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Abstract

For many types of floating structures, roll motion is the most important wave induced motion. More specif-
ically, roll motion is of high significance for barges, in order to correctly predict the acceleration of the struc-
ture caused by roll motion and determine the procedure of sea-fastening and off-loading.

The correct forecast of roll motion requires accurate estimation of roll damping. At the same time, the
main sources of roll damping are the creation of waves, skin friction and creation of vortices (eddies), due
to roll motion. For this reason, the physics of the problem cannot be fully described by a flow model based
on potential theory, as it is highly dependent on vorticity and viscous effects. As a consequence, potential
theory algorithms underestimate roll damping, which results in over-prediction of roll motion and thus in a
conservative estimate of workability.

It is also important to mention that the vorticity and the viscous effects, lead to non-linear damping char-
acteristics. More specifically, the roll damping moment is controlled by its odd numbered harmonics, the
first of which is dominant. Consequently, it is common to express the damping moment in an equivalent
linearized form, equal to the first harmonic.

During the last years simulating the flow around the rolling vessel using viscous-flow algorithms is be-
coming more and more popular. Using CFD (Computational Fluid Dynamics) is a cheap and fast way to
create a “numerical” wave tank and perform numerical decay tests, forced roll simulations, and roll response
simulations in regular waves. Of course the underlying algorithm should be validated, before any commercial
or scientific use.

In this thesis, roll damping will be estimated by performing virtual forced oscillation tests, and the com-
puted roll damping coefficients will be presented as a function of roll amplitude. The virtual forced oscillation
tests have been performed with the open-source CFD software OpenFOAM. Additionally, numerous numer-
ical experiments are performed in order to choose the optimum discretization schemes, turbulence model,
mesh and time configurations. Finally, Ikeda’s experimental data is used in order to validate the viscous-flow
algorithm and the numerical model.

Two methodologies have been used in order to determine the non-linear roll damping. In the first case
the free surface is included in the viscous-flow model, using the Volume of Fluid method. The second ap-
proach disregards any free surface effect and the total damping is calculated as a superposition of viscous (by
viscous-flow algorithm) and wave (by potential theory algorithm) damping. Both approaches are compared
with Ikeda’s experimental data and it is concluded that both methods are able to capture accurately the lin-
earized roll damping coefficients, for various amplitudes.

Finally, viscous-flow simulations of the full scale barge, in order to calculate the roll damping coefficients,
are notably time-consuming. For this reason, in order to reduce the computational time, the methodology
which neglects the free surface effect, is chosen, as it is a good compromise between time efficiency and
accuracy.
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1
Determination of the roll damping by

means of viscous-flow algorithm

1.1. Importance of roll damping

Roll motion is probably the most important wave induced motion of a floating structure (barge) in order to
correctly predict the acceleration of the structure caused by roll motion and determine the procedure of sea-
fastening and off-loading. At the same time the physics of the problem cannot be described by a flow model
based on potential theory, as it is highly dependent on viscous effects. These viscous effects, lead to nonlinear
damping characteristics. The use of a flow model based on potential theory results in over-prediction of the
roll motion, which leads to a conservative estimate of workability.

During the past decades, several approaches were developed for prediction of roll damping characteris-
tics. Both experimental (free-roll decay tests, excited roll motion, fixed roll axis technique) and theoretical
approaches (Ikeda-Tanaka-Himeno method [23, 27]) have been proposed. Model testing is time consuming
and expensive, making it unfeasible to investigate the roll damping dependency on amplitude, frequency and
draft. Moreover experiments suffer from Reynolds scaling effects as generally Froude scaling is applied. The
theoretical methods are based on limited numbers of hull shapes, while roll damping is highly shape depen-
dent.

During the last years simulating the flow around the rolling vessel using viscous flow algorithms is becom-
ing more and more popular. Using CFD (Computational Fluid Dynamics) is a cheap and fast way to create
a “numerical” wave tank and perform numerical decay tests, forced roll simulations and roll response simu-
lations in regular waves. Of course the underlying algorithm should be validated, before any commercial or
scientific use. In this thesis, roll damping will be estimated by performing virtual forced oscillation tests, and
the computed roll damping coefficients will be presented as a function of roll amplitude. An additional aim
is to apply the obtained roll damping coefficients in a potential theory algorithm.

1.2. Thesis goals and research questions

Roll damping depends on the characteristics of the submerged area of a floating structure (e.g. shape, volume
etc.), and additionally on the nature of the examined fluid (which is assumed to be water in all cases consid-
ered here). Moreover, it strongly depends on the two main characteristics of the motion: the amplitude and
the frequency of the oscillation. Indirectly, roll damping also depends on the natural frequency of the floating
structure (the barge in our case). When the frequency of the oscillation coincides with the natural frequency,
there is a connection between the natural frequency and the roll damping (as the roll damping depends on
the frequency of the oscillation and the frequency of the oscillation is equal to the natural frequency). This
connection is important, because the response of the structure to the natural frequency determines the al-

1
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lowable workability.

Moreover, roll damping is highly dependent on viscous effects, vorticity and turbulence of the flow. How-
ever, potential-flow models are not able to capture these phenomena (and thus some components of the roll
damping), as they assume an inviscid and irrotational flow. For this reason, the open source, CFD (Compu-
tational Fluid Dynamics) software, OpenFOAM is used, which solves the incompressible turbulent Navier-
Stokes equations, and thus, it can predict the complicated viscous flow around the floating structure accu-
rately.

The main goal of this thesis is the numerical determination of the roll damping characteristics, of a two
dimensional barge, using viscous flow simulations, for different drafts, amplitudes and oscillation frequen-
cies. In order to achieve the final goal, OpenFOAM has to be validated with experimental data and data from
other simulations. Finally, the influence of many aspects of the flow model has to be investigated. Some of
these are turbulence modelling, discretisation in space and time, boundary (and initial) conditions, influence
of the amplitude, frequency of oscillation, draft on the nonlinearity, and magnitude of damping.

1.3. Document Structure

In the first chapter, the examined literature and a description of the roll motion are introduced, in order to
provide a better understanding of the examined problem. The second chapter describes the basic principles
of the roll motion. The third chapter presents the governing equations, which describe the physics of the in-
vestigated subject and the mathematical background. Moreover, in the fourth chapter the used methodology
and the verification-validation study of Ikeda’s case are presented. In the next chapter, the damping coeffi-
cients of a full-scale barge, for a number of different amplitudes, frequencies and drafts, are determined and
discussed. Lastly, the final chapter presents the conclusions of this thesis and recommendations for future
research and development.



2
Current state-of-the-art in experimental

and numerical determination of
roll-damping characteristics.

In this chapter, the reviewed literature is described. The literature study aims to provide the required knowl-
edge, in order to better understand the physical and numerical problem and finally provide a solution. Dur-
ing the literature study, lots of methods and techniques are analysed in order to conclude to the chosen ap-
proach. For a more efficient categorization, the methods and techniques, for the roll damping estimation,
were summed up into several groups.

2.1. Physics of roll motion

Each floating body has six degrees of freedom. More specifically, based on the reference system of Figure 2.1
it has:

• three translations of the center of gravity (CoG) in x, y and z direction:
-surge in the longitudinal x-direction, positive forwards
-sway in the lateral y-direction, positive to port side
-heave in the vertical z-direction, positive upwards

• three rotations about the x, y and z axis:
-roll about the x-axis, positive right turning
-pitch about the y-axis, positive right turning
-yaw about the z-axis, positive right turning

In Figure 2.1, roll motion is defined as rotation φ of the structure around the xb axis. In reality the roll
axis of a ship is a non-stationary axis parallel to the xb axis, which is influenced by the center of rotation and
center of gravity.

During the roll motion, the structure interacts with the water and this generates normal (pressure) and
tangential stresses on the surface of the structure. This results in a hydrodynamic force (and moment), which
can be divided in two main parts: the pressure force Fp and the frictional force Ff, as depicted in Figure 2.2.

3
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Figure 2.1: Definition of the six degrees of freedom of ship motion

Figure 2.2: Hydrodynamic forces acting on a rolling hull

Based on the described reasoning, the total hydrodynamic force can be calculated by pressure and stress
integration and thus the total moment can be determined by multiplying each force component with the
respective lever arm, as it is shown in equation 2.1:

MH =
∫

S
r×

(
−pI +τ

)
n̂dS (2.1)

Where MH is the hydrodynamic moment in the direction of the roll axis, r is the lever arm, p is the hydrody-

namic pressure and τ stands for the shear stress. Moreover, n̂ is the unit normal vector and S is the surface of
the object.

If it is assumed that the floating structure has negligible deformations, then Newton’s second law of mo-
tion can be used, in order to derive an (rigid body) equation which describes the roll motion of a floating
structure, as described below:
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Mtot = I φ̈⇒ Mext −MH = I φ̈. (2.2)

Where Mtot is total moment on the body, Mext represents the external or excitation moment and I is the mass
moment of inertia along the axis of roll motion.

As it is decomposed above the MH describes the total moment due to the water and therefore, it can be
expressed as follows:

MH = Mα(φ̈)+Mb(φ̇)+Mc (φ). (2.3)

Where Mα is the added mass moment, Mb represents the added damping moment and Mc is the restoring
moment.

With this differential equation, the total hydrodynamic roll moment can be expressed as a superposi-
tion of moments, which depend on the rotational acceleration (added mass part), rotational velocity (added
damping part) and roll angle (stiffness/ hydrostatic part) respectively. In order to obtain equation 2.3, two
main assumptions have been made:
1. The roll motion is uncoupled from the other ship motions
2. There are no cross sectional terms (e.g. dependence on both velocity and acceleration at the same time).

2.2. Sources of estimate roll damping characteristics.

The main sources of roll damping are the creation of waves, skin friction and creation of vortices (eddies), as
will be described in Figure 2.3.

Wave damping represents the energy dissipation due to the presence of the free surface. More specifically,
waves are generated while a floating structure is performing a roll motion.

Friction damping is caused by the viscosity of the fluid and it happens when the fluid is “sheared” across
the surface of the structure. There is a thin layer of water attached to the moving body, which is called the
boundary layer. The physics of the boundary layer is explained in section 3.4. This water layer follows the
body motion and thus a difference of the water’s velocity close to and away from the structure is created. This
results in a large normal derivative of the tangential velocity and a shear stress, which results in frictional drag.

Eddy damping is influenced by the fluid properties and the shape of the structure, and it is caused by
the pressure differences along the moving structure. As a floating structure is rolling, high and low pressure
regions are created based on the rolling direction. The water always follows “the easiest” path and thus has
a direction from the high to the low-pressure areas (opposite to the gradient). When the flow experiences a
positive pressure gradient it tends to separate from the surface and create eddies. Apart from a positive pres-
sure gradient, another necessary condition for the creation of eddies is the vorticity of the fluid. These eddies
are the source of the eddy (vortex) damping.
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Figure 2.3: Description of the roll damping components

As is widely mentioned in the literature, roll damping is highly non linear. The main source of non-
linearity is the creation of vortices at the bilges of the rolling structure. In order to capture this important
non-linearity, the fluid properties (such as vorticity, viscous effects and turbulence) should be realistically
represented. As a model based on potential theory is not capable of capturing such complicated phenom-
ena, viscous flow simulations can play an important role in the prediction of complex fluid behaviour around
the appendages of the structure and thus accurately simulate viscous damping.

2.3. Approaches to estimate roll damping

The methods to estimate the roll damping are divided into three main categories. These three categories are:

• The use of empirical models,

• Extract data from model tests,

• Extract data from viscous flow simulations.

Using experimental data or simulations for the determination of the roll damping characteristics, are
based on the same approaches, as both techniques generate a time signal for the moment, and extract the
roll damping from this. The main differences will be discussed below.

2.3.1. Determination of the damping coefficients using empirical relations

As mentioned above, roll damping was and still is really difficult to predict, due to the fact that it is highly
dependent on viscous effects. For this reason, fifty years ago, when the simulation of viscous flow was not
feasible and model-tests already expensive, engineers and scientists tried to predict roll damping with em-
pirical and semi-empirical formulas, based on statistical analysis of model tests and experience. Ikeda’s et al
[27] empirical method is one of the most famous ways to estimate roll damping. Ikeda and his team published
many papers, in which they presented the most widely accepted empirical technique until now. According to
this technique, the linearised roll damping is separated into several components and the interaction between
the components is ignored. These components can be described by equation 2.4.



2.3. Approaches to estimate roll damping 7

btot (φ̇) = bW +bF +bE +bL +bBK . (2.4)

Where btot is the total roll damping, and bw , bF , bE , bL and bBK are the wave, frictional, eddy, lift and bilge
keel components respectively.

Each component is described by separate empirical relations. For further information, the reader is re-
ferred to [23, 30]. As expected, Ikeda applied many corrections and adjustments since his first publication in
order to improve the accuracy of his empirical prediction formulas. An example is [27].

Moreover, Professor Yoji Himeno, who collaborated with Ikeda [23], published in 1981 one of the most
useful papers to date. In his paper he summarizes Ikeda’s "separation" method and describes other classic
ways to model roll damping. As already mentioned roll damping is highly nonlinear and can be described in
the following way:

Mb(φ̇) = b1φ̇+b2φ̇|φ̇|+b3φ̇
3 + ..., (2.5)

where b1, b2, b3 are the coefficients of the non-linear representation of the roll damping.

The coefficients b1, b2, b3 etc., are considered constant during a steady periodic oscillation (harmonically
excited or forced roll motion and motion under regular waves) and fully dependant on the frequency and am-
plitude of the oscillation (ω,φα). The damping coefficients also depend on the natural frequency (indirectly),
because at the peak of the RAO (resonance frequency area) the oscillation frequency is equal to the natural
frequency.

Because it is really difficult to use and analyse a nonlinear equation, Himeno [23] introduced a linearisa-
tion, which has the following form:

Mb(φ̇) = beq φ̇, (2.6)

where beq , is equivalent linearised roll damping.

This approach is used further in the thesis, in order to extract the equivalent linearised roll damping.

2.3.2. Experimental determination of damping coefficients

Following Wassemann et al [60], there are three main (experimental) ways to estimate the roll damping of a
floating structure. These three techniques are:

• The roll decay test

• The harmonically excited roll motion experiment

• The harmonically forced roll motion experiment

For each technique, there are many sub-techniques to calculate the roll damping coefficient. These sub-
techniques will be described in section 2.4. It is important to mention that experimental determination of
the roll damping coefficient is a widely accepted technique, as it has been validated extensively. However,
this method has two main drawbacks: inflexibility and potentially high errors due to scale effects. The first
means that it is too difficult to represent the true physical conditions at a basin (laboratory) and the second
that the errors due to Reynolds or Froude scaling can be really high. (As it is well known, it is practically
impossible to apply Reynolds and Froude scaling at the same time – or not.)

2.3.3. Determination of roll damping coefficients using viscous-flow simulations

As computational power increases, the use of numerical simulations becomes more widespread in the field of
floating structure hydrodynamics. The reason for this is a combination of three main characteristics: low cost,
accurate results and flexibility. Moreover, in viscous flow simulations, it is possible to apply both Reynolds
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and Froude scaling at the same time, because all variables and physical properties (e.g. viscosity of the fluid)
can be controlled [34]. In a real model test, this is unfeasible.

However, the set-up of a viscous-flow simulation can be really challenging, as it is highly sensitive to the
selection of the numerical schemes and turbulence models. Additionally, a special and temporal verification
is required, in order to ensure the reliability of the model. Finally, the viscous-flow algorithms should be vali-
dated, by comparing the numerical results with experimental data.

The challenges mentioned above make the determination of the non-linear roll damping by means of
viscous-flow simulations a research topic and for this reason many institutions and companies still investi-
gate this subject. In 2014 a JIP (Joint Industry Project) was formed in order to research the non-linear roll
damping of an FPSO, by performing roll forced oscillation experiments and viscous-flow simulations.

The techniques for extracting the roll damping characteristics from viscous-flow simulations are more or
less the same as those used with experimental data. However, there are some cases where roll damping has
been calculated in a unique way. One example is the paper of Korpus et al. [42], where he calculated the roll
damping components (wave, friction, eddy) separately. Firstly, he separately calculated the wave damping,
using a diffraction model. Then, he assumed that the wetted part of the floating body is fully submerged
(neglecting the free surface and waves) and performed a numerical forced oscillation test. It is important to
mention that the submerged wetted surface is mirrored in order to avoid vortex interaction between the top
and the bottom parts. Finally, he separately calculated the friction and the eddy damping, by integrating the
shear stresses and the normal pressures at the wetted surfaces respectively. The total damping was deter-
mined as a superposition of all roll-damping components (wave, friction and eddy).

Jaouen et al. [33, 34] used a similar approach for the determination of roll damping. They compared their
numerical results with experimental data of Ikeda, and a very good agreement was found, with deviations
lower than 10%.

The solution, which was performed, by Korpus et al. and Jaouen et al. [33, 42] is not exact as the roll damp-
ing components are neither independent nor additive. However, this engineering approach provides reliable
and fast results.

2.4. Classic procedures to compute roll damping

As mentioned before, there are several techniques to estimate roll damping. Most of these techniques are
used in combination with most of the described methods (experimental and viscous flow simulations) for
the estimation of roll damping. The most important techniques are described below.

2.4.1. Roll decay

In the roll decay technique, the floating body (barge, vessel etc.) is initially positioned at a specific roll angle,
and then released. The roll angle is monitored until all energy dissipates. It is one of the simplest ways to
estimate roll damping and at the same time it is powerful, as it gives information for various amplitudes with
only one excitation. Moreover the oscillation frequency is equal to the natural frequency of the structure and
for this reason the decay method automatically captures the roll damping at the natural frequency. This is of
great importance, as the correct determination of roll damping at the natural frequency (resonance), provides
a trustworthy RAO at this frequency area.

The ways to extract the roll damping coefficient from a decay test are based mainly on logarithmic roll
decrement and on energy conservation (Wassemann et al. [21, 60], which give a linearised form of the roll
damping coefficient.

The main drawback of this technique is the fact that the roll amplitudes cannot be controlled (except for
the initial inclination). Additionally, the roll damping is influenced by the prior roll motion of the floating
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structure, as the water particles are affected by the roll amplitudes and the roll periods of the previous cycles.
This phenomenon is known, as the “memory effect” of the water. More specifically, decay tests with different
excitations may result in differences up to 25% for the quadratic damping part, (Van’t Veer and Fathi [55]).
In some cases, numerical (CFD) and experimental decay results are compared for the validation of the CFD
code. Some useful examples are [66, 69].

2.4.2. Harmonically excited and forced roll motion

The harmonically excited and forced roll motion techniques are similar ways to determine roll damping. In
both cases the oscillation is periodic (response). In the former case, the angle of rotation (usually simple si-
nusoidal) is controlled, while in the latter the external-excitation force is imposed (again usually sinusoidal).
The great advantage of these two methods is that they completely control the amplitude and the frequency
of the motion and excitation force respectively. Additionally, the harmonically excited roll motion is inde-
pendent of the resonance phenomenon. To be more specific, resonance cannot exist (even at the resonance
frequency), as the motion is completely controlled. Moreover, in this case the roll damping is independent of
the memory effect as the coefficient is extracted when the hydrodynamic moment has reached a steady state
and periodic form. In this thesis, the harmonically excited roll motion is used. In the paper of Wassemann
et al. [60] three different extraction methods, which are based on the concept of conservation of energy, are
mentioned.

There are a lot of publications where the results from simulations of harmonically excited roll motion are
compared with experimental data for validation purposes. Important examples are, Bonfiglio et al. [5], Yidiz
et al. [68] and Jaouen et al. [34].

2.4.3. Determination of roll damping coefficients in regular waves

In some cases, roll-response tests under regular waves are performed, for the estimation of roll damping.
Although there are a lot of restrictions and difficulties in order to perform this kind of experiments, this tech-
nique is more realistic due to response under waves. For this reason, roll response simulations in regular (and
irregular) waves have become popular, as they are fast, efficient and relatively accurate. However, before any
commercial or scientific use, validation of such models should be performed. The paper of Mohsin A.R et al.
[29] is a good example of this validation procedure.





3
Governing Equations and Numerical

Model – Theoretical background

3.1. Navier-Stokes equations

The viscous-flow algorithm is solving the conservative form of the incompressible Navier-Stokes equations,
with variable density and viscosity , which are presented below.

∂ui
∂xi

= 0, (3.1)

∂ρui
∂t + ∂ρui u j

∂x j
=− ∂p

∂xi
+ ∂

∂x j

[
µ
(
∂ui
∂x j

+ ∂u j

∂xi

)]
+ρgi . (3.2)

Where u is the velocity vector of the flow, µ is the dynamic viscosity, ρ is the density and g is the gravitational
acceleration.

In addition, the following equations are generated, in order to avoid resolving the turbulent flow on the
smallest length and time scales, by applying the averaging technic of Reynolds (Appendix A.1) on the Navier-
Stokes equations.

∂Ui
∂xi

= 0, (3.3)

∂ρUi
∂t + ∂ρUi U j

∂x j
=− ∂p

∂xi
+ ∂

∂x j

[
µ
(
∂Ui
∂x j

+ ∂U j

∂xi

)
−ρu′

i u′
j

]
+ρgi . (3.4)

Where U is the average velocity and the extra term represents the Reynolds (turbulent) stress tensor. The
influence of the velocity variations on the mean flow is described by turbulence models, some of which are
illustrated in section 3.2.

Even though, the conservative form of the Navier-Stokes equations are used, it is speculated that in mul-
tiphase flows the non-conservative form perform better, as it is described by Henrik Rusche [52] and Tryggva-
son et al. [54].

3.2. Turbulence models

The examined turbulence models belong to the RANS (Reynolds-Averaged Navier-Stokes) family. When the
Reynolds-Averaged technique is applied to the Navier-Stokes equations (equations 3.3 and 3.4) the system of
equations cannot be solved directly, as the number unknowns exceed the number of equations. This means
that the RANS turbulence models are created in order to close the system of equations and give expressions
for the Reynolds stresses (extra term in equation 3.4).

From the perspective of hydrodynamics, roll damping depends on flow separation and vortex creation.
Moreover, turbulence plays an important role in order to capture these two phenomena accurately, and thus
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turbulence modelling is essential for the roll damping determination. For this reason, in order to find a suit-
able model for the examined case, k −ε Realizable, k −ω SST and kkl −ω turbulence models are used, and
compared with each other. A brief description of the used turbulence models follows.

k −ε

k−ε Realizable is a modification of the standard k-epsilon model and has three main differences from the
original version.
1. It has another formulation for the eddy viscosity (the mean rate-of-rotation tensor is included in the eddy
viscosity equation).
2. It has a new formulation for the dissipation rate (ε), which derives from the transport equation of the
mean-square vorticity fluctuations.

Due to these reasons, the k − ε realizable model performs better for flows involving rotation, boundary
layers under strong adverse pressure gradients, separation and recirculation. The term realizable means that
the model satisfies certain constrains about the Reynolds stresses.

More information about the k −ε Realizable model can be found in [14].

k −ω SST

The k −ω SST model belongs to the family of RANS turbulence models. This two-equation model com-
bines the positive characteristics of the simple k −ω and k − ε models. Specifically, the k −ω SST model is
equivalent to the k −ω model in the inner part of the boundary layer. This means that it is valid all the way
down to the wall (through the viscous sub-layer), and for this reason, no wall functions (approximations close
to the wall) are required. In addition, the k −ω SST model behaves as the k −ε model outside the boundary
layer and thereby partially overcomes the sensitivity of the k −ω model to the inlet free-stream boundary
conditions. Finally, it is known for its good performance in adverse pressure gradients and separating flows.

For more information someone can refer to the book of Dr. Wilcox [64].

kkl −ω

The kkl −ω is a RANS based turbulence model, which is suitable for modeling transitional flows and low-
Reynolds number turbulent flow cases. This three-equation model is based on the low Reynolds k−ωmodel,
with an additional equation for laminar kinetic energy. Moreover, it has the advantage that the dependence
of the solution on the initial and boundary conditions for the turbulent quantities is limited. Finally, this tur-
bulence model is very accurate in cases of an adverse pressure gradient.

For a more elaborate discussion of the kkl −ω model the reader is referred to J.Furst’s publication [18].

3.3. Volume of Fluid (VOF) method

The Volume of Fluid (VoF) method is used to describe the evolution of the free surface. This method is based
on a Eulerian formulation. The VoF method describes the interface of a two-phase flow using an advec-
tion equation (equation 3.8) and this equation should be solved in combination with the incompressible
Navier-Stokes equations, in order to capture the free surface. More specifically, the density and viscosity in
the Navier-Stokes equations vary based on the phase flow.

The VoF method is based on the scalar volume fraction (α) and describes the percentage of each fluid in
each cell and thus the phase of the flow. In our case the two fluids are water and air. When a cell is filled
with water the α value is equal to 1, while when it is filled with air α is equal to 0. The surface is described by
a one-cell layer, in which the value of α is between 0 and 1. This means that the free surface is not defined
sharply, but it is distributed over the height of one cell. For this reason, the mesh at the free surface should
be fine enough. However, the discretised form of α is a discontinuous function as its value jumps from 0 to 1
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(in cases where the "surface" cells have a really small or really big α values). Moreover, it is assumed, that the
fluids are immiscible (cannot exchange mass and heat). Finally, the surface tension (elastic tendency of the
fluid surface, caused by the cohesive forces among liquid molecules) can be additionally included. The im-
portance of the surface tension forces compared to the gravitational forces, can be determined by the Eotvos
number:

Eo = ∆ρg L2

σ
, (3.5)

∆ρ:difference in density of the two phases (in the examined case is 1000kg /m2),
g : gravitational acceleration,
σ: surface tension (for air in contact with water is equal to approximately 0.07N /m),
L: reference length.

When the Eotvos number is high, the surface tension is negligible and vice-versa. Based on numerical
experiments (with and without modelling the surface tension forces) and on Eotvos number, it can be con-
cluded that the surface tension effects are insignificant and for this reason are neglected.

Navier-Stokes and advection equation of α, are connected through density and viscosity. Density and
viscosity of a cell, which contains both fluids (in our case water and air), can be represented as follows:

ρ(x, t ) = ρw aterα+ρai r (1−α), (3.6)

µ(x, t ) =µw aterα+µai r (1−α). (3.7)

Where ρw ater ,µw ater ,ρai r and µai r are the density and dynamic viscosity of water and air respectively. Fig-
ure 3.1 describes the density and viscosity based on the varying volume fraction. It can be seen that at the
interface the density and the viscosity is nor of water, nor of air and the values of these variables are deter-
mined by equations 3.6 and 3.7 respectively.

Figure 3.1: Density and viscosity based on the varying volume fraction

After solving the Navier-Stokes equations (at each time step), determination of α is done by solving an
advection equation (transport equation becauseα is a scalar). The differential form of this equation therefore
becomes:

∂αq

∂t
+Ui

∂αq

∂xi
= 0, (3.8)
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Where αq is the volume fraction of the phase q .

3.4. Boundary layer – Wall treatment

Within the boundary layer three different layers can be distinguished, lowed on y+. The distinction between
the different layers is done based on the y+ (dimensionless distance) value. The y+ can be calculated by the
following formula:

y+ = ρu∗∆y

µ
, (3.9)

Where u∗ is the friction velocity and is defined as: u∗ =
√

τw
ρ . Moreover, τw is the wall shear stress and ∆y

represents the distance from the examined boundary (wall).

Specifically:
For y+ < 5 : Viscous sub-layer
For 5 < y+ < 30 : Buffer layer
For 30 < y+ < 300 : Log-law layer
For 300 < y+ : Outer region – Free stream flow

Figure 3.4 describes in detail the previous description.

Figure 3.2: Description of the turbulent boundary layer

Wall functions

Based on y+ formulation some k −ε and k −ω models are using wall-functions for near wall treatment.
Wall functions are used, because it is not practical to refine the turbulent boundary layer, in order to resolve
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the viscous sub-layer, because this could lead to an enormous number of small sized cells and thus to ex-
tremely small time-step (based on Courant number). Wall functions aim to describe µtot al at the nodes on
and near the walls, based on the law of the wall. In order to do so, it is assumed that:
V The closest node to the wall is positioned at the inertia sub-layer (log-law region, 300 > y+ > 30).
V The wall shear stress should be modelled (predicted), based on the value of the mean velocity, of the clos-
est node.

It is important to mention that some turbulence models are compatible only with wall functions (k − ε
Realizable) and some others without ones (kkl −ω). There are some exceptional models, which can use both
approaches (k −ω SST). When Reynolds number is low (lower than 105) and flow separation happens, it is
much more accurate to resolve the boundary layer in order to avoid the use of wall functions and approxi-
mations of the velocity profile in the boundary layer. In cases where no wall functions are used, the y+ value
should be lower than 1 (one). However, this refinement makes computations more time consuming and sen-
sitive. In some cases using wall functions is unavoidable (e.g. simulations at full scale with high Reynolds
number).

3.5. Boundary and initial conditions

A boundary value problem should be defined, in order to predict the motion of a fluid. Specifically, a bound-
ary value problem is composed by a set of differential equations together with some additional constrains,
which are called boundary conditions. In this section necessary boundary and initial conditions are formu-
lated for the incompressible NS equations and the interface model.

3.5.1. Boundary conditions

The boundary condition for velocity at structure walls, is a "no slip" (Dirichlet) condition, which means that
the relative velocity at the wall is constant and specifically in our case zero (both tangential and normal com-
ponents). However, the wall velocity of the structure is not fixed (as the structure is oscillating) and thus a
special moving no slip condition is applied (water velocity is equal to the wall velocity). Finally, for the pres-
sure, a special Neumann condition for moving walls is used. This choice was made based on the velocity
boundary condition.

For cases in which the free surface is present, a slip condition is applied for the bottom, left, and right
walls, which means that only the normal component of the velocity is zero and that the tangential compo-
nent of the fluid has no interaction with the wall. This boundary condition is chosen, instead of a no slip
condition, because the mesh resolution close to the side and bottom boundaries of the domain is not suffi-
cient in order to capture correctly the turbulent effects, as the y+ requirements are not fulfilled. Thus, it is
preferred to neglect the tangential component of the velocity, as it is one of the main sources of turbulent
effects close to a wall. Based on the velocity boundary condition, a Neumann condition is chosen for the
pressure at the wall boundary. For the top wall, a non-reflective boundary condition is selected in order to
realistically represent the far field atmosphere.

When the structure is assumed to be fully submerged, the far field is chosen to be an outlet boundary.
For this reason the velocity boundary condition is chosen to be a combination of Neumann and Dirichlet
conditions (inlet, outlet). Specifically, if the velocity vector at the outlet points out of the domain, then the
boundary condition will be of the Neumann type, while if the velocity vector points into the domain, the
boundary becomes Dirichlet, which means constant. For pressure a zero Dirichlet boundary condition is se-
lected which means that pressure at the far field boundaries is constantly zero.

It is important to mention that regarding pressure there are no actual boundary conditions but the pres-
sure conditions at the boundaries are an outcome of the velocity boundary conditions in combination with
Navier -Stokes equations. However, in OpenFOAM it is compulsory to specify both initial and boundary con-
ditions for the pressure field in accordance with the velocity field and Navier-Stokes equations.

The phase fraction alpha also requires boundary conditions. For this dimensionless parameter a Neu-
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mann boundary condition is selected, and more specifically the value of the normal gradient at the boundary
is set to zero. This means that the alpha value at the boundary is equal to the value of the first cell adjacent to
the boundary.

Additionally, boundary conditions at the walls for the turbulent quantities should be specified. If the tur-
bulence model is for a high Reynolds number (e.g. k −ε Realizable) then wall-function boundary conditions
are used, which means that the turbulent quantities at the boundaries are approximated based on a speci-
fied velocity profile (chapter 3.4). On the other hand, for low Reynolds number flows, the boundary layer is
resolved straight down to the boundary and there is no need for wall functions. However, even in this case,
special boundary conditions may be necessary (e.g. calculation of the turbulent viscosity).

More information about the implemented boundary conditions in OpenFOAM, are included in Appendix
B.1.

3.5.2. Initial conditions

The initial (internal) conditions for the velocity and pressure fields are zero as the simulation starts from rest.
The initial condition for the volume fraction (α) is determined based on the free surface level at the beginning
of the simulation. Finally, initial conditions for turbulent quantities, such as k, ω and ε, are specified based
on empirical and semi-empirical formulas [64]. The importance of the last one is examined in subsection
4.1.1.

3.6. Relaxation zones – Non-reflective zones

The open-source wave generation and absorption toolbox wave2foam, developed by Jacobsen et al. [31, 32],
is used in order to generate non-reflective areas, known as relaxation zones, at the far field and thus avoid
wave reflection. By using this approach the size of the computational domain can be decreased and thus the
computational time can be reduced.

As the relaxation zones, the velocity field (u) and the volume fraction (α), are updated explicitly every time
step based on the following function:

ψ= aRψcom + (1−aR )ψt ar g et , (3.10)

where ψ represents the velocity or the volume fraction, ψt ar g et defines the target value, which is calculated
using the applied wave theory (in the examined cases, uniform current with zero velocity), and ψcom illus-
trates the numerically computed values based on Navier-Stokes and VOF equations. αR is the weighting
factor for the two solutions and it is calculated as follows:

aR (χR ) = 1− exp(χ3.5
R )−1

exp(1)−1
, (3.11)

χR represents local co-ordinate system for the relaxation zone and takes values between 0 and 1. It is im-
portant to mention, that the weighting factor αR takes higher values close to the boundary and vice versa.
Therefore, the boundary condition at the wall, is specified by the target value (ψt ar g et ) and it is not affected
by the computational domain. Figure 3.3 represents the relaxation zones:
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Figure 3.3: Relaxation zones and variation of αR and χR

For further explanation someone can refer to [31, 32].

3.7. Numerical schemes - Discretization methods

Another important aspect in Computational Fluid Dynamics is the selection of the discretisation schemes in
space and time. A low order scheme may reduce the accuracy or require high resolution of the discretisation
in space and time. However, a high order scheme may be less robust. For this reason the numerical schemes
should be selected in a way in which a compromise between accuracy and tolerance can be achieved. In the
examined cases, the described balance is accomplished, since the numerical schemes are carefully chosen.

The time derivative is discretised with the first order, implicit, Euler backward scheme. As the accuracy
of the time discretisation is of high importance, the second order Crank-Nicolson method was tested for the
discretisation of time derivative of velocity. However, the above method led to high instability (especially in
cases with free surface) and for this reason was rejected.

The discretisation of the convective term of the momentum equation (or convection of the velocity) is
founded on an unbounded second-order upwind scheme. For a given mesh width, this second order scheme
is more accurate than the ordinary upwind scheme. Additionally, it is more robust than the linear scheme,
due to the fact that it is bounded. Moreover, the same scheme is used for the discretisation of the convection
terms of the turbulent quantities. In addition, it is important to mention, that this discretisation scheme re-
quires the discretisation of the velocity gradient as well.

The second order, limited vanLeer scheme is chosen for the advection of the phase fraction. The limited
choice can be justified, as the alpha field (and thus the free surface) is very sensitive. Finally, a second or-
der central scheme (linear) is selected for the diffusive term of the momentum equation (divergence of shear
stress), as it is calculated based on the velocity field and thus there are no instability issues.

The discretisation of the gradient operator is used indirectly, as it does not appear precisely in the used
solvers. However, it is necessary for the application of the (divergence) linear-upwind scheme, which is men-
tioned above, and it is applied in the discretisation of the shear stress term. Moreover, it appears in the
equations of the turbulent quantities. For the discretisation of the gradient operator, a limited, second-order
scheme is selected, which restricts the gradient in such a way that when cell values are extrapolated to faces
using the calculated gradient, the faces values do not fall outside the bounds of values in surrounding cells.
This improves the stability for moving and deforming meshes.
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The surface normal gradient schemes appear both in the momentum equation at the pressure term and
in the pressure-correction equation. Moreover, these schemes are required to evaluate a Laplacian term us-
ing Gaussian integration. A surface normal gradient is calculated at the cell face. Specifically, it is computed
based on the gradients at the centers of the two cells that the face connects, and represents the component
normal to the face. It is calculated with a central difference scheme and this provides second-order accuracy
in cases where the cells are orthogonal. However, in most of the time this is not the case and especially in
these examined cases where the mesh is deformed. For this reason, in order to maintain the second-order
accuracy, a scheme which provides a non-orthogonal correction is selected. The orthogonal correction is ap-
plied implicitly (by adding) to the non-corrected solution.

Finally, the Laplace operator, which appears in the momentum and pressure-correction equation, is dis-
cretised as the surface normal gradient and thus a similar discretisation scheme is selected.

More information about the selected schemes appear in Appendix B.2.

3.8. Solution algorithm

Most solvers for viscous-flow simulations use the pressure-implicit split-operator (PISO), the semi-implicit
method for pressure-linked equations (SIMPLE) or a combination of these two, which is referred to as PIM-
PLE by the OpenFOAM developers. These algorithms are iterative procedures for coupling the momentum
and the mass (pressure correction) equations. PISO and PIMPLE are used for transient problems, while SIM-
PLE has been designed for steady state problems.

In the current application this PIMPLE algorithm is applied. Therefore, the properties of this algorithm are
briefly reviewed. A flowchart of the algorithm is given in Figure 3.4. This algorithm has many input parame-
ters, which control the different iterative processes within the solution procedure of the governing equations
(momentum and pressure correction equations). The most important parameters are listed and explained
below:
V Inner loop (nCorrectors): This parameter sets the number of times, that the algorithm solves the pressure
equation and momentum corrector in each time-step.
V Outer loop (nOuterCorrectors): This parameter determines the number of loops over the entire system of
equations within one time-step. More specifically, it represents the total number of times the system is solved.

In order to further explain the PIMPLE algorithm, an example is required. The momentum and pressure
correction equations can be expressed in a vector form as follows:

∂ρu
∂t +∇• (ρuu)+∇•R =−∇p, (3.12)

∇2p = f (u,∇p). (3.13)

If the Inner loop and Outer loop have value 2, the following steps will be performed:
1. Calculate momentum from pressure of previous time-step (equation 1)
2. Calculate pressure from the calculated momentum (equation 2)
3. Correct velocity
4. Calculate pressure again, with the corrected velocity (because the Inner loop parameter is 2)
5. Recalculate momentum from the new pressure (equation 1)
6. Calculate pressure from the new calculated momentum (equation 2)
7. Correct velocity
8. Calculate pressure again, (because the Inner loop parameter is 2).

It is important to mention that the described loops are the main reason that the solution is truly implicit
and thus it is allowed a larger non-dimensional time-step size, i.e. a larger Courant number.
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Figure 3.4: Diagrammatic representation of PIMPLE algorithm

3.9. A domain with moving boundaries Methods

In the examined case, forced roll oscillation tests are performed with a viscous-flow algorithm. This means
that the boundary of the domain, which represents the hull of the vessel, performs a roll motion around a
specified axis.

In viscous-flow algorithms, the motion of a “body” is handled by dynamic mesh functions. There are
two ways to apply this motion: deforming mesh and sliding mesh. The definition of these two categories
was given very accurately by Professor Hrvoje Jasak [35]: ‘Dynamic mesh handling includes deforming mesh
cases, where the number and the connectivity of mesh elements remains unchanged, and topological changes,
where mesh size and connectivity varies during the simulation.’

3.9.1. Sliding Mesh

Sliding mesh (or topologically changing mesh) means that the topology of the mesh is changing during the
simulation. The chosen cells are moving (changing orientation and position of the cell faces) at each time-
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step and they exchange values at the current position. To be more specific, initially a group of cells is speci-
fied, and then, this group prescribes a controlled motion, which is specified by the user (e.g. rotational and
sinusoidal in this case). Between the inner and outer part of the mesh there are two AMI (Arbitrary Mesh In-
terface) surfaces, which connect the two parts of the mesh and allow them to exchange values. AMI surfaces
are almost identical, meaning that the one should almost coincide with the other. This method has the ad-
vantage that allows really high angle rotations as the internal part of the mesh moves together with the solid
body and the near wall resolution close to the body remains intact. It is not compulsory for the inner and
the outer parts to match (size and number of cells) at the sliding interface (AMI’s), but if this is the case the
flux is transferred more accurately. Based on this, the user should be aware of conservation errors between
moving and static mesh. Figure 3.3 represents the internal mesh (Left), which follows the barge motion and
the AMI interface (Right) which is responsible for exchanging the values from the internal (dynamic) mesh to
the external (static) mesh.

Figure 3.5: Visualization of the internal mesh and AMI interface used for sliding mesh technique

3.9.2. Deforming Mesh

In deforming mesh, the cell shapes change (deform) close to or away from the moving boundaries in order to
"handle" the motion. In this case, there are no conservation errors, as there are no sliding interfaces and the
connectivity of the mesh elements do not change. For this reason, deforming mesh techniques are easier to
implement and are numerically superior. Of course this method is valid when the resolution is not changing
significantly during the mesh motion. Moreover, the cell aspect ratio along the moving boundary should be
relatively low, as the high aspect ratio cells can be skewed during the deformation.

In order to implement these motions, a relationship between the rate of change of the cell volume (V ) and
the velocity of the boundary (vs ) should be defined based on the space conservation law:

d

d t

∫
V

dV −
∮

S
n · vs dS = 0, (3.14)

A simple and numerically cheap way to ensure space conservation and at the same time minimize the
distortion of the control volume is the Laplacian equation with variable diffusivity.

∇· (γ∇x) = 0, (3.15)

With this pseudo-solid Laplace smoothing equation, mesh deformation displacement (x) is found. In the
mentioned equation γ is the diffusivity through which the boundary motion is distributed to the inner grid
points. However, Laplacian equation is not suitable for cases where the boundary (solid body) performs a
rotational motion (as in the examined cases). In these cases a special rotational motion solver, which uses
the solid-body rotation (SBR) stress equation, is selected. Figure 3.6 compares the SBR stress (Left) and the



3.9. A domain with moving boundaries Methods 21

Laplacian displacement methods (Right), for a rotation motion.

Figure 3.6: Mesh deformation of the outer domain with SBR stress and Laplacian displacement method

Figure 3.7: Mesh deformation at the vicinity of the bilge with SBR stress and Laplacian displacement method

It can be seen that with the SBR stress method, the mesh deformation is transferred away from the exam-
ined boundary, while with the Laplacian method it is not. Moreover, Figure 3.7 shows that this has an impact
on the skewness of the cells close to the body. This phenomenon is more intense in more refined meshes and
for this reason the SBR stress method is necessary for rotational bodies.

The used viscous-flow algorithm provides different diffusivity models that allow us to solve the cell move-
ment equation. In this case the inverse quadratic diffusivity model is used. Inverse diffusivity means that the
diffusivity of the field is based on the inverse of the cell distance from a specified boundary. More specifically:

γ(l ) = 1

l m , (3.16)

where l is the cell distance to the nearest moving boundary and m is, in our case, two (quadratic). In par-
ticular, this means that the deformation of the mesh based on the body motion, is transferred further away
from the boundaries of the body. Figure 3.8 shows the mesh deformation with the SBR stress method and the
inverse quadratic diffusivity, at different time instances.
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Figure 3.8: Mesh deformation with SBR stress method and inverse quadratic diffusivity

Because in the examined case, boundary layer close to the barge is of high importance (we need low cell
deformation in order to achieve high force accuracy), inverse quadratic diffusivity model in combination with
SBR stress method is selected.

3.9.3. Deforming vs. Sliding mesh

The mentioned dynamic mesh-handling methods were tested in order to choose the optimum technique for
the examined case. Finally, the deforming method was chosen, as high conservation errors resulted from the
use of the sliding mesh. On the other hand, the deforming mesh (with the SBR stress method) proved to be
robust, even in extreme roll angle cases.

3.10. Damping extraction methods

As mentioned in section 2.1, the equation, which describes the roll motion as a single degree of freedom, can
be described by the following equation.

MH = Mα(φ̈)+Mb(φ̇)+Mc (φ). (3.17)

3.10.1. Equivalent linearised roll damping

Based on the literature [23, 27], this equation is non-linear and this non-linearity is expected to appear in
the added damping term. The other terms are expected to be approximately linear (for the examined struc-
tures). In cases where the first harmonic of the damping force is dominant, it is acceptable to assume that the
equation 3.18 has a linear form, as given by:

MH =αφ̈+beq φ̇+ cφ. (3.18)

Where a, b and c are the added mass, equivalent linearised added damping and restoring coefficients respec-
tively.

Taking into account the previous assumption, three different methods were investigated in order to ex-
tract the equivalent roll damping. All three of them are presented here.

Harmonic-analysis method

As mentioned in subsection 2.4.2, in a harmonically exited roll motion the roll angle has a sinusoidal form.
If this is the case, then it can be assumed that the total reactive moment also has a sinusoidal form:

φ=φα sin(ωt ) ⇒ MH = MHa sin(ωt +ε). (3.19)

Where φα andω is the amplitude and frequency of the sinusoidal roll motion respectively, MHα is the ampli-
tude of the hydrodynamic force and ε indicates the phase angle between the prescribed roll motion and the
hydrodynamic moment. Substitution of equation 3.19 to equation 3.18 gives the following relation:

−ω2φαa sin(ωt )+ωφαbeq cos(ωt )+φαc sin(ωt ) = MHα sin(ωt )cos(ε)+MHα cos(ωt )sin(ε). (3.20)
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From this equation it is possible to obtain a relation for the equivalent added damping and added mass
respectively:

beq = MHα sin(ε)

φαω
a = cφα−MHα cos(ε)

φαω
. (3.21)

This method is preferred and used by Jaouen et al. [33].

Morison’s method

Morison’s method was selected by Ikeda et al. [27] in order to capture the equivalent roll damping. Specif-
ically, this method expresses the roll damping force and its equivalent linear form in the following way:

Mb = b1φ̇+b2φ̇|φ̇| = beq φ̇. (3.22)

Furthermore,

Mb = beq φ̇⇒ Mbα cos(ωt ) = b −eqφαωcos(ωt ) ⇒ beq = Mbα

φαω
. (3.23)

In the previous equation, the amplitude of the roll damping moment (Mbα) can be calculated as the value of
the total hydrodynamic moment, at the time when the roll angle (φ) is equal to zero, i. e. when the roll velocity
becomes maximum.

Fourier series

This approach is similar to the previous. The only difference is that the amplitude of the drag force is
calculated using Fourier series. More specifically, the hydrodynamic moment can be expressed as a finite
summation of sinusoidal functions as follows:

MH (t ) =
N∑

n=1
MHα sin(ωnt +εn) =

N∑
n=1

[
MHα sin(εn)cos(ωnt )+MHα cos(εn)sin(ωnt )

]
. (3.24)

Where n indicated the order of the harmonic component. From the inverse relationship, the terms MHα sin(εn)
and MHα cos(εn) (known as Fourier coefficients) can be estimated as follows:

MHα sin(εn) = 2
ζT

ζT∫
0

MH (t )cos(nωt )d t , (3.25)

MHα cos(εn) = 2
ζT

ζT∫
0

MH (t )sin(nωt )d t , (3.26)

ζ indicates the number of the cycles. The Fourier coefficients, represent the amplitudes of the components,
which are in phase with cos(nωt ) and sin(nωt ) respectively. For the first harmonic component of the drag
force, the amplitude, which is in phase with cos(ωt ) is extracted, as presented in equation 3.26.

Mbα = 2

ζT

ζT∫
0

MH (t )cos(ωt )d t . (3.27)

3.10.2. Nonlinear roll damping

Apart from the equivalent linearised form, the damping moment can be expressed as a series expansion of φ̇
and |φ̇| in the form:

Mb(φ̇) = b1φ̇+b2φ̇|φ̇|+b3φ̇
3 + ..., (3.28)

which is a nonlinear representation. Based on equation 3.22 and 3.28 it can be assumed that:

Mb(φ̇) = b1φ̇+b2φ̇|φ̇|... ≈ beq φ̇. (3.29)

It is important to mention that equation 3.29, is an approximation, as the nonlinear representation con-
tains higher, odd numbered harmonics, while the equivalent linearised form contains only a first harmonic
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component. For this reason, the first harmonic of the nonlinear representation should be extracted, in or-
der to truly equate the nonlinear and the linearised part and create an equation between the equivalent and
the nonlinear damping coefficients. Therefore, the Fourier coefficients of the non-linear and equivalent (lin-
earised) damping moment, which are in phase with the first harmonic, and more specifically with the velocity,
are extracted and equated:

1
T

T∫
0

(beq φ̇)cos(ωt )d t = 1
T

T∫
0

(b1φ̇+b2φ̇|φ̇|cos(ωt )d t ⇒

1
T

T∫
0

beqφαωcos(ωt )cos(ωt )d t = 1
T

T∫
0

b1φαωcos(ωt )cos(ωt )d t + 1
T

T∫
0

b2φαωcos(ωt )|φαωcos(ωt )|cos(ωt )d t ⇒

beqφαω= b1φαω+φαω(b2φαω
8

3π ) ⇒ beq = b1 +b2φαω
8

3π . (3.30)

Another way to achieve the same result is to equate the energy loss during a cycle, due to non-linear and
equivalent linear damping.

Additionally, in cases where the equivalent linear damping (beq ) is linear with the roll amplitude (φα)
(for constant roll frequency), in combination with equation 3.30, it can be concluded that the non-linear
roll damping coefficients (b1 and b2) are constant. More specifically, equation 3.30 can be evaluated at two
points (equivalent linear damping – roll amplitude graph). Afterwards, the system of two equations with two
unknowns can be solved the non-linear coefficients can be obtained.

By applying the same methodology, the non-linear cubic coefficient b3 can be included. The final equa-
tion will have the following form:

beq = b1 +b2φαω
8

eπ
+b3φ

2
αω

2 3

4
. (3.31)

3.10.3. Dimensionless coefficients

Damping coefficient, frequency of oscillation and vorticity are expressed in a dimensionless manner, in order
to make the comparison between different scales easier and express these quantities in a more universal way.
The dimensionless forms of the coefficients are:

b∗
eq = beq

ρ∇B 2

√
B
2g , (3.32)

ω∗ =ω
√

B
2g , (3.33)

ω∗
z =ωz

(
T
2π

)
. (3.34)



4
Simulation of harmonically excited roll

motion– Validation cases

As mentioned earlier, the 2D numerical harmonically excited roll motion in still water, including free surface
and relaxation zones (for absorption of the reflected waves) is used for the determination of the roll damping
of a barge. Ikeda et al. [27] performed a great number of experiments in order to investigate the behaviour
of roll damping and formulate empirical formulas for the determination of the roll damping coefficients. In
these experiments the influence of different shapes, drafts, frequencies and amplitudes on the roll damp-
ing was examined. In addition, this experiments were 2 1/2 D which means that the object was invariant
in one direction and it was large enough to this direction to make the end effects negligible. Thus, Ikeda’s
experiments can be simulated using a 2D viscous flow model. In order to validate the 2D model, Ikeda’s ex-
perimental data [27] is chosen, for a range of different amplitudes and period T = 1s as shown in Figure 4.1
.

Figure 4.1: Results from Ikeda’s experiment for a rectangular hull with sharp bilges

25
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In addition, an FPSO hull section with rounded bilges and bilge keels is examined. A number of institu-
tions and companies formed a “Joint Industry Project” (JIP) in order to investigate the non-linear damping.
In this thesis, the geometry of this JIP, for one roll amplitude and frequency of oscillation, is investigated in
order to examine the spatial and temporal convergence for various turbulence models. At this point the ex-
perimental results of this JIP are not available but there will become in the future.

Moreover, different numerical schemes, mesh configurations, time-steps and cell sizes, were examined
in order to validate the model and achieve a balance between accuracy and computational time/efficiency.
Another important aspect is the correct prediction of the details of the turbulent flow, because the separation
point and vortex creation (size and duration) are determined by the turbulence. In some cases, the separation
point is fixed (case with bilge keels), regardless of the intensity of the turbulence. However, the size and dura-
tion of the vortex creation is highly dependent on turbulence and for this reason, an extensive investigation
of the turbulence modelling is performed.

In addition, a fully submerged case following the approach proposed by Jaouen et al. [34] is examined and
compared with the results obtained with the model that directly takes into account the presence of the free
surface. In this case, the free surface is neglected and the hydrodynamic moment is calculated by integrating
the shear stresses and the pressures at the “true” wetted area. Afterwards, the viscous damping coefficients
are obtained with Morison’s method as described in subsection 3.10.1. Finally, the total damping coefficients
are estimated by summing up the wave damping (calculated by potential theory) and the viscous damping
(calculated viscous flow simulations). The previous approximation is decribed by equation (2.4) which is
based on Ikeda’s approach [27].

Finally, another free surface case, without relaxation zones is examined. In this approach the compu-
tational domain is chosen to be larger in order to avoid wave reflection. This case is examined in order to
investigate how the relaxation zones and the size of the domain influence the accuracy of the numerical re-
sults.

For all cases, a start-up function G(t ) is applied to the roll angle in order to avoid strong transient flows at
the earlier stages of the simulations. More specifically, the roll angle is multiplied with the G(t ) function for
the first TF periods of the simulations. Figure 4.2 shows the evolution of the roll angle in time:

Figure 4.2: Gradual increase of the roll angle in time after multiplying it by G(t ) function

The start-up function is defined as:

G(t ) =
{

1
2 sin

(
ωt

2TF
− π

2

)
+ 1

2 , f or t < TF T

1, f or t ≥ TF T.
(4.1)

Thus, the roll angle is described as:

φ=G(t )φα sin(ωt ). (4.2)
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4.1. Ikeda’s rectangular barge with free surface and relaxation zones

In Ikeda’s case, a rectangular barge with bilge radius 0 (hull with sharp bilges) is numerically analysed. The
dimensions of the examined hull are L ∗B ∗D = 0,80∗0,28∗0,112m. The geometry of the hull are shown in
Figure 4.3:

Figure 4.3: Geometry of rectangular hull shape with sharp bilges

In this case, the experiments were carried out for an amplitude range between 0.085 and 0.232r ad , and
period T = 1s. Moreover, there are also data from simulations for Ikeda’s case, by F.Jaouen et al (MARIN) and
for this reason the numerical results of this study are also compared with their results. It is important to men-
tion that the numerical results by Jaouen et al. were obtained based on the fully submerged approach [33].

Three turbulence models (k −ε Realizable, k −ω SST and kkl −ω) were chosen based on the reasons pre-
sented in Section 3.2 and they were applied in order to accurately capture the separation of the flow and the
roll damping correctly. For all turbulence models, a verification study was performed, in order to find the
optimum time-step and cell size. The verification study (in time and space) for the three turbulence models
is performed for oscillation period (T ) equal to 1 and roll amplitude (φα) equal to 0.107r ad . The examined
turbulence models require different mesh and time configuration, and this is because the k − ε Realizable
model uses wall functions (20 < y+ < 300) while the k −ω SST (low Re mode) and kkl −ω do not (y+ < 1 and
in some cases this could be relaxed to y+ < 3). This means that in the first case, the mesh width orthogonal to
the surface of the barge is much larger than in the second case. The same holds for the time-step, in order to
have an acceptable value of the non-dimensional time-step size expressed in the Courant number and thus,
stable and accurate simulation. However, the general layout of the computational domain and the distribu-
tion of the control volumes, for the 3 turbulence models is the same and it is presented in Figure 4.4.

Figure 4.4: Overview of the computational domain for the Ikeda’s case with free surface

Figure 4.5 presents an overview of the boundary conditions, which are used for the case with free surface.
A slip condition is used for the bottom, left and right walls. In subsection 3.5.1. a descriptive explanation on
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choosing this boundary condition is given. Moreover, a dynamic boundary condition, which is a combination
of inlet and outlet, is selected to represent the atmospheric boundary. A moving no-slip boundary condition
is chosen for the hull. Finally, non-reflective zones (relaxation zones) are included in the model in order to
decrease the size of the computational domain, without having wave reflection. More information about the
used boundary conditions is presented in section 3.5 and 3.6.

Figure 4.5: Overview of the boundary conditions for the free-surface case

4.1.1. Verification of spatial discretisation

k −ε Realizable

For the k −ε Realizable model four different mesh configurations were examined (Coarse, Medium, Fine,
and Super Fine). The mesh refinement in the four cases is presented in Figure 4.6.

Figure 4.6: Details of the grid for the high-Reynolds turbulence models

For this type of mesh it was attempted to apply an orthogonal smoothing, for more efficient cell inter-
polation. However, this was not possible, as the smoothing utility swept the cells at the boundary layer of
the structure. This happened because the cells at the boundary layer have a relatively high aspect ratio (in
order to fulfil the y+ criterion) and thus a small change in the cells’ configuration results in high cell skewness.

The mesh verification study is performed for a small, constant time step equal to d t = T /1600, and for
Coarse, Medium, Fine, and Super Fine meshes. The number of the cells that the examine grids contain as
well as the value of y+ are presented in Table 4.1. As can be seen y+ is kept constant and equal to approx-
imately 30 for all cases, in order to fulfil the y+ criterion. In addition, the hydrodynamic moment for the
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different meshes is presented in Figure 4.7.

Coarse Medium Fine Super fine
number of cells 9.5K 17.5K 42K 105K

y+ ≈ 30 ≈ 30 ≈ 30 ≈ 30

Table 4.1: Details of the meshes for k −ε Realizable

Figure 4.7: Mesh verification study for Ikeda’s case for T = 1s and φα = 0.107r ad using k −ε Realizable turbulence model

It can be seen that the moment does not converge. This happens due to the fact that the height of the cells
orthogonal to the box is really high compared to the size of the created vortices. This results to the distortion
of the vortices and the decrease of the hydrodynamic moment. This phenomenon is analysed further in sub-
section 4.1.3.

k −ω SST and kkl −ω

For the low-Re models, the mesh close to the corners of the box is smoothed, in order to increase the
orthogonality and thus have an accurate cell interpolation. In particular, interpolation of the cell becomes
more robust as the angle of the vector, which connects the center of the two cells, decreases. Additionally,
three different cell refinements (Coarse, Medium and Fine) were examined and compared with each other,
for verification purposes. The number of cells and the maximum values of y+ are presented in Table 4.2. It
can be seen, that the y+ criterion is not fulfilled in the Coarse grid, in order to examine the influence of the
y+ value on the hydrodynamic moment. Also, an overview of the examined grids is illustrated in Figure 4.8.

Coarse Medium Fine
number of cells 20K 70K 280K

y+ 3.6 1.32 0.75

Table 4.2: Details of the meshes for k −ω SST and kkl −ω
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Figure 4.8: Details of the grid for the low-Reynolds turbulence models

The convergence study for the low-Reynolds number k −ω SST is presented in Figure 4.9. It can be seen
that the convergence level of the hydrodynamic moment is satisfactory. In addition, the calculated damping
coefficients, for the Fine and the Medium grid, are in really good agreement (less than 2% difference). The hy-
drodynamic moment, which is obtained from the Coarse grid, deviates from the converged solution because
the maximum y+ value of this grid exceeds considerably the limit.

Figure 4.9: Mesh verification study for Ikeda’s case for T = 1s and φα = 0.107r ad using k −ω SST turbulence model

Finally, the kkl −ω turbulence model is examined. A mesh-verification study is performed for the grids,
which are mentioned above. As it can be seen in Figure 4.10, the obtained hydrodynamic moments, from the
Fine and the Medium grids, converge to a great degree. On the other hand, the Coarse grid diverges, as the
moment has different shape and the damping coefficient differs significantly (around 25% from the Medium),
compared to the other two cases. This shows strong sensitivity of the kkl −ωmodel to y+ parameter, as in the
Coarse case the y+ exceeds the limit. However, when the y+ value is within the prescribed limits, the solution
obtained by using this turbulence model rapidly converges.



4.1. Ikeda’s rectangular barge with free surface and relaxation zones 31

Figure 4.10: Mesh verification study for Ikeda’s case for T = 1s and φα = 0.107r ad using kkl −ω turbulence model

The outcome of this verification study is that the medium grid can be considered as a "converged" mesh
(for both k −ω SST and kkl −ω), and thus it is used for further calculations. However, only the kkl −ω turbu-
lence model is chosen for further examination, as the k−ω SST turned to be strongly dependent on the initial
values of the turbulence quantities.

More specifically, k −ω SST turbulence model proved to be sensitive to the initial and boundary condi-
tions of the turbulent quantities (k and ω). This means that the selection of these values, significantly affects
the solution and they should be selected carefully. Often, reasonless values could affect the accuracy and the
reliability of the results to a great extent. In this thesis, the effect of these values (k and ω) on the results is
examined. The hydrodynamic moment as a function of time for Ikeda’s case (φα = 0.1065r ad and T = 1s) is
presented in Figure 4.11. Solutions are computed for four different combinations of initial values for k and ω
and compared with each other.

Figure 4.11: Influence of the initial values of the turbulent quantities on the hydrodynamic moment/Ikeda’s case for T = 1s and
φα = 0.107r ad

It is obvious that different initial-boundary values of k and ω, lead to different amplitude, shape, and
phase shift of the hydrodynamic moment. More specifically, the turbulent (eddy) viscosity depends on the
k/ω ratio:

k

ω
= µ

ρ

µt

µ
(4.3)

Equation 4.3 proves that artificial damping can be imposed on the solution, based on the k/ω ratio [64]. For
example, for high values of this ratio (black curve), the eddy viscosity ratio also becomes larger and thus ar-
tificial damping is imposed on the flow field. This artificial flow damping leads to more turbulent flow and
thus to lower separation and vortex creation levels (which means lower roll damping force). This results in
lower total hydrodynamic moment.

It can be concluded that even though k −ω SST is proven to be the best turbulence model for industrial
applications, it is strongly dependent on the initial and boundary values of the turbulent quantities and for
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this reason these values should be carefully selected, based on empirical and semi-empirical formulas.

4.1.2. Verification of temporal discretisation

Apart from the mesh verification, it is of great importance to also verify the time-step. For this reason, a time
verification study was performed for both k −ε Realizable and kkl −ω.

k −ε Realizable

The time verification study of the k −ε Realizable model is performed for four different time-steps. The
examined time steps are: T /200, T /400, T /800, and T /1600. Figure 4.12 presents the convergence of the
hydrodynamic moment for different time-steps and the same grid. (Fine mesh for the k − ε Realizable was
selected in the subsection 4.1.1.

Figure 4.12: Time verification study for Ikeda’s case for T = 1s and φα = 0.107r ad using k −ω Realizable turbulence model

As it is depicted in Figure 4.12, the solution is converging. Especially for time steps equal to T /800 and
T /1600, the hydrodynamic moment fits satisfactorily. The only area where the red and the green curves are
not converging is between 8.2 and 8.3 seconds, where the moment for the T /1600 time step is slightly higher.
However, this difference is obviously negligible.

kkl −ω

A time-step sensitivity study was carried out for the kkl −ω turbulence model and for four different time-
steps. The examined time steps are T /800, T /1600, T /3200, and T /6400. The last two, extensively small
time-steps are chosen, in order to investigate in depth the effect of such a choice on the moment. The re-
spective study is depicted in Figure 4.13.

Figure 4.13: Time verification study for Ikeda’s case for T = 1s and φα = 0.107r ad using kkl −ω turbulence model
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It can be seen, that the hydrodynamic moment for T /800, T /1600 and T /3200 is converging. Unexpect-
edly, the same is not happening for T /6400, as the “shape” of the moment at the peak changes. However,
T /1600 is selected for further calculations, as it is a good compromise between accuracy of the results and
computational time.

4.1.3. Turbulence model selection

After performing a sensitivity study in time and space for different turbulence models, it is concluded that
the k −ε Realizable (high Re) and the kkl −ω are worth considering for further examination (for the chosen
time-steps and cell sizes respectively). Figure 4.14 presents the hydrodynamic moment for these two models:

Figure 4.14: Turbulence model selection between kkl −ω and k −ε Realizable/ Ikeda’s case for T = 1s and φα = 0.107r ad using

It can be seen that the moment estimation, from the two examined models, differs significantly. In order
to examine which model captures correctly the physical phenomenon, the vorticity field is visualized as it is
shown in Figure 4.15 and Figure 4.16.

Figure 4.15: Dimensionless vorticity at different instants for the k −ε Realizable/ Ikeda’s case for T = 1s and φα = 0.107r ad

Figure 4.16: Dimensionless vorticity at different instants for the kkl −ω turbulence model/ Ikeda’s case for T = 1s and φα = 0.107r ad

The k −ε Realizable case does not capture the expected vorticity field, while the kkl −ω does (regarding
the vorticity field published by Jaouen et al. [33, 34]). The main reason, for this sizeable divergence, is not the
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turbulence model (k −ε Realizable) directly, but the required mesh for this turbulence model. Specifically, as
it is mentioned previously, the k−εRealizable is a high Reynolds-number turbulence model and thus requires
a y+ higher than 30. This requirement leads to a coarse mesh in the direction perpendicular to the structure,
which distorts the vortex creation. For this reason, the kkl −ω turbulence model is finally selected for further
calculations.

It is important to mention that, turbulence models should be also selected based on the Reynolds number.
In the examined roll motion case, the Reynolds number is calculated as follows:

Re = UφD

ν
, (4.4)

where D is the draft, ν is the kinematic viscosity, Uφ is the maximum velocity of the point located at the corner
of the bilge and it is equal to Lr φ̇, where Lr is the the lever arm.

As reference, an empirical combination of the Reynolds number for a flat plat and a cylinder is used. It
can be see that for a relatively small sized structure, as in the examined case, the Reynolds number is small
(approximately 30000 – case of laminar boundary layer and turbulent separation) and thus it is wise to use a
low Reynolds number model.

4.1.4. Influence of roll amplitude on roll damping.

All amplitudes, which were investigated by Ikeda, for period T = 1s, are tested, in order to examine the accu-
racy of the numerical model. Initially, the influence of the roll amplitude on the hydrodynamic moment and
the vorticity field is explored, as it is exhibited in Figure 4.17.

Figure 4.17: Dimensionless vorticity for various roll amplitudes/ Ikeda’s case for T = 1s

The dimensionless vorticity field, for oscillation period (T ) equal to 1 and various amplitudes is shown
in Figure 4.18. It seems that the roll amplitude affects the vorticity field extensively, as the size of vortices
increases with the amplitude.

Figure 4.18: Influence of the roll amplitude on the hydrodynamic moment/ Ikeda’s case for T = 1s and various amplitudes

It can be seen that the amplitude of the moment is increasing with the roll amplitude. Moreover, an inter-
esting observation is the fact that the roll amplitude affects the shape and the phase shift of the moment. The
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source of these indications is probably the fact that nonlinearity increases, while roll amplitude inclines. For
this reason, in order to examine the magnitude of the nonlinearity and thus the applicability of the equivalent
linearisation to the damping coefficient, it is of high importance to apply a Fast Fourier Transform (FFT) to
the hydrodynamic signals. The FFT expresses a time signal as a summation of harmonically related sinusoidal
functions, transfers it from the time domain to the frequency domain and indicates the pairs of frequencies
and amplitudes of the decomposed time trace. Figure 4.19 shows the FFT of the hydrodynamic moment, for
each roll amplitude:

Figure 4.19: Fast Fourier transform of the hydrodynamic moment including free surface effects/ Ikeda’s case for T = 1s and various
amplitudes

Except for the first harmonic (ω), the FFT demonstrates the existence of higher, odd numbered harmonics
(3ω, 5ω etc.), which is a typical characteristic of drag (damping). Moreover, the higher harmonics are negligi-
ble, compared to the first, and for this reason the equivalent linearisation for the damping determination is a
valid approach. However, as the amplitude of the roll motion amplifies, the percentage of the third harmonic
also increases. Table 4.3 shows the percentage of the third harmonic (based on the first), for each roll ampli-
tude.

Amplitude Percentage of the third harmonic
0.107 7.5 %
0.133 8.8%
0.169 10.3%
0.184 11.3%
0.236 13.2%

Table 4.3: Percentage of the third harmonic of the damping moment nondimensionalized with the total damping moment, including
free surface effects/ Ikeda’s case for T = 1s and various amplitudes

Founded on the previous statement, we can maintain that in some cases, the equivalent linearised ap-
proach might be insufficient and other extraction techniques should be used. Nevertheless, for the examined
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case the equivalent linearised damping can be safely estimated.

Figure 4.20 illustrates the dimensionless damping coefficients in relation to the roll amplitude. The same
graph includes the experimental results by Ikeda et al [26, 27] and the numerical results by Jaouen et al [33, 34].
The damping coefficients are calculated with the same method that Ikeda used (Morison’s method, subsec-
tion 3.9.2), in order to exclude the effect of different damping extraction methods.

Figure 4.20: Influence of the roll amplitude on the dimensionless roll damping coefficient, including free surface effects and relaxation
zones/ Ikeda’s case for T = 1s and various amplitudes

The obtained numerical results demonstrate a constant overestimation of the damping compared to the
experimental obtained values. However, the numerical results capture accurately the linear trend of the
damping coefficient with the amplitude. The error between the experimental and the numerical results is
presented by Table 4.4.

Amplitude Percentage of the third harmonic
0.107 21.02%
0.133 21.63%
0.169 24.31%
0.184 20.96%
0.236 21.28%

Average 21.84%

Table 4.4: Difference between the experimental and the numerical dimensionless damping coefficient including free surface effects and
relaxation zones/ Ikeda’s case for T = 1s and various amplitudes

4.2. Ikeda’s case for fully submerged cross section and free surface correc-
tion from potential theory algorithms

Free surface is extremely sensitive to high aspect ratio cells and large mesh deformations in combination with
non-orthogonality. These could lead to artificially high velocities and high pressures at the free surface and at
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the boundary of the hull. An additional reason for the numerical distortion of the results, when free surface
is included in the model, is the existence of relaxation zones. Figure 4.21 presents extremely high artificial
velocities at the free surface of the computational domain, resulted by high non-orthogonality. This extreme
case was mitigated by creating a more orthogonal grid to the free surface area.

Figure 4.21: High artificial velocities at the free surface of the computational domain due to high non-orthogonality

Due to the fact that full scale barge requires to have large amplitude of roll motion (and therefore large
mesh deformations) and because the roll damping coefficients with the existence of free surface and relax-
ation zones are overestimated, it is decided to also examine Ikeda’s case without the existence of free surface
in the viscous flow model. The used methodology is based on Ikeda’s assumption, that the total roll damping
can be expressed as a superposition of wave, eddy and frictional damping. As Korpus et al. and Jaouen et al.
[33, 34, 42] proposed, viscous flow algorithms can calculate the eddy and frictional components, while po-
tential flow simulations can estimate the wave damping. Thus, the model geometry is mirrored in the water
plane and it is completely submerged. Afterwards, the forced oscillation test is performed to the fully sub-
merged body and the total hydrodynamic moment is obtained by integrating the pressures and shear stresses
at the truly submerged area only. In this case (2.3) simplifies to:

MH = Mα(φ̈)+Mb(φ̇). (4.5)

This happens because the restoring moment (Mc ) is equal to zero in the absence of free surface and grav-
ity. The rest of the procedure, in order to obtain the damping coefficient (in this case viscous part only)
remains the same one as in section 4.1. Finally, the total damping coefficient is obtained by adding the wave
damping (from potential-theory algorithm) to the viscous part.

The boundary condition, which is applied to the top and bottom hull, is a moving no-slip condition as in
the "free-surface" case. An opening pressure (outlet) condition is applied to the far-field boundary. Figure
4.22 depicts the previous description. More information about the used boundary conditions can be found
in section 3.5.
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Figure 4.22: Overview of the boundary conditions for the fully submerged case

The discretisation schemes, the selected cell-size (refinement) and time-step, and the number of inner
and outer iterations of the solution algorithm are entirely the same as in the free-surface case (section 4.1).
The main difference between these two cases is the modelling of the free surface.

The damping coefficients are calculated with the averaging Morison’s technique (as in section 4.1 and
Ikeda’s experiment). The influence of the roll amplitude on the hydrodynamic moment is illustrated in Fig-
ure 4.23.

Figure 4.23: Influence of the roll amplitude on the hydrodynamic moment excluding free surface effects/ Ikeda’s case for T = 1s and
various amplitudes
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Figure 4.24: Hydrodynamic moment with free-surface effects and relaxation zones and without free-surface effects/ Ikeda’s case for
T = 1s and φα = 0.107r ad

It can be seen that the hydrodynamic moment in the submerged case behaves similarly to the "free-
surface" case. However, compared to the free surface case (Figure 4.24) there is a decrease in the amplitude
and a phase shift. This can be explained based on the fact that in the case where free surface is not present,
the restoring part and the free surface (wave damping) are absent. Additionally, Figure 4.25 presents the FFT
of the hydrodynamic moment for various amplitudes and Table 4.5 shows the percentage of the third har-
monic for each roll amplitude.

Figure 4.25: Fast Fourier transform of the hydrodynamic moment excluding free surface effects/ Ikeda’s case for T = 1s and various
amplitudes
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Amplitude Percentage of the third harmonic
0.107 6.4%
0.133 7.5%
0.169 8.7%
0.184 9.2%
0.236 10.6%

Table 4.5: Percentage of the third harmonic of the damping moment nondimensionalized with the total damping moment, excluding
free surface effects/ Ikeda’s case for T = 1s and various amplitudes

Figure 4.26 shows the damping coefficients for the submerged case (where the wave damping is added to
the viscous part) with Ikeda’s experimental data, for period T = 1s. Additionally, the same figure presents the
numerical results obtained by Jaouen et al. [33, 34]

Figure 4.26: Influence of the roll amplitude on the dimensionless roll damping coefficient, excluding free surface effects/ Ikeda’s case
for T = 1s and various amplitudes

It can be observed that the numerical results (using viscous flow algorithms) obtained by the “submerged”
methodology are in excellent agreement with the experimental data and with the numerical results calculated
by Jaouen [33]. Table 4.6 shows the difference between the numerical and the experimental results.

Amplitude Percentage of the third harmonic
0.107 2.47%
0.133 0.57%
0.169 6.25%
0.184 3.42%
0.236 7.05%

Average 3.95%

Table 4.6: Difference between the experimental and the numerical dimensionless damping coefficient excluding free surface effects/
Ikeda’s case for T = 1s and various amplitudes

By modelling the free surface in a different way the roll damping coefficients are significantly different.
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Figure 4.27 shows the damping coefficients, using different way of modelling free surface in relation with the
experimental data.

Figure 4.27: Dimensionless roll damping coefficients with free surface effects and relaxation zones and without free surface effects/
Ikeda’s case for T = 1s and various amplitudes

The fact that the damping coefficients derived by the “submerged methodology” are in good agreement
with the experimental results while the data calculated with free surface are not, means that the existence
of free surface creates complications and numerical errors (for the reasons which are mentioned earlier in
this chapter). Moreover, it is important to mention that the submerged approach requires significantly less
computational power compared to a model, which includes free surface effects.

Finally, Figure 4.28 represents the dimensionless roll damping coefficient as a function of the roll ampli-
tude for two dimensionless frequencies of oscillation. It shows very good agreement between the experimen-
tal data of Ikeda and the numerical results in the case where the free surface is not included. This also verifies
that the damping coefficient is linear with the roll amplitude. However, the experimental results diverge from
the linear trend. This could be due to the uncertainty of the experimental data.
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Figure 4.28: Influence of roll amplitude on the dimensionless damping coefficients for the submerged case/ Ikeda’s case for T = 1s and
T = 1.5s and various amplitudes

4.3. Ikeda’s case with free surface and extended boundaries

The roll damping coefficients are overestimated, in the case where the free surface is modelled with the VoF
method and the relaxation zones are used for the absorption of the reflected waves, as it is mentioned in
chapters 4.1 and 4.2. In order to find the source of this over prediction, many attempts were done. One of
them was to disable the relaxation zones and extend the two far-field boundaries (left and right boundaries)
sufficiently in order to prevent early reflection of the generated waves (by the forced oscillation motion) on
the lateral wall. Figure 4.29 illustrates the two free surface approaches.

Figure 4.29: Left: Sketch of the computational domain with relaxation zones and non-extend boundaries, Right: Sketch of the
computational domain without relaxation zones and extend boundaries

Additionally, the minimum length of the domain should be specified, based on the total number of roll
cycles, in order to avoid any interference by reflected waves. Thus, the minimum length of the half-domain,
can be calculated by equation 4.6:

L1/2 = λN +2∆x

4
, (4.6)

where L1/2 is the minimum length of the half domain, λ = 2πg /ω2 is the approximated length of the gener-
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ated wave, N is the number of cycles and ∆x is half the breadth (B) of the cross section. In the examined case
λ ≈ 1.562m, N = 15, ∆x = 0.14m and thus the length of the half domain is equal to approximately 6 meters.
It is important to mention that the numerical settings, turbulence model, mesh and time configurations are
identical with the previous examined cases.

Figure 4.30 compares the total hydrodynamic moment in cases where the relation zones are included and
excluded (extend far-field boundaries case) from the model.

Figure 4.30: Hydrodynamic moment with larger domain (excluding relaxation zones) and smaller domain (including relaxation zone)/
Ikeda’s case for T = 1s and φα = 0.107r ad

It can be seen that the hydrodynamic moment is significantly influenced by the extension of the com-
putational domain and the removal of the relaxation zones. More specifically, the hydrodynamic moment is
remarkably decreased, compared to the initial approach. However, the shape and the phase of the moment
curve are remained unchanged.

The change in the hydrodynamic moment influences the roll damping coefficient and specifically it is
decreased by 13.63%. At the same time the error, between the numerical and the experimental results also re-
duces to 8.55%, which is notably lower from the error of the previous free surface approach (smaller domain
with relaxation zones for wave absorption). Figure 4.31 compares the dimensionless damping coefficients,
for variant roll amplitudes, obtained by the free surface models with and without relaxation zones. Table
4.7 presents the error between the experimental and the numerical dimensionless damping coefficients for
larger domain (excluding relaxation zones) and smaller domain (including relaxation zones).

Figure 4.31: Influence of roll amplitude on the dimensionless damping coefficients for larger domain (excluding relaxation zones) and
smaller domain (including relaxation zones)/ Ikeda’s case for T = 1s and φα = 0.107r ad
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Amplitude
Error for larger domain

(excluding relaxation zones)
Error for smaller domain

(including relaxation zones)
Error reduction

0.107 8.55% 21.02% 12.47%
0.133 7.87% 21.63% 13.76%
0.169 10.10% 24.31% 14.21%
0.184 8.99% 20.96% 11.96%
0.236 8.66% 21.28% 12.62%

Average 8.83% 21.84% 13.00%

Table 4.7: Error between the experimental and the numerical dimensionless damping coefficients for larger domain (excluding
relaxation zones) and smaller domain (including relaxation zones)/ Ikeda’s case for T = 1s

The dimensionless damping coefficients with free surface and larger computational domain, excluding
the relaxation zones, is again linear with the roll amplitude and the error between the experimental and the
numerical results is significantly reduced, compared to the coefficients obtained with smaller computational
domain (including relaxation zones). However, the dimensionless damping coefficients are still overesti-
mated by a constant factor, with respect to the experimental data (average error 8.83% and standard deviation
0.81%).

4.4. Nonlinear form of roll damping coefficients

In subsection 3.10.2. it is described how the equivalent linearised roll damping coefficients can be expressed
in its nonlinear form, in cases where the damping coefficients are linear with the roll amplitude. By following
this methodology, the constant (for a specific frequency of oscillation) damping coefficients, b1 and b2, are
calculated for all the examined numerical cases and the experimental data of Ikeda et al. [27]. In order to
sum-up, Figure 4.32 presents the linearised dimensionless damping coefficients for all examined cases.

Figure 4.32: Influence of roll amplitude on the dimensionless damping coefficients for all examined cases/ / Ikeda’s case for T = 1s

As illustrated in Figure 4.33, the dimensional damping coefficients from all cases are fitted in linear curves
in order to extract the damping coefficient for the nonlinear representation.
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Figure 4.33: Linear curve fitting of the roll damping coefficients for the examined cases

The roll damping coefficients b1 and b2, in a dimensional and dimensionless form, are calculated based
on the equations of the linear fitted curves (Figure 4.33) in combination with equation (3.30) and are pre-
sented in Table 4.8.

b1(Ns/rad) b2(Ns2/rad2) b∗
1 b∗

2
Free surface case with smaller domain

(including relaxation zones)
0.1341 0.7515 0.00652 0.3062

Free surface case with larger domain
(excluding relaxation zones)

0.10821 0.6522 0.00527 0.2658

Submerged case 0.05748 0.6735 0.00278 0.2744
Experiment 0.1017 0.5908 0.00495 0.2407

Table 4.8: Coefficients for the nonlinear representation of roll damping for all examined cases

Error b1 Error b2

Free surface case with smaller domain
(including relaxation zones)

24.08% 21.39%

Free surface case with larger domain
(excluding relaxation zones)

6.07% 9.44%

Submerged case 43.84% 12.28%

Table 4.9: Difference between the experimental data and the numerical results for all the examined cases, for coefficients b1 and b2.

Table 4.9 illustrates the difference between the experimental data and the numerical results for all the
examined cases, for coefficients b1 and b2. As it is expected, for the free surface case with smaller domain,
the nonlinear coefficients are significantly overestimated similarly to the linearised equivalent damping co-
efficient for the same case.

For the submerged case, the coefficient b1 is highly overestimated by over 43%, which is an unexpected
difference, as the linearised equivalent coefficient for this case is accurate. This significant error occurred due
to the fact that the free surface is neglected and the wave damping, which is a big part of the coefficient b1, is
artificially implemented in the total equivalent damping coefficient. The nonlinear coefficient b2 differs from
the experimental value by 12.28%, which is a realistic deviation.
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Finally, for the free surface case with larger domain, the damping coefficients b1 and b2 diverge from the
experimental data by approximately 6% and 9.5%, respectively. As it seems, this case gives a balanced solution
for both equivalent linearised and nonlinear representation of the roll damping.

4.5. Nonlinear roll damping of an FPSO

In this case, forced oscillation tests of a 2D hull section with bilge keels are performed in a still water channel,
for different roll amplitudes and periods. This geometry is selected in order to investigate a more complicated
case with bilge keels and at the same time to examine the spatial and temporal convergence for various tur-
bulence models. The general outline of the test-case is described in Figure 4.34. The details of the geometry
of the bilge keels are exhibited in Figure 4.35.

Figure 4.34: Geometry of the FPSO section

Figure 4.35: Geometry of the bilge keels of the JIP roll-motion
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In this thesis, the case with roll amplitude (φα) equal to 5o and period of oscillation (T ) equal to 1.73 sec-
onds is investigated. From experience and previous investigation, it is concluded that the Realizable k−ε and
all High Reynolds number turbulence models are not ideal for modelling the separated flow and the creation
of vorticity at the tip of the bilge keels for this specific case (more details can be found in subsection (4.1.3)),
as the Reynolds number is relatively small. For this reason, the k −ω SST and the kkl −ω turbulence models
have been used. With these models the boundary layer should be refined all the way across the viscous sub
layer of the boundary layer of the structure. However, the k −ω SST is very sensitive to the selected initial
values of the turbulent kinetic energy and turbulent frequency. For this reason, two initial value cases are
inspected.

A mesh verification study is performed for the chosen models and three mesh and cell sizes are used
(Coarse, Medium and Fine). Each one has the following characteristics:

Coarse Medium Fine
number of cells 26016 69850 227429

max initial cell height 2.5•10−5 5•10−5 10−4

maxy+ 3.748 1.978 1.054

Table 4.10: Details of the mesh verification study

The selected time step for the mesh verification study is equal to T /1600 (0.00108125s), this selection is
based on the analysis in Section 4.1 and 4.2 and leads to an acceptable nondimensional timestep in the simu-
lations. The computational domain and the refinement near the bilge keels are illustrated in Figure 4.36 and
Figure 4.37, respectively.

Figure 4.36: Overview of the computational mesh for the JIP roll-motion
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Figure 4.37: Refinement of the mesh in the vicinity of the bilge keels for the FPSO section

Figure 4.38 and Figure 4.39 present the mesh verification study based on the hydrodynamic moment, for
the k−ω SST turbulent model. Each case has different initial conditions for the turbulence quantities. Figure
4.32 shows the mesh verification study for the kkl −ω turbulence model. Table 4.11 presents analytically the
turbulence models and the initial conditions for each corresponding figure.

Cases Turbulence model Initial conditions for the turbulence quantities Figure
1 k −ω SST k = 0.01, ω= 0.1 Figure 4.38
2 k −ω SST k = 0.00001, ωai r = 0.078, ωw ater = 1.7 Figure 4.31
3 kkl −ω kl = 0,kt = 0,ω= 0 Figure 4.32

Table 4.11: Error between the experimental and the numerical dimensionless damping coefficient

Figure 4.38: Hydrodynamic moment for k −ω SST turbulence model, roll amplitude φα = 5o , k = 0.001/ω= 0.1
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Figure 4.39: Hydrodynamic moment for k −ω SST turbulence model, roll amplitude φα = 5o ,k = 10−5/ωai r = 0.078/ωw ater = 1.7

Figure 4.40: Hydrodynamic moment for kkl −ω turbulence model, roll amplitude φα = 5o ,kl = 0/kt = 0/ω= 0

The grid convergence for case 1 is not as satisfactory as for cases 2 and 3. Especially in case 3 (kkl −ω)
the hydrodynamic moment clearly converges significantly as the grid becomes finer. Figure 4.41 illustrates a
comparison between the examined turbulence models and initial values of the turbulent quantities.

Figure 4.41: Hydrodynamic moment for different turbulence model, roll amplitude φα = 5o

It becomes apparent that the hydrodynamic moment diverges for different k and ω. This means that the
low Reynolds number k −ω SST turbulence model is affected significantly by the initial values of the turbu-
lence quantities. The computed hydrodynamic moment strongly depends on the initial conditions chosen
for the turbulent kinetic energy and frequency when the k −ω SST model is used. The k −ω SST model was
developed to reduce the influence of initial and inflow boundary conditions on the solution but in this case
their influence is clearly present. The k −ω SST model for initial conditions, which corresponds to case 2, is
in agreement with the kkl −ω model. This happens because the initial values in case 2 represent realistically
the physics of the problem (initial velocity is zero, thus the eddy viscosity ratio and the turbulent viscosity
should initially be very small).





5
Numerical prediction of the roll damping

characteristics of a full scale barge

5.1. Case description and geometry of the model

After an extensive examination of various methods, turbulence models, and numerical discretisation tech-
niques for the determination of the roll damping of a rectangular shaped hull (Ikeda’s case), the obtained
knowledge and experience is applied to a full scale barge. The "fully submerged" approach is used, as it
is proven that it can provide reliable viscous roll damping estimations and thus substantial corrections for
potential flow algorithms. At the same time, this approach requires less computational time than the free
surface cases. In this current thesis, three different cases are examined, with drafts equal to 35%, 47%, and
60% of the total height. The length of the examined barge is more than 100 meters and therefore a 2D model
can be applied as the object is large enough in longitudinal dimension in order to make the end effects neg-
ligible. Each case has a different total Vertical Center of Gravity (VCG), in order to realistically represent, true
loading conditions in operational and survival circumstances. Figure 5.1 illustrates the geometry of the ex-
amined barge and points out the different drafts and VCGs.

Figure 5.1: Geometry of the full-scale barge

Additionally, for each case, the viscous damping coefficients are calculated, for constant frequency of os-
cillation equal to its natural frequency and various roll amplitudes. The frequency of oscillation is chosen to
be equal to the natural frequency, as the roll amplitude reaches its peak at this frequency area. The correct
determination of the roll damping at the natural frequency (and thus at the peak roll amplitude) is of high
importance, in order to increase the workability and at the same time provide safe predictions. Table 5.1
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presents the properties of the three cases:

Draft VCG Natural frequency
Case 1 D1=2.13m VCG1=5.149m f1=0.945rad/s
Case 2 D2=2.87m VCG2=9.282m f2=0.80rad/s
Case 3 D3=3.66m VCG3=9.641m f3=0.75rad/s

Table 5.1: Overview of the examined cases

The numerical forced oscillation tests are performed for 5o, 7.5o, 10o, 12.5o, 15o and 17.5o in each case.

The k-omega SST turbulence model, for a high-Reynolds number, is used in order to capture the turbu-
lence effects and the separation of flow, as accurately as possible. In this case the Reynolds number is much
higher than 106 (because the velocities of a full scale case are high) and thus it is acceptable to use a high-
Reynolds number turbulence model. Moreover, the created vortices are large enough in order to be described
with a cell resolution for a high-Reynolds number model. Finally, it would be infeasible to use a low-Reynolds
number model, as it would require very small cells at the boundary layer (and thus a very small time-step),
compared to the size of the structure and the frequency of oscillation.

The boundary conditions and the methodology are the same as the ones described in section 4.2. A gen-
eral overview of the computational grid is illustrated in Figure 5.2. Oval shape is chosen for the domain, as it
is suitable for cases with rotational motion, since the mesh deformation is smoothly transferred to the outer
domain.

Figure 5.2: Overview of the computational grid for the full scale barge
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5.2. Verification study

A verification study in space and time is performed for draft equal to 35% of the total height, and roll ampli-
tude equal to 5o. For the verification study the hydrodynamic moment is compared for various grid-sizes and
timesteps. For the mesh verification three consecutively refined mesh configurations have been created. De-
tails about the grids and the y+ value are shown in Table 5.2. Moreover, Figure 5.3 illustrates the refinement
of grids at the vicinity of the bilge.

Coarse Medium Fine
number of cells 13.5K 54K 216K

y+ 20 < y+ < 300 20 < y+ < 300 20 < y+ < 300

Table 5.2: Details of the meshes for k-epsilon Realizable

Figure 5.3: Grid refinement at the vicinity of the bilge

Figure 5.4 shows the mesh verification for the Coarse, Medium, and Fine grids. It can be seen that the
solution is converging, as the mesh becomes finer. For further calculations the Medium grid has been used,
as it is a good compromise between accuracy and time efficiency.

Figure 5.4: Mesh verification study for the full-scale barge

Additionally, apart from the mesh verification study, a time verification study is performed. The exam-
ined timesteps are T /1600, T /3200 and T /6400. Figure 5.5 shows the hydrodynamic moment for these three
time-steps.
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Figure 5.5: Time verification study for the full-scale barge

It can be seen that the model is more sensitive to the timestep than to the grid size. However, the hydro-
dynamic moment is still converging and thus T /3200 is chosen for further calculations.

5.3. Results

It is important to mention that the selected center of rotation is the VCG and not the center of floatation, in
order to calculate the viscous roll damping in agreement with the potential theory algorithms. More specif-
ically, all potential theory algorithms have as a point of reference the CoG and consequently all the motions
are described based on this point. Moreover, the VCG above the water line, in combination with the other 6
degrees of freedom, makes this choice more realistic, as in these cases the free-floating body tends to rotate
around the VCG.

Initially case 1, where the draft is equal to 35% of the total height, is examined. As it is mentioned, various
roll amplitudes are examined, ranging from 5o to 17.5o. Figure 5.6 presents the influence of the roll amplitude
on the hydrodynamic moment.

Figure 5.6: Influence of the roll amplitude on the hydrodynamic moment for the first case of full-scale barge

It can be seen that the amplitude of the hydrodynamic moment is increasing as the roll amplitude be-
comes larger. Furthermore, the phase of the moment curve, for roll amplitude up to 10o, appears not to be
significantly affected. Nevertheless, for roll amplitude equal to 12.5o (or larger), the phase shift is significant.

Afterwards, the roll damping coefficients are calculated for each roll amplitude, founded on the discrete
Fourier series method. Figure 5.7 illustrates the dimensionless viscous roll damping coefficients for various
roll amplitudes and shows the relation between the viscous, wave, and total roll damping.
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Figure 5.7: Influence of the roll amplitude on the dimensionless damping coefficients for the first case of the full scale barge

It can be seen that the viscous roll damping increases linearly as the roll amplitude becomes larger. How-
ever, this linear trend stops when roll amplitude reaches 12.5o. After this point the viscous roll damping
decreases with increasing roll amplitude. The main reason for this is the fact that in such roll amplitudes, the
velocity of the barge (when it crosses the starting point) becomes extremely high and as a consequence the
separation of vortices become highly intense and the created vortices end-up either away of the imaginary
submerged area (in reality, in cases like these the vortices are dissipated at the free surface) or close to the axis
of rotation (which means decreased lever arm). These leads decreased damping moment.

In addition, the viscous roll damping ranges between 30% and 55% of the wave damping. Table 5.3 shows
the percentage of the viscous roll damping with respect to the wave damping for various roll amplitudes.

Amplitude Percentage of the third harmonic
5o 29.40%

7.5o 37.15%
10o 45.34%

12.5o 54.98%
15o 53.69%

17.5o 47.23%

Table 5.3: Percentage of viscous roll damping with respect to the wave roll damping, for the first case of the full scale barge

Finally, Figure 5.8 presents the FFT of the hydrodynamic moment for different roll amplitudes. In all cases,
the third harmonic component of the moment is less than 6% of the first harmonic and for this reason the
equivalent linear damping is accurate enough.
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Figure 5.8: Fast Fourier transform of the hydrodynamic moment for a range of amplitudes for the first case of the full scale barge

Figure 5.9 and Figure 5.10 illustrate the influence of roll amplitude on damping coefficients, for the second
and third case of the full scale barge respectively. Moreover, Table 5.4 and Table 5.5 present the percentage of
viscous roll damping with respect to the wave damping for various roll amplitudes, for the second and third
case respectively.

Figure 5.9: Influence of roll amplitude on dimensionless damping coefficients for the second case of the full scale barge
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Figure 5.10: Influence of the roll amplitude on the dimensionless damping coefficients for the third case of the full scale barge

Amplitude Percentage of the third harmonic
5o 24%

7.5o 50.37%
10o 82.73%

12.5o 109.91%

Table 5.4: Percentage of viscous roll damping with respect to the wave roll damping, for the second case of the full scale barge

Amplitude Percentage of the third harmonic
5o 32.13%

7.5o 48.61%
10o 73.63%

12.5o 116.86%
15o 172.09%

Table 5.5: Percentage of viscous roll damping with respect to the wave roll damping, for the third case of the full scale barge

In the second case (draft equal to the 47% of the total height) the dimensionless roll damping is linear
with roll amplitude, for the examined amplitudes of oscillation. Additionally, the percentages of viscous roll
damping with respect to the wave damping, are significantly higher compared to the first case. More specif-
ically, for roll amplitude equal to 10o, the percentage of viscous damping in the first case is equal to 45.34%,
while in the second is 82.73%. This might happen because of two possible reasons:

• The frequency of oscillation is higher in the first case and for this reason the wave damping component
is also bigger. Thus, it could be conclude that the increase in frequency of oscillations, results in a more
significant increase in the wave damping component than in the viscous damping part

• The VCG is higher in the second case than in the first and for this reason the barge in the second case
performs a pendulum like motion (as the VCG is selected as the center of rotation). For this reason,
the bottom of the structure remains at the horizontal position for more time and thus the separated
vortices are able to stay attached for longer period. This could lead to increase of the viscous damping
component compared to the first case.



58 5. Numerical prediction of the roll damping characteristics of a full scale barge

However, the described approaches are based on assumptions and for this reason should be further investi-
gated and validated.

In the third case, damping coefficients are not entirely linear with roll amplitude. In the equation that
describes the relation between the damping coefficients and the roll amplitude, a quadratic term should be
included. This indicates (based on equation (3.31)) that the cubic damping term (b3) is of high importance
for this particular case.
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6.1. Conclusions

In this section, the main conclusions of this thesis are summarized and categorized into the following sub-
sections:

• General conclusions and remarks

• Numerical discretisation and viscous flow modelling

• Turbulence modelling

• Equivalent linearised and nonlinear roll damping

6.1.1. General conclusions and remarks

Three main approaches were examined in order to estimate by means of turbulent viscous flow simulations
the hydrodynamic moment due to forced oscillation motion and calculate the roll damping coefficients. In
two out of the three approaches the free surface was included in the model using the VoF method. In the
first case, relaxation zones were used in order to absorb the reflected waves, and thus to decrease the size of
the computational domain. In the second case, the influence of the reflected waves to the roll damping cal-
culation was avoided by creating larger computational domain. In the third and final approach, free surface
effects were neglected and only the viscous roll damping part was estimated. The total damping was cal-
culated as a superposition of viscous damping (from viscous flow algorithm) and wave damping (potential
theory algorithm).

All approaches were tested and compared with Ikeda’s experimental data [27] and it is concluded that roll
damping coefficients can be accurately estimated using both the second and the third methodology. This
means that the viscous flow model can correctly calculate roll damping, either when the free surface effect is
included (VoF modelling) or when excluded (by adding wave damping from potential theory algorithms). In
more detail, the submerged case is a good compromise between computational time and accuracy. However,
this method violates the physics of roll damping since it is linearly separated into several components. The
method using free surface and larger domain (excluding relaxation zones) is time consuming (since it requires
bigger domain) but it accurately describes the physical phenomenon. The first method (smaller domain with
relaxation zones) considerably overestimated the damping coefficients, as the relaxation zones were too close
to the hull and thus the numerical results were affected by their existence.
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Finally, it is important to mention that as the roll amplitude increases, the generated vortices at the bilges
and the third harmonic component (3ω) of the damping moment also grow, for all the examined cases.

6.1.2. Numerical discretisation and viscous flow modelling

A second order time discretisation scheme was attempted to be used, in order to increase the accuracy of the
time discretisation of the momentum equation and decrease the resolution in time. However, it was impos-
sible to stabilize it and incorporate it in the model. The second order schemes tend to be even more unstable
for cases with free surface.

Additionally, free surface modelling, in viscous flow algorithms, is highly sensitive to high aspect ratio
cells, mesh deformations and non-orthogonality. These can lead to artificially high velocities and high pres-
sures at the free surface and at the boundary of the hull. As a consequence, the accuracy of the numerical
results can be reduced.

6.1.3. Turbulence modelling and verification studies

Three RANS turbulence models (k −ω SST (low-Reynolds and high-Reynolds number modes), kkl −ω and
k − ε Realizable) were extensively examined in order to capture the physical phenomena of the forced roll
motion. The main conclusion deriving from this research is that each turbulence model should be wisely
used based on every considered case. As an example, refer to subsection 4.1.3., where the k − ε Realizable
model is used in order to capture the vortex creation due to roll motion, for a relatively small structure. In
the examined case, a high Reynolds number turbulence model (which requires a y+ higher than 30 and thus
in the examined case a course mesh), is used for a low Reynolds number case. This resulted in vortex distor-
tion and incorrect physical interpretation of separation of flow (Figure (4.15) and Figure (4.16)). On the other
hand, the kkl −ω model was proven to be a robust and stable turbulence model for low-Reynolds number
cases and for this reason it was finally chosen for Ikeda’s validation case. More specifically, the hydrodynamic
moment for kkl −ω model converged in space for y+ = 1.32 and in time for d t = T /1600. For the full scale
barge, the k −ω SST model (in high Reynolds number mode) is used, as it is the best proven option for full
scale engineering applications.

An important aspect is that the k−ω SST turbulence model proved to be sensitive to the initial and bound-
ary conditions of the turbulent quantities (k andω), as it is described in subsection 4.1.1 and by Figure (4.11).
In particular, higher initial ratio of k/ω (higher than normal) leads to higher eddy viscosity and therefore
to artificial damping creation and more turbulent flow. This results in reduced hydrodynamic moment as
the separation and vortex creation levels are lower. For this reason, it can be concluded that the initial and
boundary condition of the turbulent quantities k and ω should be carefully selected, based on empirical and
semi-empirical formulas [46, 64].

6.1.4. Equivalent linearised and nonlinear roll damping

The equivalent linearized and non-linear form of roll damping was calculated for all the examined cases, for
variant amplitudes and period of oscillation T = 1s, and compared with the data of Ikeda [27].

The equivalent linearised damping coefficients, for the larger domain (excluding relaxation zones) and
the submerged case, are in good agreement with literature data [27]. More specifically, regarding the case
with extended domain, a deviation from the experimental values lower than 10% is observed. In addition,
for the submerged approach, a reasonable agreement between the viscous flow model and the experimental
results is found, with difference less than 7%. On the other hand, for the case with the smaller domain (in-
cluding relaxation zones), the calculated dimensionless damping coefficients are overestimated. Specifically,
the damping coefficients are overestimated by 20% with respect to the experimental results of Ikeda [27] due
to the fact that the flow field close to the hull interacts with the relaxation zones. Finally, for the submerged
case, the equivalent linearised damping, for period of oscillation T = 1.5s and various amplitudes, is esti-
mated and has good agreement with the experimental data (Figure (4.28)).
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For the free surface case with smaller domain, the coefficients for the nonlinear representation of roll
damping are significantly overestimated, similar to the linearised equivalent damping coefficient. For the
submerged case, the coefficient b1 is overestimated by over 43%. This significant error occurred due to the
fact that the free surface is neglected and the wave damping, which is a big part of the coefficient b1, is ar-
tificially implemented in the total equivalent damping coefficient. The nonlinear coefficient b2 differs from
the experimental value by 12.28%, which is a realistic deviation. Finally, for the free surface case with larger
domain, the damping coefficients b1 and b2 diverge from the experimental data by approximately 6% and
9.5%, respectively.

Three different cases of the full scale barge are examined, with drafts equal to 35%, 47%, and 60% of the
total height. These cases are simulated by using the submerged approach, as it is a good compromise of time
efficiency and accuracy. Each case has a different total Vertical Center of Gravity (VCG) as it is presented
in Figure (5.1). The roll damping of the full-scale barge, for draft equal to 35% of the total height, tends
to linearly increase with the roll amplitude up to the point where the roll amplitude reaches a value equal
to 12.5o. After this point the roll damping decreases with respect to the roll amplitude. The main reason
for this is the fact that in such roll amplitudes, the created vortices end-up either away from the imaginary
submerged area or close to the axis of rotation. These leads decreased damping moment. In the second case
the dimensionless roll damping is linear with roll amplitude, for all the examined amplitudes of oscillation.
Moreover, the percentages of viscous roll damping with respect to the wave damping, are significantly higher
compared to the first case. In the third case, damping coefficients are not entirely linear with roll amplitude.
The equation that describes the relation between the damping coefficients and the roll amplitude should
include a quadratic term. This indicates (based on equation (3.31)) that the cubic damping term is of high
importance for this particular case.

6.2. Recommendations

The recommendations for future work and research, which emerged during this master thesis, are classified
into the following two sub-sections:

• Body dynamics and

• Fluid dynamics and numerical modelling.

6.2.1. Body dynamics

! In a loaded transportation barge the total center of gravity is located above the waterline. This might
cause strong coupling between the roll and sway motion. This significant coupling influences the vis-
cous roll damping as well as the coupled damping terms (b42 and b24). As it is impractical to examine
this phenomenon experimentally it is of high importance to investigate the accuracy with which vis-
cous flow simulations capture the physics of this case.

! As the amplitude of the roll motion increases, the third harmonic component (3ω) of the total damping
force becomes more important. In cases like this, the equivalent linearised approach can be very well
insufficient for the intergraded calculation of the damping coefficients. For this reason, other extraction
techniques should be investigated and used.

! The shape of the hull influences the vortex shedding considerably and therefore the viscous roll damp-
ing. For this reason, it is of high importance to investigate the impact of different hull shapes on the vis-
cous damping coefficient. Viscous flow simulations can effectively and accurately provide an overview
of this correlation.

! For increased VCG a floating body performs a pendulum like motion. It is of high importance to exam-
ine the influence of this unique motion on the vortex creation and thus on the viscous roll damping.

! It is of high significance to examine in more detail the behaviour of roll damping for variable frequency
of oscillation, while the roll amplitude will remain constant.
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6.2.2. Fluid dynamics and numerical modelling

! Richardson extrapolation is a powerful acceleration method, which is used in order to improve the rate
of convergence of a sequence. This method can be used in order to increase the order of accuracy of
the obtained roll damping coefficients. Thus, Richardson interpolation for different time-steps and
grid-sizes is an efficient approach to obtain a higher order of accuracy of a damping coefficient.

! As it is repeatedly mentioned, the free surface is highly sensitive to the mesh quality and this can in-
fluence the accuracy of the results. However, the true source of this sensitivity might be the fact that
the discretisation of the Navier-Stokes equations, in the current viscous flow algorithm, is based on
their conservative form. As it is mentioned in section 3.3, density is discontinuous at the interface (be-
cause the phase fraction alpha is also discontinuous) and thus its value rapidly decreases (or increases)
when the fluid phase changes. When the conservative form of the Navier-Stokes equations is discre-
tised, density is included in the discretisation, and as a result this discontinuity affects the momentum.
This results in artificially high velocities at the free surface. Finally, it is important to mention that the
creators of VoF (Hirt and Nichols [24]) are using the non-conservative form of the Navier-Stokes equa-
tions. For this reason, the non-conservative form of Navier-Stokes equations should be examined for
cases with free surface.

! The accuracy of time discretisation of the momentum equation is of high importance in order to cor-
rectly estimate the solution and thus the damping coefficients. An increased level of temporal accuracy
can be achieved by using a higher order discretisation or higher resolution in time. The current simula-
tions where performed for a first order temporal discretisation and for this reason a main future goal is
to stabilize a higher order scheme in time (like Crank-Nicolson), in order to reduce the computational
time and increase the accuracy of the solution.

! Turbulence modelling for roll damping determination has been extensively examined in the current
thesis. However, the used RANS models are not designed for this type of physical phenomenon. The
ideal turbulence model should be able to capture accurately flow separation, transitional flows and
vortex creation. Moreover, it should be independent of the initial values of the turbulent quantities. The
most suitable turbulence model for the described physical phenomena is LES (Large Eddy Simulation)
and for this reason it should be investigated in the future in order to predict the flow field due to roll
motion.
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A.1. Reynolds averaging technique

Osborne Reynolds proposed an averaging technique in order to describe the chaotic behaviour of a fluid’s
velocity in a turbulent flow. More specifically he expressed the velocity of a turbulent flow as a summation an
average value and a fluctuation around this average value A.1.

Figure A.1: Velocity of turbulent flow

u(x, t ) = ū(x)+u′(x, t ) =U +u′ (A.1)

ū(x) = l i m 1
T

∫
u(x, t )d t (A.2)
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B.1. Boundary conditions

In the following tables, the boundary conditions for the free surface and the submerged cases for the kkl −ω
are specified.

U p-rgh alpha k/kl ω νt

Barge
movingWall

Velocity
fixedFluxPressure zeroGradient zeroGradient zeroGradient νt LowRe

Walls slip zeroGradient zeroGradient zeroGradient zeroGradient zeroGradient

Atmosphere
pressureInlet
OutletVeloc-

ity
totalPressure inletOutlet inletOutlet inletOutlet calculated

Front/Back empty empty empty empty empty empty

Table B.1: Implemented boundary conditions in the viscous flow algorithm for free surface case and kkl −ω turbulence model

U p-rgh k/kl ω νt

Barge movingWall Velocity fixedFluxPressure zeroGradient zeroGradient νt LowRe
Up/ Down zeroGradient fixedValue (0) zeroGradient zeroGradient zeroGradient
Front/Back empty empty empty empty empty

Table B.2: Implemented boundary conditions in the viscous flow algorithm for submerged case and kkl −ω turbulence model

fixedValue: It is a Dirichlet boundary condition. More specifically, this boundary condition provides a
fixed value constraint at the chosen boundary.

movingWallVelocity: It is a Dirichlet boundary condition. This type of boundary condition provides a
velocity boundary condition in the cases of moving walls. It similar to the fixed value boundary condition,
nevertheless the velocity value of the boundary is variable and based on other conditions (specified by the
user or by the "environment")

zeroGradient: It is a Neumann boundary condition. This means that, a zero gradient condition (normal
special derivative to the boundary) is applied from the internal field onto the patch face. In the pressure case,
this is not an actual boundary condition, but a result of the Navier-Stokes equations at the boundary for spec-
ified fixed-value velocity boundary condition.

65



66 B. Appendix

fixedFluxPressure: It is a Neumann boundary condition. It is similar to the zeroGradient condition for the
pressure. The difference is that this condition is suitable for variable velocity boundary condition. This means
that the pressure gradient is calculated based on the velocity, which is specified by the respective boundary
condition.

totalPressure: This boundary condition provide a total pressure condition. (explain)

inletOutlet: This boundary condition provides a generic outflow condition, with specified inflow for the
case of return flow. (explain)

pressureInletOutletVelocity: This velocity inlet / outlet boundary condition is applied to pressure bound-
aries where the pressure is specified. A zero-gradient condtion is applied for the outflow (as defined by the
flux). For the inflow, the velocity is obtained from the patch-face normal component of the internal-cell value.
(explain)

calculated: In this boundary condition, it is assumed that the value is assigned (calculated) via field as-
signment.

empty: OpenFoam always creates 3D cases. This boundary condition is used in order to reduce a case
from 3D to 2D. For this reason, the empty boundary condition is used to the faces, in which no solution is
needed.

nutLowReWallFunction: It is a wall function boundary condition for the νt . For further explanation about
the wall functions.

B.2. Numerical schemes

In OpenFoam the mathematical operators (in this equation and generally) can be expressed with the follow-
ing way in:

ddtScheme: first and second time derivatives ⇒ ∂
∂t , ∂2

∂2t

gradScheme: gradient ⇒∇

divScheme: divergence ⇒∇•

laplacianScheme: Laplacian ⇒∇2

interpolationScheme: cell to face interpolations of values

snGradSchemes: component of gradient normal to a cell face

Its differential operator can be discretized using many possible ways. Below, the chosen schemes (for
each mathematical operator group) are presented.

ddtScheme gradScheme laplacianScheme interpolationScheme snGradSchemes

Euler
cellLimited

Gauss linear
1

Gauss linear
corrected

linear corrected
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div(rhoPhi,U) div(phi,alpha)
div(phirb,

alpha)

div(phi,k) /
div(phi,
epsilon)

div(phi,
nuTilda)

div((muEff*

dev(T(grad(U)))))

Gauss lin-
earUpwind

Gauss
vanLeer

Gauss
interface

Compression

Gauss lin-
earUpwind

Gauss linear Gauss linear
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