−) - the coarse
mesh ML,coar se ; (—–) - the main intermediate mesh; ML (−−− −−−) - the fine mesh ML, f i ne .
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The MHD solvers presented in this dissertation are generally open-source and can be

used by anyone without any restrictions. However, the computational codes are quite

lengthy, and therefore, they are not suitable to be included as a text appendix. Thus,

most of the solvers can be accessed online via the following links:

https://github.com/Kommbinator/MHD_Solvers_OpenFOAM
https://github.com/Kommbinator

The conjugate MHD algorithm is based on the standard ChtMultiRegionFoam algorithm

[1] and can be described as follows:

1. The equations in the fluid domains are solved. The electric potential equation in

the fluid domain is solved using the solid electric potential values from the previous step

to calculate the boundary conditions in the fluid domain.

2. The equations in the solid domains are solved. The electric potential equation in

the solid domain is solved using the fluid electric potential values from the previous step

to calculate the boundary conditions in the solid domain.

3. The electric potential value at the interface is calculated based on the weighted-flux

scheme [2].

[1] https://openfoamwiki.net/

[2] N. Weber, P. Beckstein, V. Galindo, M. Starace, and T.Weier, Electro-vortex flow simu-

lation using coupled meshes, Computers and Fluids 168, 101 (2018).

https://github.com/Kommbinator/MHD_Solvers_OpenFOAM
https://github.com/Kommbinator
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