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Abstract

Federated learning (FL) enables collaborative model training across
multiple clients without sharing raw data, offering a promising solu-
tion for privacy-sensitive applications. However, as FL becomes more
decentralised, balancing data privacy with resilience against adver-
sarial attacks remains a fundamental challenge. This thesis investi-
gates the interplay between privacy-preserving mechanisms such as
Differential Privacy, Secure Multi-Party Computation (SMPC), and
Subspace Perturbation, and the robustness of adversarial detection in
fully decentralised FL networks. By extending information-theoretic
bounds and conducting comprehensive experiments under a variety of
attack scenarios, we show that stronger privacy guarantees often come
at the cost of reduced detection capability. Notably, mechanisms that
increase noise or mask updates to protect data privacy tend to obscure
the test statistics that detectors rely on, resulting in higher false alarm
rates and missed detections. Our results highlight that while privacy
and robustness cannot be maximised simultaneously, careful tuning
of system parameters and defence strategies can help achieve a prac-
tical balance. This work provides theoretical insights and empirical
evidence to inform the deployment of privacy-preserving and robust
federated learning systems.
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Zarè Palanciyan
Delft, The Netherlands
My Graduation Date

“KISS – Keep It Simple Stupid.”

—Kelly Johnson

v



vi



Contents

Acknowledgments v

1 Introduction 1

1.1 Research Question and Outline . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Topology and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Participating Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Primal Dual Method of Multipliers (PDMM) for Decentralised
Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Federated Learning FL . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 DFL: FedAVG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 DFL: Optimisation-Based . . . . . . . . . . . . . . . . . . . . . 6

3 Preliminary: Privacy 7

3.1 Mutual Infomration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Privacy Preserving Mechanisms . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2 Secure Multi-Party Computation (SMPC) . . . . . . . . . . . . 9

3.2.3 Subspace Perturbation (SP) . . . . . . . . . . . . . . . . . . . . 11

4 Preliminary: Federated Learning Adversarial Robustness 13

4.1 Weak and Strong Aggregators . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Robustness Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Trimmed Mean (Median) . . . . . . . . . . . . . . . . . . . . . . 14

4.2.2 SignGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2.3 Self–Centered Clipping (SCC) . . . . . . . . . . . . . . . . . . . 15

4.2.4 SMAD-Detection Mechanism . . . . . . . . . . . . . . . . . . . 15

4.3 Adversarial Attacks in Federated Learning . . . . . . . . . . . . . . . . 17

4.3.1 Gaussian Noise Attack . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.2 Copycat Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.3 Little-Is-Enough (LIE) Attack . . . . . . . . . . . . . . . . . . . 18

4.3.4 Sign-Flipping Attack . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3.5 Label-Flipping (Dirty-Label) Attack . . . . . . . . . . . . . . . 18

4.4 Trade-Off Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Binary Detection and Fano’s Inequality . . . . . . . . . . . . . . . . . . 21

4.6 Influence of Adversarial Variance . . . . . . . . . . . . . . . . . . . . . 21

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



5 Simulation Set-Up 23
5.1 Network Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Node Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Attack setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4.1 Training Accuracy and Loss . . . . . . . . . . . . . . . . . . . . 26
5.4.2 Test Accuracy and Loss . . . . . . . . . . . . . . . . . . . . . . 27
5.4.3 FAR and MDR . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.1 No Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.2 Pure Gaussian model poisoning . . . . . . . . . . . . . . . . . . 30
5.5.3 Gaussian additive Noise . . . . . . . . . . . . . . . . . . . . . . 32
5.5.4 ALIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5.5 Sign-Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5.6 Label-Flipping . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.7 Privacy Preserving Mechanisms Trade-Off Performance . . . . . 40

6 Conclusion, and Future Work 41
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



List of Figures

2.1 Two topologies for federated learning showing the model parameter com-
munication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.1 Byzantine workers seducing benign nodes to shift the mean [1]. . . . . . 18
4.2 Example illustration of distributions under variance attack: Honest (D =

0), Noise (Y ), and Adversarial (D = 1) gradients. Increased adversarial
variance σ2

X,a leads to enhanced detectability. . . . . . . . . . . . . . . . 22

5.1 Graph representation illustrating honest and adversarial nodes. . . . . . 23
5.2 MDR and FAR for all privacy methods with no attack. . . . . . . . . . 28
5.3 Testing and training losses and accuracies for all privacy methods with

no attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 MDR and FAR for all privacy methods with the pure Gaussian model

poisoning attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Testing and training losses and accuracies for all privacy methods with

the pure Gaussian model poisoning attack. . . . . . . . . . . . . . . . . 31
5.6 MDR and FAR for all privacy methods with the additive Gaussian model

poisoning attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Testing and training losses and accuracies for all privacy methods with

the additive Gaussian model poisoning attack. . . . . . . . . . . . . . . 33
5.8 MDR and FAR for all privacy methods with the ALIE attack. . . . . . 34
5.9 Testing and training losses and accuracies for all privacy methods with

the ALIE attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.10 MDR and FAR for all privacy methods with the sign-flipping attack. . 36
5.11 Testing and training losses and accuracies for all privacy methods with

the sign-flipping attack. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.12 MDR and FAR for all privacy methods with the label-flipping attack. . 38
5.13 Testing and training losses and accuracies for all privacy methods with

the label-flipping attack. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



x



List of Tables

4.1 Comparison of Robust Aggregators in Federated Learning . . . . . . . 16
4.2 Comparison of adversarial attacks in federated learning. . . . . . . . . . 19

5.1 Attack types and parameter values used in experiments. . . . . . . . . 26
5.2 Final performance of each privacy mechanism under no attack. . . . . . 29
5.3 Final performance of each privacy mechanism under the pure Gaussian

model poisoning attack. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Final performance of each privacy mechanism under the additive Gaus-

sian poisoning attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Final performance of each privacy mechanism under ALIE attack. . . . 35
5.6 Final performance of each privacy mechanism under the sign-flipping

attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7 Final performance of each privacy mechanism under the label-flipping

attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



xii



Introduction 1
In recent years, there has been a growing interest in developing methods for distributed
computations, which facilitate collaborative data processing across decentralised nodes
without relying on a centralised coordinator [2]. Such methods have found exten-
sive applications in fields including wireless sensor networks [3], optimisation [4], and
federated learning [5]. Distributed optimisation techniques, notably the Alternating
Direction Method of Multipliers (ADMM) [6] and the Primal-Dual Method of Multi-
pliers (PDMM) [7, 8, 9], have increasingly been adopted due to their effectiveness and
scalability. As these distributed computation algorithms are deployed more broadly,
they inevitably process sensitive data, raising critical privacy concerns [10]. Traditional
privacy-preserving methods, such as Differential Privacy (DP) [11, 12] and Secure Multi
Party Computation (SMPC) [13], offer protection but often incur a significant trade-
off with accuracy or computational efficiency [14, 15]. To mitigate these drawbacks,
new frameworks, like Subspace Perturbation (SP) [16, 17, 18], have been proposed,
which strive to balance privacy preservation with minimal impact on computational
performance and accuracy. However, privacy preservation is not the sole challenge
in decentralised systems. Adversarial threats, where malicious nodes inject corrupt
data or disruptive updates into the network, pose significant risks to the integrity and
reliability of these distributed systems [19]. Such threats include a variety of attack
strategies, including Gaussian noise attacks, model poisoning, and label flipping attacks
[20, 21, 22]. Consequently, robust detection mechanisms, such as Krum [23], Kardam
[24], and deviation based detection methods [25], have been developed to identify and
mitigate malicious influences within decentralised networks. In distributed computa-
tion environments, achieving optimal outcomes requires mechanisms that simultane-
ously maintain privacy and effectively detect adversarial behaviours. Detection algo-
rithms typically rely on distinguishing individual data updates from collective network
behaviour, highlighting deviations that indicate adversarial activity. However, this de-
tection capability fundamentally conflicts with privacy preservation methods, such as
noise injection, which obscure node specific details essential for accurate adversarial
detection.
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1.1 Research Question and Outline

This thesis investigates the critical trade-off between privacy preservation and robust
adversarial detection within decentralised federated learning frameworks. It analyses
how the application of privacy preserving mechanisms influences adversarial detection
effectiveness and explores the associated implications through comprehensive simula-
tions. The goal is to provide insights into the inherent conflict between privacy and
robustness, assisting informed design choices for secure and effective decentralised learn-
ing systems.

The remainder of this thesis is structured as follows: Chapter 2 provides founda-
tional background on decentralised federated learning. Chapter 3 introduces privacy
preserving mechanisms evaluated in this research. Chapter 4 details robustness mecha-
nisms and adversarial threats relevant to decentralised environments, and theoretically
analyses the privacy-robustness trade-off. Chapter 5 presents simulation results val-
idating the trade-off under realistic conditions. Finally, Chapter 6 concludes with a
summary of findings and proposes directions for future research.
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Background 2
This chapter establishes the fundamental concepts and terminology that describe the
analysis of federated learning in adversarial environments. We begin by formalising
the network topology and notation used to describe decentralised systems, introducing
the key roles played by honest, adversarial, and eavesdropping nodes. The adversarial
model is specified to distinguish between passive and active threats, providing a clear
threat landscape for privacy and robustness considerations.

2.1 Topology and Notation

Federated learning can be used in many different decentralised settings. These de-
centralised settings, such as wireless networks, can be modelled with a graph. We
present a simple undirected connected graph G as G = (V , E), where the set of nodes
in the network is represented by V = {1, 2, . . . , n} and the set of edges is represented
by E = {e1, . . . , em} ⊆ V × V . The neighbourhood of node i is denoted as the set
Ni = {j ∈ V | (i, j) ∈ E}. The degree of node i is then given by di = |Ni|.

2.1.1 Participating Nodes

Let Vh denote the set of honest nodes and Vc the set of adversarial nodes such that V =
Vh∪Vc and Vh∩Vc = ∅. In addition, let Vc,p denote the set of passive adversarial nodes
and Vc,a the set of active adversarial nodes so that Vc = Vc,p ∪ Vc,a and Vc,p ∩ Vc,a = ∅.
In addition to the nodes within the graph, we consider a set of external eavesdropping
nodes B, for which B∩V = ∅. The behaviour of these mentioned nodes will be described
as shown below.

• Honest nodes (Vh): Follow the federated learning protocol correctly without
malicious intent.

• Passive adversarial nodes (Vc,p): (Honest-but-curious) Follow the federated
learning protocol, but infer private information from updates.

• Active adversarial nodes (Vc,a): (Malicious) Disrupt training via faulty up-
dates, data poisoning, or backdoor attacks.

• Eavesdropping nodes (B): Infer information from public transmissions without
participating in federated learning.

3



2.1.2 Primal Dual Method of Multipliers (PDMM) for Decentralised Fed-
erated Learning

Distributed machine learning faces significant challenges when data is across decen-
tralised nodes with statistical heterogeneity (non-IID data) and communication con-
straints. Centralised approaches like federated learning [5] rely on server based aggre-
gation, which introduces bottlenecks and privacy risks. Agent to agent alternatives,
such as PDMM address these limitations [26] for decentralised deep learning. The
Primal Dual method of multipliers (PDMM), has been widely used for many different
distributed optimisation problems [27, 28]. It has also been shown that PDMM can be
implemented to train machine learning models in a distributed fashion [29].

2.2 Federated Learning FL

Federated learning (FL) is a term introduced by McMahan. It is a direct application of
the principle of data minimisation proposed by a 2012 report on the privacy of consumer
data [30] [31]. In FL, a global model is collaboratively trained across K edge devices,
each with their own local private data. These devices then aggregate their trained
models with each other to generate a global model based on all the private data of
the edge devices. Rather than transmitting raw data, each client performs local model
updates based on its own dataset, and only the resulting updates (model parameters)
are shared with the aggregator. These updates are then combined to form an improved
global model. This way, a model can be trained and distributed on data that is not
allowed to be transmitted due to restrictions. This subset of machine learning can thus
be applied to sectors where local institutions have a low amount of training data, but
simultaneously are not allowed to transmit, due to restrictions, to other institutions
with the same goal. Each client k ∈ {1, . . . , K} maintains a local dataset (x, y)k, where
xk represents the observed input features and yk the corresponding labels. The client
defines a local loss function fk(x, y;w), which evaluates the model’s performance on its
own data. Each client’s goal is to minimise their local loss function by optimising the
shared model parameters w ∈ Rd by minimising this local objective.

(a) Centralised (star) topology (b) Decentralized topology

Figure 2.1: Two topologies for federated learning showing the model parameter communica-
tion.
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Depending on the topology of the network of the devices, the FL framework can
be separated into 2 sections. If the network has a star topology, meaning a single
central aggregator, this is considered to be centralised federated learning (CFL). But
if the network does not have a central aggregator, it is considered to be decentralised
federated learning (DFL), as is shown in Figure 2.1.

2.2.1 DFL: FedAVG

DFL comprises a class of protocols that enable distributed nodes to train a machine
learning model without a central server collaboratively. Among these protocols, the
first and most widely used is the FedAVG protocol 1. After local training, the nodes
exchange their model parameters with their neighbours and perform an averaging step
to update their local models. This local training and parameter exchange process is
repeated iteratively. At each communication round, the model on each node becomes an
admixture of its own and its neighbour’s knowledge, converging to a global consensus.
The learning continues until a convergence criterion is met.

Algorithm 1 Decentralised Federated Averaging (DFL-FedAVG)

Require: Initial models {w(0)
i }Ki=1, learning rate η, local epochs H, communication graph

G = (V, E)
for each round t = 0, 1, 2, . . . , T − 1 do

for each node i ∈ V in parallel do

Initialize w
(t,0)
i ← w

(t)
i

for epoch h = 1 to H do
Sample a mini-batch Bi from local data

Compute gradient: gi ← ∇ℓ(w(t,h−1)
i ;Bi)

Local update: w
(t,h)
i ← w

(t,h−1)
i − ηgi

end for
Set w̃

(t+1)
i ← w

(t,H)
i ▷ Local model after training

end for
for each node i ∈ V in parallel do

Receive w̃
(t+1)
j from all j ∈ Ni

Update model: w
(t+1)
i ←∑

j∈Ni∪{i} aijw̃
(t+1)
j

end for
end for

FedAVG is popular due to its simplicity, scalability, and ability to reduce communi-
cation costs by performing multiple local updates before synchronisation. However, its
performance in a decentralised setting heavily depends on the topology of the commu-
nication graph, the heterogeneity of local data distributions (non-IID), and the choice
of local update parameters like learning rate and epoch count [32, 33].

1FedAVG can also be applied in a centralised topology, where updates are aggregated by a central server.

5



2.2.2 DFL: Optimisation-Based

Another method of federated learning, which has been gaining traction, is the
optimisation-based decentralised federated learning [29]. Instead of using model av-
eraging like in FedAVG, these methods treat the global learning objective as a con-
strained optimisation problem and solve it using distributed optimisation algorithms
such as ADMM or PDMM.

In these protocols, each node maintains local copies of the model and dual vari-
ables and iteratively minimizes its local objective function augmented with consensus-
enforcing terms. The updates involve solving a regularized local subproblem, followed
by a dual variable update through message passing with neighbours. The pseudocode
below outlines the synchronous version of ADMM/PDMM for decentralised optimisa-
tion.

Algorithm 2 Synchronous ADMM/PDMM

Initialization of z(0)

for t = 0, 1, . . . do
for each node i ∈ V in parallel do

w
(t+1)
i = argminwi

(
fi(wi) +

∑
j∈Ni

z
(t)
i|j

⊤
Bi|jwi +

ρdi
2 w2

i

)

for each j ∈ Ni do

y
(t+1)
i|j = z

(t)
i|j + 2ρBi|jw

(t+1)
i

end for
end for
for each i ∈ V, j ∈ Ni do

Nodej ← Nodei(y
(t+1)
i|j )

end for
for each i ∈ V, j ∈ Ni do

z
(t+1)
j|i = (1− θ)z

(t)
j|i + θy

(t+1)
i|j

end for
end for

Optimisation-based methods are particularly useful in scenarios with heterogeneous
data distributions or where stronger convergence properties are required. They also
enable incorporating constraints or regularisation more naturally than averaging-based
methods like FedAVG.
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Preliminary: Privacy 3
This chapter provides a foundation for privacy in distributed systems. We begin by
formalising privacy by introducing mutual information as a quantifiable metric for
privacy loss. The chapter then introduces widely used privacy preserving mechanisms
and highlighting their formal guarantees and inherent trade-off between privacy and
utility.

3.1 Mutual Infomration

Because privacy depends on how much information can be inferred from available data,
a key metric is mutual information (MI) from information theory, which measures how
much uncertainty of a random variable is reduced by the knowledge of another. As
a privacy metric, mutual information quantifies the dependence between a node i’s
private data (Xi) and the observations (O) accessible to an adversary. It is given by
Equation 3.1.

I(Xi;O) = H(Xi)−H(Xi|O) (3.1)

Here, the entropy of Xi is quantified by H(Xi), which is the uncertainty of the private
data Xi, based on its probability distribution p(x). The entropy of Xi is given by
Equation 3.2.

H(Xi) = −
∑

x∈Xi

p(x) log p(x), (3.2)

The conditional entropy is denoted by H(Xi|O), which is the uncertainty of Xi given
the adversary’s observations O. Thus, MI is the reduction in uncertainty about Xi

gained from O. The conditional entropy is given by Equation 3.3.

H(Xi|O) = −
∑

o∈O

p(o)
∑

x∈X

p(x|o) log p(x|o). (3.3)

When I(Xi;O) = 0, it implies that the adversary gains no information about Xi

from their observations, ensuring perfect privacy. Conversely, if I(Xi;O) = H(Xi),
the adversary has full knowledge of the private data, indicating complete privacy loss.
Therefore, a larger mutual information value corresponds to a higher degree of privacy
leakage. For high-dimensional O (O ∈ Rd where d ≫ 1), the computation of I(Xi;O)
is intractable due to:

• The curse of dimensionality: Density estimation for p(x, o) and p(o) requires ex-
ponentially many samples[34].

• Integration over large spaces: Summing over all o ∈ O becomes infeasible[34].

7



This is commonly the case when trying to use the mutual information metric in a
federated learning environment, as the transmitted data is commonly high-dimensional.
For this reason, heuristic metrics, such as the private data reconstruction error, are
used to prove the privacy of a framework in federated learning. This way it is still
possible to asses how much privacy a framework has based on the magnitude of the
reconstruction error. If this error converges to the optimal value, the adversary can
perfectly reconstruct the private data, meaning that the privacy has been violated. In
contrast, when this reconstruction error diverges, the privacy of the framework has
not been violated, and the private data can still be considered private. A commonly
used metric for federated learning to asses the reconstruction error in practice, when
the private data are images which will be the norm in this thesis, is the structural
similarity (SSIM) between the original private images and the reconstructed images
[35].

3.2 Privacy Preserving Mechanisms

3.2.1 Differential Privacy

Differential privacy is a privacy-preserving mechanism that ensures that individual data
points in a dataset cannot be identified or extracted. This is achieved by injecting noise
into the data before releasing the output of any analysis. The introduction of this noise
enhances privacy but inherently introduces a trade-off between accuracy and privacy
[36]. The formal definition of differential privacy is given in Equation 3.4. There exists
a randomised mechanism M which guarantees ϵ-differential privacy for any pair of
neighbouring datasets1, D and D′. The mechanism satisfies differential privacy if, for
any measurable subset S of possible outputs, the probability of producing an output
in S does not differ by more than a factor of eϵ:

∀S ⊆ Range(M) :
Pr[M(D) ∈ S]

Pr[M(D′) ∈ S]
≤ eϵ (3.4)

A smaller value of the privacy budget ϵ implies a stronger privacy guarantee, as
the output distributions for D and D′ become more similar and harder to distinguish.
In practice, differential privacy is implemented by adding noise to the query outputs.
The scale of this noise depends on the sensitivity of the query and the desired privacy
level. A common distribution, to create noise, used in differential privacy is the Laplace
distribution. The noise that is to be inserted is dependent on how much the output
of the function can change when a single entry has been changed. This is called the
ℓ1-sensitivity and is defined as shown in Equation 3.5.

∆f = max
D,D′
∥f(D)− f(D′)∥1 (3.5)

For a function f(D) with ℓ1-sensitivity ∆f , the differential privacy mechanism outputs:

M(D) = f(D) + η, where η ∼ Laplace

(
0,

∆f

ϵ

)
(3.6)

1Neighbouring datasets are datasets that differ in at most one element.

8



The expected error introduced by this mechanism, also referred to as the mean
squared error (MSE), is proportional to the variance of the Laplace noise. When ap-
plying this to an average over n users with values bounded in [α, α+M ], the variance
of each noise term is:

Var(ηi) =
2M2

ϵ2
(3.7)

Hence, the overall MSE of the noisy average is given by:

eDP =
1

n2

n∑

i=1

Var(ηi) =
2M2

nϵ2
(3.8)

This shows that as the privacy budget ϵ decreases (stronger privacy), the error
increases, reflecting the fundamental trade-off between privacy and accuracy in differ-
entially private mechanisms.

Information-Theoretic Proof of Perfect Privacy for Differential Privacy Let D
and D′ be any neighbouring data sets and letM be an ϵ-differentially private mecha-
nism. For ϵ = 0 the defining inequality in Equation 3.4 reduces to

∀S ⊆ Range(M) : Pr
[
M(D) ∈ S

]
= Pr

[
M(D′) ∈ S

]
.

HenceM(D) has the same distribution for every database; it is statistically independent
of D. Let X := D and Z :=M(D). Independence yields

I(X;Z) = H(Z)−H(Z | X) = H(Z)−H(Z) = 0,

so the adversary’s mutual information about any individual entry is zero. Thus ϵ = 0
achieves perfect privacy, at the expense of a higher MSE.

3.2.2 Secure Multi-Party Computation (SMPC)

Secure multi-party computation (SMPC) allows nmutually distrustful parties to jointly
evaluate a public function F over private inputs while revealing no information beyond
the prescribed output [37, 38]. A degree t−1 polynomial is uniquely determined by its
values at any t distinct points, which underlines Shamir’s Secret Sharing (SSS) [37, 39].
The dealer encodes the secret as the constant term of such a polynomial f(x) ∈ Fp[x]
and delivers to each party Pi the point (xi, f(xi)).

• Reconstruction: Any coalition of at least t parties holds t distinct points, so
there is exactly one degree t− 1 polynomial consistent with them; evaluating that
polynomial at x = 0 reveals the secret [37].

• Secrecy: With fewer than t points, the coalition sees an entire affine space of
candidate polynomials that all differ in their constant term, leaving the secret
information-theoretically hidden [40].
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Additive secret sharing, as used in SPDZ [41], represents s as

s ≡
n∑

i=1

si (mod p), (3.9)

enabling linear operations with a single round of local communication, at the cost
of requiring encrypted channels [41]. In the dealerless neighbour masking variant of
additive sharing, each party chooses pairwise random masks and a prime p is fixed such
that p exceeds the numerical range of the secrets.

Connectivity constraints limit secrecy. Lemma 1 in [42] shows that, with n − 1
corrupt parties, perfect correctness forces maximal leakage:

I(si; F (s), {sj}j∈Vc) = I(si; si).

Proposition 1 of the same work further states that if the honest parties form dis-
connected components Gh,1, . . . , Gh,kh , any perfectly correct protocol must leak the
evaluation of F on each component. For the canonical linear function F (s) =

∑
i si,

this leakage reduces to the set of partial sums



∑

i∈Vh,k

si





kh

k=1

.

Accordingly, the adversary’s ideal-world observation is

Ore-ideal,Vc = {sj}j∈Vc ∪




∑

i∈Vh,k

si





kh

k=1

, (3.10)

so privacy within each component is quantified by

I


si;

∑

j∈Vh,k

sj


 .

Perfect secrecy is attainable only when the honest parties form a single connected
component (kh = 1); otherwise, partial-sum leakage is possible.

Information-Theoretic Privacy For the case of kh = 1, we assume all honest parties
lie in one connected component. Let S = F (s) denote the public output. For an
adversary controlling Vc, its ideal-world view is

Ore-ideal,Vc = {sj}j∈Vc ∪ {S}.
Because additive shares satisfy Equation 3.9, each honest share si is uniformly

distributed over Fp conditioned on the sum of honest shares. Consequently,

H

(
si

∣∣∣∣∣ S −
∑

j∈Vc

sj

)
= H(si) =⇒ I(si; Ore-ideal,Vc) = 0.

Thus, SMPC with additive secret sharing achieves perfect information-theoretic
privacy whenever the honest parties remain connected.
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3.2.3 Subspace Perturbation (SP)

The basis of subspace perturbation is a property of PDMM, which is the decomposition
of the auxiliary variable z.

z(t+1) = (1− θ)z(t) + θ
(
Pz(t) + 2cPCw(t)

)
, (3.11)

where C =
[
B⊤

+ , B
⊤
−
]⊤

and B+ and B− contain the positive and negative entries
of B, respectively. Additionally, P is a permutation matrix that interchanges the
upper half rows and lower half rows of the matrix it multiplies, leading to PC =[
B⊤

− , B
⊤
+

]⊤
. Denote Ψ = ran(C) + ran(PC), its orthogonal complement is denoted by

Ψ⊥ = ker(C⊤)∩ker((PC)⊤). Let ΠΨ represent the orthogonal projection. We can then

decompose z into components within Ψ and Ψ⊥ as z(t) = z
(t)
Ψ + z

(t)

Ψ⊥ . Note that the

component z
(t)

Ψ⊥ is not null, requiring that the number of edges should not be smaller
than the number of nodes, which is not met in a star topology [18]. The main idea of
the subspace perturbation technique is to exploit the auxiliary variable.

z
(t)

Ψ⊥ =
1

2

(
z
(0)

Ψ⊥ + Pz
(0)

Ψ⊥

)
+

1

2
(1− 2θ)t

(
z
(0)

Ψ⊥ − Pz
(0)

Ψ⊥

)
. (3.12)

Thus, for a given graph structure and θ, z
(t)

Ψ⊥ depends solely on the initialization

of the auxiliary variable z(0). Consequently, if z
(0)
i|j is not known by the adversary,

so does z
(t)
i|j for subsequent iterations. This only holds for synchronous updates. For

asynchronous updates, such a subspace does not exist. However, it is still proven that
privacy can be achieved.

Information-Theoretic Privacy for Subspace Perturbation To keep z
(0)
i|j unknown

by adversaries, it must be transmitted in an encrypted channel for subspace pertur-
bation based privacy to succeed. The privacy guarantee of subspace perturbation is

based on the non-convergent component z
(t)

Ψ⊥ , which is unknown due to the encrypted

initialisation z(0). To formalise this, consider the adversary’s residual observation:

Y
(t)
i ∈ ∂fi(x

(t+1)
i ) +

∑

j∈Ni,h

Bi|jz
(t)
j|i ,

where Ni,h is the set of honest neighbours of i, and z
(t)
j|i decomposes into:

z
(t)
j|i = ΠΨz

(t)
j|i︸ ︷︷ ︸

Convergent

+(I − ΠΨ)z
(0)
j|i︸ ︷︷ ︸

Non-Convergent

.

The non-convergent term z
(0)
j|i injects irreducible noise into Y

(t)
i , as it is statistically

independent of ∂fi(x
(t+1)
i ) and encrypted during initialization. The leakage of the

sensitive gradient is quantified by:

I
(
∂fi(x

(t+1)
i );Y

(t)
i

)
≤ 1

2
log


1 +

Var(∂fi)

Var
(∑

j∈Ni,h
Bi|j(I − ΠΨ)z

(0)
j|i

)


 .
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To enforce I(·) ≤ δ, the variance of the non-convergent noise must satisfy:

Var


 ∑

j∈Ni,h

Bi|j(I − ΠΨ)z
(0)
j|i


 ≥ Var(∂fi)

22δ − 1
.

Perfect privacy (δ = 0) is achieved by choosing the initial non-convergent noise with

arbitrarily large variance, the mutual information I
(
∂fi(x

(t+1)
i );Y

(t)
i

)
can be driven to

zero, so the adversary gains no information about the gradient.
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Preliminary: Federated
Learning Adversarial
Robustness 4
This chapter introduces foundational concepts in Byzantine-robust aggregation for fed-
erated learning, focusing on the difference between weak and strong robust aggregators.
We analyse their theoretical guarantees and how mitigation techniques interact with
adversarial strategies.

4.1 Weak and Strong Aggregators

Robust aggregation mechanisms are generally classified into two types: weak ro-
bust aggregators and strong robust aggregators. The primary distinction lies in the
dimensionality-dependent bias that an adversary can introduce.

Let X = {xj ∈ Rd | j ∈ Ni} represent the set of samples or updates node i receives
from its neighbours. Assume an adversary corrupts an ϵ-fraction of these updates. We
denote |Σ|2 as the spectral norm of the covariance matrix of benign data. The bias
bounds differ significantly based on aggregator type.1

Weak Robust Aggregators. Weak aggregators analyse the updates coordinate-wise,
independently considering each dimension. Thus, an attacker can accumulate bias along
each dimension. The induced bias for weak aggregators typically scales as:

Biasweak = Õ
(√

ϵd
)
· ∥Σ∥

1
2
2 ,

growing with model dimension d [43, 44].

Strong Robust Aggregators. Strong aggregators consider updates as full vectors,
detecting anomalies across all directions simultaneously. Hence, the bias is dimension-
independent:

Biasstrong = Õ
(√

ϵ
)
· ∥Σ∥

1
2
2 .

Strong aggregators provide superior theoretical guarantees, especially in high-
dimensional federated learning settings [43, 44].

4.2 Robustness Mechanisms

In machine and federated learning, a robustness mechanism is a training or aggregation
time modification that prevents adversarially perturbed inputs while keeping honest

1We use Big-O notation to express asymptotic upper bounds: f(n) = O(g(n)) means that f(n) grows at
most on the order of g(n), up to a constant factor.
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inputs’ accuracy at its original level [45]. The present works realise this concept of
robustness mechanisms at the communication layer, each client treats the incoming
transmitted variable yj|i as an indication to determine whether a neighbouring node j
of the node i is an active adversary or not. Robustness, in this setting, is achieved by
filtering these messages according to a local detection rule.

4.2.1 Trimmed Mean (Median)

One of the most well known and basic robustness mechanisms is the Trimmed mean2.
The Trimmed mean mechanism collects a set of neighbour values. It sorts the values
based on their magnitude, and discards values that have the largest distance from the
measure of centrality per dimension, based on the α% of the largest distances. The
remaining neighbour values, then aggregated according to the aggregation algorithm.
The Trimmed Mean is a rule used in many decentralised federated learning settings to
obstruct adversarial attacks to prevent convergence [46, 47, 48].

Bias Bound. As a coordinate-wise method, the trimmed mean (or median) computes
a robust aggregation separately for each dimension. This allows an adversary to inject
small, undetectable biases into every coordinate, causing the total bias to accumulate

across all d dimensions. As a result, the worst-case bias scales as Õ(
√
ϵd)∥Σ∥1/22 , growing

with the model’s dimension [44, 43].

4.2.2 SignGuard

SignGuard is a defence mechanism against Byzantine adversaries in federated learning,
proposed in [49]. The key idea behind SignGuard is to leverage the signs of model
updates rather than their magnitudes. By focusing on the direction of the updates,
SignGuard reduces the impact of any large but misleading gradients introduced by
Byzantine agents. The aggregator collects the sign vectors from all participating agents
and computes the element-wise majority sign M as shown in Equation 4.1

M = Majority
(
{sign(gp)}Pp=1

)
, (4.1)

where P is the total number of participating agents, gp denotes the gradient update
from agent p, and sign(gp) represent the sign vector of gp. The majority function selects
the sign (+ or −) that appears most frequently for each element across all agents. The
aggregated update g̃ is then computed by combining the majority sign with a scaling
factor η:

g̃ = η ·M, (4.2)

where η is a predefined learning rate or scaling parameter. By utilising majority
voting on the signs, SignGuard effectively filters out anomalous updates that deviate
from the consensus, enhancing robustness against adversarial attacks.

2If the mean is not a reliable measure of centrality, the median is often used instead.
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Bias Bound. SignGuard aggregates only the sign of each update’s coordinates using
majority vote. While this mitigates the impact of large adversarial values, it still oper-
ates per dimension, so adversaries can bias the aggregated direction in every coordinate
where they constitute a local majority. Consequently, the worst-case bias grows with

the number of dimensions: Õ(
√
ϵd)∥Σ∥1/22 [49].

4.2.3 Self–Centered Clipping (SCC)

Self–Centered Clipping operates in two stages:

(i) Data–dependent clipping radius. For every node i a single radius τi > 0 is com-
puted from the observed dissimilarities between the local vector xi and its neighbours:

τi =

√
1

δi

∑

j ∈ Ni

Aij E
[
∥xi − xj ∥22

]
, (4.3)

where Aij is the edge weight in the communication graph and δi=
∑

j Aij the weighted
degree of node i. Intuitively, τi is a robust estimate of the typical internode spread
around xi.

(ii) Vector-norm clipping. Given any update difference z = xj − xi, apply the oper-
ator

CLIP(z, τi) := min
(
1,

τi
∥z∥2

)
z, (4.4)

which scales z down whenever it exceeds τi. Finally node i aggregates clipped incre-
ments from all neighbours:

SCCLIPi(x1, . . . , xn) =
n∑

j=1

Aij

(
xi + CLIP(xj − xi, τi)

)
. (4.5)

Bias Bound. SCC makes its aggregation decision based on the full ℓ2 norm of each
neighbour’s update relative to the local centre, clipping outliers in all directions at
once. Because adversarial updates can only cause bias by exceeding the global radius,
and any excess is shrunk isotropically, the total bias introduced is independent of the

dimension d and scales as Õ(
√
ϵ)∥Σ∥1/22 [?].

4.2.4 SMAD-Detection Mechanism

The Scaled Median Absolute Deviation (SMAD) method provides a robust statisti-
cal approach for detecting and isolating adversarial updates in decentralized federated
learning. By measuring the deviation of each neighbour’s update from the coordinate-
wise median, SMAD effectively identifies outliers while maintaining resilience against
a minority of corrupted agents.

15



(i) Coordinatewise Median Estimation: At each round t, agent i receives
neighbour updates yj|i ∈ Rd. The per dimension median

mi,k(t) = med{|xi,j,k(t)| : j ∈ Ni}

robustly estimates the central tendency.
(ii) Scaled Median Absolute Deviation (SMAD): Dispersion is measured by

SMADi(t) = τ med{∥ |xi,j(t)| −mi(t)∥∞ : j ∈ Ni}

with scale τ > 0. Neighbours with deviation above this threshold are flagged and
excluded from aggregation.

(iii) Majority-Voting Filter: Flags are accumulated over L rounds, with a major-
ity vote used to quarantine persistently suspicious neighbours and stabilize detection.

Bias Bound. SMAD aggregates updates using per-coordinate statistics, making it
susceptible to adversaries who spread small biases across many dimensions. As with
other coordinate-wise methods, the bias accumulates proportionally to the square root

of the product ϵd, yielding a total bias of order Õ(
√
ϵd)∥Σ∥1/22 [43, 44].

Table 4.1: Comparison of Robust Aggregators in Federated Learning

Aggregator Type Bias Bound Limitation

Trimmed Mean / Median Weak Õ
(√

ϵd
)

Dimension–dependent bias, coor-
dinate–wise only

SignGuard Weak Õ
(√

ϵd
)

Majority-vote needs > 50% be-
nign, ignores magnitude, can
slow convergence

Self–Centered Clipping (SCC) Strong Õ
(√

ϵ
)

Moderate computational cost,
requires ℓ2 norm computation

SMAD Weak Õ
(√

ϵd
)

Vulnerable to sparse, subtle at-
tacks
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4.3 Adversarial Attacks in Federated Learning

Attackers may aim to prevent the convergence of federated learning algorithms in-
stead of introducing backdoors, thereby disrupting the collaborative training process
and degrading the performance of the global model. By injecting malicious updates,
adversaries can cause the model to fail to reach an optimal solution or to converge to
a suboptimal one. Several types of attacks can be employed to prevent convergence,
including Gaussian attacks, sample-duplicating attacks, A-Little-Is-Enough (ALIE) at-
tacks, and sign-flipping attacks.

4.3.1 Gaussian Noise Attack

In distributed and federated learning, adversaries often disrupt convergence by replacing
their true updates with carefully crafted noise. A classic example is the Gaussian attack:
a corrupt client sends gradients or parameters whose entries are drawn from a zero mean
Gaussian distribution with an arbitrarily large variance, N (0, σ2

i ). The resulting high-
variance fluctuations overwhelm the aggregation step, destabilising the optimisation
process and potentially preventing convergence altogether [19]. Different adversaries
can even choose different variances, N (0, x),N (0, y),N (0, z) to make detection harder.

Additive Gaussian Noise Attack A more concealed strategy than message replace-
ment is to perturb otherwise genuine updates with zero mean Gaussian noise. Each
malicious client sends

θ′i = θi + ϵi, ϵi ∼ N
(
0, σ2

)
(4.6)

Because the noise is centred at zero on legitimate gradients, defences that look for
outliers cab fail to flag the attack, making additive Gaussian noise a subtle yet potent
threat in distributed and federated learning.

4.3.2 Copycat Attack

A coalition of Byzantine clients can undermine learning by cloning the update of one be-
nign participant and submitting it en masse. Concretely, each malicious client replaces
its own parameters with those of a chosen target client,

θ′i ← θtarget (4.7)

thereby flooding the aggregator with identical copies of the same message [50]. The
over-representation of this single update biases the aggregation step toward the target’s
information, the global model learns disproportionately from that client’s data, reducing
diversity in the updates, and increasing the risk of overfitting [51]. Because the copied
message itself is benign, simple outlier detection or variance-based defences often fail
to spot the attack, it is the multiplicity of the duplicates that skews the optimisation
process, not the magnitude.
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4.3.3 Little-Is-Enough (LIE) Attack

The Little-Is-Enough (LIE) attack targets federated learning networks, aiming to subtly
shift the aggregated result in the attacker’s desired direction without detection by
defence mechanisms. Instead of submitting values that deviate significantly from the
mean, attackers craft malicious updates close to the distribution boundary of benign
updates to remain undetected:

θ′i ← µbenign + zσbenign, 0 < z ≪ 1, (4.8)

where µbenign and σbenign denote the empirical mean and standard deviation of benign
updates, respectively. A common choice is z ≈ 0.08, strategically positioning the
malicious update just inside typical variance thresholds used by robust aggregators like
Krum, Trimmed Mean, or Median [1].

The attack assumes benign clients’ parameter values follow a normal distribution
around the true mean. To shift the global model, the attacker must control a majority
of nodes. When Byzantine nodes are in the minority (m < ⌊n/2+ 1⌋), they seduce the
defence mechanism to classify benign clients as Byzantine [1]. As shown in Figure 4.1,
attackers create values between the true mean and the supporters, causing the mean
to shift toward Byzantine workers. This makes defences remove opposing benign nodes
as perceived outliers.

Figure 4.1: Byzantine workers seducing benign nodes to shift the mean [1].

4.3.4 Sign-Flipping Attack

Malicious clients reverse the update direction and optionally scale or perturb it before
sending it to the aggregator:

θ′i = −s θi + ϵi, s > 0, ϵi. (4.9)

By inverting the sign (with scale s) of either their local gradient or a mean computed
from benign updates, the attackers push the global optimiser in the opposite direction;
added noise can further mask the manipulation [52, 53].

4.3.5 Label-Flipping (Dirty-Label) Attack

A data-poisoning client corrupts learning by altering the target labels of its local ex-
amples while keeping the inputs unchanged. In a C-class problem the attacker inverts
each label,

y′i = C − 1− yi, (4.10)
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so training proceeds on (xi, y
′
i) and the global objective becomes

L(θ) =
1

N

∑

i

ℓ
(
fθ(xi), y

′
i

)
, (4.11)

driving the model to misclassify one or more classes [54, 55].

Attack Type Impact on Convergence Detectability References

Gaussian Noise Severe disruption Variance-based detection [44, 56]

Copycat Biased convergence Requires redundancy check [50, 51]

LIE Subtle convergence disruption Avoids robust methods [1]

Sign-Flipping Severe disruption High Norm-based detection [52, 56]

Label-Flipping Misclassification Local validation required [54, 55]

Table 4.2: Comparison of adversarial attacks in federated learning.
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4.4 Trade-Off Formulation

To characterise the trade-off between robustness and privacy, we make the following
assumptions:

1. The additive noise Y is independent of both the private signal X and the honesty
D.

2. The detector only observes the noisy signal Z = X + Y , never directly accessing
X.

We define D ∈ {0, 1} as the honesty, with D = 0 for an honest node and D = 1
for an adversarial node. Following [18], let X and Y be independent random variables,
where X represents the private gradient with variance σ2

X , and Y is Gaussian noise
with variance σ2

Y . Given a privacy budget δ > 0, the information-theoretic privacy
requirement is formulated as:

I(X;Z) = H(Z)−H(Z | X) ≤ δ. (4.12)

From this privacy constraint, the minimum noise variance required can be explicitly
bounded by:

σ2
Y ≥

σ2
X

22δ − 1
. (4.13)

When a neighbour is honest (D = 0), its gradient follows the legitimate distribu-
tion PX|D=0. In contrast, adversarial neighbours (D = 1) produce gradients from an
alternative distribution PX|D=1. Observing only the noisy signal Z, the conditional
independence assumption implies:

Z ⊥⊥ D | X ⇒ I(D;Z | X) = 0. (4.14)

We now expand the mutual information I(X;Z) using standard identities:

I(X;Z) = H(Z)−H(Z | X)

= [H(Z | D) + I(D;Z)]− [H(Z | X,D) + I(D;Z | X)].
(4.15)

Considering conditional independence (I(D;Z | X) = 0) and H(Z | X,D) = H(Y )
(since Y is independent), we simplify Equation 4.15 to:

I(X;Z) = I(X;Z | D) + I(D;Z). (4.16)

This decomposition clarifies how information about X can be partitioned into com-
ponents conditional on the honesty D. Furthermore, we have:

I(D;Z) ≤ I(X;Z) ≤ δ. (4.17)

Since I(D;Z) = H(D) − H(D | Z) directly measures how much information Z
reveals about node honesty, Equation 4.17 yields a fundamental limit for detection
under a given privacy budget δ:

I(D;Z) ≤ δ. (4.18)

This inequality indicates no detector can infer more than δ bits of information about
honesty from the noisy observation Z.
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4.5 Binary Detection and Fano’s Inequality

To quantify detection accuracy, we use Fano’s inequality for binary classification. For
any estimator D̂ attempting to infer the discrete random variable D from observation
Z, Fano’s inequality states:

H(D | Z) ≤ Hb(Pe) + Pe log(|D| − 1), (4.19)

where Pe = P (D̂ ̸= D) is the error probability. With |D| = 2, the term log(1) = 0
vanishes, simplifying the inequality to:

H(D | Z) ≤ Hb(Pe). (4.20)

Substituting H(D | Z) = H(D)− I(D;Z) gives:

H(D)− I(D;Z) ≤ Hb(Pe). (4.21)

Assuming a worst-case uniform prior P (D = 0) = P (D = 1) = 1/2, the entropy is
maximal:

H(D) = Hb

(
1

2

)
= 1 bit. (4.22)

Thus, we have:
1− I(D;Z) ≤ Hb(Pe). (4.23)

Because Hb(·) is strictly increasing on [0, 1/2], we obtain:

P ⋆
e ≥ H−1

b (1− I(D;Z)) ≥ H−1
b (1− δ). (4.24)

Interpretation:

• Strong Privacy (δ → 0): Detection error approaches random guessing (P ⋆
e →

1/2).

• Weak Privacy (δ → 1): Detection error can vanish (P ⋆
e → 0), allowing poten-

tially perfect detection.

4.6 Influence of Adversarial Variance

Consider an adversary manipulating its gradient variance, setting:

σ2
X,a = κσ2

X , κ > 1. (4.25)

The honest nodes select noise σ2
Y to satisfy (4.13). Thus, the effective leakage against

adversarial variance becomes:

δa =
1

2
log2

(
1 +

σ2
X,a

σ2
Y

)
=

1

2
log2

(
1 + κ

σ2
X

σ2
Y

)
> δ. (4.26)

Since δa > δ, the detector effectively has more information about the adversary,
improving detection capability. Applying Fano’s inequality with this increased leakage,
we have a tighter detection error bound:

P ⋆
e,a ≥ H−1

b (1− δa) < H−1
b (1− δ). (4.27)

Thus, increasing variance may inadvertently help detection by reducing the adver-
sary’s stealth.
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Figure 4.2: Example illustration of distributions under variance attack: Honest (D = 0),
Noise (Y ), and Adversarial (D = 1) gradients. Increased adversarial variance σ2

X,a leads to
enhanced detectability.

4.7 Summary

The analysis illustrates the trade-off between privacy and robustness. Tightening pri-
vacy (smaller δ) restricts the effectiveness of adversarial detection. Conversely, adver-
sarial manipulation aimed at privacy violation can enhance detectability, emphasising
careful design of combined robustness-privacy mechanisms in federated learning.
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Simulation Set-Up 5
5.1 Network Set-Up

Figure 5.1 illustrates our decentralized peer-to-peer network, G. This network is mod-
elled as a two-dimensional Random Geometric Graph (RGG) comprising N = 20 nodes
[57].

Figure 5.1: Graph representation illustrating honest and adversarial nodes.

Each node is positioned independently and uniformly at random within a unit
square. An undirected edge (communication link) connects two nodes if their Eu-
clidean distance is less than or equal to a radius. It is well-established that if the
connection radius satisfies:

r ≥
√

logN

N
, (5.1)

Then the network G is connected with a high probability. Specifically, for large N ,
the probability of connectivity is at least (1− 1

N2 ) [58]. Thus, we have:

Pr{G is connected} ≥ 1− 1

N2

Furthermore, we simulate a scenario where 2 out of the N nodes behave maliciously.
These corrupted nodes, the active adversarial nodes, are highlighted in red in Figure 5.1.
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The remaining nodes, highlighted in blue, are honest and follow the prescribed protocol
accurately. Malicious nodes, however, may deviate arbitrarily from the protocol.We
categorise nodes into three types:

• Honest nodes (Vh): Follow the averaging protocol precisely and do not attempt
to infer private data.

• Passive adversarial nodes (Vc,p): Follow the protocol correctly but collaborate
among themselves to infer as much private data as possible from honest nodes.

• Active adversarial nodes (Vc,a): Inject malicious updates intentionally to dis-
rupt the consensus process, aiming either to cause divergence or to steer the
network toward an adversarially chosen state.

We denote the complete set of adversarial nodes as Vc = Vc,p ∪ Vc,a, ensuring:

V = Vh ∪ Vc, Vh ∩ Vc = ∅, Vc = Vc,p ∪ Vc,a, Vc,p ∩ Vc,a = ∅.

We additionally impose two structural assumptions on the network:

Assumption 1. Limited Adversarial Neighbours. For every honest node i, the
number of active adversarial neighbours is strictly less than half of its total degree:

di
2

> |{j ∈ Ni ∩ Vc,a | (i, j) ∈ E}|.

Assumption 2. Residual Connectivity. After removing all active adversarial nodes
Vc,a, the remaining subgraph formed by honest and passive-adversarial nodes remains
connected:

G[V \ Vc,a] is connected.

This residual connectivity assumption is not only crucial for the feasibility of SMPC,
but also for the reliable operation of distributed detection algorithms. Suppose the
network becomes fragmented due to adversarial removals or overly aggressive detection
responses. In that case, honest nodes may become isolated, which in turn compromises
both the collaborative learning process and the effectiveness of adversarial detection.
Therefore, maintaining a connected, honest subgraph is a key prerequisite for both
privacy and robustness in federated learning.
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5.2 Node Set-Up

We study the trade-off between privacy and adversarial-behaviour detection with the
fully decentralised federated-learning FedAVG scheme. Each of the N clients holds a
disjoint shard of the training dataset (MNIST) and is connected to its neighbours by
a fixed connected peer-to-peer graph. All clients train the same two-layer perceptron,
MLP(784 → 128 → 10) with ReLU activation and optimise the cross-entropy loss
over their local data. The information exchange is done with the synchronous PDMM
algorithm. In the synchronous PDMM–FedAvg setup, each client performs 5 local
epochs of mini-batch SGD (batch size B = 64, learning rate η = 0.1) on its full dataset
per round, before starting the PDMM averaging process. This procedure is repeated
for 50 global rounds.

Privacy mechanisms evaluated:

a) Differential privacy via Gaussian noise,

b) Sub-space perturbation,

c) SMPC with pairwise additive masking.

Adversarial attacks injected:

a) Pure Gaussian model poisoning,

b) Gaussian additive noise attack,

c) ALIE outlier attack,

d) Label-flipping attack,

e) Sign-flipping attack.

Detection is performed with the scaled median absolute deviation (scaled-MAD) rule
presented in Section 4.2.4, applied to PDMM messages to flag and isolate malicious
neighbours.

5.3 Attack setup

To rigorously evaluate the robustness of the detection and aggregation schemes, we
simulate several canonical adversarial attacks drawn from the federated learning liter-
ature. For all experiments, we fix the number of active adversarial nodes to two out
of N = 20 total clients (i.e., 10% Byzantine proportion), in line with standard bench-
marks [59, 60, 61]. Each attack is instantiated with carefully selected parameter values
to balance detectability and impact, as recommended by recent studies [61, 62, 63].

• Random Model Poisoning: Corrupted clients replace their model updates
with vectors sampled from a Gaussian distribution of zero mean and variance
σ2 = 100. This level of variance produces adversarial updates that are disruptive
but not trivially detectable, as recommended in [60, 62].
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• Additive Gaussian Noise Attack: Malicious clients add Gaussian noise with
zero mean and variance σ2 = 10 to their model updates. This models a more subtle
attack, designed to avoid simple anomaly detection by introducing a stochastic
perturbation [62, 60].

• ALIE Attack: Each adversarial update is crafted as µhonest + z · σhonest, where
µhonest and σhonest are the mean and standard deviation of the honest clients’
updates, and z = 0.08. This is the recommended value for strong but not easily
flagged outliers, following the “A Little Is Enough (ALIE)” paradigm from [61].

• Sign-Flipping Attack: Adversarial clients submit the negative of their com-
puted model update (i.e., all parameters multiplied by −1). This classic Byzantine
strategy seeks to directly counteract the progress of honest nodes [59, 60].

• Label-Flipping Attack: In this data poisoning attack, adversarial clients sys-
tematically permute the labels of all their training samples according to a fixed
mapping:

0 7→ 3, 1 7→ 4, 2 7→ 7, 3 7→ 5, 4 7→ 8, 5 7→ 0, 6 7→ 9, 7 7→ 6, 8 7→ 2, 9 7→ 1.

This constant permutation corrupts the ground truth during local training,
propagating misleading gradients to the global model and degrading its accu-
racy [64, 63]. The mapping is fixed throughout the experiment to ensure repro-
ducibility.

The parameter choices (see Table 5.1) are motivated by literature benchmarks and
preliminary tuning to ensure that attacks are neither trivially detectable nor completely
ineffective. Each attack is run with two adversarial clients per experiment.

Table 5.1: Attack types and parameter values used in experiments.

Attack Parameter(s) Value(s)

Random Model Poisoning Variance (σ2) 100
Additive Gaussian Noise Variance (σ2) 100
ALIE (outlier) z 0.08
Sign-Flipping Scaling factor −1
Label-Flipping Labels Permuted

All attack implementations follow the protocols established in [59, 60, 61, 64, 63],
ensuring a strong, diverse threat model for empirical evaluation.

5.4 Evaluation Metrics

5.4.1 Training Accuracy and Loss

During training, the training loss and accuracy are computed and recorded at every
communication round. After each round in which all clients have locally updated their
models for a fixed number of epochs, the average training loss and accuracy across all
clients are calculated.
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5.4.2 Test Accuracy and Loss

Due to computational constraints, the evaluation frequency on the test dataset is not
uniform throughout training. Instead, we adopt an adaptive evaluation schedule: the
model is tested more frequently in the early stages, every 5th communication round for
the first 50 rounds, to capture the rapid improvements typically observed during the
early phase. As training progresses and model performance stabilises, the evaluation
interval increases to every 10 rounds between rounds the first 50 and 200, and every 20
rounds after the 200th round.

5.4.3 FAR and MDR

We evaluate the effectiveness of the defence mechanisms using two key metrics: False
Alarm Rate (FAR) and MisDetection Rate (MDR), defined as follows:

False Alarm Rate (FAR) quantifies the tendency of the detection mechanism to
incorrectly classify honest nodes as malicious. For a time frame of L samples, let
D(i, j) denote the number of times node i flagged node j as malicious. The FAR at
round kL is defined by:

FAR(k) =
1

|EH |
∑

(i,j)∈EH

I
(
D(i, j)(kL) >

L

2

)
,

where EH ⊆ (V \ Vc,a)× (V \ Vc,a) denotes the set of edges between honest nodes, and
I(·) is the indicator function.

MisDetection Rate (MDR) captures the failure to identify truly adversarial nodes.
Specifically, it measures how often honest nodes fail to detect adversaries. MDR at
round kL is computed as:

MDR(k) =
1

|EA|
∑

(i,j)∈EA

I
(
D(i, j)(kL) <

L

2

)
,

where EA ⊆ (V \ Vc,a)× Vc,a represents the set of directed edges from honest to adver-
sarial nodes.

To visualise MDR and FAR without producing separate plots for each communica-
tion round, we compute the average metric value across all PDMM iterations within
each communication round. This results in a single representative MDR and FAR value
per round.
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5.5 Results

5.5.1 No Attack

Figure 5.2 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation when no attack is
present. For differential privacy and subspace perturbation, FAR is low at small noise
levels but increases rapidly with higher privacy parameters, indicating more frequent
false alarms. SMPC shows a consistently high FAR across all settings. In all cases,
MDR remains low as there are no adversaries. This demonstrates that increasing
privacy can reduce the reliability of adversarial detection, even when the network is
attack free.

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4
2

DP-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4

DP-Privacy - MDR

0 5 10 15 20 25 30 35 40 45
Rounds

261
1

p

SMPC-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

261
1

SMPC-Privacy - MDR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4
2

SP-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4

SP-Privacy - MDR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

Figure 5.2: MDR and FAR for all privacy methods with no attack.
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Figure 5.3: Testing and training losses and accuracies for all privacy methods with no attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 49.335912 95.223000 51.774869 94.266000
DF-Privacy 10−6 53.270019 95.917667 53.909140 94.776000
DF-Privacy 10−4 0.012820 100.000000 0.300516 92.205000
DF-Privacy 10−2 0.012818 100.000000 0.300480 92.214000
DF-Privacy 104 0.012819 100.000000 0.300492 92.214000
SMPC-Privacy 261 − 1 0.012818 100.000000 0.300480 92.214000
SP-Privacy 0 49.335912 95.223000 51.774869 94.266000
SP-Privacy 10−6 55.608769 95.437333 77.418474 94.476000
SP-Privacy 10−4 0.803917 96.243000 1.397796 94.701500
SP-Privacy 10−2 57.829862 94.920000 46.817626 94.696500
SP-Privacy 104 0.283121 94.704333 0.313000 93.494500

Table 5.2: Final performance of each privacy mechanism under no attack.
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5.5.2 Pure Gaussian model poisoning

Figure 5.4 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation during a pure Gaus-
sian model poisoning attack. For differential privacy and subspace perturbation, FAR
increases with higher privacy parameters, while MDR also rises in later rounds and with
stronger privacy, meaning more adversarial nodes are missed. SMPC starts with high
FAR and MDR at lower privacy settings, but both rates decrease as privacy increases.
These results show that increasing privacy makes it more difficult to reliably detect
adversarial nodes when the network is under attack.
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Figure 5.4: MDR and FAR for all privacy methods with the pure Gaussian model poisoning
attack.
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Figure 5.5: Testing and training losses and accuracies for all privacy methods with the pure
Gaussian model poisoning attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 4372.496814 48.121000 1043.888931 53.142222
DF-Privacy 10−6 5921.509142 43.869667 1480.388771 50.918333
DF-Privacy 10−4 6361.811268 45.989333 3541.667434 48.726111
DF-Privacy 10−2 908.848027 91.831667 0.513369 90.241667
DF-Privacy 104 872.436032 93.171000 0.299554 92.223333
SMPC-Privacy 261 − 1 16556.168516 45.149667 8934.592069 57.126667
SP-Privacy 0 6340.501866 43.287333 2086.971098 51.632222
SP-Privacy 10−6 4530.671095 42.803000 1403.488760 47.718333
SP-Privacy 10−4 3951.323499 44.126667 889.187631 49.618333
SP-Privacy 10−2 6765.672985 48.389333 1979.638480 53.195556
SP-Privacy 104 2946.687319 42.796667 820.932079 47.001111

Table 5.3: Final performance of each privacy mechanism under the pure Gaussian model
poisoning attack.
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5.5.3 Gaussian additive Noise

Figure 5.6 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation under the additive
Gaussian model poisoning attack. For differential privacy and subspace perturbation,
FAR remains low at small noise levels but increases with higher privacy, while MDR
becomes significant only in later rounds and at high privacy settings, indicating that
adversarial nodes are increasingly missed. SMPC starts with high FAR and low MDR,
but as privacy increases, FAR drops and MDR rises in the later rounds. These results
show that increasing privacy again reduces the ability to reliably detect adversarial
nodes, especially as the attack persists.
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Figure 5.6: MDR and FAR for all privacy methods with the additive Gaussian model poisoning
attack.
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Figure 5.7: Testing and training losses and accuracies for all privacy methods with the additive
Gaussian model poisoning attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 1043.707227 95.204667 852.059209 93.512778
DF-Privacy 10−6 1316.406611 94.922333 1090.068989 92.906667
DF-Privacy 10−4 36427.493763 93.949333 40327.301017 92.775556
DF-Privacy 10−2 509.986998 97.938000 0.609012 88.765000
DF-Privacy 104 398.929011 99.551000 0.299554 92.223333
SMPC-Privacy 261 − 1 39155.961656 92.516333 33335.904828 90.812222
SP-Privacy 0 457.685248 86.841333 19.573742 93.481111
SP-Privacy 10−6 789.077356 94.776667 564.063987 91.417778
SP-Privacy 10−4 99.024798 94.273333 17.764089 94.397222
SP-Privacy 10−2 328.796953 93.418333 313.522617 88.518333
SP-Privacy 104 248.582525 94.279333 149.563033 90.417222

Table 5.4: Final performance of each privacy mechanism under the additive Gaussian poison-
ing attack.
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5.5.4 ALIE

Figure 5.8 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation under the ALIE
attack. For differential privacy and SMPC, FAR is high across most privacy settings,
while MDR is also high for differential privacy at low noise levels, meaning many adver-
sarial nodes are not detected. SMPC shows high FAR but maintains a low MDR. For
subspace perturbation, FAR stays low at small noise but rises with increased privacy,
while MDR is consistently high except at the lowest privacy settings. These results
show that the ALIE attack makes adversarial detect harder, especially when privacy is
strong.

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4
2

DP-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4

DP-Privacy - MDR

0 5 10 15 20 25 30 35 40 45
Rounds

261
1

p

SMPC-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

261
1

SMPC-Privacy - MDR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4
2

SP-Privacy - FAR

0 5 10 15 20 25 30 35 40 45
Rounds

0
10

6
10

4
10

2
10

4

SP-Privacy - MDR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

0.0

0.2

0.4

0.6

0.8

1.0

FA
R

0.0

0.2

0.4

0.6

0.8

1.0

M
DR

Figure 5.8: MDR and FAR for all privacy methods with the ALIE attack.
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Figure 5.9: Testing and training losses and accuracies for all privacy methods with the ALIE
attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 21.824384 96.067333 30.140204 94.785556
DF-Privacy 10−6 89.555000 96.015333 102.251220 94.685000
DF-Privacy 10−4 4837.107944 95.473667 6050.724498 94.242222
DF-Privacy 10−2 0.088760 98.639000 0.299552 92.215556
DF-Privacy 104 0.088734 98.657000 0.299554 92.223333
SMPC-Privacy 261 − 1 0.088760 98.639000 0.299552 92.215556
SP-Privacy 0 21.824384 96.067333 30.140204 94.785556
SP-Privacy 10−6 166.365982 95.894667 176.641025 94.768889
SP-Privacy 10−4 41.930449 95.747333 50.093372 94.943333
SP-Privacy 10−2 23.602709 95.162333 19.913434 94.548333
SP-Privacy 104 46.679535 95.115333 39.770453 94.413333

Table 5.5: Final performance of each privacy mechanism under ALIE attack.
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5.5.5 Sign-Flipping

Figure 5.10 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation under the sign-
flipping attack. For differential privacy and SMPC, FAR is high across most privacy
settings, while MDR is high for differential privacy at low noise and for subspace per-
turbation at higher privacy levels. SMPC shows high FAR but maintains a low MDR.
For subspace perturbation, FAR is low at small noise but increases with higher pri-
vacy, and MDR is generally high throughout the rounds. These results show that the
sign-flipping attack is difficult to detect, especially when privacy protection is strong.
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Figure 5.10: MDR and FAR for all privacy methods with the sign-flipping attack.
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Figure 5.11: Testing and training losses and accuracies for all privacy methods with the sign-
flipping attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 0.046813 99.097000 0.096447 97.314444
DF-Privacy 10−6 0.056393 98.876667 0.108465 97.115000
DF-Privacy 10−4 0.108145 98.936000 0.691567 96.121111
DF-Privacy 10−2 0.011646 99.751000 0.341160 93.097778
DF-Privacy 104 0.000807 99.997333 0.345165 93.107778
SMPC-Privacy 261 − 1 0.020690 99.822000 0.299552 92.216111
SP-Privacy 0 0.046813 99.097000 0.096447 97.314444
SP-Privacy 10−6 0.077181 98.575000 0.103127 97.357222
SP-Privacy 10−4 0.071827 98.587000 0.130480 96.932778
SP-Privacy 10−2 0.055484 98.972000 0.085067 97.462778
SP-Privacy 104 0.075264 98.516000 0.115446 97.007778

Table 5.6: Final performance of each privacy mechanism under the sign-flipping attack.
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5.5.6 Label-Flipping

Figure 5.12 shows heatmaps of the False Alarm Rate (FAR) and MisDetection Rate
(MDR) for differential privacy, SMPC, and subspace perturbation under the label-
flipping attack. For differential privacy and SMPC, FAR is high for most privacy
settings, while MDR is high for differential privacy at low noise and for subspace per-
turbation at higher privacy. SMPC shows high FAR but maintains low MDR across all
rounds. For subspace perturbation, FAR is low at small noise but increases with higher
privacy, while MDR rises quickly as privacy strengthens. These results indicate that
label-flipping attacks are also difficult to detect, especially when privacy protection is
strong.
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Figure 5.12: MDR and FAR for all privacy methods with the label-flipping attack.
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Figure 5.13: Testing and training losses and accuracies for all privacy methods with the label-
flipping attack.

Privacy Param train loss train accuracy test loss test accuracy

DF-Privacy 0 59.681298 93.304333 39.984239 93.181111
DF-Privacy 10−6 69.913095 93.110000 51.792063 93.590556
DF-Privacy 10−4 2.821447 92.109333 1.466957 92.168333
DF-Privacy 10−2 0.012811 100.000000 0.299552 92.215556
DF-Privacy 104 0.012808 100.000000 0.299554 92.223333
SMPC-Privacy 261 − 1 0.012811 100.000000 0.299552 92.215556
SP-Privacy 0 12.147219 99.307667 123.389141 95.066667
SP-Privacy 10−6 16.170015 99.346333 79.873362 96.193333
SP-Privacy 10−4 5.439566 99.284333 31.209541 95.951667
SP-Privacy 10−2 2.891573 99.310000 11.123221 96.483889
SP-Privacy 104 0.000468 100.000000 0.345165 93.107778

Table 5.7: Final performance of each privacy mechanism under the label-flipping attack.
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5.5.7 Privacy Preserving Mechanisms Trade-Off Performance

While the trade-off between privacy and accuracy in the shown mechanisms is well
documented in the literature, the trade-off between privacy and robustness is less doc-
umented. The results in this chapter however, do give an insight into the performances
of the mechanisms with the most known Byzantine attacks. Differential Privacy of-
fers privacy robustness tuning, yet at high privacy budgets, both adversarial detection
and model accuracy can suffer. SMPC provides strong, persistent privacy guarantees
and stable accuracy but suffers from consistently high false alarm rates, limiting its
practical robustness in adversarial settings. Subspace Perturbation often delivers the
best balance under moderate privacy, especially against additive and label-flipping at-
tacks, yet it too struggles as privacy requirements become more stringent. Notably,
no mechanism achieves both low FAR and MDR rates and high accuracy under all at-
tack types when privacy is strong, highlighting the inherent limitations imposed by the
privacy robustness trade-off. These findings underscore the importance of carefully tun-
ing privacy parameters and combining multiple defence strategies to effectively balance
privacy and robustness in decentralised federated learning systems.
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Conclusion, and Future Work 6
6.1 Conclusion

In this work, we investigated the balance between privacy preservation and adversar-
ial robustness in decentralised federated learning. We studied the impact of several
core privacy mechanisms, including Differential Privacy, Secure Multi-Party Compu-
tation, and Subspace Perturbation, within a decentralised federated learning protocol.
Our analysis extended known information-theoretic bounds and showed how privacy-
preserving mechanisms change the way adversarial detection works.

Through experiments, we found that increasing privacy protection directly limits
the effectiveness of adversarial detection. This confirms the fundamental limit that
no single mechanism can achieve both perfect privacy and perfect robustness at the
same time. As a result, system designers must carefully adjust privacy parameters and
detection strategies to meet the needs and threat models of their applications.

We also found that privacy mechanisms differ in their practical effects. Differential
Privacy allows for flexible trade-offs through its privacy budget. SMPC offers strong
protection but adds more complexity. Subspace Perturbation uses decentralized struc-
tures to improve privacy. In all these methods, adding noise or masking during training
can disrupt adversarial inference, especially without causing a major loss in model ac-
curacy.

These results highlight the importance of a careful approach to privacy and robust-
ness in federated learning. Careful parameter choices, thoughtful network design, and
extra defence strategies such as early stopping, inexact updates, or quantisation are
all recommended for better protection. Overall, this study provides useful guidance
for deploying privacy-preserving federated learning systems and managing the ongoing
challenge of balancing privacy with robustness.

6.2 Future Work

Several directions emerge from this work that warrant further investigation. One natu-
ral extension is to broaden the scope of evaluated mechanisms by including approaches
such as homomorphic encryption, trusted execution environments, or hybrid schemes
that combine multiple privacy-preserving and robustness-enhancing techniques. An-
other promising direction is the development of adaptive frameworks that can dy-
namically adjust privacy parameters and detection thresholds in response to changing
network conditions, observed attack patterns, and performance feedback.Finally, more
sophisticated threat models should be explored, including colluding, adaptive, and
multi-stage adversaries, together with countermeasures that can evolve alongside these
threats.
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Abstract—Distributed consensus algorithms face a dual chal-
lenge in modern networked systems: safeguarding sensitive data
through privacy-preserving mechanisms while maintaining ro-
bustness against adversarial nodes (e.g., Byzantine faults). While
prior work addresses these goals separately, their interplay re-
mains poorly understood, particularly in scenarios where output
accuracy must be preserved. In this work, we reconcile these ob-
jectives by integrating a subspace perturbation framework, which
guarantees privacy by confining noise to redundant network
subspaces, with a median absolute deviation (MAD)-based thresh-
olding mechanism to detect active adversarial nodes transmitting
corrupted data. Through in-depth analysis, we demonstrate that
enhancing privacy via subspace perturbation inherently limits
the discriminative power of MAD-based detection, as adversar-
ial updates become statistically indistinguishable from privacy-
preserving perturbations. Numerical simulations quantify this
tension, demonstrating that as privacy guarantees strengthen,
the ability to detect active adversaries diminishes. These findings
highlight a core challenge in distributed consensus—achieving
both strong privacy and Byzantine robustness simultaneously is
inherently difficult.

Index Terms—Primal-dual method of multipliers (PDMM),
privacy, subspace perturbation, adversary, detection, median
absolute deviation (MAD), privacy-robustness trade-off

I. INTRODUCTION

In recent years, a rising trend is gaining traction which aims
to develop a wide range of techniques to perform distributed
computations [1]. These techniques enable collaborative data
processing across decentralised nodes without a centralised co-
ordinator. For example, this can be seen in applications ranging
from wireless sensor networks [2], optimisation [3], and feder-
ated learning [4]. Distributed optimisation algorithms such as
the alternating direction method of multipliers (ADMM) [5]
and the primal-dual method of multipliers (PDMM) [6]–[8]
have gained popularity in distributed frameworks. As these
algorithms are applied across more fields, they increasingly
handle sensitive data, making privacy protection vital [9].
Traditional approaches, such as differential privacy (DP) [10],
[11] and secure multiparty computation (SMPC) [12], aim to
address these concerns by protecting sensitive data but often
do so at the cost of accuracy or increased computational
complexity [13], [14]. To overcome these limitations, new
methods have been developed that maintain both accuracy and
computational efficiency. One such approach is the subspace
perturbation framework introduced in [15]–[17] and its vari-
ants [18]–[20].

Privacy is not the only concern in decentralised networks.
In addition to data being extracted from the network, corrupt
data can also be injected into a distributed system [21]. Various
types of attacks can introduce corrupt data, such as backdoor
attacks in a federated learning environment [22], [23]. Addi-
tionally, attacks can be designed to prevent the network from
converging to the optimal value. This can be achieved, for
example, through random Gaussian attacks [21] or by trans-
mitting malicious data to poison the network [24]. To counter
these attacks, various robust detection algorithms have been
developed, such as the Krum algorithm [25]. Here, the node
calculates the proximity of its neighbours and the similarity of
their transmitted data. It then selects the node with the smallest
distance to the others as the true update. Another method,
called Kardam [26], computes the Lipschitz coefficients of
its neighbours and accepts data from those neighbours whose
values fall within an acceptable range around the median of
the Lipschitz coefficients. Another approach, proposed in [27],
detects corrupt nodes by calculating at every time instant the
normalised difference of transmitted data among neighbours
and determining the maximum deviation from the median.
Neighbours of which the averaged distance to the median
exceeds a certain threshold are identified as being malicious.
When implementing a decentralised network, both privacy and
adversarial robustness must be considered. In a distributed
network, the optimal solution can be achieved when the ap-
propriate algorithm is used and all nodes share the same goal.
However, in the presence of an attack, the network may diverge
from its optimal output if robust detection algorithms are not
in place. Detection algorithms evaluate and distinguish nodes
based on the data they transmit. By comparing individual data
updates to the collective behaviour of neighbouring nodes,
adversarial nodes can be identified and flagged. However, if
the network achieves perfect secrecy, nodes may become indis-
tinguishable from one another, undermining the fundamental
principle on which detection algorithms assess corruption.

In this paper, we investigate a fundamental trade-off
between privacy preservation and adversarial detection in
distributed average consensus algorithms. Specifically, we
demonstrate that integrating both privacy-protecting mecha-
nisms and attack detection capabilities creates an inherent
conflict: enhancing privacy preservation (e.g., through noise
injection) can inadvertently diminish the system’s ability to



identify malicious or compromised nodes. Our analysis reveals
that as the level of privacy preservation increases, the detec-
tion accuracy for adversarial behaviour declines accordingly,
highlighting a critical design challenge for secure and privacy-
aware consensus frameworks. We further consolidate these
findings through numerical simulations, which quantify the
trade-off and validate our theoretical claims.

The paper is organised as follows. In Section II, we define
the privacy preservation methods used and describe the ad-
versarial models. Section III presents the problem setup, the
network attack model, and the metrics used to demonstrate
the privacy-robustness trade-off. In Section IV, we introduce
the proposed detection algorithm for active adversarial nodes.
Section V provides numerical validation of our findings, and
finally, Section VI presents our conclusions.

II. PRELIMINARIES

We present a simple undirected connected graph G as G =
(V, E), where the set of nodes in the network is represented
by V = {1, 2, . . . , n} and the set of edges is represented by
E = {e1, . . . , em} ⊆ V × V . The neighbourhood of node i is
denoted as the set Ni = {j ∈ V | (i, j) ∈ E}. The degree
of node i is then given by di = |Ni|. The distributed average
consensus algorithm aims to calculate the average of the local
data each node holds

save =
1

n

∑

i∈V
si (1)

where si ∈ Rq is the local data each node holds and q the
dimension of the local data.

A. A/PDMM approach of solving average consensus

The solution to (1) can be achieved in a distributed network
by implementing PDMM and reformulating the overall setup
problem as follows:

min
{xi:i∈V}

∑

i∈V
fi(xi) (2)

subject to ∀(i, j) ∈ E : Bi|jxi +Bj|ixj = 0,

where fi(xi) = 1
2 ||xi − si||22 and Bi|j ∈ Rq×q is defined

as Bi|j = Iq if i < j, and Bi|j = −Iq otherwise, where Iq
denotes the q × q identity matrix. As shown in [28], problem
(2) can be solved using A/PDMM. This leads to the following
set of update equations for each node:

x
(t+1)
i = argmin

xi


fi(xi) +

∑

j∈Ni

z
(t)⊤
i|j Bi|jxi +

ρdi
2
∥xi∥2


 ,

(∀j ∈ Ni) y
(t+1)
i|j = z

(t)
i|j + 2ρBi|jx

(t+1)
i , (3)

(∀j ∈ Ni) z
(t+1)
j|i = (1− θ)z

(t)
j|i + θy

(t+1)
i|j , (4)

where θ is the averaging parameter and ρ controls the con-
vergence rate. For θ = 1

2 (Douglas-Rachford splitting), 1
2 -

averaged PDMM is achieved, which is equivalent to the
classical ADMM algorithm [28].

B. Privacy

There are various privacy-preserving distributed average
consensus algorithms proposed, such as DP-based [29]–[31],
SMPC based [32]–[34] and subspace-perturbation based ap-
proaches [15]–[17]. In this paper, we deploy subspace per-
turbation to achieve privacy preservation, motivated by its
efficiency and flexibility; it has been shown to achieve similar
privacy guarantees to SMPC and DP-based approaches under
specific parameter configurations [20]. The implementation of
subspace perturbation is straightforward: it involves sampling
the initialised auxiliary variable z(0) ∈ Rmq from a high-
variance noise distribution to protect local node data through
statistical obfuscation. This is achieved by splitting the space
into two subspaces, the convergent subspace and the non-
convergent subspace. Privacy is imposed by perturbing the
non-convergent subspace with noise, while perturbations in the
non-convergent subspace do not affect the output accuracy. As
shown in [17], perfect secrecy can asymptotically be achieved
this way, by introducing finite variance in the noise in the
non-convergent subspace of the auxiliary variable z(0).

C. Adversarial models

In this work, we consider three types of nodes that can exist
within the network. The first type is the honest node, which
follows the averaging process as intended and does not attempt
to infer the local data of other nodes. The other two types
are adversarial nodes: passive adversarial nodes (also known
as honest-but-curious) and active adversarial nodes. Passive
adversarial nodes follow the protocol’s instructions similar to
honest nodes but attempt to infer as much information as
possible, in collaboration with other passive adversarial nodes,
about the local data si of the honest nodes. In contrast, active
adversarial nodes seek to disrupt the network by transmitting
arbitrary updates based on their malicious intentions, which
could cause the network to diverge or converge to a malicious
point.

Let Vh denote the set of honest nodes and Vc the set of
adversarial nodes such that V = Vh ∪ Vc and Vh ∩ Vc = ∅. In
addition, let Vc,p denote the set of passive adversarial nodes
and Vc,a the set of active adversarial nodes so that Vc = Vc,p∪
Vc,a and Vc,p ∩ Vc,a = ∅.

III. PROBLEM DEFINITION

The local data utilised in private distributed networks for
which PDMM can be applied to, should not be revealed to
outsiders or adversarial nodes. To solve this issue, one must
implement privacy-preserving frameworks in their network.
The works in [17] [20] [15] have shown that it is possible
to implement such a framework in PDMM and to achieve
perfect secrecy, without sacrificing the output correctness of
the network. However, our findings in this work show there
is another trade-off which occurs when perfect secrecy is
achieved. We found that higher levels of privacy in a network
for the private local data of its nodes come at the expense
of detecting adversarial nodes that corrupt their local data



with malicious intent. This trade-off highlights the difficulty
in balancing between privacy and adversarial node detection.

A. Active adversarial attack

An adversarial model can utilise multiple different attacks
to reach its goal [35]. However, in this work, we will only
focus on a single attack, in which the adversarial node corrupts
its local data to make the network converge to a non-optimal
point.

B. Trade-off metrics

To discuss the trade-off between the effectiveness of
privacy-preserving techniques and adversarial detection meth-
ods, four metrics will be compared.

a) Information-theoretical privacy metric: measures the
mutual information between the private data and all infor-
mation available to the adversary. Let O denote the set of
information obtained by the adversary and Xi the private data
of node i. The mutual information I(Xi;O) is given by

I(Xi;O) = H(Xi)−H(Xi|O) ≤ H(Xi), (5)

where H(·) denotes the (Shannon) entropy. If I(Xi;O) = 0,
the adversary cannot gain any information about the private
data by observing O. If I(Xi;O) = H(Xi), the adversary
has complete knowledge about the private data. Thus, higher
mutual information indicates greater potential privacy leakage.

b) Output correctness: measures the distance of the
output of the network to the optimal solution. This is assessed
by taking the mean square error (MSE) between the xi-values
and the optimal solution x∗, given by 1

n ||x
(t)
i − x∗||2.

c) False alarm rate (FAR): measures whether nodes im-
plementing the detection algorithm are misclassifying honest
nodes as active adversarial nodes. Let D(i, j) denote the
number of times a node has been identified of being malicious
within a time frame of L samples. The FAR is defined
as FAR(k) = 1

|EH |
∑

(i,j)∈EH
I(D(i, j)(kL) > L

2 ), where
EH ⊆ (V \ Vc,a) × (V \ Vc,a), k ∈ N, and I is the indicator
function.

d) Rate of misdetection (MDR): measures whether nodes
implementing the detection algorithm are misclassifying active
adversarial nodes as honest nodes. This is quantified as fol-
lows: MDR(k) = 1

|EA|
∑

(i,j)∈EA
I(D(i, j)(kL) < L

2 ), where
EA ⊆ (V \ Vc,a)× Vc,a.

IV. METHOD OF DETECTION

The method of detection of active adversarial nodes in this
paper is based on the work of [27]. Here, the method of
determining whether a node is an active adversary or not
is defined with the transmitted variable y·|i node i receives
from its neighbours. The following assumptions are made to
implement the detection algorithm.

Assumption 1: The amount of active adversarial neighbours
a node has is less than half of the total amount of its
neighbours. Hence, di

2 > |{j ∈ Ni ∩ Vc,a | (i, j) ∈ E}|.
Assumption 2: The graph G remains connected even when

the node-set Vc,a is removed.

Algorithm 1 Detection and Mitigation
1: Input: Threshold scaling α, Segment length L.
2: Set D(i, j) = 0 for each i, j ∈ V .
3: for t = 1, 2, . . . do
4: for all i ∈ V do
5: for each agent j ∈ Ni do
6: Compute ∆Yi,j(t), δi according to (6), (7)
7: end for
8: if ∆Yi,j(t) > δi then
9: Increase D(i, j).

10: end if
11: if t ≡ 0 (mod L) then
12: if D(i, j) > L

2 then
13: Node i ignores1 the updates of j for the next L

iterations, and stops sending updates to j.
14: else
15: Node i continues using the updates of node j.
16: end if
17: Set D(i, j) = 0.
18: end if
19: end for
20: end for

If an adversarial node were to steer away from the ob-
jective of the honest nodes by corrupting its local data si,
its transmitted variable yi|· would have a larger distance to
the transmitted variables of other honest nodes. In the case
of PDMM, because of the minus-sign difference between the
y variables, the absolute value of yi|j is taken. Leveraging
Assumption 1, the median of the data of neighbouring nodes
will be the data value of one of the honest neighbours.

Let mi denote the median of the neighbouring data of node
i, given by

mi = med{|yi|j | : j ∈ Ni},

and let ∆Yi,j be defined as

∆Yi,j = ∥|yi|j | −mi∥∞, j ∈ Ni. (6)

The values of ∆Yi,j will then be compared to the scaled
median absolute deviation (SMAD), given by

SMADi = αmed{||yi|j | −mi|∞ : j ∈ Ni}, (7)

where α is a scaling factor. This threshold determines whether
a node is corrupt or not. Again, leveraging Assumption 1,
the SMAD is a powerful method of determining a threshold
because it compares the distance other neighbours have from
a neighbour that is guaranteed to be honest.

Utilising Assumption 1 and Assumption 2, the nodes can
flag and isolate an adversarial neighbour using Algorithm 1
while also being able to achieve the optimal solution in the
network for the objective function with its constraints. The
method of detection would be implemented in PDMM between

1The utilisation of the updates of node j stops, but node i keeps receiving
the updates for the next test, but does not acknowledge it as its neighbour.



(3) and (4), to determine whether or not it should use the
update or acknowledge the neighbour.

The argument of the trade-off between privacy preservation
and adversarial detection can be made with any detection
method. This is a fundamental trade-off, as stronger privacy
measures inherently reduce the ability to gather information
for adversarial detection. As explained previously, if the
mutual information equals zero, then independent of any
detection method, no information about the private data of
the adversarial nodes can be gained.

V. SIMULATIONS

In this section, we will present the simulation results to show
the trade-off between achieving higher levels of privacy and
the ability to detect active adversarial nodes in the network.
Here we simulated a distributed network by generating a
random geometric graph (RGG) with n = 50 nodes and a

communication radius of r =
√

2 log(n)
n , as this ensures that

the graph is connected [36]. The data will be scalar-valued
(q = 1). We will introduce a single corrupt node b in the
graph, for which its local data will be sb = 104, this will make
the average converge to a non-optimal point if not removed.
The other nodes will have local data which is generated with
a Gaussian distribution around a mean of 25 with a variance
of 30 (si ∼ N (25, 30)) : ∀i ∈ (V \ Vc,a). First, for θ = 1

2
(ADMM), we set ρ = 1, α = 13, L = 5, as for the case of
θ = 1 (PDMM), we set ρ = 1, α = 10, L = 2. Figure 1 and
2 show the FAR, MDR and MSE output correctness, with the
implementation of the privacy-preserving framework and the
detection algorithm for ADMM and PDMM, respectively.

A. False alarm rate

The top subplot of the figures corresponds to the FAR. It is
observed that even as the noise variance in z(0) increases, the
FAR remains low, indicating how infrequently honest nodes
are incorrectly flagged as adversarial nodes. This is the case
for both ADMM and PDMM.

B. Rate of misdetection

The middle subplot shows the MDR, which decreases
slower with higher noise variance. The high MDR shows that
the detection algorithm often misses the adversarial node when
the noise variance in z(0) is large. For σ2 = 104 it is seen that
for ADMM the MDR converges to 0, but for PDMM the MDR
does not converge.

C. Output correctness

The bottom subplot shows the MSE, demonstrating that
when the MDR is nonzero, MDR ̸= 0, the MSE remains high
because the adversarial node b can still skew the network’s
output for both ADMM and PDMM. Thus, while increased
noise in z(0) preserves privacy, it also hinders the detection
algorithm’s ability to detect the adversarial node, revealing
the trade-off and validating our theoretical claims.

Fig. 1. ADMM simulation with different variance levels for the noise in z(0).

Fig. 2. PDMM simulation with different variance levels for the noise in z(0).

VI. CONCLUSION

In this paper, we presented a hybrid approach for detecting
active adversarial nodes while utilising a privacy-preserving
framework for the PDMM algorithm. We have shown that
when the data of nodes achieves perfect secrecy, it becomes
impossible for any detection algorithm to detect active ad-
versarial nodes in distributed average consensus algorithms.
Therefore, when the mutual information converges to zero
(I(Xi;O) = 0), no information about the private data can be
inferred, making the nodes indistinguishable from one another
with respect to one another’s private data. Numerical results
under various settings further consolidate our claims.
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