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Introduction: Humans and robots are increasingly collaborating on complex
tasks such as firefighting. As robots are becoming more autonomous,
collaboration in human-robot teams should be combined with meaningful
human control. Variable autonomy approaches can ensure meaningful human
control over robots by satisfying accountability, responsibility, and transparency.
To verifywhether variable autonomy approaches truly ensuremeaningful human
control, the concept should be operationalized to allow its measurement. So
far, designers of variable autonomy approaches lack metrics to systematically
address meaningful human control.

Methods: Therefore, this qualitative focus group (n = 5 experts) explored
quantitative operationalizations of meaningful human control during dynamic
task allocation using variable autonomy in human-robot teams for firefighting.
This variable autonomy approach requires dynamic allocation ofmoral decisions
to humans and non-moral decisions to robots, using robot identification of
moral sensitivity. We analyzed the data of the focus group using reflexive
thematic analysis.

Results: Results highlight the usefulness of quantifying the traceability
requirement of meaningful human control, and how situation awareness
and performance can be used to objectively measure aspects of the
traceability requirement. Moreover, results emphasize that team and robot
outcomes can be used to verify meaningful human control but that identifying
reasons underlying these outcomes determines the level of meaningful
human control.

Discussion: Based on our results, we propose an evaluation method that
can verify if dynamic task allocation using variable autonomy in human-
robot teams for firefighting ensures meaningful human control over the
robot. This method involves subjectively and objectively quantifying traceability
using human responses during and after simulations of the collaboration. In
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addition, the method involves semi-structured interviews after the simulation to
identify reasons underlying outcomes and suggestions to improve the variable
autonomy approach.

KEYWORDS

meaningful human control, variable autonomy, human-robot teams, dynamic task
allocation, thematic analysis

1 Introduction

Humans and robots are increasingly working together in
human-robot teams on complex tasks ranging frommedical surgery
to firefighting. For example, the fire department of Rotterdam in
the Netherlands is already using explore and extinguish robots for
situations too dangerous for firefighters. Several factors determine
the success of these human-robot teams, such as situation awareness,
mutual trust, and common ground (Klein et al., 2004; Salas et al.,
2005). The ultimate goal of human-robot teams is harnessing the
combination of strengths of both humans and robots, to accomplish
what neither can do alone (Akata et al., 2020). Such an integration of
robots that augment rather than replace humans requires robots to
dynamically vary their level of autonomy to collaboratewith humans
efficiently.

Rapid developments in the field of robotics and artificial
intelligence allow robots to become increasingly autonomous and
perform tasks without much human intervention and control
(Santoni de Sio and Van den Hoven, 2018). However, since robots
do not have a legal position, humans should be held accountable
in case robot behavior does not comply with moral or ethical
guidelines (van der Waa et al., 2021). Therefore, higher levels of
robot autonomy should be combined with meaningful human
control and human moral responsibility (Santoni de Sio and
Van den Hoven, 2018; Santoni de Sio and Mecacci, 2021). The
concept of meaningful human control is based on the assumption
that human persons and institutions should ultimately remain
in control of, and thus morally responsible for, the behaviour of
intelligent autonomous systems like robots (Santoni de Sio and
Van den Hoven, 2018). Meaningful human control originated
from the discussion on autonomous weapon systems but its
relevance quickly expanded to intelligent (semi)autonomous
systems in general.

One of the first works on meaningful human control was
a philosophical account towards two necessary conditions: the
tracking and tracing conditions. In short, the tracing condition
implies that a system’s behaviour, capabilities, and possible effects
should be traceable to a proper moral and technical understanding
of at least one relevant human agent who designs or interacts with
the system. On the other hand, the tracking condition implies that a
system should be responsive to the human moral reasons relevant to
specific circumstances (Santoni de Sio and Van den Hoven, 2018).
Designing for meaningful human control means designing for
human moral responsibility and ensuring humans are aware and
equipped to act upon their moral responsibility. By doing so,
responsibility gaps in culpability, moral and public accountability,
and active responsibility can be avoided (Douer and Meyer, 2020;
Santoni de Sio and Mecacci, 2021; Cavalcante Siebert et al., 2022;

Veluwenkamp, 2022). Several solutions for addressing meaningful
human control in human-robot teams have been proposed,
such as team design patterns (van Diggelen and Johnson, 2019),
value sensitive design (Friedman and Hendry, 2019), machine
ethics (Anderson and Anderson, 2007), and variable autonomy
(Methnani et al., 2021).

Variable autonomy refers to the ability to dynamically
adjust the levels of autonomy of a system, for example, by
switching the level of autonomy from full robot autonomy to
complete human operator control (Chiou et al., 2021). Variable
autonomy is often used to describe human-robot teams in
which the level of robot autonomy varies depending on the
context. One of the main goals of variable autonomy approaches
is to maximise human control without burdening the human
operator with an unmanageable amount of detailed operational
decisions (Wolf et al., 2013; Chiou et al., 2016). For example,
in human-robot teams for firefighting variable autonomy can
be used to dynamically allocate moral decision-making to
humans and non-moral decision-making to robots. It is argued
that robots with variable autonomy can ensure meaningful
human control over these robots by satisfying accountability,
responsibility, and transparency (Methnani et al., 2021). However,
testing whether variable autonomy approaches truly ensure
meaningful human control is crucial before actually adopting
them. Unfortunately, designers of variable autonomy approaches
lack metrics needed for systematically addressing meaningful
human control (Canellas and Haga, 2015; Douer and Meyer,
2020). On the other hand, meaningful human control is already
increasingly being imposed as a requirement for variable autonomy
approaches.

Imposing meaningful human control as a requirement and
verifying if variable autonomy approaches indeed fulfill this
requirement means we must be able to measure meaningful human
control (van der Waa et al., 2021). Therefore, turning the abstract
concept of meaningful human control into measurable observations
(i.e., operationalize) is required. So far, only a few approaches
for operationalizing meaningful human control exist (Calvert et al.,
2020; van der Waa et al., 2021). Therefore, this qualitative study
explores different approaches tomeasuremeaningful human control
during dynamic task allocation using variable autonomy in human-
robot teams for firefighting, aimed at creating an evaluation
method. We will first discuss the context and variable autonomy
approach in more detail, as well as existing operationalizations
of meaningful human control (Section 2). Next, we will discuss
how we conducted our study (Section 3), followed by the results
(Section 4). Finally, we will present a discussion, propose an
evaluation method of meaningful human control, and conclude our
work (Section 5).
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2 Background

2.1 Moral decisions in human-robot teams
for firefighting

Explore and extinguish robots are increasingly collaborating
with firefighters to detect victims and extinguish fires in properties
too dangerous for firefighters, for example, because the structural
condition is unsafe. Currently, firefighting robots are mostly
teleoperated by firefighters, allowing an otherwise impossible
offensive inside deployment aimed at fighting the fire and rescuing
people. These firefighting robots are equipped with several cameras
(thermal imaging, RGB, pinhole), sensors (LIDAR, temperature,
explosion danger), and capabilities (water shield protection, fire
hose), enabling navigation, localization, detection, protection,
mapping, and extinguishing. The information provided by the
robot’s sensors is crucial for firefighters to make decisions about
localizing the fire source, rescuing victims, switching deployment
tactic, extinguishing or evacuating, and sending in firefighters to
help. The collaboration between firefighters and their firefighting
robot demonstrates how human-robot teams can harness the
combination of strengths of both parties, to accomplish what neither
could do alone.

Although these teleoperated firefighting robots are already
of great use, there is a strong preference within the field of
rescue robotics for (semi)autonomous robot behavior to reduce the
workload of the operator (Delmerico et al., 2019). The potential of
artificial intelligence provides great opportunities for making these
robotsmore autonomous, and some progress has already beenmade
(Kruijff et al., 2014; Kruijff-Korbayová et al., 2015; Frering et al.,
2022). It is considered important, however, to actively keep a human
involved in the collaboration to guide the robot’s behavior during
the mission (Delmerico et al., 2019). Variable autonomy will be
crucial to effectively implement this collaboration between a human
operator and increasingly autonomous firefighting robot because it
can increase human control while decreasing the workload of the
human operator (Wolf et al., 2013; Chiou et al., 2016).

This increase in robot autonomy raises important challenges
such as how to design for meaningful human control in these
human-robot teams. Designing for meaningful human control is
crucial in human-robot teams for firefighting because the scenario
involves morally sensitive situations (i.e., situations in which
something one might do or is doing can affect the welfare, rights,
and values of someone else either directly or indirectly (Rest,
1994)). These morally sensitive situations can involve deciding to
preserve the safety of firefighters if that means the life of victims
cannot be rescued. If the robot would autonomously make an
incorrect moral decision in such situations, consequences could
be the loss of lives and responsibility gaps (Santoni de Sio and
Mecacci, 2021). Therefore, especially when human-robot teams are
tasked with making moral decisions, meaningful human control is
crucial to ensure humans can be held accountable for robot behavior
(van der Waa et al., 2021).

Team designs patterns have been applied to describe the
allocation of tasks for moral decision-making in human-robot
teams (van der Waa et al., 2020; van Diggelen et al., 2023). These
patterns can express forms of collaboration with various team
properties by task-independently describing 1) how humans

and robots collaborate and communicate; 2) the requirements
needed to do so; and 3) advantages and disadvantages when
being applied (Van Diggelen et al., 2018; van Diggelen and Johnson,
2019). Various team design patterns have been constructed to
address moral decision-making in human-robot teams, often
manipulating the level of human and robotic moral agency. For
example, supported moral decision-making requires human moral
supervision over a robot and taking over when perceiving the need
for moral decisions. The robot should then support the human
during moral decision-making by explaining the moral context.
Another example is fully autonomous moral decision-making.
In this collaboration design, human values are implemented in
the robot, allowing it to autonomously make moral decisions. If
these artificial agents would make moral decisions violating ethical
guidelines and moral values, the tracking and tracing conditions
should allow the identification of responsible humans to hold
accountable (Santoni de Sio and Van den Hoven, 2018). However,
we are not convinced that fully autonomous artificial moral agents
are feasible anddesirable during collaborationwith humans. Instead,
we believe that variable autonomy can be used to dynamically
allocate all moral decisions to humans and non-moral decisions
to robots.

2.2 Dynamic task allocation using variable
autonomy

In robots with variable autonomy, humans can take control
over certain (or all) elements of robot behavior (Methnani et al.,
2021). A common distinction in human oversight and control
over robots with variable autonomy involves three levels: having
humans-in-the-loop, humans-off-the-loop, or humans-on-the-loop
(Crootof, 2016; Methnani et al., 2021). Maintaining humans-in-
the-loop requires informed human approval for all elements of
robot behavior, for example, during complete tele-operation of
firefighting robots. In contrast, allowing humans-off-the-loop refers
to fully autonomous robots without human operator involvement,
for example, firefighting robots that autonomously explore burning
buildings and make moral decisions. Finally, having humans-on-
the-loop assumes a supervisory human role tasked with monitoring
and influencing robot behavior when necessary, for example, when
firefighters overrule the trajectory of firefighting robots or intervene
when perceiving the need for moral decisions.

Another example of having humans-on-the-loop during
moral decision-making in human-robot teams for firefighting is
dynamic task allocation using variable autonomy (Table 1). In this
variable autonomy approach, human moral values are elicited and
implemented in the robot, allowing robot identification of morally
sensitive situations. Eliciting human values for implementing
artificial moral agents is a complex and multifaceted process, and
there is a lot of discussion on its need and feasibility. Nevertheless,
there are several approaches for value elicitation, each with its own
strengths and weaknesses. For example, a rule-based elicitation
questionnaire can be used where participant responses directly
influence an autonomous agent’s behavior through predefined rules
(van der Waa et al., 2021). Another example is using advanced
machine learning and natural language processing techniques to
infer and reason about human moral values (Jiang et al., 2021;
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TABLE 1 Variable autonomy approach for human-robot teams engaged in moral decision-making, where tasks are allocated dynamically (slight
adaptation of the team design pattern by van der Waa et al. (2021)). The variable autonomy approach is communicated in the form of a team design
pattern that describes the collaboration, structure, requirements, advantages, and disadvantages of the approach.

Name Dynamic task allocation using variable autonomy

Description Human moral values are elicited and implemented in the robot, allowing the robot to identify morally sensitive situations. When the robot classifies
situations as morally sensitive, it allocates the related tasks/decisions to the human operator, while taking on the rest itself. The human operator can
alter this allocation and intervene at any time. The robot explains allocations, non-moral decisions, and the moral context

Structure

Requirements R1 The robot should be sufficiently able to identify morally sensitive situations

R2 Robot explanations should raise human moral awareness during supervision

R3 Robot explanations should not bias the human operator in its decision-making

Advantages A1 The robot reduces the workload of the human operator

A2 The human operator is in control of all morally sensitive decisions

A3 Robot explanations can build appropriate mental models of the robot

Disadvantages D1 The human operator does not make all decisions

D2 Interpreting robot explanations and allocations requires time

D3 Operator under-/overload can result in missed moral decisions made by the robot

Liscio et al., 2021). For dynamic allocation ofmoral decisions during
firefighting, a questionnaire and crowdsourcing approach could be
suitable to identify and use moral features as predictors of moral
sensitivity (e.g., the number of victims, fire duration, and risk of
building collapse).

After this value elicitation process, the firefighting robot should
autonomously perform its explore and extinguish tasks while
being morally supervised by the human operator who retains
the power to override the robot’s behaviour (Abbink et al., 2018;
van der Waa et al., 2020). Using variable autonomy, the robot
identifies morally sensitive situations and allocates moral decision-
making in these situations to the human operator, while making
all non-moral decisions itself. This way, the variable autonomy
approach ensures that humans can be held accountable for moral
decisions and robot behavior, while the robot can decrease the
workload of firefighters by preventing them from exercising control
unnecessary often.

Variable autonomy approaches vary in terms of which
aspects of autonomy are adjusted, by whom, how, why, and
when (Castelfranchi and Falcone, 2003; Bradshaw et al., 2004;
Methnani et al., 2021). The variable autonomy approach in Table 1
adjusts robot decision-making, and these adjustments are executed
by either the human operator or robot (i.e., a mixed-initiative
approach). The robot is primarily responsible for autonomy
adjustments when it identifies situations as morally sensitive
and requiring human moral decision-making. In contrast, the

human is responsible for autonomy adjustments when during
moral supervision he/she intervenes when the robot attempts
to make moral decisions because it incorrectly identified moral
sensitivity. During dynamic task allocation using variable autonomy,
the autonomy level is adjusted in a discrete way from (semi-)
autonomous robot decision-making in not morally sensitive
situations to manual human decision-making in morally sensitive
situations. The reasons for adjusting autonomy to complete human
control in morally sensitive situations are pre-emptive to ensure
meaningful human control. Finally, autonomy adjustments are
executed during active operation of the robot in real firefighting
scenarios by responding to changes in the moral sensitivity of
situations.

For variable autonomy approaches to be effective, it is important
to explicitly define which entities (human, robot, or both) are
capable and responsible for which tasks (Methnani et al., 2021).
Using team design patterns to describe the variable autonomy
approach provides such a definition of roles and responsibilities
and determines who transfers control of what, when and why
it is needed, and to whom. To ensure adequate fulfillment of
defined roles and responsibilities, there must be an appropriate
means for information exchange allowing the states of the robot
and environment to be understood. Moreover, this means of
information exchange should achieve situation awareness and
appropriate trust calibration without overloading the human
operator’s cognitive abilities (Endsley, 1988; Lee and See, 2004;
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Methnani et al., 2021). Therefore, robot explanations are crucial
during dynamic task allocation using variable autonomy in human-
robot teams for firefighting. More specifically, the robot should
involve and support the human operator by explaining the
moral context and its non-moral and allocation decisions. It is
crucial that these robot explanations do not 1) bias the human
operator in its decision-making; 2) reduce situation awareness by
information overload; or 3) cause misuse or disuse by information
underload (Lee and See, 2004; van der Waa et al., 2021). However,
without these robot explanations the human operator will not
be able to exercise control in a timely and accurate manner
(van der Waa et al., 2021).

The explanations of the robot are especially important when
it classifies situations as not morally sensitive and allocates
decision-making to itself. We suggest that the responses of the
human operator when the robot allocates decision-making to
itself can be can be classified using signal detection theory
(Wickens, 2001; Douer and Meyer, 2020). More specifically,
this classification considers the presence or absence of human
reallocation interventions, robot classification of situations as
morally sensitive or not, and the true nature of situations as morally
sensitive or not. For example, hits refer to human reallocation
interventions when the robot classifies morally sensitive situations
as not morally sensitive. In contrast, misses refer to no human
interventions when the robot classifies morally sensitive situations
as not morally sensitive. On the other hand, false alarms refer
to human reallocation interventions when the robot classifies
not morally sensitive situations as not morally sensitive. Finally,
correct rejections refer to no human interventions when the
robot classifies not morally sensitive situations as not morally
sensitive. From a meaningful human control perspective, one could
argue that hits and misses are crucial to ensure human moral
decision-making, whereas false alarms and correct rejections are
less problematic. Classifying human operator responses using signal
detection theory provides quantitative measures that can be applied
to verify if the variable autonomy approach truly ensuresmeaningful
human control.

2.3 Existing operationalizations of
meaningful human control

Imposing meaningful human control as a requirement and
verifying if variable autonomy approaches indeed fulfill this
requirement calls for methods to measure meaningful human
control. So far, only few operationalizations of meaningful
human control have been proposed. One of them introduced
three measurable dimensions of meaningful human control: 1)
Experienced meaningful human control and behavioral compliance
with 2) ethical guidelines and 3) moral values (van der Waa et al.,
2021). The authors argue that humans experience meaningful
human control, which can be measured subjectively. Moreover, they
argue that the behavioral compliance with moral values and ethical
guidelines provides evidence formeaningful human control. In their
work, they measure experienced control with a semi-structured
interview using eight five-point Likert scale statements on concepts
like time pressure, responsibility, and decision-making comfort
and quality.

Another operationalization are the four necessary properties
for human-robot teams to be under meaningful human control
(Cavalcante Siebert et al., 2022). The first property requires an
explicitly specified moral operational design domain where the
robot should adhere to. This involves norms and values to be
considered and respected during design and operation. Here,
it is important that the robot embeds concrete solutions to
constrain actions of the team within the boundaries of the moral
operational design domain. Moreover, it is crucial that humans
are aware of their responsibilities to make conscious decisions
if and when the team deviates from the boundaries of the
moral operational design domain. The second property requires
humans and robots to have appropriate and mutually compatible
representations of each other and the team, to decide which
actions to take and perform. These representations should include
reasons, tasks, desired outcomes, role distributions, preferences,
capabilities, and limitations. Building these mental models of both
team members can be achieved by for example, communication
and explanations. The third property requires relevant human
agents to have the ability and authority to control the robot,
so that they can act upon their moral responsibility. This
means humans should be able to change the robot’s goals and
behavior to track reasons, as well as intervene and correct robot
behavior. Here, it is important to clearly and consistently define
role distributions, task allocations, and control authority. Again,
team design patterns are particularly useful for describing and
communicating such design choices. Finally, the fourth property
requires the actions of the robot to be explicitly linked to actions
of humans who are aware of their moral responsibility. This
means the human-robot team should simplify and aid achieving
human moral awareness, for example, using explanations of the
robot’s actions.

In contrast to operationalizing the whole concept of meaningful
human control, other studies operationalized only its tracing
condition. For example, the cascade evaluation approach
subjectively quantifies traceability (Calvert et al., 2020; Calvert
and Mecacci, 2020; de Sio et al., 2022). This approach is centered
around four aspects: 1) The exertion of operational control; 2) the
involvement of a human agent; 3) the ability of a human agent to
understand and interact with a robot; and 4) the ability of a human
agent to understand their moral responsibility over a robot. For each
aspect, involved human agents (e.g., operator or designer) are given
a score along a six-point Likert scale, reflecting the degree of that
aspect for the human agent. However, each aspect is considered as
part of overall traceability, and therefore the scores from the previous
and current aspects are compared to determine critical scores. This
way, the critical scores for aspects 2, 3, and 4 are all influenced
by the aspects that preceded them. Ultimately, the critical score of
aspect 4 reflects the final traceability score.This operationalization of
traceability is suitable for both a-priori and a-posteriori evaluation
of robots and/or variable autonomy approaches. For example, the
authors apply the cascade approach by presuming the situation of
an inattentive driver struggling with the ability to retake control of
an automated vehicle. However, the approach can also be applied
to a-posteriori evaluate a variable autonomy approach by involved
human agents or a third party.

The tracking condition of meaningful human control has
been operationalized as reason-responsiveness (i.e., robots being
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responsive to human reasons to act) (Mecacci and Santoni de Sio,
2020). Here, the main idea is that the humans whose reasons
are being tracked have the kind of control over robots that
make them morally responsible for the actions of robots. A
proximity scale has been introduced to identify and order
human reasons according to proximity and complexity with
respect to how closely they influence robot behavior (Mecacci
and Santoni de Sio, 2020). In decreasing order of proximity and
complexity, a distinction is made between the reasons values,
norms, plans, and intentions. The authors argue that more proximal
reasons (e.g., the intention to reallocate decision-making) are often
closer in time to robot behavior and also simpler than more
distal reasons (e.g., the plan to rescue all victims). However, this
operationalization of tracking as reason-responsiveness has been
questioned by demonstrating it is ambiguous in distinguishing
between motivating and normative reasons (Veluwenkamp, 2022).
More specifically, it is argued that tracking is operationalized in
terms of motivating reasons (mental states) instead of normative
reasons (facts), while the idea of responsibility attribution is derived
from normative reason-responsiveness. Furthermore, this work
shows that tracking cannot play an important role in responsibility
attribution because normative reasons are agent-neutral (i.e., a
fact for agent A is also a fact for agent B). Therefore, the
author proposes that the tracing condition should be the sole
determinant of responsibility, and that the humans to which robot
actions can be traced back are the humans in control of and
responsible for robot outcomes. Consequently, one could argue
that verifying if dynamic task allocation using variable autonomy
indeed ensures meaningful human control only requires measuring
traceability.

These discussed operationalizations of meaningful human
control demonstrate that only a few properties are actually
transformed into quantifiable measures, while most properties still
remain hard to quantify. Furthermore, the quantitative measures are
all subjective such as experienced control (van der Waa et al., 2021)
or the subjective traceability score (Calvert et al., 2020; Calvert and
Mecacci, 2020; de Sio et al., 2022). To impose meaningful human
control as a requirement and verify if variable autonomy approaches
fulfill this requirement, more quantitative operationalizations and
objective measures are appreciated.

3 Methods

3.1 Overview

To explore quantitative operationalizations of meaningful
human control during dynamic task allocation in human-robot
teams for firefighting, we conducted an online qualitative focus
group. During the study, we presented several statements about
and inspired by the operationalizations discussed in Section 2.
In summary, we presented the following six statements: 1)
Operationalizing the tracing condition can only be done using
subjective measures; 2) the cascade approach evaluates all tracing
aspects; 3) thresholding the final score of the cascade approach
to determine sufficient tracing would be a good idea; 4) misses
resulting from operator unawareness of moral sensitivity indicate
the robot is not under meaningful human control; 5) misses

when the operator is overloaded but aware of moral sensitivity
indicate the robot is still under meaningful human control; and
6) the hit rate is an important property for the robot to be under
meaningful human control, while the true discovery rate is not. All
statements were formulated somewhat provocatively in an attempt
to elicit strong responses. We invited experts in the field and asked
them to respond to our statements while engaging in a discussion
with each other. Data was collected from one focus group study
with the experts and analyzed using reflexive thematic analysis
(Braun and Clarke, 2019).

3.2 Data collection

Since the topic of operationalizing meaningful human control is
complex and involves technical terminology and concepts not easily
understood by laymen (e.g., the tracking and tracing conditions),
we recruited five experts in the field of meaningful human control.
To capture and represent the multifaceted nature of the topic, we
recruited experts with various backgrounds such as engineering 1),
law 1), human factors 1), and computer science 2). All participants
published articles on meaningful human control and four of
them specifically on operationalizing meaningful human control.
Therefore, we believed the recruitment of these experts to facilitate
the in-depth discussions and critical analyses required to generate
concrete ideas on operationalizing meaningful human control
during dynamic task allocation.We informed the expert participants
that we would present statements on operationalizations of
meaningful human control during dynamic task allocation using
variable autonomy in human-robot teams for firefighting.Moreover,
we asked them to respond to our statements while engaging in a
discussion with each other. The first three statements corresponded
to quantitative operationalization of the tracing condition, whereas
the last three centered around objectively quantifying meaningful
human control based on team and robot outcomes. All participants
signed an informed consent form before participating in the study,
which was approved by the ethics committee of our institution
(ID 2477). The online focus group lasted around one and a half
hours and was automatically transcribed using Microsoft Teams.
Afterwards, this transcript was checked and improved using a
video recording of the study, which was destroyed after this data
processing step.

3.3 Data analysis

Data was analyzed using reflexive thematic analysis (Braun and
Clarke, 2019), a method for producing a coherent interpretation of
the data, grounded in the data. This approach is centered around
the researcher’s role in knowledge production and subjectivity
rather than achieving consensus between coders. Reflexive thematic
analysis involves familiarization with the data, generating codes,
constructing themes, revising and defining themes, and producing
the report of the analysis. We outline the process for the first
five phases below, the last phase is reported as Section 4. We first
familiarized ourselves with the data by fine-tuning the transcription
of the focus group using the video recording. Next, we read the full
transcript in detail to double check for potential mistakes during the
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transcription process. During this step we already highlighted and
took notes of potentially interesting text excerpts.

We systematically coded the transcript by searching for instances
of talk that produced snippets of meaning relevant to the topic
of operationalizing meaningful human control. These instances
were coded using comments in Microsoft Word, highlighting
the relevant text excerpt for each code. The coding of thematic
analysis can be either an inductive approach, deductive approach,
or combination of the two. This decision depends on the extent
to which the analysis is driven by the content of the data, and
the extent to which theoretical perspectives drive the analysis.
Coding can also be semantic, where codes capture explicit meaning
close to participant language, or latent, where codes focus on
a deeper, more implicit or conceptual level of meaning. We
used a deductive coding approach driven by prior literature and
existing operationalizations, as well as operationalization ideas
that we formulated. Semantic codes capturing explicit meaning
close to participant language were noted, such as “challenges the
use of thresholds”.

During the construction, revision, and definition of our themes,
we first sorted our codes into topic areas using bullet-point
lists. Next, we used visual mapping (using Miro) and continuous
engagement with the data to further construct, revise, and define our
themes. These candidate themes were grouped into one overarching
theme of quantitative operationalization of meaningful human
control, which encompassed ten themes and eight sub-themes.
The process of revising and defining themes again involved visual
mapping and continuous engagement with the data, mainly to
check for relationships between themes. For example, we checked

whether initial themes should be sub-themes of other themes,
or whether sub-themes could be promoted to themes. Finally,
this resulted in our full thematic map of six themes and eleven
sub-themes. We grouped these themes and sub-themes into the
overarching theme “quantitative operationalization of meaningful
human control during dynamic task allocation using variable
autonomy in human-robot teams for firefighting”.

4 Results

Our analysis revealed that the following six themes are
underlying the main overarching theme: 1) The cascade approach
as valuable tool for quantifying traceability; 2) meaningful human
control as a spectrum rather than binary; 3) team and system
outcomes as proxies for meaningful human control; 4) context
and assumptions as crucial factors to study, define, and evaluate
meaningful human control; 5) system design(er) as output and
reason for meaningful human control; and 6) operationalizing
meaningful human control does not imply quantification. Below we
will discuss these six themes in detail. The full thematic map can
be seen in Figure 1. Some themes consist of several sub-themes and
were constructed based on extensive discussions clearly highlighting
their importance (such as the theme described in Section 4.3). On
the other hand, some themes do not consist of any sub-themes and
were constructed based on briefer discussions that still highlighted
significant relevance to bemain themes (such as the theme described
in Section 4.2). Although these themes are described in less detail,
this does not mean they are less important.

FIGURE 1
Thematic map on quantitative operationalization of meaningful human control (MHC) during dynamic task allocation using variable autonomy in
human-robot teams for firefighting.
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4.1 The cascade approach to quantify
traceability

The first main theme that we identified was “the cascade
approach as valuable tool for quantifying traceability”. Most
participants viewed the cascade approach as a valuable tool to
quantify traceability during dynamic task allocation using variable
autonomy. One participant considered the approach “as a first step
to see how one could start to evaluate something which in itself is
not quantifiable”. Most participants also shared how the approach
is not perfect or the only method, but at the same time none
of the experts were aware of (better) alternatives for quantitative
evaluation of the tracing condition. Another expert explained how
the cascade approach can also be used: “The cascade approach can
give an indication, but then there should still be a human who can
evaluate if the tracing condition is met based on the indication that
the method gives.”

One sub-theme that we identifiedwithin this themewas “context
as determining the application and evaluation of the cascade
approach”. Some participants mentioned that the cascade evaluation
approach misses some tracing aspects. Along those lines, most
experts shared how context and level of abstraction are important for
determining how to apply the approach and whether the approach
evaluates all tracing aspects. For example, one expert explained: “I
do think the cascade approach misses something, but I believe that
if you make it more context specific you stand a chance at capturing
the key aspects of tracing.”

Another sub-theme that we identified was “assumptions
and awareness as enabling objective measures of operator
understanding”. One expert speculated how the traceability
aspect operator understanding of the robot can also be measured
objectively, but that this requires assumptions about specific
scenarios. This participant further mentioned the use of
situation awareness and operational tests for measuring operator
understanding objectively: “Let us assume a certain scenario for the
operator. You could then test the operator to see if the operator is
aware of what the robot might do in a certain circumstance. You
can then let the robot perform the task and you can check to see if
that is actually met. It is very hard to generalize this, but you can
do this for very specific situations and then also objectively measure
understanding in those specific situations.”

We also identified the sub-theme “examine all critical scores
rather than just the final critical score”. This sub-theme is related
to comparing the four traceability aspects of the cascade approach
to determine critical scores, as discussed in Section 2.3. One of
the experts explained: “If you accumulate the individual critical
scores into one final score then you are removing information.
So, it depends on the purpose of the tracing score, but I would
be more interested in the individual scores that are composing
the final score.” All the other participants agreed with this point.
Another expert mentioned how considering both individual scores
and final score can be relevant for comparing different robots,
and that the individual scores can provide more information
about which robot is easier to correct in order to improve
traceability.

The final sub-theme that we constructed was “strive for
the highest tracing score rather than a minimum value”. When
discussing the use of a threshold to define when the final critical

score reflects sufficient fulfillment of the tracing condition, all
experts articulated how the goal should be to get the highest
possible final score rather than aminimumvalue reflecting sufficient
traceability. Furthermore, they mentioned how the critical scores
are subjective and therefore it is inaccurate, not possible, and not
necessary to set a threshold defining sufficient traceability. Finally,
one expert explained how the scores of the cascade evaluation
approach are more useful to inform rather than automate: “I would
even challenge the very notion of thresholding because it reflects the
kind of intrinsic desire to quantify everything. It does feel like this
subjective cascade approachmight actually inform decision-making
without automating it because a threshold is a way of automating
the decision.”

4.2 Meaningful human control as a
spectrum

The second theme that we identified is closely linked to the
previously discussed sub-theme. We called this theme “meaningful
human control as a spectrum rather than binary”. Two participants
explicitly mentioned that the evaluation of the presence of
meaningful human control is more nuanced than saying yes or
no and should be considered as a spectrum instead: “Meaningful
human control itself as well as its different conditions is never black
and white, is not binary, it is a spectrum basically. So there is an
extent of meaningful human control, but it is never that there is full
meaningful human control or there is zero.” The other experts all
seemed to agree with this viewpoint.

4.3 Outcomes as proxies for meaningful
human control

The third main theme that we constructed was “team and
system outcomes as proxies for meaningful human control”. We
identified this theme during the discussion of using signal detection
theory to classify operator responses during during dynamic
task allocation using variable autonomy. One sub-theme that we
identified was “better outcomes as reason for rather than indication
or result of meaningful human control”. Most participants shared
how the quality of team and robot outcomes is not always an
indication or a result of meaningful human control. One expert
explained: “A bad outcome is not always an indication of a lack
of meaningful human control and a good outcome is not always
an indication of meaningful human control being present. It
could also be that the human who is in control has made an
error.” Similarly, another participant complemented: “Meaningful
human control also does not equate to moral acceptability of
any situation. A system can be under meaningful human control
and show very questionable outcomes.” On the other hand,
two experts articulated that one of the reasons for pursuing
meaningful human control is to achieve better and ethically
sound outcomes.

Another sub-theme that we constructed was “team and system
outcomes for verifying rather than evaluating meaningful human
control”. One expert questioned the correctness of assessing
meaningful human control in terms of team and robot outcomes.
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Another expert agreed that outcomes alone are not sufficient
for determining the presence of meaningful human control, but
explained that “you can use outcomes to see whether they are
in accordance with guidelines.” Moreover, this expert mentioned
how outcomes can be used to verify the presence of meaningful
human control rather than evaluate it.The expert who initially raised
questions agreed with these points: “I totally agree that there is
a relationship between meaningful human control and outcomes.
Maybe the outcomes can be indirect evidence of meaningful
human control.”

We also identified the sub-theme “single outcome or situation
as no guarantee for meaningful human control”. Two participants
mentioned how considering single situations and outcomes is
not sufficient for determining the presence of meaningful human
control: “A bad outcome is not always an indication of a lack
of meaningful human control and a good outcome is not always
an indication of meaningful human control being present. If you
have enough situations and samples, then it does give a very
good overall picture, but for one specific situation it does not
give that guarantee. Sometimes in isolation a situation can be a
bit misleading.”

Another constructed sub-theme was “hit rate and misses as
important proxies for meaningful human control”. In addition to
classifying operator responses during dynamic task allocation as
hits, misses, false alarms, and correct rejections, we explained
participants the distinction between the hit and true discovery rate.
More specifically, the hit rate refers to the percentage of relevant
situations where the operator correctly intervenes (by dividing hits
by hits and misses). In contrast, the true discovery rate refers to
the percentage of operator interventions which are necessary (by
dividing hits by hits and false alarms). Two experts articulated how
the true discovery rate and false alarms are not so important in
relation to meaningful human control, while the hit rate and misses
are: “If you intervene in the sense that you keep awareness and keep
responsibility to yourself, even though there was not a necessary
situation, I would say that the true discovery rate is not an important
property for a system to be under meaningful human control,
whereas the hit rate is.” Similarly, the other expert mentioned: “As
long as the operator intervenes it does not really matter if they
intervene even in the situation when the robot is kind of okay, but
it does matter when the human does not intervene when the robot
is not okay.”

We also identified the sub-theme “operator overload as an
indication of a lack of meaningful human control”. All participants
felt that misses resulting from operator overload indicate a lack of
meaningful human control. The experts explained several reasons,
such as “the system is in operation outside of what is reasonable to
expect for that person”, “you need the ability to intervene in time
and in a proper fashion”, and “this is an example of operator capacity
being lower than their responsibility.”

Another sub-theme that we constructed was “moral sensitivity
unawareness as an indication of low meaningful human control”.
Most participants shared that misses resulting from operator
unawareness of themoral sensitivity indicate lowmeaningful human
control. One expert explained: “If the robot misinterprets the
situation but the operator does not intervene, then there is obviously
a lower level of meaningful human control because the robot in
its design has not been able to identify the situation correctly

and also the operator does not correctly intervene”. Another
expert elaborated on the distinction between human control and
meaningful human control: “Strictly speaking the system is under
control of the human operator because he/she has the capability and
the authority to intervene. So, strictly speaking, I should say it is
under control of the human operator, but that does not necessarily
imply meaningful human control.”

The final sub-theme that we constructed was “reasons for moral
sensitivity unawareness as determinants of meaningful human
control”. All participants mentioned how knowing the reasons for
the operator’s unawareness of themoral sensitivity is very important
for determining the extent of meaningful human control. For
example, one expert mentioned how there would be no meaningful
human control if the operator does not have the means to be
aware of the moral sensitivity. Another participant explained: “Is
the operator unaware because he/she cannot do anything about it,
then the operator should not be held responsible.Then, the question
is, depending on how the system was designed, does this lead to a
responsibility gap or does this mean that responsibility should be
attributed to a designer or someone else?”.

4.4 Context and assumptions as crucial
factors

Another theme that we identified during the discussion of
the previously reported sub-theme was “context and assumptions
as crucial factors to study, define, and evaluate meaningful
human control”. Two participants mentioned the importance
of communicating the assumptions of our definitions, variable
autonomy approach, and robot design and communication. For
example, one expert explained: “I think what is very important
when you do this, because I see the value, is communicating the
assumptions you are using. Basically, you want to create a shared
mental model.”

4.5 Design(er) and meaningful human
control

We also identified the theme “system design(er) as output of
and reason for meaningful human control”. One expert shared
how operationalizing meaningful human control can result in
requirements for robot design: “It does feel to me that one of
the major benefits of operationalizing meaningful human control
through tracking and tracing is to arrive in every individual context
at a set of very context specific requirements for the design of
the system”. On the other hand, several participants mentioned
how meaningful human control can be present by system design
and how both the system designer and robot operator should
be considered during the discussion. For example, one expert
shared: “You basically have two human agents here, you have the
operator and you have the robot designer. If at least one of them
is able to influence the situation in a way that human control is
meaningful, then meaningful human control is still present. This
does not have to be the operator necessarily, it can also be the way
the robot is designed.”
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4.6 Qualitative operationalization of
meaningful human control

The final theme that we identified during the focus group
study was “operationalizing meaningful human control does not
imply quantification”. Most experts mentioned that quantification
of meaningful human control has its value, but that it is
very difficult to accurately quantify its elements and conditions.
Moreover, two participants shared that operationalizing meaningful
human control does not require or mean quantifying it. More
specifically, one expert explained: “I just want to challenge the
kind of implicit assumption here that operationalizing the tracing
condition would require quantifying it, because I think that you can
actually operationalize any notion to some extent in a completely
qualitative way.”

5 Discussion and conclusion

5.1 Discussion

Our results emphasize the usefulness of the cascade approach to
quantify traceability during dynamic task allocation using variable
autonomy in human-robot teams for firefighting. Moreover, the
results highlight a new application of the approach in comparing
how different robot implementations or variable autonomy
approaches affect traceability, for example, in terms of robot
behavior, explanations, or autonomy adjustments. Another novel
suggested application is, comparing all individual aspect scores
as well as the final critical score to provide relevant information
about traceability and potential points of improvement. These
applications are novel compared to its original usage of evaluating
implemented robots or variable autonomy approaches using only the
final traceability score.The results further emphasize the importance
of using a scale for such comparisons, where certain robot
implementations or variable autonomy approaches may exhibit
varying levels of traceability. Ultimately, the goal should be to get the
highest possible traceability score rather than a minimum sufficient
value. This is in line with some earlier interpretations of meaningful
human control as ratio rather than binary (Calvert et al., 2020;
Cavalcante Siebert et al., 2022). On the other hand, it contradicts
the discussion on defining how much of each of the four properties
for human-robot teams to be under meaningful human control is
sufficient (Cavalcante Siebert et al., 2022).

Results also highlight a new application of situation awareness
and operational tests to objectively measure the traceability
aspect “human ability to understand and interact with a
robot”. The (modified) Situation Awareness Global Assessment
Technique (SAGAT) can be used to objectively measure human
understanding of the robot during simulations of representative
tasks (Sanneman and Shah, 2020; Verhagen et al., 2022). This
way, SAGAT can also be used to investigate whether certain
robot explanations can increase traceability by improving human
understanding of the robot. Figure 2 shows an example of what
a simulated task could look like for dynamic task allocation
using variable autonomy in human-robot teams for firefighting.
This simulated task is especially valuable for evaluating human-
robot collaboration before real-world deployment, enabling

easier manipulation and evaluation of aspects like robot
communication and behavior (Van Zoelen et al., 2021; Schadd et al.,
2022; Schoonderwoerd et al., 2022; Verhagen et al., 2022). For
example, the simulated task in Figure 2 allows the evaluation
of different robot explanations such as textual, visual, or hybrid
explanations (Szymanski et al., 2021). Moreover, it allows the rapid
implementation and evaluation of different variable autonomy and
control approaches such as having a human-in-the-loop or having a
human-on-the-loop.

The results further highlight the use of team and robot outcomes
as verification of meaningful human control during dynamic
task allocation using variable autonomy in human-robot teams
for firefighting. In terms of outcomes, operator hits and misses
during robot allocation of decisions are considered to be more
important than false alarms and correct rejections. These objective
outcomes provide novel measures for assessing the operator’s
supervision performance during dynamic task allocation using
variable autonomy. Using these team and robot outcomes to verify
meaningful human control corresponds with the operationalization
by van der Waa et al. (2021) that uses behavioral compliance with
moral values and ethical guidelines as evidence for meaningful
human control. Our results also emphasize that meaningful human
control can be present by system design. This aligns with the
claim that robots with variable autonomy can ensure meaningful
human control over these robots (Methnani et al., 2021). It also
aligns with our expectation that dynamic task allocation using
variable autonomy in human-robot teams for firefighting can ensure
meaningful human control by design. However, this could be
verified using measures like the hit rate and whether outcomes
are in accordance with firefighting guidelines, such as evacuating
victims first when the location of the fire source is unknown and
smoke spreads fast. Finally, the results introduce a new perspective
by stressing the importance of collecting outcomes during multiple
task simulations because single positive/negative outcomes are
not always an indication of the presence/absence of meaningful
human control.

Finally, our results highlight a novel perspective by emphasizing
the importance of qualitatively identifying reasons underlying
outcomes, such as why an operator is overloaded or unaware of
moral sensitivity, to determine the extent of meaningful human
control and how to increase it.Therefore, we believe that conducting
follow-up interviews after completing simulations of representative
tasks can be particularly effective to identify reasons underlying
outcomes. For example, after the simulated task operators could
be questioned about reasons for misses and how to improve the
variable autonomy approach to avoid them. More specifically,
if the operator has a low hit rate during the task, follow-up
interviews could determine whether this results from an overload
of robot information or unawareness of moral sensitivity due to
limited experience. This distinction is crucial because these reasons
determine the extent of meaningful human control and how to
improve it. For example, an overload of robot information indicates
a lack of meaningful human control requiring robot improvements
such as decreasing robot communication. On the other hand,
operator unawareness of moral sensitivity due to limited experience
indicates low meaningful human control that can be addressed by
more operator training.
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FIGURE 2
Simulation of the collaboration between the human operator and explore and extinguish robot during dynamic task allocation using variable
autonomy. The robot is autonomously exploring an office building to search and rescue victims. The human operator is supervising the robot and they
communicate via a chat box. When the robot perceives the need for a moral decision, it allocates decision-making to the human operator. All
non-moral decisions are made by the robot.

In summary, the following novel knowledge on operationalizing
meaningful human control has been gained because of the expert
study. First, using the cascade approach for comparing different
robot implementations or variable autonomy approaches, and not
by comparing only the final critical score but also all individual
aspect scores. Furthermore, using situation awareness and the hit
rate to objectively measure the traceability aspect “human ability
to understand and interact with the robot”, and collecting these
measures during multiple task simulations for a more robust
indication of meaningful human control. Finally, qualitatively
identifying reasons underlying outcomes, like operator overload or
moral unawareness, to determine the extent of meaningful human
control and how to increase it.

5.2 Evaluating meaningful human control
during dynamic task allocation

Based on these results, our main contribution is proposing the
following evaluation method of meaningful human control during
dynamic task allocation using variable autonomy in human-robot
teams for firefighting. We suggest adapting the cascade approach to
not only subjectively quantify traceability, but also objectively using
operator responses during and after task simulations.The first aspect

of the cascade approach involves scoring the exertion of operational
control by human and robot separately, and the maximum of these
scores is taken as the critical score of this aspect. This aspect can
be scored a-priori based on the fixed collaboration characteristics
during dynamic task allocation, where the robot exercises more
operational control as it makes all non-moral decisions and handles
allocation of decision-making. However, we suggest combining this
a-priori score with an a-posteriori score determined by the involved
human him/herself, for example, by measuring experienced control
(van der Waa et al., 2021).

The second aspect of the cascade approach involves scoring
the involvement of the human operator, and the minimum of
this score and the critical score of the first aspect determines
the critical score of the second aspect. The involvement of
the human operator can also be scored a-priori based on
the expectation of continuous supervisor involvement during
dynamic task allocation. However, we suggest combining this a-
priori score with an objective measure of situation awareness,
which assesses the human operator’s perception, comprehension,
and projection of environmental elements (Endsley, 1988). Here,
higher situation awareness can be taken as a higher human
operator involvement during the task. Situation awareness can
be measured objectively using the traditional Situation Awareness
Global Assessment Technique (SAGAT) (Endsley, 1988; Endsley,
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2017). This involves a-priori defining the information and situation
awareness requirements of the operator using goal-directed task
analysis. Next, SAGAT queries should be formulated that objectively
evaluate operator knowledge of this situational information. These
queries should be asked during random pauses of the task
simulation, either once or multiple times. The percentage of
correctly answered queries can then be used as objective measure
of situation awareness.

The third aspect of the cascade approach involves scoring the
ability of the human operator to 1) understand the robot and
2) interact with the robot. The minimum of these two scores
is then compared with the critical score of the second aspect,
and the minimum of this comparison determines the critical
score of the third aspect. We suggest to objectively measure
the ability of the human operator to understand the robot
using situation awareness of the robot’s behavior processes and
decisions. In addition to measuring situation awareness, SAGAT
is also suitable for objectively measuring human understanding
of explainable systems like the robot dynamically allocating tasks
(Endsley, 1988; Sanneman and Shah, 2020; Verhagen et al., 2022).
In this case, the goal-directed task analysis involves the definition
of situational information requirements specifically related to
robot behavior. Again, the task simulation should be paused
at random times, followed by evaluating operator knowledge of
the predefined informational needs. Furthermore, we suggest to
objectively measure the ability of the human operator to interact
with the robot using task performance. Task performance can be
determined by the operator’s hit and true discovery rates during the
robot’s dynamic allocation of decision-making, where higher hit and
true discovery rates would refer to better performance. Finally, the
minimum score of the human ability to 1) understand the robot and
2) interact with the robot is taken as the score that is compared with
the critical score of the second aspect.

The fourth and final aspect of the cascade approach involves
scoring the ability of the human operator to understand their moral
responsibility over the robot, and the minimum of this score and
the critical score of the third aspect determines the final traceability
score of the variable autonomy approach. We suggest quantifying
this aspect using a semi-structured interview after completing the
task simulation. This semi-structured interview can efficiently
be followed by open questions to identify reasons underlying
outcomes like operator misses. Identifying these reasons is crucial
to further improve the variable autonomy approach, for example,
by adjusting robot communication if many operators suffer from
information overload. Finally, we suggest combining this subjective
measure of moral responsibility understanding with an objective
measure of how many outcomes adhere to ethical firefighting
guidelines, such as not sending in firefighters when temperatures
exceed auto-ignition temperatures of present substances. This
way, not only the subjective understanding is considered
but also translation of that understanding into adherence to
ethical guidelines.

Our initial goal was a quantitative operationalization of
meaningful human control during dynamic task allocation
using variable autonomy in human-robot teams for firefighting.
Ultimately, we propose a hybrid operationalization where some
required qualitative elements (reasons underlying outcomes)
supplement the quantitative elements (traceability aspects). During

evaluation, we recommend using all aspects scores instead of just the
critical scores to arrive at improvements for the variable autonomy
approach. For example, consider an overloaded human operator
with the critical aspect scores 3, 3, 0, and 0; and a inexperienced
human operator with the critical aspect scores 3, 3, 2, and 2. Closer
inspection of all aspect scores could reveal that the overloaded
operator only lacks the ability to interact with the robot. Similarly,
inspecting all scores of the inexperienced operator could reveal
that the operator suffers from a low ability to both understand and
interact with the robot and understand their moral responsibility
over the robot. So, while the overloaded operator has a lower
traceability score than the inexperienced operator, analyzing all
scores suggests that the traceability score of the overloaded operator
can be improved more easily as it results from only one aspect score
instead of three.

5.3 Limitations

We identify a few limitations of our work. First of all, we
conducted a single focus group that was coded individually. It
can be favourable to conduct the same focus group multiple
times with different experts, until reaching a saturation point.
However, since our goal was to capture a particular perspective
within a specialized domain, we considered one focus group
appropriate to reach our objectives. Furthermore, thematic analysis
is often associated with achieving consensus between multiple
coders and high inter-coder reliability. However, it was our goal to
generate rich, contextually situated, and nuanced themes instead.
Therefore, we employed reflexive thematic analysis, emphasizing
the researcher’s role in knowledge production and centering
around researcher subjectivity (Braun and Clarke, 2019). All in
all, while we acknowledge the limitations associated with a single
focus group and individual coding, these were strategic choices
aligned with our research objectives and the specialized nature
of our domain.

Another limitation concerns the generalizability of our proposed
evaluation method for meaningful human control (Section 5.2).
Since this method is tailored to evaluating meaningful human
control during dynamic task allocation using variable autonomy
in human-robot teams for firefighting, it is questionable how
it would translate to different contexts and systems. However,
this is not necessarily a problem as the conditions, properties,
and implementation of meaningful human control are context-
and system-specific (Santoni de Sio and Van den Hoven, 2018;
Cavalcante Siebert et al., 2022). On the other hand, we do believe
some aspects can be used for different contexts and systems with
similar levels of autonomy and outcomes. For example, objectively
quantifying human ability to understand and interact with systems
using situation awareness and task performance can also be done
during simulations of drivers collaborating with automated driving
systems.Here, even the hit and true discovery rates can be usedwhen
the task includes incorrect automated driving behavior requiring
the human driver to intervene. Finally, we believe semi-structured
interviews after task simulations can be generalized to all contexts
and systems by providing a robustway to identify reasons underlying
behavior and outcomes.
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5.4 Future work

For future work, we want to verify if dynamic task allocation
using variably autonomy indeed ensures meaningful human control
in human-robot teams for firefighting. We believe that a user study
in a simulated task environment similar to Figure 2 could provide
valuable insights before considering in field tests. To implement the
variable autonomy approach, the robot should be sufficiently able to
identify morally sensitive situations (see Table 1). We are currently
collaborating with the fire department of Rotterdam on this robot
identification of morally sensitive situations. More specifically, we
created a questionnaire to understand how people view morally
sensitive situations in human-robot teams for firefighting. This
questionnaire presents various situations during the collaboration
between firefighters and their firefighting robot, such as locating
the fire source, rescuing victims, and switching deployment tactic.
These situations are characterized by different features such as the
number of victims, fire duration, and fire resistance to collapse. In
the questionnaire, participants specify how morally sensitive they
consider each situation on a 7-point scale ranging from not morally
sensitive to extremely morally sensitive (inspired by Reynolds
(2006)). Moreover, they explain which feature(s) contributed the
most to their rating and what feature changes would result in
alternative moral sensitivity ratings. This way, we can identify which
of the features are moral features and use them as predictors to
statistically significantly predict the moral sensitivity of situations.
This regression model can be implemented in the firefighting robot,
together with a threshold for determining when the predicted moral
sensitivity is too high and thus requires human decision-making.
For future work, we want to first implement the dynamic task
allocation and above mentioned regression model in a virtual robot
and simulated environment similar to Figure 2. Next, we want to
verify if dynamic task allocation indeed ensures meaningful human
control during the collaboration.

To verify this, we need to measure meaningful human control
during the user study. The results of our expert study will influence
the measurement of meaningful human control during this user
study in several ways, in line with our proposed evaluation method
in Section 5.2. More specifically, we will determine the participants’
exertion of operational control a-priori based on the fixed
collaboration characteristics during dynamic task allocation. The
involvement of the participants as supervisors and understanding
of the robot’s behavior will be determined by objective measures
of situation awareness obtained by queries asked during random
pauses of the task (Endsley, 1988; Endsley, 2017; Verhagen et al.,
2022). We will determine the participants’ ability to interact with
the robot using task performance, more specifically their hit rate
during the robot’s allocation of moral decisions (i.e., do they
intervene when the robot classifies morally sensitive situations as
not morally sensitive). Finally, participants’ understanding of their
moral responsibility over the robot will be measured after task
completion, using a semi-structured interview. This interview will
also be used to identify reasons underlying task performance.

In addition to verifying if dynamic task allocation ensures
meaningful human control, we are particularly interested in which
robot explanations can support the human operator to intervene
and reallocate moral decision-making when the robot incorrectly
classifies morally sensitive situations. To support the human

operator during moral supervision of dynamic task allocation by
the robot, robot explanations are crucial. For example, the robot
can provide reason explanations underlying allocations (Baum et al.,
2022), or explain the likely positive and negative consequences
of decision options (Steen et al., 2022). The ultimate goal of these
explanations is to raise human moral awareness by fulfilling the
epistemic condition of direct moral responsibility (Rudy-Hiller,
2018; Baum et al., 2022). However, it is crucial that the robot
explanations do not influence the human operator to hold the robot
accountable (Lima et al., 2022). Instead, the robot explanations
shouldmake operators aware that robot behavior can be traced back
to them and therefore they are in control and responsible for the
outcomes (Veluwenkamp, 2022).

A final suggestion for future work is evaluating the consistency
and generalizability of our proposed evaluation method of
meaningful human control to different contexts and systems. It
would be especially interesting to investigate how the method
generalizes to variable autonomy approaches with higher levels
of autonomy, for example, a completely autonomous artificial moral
agent supervised by a human operator. Ultimately, these insights
can result in a more general evaluation method of meaningful
human control in human-robot teams using variable autonomy.
Since designers of variable autonomy approaches lack metrics
for systematically addressing meaningful human control while
at the same time it is increasingly imposed as a requirement,
such a general evaluation method would greatly benefit the field.
All in all, our suggestions for future work can contribute to the
further development of our evaluation method for meaningful
human control and variable autonomy approach for human-robot
firefighting teams.

5.5 Conclusion

In this study, we conducted a qualitative focus group on
operationalizing meaningful human control during dynamic task
allocation using variable autonomy in human-robot teams for
firefighting, aimed at creating an evaluation method of meaningful
human control for this scenario. Our results highlight the usefulness
of quantifying the traceability condition of meaningful human
control, especially for comparing different robot implementations
or variable autonomy approaches. Furthermore, our findings suggest
the use of objective situation awareness and performance tomeasure
human ability to understand and interact with the robot. Results
also highlight the use of team and robot outcomes to verify
meaningful human control and the importance of identifying
reasons underlying outcomes to improve the variable autonomy
approach and determine the exact level of meaningful human
control. Based on these results, we propose an evaluation method
of meaningful human control during dynamic task allocation
using variable autonomy in human-robot teams for firefighting.
This method involves subjectively and objectively quantifying
traceability using human responses during and after simulations of
the collaboration. Moreover, the method involves semi-structured
interviews after the simulation to identify reasons underlying
outcomes and suggestions to improve the variable autonomy
approach. Designers of variable autonomy approaches currently lack
metrics to systematically address meaningful human control while
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at the same time it is increasingly imposed as a requirement of
their approaches. Our evaluation method provides an important
contribution that can verify if dynamic task allocation using variable
autonomy in human-robot teams for firefighting ensuresmeaningful
human control over the robot.
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