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Abstract

Military vehicles are often subjected to dynamic loads from mines. To protect these vehicles,
steel plating underneath the vehicle is applied. However, these steel plates can be quite
heavy, resulting in a slower vehicle. Composite laminates, however, are much lighter and also
prove to be capable of protecting these vehicles from mines.

During an explosion, the energy released from the blast will be absorbed by the composite
material. This often results in the delamination of plies within the laminate. Due to the delam-
ination, bending loads will be taken over by membrane loads. This is proven advantageous
for composite materials as they are stronger in membrane loading.

Unfortunately, modelling sizeable composite structures with a Direct Numerical Simulation
(DNS) requires the use of a lot of elements. This, in turn, results in long computational
times, particularly for non-linear analyses. Multiscale modelling is a possible solution to this
problem.

This study explores the method of Computational Homogenisation for delamination in compos-
ite laminates as an alternative to 3D DNS modelling. Two-dimensional Shell-Interface-Shell
elements (SIFS elements) are introduced on the macroscale. These double-layered shell el-
ements consist of two stacked Mindlin-Reissner shell elements with an interface element
connecting the two shells. Each integration point of a SIFS element is linked to a mesoscopic
3D coupled Representative Volume Element (cCRVE), which is also split into two shells with an
interface in between. By applying linear and periodic boundary conditions that incorpo-
rate the macroscopic strains on the cRVE, mesoscopic stresses are determined, leading to
macroscopic stresses and the macroscopic stiffness matrix.

The proposed multiscale framework is validated by a set of load cases with different ply con-
figurations. The results are then compared to those of a 3D DNS. The multiscale framework
performs reasonably well; however, it is not without its limitations.

Firstly, the cRVE exhibits width dependence, requiring the implementation of a sufficiently
narrow cRVE for accurate results. Additionally, SIFS elements may lack kinematic consis-
tency with 3D solid elements, constraining certain deformations and resulting in overly stiff
responses for SIFS analyses. The proposed multiscale framework might not perform as
accurately as the 3D DNS in specific load cases, one of which is explored in this work.

Returning to the original goal of this work for the multiscale model, certain extensions still
need to be implemented to design composite laminates for blast protection. Implementation
of the arc-length method will provide insight into snapback behaviour that could occur
during loading. Next, the macroscale and mesoscale models need to be adapted for multiple
delaminations over the height of a laminate. Furthermore, the implementation of dynamic
loading is a necessary step, as blast loads induce strong dynamic behaviour. Finally, the
integration of Artificial Intelligence / Machine Learning into the framework could improve
the model by further reducing computational time.
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1. Introduction

1.1. Background

During warfare, a common method to disable military vehicles involves the use of mines. For
the protection of these vehicles and their occupants, blast protection mechanisms, typically
in the form of steel plates, are strategically placed underneath the vehicle [11, 17]. The
primary objective of these steel plates is to mitigate the impact of the blast by undergoing
plastic deformation, thereby absorbing the released energy. However, this defensive measure
can still result in severe physical injury to the individuals within the vehicle. Additionally,
the substantial weight of these steel plates contributes to diminished vehicle speed and fuel
efficiency. Consequently, more lightweight, energy-absorbing materials are considered for
these plates [4].

Among the potential alternatives, composite laminates show good energy-absorbing be-
haviour. Often, the energy from a blast is absorbed by a failure mechanism known as
delamination. Delamination occurs when a force in the material tears two plies apart, see
Figure 1.1. This separation can manifest in various modes, namely in the normal direction
(Mode-I: opening), in a tangent direction due to either a sliding shear load (Mode-II: in-
plane shear) or a tearing shear load (Mode-III: out-of-plane shear), or a combination of the
normal and transverse modes (Mixed-Mode). When delamination occurs, a single shell will
be torn into two (or more) shells on top of each other. Where first bending stresses were
dominant, membrane stresses will take over. This is ideal for composite laminates because
composites exhibit greater strength in membrane loading compared to bending due to the
fibres within the material.

Mode-I Mode-II Mode-III

Figure 1.1.: Delamination modes of composite laminates

When it comes to composite laminates, a distinction can be made between three scales,
see Figure 1.2. At the highest level is the macroscale, which consists of the entire layup of
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the structure, known as a laminate. The macroscale is often used when analysing large
composite structures. Although, at this scale, failure can be included, delaminations cannot.
Descending to a finer scale, the mesoscale is characterised by the individual layers, or plies,
that form the structure. These layers can be defined by the orientation at which the plies
are set. Here, delamination can be described. Lastly, there’s the microscale, which entails the
fibres and the matrix of the composite.

Laminate Matrix
/ NN
. N
J >~ .
Plies NN Fibre
- ,EY\A N s
Macroscale Mesoscale Microscale

Figure 1.2.: Three-scale approach to composite laminates, adapted from [21]

The intricate composition of matrix and fibres in composite laminates contributes to the ma-
terial’s classification as highly complex. Additionally, due to its recent emergence, a com-
plete comprehension of the material is still undergoing development. Besides delamination,
multiple other failure mechanisms can be identified for composite laminates, such as matrix
cracking, fibre breakage, and fibre-matrix debonding. Unfortunately, traditional numerical
modelling techniques for simulating such failures demand substantial time and computa-
tional resources. Addressing delaminations in composite laminates necessitates modelling
each individual ply at the mesoscale. Furthermore, to properly capture the variations in
stress, strain, and deformations, multiple elements are necessary through the thickness of a
structure. This approach, however, can be very computationally intensive.

A different approach is to analyse mesoscopic plies on the macroscale by applying shell ele-
ments, for which the material model utilises a through-thickness integration of the material
to account for the different plies and their offset from the shell’s midplane [18, 6]. However,
the complex intricacies of the microscale are not captured by this approach. Delamination,
in turn, can be accounted for by applying interface elements between shell elements.

A relatively new alternative approach to simulate failure in heterogeneous materials such
as composite laminates is to implement a multiscale framework in a finite element analysis.
By applying a multiscale framework, computational time can be greatly reduced while still
accurately capturing the complexities of the material on the lower scales. The implemen-
tation of the multiscale framework allows for analyses of multiple failure mechanisms of
composite laminates on the different scales that can be evaluated on the macroscale [12].
Additionally, the multiscale framework shows promising prospects for combining multi-
physics analyses on these different scales [19]. The implementation of delamination in a
multiscale framework is, however, not yet fully understood. Combining the properties of
the different scales in analyses can give a more comprehensive understanding of the mate-
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rial. Therefore, this thesis will investigate the application of a multiscale framework for the
modelling of delaminations in composite laminates.

The multiscale framework in this thesis will couple 3D Representative Volume Elements, or
RVEs, of the mesoscale of a composite laminate to Mindlin-Reissner shell elements of the
macroscale to include delamination at the macroscale without explicit modelling of that
delamination at that scale. This thesis is carried out as a continuation of Wieringa’s master
thesis [23], where 2D RVEs are coupled to Timoshenko beam elements.

1.2. Research Goal

As mentioned in Section 1.1, this work is a continuation of Wieringa’s thesis [23]. Wieringa’s
thesis describes a number of steps to reach the research goal, which is “to develop a numer-
ical analysis tool for designing blast protectors made out of composite laminates”. These
steps are updated for this work in Figure 1.3.

The first step, which is including delamination in a multiscale framework, is implemented
in Wieringa’s thesis. 2D isotropic plane stress elements are coupled to 1D Timoshenko beam
elements, and a single delamination interface is introduced in the RVEs.

This work will focus on the second step, which is to extend the framework to a 2D-3D cou-
pling and add the composite ply material models. 3D solid elements will be coupled to 2D
Mindlin-Reissner shell elements, and a material model for composite laminates consisting of
orthotropic plies will be implemented in the framework. The goal of this work is to develop a
multiscale finite element framework for delamination in composite laminates that performs
accurately when compared to a 3D monoscale Direct Numerical Simulation (DNS).

To create a numerical model with a multiscale framework to simulate delaminations in
composite laminates, the following three steps will be performed:

1. Computational homogenisation of shell elements with an isotropic material model
2. Computational homogenisation of shell elements with orthotropic material models
3. Inclusion of a single delamination interface over the height of the shell

To perform the numerical analyses, the Dynaflow Jem / Jive C++ libraries will be used.

The next crucial steps to achieve the research goal are to extend the model for multiple de-
laminations over the height of the shell and to implement dynamic loading in the framework.
This will not be included in this work.

Optionally, Artificial Intelligence / Machine Learning could be introduced to the framework
for further optimisation. This will also not be included in this work.
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Step 1
Inclusion of delamination in
a multiscale framework with
a 1D-2D coupling

Step 2
Extension to 2D-3D
coupling, and composite ply
material models

Y

Step 3
Implementation of multiple
delaminations and dynamic

loading

J

A 4

/ N
Step 4

Introduction of Artificial
Intelligence / Machine
Learning to the framework

Y

Goal
Numerical analysis tool for
designing blast protectors
made out of composite
laminates

Figure 1.3.: Updated steps for designing load protectors made out of composite laminates
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1.3. Thesis Outline

The rest of Chapter 1 will include a summarised literature study. Section 1.4 will contain a
short explanation of the basics of the Finite Element Method. Section 1.5 presents the isotropic
and orthotropic material models applied in this work. Section 1.6 is about multiscale modelling.
Different approaches to the multiscale framework are explored. Section 1.7 will explain the
modelling of the delamination according to the discrete crack approach.

Chapter 2 will include the first step of the methodology, where the multiscale framework
will be assembled for a Mindlin-Reissner shell element. Linear elastic analyses will be per-
formed on different load cases with an isotropic material model to verify the framework.
Furthermore, mesh sensitivity and RVE width sensitivity will be analysed. The following
load cases will be evaluated:

¢ Cantilever extension beam
¢ Cantilever bending beam
¢ Three-point bending beam

Chapter 3 will include the second step of the methodology, where the multiscale framework
is assessed for RVEs with orthotropic material models. Again, mesh sensitivity and RVE
width sensitivity studies will be performed, following the load cases presented in Chapter 2.
The following composite ply configurations will be evaluated:

e 0
* (0/90,/0
e 45/-45

Chapter 4 will include the last step of the methodology, where a single delamination inter-
face will be added to the multiscale framework on the mesoscale. The macroscale will also
have to be expanded with double-layered Shell-Interface-Shell elements to simulate the crack-
ing. The framework will first be analysed for Unit Tests with an isotropic material model
and compared to analytical results. Next, the following load cases will be evaluated for
both an isotropic material model and different ply configurations with orthotropic material
models:

¢ Double-cantilever beam
¢ End-notched flexure
¢ Single-leg bending

Chapter 5 will test the multiscale framework on a Double-Cantilever Beam Test conform
to the standards of ASTM [2]. Following additional sensitivity studies in Appendix A,
the Double-Cantilever Beam will be discretized. The results of the DCB Test following the
multiscale framework will be compared to the results of a 3D DNS analysis.

Lastly, Chapter 6 will include the conclusion and future perspectives for the framework.
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1.4. The Finite Element Method

The Finite Element Method (FEM) is a numerical analysis method where an equilibrium equa-
tion for a field problem is solved. The field is discretized into a finite number of elements,
hence the name.

The basic principles behind FEM are summarised by Van der Meer [21]. In the case of a static
or quasi-static displacement field analysis, a force equilibrium needs to be solved, where the
internal force in a body has to be equal to the external force applied to the body:

fint — fext (11)

Together with a set of boundary conditions, which describe the prescribed displacements
(Dirichlet boundary conditions) and applied loads (Neumann boundary conditions), the force
equilibrium can be solved.

As mentioned, the field problem is split into a number of elements, which are defined by
nodes with coordinates x. These nodes have a set of degrees of freedom, which will express
the solution to the field problem. By applying interpolation functions, or shape functions Ne(x),
the degrees of freedom of the element, ue(x), can be described with the degrees of freedom
of the nodes, or the nodal displacements ae:

ue(x) = Ne(x)ae (1.2)

For a 3D solid model, x, ue(x), Ne(x) and a, are defined as:

x=[x vy Z}T (1.3)
T
ve(x)=[u v w (1.4)
Ny 0 0 .. Ny 0 0
Nex)=|{0 N, 0 .. 0 N, 0 (15)
0 0 N 0 0 N,
2= [a¥ @ a¥ .. at af a¥]’ (1.6)

where n corresponds to the number of nodes in the element. Following the fact that strains
can be defined as the derivatives of the displacement; the strains in the element can be
expressed as:

€. = Be (X)ae (1.7)

€e, and Be(x) are defined as follows for a 3D solid model:

T

€e = [exx €y €z 2exy 26y 26y (1.8)
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and
Niy O 0 .. Nuyx O 0
0 Ny O .. 0 Nyy O
0 0 Ny, .. 0 0 N,z
B — ’ 4 19
e(x) Niy Nip 0 . Nyy Nyx O (1.9)
0 Nl,Z Nl/y oo 0 Nn,z Nn,y
Nl,Z 0 Nl,X “ee Nﬂ,Z O anx

where the subscript ,i denotes a derivative with respect to i. By applying Hooke’s Law for
stress and strain, o = De, the internal force vector of an element can be rewritten as:

£t = /Q Be (x) ' DBe (x)dQcae (1.10)

where D is the material stiffness matrix and ), is the domain of the element. Furthermore,
the element stiffness matrix K. can be defined as:

K = / Be(x)  DBe(x)dQ2, (1.11)

e

which leads to (1.10) being rewritten to:
fo' = Keae (1.12)

Next, the global stiffness matrix, global displacement vector, and global (external) force
vector are assembled:

Ka = (1.13)

Now that all the components have been derived for a static analysis, the following equation
solves the unknowns of the field problem:

a=K (1.14)

For a quasi-static analysis, fictional time steps, or load steps, are introduced, where in each
step, there is a load increment. This is necessary to describe damage (such as delamination)
in an analysis. Now, instead of applying the material stiffness matrix D, a so-called material
tangent stiffness matrix, or material tangent, T, is applied:

_ do /ot _ Jdo

T de/ot  de (1.15)

Now the material tangent T is applied to assemble the global tangent matrix K, and an
iterative solution procedure is used to find the solution vector:

aj = aj 1 + K (£ — £ (a; 1)) (1.16)
Equation 1.16 shows the Newton-Raphson solution procedure for solving the solution vector.

Here, j represents an iteration. The solution procedure moves on to the next load step when
a specified residual for K~!(f** — ) is achieved.
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1.5. Material Models

In this work, both isotropic and orthotropic material models will be explored. Orthotropic
material models will be applied for the plies of a composite laminate.

Following Hooke’s Law for stress and strain, ¢ = De, the stiffness matrices for isotropic
(Equation 1.19) and orthotropic (Equation 1.21) materials can be defined with the compliance
matrix C [6]:

e =Co (1.17)
1 —v —v 0 0 0
—v 1 —v 0 0 0
1|{—v —v 1 0 0 0
Coo=FEl0 0 0 204v) o0 0 (1.18)
0 0 0 0 2(1+v) 0
0 0 0 0 0 2(1+v)
Djs, = C;.! (1.19)
(2 B om0 0 0]
B oE om0 0
s L0 0 0
— 1 2 3 1.2
0 0 0 0 & O
00 0 0 0 g
Dorino = C(;,%hg (1.21)
with
e=[en exn €33 21 26 2631]T (1.22)
and
T
o= on o3 o 03 03] (1.23)

For an isotropic material, only two material properties are necessary to define the stiffness
matrix, namely the Young’s modulus, E, and the Poisson’s ratio, v. For an orthotropic
material, nine material properties are necessary, namely three Young’s moduli, E;, Ep, and
E3, three Poisson’s ratios, vy, 123, and v3; (with their respective inverses: 11, v3, and v13),
and three shear moduli, G5, Gy3, and G3;.

Note how the stresses, strains, and material properties for the orthotropic material model
are defined with numbers 1, 2, and 3 instead of directions X, y, and z. These numbers
correspond to the principal direction in which the material is laid. For composite plies,
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direction 1 corresponds to the direction of the fibre, direction 2 is the in-plane transverse
direction of the fibre, and direction 3 is the out-of-plane transverse direction of the fibre.

A transformation matrix, T, is necessary when the orthotropic material is laid at an angle.
This transformation matrix relates the principal stresses and strains of the material to the
stresses and strains in the global coordinate frame. In this work, the material will only be
angled in the x-y plane. The corresponding transformation matrix can then be defined as:

cos? 6 sin? 6 0 0 0 2sin 6 cosf
sin 6 cos? 6 0 0 0 —2sinf cos 6
. 0 0 1 0 0 0
T= 0 0 0 cosf® —sinf 0 (1.24)
0 0 0 sinf® cosf 0
—sinfcosf sinfcosf 0 0 0 cos? 0 — sin? 6

where 0 is the angle at which the material is laid.

By applying the transformation matrix, the material stiffness matrix can be mapped to the
global coordinate system:

Dgiopat = T~ 'DopieT ™" (1.25)

1.6. Multiscale Modelling

In the realm of multiscale modelling, diverse methodologies exist. Among these, Concur-
rent Models and Homogenisation Techniques stand out as widely embraced frameworks [15].
Concerning concurrent models, a direct coupling between the higher and lower scales is
established. Initially, the domain is characterised by a global coarse mesh, often employing
linear elastic material behaviour. Upon violation of specific scale-change criteria, the macro-
scopic coarse mesh is replaced by a finer mesh, representing the lower scale. This refined
mesh captures the non-linear material behaviour effectively [23]. However, in the event of
a delamination, the adaptation of the finer mesh throughout the model does not yield a
reduction in computational time. Consequently, the homogenisation approach is employed
in this study.

Homogenisation is a technique used to analyse the effective or averaged properties of a
heterogeneous material at a macroscopic scale. When it comes to homogenisation, three
distinct forms can be defined, namely Analytical / Mathematical Homogenisation, Numerical
Homogenisation, and Computational Homogenisation [15]. Analytical homogenisation is typ-
ically confined to straightforward microscopic geometries and material models, rendering
it unsuitable for the scope of this study. Numerical homogenisation is only applied when
a precise constitutive relation can be reasonably assumed for the material undergoing ho-
mogenisation. This application is constrained, as it is not conducive to cases involving de-
lamination, where an accurate constitutive relation is challenging to establish. Conversely,
computational homogenisation serves as a viable solution in scenarios where no explicit
constitutive relation can be assumed.

The works of Nguyen, Oddy and Bisschop, and Wieringa [15, 16, 23] give a good overview
of the basic principles of computational homogenisation. As the name suggests, the FE?
method involves using a nested solution procedure. Two scales are linked to compute the
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stiffness matrix and stresses on the larger scale, or macroscale, from the subscale. As the
other name suggests, the material on the subscale, the mesoscale or microscale, often has a
complex, heterogeneous structure that will be homogenised for the macroscale. Computa-
tional homogenisation is applied when no constitutive relation can be assumed directly for
the macroscale.

An important aspect of the method is the principle of separation of scales. The length scale of
the subscale, Ly, has to be considerably smaller than the length scale of the macroscale, Ly,
or else the strains of the macroscale could change over the length of the subscale:

Lm << Ly (1.26)

The procedure for computational homogenisation is as follows. For each integration point
on the macroscale, a Representative Volume Element, or RVE, is defined on the mesoscale,
see Figure 1.4. These RVEs define the material properties of the structure.

O O @] Macroscale

\\x ] shell elements

o © o Macroscale
\\\ \ \Qntegration point
7 X
O / O NO
7] __—Mesoscale
RVE

Deformed~
RVE

NS

Figure 1.4.: RVEs coupled to macroscale element integration points

The RVEs are constrained by a defined set of boundary conditions. This constraining of the
RVE is referred to as downscaling. Various types of boundary conditions are applicable to
RVEs; however, each type is typically associated with distinct limitations. Several boundary
conditions may lead to overconstraining or induce unphysical behaviour within the RVE.
This work will focus only on linear and periodic boundary conditions due to the simplicity
of these boundary conditions and the mesoscopic model.

Linear boundary conditions are defined by the strains on the macroscale:
dc — AbeM (1.27)

with a. denoting the constrained degrees of freedom on the RVE boundary nodes, A;, de-
noting a geometric matrix of the boundary nodes, and ey; denoting the strains of the macro-
scopic scale.

10



1.6. Multiscale Modelling

Periodic boundary conditions link the degrees of freedom of RVEs:
a; = aj (1.28)

with a; denoting a degree of freedom of node i on the RVE and a; the degree of freedom of
node j.

Solving the boundary value problem, or BVP, on the RVEs results in the stresses, strains,
and stiffness of the mesoscale. The stresses and stiffness need to be translated back to the
macroscale, also referred to as upscaling. This is done using the Hill-Mandel macro-homogeneity
principle, which states that the macroscopic stresses and strains must be equal to the volume
average of the mesoscopic stresses and strains over the RVE. In the case of a 2D shell element
linked to 3D RVEs, the volume is actually the in-plane area of the RVE. The Hill-Mandel
macro-homogeneity principle is defined as:

1
OM:€EM = @ /Q T €mdQ) (1.29)

The macroscopic stresses are obtained by volume averaging the mesoscopic stresses:

1
oM =~ | omdQ) 1.30
M |Q| /Q m ( )
with M denoting the macroscale stresses and strains, m the mesoscale stresses and strains,
and () the area of the RVE.

To solve Equation 1.30, the mesoscopic stiffness matrix K is split into the following sub-
matrices:

Kgs K¢
Ko — 1.31
" |:ch Kec ( )

so that the following expression relating the displacement vector a to the external force
vector f can be derived:

K Kge| |af 0
= 1.32
{ch Kee| [ac fe ( )
with a denoting the displacements, f denoting the forces, subscript f denoting free nodes,
and subscript ¢ denoting constrained nodes. Stiffness matrices K¢ and Ky, relate the degrees
of freedom of free nodes a; and of constrained nodes a. to the force vector of the free nodes
f¢, which by definition is a nulvector: fy = 0. Then stiffness matrices K and K relate

the displacements of free nodes and of constrained nodes to the force vector of constrained
nodes £, which is the loaded part of the external force vector.

Rewriting Equation 1.30 and Equation 1.32 results in the following;:

1 1 _
oM = @Abec = @AHKCC — KoK Ko )ac (1.33)

which can be simplified to:

1 _
oM = WAbTKCCAbeM (1.34)

11



1. Introduction

with

Kee = Kee — KK 'Ky (1.35)
and

Apem = ac (1.36)
Next, the macroscopic material stiffness matrix, D, can be defined using Hooke’s Law:

1 _

Dy = @AbTKCCAb (1.37)
K. contains the inverse of a matrix, see Equation 1.35. A probing technique can be applied
to get the macroscopic stresses and material stiffness matrix without having to invert K.
This probing technique builds the macroscopic material stiffness matrix in a column-wise
manner as follows:

For every column of the material tangent (i = 1, ..., n), the right-hand side of Equation 1.37
is multiplied with a unit vector e;:

1

= @AbT(ch — KK 'Keo)fs (1.38)

with f; = Ape;.

Next, Kof; and K¢ f; are calculated as follows:

K K| [0] _ [Keefi] _ |8

|:ch ch:| {fl] o |:KCCfi ~ |h (1.39)
Then, the following linear system of equations is solved:

K¢ Ke| [u| _ |8

[ch KCJ M - {0] (1.40)

Note that K¢ does not need to be inverted to find u.

Now, by applying u, K fu can be calculated as follows:
< el i) = b=
= = 141
|:ch K| [0 chu P ( )
Substituting h and p into Equation 1.38 gives:

1
Dy = @AbT(h -p) (1.42)

The macroscopic material stiffness matrix can now be assembled by combining the columns
DM i

Dy =[Dmi -  Dwmpgl (1.43)

12



1.7. Delamination Modelling

1.7. Delamination Modelling

For the modelling of the delamination, the Discrete Crack Approach is employed, integrating
a discontinuous displacement field to model the delamination. An essential assumption in-
herent in this approach is the a priori knowledge of the crack (or delamination) location.
This assumption proves advantageous, given that the location of delaminations is predeter-
mined, specifically situated between the plies of a laminate. This method of crack modelling
can be described by the interface elements, the Cohesive Zone Model, and the corresponding
Traction Separation Law [21, 22, 23].

Interface Elements

Figure 1.5 shows the interface elements for a 3D model. These interface elements can de-
scribe a discontinuous jump between two continuum elements. Jumps can be either in the
normal direction, a so-called Mode-I jump, or in a transverse direction, Mode-II for sliding
shear and Mode-III for tearing shear. A combination of a normal and transverse jump is
known as a Mixed-Mode jump.

Continuum
element
Interface
element Interface
element
Interface
nodes Interface
nodes
Continuum
element

Figure 1.5.: Interface elements

Just like for continuum elements, the degrees of freedom of the interface element can be
described with the nodal displacements using the shape functions for interface elements,
see Equation 1.2:

te(x) = [u] = Ner(x)ae (1.44)

with [u] describing the normal and transverse jumps between the top and bottom parts of
the element:

[u] = uf —u, (1.45)
The nodal displacements of the element are defined by ae:

ty

T
t
ae = [u? ul® uj u ul uny} (1.46)

with the subscripts denoting the nodes of the element (1 to n), and the superscripts denoting
the jumps in normal (1) and transverse (tx and ty) directions. The shape functions matrix
for the element, N, 1r, now looks a bit different than for a continuum element:

Netr = [Nbottom Niop) (1.47)

13
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with
—N; 0 0 —Ny /2 0 0
Nbottom = 0 -M 0 0 —INyy/2 0 (1.48)
0 0 —N; 0 0 —Ny /2
and
Ny /241 0 0 .. N, O 0
Ntop = 0 Ny/o+1 0 . 0 N, O (1.49)
0 0 Nyjo41 o 0 0 N,

Again, just like for continuum elements, the internal force for the interface elements can be
defined as:

forr = /r Ne1r(x)" tdT (1.50)

where t is the cohesive traction in the element and T is the interface surface. The element
tangent matrix can then be defined as:

Ke1r = /r Neir(x) TN pdl (1.51)
where
=2 (1.52)

~ ol

Subsequently, the global tangent matrix, global displacement vector, and global (external)
force vectors are assembled, and the field problem can be solved.

Cohesive Zone Model

As loading increases on the interface element, the element will crack open. The opening of
the crack can be split into three stages, namely undamaged (no crack has been developed
yet), damage evolution (the crack begins to open), and fully damaged (the crack is fully
open). The Cohesive Zone Model, or CZM, describes the cohesion of the interface element’s
top and bottom parts. This corresponds to the first two stages of the crack opening. Once
the crack is fully open, there is no more cohesion between the elements.

Following the work of Wieringa [23], an initially elastic CZM is applied in this work. A
load-displacement curve for an initially elastic CZM is shown in Figure 1.6.

Accompanying the CZM is the Traction Separation Law, or TSL, which describes the soften-
ing branch of the CZM. Cohesive traction can be defined as:

t=f([u], B) (1.53)

with f denoting the TSL, [u]] denoting the jumps, and B denoting interlaminar material
properties.

Traction Separation Law
The chosen TSL follows a mixed-mode damage model by Turon et al. [20], with later im-
provements proposed by Van der Meer and Sluys [22]. The TSL is defined as:

t= [I — (/JdP]Kd [[uﬂ (154)
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1.7. Delamination Modelling

[MPa]

[N/mm]

[[ul]

[mm]

Figure 1.6.: Initially elastic Cohesive Zone Model

where w; is a damage variable, P is a matrix that prevents compressive cohesive tractions,
and Kj is the initial stiffness.

P can be found as follows:

([u]n)

[[u]]n 00
P=1 10 10 (1.55)
0 0 1
with
([uln) = w (1.56)

The damage variable w; can be found as follows:

0, [u]e < [[“]]gq

) 1y (leg 1409 0 f
wy = —[[uﬂeq([[u}]{qfﬂuﬂﬁ?q)' [[M]]eq < [[M]]eq < [[u]]eq (157)

1L [uleg > [ully

where [u]g is the equivalent jump, [u]?, the equivalent jump at the onset of damage, and

[[u]]éfq the equivalent jump after the damage has fully developed. These equivalent jumps are
defined as:

[ideg = /Ll + (w3, with [l = \/([u)ex)? + ([ulhy )2 (1.582)
4] = \/(HMH3)2 + o (([u]9)° ~ ([u]9)°) (1.58b)
uou{Z o uouf— u?,u{l
g, - LA+ v(uﬂnﬂtou I — 310 w50
Ulleq
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with
_ [ul?
[ul? + ([u]n)?
o_ f_ 261
[[u]]?l - Kd’ [[u]]n - Fn
o_ F f_ 2Gype
[[uﬂt - Kd, [[u]] - Ft

(1.59a)

(1.59b)

(1.59¢)

where F, and F; are the interlaminar strengths in normal and transverse directions, Gj, and
Gy are the fracture toughness for Mode-I and Mode-II jumps, and 7 is the Benzeggagh-

Kenane interaction parameter [3].
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2. Computational Homogenisation of a
Mindlin-Reissner Shell

In this chapter, 3D solid RVEs are coupled to 2D Mindlin-Reissner shell elements for isotropic
material. First, in Section 2.1, the macro- and mesoscale models will be formulated, and
the coupling between the two scales will be explained. Then, a number of load cases will
be presented in Section 2.2. The multiscale framework will be tested on these load cases
and compared to 3D DNS analyses. For each load case, a mesh sensitivity study on the
macroscale and mesoscale will be performed. Additionally, the influence of the RVE widths
will be explored. The results of the analyses will be presented in Section 2.3 and lastly, they
will also be discussed in Section 2.4.

2.1. Model Formulation

Due to the nature of delamination, Mindlin-Reissner shell elements are introduced in Sec-
tion 2.1.1 to account for the shear stresses and strains. The three-dimensional RVEs coupled
to these shell elements will be formulated in Section 2.1.2. Lastly, the coupling between the
macro- and mesoscales will be shown in Section 2.1.3.

2.1.1. Macroscale Model

On the macroscale, Mindlin-Reissner shell elements (MR elements) are applied. The formu-
lation for Mindlin-Reissner shell elements is also known as the First-Order Shear Deformation
Theory (FSDT) for composite laminates [18]. Figure 2.1 shows a single three-noded triangu-
lar MR element with corresponding positive degrees of freedom. The displacements of MR
elements are defined only by x and y coordinates:

x =[x y}T 2.1)

Displacements are considered constant over the height of the shell. This is in contrast to 3D
solid elements, where displacements are defined by X, y, and z coordinates. This assumption
will generally lead to stiffer responses from the MR elements.

MR elements have five degrees of freedom, namely:

ue(x)=[u v w 6 Gy]T (2.2)
The nodal displacements of an element can then be defined as:
ox 0 o 0"
ae = [aﬁ‘ al a¥ af* g a“ a9 a¥ 4% ay, (2.3)
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2. Computational Homogenisation of a Mindlin-Reissner Shell

Figure 2.1.: Three-noded triangular Mindlin-Reissner shell element

The strains of MR elements can be defined as:

T
ee - [exx eyy 2€xy Kxx Kyy Zny ’)’x ’)’y]

with
ou
Exx = g
0v
Cyy = ay
ou dv
2€xy @ + a
20y
Kyx = ai
= oy
00 00
2y = a—y" + =7
ow
x = g - ex
ow
Ty Em — 0y
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2.1. Model Formulation

Following Equation 1.7 this results in the following Be(x):

Ny 0 0 0 0 Nax O 0 0 0
0 Ny 0 0 0 0 Ngy 0 0 0
Niy Nox 0 0 0 Nuy Npx 0 0 0
0 0 0 N, 0 0 0 0 Ny 0
B:)=1¢9 o o0 o0 Niy 0 0 0 0 Ny (2.6)
0 0 0 Ny N 0 0 0 Nugy Ny
0 0 N, N, 0 0 0 Ny N, 0
(0 0 N 0 N 0 0 Nyy 0 =Ny

The internal force vector, element stiffness matrices, and global stiffness matrix can be as-
sembled following Equation 1.10 through Equation 1.13.

Unlike 3D solid elements, the material stiffness matrix of an MR element includes the height
of the shell. The material stiffness matrix for an isotropic material is defined as:

Txt vxt 0 0 0 0 0 07
vxt xt 0 0 0 0 0 0
0 0o Lx o 0 0 0 0
0 0 0 Lart Huxtd 0 0 0
D. — 12 2 2.7
s 0 0 0wt Haf 1 0 . 0 0 @7)
0 o0 0 0 0 Extt 00
0 o0 0 0 0 0 kGt 0
L0 0 0 0 0 0 0 kGt
with
E
X= 1-.2 (2.8)
and
E
_ 2.
G 2(1+v) 29)

where E is the Young’s modulus, G the shear modulus, v the Poisson’s ratio, t the thickness,
and k a shear correction factor. The shear strain over the height of a structure generally
isn’t constant; however, due to the assumptions made for an MR element, the shear strain
is constant over the height. The shear correction factor takes this into account. Due to
the added complexity of calculating the shear correction factor for orthotropic composite
laminates, in this work, a shear correction factor of k = 1 will be applied, resulting in
stiffer responses of the MR elements. According to Daniel and Ishai [6], in many cases, it is
sufficiently accurate to assume this shear correction factor k = 1.

2.1.2. Mesoscale Formulation

On the mesoscale, 3D solid elements are applied. Section 1.4 covers the formulation of these
elements. Figure 2.2 shows a single eight-noded hexagonal, or brick, element used in this
work. Figure 2.3 shows the mesoscale RVE, consisting of eight-noded brick elements.
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Figure 2.2.: Eight-noded hexagonal 3D solid element
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Figure 2.3.: RVE with 3D solid elements
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2.1. Model Formulation

Initially, only the RVEs will capture the material properties and thickness of the laminate. In
the case of a fully isotropic material, the RVEs will have the same material properties over
the height of the RVE. This height will capture the thickness of the shell, which violates the
principle of separation of scales, see Equation 1.26. Macroscopic strain components will be
set as boundary conditions on the RVE. However, the strain components of the macroscale
are assumed to be constant over the thickness of the shell. This could be problematic for the
out-of-plane shear components, which are generally not constant over the height of 3D solid
elements.

2.1.3. Scale Coupling

The macro- and mesoscale are coupled by setting boundary conditions on the RVE. These
boundary conditions transfer the macroscopic strains to the RVE. Solving the BVP results in
mesoscopic stress vector. The macroscopic stresses can then be found using the Hill-Mandel
macro-homogeneity principle. Furthermore, the global stiffness matrix of the RVE, together
with the geometric matrix that captures the boundary conditions, can define the material
stiffness matrix of the macroscopic scale following the Hill-Mandel macro-homogeneity prin-
ciple and probing method explained in Section 1.6.

The boundary conditions set on the RVE are taken from Gruttmann and Wagner, and Her-
wig and Wagner [7, 8]. These works use a combination of linear boundary conditions and
periodic boundary conditions. Firstly, the deformation on the boundaries of the RVE can be
defined using the assumed displacement field for Mindlin-Reissner shell elements:

Up €xx + ZKxx €xy + ZKxy TYx| | X
v = €xy + ZKyy Eyy + ZKyy Tyl |y (2.10)
Wy | - % (KxxX 4 Kxyy) —%(Kwy +reyx) 0] |z],,

Rewriting Equation 2.10 with the macroscale strains as the vector gives:

€xx

Eyy
up x 0 3y xz 0 vz z 0 Zexy
| =10y ix 0 yz  ixz 0 z szx (2.11)
Wy 4, 0 0 O —%xZ —%yz %xy 0 o], Znyyy

Tx

LY Im

However, these linear boundary conditions result in the unphysical behaviour of the RVE
due to the prevention of the contractions of the material over the height at the edges. This
will lead to an overly stiff response, which can be interpreted as an upper bound solution
[10]. The boundary conditions need to be loosened. This is done by removing the boundary
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conditions for the vertical displacement, wy:

E€xx
Eyy
2€xy
u,| _|x 0 %y xz 0 %yz z 0 Kyx (2.12)
% I 3x 0 5xz 0 K ‘

b Yy o3X yz Xz z],. | Ky

2Ky
Yx

LYy 1M

However, now the RVE is underconstrained. The RVE is not fixed in its vertical direction
and will also be able to endlessly rotate about its x and y axes. To overcome these problems,
the RVE needs to be fixed in the vertical direction, and periodic boundary conditions are
applied to the boundaries to overcome the rotation about the x and y axes. To fix the RVE in
vertical direction, the vertical translational degree of freedom of a single node is set to zero.
This could be any node. This work will take the middle node of the RVE:

w(x,y,z)m =0, x=y=z=0 (2.13)

Furthermore, the periodic boundary conditions applied in this work set the vertical displace-
ment of an edge equal to the vertical displacement of the opposite edge in an anti-symmetric
way:

Wi (Lx/2,Y,2) = win(—Lx/2,—Yy,2) (2.14a)
Wi (x,Ly/2,2) = Win(—x,—Ly/2,2) (2.14b)

Figure 2.4 shows the proposed deformations of the RVE, following the applied boundary
conditions.

This work applies a second-order computational homogenisation framework, where thick
shell elements are coupled to 3D RVEs. By applying this framework to the aforementioned
linear and periodic boundary conditions, the RVE will show size dependency. There are
numerous ways to remove this size dependency. The work of Hii and El Said [9] pro-
poses a different type of boundary condition for the RVE, namely a volumetric constraint
on the fluctuation moment field, which removes the size dependency on the mesoscale. An-
other approach to removing this size dependency is to apply the Irving-Kirkwood theory,
as opposed to the Hill-Mandel principle mentioned in Section 1.6. This approach does not
constrain the RVE with boundary conditions but instead applies a global constraint that
links the strains between the macro- and mesoscales [14]. Lastly, the method of Variationally
Consistent Homogenisation could also prove to solve this size dependency. In this method,
the macroscale and mesoscale problems are both derived from a single, fully resolved prob-
lem [5]. These are just a few of the newly discovered approaches to further improve the
multiscale framework approach; however, they will not be further explored in this work, as
the size dependency of the RVE is not an issue. The material properties of the RVE do not
change over the widths of the RVE; thus, applying a very narrow RVE that fully captures the
material properties is possible. In Section 2.3.3, the size dependency of the RVE is further
explored. Optionally, these different approaches could be explored to reduce the number
of elements in the RVE. In order to maintain a proper aspect ratio of height to width for
the elements within the RVE, many elements will be necessary over the height of the RVE.
Eliminating the size dependency will solve this issue and result in faster analyses due to
fewer elements being applied.
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Figure 2.4.: RVE kinematics

2.2. Load Cases

To verify the multiscale framework, three load cases are introduced, which will be tested on
the framework. The following load cases will be analysed:

¢ Cantilever extension beam
¢ Cantilever bending beam
¢ Three-point bending beam

Figure 2.5 shows the load cases that will be tested. Table 2.1 shows the corresponding
geometry of the beam for the load cases and the material properties of the isotropic material
applied in the analyses.

Cantilever extension beam

The top of Figure 2.5 shows the configuration for the cantilever beam in extension for the
3D, shell, and FE? analyses. The cantilever beam will be fixed at one end and loaded in
horizontal x direction at the other end. For the 3D analysis, this means that the degrees of
freedom u, v and w will be set to 0 at the clamp, and u at the other end will have a prescribed
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Figure 2.5.: Load cases
] [ Variable | Value | Unit
Ly 100 mm
Geometry Ly 4 mm
h 8 mm
2
Isotropic material E (1)2225’700 {\I/mm
properties G 49,080 N/mm?

Table 2.1.: Parameter list

deformation. For the Mindlin-Reissner analysis, the degrees of freedom u, v, w, and 0, will
be set to 0 at the clamp, and u at the other end will have a prescribed deformation. The
rotation 6, could optionally also be set to 0 at the clamp; however, constraining the vertical
displacement w over the length L, guarantees that this rotation will be 0. The prescribed
deformation u is 5 mm.

Cantilever bending beam

The middle of Figure 2.5 shows the configuration for the cantilever beam in bending for
the 3D, shell, and FE? analyses. The support conditions for both the 3D and Mindlin-
Reissner analysis are the same for the cantilever extension beam; however, at the loaded
end, a prescribed deformation in the z direction will be applied. For the 3D analysis, the
load is applied at the end surface area of the beam as a prescribed deformation w. For
the Mindlin-Reissner analysis, the load is applied at the end of the beam as a prescribed
deformation w. The prescribed deformation w is 10 mm.

Three-point bending beam
The bottom of Figure 2.5 shows the configuration for the three-point bending beam for the
3D, shell, and FE? analyses. The three-point bending beam will be constrained at both
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bottom ends in the z direction and only at the bottom left end in the x and y directions.
Furthermore, a prescribed deformation in the z direction is applied at the top of the beam
in the middle. For the 3D analysis, this means that the degrees of freedom u, v, and w will
be set to 0 at the bottom left edge, and w will be set to 0 at the bottom right edge. The load,
in the form of a prescribed deformation, is applied at the top of the beam in the middle.
For the Mindlin-Reissner analysis, the degrees of freedom u, v, and w are set to 0 at the left
edge, w is set to 0 at the right edge, and w is set to the prescribed deformation in the middle
of the shell. Due to the assumption that the displacements are constant over the height of
the MR elements, the Mindlin-Reissner analyses will result in much stiffer responses for the
three-point bending beam than the 3D analyses. To somewhat overcome this problem, the
3D analyses could also be constrained in w over the height of the beam or in the centre of the
beam height; however, these analyses are physically unrealistic or uncommon; therefore, the
proper configuration for the three-point bending test, as performed in physical tests, will be
applied for the 3D analyses. The prescribed deformation w is 10 mm.

2.3. Results

The first step to verifying the multiscale framework is to set a proper mesh size. A mesh
sensitivity study is performed in Section 2.3.1 for 3D DNS analyses and for Mindlin-Reissner
shell analyses, not yet applying the multiscale framework. Section 2.3.2 will continue with a
mesh sensitivity study on the mesoscale. Lastly, the influence of the width of the RVE will
be explored in Section 2.3.3.

2.3.1. Macroscale Mesh Sensitivity Study

A mesh sensitivity study on both macro- and mesoscales will be performed to determine the
proper mesh sizes. A beam with dimensions Ly = 100 mm, Ly = 4 mm and h = 8 mm will
be discretized into Nejems x elements in the x-direction, Nejems,y elements in the y-direction,
and for the 3D analyses, also Nejems , €lements in the z-direction. This discretization results
in element sizes of dy in the x-direction, dy in the y-direction, and for the 3D analyses, also
d, in the z-direction. For the Mindlin-Reissner analyses, triangular elements are applied,
which means twice the total amount of elements are applied (15 73 = 2N e1ems,xMelems,y)-
The number of triangular elements in the Mindlin-Reissner analyses is Nejems 3, and the
number of hexagonal elements in the 3D analyses is Nejems 1. MRy is the Macroscale Mesh
Refinement number, where doubling the MRy results in doubling the amount of elements in
X, y, and z directions. This doubling of the MRy is shown in Figure 2.6 for 3D solid elements
and MR shell elements. Table 2.2 shows the macroscale mesh refinement parameters.

Figure 2.7 shows the results of the mesh refinement for the Mindlin-Reissner and 3D analy-
ses. The x-axis shows the Macroscale Mesh Refinement number, MRy;. The y-axis shows the
load as a percentage of the load for the 3D analysis at MRy = 8. All models show the ex-
pected downward convergence of the force with respect to the MRy number. Surprisingly,
the cantilever beams in extension and bending show stiffer results for the 3D analyses than
for the MR analyses. This is possibly due to the boundary conditions of the 3D analyses
also constraining the beam in the z-direction over the height, where it would contract due
to the non-zero Poisson’s ratio. Furthermore, the convergence rate of the 3D analyses is
much steeper than the Mindlin-Reissner analyses for the cantilever bending beam and the
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MRy = 1 MRy =2

Figure 2.6.: Example of the MRy for 3D solid (top) and MR shell (bottom) elements

| Variable | Value [ Unit | | Variable [ Value | Unit |
Nelems,x 50 - Nelems,x 200 -
nelems,y 2 - nelems,y 8 -
gelems,z ;L - gelems,z (1)65 -
X mm X . mm
O by 5 mm | MRM4 |G 0s mn
d, 2 mm d, 0.5 mm
Nelems, T3 200 - Nelems, T3 3,200 -
Nelems,HS 400 - Nelems,H8 25,600 -
Nelems,x 100 - Nelems,x 400 -
DNelems,y 4 - DNelems,y 16 -
gelems,z ? - gelems,z 822 s -
X mm X . mm
MRy 2 dy 1 mm MRy 8 dy 0.25 mm
d, 1 mm d, 0.25 mm
Nelems, T3 800 - Nelems, T3 12,800 -
Nelems,HS 3,200 - Nelems,H8 204,800 -

Table 2.2.: Macroscale mesh refinement parameters
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three-point bending beam. This is due to the mesh being refined in an extra dimension
(z-direction) as well for the 3D analyses. The number of elements for the Mindlin-Reissner
analyses is four times as much when doubling the MRy; number, whereas for the 3D anal-
yses, there are eight times as many elements when doubling the MRy; number. For the
cantilever extension beam, only the number of elements in the x-direction is relevant, so the
convergence rates are quite similar.

The cantilever beams in extension and bending give quite good results, differing only by
0.08% and 0.19% for MRy = 8. The three-point bending beam, however, differs a bit more
by 1.13% for MRy = 8. This is greatly due to the assumption that the three-point bending
beam is only constrained at the bottom left and right and loaded only at the top middle of
the beam for the 3D analyses. This results in more localised deformations at the boundary
conditions for the 3D model, which is more realistic, especially for thicker beams. However,
the displacements of the Mindlin-Reissner analyses are equal over the height of the beam,
so the boundary conditions are applied over the full height of the beam, resulting in a stiffer
response.

== MR shell «=¢==3D solid

100.1 104 106

S \ =2 102 \ S
o 100.0 | e o < 102 A,
& a N\ IS ¢
3 1 S 100 nﬁ S 4N
99.9 98 98
0 5 10 0 5 10 0 5 10
MRMmI-] MRm[-] MRMmI-]
(a) Cantilever extension beam (b) Cantilever bending beam (c) Three-point bending beam

Figure 2.7.: Load-MRy; number for the macroscale mesh refinement

2.3.2. Mesoscale Mesh Sensitivity Study

For the mesoscale mesh refinement, the Macroscale Mesh Refinement number is set at MRy,
=2, s0 100 elements in the x-direction and 4 elements in the y-direction on the macroscale.
Now, the RVE with dimensions Ly = Ly =1 mm and h = 8 mm will be discretized in nejems x&y
elements in x and y directions, and ngjep,s , elements in z direction. This discretization results
in element sizes of dygy in the x and y directions, and d; in z direction. Note that an aspect
ratio of 4 is applied for the height-to-width ratio of the elements of the RVE to save on
computational time. This means that the height of the elements is four times the width
of the elements. The number of hexagonal elements in an RVE is ngjemss. Now, MR,
is the Mesoscale Mesh Refinement number, where doubling the MRy, results in doubling the
amount of elements in X, y, and z directions for the RVE. Table 2.3 shows the mesoscale mesh
refinement parameters.
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2. Computational Homogenisation of a Mindlin-Reissner Shell

] | Variable [ Value | Unit
Nelems,x&y 2 -
Nelems,z 4 -
MRy, 1 dxay 0.5 mm
d, 2 mm

Nelems, H8 16 -

1'1elems,x&y 4 -

Nelems,z 8 -
MRy, 2 dxey 0.25 mm
d, 1 mm

Nelems,HY 128 -
nelems,x&y 8 -

Nelems,z 16 -
MRy, 4 dxey 0.125 mm
d, 0.5 mm

Nelems, HY 1/024 B

Table 2.3.: Mesoscale mesh refinement parameters

Figure 2.8 shows the results of the mesh refinement for the RVEs. The x-axis shows the
Mesoscale Mesh Refinement number, MRy,. The y-axis shows the load as a percentage of
the load for the Mindlin-Reissner analysis at MRy; = 2. When comparing the FE> model with
a MR shell model, the results are a lot more accurate than in Section 2.3.1, where MR shell
models are compared to 3D models. Again, expected downward convergence occurs for
the cantilever bending beam and three-point bending beam. The cantilever extension beam
shows exact results, irrespective of the MRy, number. Strains due to extension are generally
constant over the height of a beam. The strains from the macroscale are applied constantly
over the height of the RVE. For out-of-plane shear strain, this is generally not the case.
However, for extension, this is not a problem, and the resulting stiffness components for
extension will be exact. For bending, the strain over the height of the RVE is also constant;
however, contractions due to the non-zero Poisson’s ratio will influence the bending stiffness
components slightly, resulting in a stiffer response. The cantilever bending beam and three-
point bending beam show good results for convergence.

Figure 2.9 shows the non-zero, non-exact, normalised components of the stiffness matrix,
extracted from the FE2 analyses. Components related to the extensional strains €xy, €y, and
2eyy, are exact and not shown in the results. The bending stiffness component (2«2, ) also
gives exact results, irrespective of the mesoscale mesh refinement, and is also not shown in
the results. The bending stiffness component (xyy,ky,) and shear stiffness component (y;,7y)
are not shown because these have the same value as components («yx,kxx) and (yx,vx), re-
spectively. All components are converging downwards, as expected for a mesh refinement.
The components related to bending, (kxx,kxx) and (kxx, kyy), initially have a higher value
and seem to converge to the exact value; however, the component related to shear (v, 7vx)
starts out lower than the exact value and converges away from the exact value, resulting
in a weaker response of the model for shear-dominated cases. This could be explained by
the RVE width influence, covered in Section 2.3.3. Interestingly, the bending stiffness com-
ponents are initially non-exact. This is in contrast to Wieringa’s work [23], where both the
extension and the bending stiffness components are exact. There could be two reasons for
the bending stiffness component being exact in Wieringa’s work. The first is that the Pois-
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(a) Cantilever extension beam (b) Cantilever bending beam (c) Three-point bending beam

Figure 2.8.: Load-MR, number for the mesoscale mesh refinement
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Figure 2.9.: Normalised stiffness matrix components with corresponding MRy, number
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2. Computational Homogenisation of a Mindlin-Reissner Shell

son ratio in Wieringa’s work was taken at 0. The RVE will not contract over the height, thus
leading to exact values for the bending stiffness. A second explanation could be that the
values of the bending stiffness components in Wieringa’s work differ so little that they are
rounded up to the same value.

2.3.3. RVE Width Sensitivity Study

Lastly, the influence of the width of the RVE is explored. A fixed number of elements in the
x and y directions is applied. To save on computational time, the RVE has only 2 elements
in the x and y directions. The work of Herwig and Wagner [8] shows that applying only 2
elements in the x and y directions is enough to properly capture the proposed deformations
for the RVE. Again, the aspect ratio of 4 for height to width is applied. Now, WR is the Width
Refinement number, where doubling the WR results in halving the element size in X, y, and
z directions and, as such, the widths in x and y directions. The amount of elements in the x
and y directions will remain at 2, however, the elements in the z direction will become twice
as much, so that the height of the RVE will still be the same as the thickness of the laminate.
As the WR increases, the RVE will become more narrow. On the macroscale, the same MRy,
number is applied as for the mesoscale mesh refinement: MRy = 2. Table 2.4 shows the RVE
width refinement parameters.

] | Variable | Value | Unit | [ Variable [ Value | Unit |
RVE,qmq | 04 mm RVE,qm | 0.05 mm
Nelems, x&y 2 - Nelems, x&y 2 -
n 10 - n 80 -
WR1 dif;s'z 0.2 mm | VRS dizr;s'z 0.025 mm
d, 0.8 mm d, 0.1 mm
Nelems,HY 40 B Nelems,HY 320 -
RVE,iqm | 0.2 mm RVE,qm | 0.025 mm
Nelems, x&y 2 - Nelems, x&y 2 -
n 20 - n, 160 -
WR2 dii?s'z 0.1 mm | WR16 dizryns’z 00125 | mm
d, 0.4 mm d, 0.05 mm
Nelems,HY 80 B Nelems,H8 640 B
RVEwidth 0.1 mm
nelems,x&y 2 -
n, 40 -
WR4 dif;s'z 0.05 mm
d, 0.2 mm
Nelems,H8 160 -

Table 2.4.: RVE width refinement parameters

Figure 2.10 shows the results of the RVE width refinement. The x-axis now shows the Width
Refinement number, WR. The y-axis again shows the load as a percentage of the load of the
Mindlin-Reissner analysis at MRy; = 2. Again, the results for the cantilever extension beam
are exact. The load-WR number for the cantilever bending beam and three-point bending
beam converges downwards to the exact value quite well.

30



2.3. Results
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Figure 2.10.: Load-WR number
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Figure 2.11.: Normalised stiffness matrix components with corresponding WR number
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2. Computational Homogenisation of a Mindlin-Reissner Shell

Figure 2.11 shows the non-zero, non-exact, normalised components of the stiffness matrix,
extracted from the FE2 analyses. Both bending stiffness components, (kxx,kxx) and (kxx,Kyy),
converge downwards to the exact value, whereas the shear stiffness component (7yy,7x) con-
verges upwards to the exact value. Initially, a wide RVE does not properly extract the shear
and bending stiffness components. Bending stiffness components are overly stiff, whereas
the shear stiffness components will be less stiff. As the width of the RVE decreases, both
the bending stiffness and shear stiffness components will converge to the exact value. Due
to the downward convergence of the bending stiffness components and the upward conver-
gence of the shear stiffness components, load-MR number and load-WR number graphs can
converge with a single oscillation, as seen later in Section 3.3.

/ 7 A

RVE width

- - -4 L

Figure 2.12.: RVE width influence on shear deformation

Figure 2.12 shows a simplified 2D response of the shear deformation within the RVE as
the width undergoes refinement. Owing to the unconstrained nature of the RVE'’s top and
bottom surfaces, these regions exhibit a tendency towards bending. When a narrow RVE is
employed, this bending will be limited; however, when applying a wide RVE, bending defor-
mations become dominant in the RVE, impeding the accurate capture of shear deformations.
This phenomenon explains the observed upward convergence of the shear stiffness in Fig-
ure 2.11. A wide RVE predominantly exhibits minimal shear deformation, while a narrow
RVE exhibits a more pronounced and accurate representation of shear deformation.

2.4. Concluding Remarks

The multiscale framework coupling Mindlin-Reissner shell elements and 3D solid RVEs has
been tested on numerous load cases and compared to regular Mindlin-Reissner shell anal-
yses. Overall, the FE? analyses show good convergence for the components of the stiffness
matrix.

Based on the results of the macroscale mesh refinement, it is evident that comparing regular
Mindlin-Reissner analyses to 3D DNS analyses gives better results when consistent assump-
tions are made for both models. However, Mindlin-Reissner shell elements are based on
assumptions that are not always realistic. The cantilever bending and extension beams are
more consistent than the three-point bending beam, resulting in a more accurate result.
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Furthermore, both the Mindlin-Reissner and 3D DNS analyses are sensitive to mesh refine-
ment; however, the 3D DNS analysis is more sensitive due to the additional dimension. The
macroscopic mesh sensitivity has to be taken into account. A macroscopic mesh refinement
number, MRy, of at least 4 will be used.

The mesoscale mesh refinement also proved the mesh sensitivity of the RVEs; however,
results differ quite little. For the mesoscale mesh, 2 elements in x and y directions and an
aspect ratio of 4 for height to width will be applied.

Lastly, but most importantly, the influence of the width of the RVEs has been explored.
Results show that the stiffness components for bending and shear are dependent on the
width of the RVE, both converging to exact values as the width decreases. The widths (with
respect to the height) of the RVE will also have to be taken into account. An RVE height of 8
mm and a width of 0.05 mm in the x and y directions will be used for further analyses. This
results in an aspect ratio of 160.
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3. Computational Homogenisation for
Anisotropic Material

In this chapter, the multiscale framework presented in the previous chapter, Chapter 2,
will be tested for anisotropic material. First, a number of composite ply configurations are
presented. Then, the analytical values for the components of the stiffness matrix, or the
ABDH matrix, will be calculated. Each ply configuration will be tested on the load cases
presented in Section 2.2 and compared to 3D DNS analyses. Again, for each load case and
ply configuration, a mesh sensitivity study on macroscale and mesoscale will be performed,
following the same mesh refinement parameters from Table 2.2 and Table 2.3, respectively.
The influence of the RVE widths will also be explored following Table 2.4. The results of the
analyses will be presented, and lastly, they will also be discussed.

3.1. Ply Configurations

Three different composite ply configurations will be analysed in this chapter. The following
ply configurations will be analysed for each load case:

* 0
e 0/90,/0
o 45/-45

Figure 3.1 and Table 3.1 show the ply configurations and orthotropic material properties of
the plies, respectively.

WElp Py [P

@0 (b) 0/90,/0 (c) 45/-45

Figure 3.1.: Ply configurations

35



3. Computational Homogenisation for Anisotropic Material

’ | Variable | Value Unit
Ey 122,700 N/mm?2
E» 10,100 N/mm?
E; 10,100 N/mm?
Orthotropic material V12 0.25 -
properties V23 0.45 -
V31 0.25 -
Gz 5,500 N/mm?2
Go23 3,480 N/mm?2
& 5,500 N/mm?

3.2. ABDH Matrix

Table 3.1.: Parameter list

The material stiffness matrix used in Mindlin-Reissner analyses for composite laminates
with orthotropic plies is called an ABDH matrix. As the name suggests, this matrix consists
of 4 sub-matrices, namely:

1. the A-matrix, which determines the membrane stress-strain relationship,

2. the B-matrix, which couples the membrane stresses and strains to the bending stresses

and strains,

3. the D-matrix, which determines the bending stress-strain relationship,

4. and the H-matrix, which determines the shear stress-strain relationship.

Note that for isotropic material, there are no components in the stiffness matrix that couple

the extension and bending.

Following the layer numbering for laminates in Figure 3.2, the ABDH matrix can be defined

as [18]:
Az,z By
ABDH = |B3y3 D3y
023 0243
with
[A11 A Ajg
A= |Ap Axpn Ax|,
| A6 Aze  Ass
D1y D1p Dy
D= |Dip Dy Dy|,
D16 D2 Des |
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and
A.._N‘k) _ B.._EN_k) 2 2 3.3
ij = Z Qi]' (Zk+1 Zk)r ij=7 Z Qi]‘ (Zk+1 Zk) (3.3a)
k=1 k=1
1 N = (k N = (k
Dij =3 kzl QP -2,  Hy= k21 QY (21 — 2) (3.3b)

where Q¥ is the plane stress version of the material stiffness matrix of the k™ composite
ply, as defined in Equation 1.25 for a 3D orthotropic ply.

Nl:‘

N|:r

N

Figure 3.2.: Layer numbering for laminates, adapted from [18]

3.3. Results

The same macroscale and mesoscale mesh refinement studies as in Section 2.3.1 and Sec-
tion 2.3.2 are performed for the different composite ply configurations in Section 3.3.1 and
Section 3.3.2, respectively. The influence of the width of the RVE will again be explored in
Section 3.3.3, following the width refinement parameters of Section 2.3.3.

3.3.1. Macroscale Mesh Sensitivity Study

Similar mesh sensitivity studies on macro- and mesoscales as in Section 2.3.1 and Sec-
tion 2.3.2 are performed for the different composite ply configurations. On the macroscale, a
beam with dimensions Ly = 100 mm, Ly = 4 mm, and h = 8 mm is discretized following the
parameters from Table 2.2. Again, MRy is the Macroscale Mesh Refinement number, where
doubling the MRy results in doubling the amount of elements in the x, y, and z directions.

Figure 3.3, Figure 3.4 and Figure 3.5 show the results of the mesh refinement for the Mindlin-
Reissner and 3D analyses for the ply configurations 0, 0/90,/0, and 45/-45, respectively. The
x-axis shows the Macroscale Mesh Refinement number, MRy;. The y-axis shows the load as
a percentage of the load for the 3D analysis at MRy = 8.
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3. Computational Homogenisation for Anisotropic Material

Again, all the analyses show a downward convergence of the force to the MRy number, with
the 3D analyses converging at a steeper rate for the cantilever bending beam and the three-
point bending beam. Only the cantilever beam in extension for ply configuration 0 shows a
larger force for the 3D analysis than for the MR shell analysis. This could again be explained
by the extra stiffening effect of constraining the beam in z over the full height at the clamp.
Furthermore, it is clear from Figure 3.3c and Figure 3.4c that the 3D analyses for the three-
point bending beams with ply configurations 0 and 0/90,/0 haven't fully converged yet to
a proper value at MRy = 8.

The ply configurations 0 and 0/90,/0 perform reasonably well for the cantilever beams in
extension and bending compared to the 3D analyses. The cantilever beams in extension
differ by only 0.01% and 0.27% at MRy = 8 for the ply configurations 0 and 0/90,/0, re-
spectively. For the cantilever beam in bending, these values are 0.99% and 0.52%. Larger
differences occur for the three-point bending beam. The ply configuration 0 has a difference
of 13.39% at MRy = 8, and the ply configuration 0/90,/0 differs by 10.63%. Moreover, the
ply configuration 45/-45 differs quite a bit for all three load cases. For the cantilever beam
in extension, this difference is 10.83%. For the cantilever beam in bending, the difference
is 13.26%. Lastly, for the three-point bending beam, the difference is 15.63%. This could
be due to the coupling of extension and bending that occurs. For the Mindlin-Reissner
analyses, the ply configurations 0 and 0/90,/0 have trivial B-matrices, whereas the 45/-45
ply configuration’s B-matrix is non-zero for the components coupling €,y to 2ny and xyy to
2exy, and €y to 2Ky and Ky, to 2€y,. The 3D analyses will have localised deformations over
the height, resulting in lower stiffness compared to the Mindlin-Reissner analyses, for which
deformations over the height are constrained.
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Figure 3.4.: Load-MRy; number for the macroscale mesh refinement, 0/90,/0
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Figure 3.5.: Load-MRy; number for the macroscale mesh refinement, 45/-45
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3.3.2. Mesoscale Mesh Sensitivity Study

For the mesoscale mesh refinement, the MRy; number of the macroscale is again set at
MRy = 2, so 100 elements in the x-direction and 4 elements in the y-direction. RVEs with
dimensions Ly = Ly =1 mm and h = 8 mm will be discretized following the parameters from
Table 2.3. Again, an aspect ratio of 4 is applied for the height-to-width ratio of the elements.
Now, MRy, is the Mesoscale Mesh Refinement number for the mesoscale mesh.

Figure 3.6, Figure 3.7, and Figure 3.8 show the results of the mesh refinement for the RVEs
compared to the Mindlin-Reissner shell analyses for the ply configurations 0, 0/90,/0, and
45/-45, respectively. The x-axis shows the Mesoscale Mesh Refinement number, MRy,. The
y-axis shows the load as a percentage of the load for the Mindlin-Reissner analysis at MRy
= 2. The load-to-MRy, number properly converges downward; however, it is often too far
below the exact value. For the cantilever beam in extension with ply configurations 0 and
0/90,/0, the load is exact, regardless of the MR, number; however, this is not the case for
the cantilever beam in extension with ply configuration 45/-45. This is due to the non-zero
values of the B-matrix not being exact as well; however, this difference is minimal. All values
are reasonably close to the exact values.

Figure 3.9 shows the non-zero, non-exact, normalised components of the stiffness matrix
for the three ply configurations. The results are similar to those for isotropic material from
Figure 2.9, where stiffness components related to shear converge downwards below the
exact value. Furthermore, stiffness components in the weaker direction, (KW,KW) compared
to (Kxx,Kxx), and (7y,y) compared to (7x,Yx), for ply configurations 0 and 0/90,/0, converge
at a much steeper rate.
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Figure 3.6.: Load-MRy, number for the mesoscale mesh refinement, 0
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Figure 3.7.: Load-MR, number for the mesoscale mesh refinement, 0/90,/0
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Figure 3.8.: Load-MRy, number for the mesoscale mesh refinement, 45/-45
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Figure 3.9.: Normalised stiffness matrix components with corresponding MRy, number
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3.3.3. RVE Width Sensitivity Study

The influence of the width of the RVE for anisotropic material is explored. Again, a fixed
number of elements in x and y directions is applied: Nejems,x&y = 2. The same aspect ratio of 4
for the height-to-width ratio is applied. WR is the Width Refinement number, where doubling
the WR results in halving the element size in x, y, and z directions. On the macroscale, the
same MRy; number is applied as for the mesoscale mesh refinement: MRy = 2. Table 2.4
shows the RVE width refinement parameters. For the analyses of the ply configuration
0/90,/0, at WR = 1, the number of elements in z-direction, Ngjems ,, Will be 16 instead of 10,
and the element size in z-direction, d,, will be 0.5 instead of 0.8, so that the proper height
for each ply can be described.

Figure 3.10, Figure 3.11 and Figure 3.12 show the results of the RVE width refinement com-
pared to the Mindlin-Reissner shell analyses for the different ply configurations. The x-axis
now shows the Width Refinement number, WR. The y-axis again shows the load as a per-
centage of the load of the Mindlin-Reissner analysis at MRy; = 2. The cantilever beams in
extension show exact results for the ply configurations 0 and 0/90, /0. For ply configuration
45/-45, see Figure 3.12a, the load-WR number converges with a single oscillation at the start.
This could again be explained due to the extension and bending coupling for the 45/-45 ply
configuration. Due to the occurrence of bending in the element, there will be a shear force as
well. As mentioned in Section 2.3.3, reducing the width of the RVE results in upward con-
vergence for only the shear stiffness components, whereas the other stiffness components
converge downward. This could result in the phenomenon observed in Figure 3.12a, where
the value for the load first moves downward to a value lower than 100% as the RVE becomes
more narrow, only to continue converging back upward to the exact value of 100%. All other
graphs show proper convergence of the load with respect to the WR number. Reducing the
RVE width results in more accurate results.

Figure 3.13 shows the non-zero, non-exact, normalised stiffness matrix components for the
different ply configurations. Again, the results are similar to those of the isotropic material,
see Figure 2.11. The shear components of the stiffness matrix converge upwards to the
exact value, whereas other components converge downwards. Furthermore, stiffness matrix
components in weaker directions have a steeper convergence rate than the components in
the strong direction.
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3. Computational Homogenisation for Anisotropic Material
3.4. Concluding Remarks

The multiscale framework coupling Mindlin-Reissner shell elements and 3D solid RVEs has
been tested on numerous load cases with different ply configurations and compared to 3D
and Mindlin-Reissner shell analyses. For anisotropic material, the FE? analyses also show
good convergence for the components of the stiffness matrix; however, larger differences
occur when comparing these analyses to 3D analyses due to larger local deformations over
the height. When applying isotropic material, these local deformations are far less extreme
due to the relatively higher shear stiffness components. Furthermore, composite laminates
with orthotropic ply configurations can have a strong and a weak direction, resulting in
relatively much larger local deformations in the weaker directions. This will all result in
larger differences in the comparison of 3D and Minlin-Reissner shell analyses. Large local
deformations occurring over the height cannot be recreated with the Mindlin-Reissner anal-
yses; thus, results will diverge more from the 3D analyses. Furthermore, the macroscale
mesh refinement shows that 3D analyses sometimes require significantly more elements to
get a proper converged result, whereas the Mindlin-Reissner shell analyses converge with
much fewer elements. However, the Mindlin-Reissner shell elements can show much stiffer
responses.

For the mesoscale, a mesh sensitivity study and a width sensitivity study have been per-
formed for composite laminates with different ply configurations. Both analyses show the
dependency of the RVE with respect to mesh and width size. For the mesoscale mesh, 2
elements in x and y directions and an aspect ratio of 4 for height to width will be applied.
Furthermore, a sufficiently narrow RVE needs to be implemented, or else the derived shear
stiffness components will be too low. An aspect ratio of 160 for height to width of the RVE
will be applied.
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4. Inclusion of a Single Discrete Crack at
the Mesoscale

In this chapter, a single delamination over the height of the RVEs is introduced to the mul-
tiscale framework. Again, the macro- and mesoscale models will be formulated, and the
coupling between them will be explained. New load cases will be presented, on which the
multiscale framework will be tested. Different ply configurations will be applied as well for
these load cases. The results of the analyses will be compared to those of 3D DNS analyses.
The chapter will again end with the results and the concluding remarks.

4.1. Model Formulation

To describe delamination on the macroscale in a shell model, a new type of element is
introduced, namely Shell-Interface-Shell elements, or SIFS elements, adapted from Herwig and
Wagner [8]. Section 4.1.1 gives the formulation for these SIFS elements on the macroscale.
The mesoscale model, formulated in Section 4.1.2, describes the three-dimensional coupled
Representative Volume Elements, or cRVEs, that include interface elements. Lastly, Section 4.1.3
will describe the coupling between the macro- and mesoscales.

4.1.1. Macroscale Model

On the macroscale, layered Mindlin-Reissner shell elements are applied, namely the Shell-
Interface-Shell, or SIFS elements, introduced by Herwig and Wagner [8]. These elements con-
sist of two identically shaped shell elements with an interface element connecting the two.
Initially, these elements have the same displacements; however, as delamination occurs, the
two shell elements will deform differently, describing the delamination. Figure 4.1 and Fig-
ure 4.2 show a single six-noded triangular SIFS element and a cantilever beam discretized
with six-noded triangular SIFS elements. Displacements for these SIFS elements are also
described only by x and y coordinates, just like the Mindlin-Reissner (MR) elements covered
in Section 2.1.1. However, now there is a bottom shell, a top shell, and an interface. The
displacements of a SIFS element can be described by the displacements of the bottom and
top shells:

te(x) = [u~ u+]T 4.1)
with

w=[u v w6 6] (4.2a)

ut = [ut ot wt oef 6] (4.2b)
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4. Inclusion of a Single Discrete Crack at the Mesoscale

Figure 4.1.: Six-noded triangular SIFS element

Figure 4.2.: Cantilever beam discretized with SIFS elements
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4.1. Model Formulation

where superscripts - and + denote the bottom and top shell, respectively. Just like MR shells,
each shell of a SIFS element has five degrees of freedom. The nodal displacements of a SIFS
element can then be defined as:

_ T
ac = [ac ac] (4.3)
with
- 0 Oy 0 oy] "
a, = {a’f ay a? af* o Loat ay a? af* an} (4.4a)
T
+ | u v w 0x By u v w 0x 6y
2 = [“n+1 pt1 %pv1 Ty B o 92n P2n f2n 2 G (4.4b)

The strains of a SIFS element introduce a new variable, namely the jump that describes
delamination [u]. Both the bottom and the top shell of a SIFS element have the same strains
as an MR element; however, now displacement jumps corresponding to the interface element
are introduced as additional deformations. The strains of a SIFS element can be defined as:

€e=[e” €t [[u]]]T (4.5)
with

€ = [ex €y 26y Kn Ky 2K Yy fyy‘]T (4.6a)

et =[eh €, 26, xh kb 2 A ] (4.6b)

[u] = [[ulx [ulix [uliy)’ (4.60)
Following Equation 1.7 and Equation 1.44, the following Be(x) can be found:

€ BS_SxSn 0851 a
et | = 0851 BS+8x5n l:a+ (4.7)
[[u]] NIF_3x5n NIF+3x5n
with
N;y 0O 0 0 0 Ny 0 0 0 0 7
0O Ny 0 0 0 0 Ny 0 0 0
Niy Ny 0 0 0 Nijy Njx 0 0 0
0 0 0 N 0 0 0 0 N; 0
S+ 1,x jx
=10 0o o 0o N 0o 0 0 0 N, (4.82)
0 0 0 N Ny 0 0 0 N N
0 0 N, N 0 0 0 Nj N 0
L0 0 Ny 0 -N 0 0 N, 0 =N
[-N; 0 0 00 -N, 0 0 0 0
NIF- 0O -Ny 0 00 . O =N, O 00 (4.8b)
| o 0 —-N; 00 0 0 —-N, 00
[Nyow O 0 00 .. Npby 0O 0 00
NFr=1 0 N1 0 00 .. 0 Ny 0 00 (4.8¢)
| 0 0 Ny,q 00 0 0 Ny 00

where subscripts i and j in BS* correspond to node 1 to node 7 for the bottom shell S—, and
node n + 1 to node 2n for the top shell S+, respectively.

Subsequently, the internal force vector, element stiffness matrices, and global stiffness matrix
can be assembled following Equation 1.10 to Equation 1.13.
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4. Inclusion of a Single Discrete Crack at the Mesoscale
4.1.2. Mesoscale Formulation

On the mesoscale, 3D solid elements and interface elements are applied. Section 1.4 and
Section 1.7 cover the formulation of these elements. A new term for these RVEs, which
include interface elements, is introduced in the work of Herwig and Wagner [8], namely
coupled Representative Volume Elements, or cRVEs. Figure 4.3 shows the mesoscale cRVE,
consisting of eight-noded brick elements and eight-noded interface elements. Again, only
these cRVEs will initially capture the material properties and thickness of the laminate.

z h/2
X/Ky R 2

h/2

Ay

‘\j& A\$/(
Figure 4.3.: cRVE with 3D solid and interface elements

4.1.3. Scale Coupling

The macro- and mesoscales are again coupled by setting boundary conditions on the cRVE.
The boundary conditions set on the cRVE are a combination of the boundary conditions
applied in the works of Gruttman and Wagner [7], and Herwig and Wagner [8]. These
boundary conditions are a set of linear boundary conditions and periodic boundary condi-
tions.

Similar to Section 2.1.3, linear boundary conditions constraining the horizontal degrees of
freedom, u and v, are applied over the edges of the cRVE. However, now the cRVE has a
bottom and a top part, split by the interface elements. This bottom and top part correspond
to the bottom and top parts of the SIFS element. Furthermore, the linear boundary condi-
tions will need to capture the transverse jumps described by the interface elements. Another
linear boundary condition needs to fix the cRVE in the z-direction. Seeing as a cRVE has
interface elements capable of describing a jump in the normal direction, fixing the cRVE in
the z-direction will be done differently than in Section 2.1.3. Now, instead of a single node
in the middle of the cRVE, there are two nodes, which are both part of the same interface
elements. The linear boundary condition will need to describe the normal jump between the
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4.1. Model Formulation

bottom and top parts of the cRVE. The linear boundary conditions on the cRVE are defined
as:

Mb- B . x 0 ly xz 0 lyZ 2 0 0 7% 0 e
L)b_m 00y éx 0 yz éxz 0z 0 0 -3 Ll (4.9a)
IR 1 1 1 n
{ub ol A A AR Ol] {e } (4.9b)
b m 0y 3x 0 yz 322 0 z 0 0 +3], [u] M
- r_1
Wyig| _|—2 00 »
[wiid.m +1 0 of (Il (4.9¢)

Note that this linear boundary condition describing the normal jump, Equation 4.9¢, violates
the Hill-Mandel macro-homogeneity principle, see Equation 1.6. The average strain (normal
jump) in the cRVE isn’t necessarily equal to the strain on the macroscale. Applying a linear
boundary condition that does satisfy this Hill-Mandel principle will constrain the cRVE in
the vertical direction for all the interface nodes. This, however, will also prevent the two
shell parts of the cRVE from bending properly and thus overconstrain the cRVE. Appendix
B of Wieringa’s thesis [23] shows how this constant normal jump in the cRVE influences the
stiffness components for Timoshenko beam elements. The cRVE will no longer be able to
properly capture the extensional stiffness, which will be overly stiff. This work will continue
with the linear boundary condition that only constrains a single duplicate node in the middle
of the cRVE.

Lastly, the cRVE will also need to be constrained from rotation about the x and y axes.
This is done by setting the periodic boundary conditions described in Section 2.1.3, see
Equation 2.14.

Figure 4.4 shows the proposed deformations of the cRVE, following the applied boundary
conditions. Note that the top and bottom parts of the cRVE have the same strains applied to
them (e~ = e1); however, this does not have to be the case.
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4.2. Load Cases

4.2. Load Cases

To verify the multiscale framework with the inclusion of delamination, several load cases
are introduced, which will be tested on the framework. Firstly, Unit Tests will be performed
to determine whether the proposed TSL is properly incorporated. Unit Tests for both Mode-
I and Mode-II delamination will be performed, as well as a Mixed-Mode Unit Test. The
Unit Test will consist of a single SIFS element with an area of 1 mm?. The bottom nodes of
the SIFS elements will be constrained in all degrees of freedom. For the Mode-I Unit Test,
only the degree of freedom w of the top nodes will have a prescribed deformation. The
other degrees of freedom will be constrained. For the Mode-II Unit Tests, only the degree of
freedom u or v of the top nodes will have a prescribed deformation. The other degrees of
freedom will be constrained. Lastly, for the Mixed-Mode Unit Test, the degrees of freedom
u, v, and w will have the same prescribed deformation. All other degrees of freedom will be
constrained.

To further verify the multiscale framework, three additional load cases will be analysed and
compared to 3D DNS analyses. The following load cases will be analysed:

e Double Cantilever Beam Test (DCB)
e End-Notched Flexure Test (ENF)
¢ Single-Leg Bending Test (SLB)

DCB

S<\—>*%

ENF )l//

R"
LI
<

J 9

]
\)
ht | — > sp v
A< A4
< La .
B L.
(a) Load cases for 3D analyses (b) Load cases for FE2 analyses

Figure 4.5.: Load cases
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4. Inclusion of a Single Discrete Crack at the Mesoscale

Figure 4.5 shows the load cases that will be analysed. Table 4.1 shows the geometry of
the beams for the three additional load cases and the interlaminar material properties for
the interface. The intralaminar properties of the material are taken from Table 2.1 for the
isotropic ply configuration and Table 3.1 for the other ply configurations. Four different ply
configurations will be analysed for each load case. The following ply configurations will be
analysed:

* Isotropic
0

* 0/90,/0
* 45/-45

Double Cantilever Beam Test

A Double Cantilever Beam Test, or DCB Test, is often performed to determine Mode-I interlam-
inar fracture toughness in a laminate [2]. A beam is clamped at one end, whereas the other
end is loaded at the top and bottom surfaces in opposite directions, splitting the laminate in
two. Typically, an initial pre-crack is applied to control where the delamination will occur.
The top of Figure 4.5a shows the configuration for the 3D analyses of the DCB Tests. For the
3D analyses, the beam will be clamped at one end by setting deformations at the surface u,
v, and w to 0. On the other end, the top half and bottom half of the surface area will have
a prescribed deformation w in opposite direction. The top of Figure 4.5b shows the config-
uration for the SIFS analyses of the DCB Tests. For the SIFS analyses, the beam will also be
clamped at one end by setting the deformations u, v, w, and 8y to 0. The other end will have
a prescribed deformation of w on the top and bottom edges in opposite directions.

End-Notched Flexure Test

An End-Notched Flexure Test, or ENF Test, is often performed to determine Mode-II interlam-
inar fracture toughness in a laminate [1]. A beam is subjected to three-point bending, as
described in Section 2.2, to induce a delamination. The beam will also typically have an
initial pre-crack to control where the delamination will occur. The middle of Figure 4.5a
shows the configuration for the 3D analyses of the ENF Tests. For the 3D analyses, the
boundary and loading conditions for the ENF Test are similar to those of the three-point
bending beam, described in Section 2.2. The middle of Figure 4.5b shows the configuration
for the SIFS analyses of the ENF Tests. For the SIFS analyses, only the bottom edges at x = 0
and x = L will be supported in w, where at x = 0, the bottom edge is also supported in u and
v. Furthermore, the top shell will be loaded with a prescribed deformation w at x = L/2.

Single-Leg Bending Test

A Single-Leg Bending Test, or SLB Test, is performed to determine Mixed-Mode interlaminar
fracture properties in a laminate [13]. The SLB Test is similar to the ENF Test, in which
a three-point bending test is performed on a beam. However, for an SLB Test, a segment
of the bottom part of the beam is removed at an edge. The bottom of Figure 4.5a shows
the configuration for the 3D analyses of the SLB Tests. For the 3D analyses, the beam is
supported in u, v, and w at the left bottom edge and in w at the right bottom edge. The
bottom of Figure 4.5b shows the configuration for the SIFS analyses of the SLB Tests. For
the SIFS analyses, the beam is supported in u, v, and w on the bottom left edge and in w on
the top right edge. Both 3D and SIFS analyses will have a prescribed deformation of w in
the middle of the beam’s span at the top.
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4.2. Load Cases

| Variable Value | Unit
Ly 100 mm
Ly 1 mm
Geometry Lp 10 mm
La 70 mm
h 8 mm
Ky 50,000 N/mm?
Fa 80 N/mm
Interlaminar material F; 100 N/mm?
properties Gy 0.969 N/mm
Gn 1.719 N/mm
n 2.284 -
width 0.05 mm
Nelems,x&y 2 -
cRVE geometry Nelems,z 80 -
dx&y 0.025 mm
d, 0.01 mm
Nelems,x 400 -
Nelems,y 4 -
Nelems,z 32 -
DCB dy 0.25 mm
dy 0.25 mm
d, 0.25 mm
Nelems,x 200 -
Nelems,y 2 -
Nelems,z 16 -
ENF dy 0.5 mm
dy 0.5 mm
d, 0.5 mm
Nelems,x 200 -
Nelems,y 2 -
Nelems,z 16 -
SLB Nelems,a 140 -
dy 0.5 mm
dy 0.5 mm
d, 0.5 mm

Table 4.1.: Parameter list
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4. Inclusion of a Single Discrete Crack at the Mesoscale
4.3. Results

Unit Tests and three additional load cases are tested for the FE? framework. Section 4.3.1
covers the results of the Unit Tests for Mode-I, Mode-II, and Mixed-Mode delamination.
These results are compared to analytical values. Section 4.3.2, Section 4.3.3 and Section 4.3.4
cover the results of the DCB, ENF, and SLB Tests, respectively. These results are compared
to the results of 3D DNS analyses.

4.3.1. Unit Tests

Unit Tests in Mode-I, Mode-II, and Mixed-Mode are performed to determine whether the
FE? framework properly follows the TSL proposed by Turon. Analytical solutions are de-
rived from Section 1.7. For Mode-1I, two Unit Tests were performed, namely for x and y
directions. The results of these analyses have the same exact output (both for the analytical
and the FE? analyses) and are therefore only shown once.

—— Turon (Model Analytic) = FE? (Model)
—— Turon (Modell Analytic) x  FE? (Modell)
—— Turon (MixedMode Analytic) = FE? (MixedMode)

120
100
80
60
40

Traction [N/mm?]

20

0.00 0.01 0.02 0.03 0.04

Jump [mm]

Figure 4.6.: Load-displacement graph for Unit Tests

Figure 4.6 shows the load-displacement graph for the Unit Tests in Mode-I, Mode-II, and
Mixed-Mode in the form of tractions on the surface area of the shell elements and the jump
of the two shell elements. The FE? analyses follow the analytical values quite well; however,
they are not exact. For Mode-I and Mixed-Mode delamination, there are notable differences
in the values of the load-displacement graph. These differences are also there for the Mode-
II delamination, however much smaller and not noticeable in the graph. The differences can
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(a) Mode-I delamination with cross-section (b) Mode-I delamination and bending

Figure 4.7.: Deformation modes of the cRVE

be explained by the violation of the Hill-Mandel macro-homogeneity principle. For Mode-],
only the two middle nodes of the interface are subjected to the normal jump. This results in a
lower initial dummy stiffness, K;, which can be seen in the graph. A similar explanation can
be given for the initial dummy stiffness in the transverse directions, as only the boundary
nodes are subjected to the transverse jumps. To satisfy the Hill-Mandel macro-homogeneity
principle, all the nodes that belong to interface elements should be subjected to normal and
transverse jumps. However, in doing so, the cRVE will not be able to properly capture the
bending deformation. Figure 4.7 shows how the cRVE truly deforms under pure Mode-
I delamination and how it will deform under a combination of Mode-I delamination and
bending in opposite directions of the two shell parts.

4.3.2. Double-Cantilever Beam

DCB Tests with different ply configurations are performed to determine the accuracy of a
Mode-I-dominated load case. Two types of DCB Tests are performed to verify the multiscale
framework’s accuracy and to show the model’s limitations.

Figure 4.8 shows the load-displacement graph for DCB Tests without an initial pre-crack.
Note that the ASTM Standard for performing DCB Tests requires the beam to have a pre-
crack [2]. Immediately, it is clear that the FE? analyses are not following the same path as the
3D DNS analyses for the anisotropic ply configurations. The load-displacement curves are
initially much stiffer and reach a higher ultimate load than the 3D DNS analyses. However,
once the model is sufficiently damaged, the FE? analyses perform quite well.

The main reason for the large differences in the analyses can be explained by the model
formulations of the macroscale models. The FE? analyses with SIFS elements incorporating
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Figure 4.9.: Local deformation in DCB Test without a pre-crack
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Mindlin-Reissner shell elements assume a constant displacement over the height of the ele-
ment, whereas this is not the case for the 3D DNS analyses. This, in turn, results in stiffer
outcomes for the shell elements. Figure 4.9 shows how a large local deformation over the
height will occur for the 3D DNS analyses; however, for shell elements, this deformation
is constrained. These local deformations in the 3D DNS analyses are due to the relatively
low values of the material properties related to the vertical displacement (E3, Gy3, and G31),
which also explains why the isotropic analysis shows better results due to the relatively
higher values for these material properties. Initially, shear forces at the end of the beam
are tearing the plies apart; however, once a sufficient delamination length is achieved, these
forces are overshadowed by the resulting moments. The bottom and top delaminated plies
act as lever arms for the forces to create extra bending moments in the interface. Once the
bending moments take over, the results are much more accurate. The shear forces will no
longer result in large local deformations over the beam height.

——3D DNS  -——-FE? ——3D DNS FE?
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Z. 40 Z 10
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g 20 g 20
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(d) 45/-45

Figure 4.10.: Load-displacement graphs for DCB Tests with different ply configurations with
a pre-crack

Figure 4.10 shows the load-displacement graph for DCB Tests with an initial pre-crack. Now,
the FE? analyses are much more accurate compared to the DCB without the pre-crack. It
is, however, still noticeable that the initial stiffness is a bit on the higher side and that the
maximum load is also a bit higher for the FE? analyses. This is still due to the same difference
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4. Inclusion of a Single Discrete Crack at the Mesoscale

in kinematic assumptions for the macroscale models. However, now the differences in initial
stiffness and maximum load are significantly smaller and within an acceptable range of
about 10%.

] DCB without pre-crack \

Control Steps Iterations
Tsotropic 3D2DNS D%splacement 40 87
FE Displacement | 40 87
0 3D DNS Displacement | 40 78
FE? Displacement | 40 85
3D DNS Displacement | 40 67
0790,/0 FE? Displacement | 40 83
45/-45 3D DNS Displacement | 40 110
FE? Displacement | 40 95
] DCB with pre-crack
Control Steps Iterations
Tsotropic 3D DNS Arc-length 20 66
FE? Displacement | 20 58
0 3D DNS Arc-length 53 136
FE? Displacement | 30 99
3D DNS Arc-length 37 95
0/90,/0 FE? Displacement | 20 77
3D DNS Arc-length 54 166
45/-45 FE? Displacement | 20 96

Table 4.2.: Convergence properties DCB

Another interesting aspect of the DCB analyses are the convergence properties. Table 4.2
shows some of these properties for the DCB analyses. The analyses for the DCB without
an initial pre-crack all found a converged solution when applying the same displacement-
controlled increment. The total number of iterations for the 3D DNS and FE? analyses does
not differ much between these analyses. For the DCB analyses with an initial pre-crack,
most of the 3D DNS analyses did not find a converged solution with the displacement
control method. The arc-length method was applied to find converged solutions. Now,
when comparing the 3D DNS analyses with the FE?> analyses, the number of steps and
iterations starts to differ. The FE? analyses converged with relatively large load increment
steps and fewer iterations. This results in faster analyses for the FE? analyses.

4.3.3. End-Notched Flexure

ENF Tests with different ply configurations are performed to determine the accuracy of a
Mode-II-dominated load case. The 3D DNS analyses are performed with an arc-length solver
to capture the snapback behaviour of the models. This arc-length method is, however, not
within the scope of this work and is not implemented for the FE? analyses. Figure 4.11 shows
the results of the ENF Tests. The load-displacement graphs for the ENF Tests show three
distinct paths, namely the initial stiffness, the delamination, and the secondary stiffness.
Only Figure 4.11c for the 0/90,/0 ply configuration shows part of the delamination path
for the FE? analysis. This is due to the fact that the FE? analysis uses the displacement
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] \ [ Control | Steps || Iterations

Isotrapic 3D DNS Arc-length 81 254

FE? Displacement | 20 88
0 3D DNS Arc-length 101 353

FE2 Displacement | 25 100

3D DNS Arc-length 131 462
0/90,/0 FE? Displacement | 6 104
45/-45 3D DNS Arc-length 301 976

FE? Displacement | 27 190

Table 4.3.: Convergence properties ENF
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4. Inclusion of a Single Discrete Crack at the Mesoscale

control method, and the delamination path is still occurring at the displacement increment
after the peak load. All results show a higher initial stiffness for the FE? analyses. After
the delamination occurs, the secondary stiffness of the FE? analyses is also higher than the
3D DNS analyses, but significantly less so. These differences can again be explained by the
difference in kinematic assumptions for the macroscale models.

Table 4.3 shows convergence properties for the ENF analyses. The arc-length method is
applied for the 3D DNS analyses to capture the snapback behaviour of the model. Due to
the snapback behaviour of the ENF, many more time steps were necessary to fully capture
this behaviour for the 3D DNS analyses. However, many more iterations were also necessary
at the point of snapback for the FE? analyses. It is clear from the results in the table that the
FE? analyses need a lot fewer iterations to find a converged solution. It is, however, unfair
to compare these analyses when it comes to convergence, considering the 3D DNS analyses
show much more elaborate results due to the capture of snapback behaviour.

4.3.4. Single-Leg Bending

——3D DNS -——FE? ——3D DNS FE2
100 100
2 Z.
< 50 < 50 N
g g
— —
0 0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Displacement [mm] Displacement [mm]
(a) Isotropic (b) 0
——3D DNS -—-—FE? —3D DNS -——-FE?
40 30
Z. Z. 20
< 20 el
g €10
— —
0 0
0 1 2 3 0 1 2 3 4
Displacement [mm] Displacement [mm]
(c) 0/90,/0 (d) 45/-45

Figure 4.12.: Load-displacement graphs for SLB Tests with different ply configurations
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4.4. Concluding Remarks

To include a load case that incorporates both Mode-I and Mode-II delamination, SLB Tests
are performed for different ply configurations. The results of this Mixed-Mode test are
shown in Figure 4.12. Only Figure 4.12b for the 0 ply configuration shows a noticeable
difference in values; however, this difference is anything but significant. The FE? analyses
show near-perfect results compared to the 3D analyses. It can be noted again, however,
that the initial stiffness of the FE? analyses is slightly higher. This is again a consequence
of the Mindlin-Reissner formulation, where the displacement over the height of the shell is
constant.

] \ | Control | Steps [ Iterations |
Tsotropic 3D DNS Arc-length 76 270
FE? Displacement | 17 130
0 3D DNS Arc-length 120 441
FE? Displacement | 21 227
3D DNS Arc-length 131 480
0/902/0 FE2 Displacement | 10 133
45/-45 3D DNS Arc-length 177 629
FE? Displacement | 20 153

Table 4.4.: Convergence properties SLB

Table 4.4 shows convergence properties for the SLB analyses. Just like for the 3D DNS
analyses of the DCB with an initial pre-crack, applying a displacement-controlled increment
did not lead to a converged solution for the 3D DNS analyses of the SLB. Again, to overcome
this, the arc-length method was applied to find converged solutions for the 3D DNS analyses.
Now, the FE? analyses show much better convergence properties. Not only do the FE?
analyses find converged solutions with the displacement-controlled method, but far fewer
steps and iterations are necessary to get a converged solution. For the SLB analyses, when
comparing the 3D DNS analyses with the FE? analyses, the number of steps and iterations
really starts to differ. The FE? analyses converged with relatively large load increment steps
and fewer iterations, while still showing similarly accurate results as the 3D DNS analyses.

4.4. Concluding Remarks

The multiscale framework coupling SIFS elements and cRVEs with 3D solid and interface
elements has been tested on numerous load cases and compared to analytical solutions or 3D
DNS analyses. In general, the FE? analyses show similar results to the analytical solutions
or the 3D DNS analyses; however, some significant differences can be observed.

For the Unit Tests, a lower initial dummy stiffness K; is observed for all analyses. Primarily,
the Mode-I dummy stiffness is notably lower for the FE? analyses due to the violation of the
Hill-Mandel macro-homogeneity principle. This violation is, however, necessary to properly
deform the bottom and top parts of the cRVE in bending. However, the differences in the
initial dummy stiffness do not influence the model significantly, and accurate results are still
obtained.

Furthermore, the FE? analyses for the DCB, ENF, and SLB Tests mostly show an initially
higher stiffness. This is a consequence of the Mindlin-Reissner formulation, in which the
vertical displacement is constant over the height of the shell, resulting in stiffer responses
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4. Inclusion of a Single Discrete Crack at the Mesoscale

than 3D analyses. The models of the 3D analyses can have a varying vertical displacement
over the height of the model. The result of this phenomenon is especially noticeable for
the analyses of the DCB Test without an initial pre-crack, where the initial stiffness is much
higher for the FE? analyses. The DCB Test with an initial pre-crack, ENF, and SLB Tests show
that the force at which the structure is permanently damaged is quite accurate; however, the
displacement corresponding to this force is often a bit too low. This is a direct result of the
stiffer FE2 analyses.

Another important aspect of the multiscale framework is how the cRVE contributes to the
convergence properties of the analyses. Some of the 3D DNS analyses needed many fine dis-
placement increments or even the application of the arc-length method to converge, whereas
the FE? analyses all converged without much configuring of the loading properties. Seeing
as the cRVE needs to be sufficiently narrow to properly capture the shear stiffness com-
ponents, the interface elements will also have a small surface area, contributing to better
convergence properties. Furthermore, the FE? analyses showed better convergence proper-
ties as the load cases and ply configurations became more complex.

Overall, good results were obtained from the multiscale framework. The load-displacement
graphs show similar paths for all analyses, with the exception of the DCB Test without an
initial pre-crack due to inconsistent model kinematics.
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5. ASTM Double-Cantilever Beam Test

In this chapter, Double-Cantilever Beam (DCB) Tests are performed following ASTM stan-
dards [2]. The configuration for the DCB Tests is determined following the sensitivity studies
in Appendix A. DCB Tests will be performed for different ply configurations. The results
of the DCB Tests will be compared to those of the 3D DNS analyses. The chapter will again
end with the results and the concluding remarks.

5.1. Configuration

Following the sensitivity studies in Appendix A for the macroscale mesh, the mesoscale
mesh, and the RVE width, the following mesh configuration is employed for the DCB Tests
following the ASTM standards: Figure 5.1 shows the mesh configuration for the DCB Tests.

Rough mesh Fine mesh /Rough mesh

O i s
-
{

Lxl Lx2 I-‘x3

Lx

Figure 5.1.: Mesh configuration for the DCB Test

To save on computational time, the beam is divided into three parts over the length L,
namely Ly at the clamp, L; 4, where the crack will propagate, and Ly3 at the pre-crack. The
area where the crack will initiate, Lyo, requires a finer mesh for accurate results compared
to the area at the clamp, Lyj, and the pre-crack, Ly3. Table 5.1 shows the discretization
parameters for the beam and the cRVE.
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5. ASTM Double-Cantilever Beam Test

| Variable | Value Unit
Ly 140 mm
Ly 40 mm
Lo 50 mm
L 50 mm
Ly 20 mm
h 4 mm
Mesh geometry Nelems,x1 20 )
Nelems,x2 100 -
Nelems,x3 25 -
Nelems,y 10 -
Nelems,z 8 -
dy 1 mm
dyo 0.5 mm
dys 1 mm
dy 2 mm
d, 0.5 mm
width 0.025 mm
DNelems, x&y 2 -
cRVE geometry Nelems,z 80 )
dxgy 0.0125 mm
. 0.05 mm

Table 5.1.: Parameter list

The following ply configurations will be analysed:
¢ Isotropic
* 0
* 0/90,/0
* 45/-45

The isotropic material properties, orthotropic material properties, and interlaminar material
properties are taken from Table 2.1, Table 3.1, and Table 4.1, respectively.

5.2. Results

Figure 5.2 shows the load-displacement graphs for the DCB Tests. These graphs are very
similar to the results in Section 4.3 for the DCB Tests with an initial pre-crack, see Figure 4.10.
One notable difference, however, is the initial stiffness of the results. In Section 4.3, the FE2
analyses show a higher initial stiffness, whereas the FE? analyses in Figure 5.2 show a lower
initial stiffness when comparing these to the 3D analyses. This is likely due to the applied
mesh. The analyses in Section 4.3 employ a relatively finer mesh than the analyses presented
here. Considering that the 3D analyses show a steeper convergence rate than the Mindlin-
Reissner analyses when refining the macroscale mesh, it is possible that the 3D analyses in
this chapter have not yet converged enough. Although possible, employing a finer mesh will
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5.3. Concluding Remarks

result in significantly longer computational time. The additional analyses presented in this
chapter truly show the significance of the multiscale framework when it comes to analysing
structures with a complex material model on the meso- or microscale. For the 3D analyses,
a significant number of elements are necessary to properly capture the stresses, strains, and
deformations over the thickness of the structure. Additionally, the element aspect ratio also
plays an important role, resulting in an even larger number of elements necessary.

—— 3D DNS FE?
150
Z. 100 o~
el b T ——
g 50
|
0
0 2 4 6 0 2 4 6 8
Displacement [mm] Displacement [mm]
(a) Isotropic (b) 0
—3DDNS  ------ FE2 —3DDNS  ------ FE2
60 60
Z. 40 Z 40
ke E
] 20 o 20
— —
0 0
0 5 10 15 0 5 10 15
Displacement [mm] Displacement [mm]
(c) 0/90,/0 (d) 45/-45

Figure 5.2.: Load-displacement graphs for DCB Tests with different ply configurations with
a pre-crack

5.3. Concluding Remarks

The multiscale framework presented in Section 4.1 has been tested following the ASTM
standards for DCB Tests. Mesh configurations for the macro- and mesoscales are deter-
mined following the sensitivity studies presented in Appendix A. Again, the FE? analyses
show great results when compared to those of the 3D DNS analyses. Another significant
advantage can be found for the multiscale framework.

The FE? analyses show much better convergence properties due to the application of Mindlin-
Reissner shell elements. Due to the element aspect ratio, many more elements are neces-
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5. ASTM Double-Cantilever Beam Test

sary in 3D analyses, especially when analysing relatively thin structures. The cRVE on the
mesoscale, however, can employ many elements over the thickness of the structure without
needing to refine the macroscale mesh. Fewer elements will be necessary on the macroscale
for the in-plane directions.
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6. Conclusion

This thesis explored the applicability of a multiscale framework for delamination in compos-
ite laminates. A multiscale framework adopting the method of computational homogenisa-
tion has been developed for the modelling of delamination in composite laminates and has
been tested for Mindlin-Reissner shell models. RVEs and cRVEs are coupled to shell and
SIFS elements to determine the constitutive relation of the model. By applying a shell model
instead of 3D solid elements, computational time can be greatly reduced due to the signif-
icant reduction in the necessary number of elements. Coupling a multiscale framework to
this shell model can also greatly reduce computational time for applications with highly
complex and non-linear material models.

First, 3D RVEs are coupled to the integration points of Mindlin-Reissner shell elements. On
the mesoscale, the RVEs contain the material properties of the ply configuration. Results in
this work show exact values for extension-related stiffness matrix components; however, this
is not the case for the bending- and shear-related stiffness matrix components. The bending-
and shear-related stiffness matrix components do converge towards the exact value when
refining the mesoscale mesh and reducing the width of the RVEs. A narrow RVE is necessary
for accurate results. An RVE was applied with a height of 8 mm and widths of 0.05 mm,
resulting in a height-to-width ratio of 160. Applying this ratio gave accurate results.

In this work, heterogeneous materials consisting of composite laminates with different ply
configurations are applied. These laminates consist of plies with orthotropic material prop-
erties and different ply orientations. Based upon the results of this work, applying a het-
erogeneous material at the mesoscale shows similar results as those for a homogeneous or
isotropic material at the mesoscale. However, in some heterogeneous material cases, the stiff-
ness matrix can have components related to the coupling of extension and bending. These
components show exact values when refining the mesh or reducing the width of the RVE.
Applying a heterogeneous material does not affect the multiscale framework differently than
a homogeneous material.

When introducing a delamination to the framework, cRVEs are applied at the mesoscale.
These cRVEs contain the material properties of the ply configuration and of the interface for
the delamination. Each ply is modelled with continuum elements. The continuum elements
describe the deformation of the plies. In between each ply, interface elements are applied.
These interface elements describe the delamination in the cRVE.

Based on the results of this work, accurate results can be obtained when implementing de-
lamination in the framework. The Unit Tests showed fairly accurate but non-exact results.
This is due to the proposed boundary conditions on the cRVE not conforming to the Hill-
Mandel macro-homogeneity principle. The normal jump is imposed as a linear boundary
condition only applied to the two duplicated interface nodes in the middle of the cRVE.
Therefore, the macroscopic normal jump is not equal to the volume average of the meso-
scopic normal jump over the cRVE, resulting in slightly less accurate results. However, for
the Unit Tests, the difference in results is negligible and only results in a slightly lower initial
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6. Conclusion

dummy stiffness. The other load cases also show fairly accurate results, with the exception
of the DCB Test without a pre-crack. However, the lack of accuracy of the results of the DCB
Test without a pre-crack compared to the 3D DNS is not due to the mesoscopic behaviour
but to the macroscopic behaviour. The multiscale framework applies Mindlin-Reissner shell
elements, which have their own set of limitations compared to a 3D DNS. Different kine-
matic assumptions are made that influence the results of the analyses. When applying
Mindlin-Reissner shell elements, the assumption is made that the vertical displacement over
the height of the shell does not change. This is not the case for 3D solid elements. The
shear stiffness and height of the shell have an influence on the vertical displacement over
the height. Materials with lower shear stiffness or taller heights can experience a relatively
large local deformation over the height of the shell. This displacement is constrained for
shell elements, resulting in higher stiffness in the analysis. For load cases where this differ-
ent kinematic assumption is negligible, the results of the multiscale framework will be quite
accurate compared to the 3D DNS.

Finally, the major advantages and disadvantages of modelling the delamination of compos-
ites in a multiscale framework in comparison with monoscale DNS modelling are explored.
The biggest advantage of modelling the delamination of composites in a multiscale frame-
work in comparison with 3D DNS modelling is the expected computational time. Applying
the multiscale framework instead of 3D DNS modelling can greatly reduce the time neces-
sary to compute analyses. For complex ply configurations, this is even more so, as many
elements will be necessary to describe the ply configuration over the height of the structure.
For 3D analyses, this, in turn, will result in a large number of elements over the lengths of
the structure as well, as a proper aspect ratio for the elements needs to be ensured. Ad-
ditionally, for complex load cases and complex ply configurations, the FE? analyses in this
work also show greater convergence properties. The FE? analyses were able to converge
using large time steps with the displacement control method, whereas some of the 3D DNS
analyses were not able to converge with this method.

A disadvantage of the multiscale framework in comparison to 3D DNS modelling is the
extra expected memory necessary to run the analyses. For each element in the multiscale
framework, an FE analysis is computed per time or load step, whereas the 3D DNS model
only has one single FE analysis per time step. Due to this disadvantage, this work mostly
applied unrealistic dimensions to the structures for the load cases. A supercomputer will
be necessary to perform analyses for large shells. This is, however, also the case for 3D
DNS analyses, due to the necessary computational power. Furthermore, a thin RVE or cRVE
needs to be applied for accurate results. Considering that a proper aspect ratio needs to be
applied for the elements in the RVE, this means that quite a lot of elements are necessary
over the height of the cRVE. Lastly, a minor disadvantage of the multiscale framework in
comparison with 3D DNS modelling is the limitation of the Mindlin-Reissner shell model
on the macroscale. By applying Mindlin-Reissner shell elements, certain deformations in the
model are constrained. This is, however, only for a few load cases.

Future Perspective

Although this work presents a viable multiscale framework for delamination in composite
laminates, a number of subjects remain unresolved. The following propositions are made
that could improve the accuracy and future extension of the multiscale framework:

cRVE Width The multiscale framework is limited by the cRVE width. A sufficiently nar-
row cRVE needs to be applied to obtain accurate results due to the influence of the width of
the cRVE on the bending- and shear-stiffness matrix components. However, when applying
a narrow cRVE and the proper aspect ratio of the elements of the cRVE, a lot of elements
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are required over the height of the cRVE, resulting in more computational time and power
necessary to perform the analyses. Different approaches, such as Variationally Consistent
Homogenisation or the use of the Irving-Kirkwood Theory, could resolve the cRVE width de-
pendency, resulting in fewer elements in the cRVEs and therefore less computational time
and power.

cRVE Boundary Conditions Currently, the applied boundary conditions on the cRVE do
not satisfy the Hill-Mandel macro-homogeneity principle. However, this was necessary to
allow for proper bending in the two cRVE parts. Perhaps different boundary conditions
could be found that satisfy the Hill-Mandel principle but also allow for proper bending
of the cRVE. Additionally, there could be a set of boundary conditions that also reduce or
eliminate the width dependency of the cRVE.

Arc-Length Method Results in this work show that some delaminations induce snapback
behaviour. To capture this snapback behaviour, implementation of the arc-length method
could prove beneficial for the multiscale framework.

Multiple Delaminations Another extension to the multiscale framework is the introduc-
tion of multiple delaminations within a cRVE, meaning multiple delaminations over the
height of a shell. The theory necessary to implement this step is already laid out in this
work; however, instead of two Mindlin-Reissner shells on the macroscale, n shells should be
applied. The same goes for the corresponding plies within the cRVE.

Dynamic Loading and Machine Learning Finally, the last two steps for designing load
protectors, defined in Section 1.2, need to be implemented to achieve the research goal,
which is to develop a numerical analysis tool for designing blast protectors made out of composite
laminates. These last two steps are the third and fourth steps. The third step is the imple-
mentation of dynamic loading, seeing as blast loads have a strong dynamic effect on the
material. Optionally, the fourth step would be the introduction of Artificial Intelligence /
Machine Learning to the framework to reduce computational time even more.
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A. Additional Sensitivity Studies

A proper mesh size for the macro- and mesoscales needs to be determined for the DCB Tests
in Chapter 5. Following the ASTM standards for Double-Cantilever Beams [2], a beam with a
length of 140 mm, a width of 20 mm, and a height of 4 mm will be analysed. For simplicity’s
sake, the sensitivity studies for the macro- and mesoscale mesh and the RVE width will
be performed on a cantilever beam in bending. Analyses will be performed for both the
isotropic material model presented in Section 2.2 and the ply configurations presented in
Section 3.1. First, a macroscale mesh sensitivity study is performed in Section A.1. This will
be followed by a mesoscale mesh sensitivity study in Section A.2 and a width sensitivity
study in Section A.3.

A.1. Macroscale Mesh Sensitivity Study

Similar mesh sensitivity studies on macro- and mesoscales, as in Section 2.3.1 and Sec-
tion 2.3.2, are performed for the different ply configurations. On the macroscale, a beam
with dimensions Ly = 100 mm, Ly = 20 mm, and h = 4 mm is discretized following the pa-
rameters from Table A.1. Again, MRy, is the Macroscale Mesh Refinement number as defined
in Section 2.3.1, where doubling the MRy results in doubling the number of elements in the
X, y, and z directions.

Figure A.1 shows the results of the mesh refinement for the Mindlin-Reissner and 3D anal-
yses for the ply configurations isotropic, 0, 0/90,/0, and 45/-45, respectively. The x-axis
shows the Macroscale Mesh Refinement number, MRy;. The y-axis shows the load as a per-
centage of the load for the 3D analysis at MRy; = 4. All the analyses show a downward
convergence of the force to the MRy; number, with the 3D analyses converging at a steeper
rate. The analyses for the isotropic material and ply configuration 45/-45 show the largest
deviations. To reduce computational time, a non-uniform mesh will be applied. A fine mesh
will be employed at the start of the crack, whereas a rough mesh will be employed at the
pre-crack and the clamp of the DCB. The macroscale mesh configuration is determined in
Section 5.1.
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A. Additional Sensitivity Studies

] | Variable [ Value [ Unit | | Variable [ Value | Unit |
Nelems,x 70 - Nelems,x 280 -
Nelems,y 10 - Nelems,y 40 -
gelems,z ;l - Selems,z (1)65 -
X mm X . mm
MRy 1 dy 2 mm MRy 4 dy 0.5 mm
d, 1 mm d, 0.25 mm
Nelems, T3 1,400 - Nelems, T3 22,400 -
Nelems,HY 2,800 - Nelems,HY 179,200 -
Nelems,x 140 -
nelems,y 20 -
gelems,z ? -
X mm
MRy 2 dy 1 mm
d, 0.5 mm
Nelems, T3 5,600 -
Nelems, HS 22,400 -

Table A.1.: Macroscale mesh refinement parameters
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(c) 0/90,/0 (d) 45/-45

Figure A.1.: Load-MRy; number for the macroscale mesh refinement with different ply con-
figurations
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A.2. Mesoscale Mesh Sensitivity Study

A.2. Mesoscale Mesh Sensitivity Study

For the mesoscale mesh refinement, the MRy number of the macroscale is set at MRy = 1,
so 70 elements in the x-direction and 10 elements in the y-direction. RVEs with dimensions
Lx =Ly = 0.5 mm and h = 4 mm will be discretized following the parameters from Table A.2.
The aspect ratio for the height-to-width ratio of the elements within the RVE is set at 4. Now,
MRy, is the Mesoscale Mesh Refinement number for the mesoscale mesh.

Figure A.2 shows the results of the mesoscale mesh refinement compared to the Mindlin-
Reissner shell analyses for the different ply configurations. The x-axis shows the Mesoscale
Mesh Refinement number, MR,,. The y-axis shows the load as a percentage of the load for
the Mindlin-Reissner analysis at MRy = 1. Similar results can be observed for the mesoscale
mesh refinement in Section 2.3.2 and Section 3.3.2. The load-to-MRy, number properly con-
verges downward; however, it sometimes converges to a value below the exact value.

Figure A.3 shows the non-zero, non-exact, normalised components of the stiffness matrix
for the ply configurations. Again, the results are similar to those in Section 2.3.2 and Sec-
tion 3.3.2. Bending stiffness components converge to the exact value, whereas shear stiffness
components converge to a lower value.

As proven in Section 4.3, the number of elements in the x and y directions does not signifi-
cantly contribute to the accuracy of the analyses. Therefore, RVEs with two elements in the
x and y directions will be employed. The mesoscale mesh configuration is determined in
Section 5.1.

] [ Variable [ Value | Unit \
1’1elems,x&y 2 -
Nelems,z 4 -
MRy, 1 dxey 0.25 mm
d, 1 mm

Nelems, H8 16 -

1’1elems,x&y 4 -

Nelems,z 8 -
MRy, 2 ey 0.125 mm
d, 0.5 mm

Nelems,HY 128 -

nelems,x&:y 8 -

Nelems,z 16 -
MR, 4 dx&y 0.0625 mm
d, 0.25 mm

Nelems,HY 1/024 -

Table A.2.: Mesoscale mesh refinement parameters
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Figure A.2.: Load-MRp, number for the mesoscale mesh refinement with different ply con-

figurations
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Figure A.3.: Normalised stiffness matrix components with corresponding MRy, number
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A.3. RVE Width Sensitivity Study

The influence of the width of the RVE is explored. A fixed number of elements in the x and
y directions is applied: Nejemsx&y = 2. An aspect ratio for the height-to-width ratio of 4 is
employed. WR is the Width Refinement number, where doubling the WR results in halving
the element size in the x and y directions. On the macroscale, the same MRy; number is
applied as for the mesoscale mesh refinement: MRy; = 1. Table 2.4 shows the RVE width
refinement parameters.

] | Variable [ Value [ Unit | | Variable [ Value | Unit |
RVEigm | 0.5 mm RVEigm | 0.0625 mm
Nelems, x&y 2 - Nelems, x&y 2 -
n 4 - n 32 -
WR1 dii?s'z 0.25 mm | VRS dii?s'z 0.03125 | mm
d, 1 mm d, 0.125 mm
Nelems,HY 16 B Nelems,H8 128 B
RVEyigm | 0.25 mm RVEyigm | 0.03125 | mm
DNelems, x&y 2 - DNelems, x&y 2 -
n 8 - n 64 -
WR2 dif;s'z 0.125 mm || VR 16 dizr;s'z 0.015625 | mm
d, 0.5 mm d, 0.0625 mm
Nelems,HY 32 - Nelems,H8 256 -
RVEwidth 0. 125 mm
Nelems, x&y 2 -
n 16 -
WR4 dif;s'z 0.0625 | mm
d, 0.25 mm
Nelems, HY 64 -

Table A.3.: RVE width refinement parameters

Figure A.4 shows the results of the RVE width refinement compared to the Mindlin-Reissner
shell analyses. The x-axis now shows the Width Refinement number, WR. The y-axis again
shows the load as a percentage of the load of the Mindlin-Reissner analysis at MRy = 1. As
expected, the load-to-WR number converges downward to the exact value.

Figure A.5 shows the non-zero, non-exact, normalised stiffness matrix components for the
different ply configurations. The results are again similar to those of Section 2.3.3 and Sec-
tion 3.3.3. Stiffness matrix components related to bending all converge downwards, whereas
stiffness matrix components related to shear converge upwards to the exact values.

Due to the width dependence of the RVE, a sufficiently narrow RVE needs to be employed.
This width of the RVE should have a proper ratio with the height. A width of 0.025 mm will
be employed for the cRVE in Chapter 5.
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Figure A .4.: Load-WR number with different ply configurations
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Figure A.5.: Normalised stiffness matrix components with corresponding WR number
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