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Chapter 1

INTRODUCTION

The study presented in this thesis is concerned with the calculation of the
stresses in a homogeneous, isotropic, linear elastic material, initially occupying
a lower half space, and in equilibrium under its own weight. The investigations
refer to the state of stress in the material when the originally plane upper
boundary is modified. The modification may consist of taking out some parts
of the material (notch problem), or it may consist of adding some more of
the same material (mound problem). Due to the addition or removal of this
material the stresses will change, and it is this change of stress that is to be
calculated. Restriction will be made to regions of which the boundary remains
free of external stresses. In the case of addition of material the resulting stresses
may depend upon the mode of construction. The mathematical problem to be
considered in this thesis corresponds to the hypothetical case of a non-stressed
half space with the mound already present, in which stresses are generated by
gradually letting the body force of gravity increase from zero to its real value.

Restriction will be made to modifications of the boundary which have the
same form in all planes parallel to some given vertical plane, for instance a long
straight notch or a long straight mound. The problem will then be of the plane
strain type, and it is sufficient to consider the stresses in a plane. In general
the problem is that of a heavy elastic material occupying the part of the entre
palne below a certain line. This line must have the property that near infinity
the region approximates a lower half plane.

A general method for the solution of certain problems of this type has
been described by Muskhelishvili (1953). This method is based upon the
conformal transformation of the region occupied by the body onto a half plane
by means of a rational function (i.e. a quotient of two polynomials). This
method has been used to solve several problems, such as problems for regions
having a parabolic boundary (Muskhelishvili, 1953; Paria, 1957; Neuber,
1962; Verma, 1966), and problems for a half plane with a particular type
of smooth notch (Warren & Michell, 1965; Kunert, 1966). The solution
of these problems requires a considerable amount of analytical and numerical
work to be done. The amount of work strongly depends upon the character
of the mapping function. Moreover, when for instance the general solution for
mapping functions having as their denominator a second degree polynomial has
been found, this is of little value value for the solution of the problem involving
a mapping function having a third degree polynomial as its denominator. Not
only the numerical work to be performed is different, but also a substantial
part of the analytical work. Finally, in case that the conformal transformation
mapping the region under consideration onto half plane is known, but is not
a rational function, the approximation of the mapping function by a rational
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2 1. INTRODUCTION

function is not a simple matter, for which no general procedure seems to exist.
In this respect it might be mentioned here that the mapping function cannot
be a rational function in case that the contour possesses corner points, and this
is a case of considerable interest. It is probably for the resaon just mentioned
that Muskhelishvili himself has called for more effective methods for problems
involving corner points (Muskhelishvili, 1965, p. 75).

In this thesis a method of solution will be presented in which the confomrla
transformation onto the interior of a unit circle is used. In his treatise on
complex variable methods Muskhelishvili (1953) used such a trsnformation
for problems involving a finite region, or an infinite region with a single hole.
By making use of the analytic character of the mapping function in the interior
of the unit circle it is possible to obtain its Taylor series expansion around the
center of the circle, even in case of complicated mapping functions, such as
arising when the boundary of the region considered is a contour with several
contour points. By taking into acoount only a finite number of terms of the
series, an approximation is obtained. This approximtaion results in the corners
of the contour to be rounded oof. The elasticity problem for the region mapped
onto the unit circel by the approximate mapping function can then be solved
with the aid of complex variable techniques.

When a semi-infinite region is mapped onto the interior of a unit circle the
mapping function will possess a pole on the unit circel. It will be shown in this
thesis that this complication can be incorporated into the existing complex
variable methods by writing the mapping function as the sum of a singular and
a regular part. The analytical work to be performed is somewhat more than
for the cases of a finite region or an infinite region with a single hole. However,
this analytiucal work needs to be performed only once for all problems of the
class considered. Only the numerical work is different for different problems.

It may be mentioned that the class of problems considered here includes
the case of a single notch in a half plane. For several types of notches some
other rather effective methods have been developed (Ling, 1947; Seika, 1960;
Mitchell, 1965; Bowie, 1966). These solutions all refer to a notched half
plane under tension, but they could be adapted to the case of stresses due to
gravity. In fact, a method similar to the one used by Ling (1947), in which
use is made of Fourier integrals, will be used in section 7.3 of this thesis as a
verification of the results obtained by the complex variable method.

The class of problems treated in this thesis occurs in applied soil mechan-
ics, and the question arises whether the solutions obtained in this thesis area
applicable to soils. Although these solutions might indeed be regarded as giv-
ing, in first approximation, an impression of the change of stress in a soil body
when making a long straight excavation, or when constructing a long straight
embankment, it is to be noted that the mechanical properties of natural soils
are much more complicated than those of a homogeneous, isotropic, linear elas-
tic material. Usually soils are inhomogeneous, sometimes also anisotropic, and
the relationship between stresses and strains is, at least partly, non-linear and
inelastic. Moreover, the behaviour of soils under the influence of external load-
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ings is sometimes further complicated by the presence of water in the pores.
This pore water retards volumetric deformations of the soil. These complica-
tions prohibit an anlytical treatment of the general problem. Certain aspects,
such as anisotropy or the retardation due to the presence of pore water, might
admit a theoretical investigation, but such a course will not be pursued in this
thesis.

Thus, in conclusion, since the solutions presented here refer to a mechani-
cally much simpler material than soils, these solutions should be handled with
great caution and under great reservation when applied in soil mechanics prac-
tice.



Chapter 2

DESCRIPTION OF THE PROBLEM

Let there be given a soil body which at a certain instant of time occupies a
lower half space. Cartesian coordinates x, y, z are introduced such that the
upper surface of the soil body is represented by the plane y = 0. The y-axis
is directed upwards. The soil mass is assumed to be in equilibrium under the
influence of its own weight. Therefore the components of stress should satisfy
the following equations of equilibrium (see e.g. Timoshenko & Goodier,
1951),

∂τxx

∂x
+
∂τyx

∂y
+
∂τzx

∂z
= 0, τxy = τyx,

∂τyy

∂y
+
∂τzy

∂z
+
∂τxy

∂x
− ρg = 0, τyz = τzy, (2.1)

∂τzz

∂z
+
∂τxz

∂x
+
∂τyz

∂y
= 0, τzx = τxz,

where ρ is the density of the material (which is assumed to be a constant) and
g is the acceleration of gravity. The state of stress in the soil body is also
required to be such that the surface y = 0 is free of stress, i.e.

y = 0 : τyx = τyy = τyz = 0. (2.2)

The problem defined by the equations of equilibrium (2.1) and the boundary
condition (2.2) does not possess a unique solution. The state of stress depends
upon the mechanical properties of the soil material, and also upon the geological
history, i.e. upon the way in which the soil body has been formed. It is
especially the influence of the, usually unknown, history upon the state of
stress that prohibits a calculation of the stresses in such a soil body. The
determination of these stresses is more s problem of experimental measurement
than theoretical solution.

A possible stress state is

τxx = K0ρgy, τxy = τyx = 0,
τyy = ρgy, τyz = τzy = 0, (2.3)
τzz = K0ρgy, τzx = τxz = 0,

where K0 is a constant. The state of stress defined by (2.3) has the property
that the vertical direction is everywhere a principal direction and furthermore
this stress state is invariant for translations and rotations in the horizontal
plane. This state of stress can be expected to be acting in the hypothetical
case of a soil that has been deposited uniformly over a large horizontal area.
The coefficient K0 in (2.3) is called the coefficient of neutral earth prssure.
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Figure 2.1: Half plane with modified boundary.

In this thesis restriction will be made to soil bodies in which the initial state
of stress is given by (2.3). The coefficient of neutral earth pressure K0 will be
considered a a given constant.

The stress state (2.3) will change as a result of a modification of the upper
boundary of the soil mass, as for instance occurs when part of the soil is taken
away by excavation or erosion, or when an embankment is built upon the soil,
thereby using the same material. The incremental stresses will be caluclated
by means of the theory of linear elasticity. Therefore the initial state, with
stresses (2.3), is considered as a reference state, and it is assumed that the re-
lationship between incremental stresses and icremental strains can be described
with sufficient accuracy by Hooke’s law. The material is furthermore assumed
to be isotropic as regards its mechanical properties, and the two elastic coef-
ficients which describe the response of an isotropic linear elastic material are
assumed to be constant throughout the body. This latter assumption expresses
homogeneity of the soil with regard to incremental deformations. Finally, it
will be assumed that the incremental deformations are small enough to ensure
the applicability of the first order (infinitesimal strain) theory.

Restriction will be made to such excavations, embankments, etc., of which
the form is independent of one of the horizontal directions, e.g. the z-coordinate.
Then the deformation will be independent of z, and it is sufficient to consider
the deformation in an arbitrary plane perpendicular to the z-axis. The two-
dimensional problem in this x, y-plane is of the plane strain type.

Figure 2.1 shows the boundary of the region after its modification. AS the
figure suggests the modification of the boundary occurs only in the finite part
of the soil body. At infinity the soil suface is not affected, and this ensures that
the total area of the excavation or embankment is finite.



Chapter 3

MATHEMATICAL FORMULATION OF THE PROBLEM

In this chapter the problem of elastic equilibrium in a semi-infinite plane, de-
forming under plane strain conditions, will be formulated. The region occupied
by the elastic body in the plane z = x + iy is denoted by R, and its bound-
ary by C. Th eboundary C is assumed to be an open line, extending towards
infinity in both directions (fig. 2.1). A positive direction is defined on C such
that the region R lies to the left of C when a particle moves along C in the
positive direction. The considerations in this thesis will be restricted to regions
that approximate a half plane at infinity. Therefore the line C is assumed to
have the property that its two ends approach the real axis asymptotically. As
a boundary condition it is considered that line C is free from external streses.
The problem is to determine the stresses in R due to the action of gravity.

Stresses

In the case of plane strain the relevant equations of equilibrium are

∂τxx

∂x
+
∂τyx

∂y
= 0,

∂τyy

∂y
+
∂τxy

∂x
− ρg = 0, (3.1)

τxy = τyx,

in which ρg is the constant specific weight of the material. The components of
total stress (τxx, τyy, τxy, τyx) are now decomposed into ”initial stresses”, to
be denoted by τ0

xx, τ
0
yy, τ

0
xy, τ

0
yx, and ”incremental stresses”, to be denoted by

σxx, σyy, σxy, σyx. The initial stresses are assumed to be

τ0
xx = K0ρgy,

τ0
yy = ρgy, (3.2)

τ0
xy = τ o

yx = 0,

in which K0 is considered as a given constant (the coefficient of neutral earth
pressure). The state of stress (3.2) has the property that it satisfies the equa-
tions of equilibrium (3.1). Hence if one now writes

τxx = τ0
xx + σxx,

τyy = τ0
yy + σyy, (3.3)

τxy = τ0
xy + σxy,

τyx = τ0
yx + σyx,
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then the components of incremental stress (σxx, σyy, σxy, σyx) satisfy the
homogeneous equations obtained from (3.1) by taking ρg = 0, i.e.

∂σxx

∂x
+
∂σyx

∂y
= 0,

∂σyy

∂y
+
∂σxy

∂x
= 0, (3.4)

σxy = σyx,

In this thesis restricition is made to problems in which the stresses at in-
finity do not change as a result of the excavation or the construction of the
embankment. This means that at infinity the incremental stresses vanish. It
can be expected that the assumption that the modification of the originally
straihjt and horizontal boundary in the line C does not affect the stresses at
infinity, is justified only when the total area between the line C aand the orig-
inal boundary (the horizontal axis) is finite. The mathematical formulation
of the conditions to be imposed on the problem in order that the incremental
stresses indeed vanish at infinity will be given in chapter 4, eqs. (4.18). In the
present considerations the vanishing of these incremental stresses at infinity is
merely postulated, as an assumption.

Under the conditions expressed above it is not yet certain that there exists
a unique solution of the problem. A uniqueness theorem for half space prob-
lems satisfying the condition of vanishing stresses at infinity (Turteltaub &
Sternberg, 1967) provides some support for the probable uniqueness of the
solution of the present problem. Actually the procedures to be used in the
sequel (chapters 4 and 5) lead to a single solution, thus proving the existence
of a unique solution. The necessary conditions will be presented as the solution
proceeds.

Complex potentials

In terms of Muskhelishvili’s complex potentials the mathematical problem is to
determine two functions, Φ1(z) and Ψ1(z), holomorphic (i.e. single-valued and
analytic) in the region R, continuous inR+C, and satisfying certain conditions,
to be expressed below, along C and at infinity. The stresses can be derived
from these functions by means of the formulas of Kolosov-Muskhelishvili,

σxx + σyy = 2[Φ1(z) + Φ1(z)],
(3.5)

σyy − σxx + 2iσxy = 2[zΦ′
1(z) + Ψ1(z)],

where the bar denotes the complex conjugate, and the accent denotes differ-
entiation with respect to the argument. For a derivation of (3.5), and the
proof that Φ1(z) and Ψ1(z) are holomorphic in R, the reader is referred to
Muskhelishvili (1953, chapter 5).
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Condition at infinity

Since the incremental stresses are assumed to vanish at infinity it follows from
(3.5) that both Φ1(z) and Ψ1(z) must vanish at infinity,

lim
z→∞

Φ1(z) = 0,

(3.6)
lim

z→∞
Ψ1(z) = 0.

Condition along C

The condition along C is that this boundary must be free of external stresses.
The mathematical formulation of this condition is obtained by equating to zero
the components of total stress acting upon an element of C. Using the familiar
rules for the transformation of stress components this gives

(τxx + τyy) + (τyy − τxx + 2iτxy) exp(2iα) = 0, z ∈ C, (3.7)

where α denoted the angle over which the real axis is to be rotated, in counter-
clockwise direction, to coincide with the tangent to C. The total stresses consist
of initial stresses and incremental stresses, see (3.3). With the expressions (3.2)
for the initial stresses and the formulas (3.3) for the incremental stresse, the
boundary condition (3.7) can be expressed in terms of Φ1(z) and Ψ1(z) as
follows

Φ1(z) + Φ1(z) + [zΦ′
1(z) + Ψ1(z)] exp(2iα) =

−1
2 (1 +K0)ρgy − 1

2(1 −K0)ρgy exp(2iα), z ∈ C. (3.8)

Conformal transformation

Let the region R in the z-plane be mapped conformally onto the interior of the
unit circle γ (|ζ| = 1) in the ζ-plane by means of the function

Figure 3.1: Unit circle in ζ-plane.
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z = ω(ζ), |ζ| ≤ 1. (3.9)

Because of the semi-infinite character of the region R the function ω(ζ) will
certainly have a first order pole on γ. Furthermore ω(ζ) may have branch points
on γ, which correspond to corner points in the boundary C in the z-plane. The
properties of the mapping function ω(ζ) will be discussed in detail in chapter
4. For the considerations of this chapter it is sufficient to assume that ω(ζ) is
a given function, defined at least for all ζ inside and on γ, holomorphic inside
γ and continuous inside and on γ, with the exception of a single point.

In the sequel the interior of γ will be denoted by S+ and its exterior by S−

(fig. 3.1). Points on γ will be denoted by σ, and the counterclockwise direction
on γ is considered as positive. The point σ may also be wrtten as

σ = exp(iθ), (3.10)

where θ is the so-called argument of the complex number σ (fig. 3.1). It is
to be noted that σ has the property that its complex conjugate, σ, is also its
inverse, 1/σ,

σ = 1/σ = exp(−iθ). (3.11)

Through the conformal transformation (3.9) the functions Φ1(z) and Ψ1(z)
can be transformed into functions of ζ, to be denoted by Φ(ζ) and Ψ(ζ), respec-
tively. Since Φ1(z) and Ψ1(z) are holomorphic in R and continuous in R + C
(including the point at infinity, see (3.6)), both Φ(ζ) and Ψ(ζ) are holomorphic
in S+ and continuous in S+ + γ. The derivative of Φ1(z) becomes

Φ′
1(z) =

dΦ1(z)
dz

=
dΦ(ζ)
dζ

dζ

dz
=

Φ′(ζ)
ω′(ζ)

. (3.12)

For future reference the following formulas, valid for points on γ, are needed,

y = −1
2i[ω(σ) − ω(σ)], (3.13)

exp(2iα) = −σ2[ω′(σ)/ω′(σ)]. (3.14)

Eq. (3.13) expresses that y is the imaginary part of z. Eq. (3.14) can be estab-
lished by starting from the well-known property of conformal transformations
that the rotation of an infinitesimal line element equals the argument of the
derivative of the transformation function. In the present case the angle of the
line element dσ with the real axis in the ζ-plane is π/2 + θ (fig. 3.2), and the
angle of its image along C with the real axis in the z-plane is π + α (fig. 3.2).
Hence

π + α− (π/2 + θ) = arg[ω′(σ)].

Now one may write, in general

ω′(σ) = |ω′(σ)| exp{i arg[ω′(ζ)]},
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Figure 3.2: Boundary elements in planes of ζ and z.

and from this it follows that

ω′(σ)
|ω′(σ)| = exp{i arg[ω′(σ)]} = exp[i(π/2 + α− θ)] =

i

σ
exp(iα).

Here use has been made of the rleationship σ = exp(iθ), see (3.10). It now
follows that

exp(iα) = −iσ ω′(σ)/|ω′(σ)|.

Division of this equation by its complex conjugate yields (3.14).

Boundary conditions

The conditions (3.6) and (3.7) for the functions Φ1(z) and Ψ1(z) are trans-
formed into conditions for Φ(ζ) and Ψ(ζ) along γ, when the variable z is re-
placed by ζ through the confomal transformation z = ω(ζ).

Let the point on the unit circle γ which corresponds to z = ∞ be denoted
by σ0, i.e.

ω(σ0) = ∞. (3.15)

Then the vanishing of the functions Φ1(z) and Ψ1(z) at infinity (in the z-plane)
implies that Φ(ζ) and Ψ(ζ) are to vanish at σ0,

lim
ζ→σ0

Φ(ζ) = 0,

lim
ζ→σ0

Ψ(ζ) = 0.

More precisely, it will be assumed that near σ0 the functions Φ(ζ) and Ψ(ζ)
are of order O(ζ − σ0),

ζ → σ0 : Φ(ζ) = O(ζ − σ0),
(3.16)

ζ → σ0 : Ψ(ζ) = O(ζ − σ0).
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It will appear later (see chapter 5) that this assumption is related to a restriction
in the class of mapping functions ω(ζ) for which the solution given in this
section applies.

With (3.12), (3.13) and (3.14) the boundary condition (3.8) becomes, after
some elaboration,

ω′(σ)Φ(σ) + ω′(σ)Φ(σ) − σ−2[ω(σ)Φ′(σ) + ω′(σ) Ψ(σ)] = F (σ), (3.17)

where

F (σ) = 1
4
iρg[ω(σ) − ω(σ)]{[ω′(σ) − ω′(σ)

σ2
] +K0[ω′(σ) +

ω′(σ)
σ2

]}. (3.18)

Conclusion

The mathematical problem that is to be solved is now to determine two func-
tions, Φ(ζ) and Ψ(ζ), holomorphic inside γ and continuous up to γ, satisfying
the condition (3.17) on γ, and conditions (3.16) near σ0.

In chapter 5 the solution of the problem for mapping functions of the special
form

ω(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k, (3.19)

will be established. Before presenting this solution, however, it will first be
shown in chapter 4 how any mapping function ω(ζ), transforming the unit
circle into a region approximating a half plane at infinity, can be brought, at
least approximately, in this special form.



Chapter 4

THE CONFORMAL TRANSFORMATION

The function ω(ζ), of which the boundary value ω(σ) appears in eqs. (3.17) and
(3.18), must be of a special form in order that the region R will approximate a
half plane near infinity. To ensure this property, the function ω(ζ) must have
a first order pole at some point of γ, denoted by σ0. The mapping function
must approximate the mapping function for a half plane near σ0, hence one
may write, if ζ approaches σ0 from the interior of γ,

ω(ζ) =
p

ζ − σ0
+O(1), ζ → σ0, ζ ∈ S+,

where p is a constant. In all other points of γ, other than σ0, ω(ζ) must be
bounded and continuous from the interior of γ. Therefore, if a function ω0(ζ)
is defined by the relationship

ω(ζ) =
p

ζ − σ0
+ ω0(ζ), ζ ∈ S+ + γ, (4.1)

then this function is holomorphic in S+ and it is continuous (and thus bounded)
in S+ + γ. The function ω0(ζ) can therfore be expanded in a Taylor series,
which will surely be convergent inside the unit circle γ (Titchmarsh, 1939, p.
8). Hence one may write

ω0(ζ) =
∞∑

k=0

ck ζ
k, ζ ∈ S+, (4.2)

where the coefficients ck are given by one of the following equivalent expressions,

ck =
1

2πi

∫

L

ω0(ζ) ζ−k−1 dζ =
ω

(k)
0 (0)
k!

, k = 0, 1, 2, . . . (4.3)

In (4.3) L is an arbitrary closed contour lying entirely in S+ and encircling the
origin once, and ω

(k)
0 (0) denotes the value of the k-th derivative of ω0(ζ), in

the origin ζ = 0.

Convergence of Taylor series

It will next be shown that under certain, physically wide, conditions the series
expansion (4.2) converges not only in S+, but also on its boundary γ.

By means of partial integration eq. (4.3) can be re-expressed as follows,

kck =
1

2πi

∫

L

ω′
0(ζ) ζ

−k dζ =
ω

(k)
0 (0)

(k − 1)!
, k = 1, 2, . . . (4.4)

12
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where use has been made of the singlevaluedness of ω0(ζ) ζ−k on L. It is now
assumed that ω0(ζ) has only a finite number of isolated branch points on γ, or,
in other words : that the boundary C of the region R in the z-plane has only
a finite number of corner points. Denoting a typical branch point by σm one
may write, if ζ approaches σm from the interior of γ,

ω′
0(ζ) = A(ζ − σm)αm/π [1 + o(1)], ζ → σm, ζ ∈ S+, (4.5)

where A is some constant, the symbol o(1) denotes a quantity tending to zero
when ζ → σm, and αm denotes the value of the abrupt change of direction
along C in the corner point corresponding to σm. For a re-entrant angle the
value of αm is limited to 0 < αm ≤ π, and for a salient angle to −π ≤ αm < 0.
The value αm = −π will now be excluded (which means physically that the
boundary C of the region R is supposed to have no cusps). Then

−π < αm < π. (4.6)

The integrand of eq. (4.4) is holomorphic in S+ , except at the origin. The
contour Lmay thus be transformed into a contour γ′, where γ′ coincides with γ,
except near the branch points, where γ′ consists of small semi-circles around σm

(inside γ). When the radius of these semi-circles tends to zero the contribution
to the total values of the integrals will vanish because of (4.5) and (4.6). Thus
one may write

kck =
1

2πi

∫

γ

ω′
0(ζ) ζ

−k dζ, k = 1, 2, . . . , (4.7)

and these integrals will exist in the sense of improper integrals. For points on
γ one may write ζ = σ = exp(iθ), and thus by writing ω′

0(σ) = ω′
∗(θ) eq. (4.7)

becomes

kck =
1
2π

∫ 2π

0

ω′
∗(θ) exp[−(k − 1)iθ] dθ, k = 1, 2, . . . (4.8)

It follows from (4.5) and (4.6) that ω′
∗(θ) is an integrable function over the

interval 0 < θ < 2π. Therefore by the Riemann-Lebesque theorem (see e.g.
Titchmarsh, 1939, p. 403)

lim
k→∞

kck = 0. (4.9)

Now returning to the expression (4.2) it is recalled that the left hand member,
ω0(ζ), is continuous from the interior of γ, and bounded on γ. Thus ω0(ζ)
will tend to a definite limit if ζ approaches a point σ on γ frrom the inte-
rior. Together with (4.9) this means that the series expansion (4.2) satisfies
the conditions under which Tauber’s theorem (see e.g. Titchmarsh, 1939,
p. 230; Thron, 1953, p. 131) is valid. This theorem expresses that under these
conditions the series expansion (4.2) converges also on the unit circle γ.
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General formula for ck

For the calculation of the coefficients ck in a particular case either of the ex-
pressions (4.3) may be used. The second formula may be preferred when the
derivatives of ω0(ζ) are easy to determine. When these derivatives are not so
easily determined (as occurs for instance when there are branch points on γ)
then the first formula can be used more profitably. In a similar way as done in
the transition from (4.4) to (4.8) this formula can be transformed into

ck =
1
2π

∫ 2π

0

ω∗(θ) exp(−kiθ) dθ, k = 0, 1, 2, . . ., (4.10)

where ω∗(θ) = ω0(σ) = ω0(exp[iθ]). The values of the function ω0(ζ) for
ζ = σ = exp(iθ) are usually easy to calculate.

Filon’s method of integration

For large values of k the numerical calculation of the coefficients ck by means
of forumla (4.10) deserves some special care, since in that case the integrand
is a rapidly oscillating function. Profitable use can then be made of a method
devised by Filon (1928), which consists of dividing the interval (0, 2π) into
an even number of equal parts, and then in each subinterval approximating the
function ω∗(θ) by a second order polynomial coninciding with the function in
the end points and the mid point of the subinterval. For k = 0 the formulas
obtained by Filon reduce to the familiar Simpson’s rule. In the appendix an
extension of Filon’s method, based on an approximation by a fourth order
polynomial in each subinterval, is presented.

Approximate conformal transformation

By taking only a finite number of terms of the series expansion (4.2) into
account an approximation to the conformal transformation is obtained. The
function ωn(ζ) defined by

ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k, (4.11)

will represent an approximation to ω(ζ). According to the considerations given
above the difference between ω(ζ) and ωn(ζ) in any arbitrary point inside or
on the unit circle γ can be made as small as one pleases by taking n sufficiently
large. The function ωn(ζ) maps not the region R onto the interior of the unit
circle, but rather a region Rn that will closely resemble R when n is chosen
large enough. In chapter 5 it will be shown that for mapping functions of the
form (4.11) the boundary value problem can be solved in a general way.
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Elaboration of F (σ)

For the purpose of future considerations it is most convenient to present first
some consequences of the adopted character (4.11) of the conformal transfor-
mation, especially with regard to the function F (σ), which appears in the
boundary condition, see eqs. (3.10) and (3.11). Therefore the following alter-
native form of eq. (4.11) will appear to be useful,

ωn(ζ) =
p

ζ − σ0
+ d0 + d1(ζ − σ0) + (ζ − σ0)2

n∑

k=2

dkζ
k−2. (4.12)

The coefficients dk, k = 0, 1, 2, . . ., n can easily be calculated from the coeffi-
cients ck by means of the following recurrent relations

dk = ck, k = n,

dk = ck + 2dk+1σ0, k = n− 1, (4.13)

dk = ck + 2dk+1σ0 − dk+2σ
2
0, k = n− 2, . . . , 1,

dk = ck + dk+1σ0 − dk+2σ
2
0, k = 0.

The general solution of the system of equations (4.13) is

d0 =
n∑

j=0

cjσ
j
0,

dk =
n∑

j=k

(j − k + 1)cjσ
j−k
0 , k = 1, . . . , n,

(4.14)

as can be verified without difficulty by substitution into (4.13).
The three factors appearing in the expression (3.11) for F (σ), which involve

the conformal transformation ω(ζ) in different ways, can be expressed in terms
of the coefficients ck or dk as follows.

ωn(σ) − ωn(σ) = (p+ pσ2
0)/(σ − σ0) + pσ0 +

n∑

k=0

(ckσk − ckσ
−k) =

(p+ pσ2
0)/(σ − σ0) + (pσ0 + d0 − d0) + (d1 + d1/σ

2
0)(σ − σ0) +

(σ − σ0)2{
n∑

k=2

dkσ
k−2 − σ−2

0

n∑

k=1

dkσ
−k}, (4.15)

ω′
n(σ) − ω′

n(σ)/σ2 = −(p− pσ2
0)/(σ − σ0)2 +

n∑

k=1

(kckσk−1 − kckσ
−k−1), (4.16)
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ω′
n(σ) + ω′

n(σ)/σ2 = −(p+ pσ2
0)/(σ − σ0)2 +

n∑

k=1

(kckσk−1 + kckσ
−k−1), (4.17)

In deriving these expressions use has been made of the property that σ = σ−1.
It is now postulated that F (σ) is to be bounded near σ0, and it will be

investigated what implications this has for the approximate mapping function.
By inspection of eq. (3.11), together with the expressions (5.15), (4.16) and
(4.17), it is observed that, if no restrictive conditions are imposed on the con-
formal transformation, then F (σ) will have a third order pole at σ0. In order
that F (σ) be bounded near σ0 the coefficients of the terms with (σ − σ0)−3,
(σ − σ0)−2 and (σ− σ0)−1 must vanish. This leads to the following conditions

p+ pσ2
0 = 0,

d0 − d0 + pσ0 = 0, (4.18)

d1 + d1/σ
2
0 = 0.

The physical meaning of the first two conditions is best understood by inspect-
ing their implications for the quantity ωn(σ)−ωn(σ), which represents the value
of the y-coordinate (multiplied with 2i) along the boundary of the region R in
the z-plane. It is immediately seen from the second expression in eq. (4.15)
that the first two conditions of (4.18) ensure that the y-coordinate of a point
on the boundary vanishes near the end points of this boundary at infinity (the
point at infinity in the z-plane corresponds to σ = σ0).

The physical meaning of the third condition is best understood by con-
sidering the implications for the y-coordinate as well as the x-coordinate of a
boundary point near infinity. From (4.15) it follows that near infinity (hence
for σ near σ0)

2iy = (d1 + d1/σ
2
0)(σ − σ0) + O(σ − σ0)2, (4.19)

where the first two of the conditions (4.18) have already been used, but not yet
the third. On the other hand one may obtain from (4.12) that the x-coordinate
of a boundary point near infinity is given by

2x = 2p/(σ − σ0) + 2d0 +O(σ − σ0), (4.20)

where again use has been made of the first two of the conditions (4.18). It
follows from (4.19) and (4.20) that near infinity

2iy =
p(d1 + d1/σ

2
0)

x− d0
+ . . . . (4.21)

Thus the vanishing of the factor d1 + d1/σ
2
0, as required by the third of the

conditions (4.18), implies that the y-coordinate of a boundary pooint should
got zero for x → ∞ more rapidly than according to the hyperbolic formula
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(4.21). In fact, the area between a hyperbola and its asymptote is known to be
unbounded and a boundary curve behaving as a hyperbola near its ends would
correspond to an edge notch of infinite total area. For such an edge notch the
assumption of vanishing incremental stresses near infinity would clearly not
be applicable. Hence for this assumption to be applicable the coefficient of
1/(x−d0) in eq. (4.18) should be equal to zero, and this is just the third of the
conditions (4.18). It is to be noted that the considerations just given constitute
the mathematical formulation of the properties of the line C mentioned at the
end of chapter 2 and in the beginning of chapter 3.

The first of conditions (4.18) expresses that p/σ0 is to be an imaginary
quantity. With eqs. (4.14) for k = 0, respectively k = 1, the last two conditions
can be expressed in terms of the coefficients ck. This leads to

n∑

k=0

(ckσk
0 − ckσ

−k
0 ) + pσ0 = 0,

n∑

k=1

(kckσk
0 + kckσ

−k
0 ) = 0.

(4.22)

These two equations are purely imaginary, respectively purely real. The can
be satisfied by giving the last coefficient (cn) the following, in general complex,
value

cn = 1
2pσ

−n−1
0 − 1

2σ
−n
0

n−1∑

k=0

[(1 + k/n)ckσk
0 − (1 − k/n)ckσ−k

0 ]. (4.23)

It should be noted that in general the above conditions are automatically
satisfied by the conformal transformation if the region mapped by it onto the
unit circle is indeed a half plane with edge notches having a finite total area.
For the purpose of carrying out numerical calculations, however, it is convenient
to have a mathematical formulation of this property. This is especially useful
when the original conformal transformation is approximated by a formula of the
form (4.11), with the coefficients ck calculated by some numerical procedure.
By choosing the last coefficient, cn, in accordance with (4.23) it is then ensured
that the approximate region Rn is itself in the class of regions considered. In
the sequel it will be assumed that p/σ0 is imaginary, and that cn has been
given the value following from (4.23). Then the conditions (4.18) are satisfied,
and hence the function F (σ) is bounded near σ0.

To facilitate future considerations it is convenient to present here first the
consequences of the conditions (4.18) for the appearance of the function F (σ).
Substitution of (4.15), (4.16) and (4.17) into (3.11) gives, using (4.18),
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F (σ)
ρg

= −1
2ip

{ n∑

k=2

dkσ
k−2 − σ−2

0

n∑

k=1

dkσ
−k

}
+

1
4 i

{
p σ0 +

n∑

k=0

(ckσk − ckσ
−k)

}
×

{
(1 +K0)

n∑

k=1

kckσ
k−1 − (1 −K0)

n∑

k=1

kckσ
−k−1

}
. (4.24)

This form can be elaborated by making use of the rules for the multiplication
of polynomials. This gives

F (σ)
ρg

= −1
2
ip

{ n∑

k=2

dkσ
k−2 − σ−2

0

n∑

k=1

dkσ
−k

}
+ 1

4
i p σ0 ×

{
(1 +K0)

n−1∑

k=0

(k + 1)ck+1σ
k − (1 −K0)

n+1∑

k=2

(k − 1)ck−1σ
−k

}
+

1
4
i(1 +K0)

{2n−1∑

k=0

ekσ
k −

n−1∑

k=0

fn−k−1σ
k −

n∑

k=1

fn+k−1σ
−k

}
+

1
4i(1 −K0)

{2n+1∑

k=2

ek−2σ
−k −

n−2∑

k=0

fn+k+1σ
k −

n+1∑

k=1

fn−k+1σ
−k

}
, (4.25)

where

ek =
min(k,n−1)∑

max(0,k−n)

(j + 1)cj+1ck−j, k = 0, 1, . . ., 2n− 1, (4.26)

and

fk =
min(k,n−1)∑

max(0,k−n)

(n− j)cn−jck−j, k = 0, 1, . . . , 2n+ 1, (4.27)

It appears that the function F (σ) is now uniquely composed of positive and
negative powers of σ, and that the coefficients of these terms can directly be
calculated from the coefficients ck, which describe the conformal transforma-
tion.



Chapter 5

SOLUTION OF THE BOUNDARY VALUE PROBLEM

In this chapter the general boundary value problem will be solved. This will
be done in three stages. In the first stage (section 5.1) the general character
of the solution is investigated. This will lead to an expression containing some
constants, which are determined in section 5.2. Finally, in section 5.3 the
solution is elaborated until expressions for the stress components are obtained.

General character of the solution

The mathematical problem, as formulated in chapter 3 is to determine two
functions Φ(ζ) and Ψ(ζ), holomorphic inside the unit circle γ and continuous
inside and on γ, satisfying the condition (3.17) on γ, i.e.

ω′
n(σ)Φ+(σ) + ω′

n(σ)Φ+(σ) − σ−2[ωn(σ)Φ′
+(σ) + ω′

n(σ) Ψ+(σ)] = F (σ), (5.1)

where F (σ) is now given by (4.25), and where

ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k. (5.2)

In eq. (5.1) the subscript + indicates that the limiting value of a function for
ζ tending to a point σ on γ from the interior (S+) is intended.

The boundary value problem will be solved by means of the method pro-
posed by Muskhelishvili (1953), chapters 18-21. In this method the problem
is reduced to a Hilbert problem (the problem of linear relationship) from the
theory of functions. In order to perform the reduction to a Hilbert problem it
is necessary to extend the regions of definition of the functions ωn(ζ) and Φ(ζ).
Originally the region of definition of these functions is, for physical reasons,
restricted to the interior S+ of the unit circle γ and the unit circle γ itself. For
points outside γ the functions ωn(ζ) and Φ(ζ) have not been defined. Since
points outside γ do not appear in the analysis one may, if one wishes, attribute
any value to the functions ωn(ζ) and Φ(ζ) for any ζ in S−. This is completely
irrelevant for the problem as formulated above. The essence of Muskhelishvili’s
method is, however, to choose very particular values for the functions ωn(ζ)
and Φ(ζ) for ζ outside γ, namely in such a way that the mathematical problem
reduces to a Hilbert problem, which can be solved.

The function ωn(ζ)

In the first place it is stated that the definition (5.2) for ωn(ζ) from now on
applies to all values of ζ in the entire plane. For ζ in S+ or for ζ on γ this func-
tion represents, as before, the values of the complex variable ζ which describes

19
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the region occupied by the elastic body and its boundary. For values of ζ in
S− (the exterior of the unit circle γ) this function has no physical meaning.
Mathematically spekaing the mapping function ωn(ζ) has now been continued
analytically in S− (Titchmarsh, 1939, chapter 4; Thron, 1953, chapter 23).
Such an analytic continuation into parts of the plane outside the original region
of definition of the function has the property that it is continuous across the
boundary of this region. It is immediately observed form the definition (5.2)
that the finction ωn(ζ) is now holomorphic in the entire plane with the excep-
tion of the singular point ζ = σ0, where the function possesses a first order
pole, and with the further exception of the point at infinity. It is to be noted
that the mapping function ωn(ζ), which is an approximation of the original
mapping function ω(ζ), does not possess branch points on γ, in contrast with
the original function ω(ζ). In fact, such branch points prohibit an analytic
continuation of ω(ζ) into S− which is everywhere continuous across γ, and it
is this circumstance that makes it impossible to apply Muskhelishvili’s method
to the case with the mapping function ω(ζ). Muskhelishvili’s method will be
shown to be applicable, however, to the approximate mapping function ωn(ζ),
which tends uniformly to ω(ζ) for n → ∞.

The function Φ(ζ)

Next the region of definition of the stress function Φ(ζ) will be extended, but
in this case the extension will not be taken as an analytic continuation. For
points ζ in the exterior S− of γ the value of Φ(ζ) will be taken in accordance
with the following expression

ω′
n(ζ)Φ(ζ) = −ω′

n(ζ)Φ(1/ζ) + ζ−2ωn(ζ)Φ′(1/ζ) +
ζ−2ω′

n(1/ζ)Ψ(1/ζ), ζ ∈ S−. (5.3)

In this definition use has been made of the notation (see Muskhelishvili,
1953, p. 288)

f (ζ) = f(ζ),

from which it follows that

f (1/ζ) = f(1/ζ). (5.4)

It will appear later, see eq. (5.7), that the definition (5.3) of Φ(ζ) for ζ ∈ S−

implies that the function Φ(ζ) is not continuous across γ, but that the limiting
values of Φ(ζ) for ζ tending towards a point σ on γ from the exterior (S−) or
the interior (S+) differ by a given amount. Before presenting this, however,
it will first be shown that eq. (5.3) indeed represents a definition of Φ(ζ) for
ζ ∈ S−, and that this function is holomorphic in S−.

First it is noted (fig. 5.1) that if ζ is some point in S− then the points 1/ζ
and 1/ζ are points in S+ . Thus if f(ζ) is a given function for all ζ ∈ S+ , then
the value of f(1/ζ) for ζ ∈ S− can be calculated since 1/ζ is then a point in
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Figure 5.1: Points in ζ-plane.

S+ . Taking the complex conjugate of the value of f(1/ζ) yields f (1/ζ). From
this it follows that, if the solution of the problem, as described by Φ(ζ) and
Ψ(ζ) for ζ ∈ S+ where known, then it would be possible to calculate the values
of Φ(1/ζ), Φ′(1/ζ) and Ψ(1/ζ) for all ζ ∈ S−. Moreover ωn(ζ) is a function
known for all ζ, and the function ω′

n(1/ζ) is found to be

ω′
n(1/ζ) = − p ζ2σ2

0

(ζ − σ0)2
+

n∑

k=1

k ck ζ
−k+1,

which shows that this function is holomorphic in the entire plane with the
exception of the points ζ = σ0 and ζ = 0, where the function possesses sin-
gularities in the form of poles. It now follows that the function ω′

n(ζ)Φ(ζ), as
defined by (5.3) for ζ ∈ S−, is expressed in terms of the given mapping func-
tion ωn(ζ) and the basic unknown stress functions Φ(ζ) and Ψ(ζ) as defined
for ζ ∈ S+. Since ω′

n(ζ) is known for ζ ∈ S− it now follows that (5.3) indeed
defines a value for Φ(ζ) for ζ ∈ S− in terms of functions defined before.

In the second place it will be shown that the function Φ(ζ) as defined for
ζ ∈ S− by (5.3) is holomorphic in the region S−. In order to prove this, use is
made of the definition (5.4). Let it be given that f(ζ) is holomorphic in S+.
Then this function can be expanded into a Taylor series around ζ = 0,

f(ζ) = a0 + a1ζ + a2ζ
2 + . . . ,

which will be convergent for all ζ ∈ S+ . It now follows immediately from (5.4)
that

f (1/ζ) = a0 + a1/ζ + a2/ζ
2 + . . . ,

and this will be a convergent series for all values of ζ such that 1/ζ ∈ S+ , i.e.
for all ζ ∈ S−. This means that f (1/ζ) is holomorphic in S− when f(ζ) is
holomorphic in S+ . Application of this result to the functions Φ(1/ζ), Φ′(1/ζ)
and Ψ(1/zeta), which appear in (5.3), now shows that the function ω′

n(ζ)Φ(ζ)
is holomorphic in S−, with the possible exception of the point at infinity. The
point at infinity may be a singular point of ω′

n(ζ)Φ(ζ) because of the appearance
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of the functions ωn(ζ) and ω′
n(ζ) in the right hand member of (5.3). It now

follows that Φ(ζ) as defined for ζ ∈ S− by (5.3) is a holomorphic function in
S−, with the possible exception of the point at infinity.

In a later stage of the considerations (section 5.2) it will be necessary to
investigate in detail the behaviour of ω′

n(ζ)Φ(ζ) near infinity. For the present
considerations it is sufficient to observe that by taking ζ very large in (5.3)
one obtains, using the definition of ωn(ζ) and the functions ω′

n(ζ) and ω′
n(1/ζ)

derived from it,

ncnΦ(ζ)[ζn−1 + O(ζn−2)] = −ncnζn−1Φ(0) + O(ζn−2), ζ → ∞.

From this it follows that Φ(ζ) tends to a definite limit for ζ → ∞, namely

Φ(∞) = −Φ(0).

This means that the function ω′
n(ζ)Φ(ζ) will possess a pole of order n − 1 at

infinity, i.e.

ω′
n(ζ)Φ(ζ) = O(ζn−1), ζ → ∞. (5.5)

Reduction to Hilbert problem

Now the boundary value problem (5.1) will be reduced to a Hilbert problem.
Therefore it is noted that if in eq. (5.3) ζ is replaced by 1/ζ then an equation
valid for ζ ∈ S+ is obtained, and if in this equation ζ is made to approach a
point σ on γ one obtains

−σ−2ω′
n(σ) Ψ+(σ) = −ω′

n(σ)Φ−(σ) − ω′
n(σ)Φ+(σ) +

σ−2ωn(σ)Φ′
+(σ). (5.6)

Here use has been made of the fact (fig. 5.1) that when ζ → σ from the interior
of γ, then 1/ζ → σ from the exterior of γ. In (5.6) Φ−(σ) denotes the limit of
Φ(ζ) when ζ → σ from the exterior S− of γ. Substitution of (5.6) into (5.1)
gives

ω′
n(σ)Φ+(σ) − ω′

n(σ)Φ−(σ) = F (σ), (5.7)

which represents the discontinuity condition for the so-called Hilbert problem
from the theory of functions (by some authors designated as the Riemann-
problem, the Riemann-Hilbert problem or the problem of linear relationship).
The problem is to determine a function ω′

n(ζ)Φ(ζ), holomorphic in S− and S+,
except possibly at infinity (where the function in the present case may have
a pole of order n − 1, see (5.5)), and satisfying the condition (5.7) on γ. In
the present case the function ω′

n(ζ)Φ(ζ) is to tend to a definite limit when ζ
approaches any point σ on γ from the positive or the negative side, with the
single exception of the point σ0. In fact, the function ω′

n(ζ)Φ(ζ) may have a
first order pole in σ0, since ω′

n(ζ) has a second order pole there and Φ(ζ) has
been assumed to be of order O(ζ − σ) near σ0.
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Solution of the Hilbert problem

Problems of the type (5.7) have been discussed extensively by Muskhelishvili
(1953). They can be solved with the aid of Cauchy integrals. Therefore the
solution is decomposed into three parts,

ω′
n(ζ)Φ(ζ) = χ(ζ) + χ∗(ζ) + χ∗∗(ζ). (5.8)

The function χ(ζ) will be taken such that the discontinuity condition (5.7) is
satisfied, χ∗(ζ) will account for the pole at ζ = −σ0, and χ∗∗(ζ) will account
for the behaviour at infinity.

The essential part of the solution is the part that takes care of the discon-
tinuity along γ. This part of the solution is taken in the form of the Cauchy
integral

χ(ζ) =
1

2πi

∫

γ

F (σ) dσ
σ − ζ

, ζ ∈ S−+ S+. (5.9)

The function F (σ), as given by (4.25), is bounded, and even continuous, on
γ, and therefore the integral (5.9) exists in the entire plane, with the prooible
exception of the line γ. The function χ(ζ) is holomorphic in S− and S+; it is
said to be a sectionally holomorphic function, with the unit circle γ as line of
discontinuity (Muskhelishvili, 1953, p. 427). Since F (σ) is bounded on γ,
and since the length of γ is finite, it follows from (5.8) that χ(ζ) tends to zero
when ζ tends to infinity.

The limiting values of χ(ζ), when ζ approaches a point σ on γ from the ex-
terior or the interior of γ exist, and they are related by the so-called Sokhotski-
Plemelj formula (Muskhelishvili, 1953, p. 262)

χ+(σ) − χ−(σ) = F (σ),

which shows that indeed χ(ζ) possesses the discontinuity that ω′
n(ζ)Φ(ζ) should

have, see eq. (5.7).
In the second place let

χ∗(ζ) =
A

ζ − σ0
, (5.10)

where A is the residue of the function ω′
n(ζ)Φ(ζ) in its first order pole ζ = σ0

(this residue is as yet unknown).
It now follows that the remaining part χ∗∗(ζ) of the solution (5.8) must

have the following properties:

1. It must be holomorphic in S− and S+ with the exception of the point at
infinity;

2. It must be of order O(ζn−1) near infinity, because of (5.5) and since both
χ(ζ) and χ∗(ζ) vanish at infinity;
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3. It must be continuous across γ, since the discontinuity of ω′
n(ζ)Φ(ζ) has

been accounted for by χ(ζ).

The requirements 1 and 3 imply that the holomorphic functions χ∗∗(ζ) for
ζ ∈ S+ and χ∗∗(ζ) for ζ ∈ S− are each others analytic continuation across
the unit circle γ. Hence the function χ∗∗(ζ) must be holomorphic in the entire
plane, except at infinity, and it now follows from the generalized Liouville
theorem (Titchmarsh, 1939, p. 85) that χ∗∗(ζ) is a polynomial of order
n− 1, i.e.

χ∗∗(ζ) =
n−1∑

k=0

Akζ
k, all ζ. (5.11)

The coefficients Ak(k = 0, 1, . . ., n− 1) are as yet unknown.
Substitution of (5.9), (5.10) and (5.11) into (5.8) shows that the solution of

the problem is

ω′
n(ζ)Φ(ζ) = χ(ζ) +

A

ζ − σ0
+

n−1∑

k=0

Akζ
k, ζ ∈ S−+ S+. (5.12)

The coefficients A and Ak(k = 0, 1, 2, . . ., n− 1) will be determined in section
5.2. Before proceeding to the evaluation of these coefficients, however, it is
convenient to first elaborate the function χ(ζ).

Evaluation of χ(ζ)

In order to calculate the Cauchy integral (5.9), i.e.

χ(ζ) =
1

2πi

∫

γ

F (σ) dσ
σ − ζ

, ζ ∈ S−+ S+,

it is recalled from the previous chapter, see eq. (4.25), that F (σ) consists of
positive and neagtive powers of σ. The Cauchy integral can therefore easily be
evaluated by making use of the following elementary formulas, valid for integer
values of k,

1
2πi

∫

γ

σk dσ

σ − ζ
=

{
ζk, ζ ∈ S+ ,
0, ζ ∈ S−,

(k ≥ 0), (5.13)

1
2πi

∫

γ

σ−k dσ

σ − ζ
=

{
0, ζ ∈ S+,
ζ−k, ζ ∈ S−,

(k > 0). (5.14)

Thus the function χ(ζ) appears to be

χ(ζ) =
2n−1∑

k=0

Bk ζ
k, ζ ∈ S+ ,

(5.15)

χ(ζ) =
2n+1∑

k=1

Ck ζ
−k, ζ ∈ S−.
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In these expressions the coefficients Bk and Ck represent the following quanti-
ties

Bk/(1
4iρg) = (1 +K0)ek − 2pdk+2En−k−2 +

(1 +K0)pσ0(k + 1)ck+1En−k−1 − (1 +K0)fn−k−1En−k−1 −
(1 −K0)fn+k+1En−k−2, k = 0, 1, . . . , 2n− 1, (5.16)

Ck/(1
4 iρg) = −2pσ−2

0 dkEn−k + (1 −K0)pσ0(k − 1)ck−1En−k−1 +

(1 +K0)fn+k−1En−k + (1 −K0)fn−k+1En−k+1 −
(1 −K0)ek−2Ek−2, k = 1, . . . , 2n+ 1. (5.17)

In the above expressions the symbol Ej has been used to denote

Ej =
{

1, j ≥ 0,
0, j < 0. (5.18)

Since the coefficients dk, ek and fk can all be easily be calculated from the
elementary coefficients ck (see chapter 4), the coefficients Bk and Ck can also
be calculated without difficulty by simple arithmetic operations.

It now remains to determine the coefficients A and Ak which appear in the
solution (5.12). These constants will be determined in the next section.

General considerations

Replacement of ζ in eq. (5.3) by 1/ζ leads to an equation valid for ζ ∈ S+, and
when subsequently the complex conjugate of this equation is taken, the result
is, after some reaarangement,

ζ2ω′
n(ζ)Ψ(ζ) = ω′

n(1/ζ)Φ(1/ζ) + ω′
n(1/ζ)Φ(ζ) −

ζ2ωn(1/ζ)Φ′(ζ), ζ ∈ S+. (5.19)

This equation will now be investigated in detail, especially for values of ζ close
to the origin. Since ζ = 0 corresponds to 1/ζ = ∞ this will enable to relate the
behaviour of ω′

n(ζ)Φ(ζ) near infinity to the behaviour of ωn(ζ) and Φ(ζ) near
ζ = 0.

The left hand member of (5.19) is holomorphic inside γ, and therefore so
must be the right hand member. Multiplication of (5.19) with ζk−1, with
k = −1, 0, 1, . . ., n − 1 and subsequent integration over a contour L, lying
entirely inside γ and encircling the origin, leads to zero since ζk+1ω′

n(ζ)Ψ(ζ) is
holomorphic inside L for all integer values of k not less than −1. Elaboration
of the right hand members will be shown to lead to equations from which A
and Ak, for k = 0, 1, . . ., n− 1 can be calculated.

In performing the integration of the right hand member of (5.19) around
L it will be useful to have an expression for the first term of this right hand
member. With (5.12) and (5.15) this first term can be expressed as

ω′
n(1/ζ)Φ(1/ζ) =

2n+1∑

j=1

Cjζ
j +

n−1∑

j=0

Ajζ
−j − Aζ σ0

ζ − σ0
, ζ ∈ S+. (5.20)
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The two remaining terms of eq. (5.19) can not so easily be expressed in a
simple form.

Determination of A

The case k = −1 will first be investigated separately. Therefore eq. (5.19) is
multiplied by ζ−2 and the resulting expression is integrated over L. This gives,
with (5.20),

2πi(C1 +A) +
∫

L

ζ−2
{
ω′

n(1/ζ)Φ(ζ) − ζ2ωn(1/ζ)Φ′(ζ)
}
dζ = 0,

where use has been made of the fact that the integral
∫

L
ζj dζ is equal to 2πi

for j = −1 and yields zero for all other integral values of j. The above result
can also be written as

2πi(C1 +A) −
∫

L

d

dζ

{
ωn(1/ζ)Φ(ζ)

}
dζ = 0,

and since the function ωn(1/ζ)Φ(ζ) is holomorphic inside and on L the integral
equals zero, hence it now follows that

A = −C1. (5.21)

Thus one of the coefficients has now been found.

Determination of Ak

Next the case of multiplication of eq. (5.19) by ζk−1, (k = 0, 1, . . ., n− 1) and
subsequent integration over L will be investigated. This requires elaboration
of the following equation

2πiAk −
∫

L

ζk+1 d

dζ

{
ωn(1/ζ)Φ(ζ)

}
dζ = 0, k = 0, 1, . . . , n− 1.

Using partial integration this can be transformed into

2πiAk + (k + 1)
∫

L

ζk ωn(1/ζ)Φ(ζ) dζ = 0, k = 0, 1, . . . , n− 1. (5.22)

This system of equations will be further investigated below.
Since Φ(ζ) is holomorphic in S+ one may write

Φ(ζ) =
n−1∑

k=0

qkζ
k + ζnG(ζ), ζ ∈ S+ , (5.23)

where G(ζ) is holomorphic in S+, and the constants qk (k = 0, 1, . . . , n − 1)
respresent the first n coefficients in the Taylor series expansion of Φ(ζ) around
the origin. It will be shown that the coefficients Ak can easily be expressed
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into the coefficients qk and that the equations (5.22) can be transformed into
a system of equations for the determination of qk.

The conformal transformation ωn(ζ) can be wrtten as

ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k =

n∑

k=0

(ck − pσ−k−1
0 )ζk + ζn+1g(ζ), (5.24)

where

g(ζ) =
pσ−n−1

0

ζ − σ0
. (5.25)

Furthermore, the first derivative of ωn(ζ) can be written as

ω′
n(ζ) =

n−1∑

k=0

(k + 1)(ck+1 − pσ−k−2
0 )ζk + ζnh(ζ), (5.26)

where

h(ζ) = (n+ 1)g(ζ) + ζg′(ζ) =
pσ−n−1

0 [nζ − (n+ 1)σ0]
(ζ − σ0)2

. (5.27)

Both g(ζ) and h(ζ) are clearly holomorphic inside γ. With (5.23) it now follows
that near ζ = 0

ω′
n(ζ)Φ(ζ) =

n−1∑

k=1

{ k∑

j=0

(k − j + 1)qj(ck−j+1 − pσ−k+j−2
0

}
ζk + O(ζn). (5.28)

On the other hand it follows from (5.12) and (5.15) that near ζ = 0

ω′
n(ζ)Φ(ζ) =

n−1∑

k=0

{
Ak +Bk − Aσ−k−1

0

}
ζk + O(ζn). (5.29)

Hence, by equating coefficients of like powers of ζ in eqs. (5.28) and (5.29) one
obtains

Ak = −Bk + Aσ−k−1
0 +

k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
o )qj,

k = 0, 1, . . . , n− 1, (5.30)

which shows that indeed the coefficients Ak can be calculated if the coefficients
qk are known.

Now returning to eqs. (5.22) one observes that the first term, 2πiAk, can
be expressed linearly into qk, through (5.30). It remains to express the second
term of (5.22) into these coefficients. Therfore the conformal transformation
ωn(ζ) is expanded in a series valid for large ζ. This gives, with (5.2),

ωn(ζ) =
n∑

j=0

cjζ
j +O(ζ−1), ζ → ∞.
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Hence near ζ = 0,

ωn(1/ζ)Φ(ζ) = ωn(1/ζ) =
n∑

j=0

cjζ
−j + O(ζ), ζ → 0. (5.31)

From (5.23) and (5.31) it follows that near ζ = 0,

ωn(1/ζ)Φ(ζ) =
n∑

k=1

{n−k∑

j=0

cj+kqj

}
ζ−k +O(1), ζ → 0. (5.32)

Substitution of (5.32) into the integral appearing in (5.22) gives, when the
length of the contour L is taken to be extremely small,

∫

L

ζkωn(1/ζ)Φ(ζ) dζ) = 2πi
n−k−1∑

j=o

cj+k+1qj, k = 0, 1, . . . , n− 1. (5.33)

Substitution of this result and of (5.30) into (5.22) now finally yields, after
taking complex conjugates, the following system of equations

−Bk + Aσ−k−1
0 +

k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
o )qj +

(k + 1)
n−k−1∑

j=0

cj+k+1qj = 0, k = 0, 1, . . . , n− 1. (5.34)

This is a system of n linear complex equations with n complex unknowns
(q0, q1, . . . , qn−1). From this system the coefficients qk can be determined. Once
these coefficients are known, the coefficients Ak can be calculated using (5.30).
Then all the coefficients in the solution, eq. (5.12), i.e.

ω′
n(ζ)Φ(ζ) = χ(ζ) +

A

ζ − σ0
+

n−1∑

k=0

Akζ
k, ζ ∈ S−+ S+. (5.35)

are known. The problem is therefore, in principle, completely solved.

Elaboration

In the preceding sections of this chapter the mathematical problem has been
solved in terms of the function Φ(ζ), which for ζ ∈ S+ represents a stress func-
tion, and which for ζ ∈ S− has been introduced as an auxiliary mathematical
quantoty without direct physical meaning. In this section the solution will be
elaborated with the final aim of obtaing formulas for the incremental stresses.

The components of incremental stress can be calculated using the following
formulas, which correspond to eqs. (3.5),

σxx + σyy = 2[Φ(ζ) + Φ(ζ)], ζ ∈ S+,

(5.36)
σyy − σxx + 2iσxy = 2[ωn(ζ)Φ′(ζ)/ω′

n(ζ) + Ψ(ζ)], ζ ∈ S+.
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The solution of the problem has been given in terms of the function ω′
n(ζ)Φ(ζ),

see (5.35). The value of Φ(ζ) in a certain point ζ can be found by division
of the value of ω′

n(ζ)Φ(ζ) by ω′
n(ζ). The value of Φ′(ζ) is also not difficult

to obtain, thereby starting from the derivative of ω′
n(ζ)Φ(ζ), which can easily

be obtained from (5.35). A complication arises, however in the calculation of
Ψ(ζ). This complication, and a method to circumvent it, will be presented in
this section.

The function Ψ(ζ), which has been defined only for ζ ∈ S+ + γ, and rep-
resents a stress function in the region S+ + γ, can be expressed in terms of
the function Φ(ζ), of which the region of definition has been extended into S−.
The functional relationship between Φ(ζ) and Ψ(ζ) is expressed by (5.19), i.e.

ω′
n(ζ)Ψ(ζ) = ζ−2ω′

n(1/ζ)Φ(1/ζ) + ζ−2ω′
n(1/ζ)Φ(ζ) −

ωn(1/ζ)Φ′(ζ), ζ ∈ S+. (5.37)

All quantities in the right hand member of (5.37) can be calculated in a rel-
atively simple way, thereby starting from the solution (5.35) and expressions
for the conformal transformation ωn(ζ) and related functions. Therefore the
value of Ψ(ζ) can, in principle, be determined from (5.37). This expression is,
however, very inconvenient for numerical calculations, since implicitly it con-
tains terms of the form εkζ

−k, where the coefficients εk are extremely small,
but not exactly zero. In fact, all εk have to be zero, since the left hand member
of (5.37) is holomorphic in S+ , and therefore terms with ζ−k cannot appear in
the right hand member.

In the previous section, in the determination of the constants A and Ak,
use was made of the fact that the function ω′

n(ζ)Ψ(ζ) is holomorphic in S+,
see the considerations following eq. (5.19). Hence if A and Ak are given the
values found in the previous sections, the quantities εk vanish identically. The
numerical calculation of the constants A abd Ak, however, which involves the
numerical solution of a system of equations, is never completely exact. As a
consequence the coefficients εk are not made equal to zero, but equal to some
small quantity, say εk ≈ 10−10. Since k may be as large as 50, this means that
in the calculation of (5.37) an error is made of magnitude 10−10|ζ|−50. Only
values of ζ with |ζ|/le1 are of physical relevamce, and one observes that if for
instance ζ = 0.3, then the error is magnitude of 10+16, which is by no means
small. Thus the error may greatly transcend the correct value, and this means
that the calculations will be very inaccurate, except for values of ζ close to
unity. Hence, only the stresses close to the boundary are calculated accurately.

The inaccuracies mentioned above can be removed by elaborating eq. (5.37)
in such a way that all terms giving rise to negative powers of ζ are separated
from the remaining terms. In other words, it is to be attempted to write
ω′

n(ζ)Ψ(ζ) in the following form

ω′
n(ζ)Ψ(ζ) =

n+1∑

k=1

εkζ
−k + f(ζ), (5.38)
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where f(ζ) is holomorphic in S+. If indeed the considerations of the previous
sections are correct, the coefficients εk must vanish identically. That this is
the case will be shown the sequel. In the numerical calculations the function
ω′

n(ζ)Ψ(ζ) can then be replaced by f(ζ). Thus the problem now is to show
that indeed all εk’s vanish, and to find an analytical expression for f(ζ).

It might be mentioned here that the considerations to be given below in a
way duplicate the considerations of section 5.2. In fact, the equations for the
determination of A and A − k as obtained in section 5.2, can also be found
by requiring that the coefficients εk in (5.38) vanish. This corresponds to the
procedure generally used by Muskhelishvili in order to determine the unknown
parameters figuring in the solution of a Hilbert problem (see Muskhelishvili,
1953, chapter 21). In this thesis the equations for the determination of A and
Ak have been derived in section 5.2 in a different way, which in this case is
much simpler. The elaborations of this section are necessary only to improve
the accuracy of the numerical solution.

Rather than retain the function Ψ(ζ) as an intermediate between Φ(ζ) and
the stresses, it will be more convenient to eliminate Ψ(ζ) from the second of
eqs. (5.36) and eq. (5.37). This leads to

1
2ω

′
n(ζ)[σyy − σxx + 2iσxy] = [ωn(ζ) − ωn(1/ζ)]Φ′(ζ) +

ζ−2ω′
n(1/ζ)Φ(1/ζ) + ζ−2ω′

n(1/ζ)Φ(ζ), ζ ∈ S+. (5.39)

It is this formula that will be elaborated now, until a stage is reached in which
it is evident that the right hand member remains bounded for ζ → 0. For this
purpose the factors that give rise to negative powers of ζ (and which should
cancel when taken all together) will be separated from the remaining regular
factors. The three terms of the right hand member of (5.39) will be investigated
separately.

First term

It follows from (5.2) that

ωn(ζ) =
p

ζ − σ0

+
n∑

k=0

ckζ
k
,

and

ωn(1/ζ) = − pσ0ζ

ζ − σ0
+

n∑

k=0

ckζ
−k.

Hence the first term of the right hand member of (5.39) becomes

[ωn(ζ) − ωn(1/ζ)]Φ′(ζ) = −
pσ0(1 − ζζ)
|ζ − σ0|2

Φ′(ζ) +

Φ′(ζ)
n∑

k=0

ck ζ
k − Φ′(ζ)

n∑

k=0

ckζ
−k, ζ ∈ S+ . (5.40)
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In this expression only the last term is unbounded for ζ → 0.

Second term

From (5.12) and (5.15) one obtains for the second term of (5.39)

ζ−2ω′
n(1/ζ)Φ(1/ζ) =

2n+1∑

k=1

Ckζ
k−2 +

n−1∑

k=0

Akζ
−k−2 −

A
σ0

ζ(ζ − σ0)
, ζ ∈ S+.

Since A = −C1, see (5.21), this can also be written as

ζ−2ω′
n(1/ζ)Φ(1/ζ) =

C1

ζ − σ0
+

2n−1∑

k=0

Ck+2ζ
k +

n−1∑

k=0

Akζ
−k−2, ζ ∈ S+. (5.41)

In this expression it is also only the last term that is unbounded for ζ → 0.

Third term

From (5.2) it follows that

ω′
n(1/ζ) = − pσ2

0ζ
2

(ζ − σ0)2
+

n∑

k=1

kckζ
−k+1,

and hence the third term of (5.39) becomes

ζ−2ω′
n(1/ζ)Φ(ζ) = −

pσ2
0Φ(ζ)

(ζ − σ0)2
+ Φ(ζ)

n∑

k=1

kckζ
−k−1, ζ ∈ S+. (5.42)

Factors unbounded for ζ → 0 appear only in the last term.

Addition of terms

Substitution of the three expressions (5.40), (5.41) and (5.42) into (5.39) yields
1
2ω

′
n(ζ)[σyy − σxx + 2iσxy] = H(ζ) +K(ζ), ζ ∈ S+, (5.43)

where H(ζ) contains all terms that are directly seen to be bounded for ζ → 0,
i.e.

H(ζ) = −pσ0(1 − ζ|ζ|)Φ′(ζ)
|ζ − σ0|2

+ Φ′(ζ)
n∑

k=0

ckζ
k +

C1

ζ − σ0
+

2n−1∑

k=0

Ck+2ζ
k − pσ2

0Φ(ζ)
(ζ − σ0)2

, ζ ∈ S+. (5.44)
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The remaining terms are assembled in the function K(ζ),

K(ζ) = −Φ′(ζ)
n∑

k=0

ckζ
−k +

n−1∑

k=0

Akζ
−k−2 +

Φ(ζ)
n∑

k=1

kckζ
−k−1, ζ ∈ S+,

which can also be written as

K(ζ) = − d

dζ

{
Φ(ζ)

n∑

k=0

ckζ
−k

}
+

n−1∑

k=0

Akζ
−k−2, ζ ∈ S+. (5.45)

Although the right hand member of (5.45) contains several factors which are
not bounded for ζ → 0, the function K(ζ) itself is bounded for ζ → 0. This
will be proved by elaborating (5.45).

Elaboration of K(ζ)

As already indicated in section 5.2, see eq. (5.23), the function Φ(ζ), which is
holomorphic in S+ , can be written as

Φ(ζ) =
n∑

k=0

qkζ
k + ζnG(ζ), ζ ∈ S+, (5.46)

where G(ζ) is iself a holomorphic function in S+. This function, which is an
auxiliary function for the calculation ofK(ζ), will first be determined. Therfore
the expression (5.26) for ω′

n(ζ) will also be needed, i.e.

ω′
n(ζ) =

n−1∑

k=0

(k + 1)(ck+1 − pσ−k−2
o )ζk + ζnh(ζ), (5.47)

where

h(ζ) =
pσ−n−1

o [nζ − (n + 1)σ0]
(ζ − σ0)2

. (5.48)

Multiplication of (5.46) and (5.47), and some subsequent elaboration, leads to
the following expression for ω′

n(ζ)Φ(ζ),

ω′
n(ζ)Φ(ζ) = ω′

n(ζ)ζnG(ζ) + ζnh(ζ)
n−1∑

k=0

qkζ
k +

n−1∑

k=0

{ k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
0 )qj

}
ζk +

2n−2∑

k=n

{ n−1∑

j=k−n+1

(k − j + 1)(ck−j+1 − pσ−k+j−2
0 )qj

}
ζk, ζ ∈ S+. (5.49)
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On the other hand an expression for ω′
n(ζ)Φ(ζ), valid for ζ ∈ S+, is given by

the solution (5.12). With (5.13) this gives

ω′
n(ζ)Φ(ζ) =

n−1∑

k=0

Akζ
k +

2n−1∑

k=0

bkζ
k +

A

ζ − σ0
,

which can also be written as

ω′
n(ζ)Φ(ζ) =

n−1∑

k=0

(Ak +Bk − Aσk−1
0 )ζk + ζnR(ζ), ζ ∈ S+, (5.50)

where

R(ζ)) =
2n−1∑

k=n

Bkζ
k−n +

Aσ−n
0

ζ − σ0
. (5.51)

The two expressions (5.49) and (5.50) for ω′
n(ζ)Φ(ζ) must of course be equal,

and this will enable to find an expression for G(ζ). Therefore it is first recalled
from (5.30) that

Ak +Bk − Aσ−k−1
0 =

k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
o )qj,

k = 0, 1, . . . , n− 1, (5.52)

and thus the terms with ζk, for k = 0, 1, . . . , n − 1 in (5.49) and (5.50) are
equal. Hence equating ω′

n(ζ)Φ(ζ) from (5.49) and (5.50) gives, after cancelling
these terms,

ω′
n(ζ)ζnG(ζ) + ζnh(ζ)

n−1∑

k=0

qkζ
k +

2n−2∑

k=n

{ n−1∑

j=k−n+1

(k − j + 1)(ck−j+1 − pσ−k+j−2
0 )qj

}
ζk = ζnR(ζ).

All terms in this equation contain a factor ζn. After division by this common
factor the result is

ω′
n(ζ)G(ζ) = R(ζ) − h(ζ)

n−1∑

k=0

qkζ
k −

n−2∑

k=0

{ n∑

j=k+2

j(cj − pσ−j−1
0 )qn+k−j+1

}
ζk, ζ ∈ S+. (5.53)

From this equation the function G(ζ) can be calculated.
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Now retuurning to the elaboration of K(ζ), see eq. (5.45), it is observed
that the expression between parentheses in (5.45) can be expressed in terms of
G(ζ), using (5.46). This gives

Φ(ζ)
n∑

k=0

ckζ
−k = G(ζ)

n∑

k=0

cn−kζ
k +

n∑

k=1

{n−k∑

j=0

qjcj+k

}
ζ−k +

n−1∑

k=0

{ n−1∑

j=k

qjcj−k

}
ζk, ζ ∈ S+ .

Hence, after substitution into (5.45),

K(ζ) =
n−1∑

k=0

Akζ
−k−2 −G(ζ)

n∑

k=1

kcn−kζ
k−1 −

G′(ζ)
n∑

k=0

cn−kζ
k +

n−1∑

k=0

(k + 1)
{ n−k−1∑

j=0

qjcj+k+1

}
ζ−k−2 −

n−1∑

k=1

k
{ n−1∑

j=k

qjcj−k

}
ζk−1, ζ ∈ S+. (5.54)

It follows from (5.30) and (5.34) that

Ak = −(k + 1)
n−k−1∑

j=0

cj+k+1qj, k = 0, 1, . . . , n− 1,

and thus, by taking complex conjugates

Ak = −(k + 1)
n−k−1∑

j=0

cj+k+1qj, k = 0, 1, . . . , n− 1.

This means that the terms with ζ−k−2 for k = 0, 1, . . . , n − 1 in eq. (5.54)
cancel, and therefore (5.54) reduces to

K(ζ) = −G(ζ)
n−1∑

k=0

(k + 1)cn−k−1ζ
k − G′(ζ)

n∑

k=0

cn−kζ
k −

n−1∑

k=1

k
{ n−1∑

j=k

qjcj−k

}
ζk−1, ζ ∈ S+ . (5.55)

This shows that the function K(ζ) is indeed bounded for ζ → 0, which was to
be proved.
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Conclusion

The functions H(ζ) and K(ζ), which together constitute the quantity

1
2
ω′

n(ζ)[σyy − σxx + 2iσxy] = H(ζ) +K(ζ), ζ ∈ S+, (5.56)

see eq. (5.43), can be calculated without essential difficulties from (5.44) and
(5.55). The stress components σxx, σyy and σxy can then easily be determined
from the quantities σxx + σyy and σyy − σxx + 2iσxy. Since the formulas are
rather complicated, and the calculations involve a large number of intermediate
quantities, the calculations to be performed are assembled in the next chapter.



Chapter 6

RECAPITULATION OF FORMULAS

In this chapter the formulas derived in the preceding chapters are assembled.
Some minor changes of notation will be introduced for the convenience of com-
putation. The order in which the formulas are given is the same as that in
which numerical calculations have to be performed. No reference to the pre-
ceding chapters, from which the formulas are taken, will be given.

Let the conformal transformation

z = ω(ζ), (6.1)

map the interior of the unit circle γ in the ζ-plane onto a region R in the z-
plane, where R is the lower half plane =(z) < 0, provided with edge notches
and mounds of a finite total area. Let σ0 be the point on γ corresponding
to the point at infinity in the z-plane. The conformal transformation (6.1) is
approximated by the series expansion

ω(ζ) ≈ ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k < n ≥ 2, (6.2)

where p is the residue of ω(ζ) at its simple pole ζ = σ0,

p = lim
ζ→σ0

{(ζ − σ0)ω(ζ)}, (6.3)

and where the coefficients ck (k = 0, 1, 2, . . . , n) are to be determined from the
following equations

ck =
1
2π

∫ 2π

0

{ω(exp(iθ)) − p

exp(iθ) − σ0
} exp(−kiθ) dθ,

k = 0, 1, . . ., n− 1, (6.4)

cn = 1
2pσ

−n−1
0 − 1

2σ
−n
0

n−1∑

k=0

{(1 + k/n)ckσk
0 − (1 − k/n)ckσ−k

0 }. (6.5)

From the coefficients ck the following sets of other coefficients are to be calcu-
lated successively,

d0 =
n∑

j=0

cjσ
j
0,

dk =
n∑

j=k

(j − k + 1)cjσ
j−k
0 , k = 1, . . . , n,

(6.6)
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ek =
min(k,n−1)∑

max(0,k−n)

(j + 1)cj+1ck−j, k = 0, 1, . . ., 2n− 1, (6.7)

fk =
min(k,n−1)∑

max(0,k−n)

(n− j)cn−jck−j, k = 0, 1, . . . , 2n+ 1, (6.8)

Bk = (1 +K0)ek − 2pdk+2En−k−2 +
(1 +K0)pσ0(k + 1)ck+1En−k−1 − (1 +K0)fn−k−1En−k−1 −

(1 −K0)fn+k+1En−k−2, k = 0, 1, . . . , 2n− 1, (6.9)

Ck = −2pσ−2
0 dkEn−k + (1 −K0)pσ0(k − 1)ck−1En−k−1 +
(1 +K0)fn+k−1En−k + (1 −K0)fn−k+1En−k+1 −

(1 −K0)ek−2Ek−2, k = 1, . . . , 2n+ 1, (6.10)

where K0 is the (given) coefficient of neutral earth pressure at infinity, and the
symbol Ej denotes, for integer values of j,

Ej =
{

1, j ≥ 0,
0, j < 0. (6.11)

Next the coefficients qk (k = 0, 1, . . ., n − 1) are to be calculated from the
following system of n linear equations

−Bk − C1σ
−k−1
0 +

k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
0 )qj +

(k + 1)
n−k−1∑

j=0

cj+k+1qj = 0, k = 0, 1, . . . , n− 1. (6.12)

When these coeeficients qk have been calculated the following coefficients can
be calculated

A = −C1, (6.13)

Ak = −Bk − C1σ
−k−1
0 +

k∑

j=0

(k − j + 1)(ck−j+1 − pσ−k+j−2
0 )qj ,

k = 0, 1, . . . , n− 1. (6.14)

When this stage is reached, all coefficients necessary for the calculation of the
stresses are, in principle, available. To facilitate the actual computation of the
stresses the following sets of constants are introduced,

rk =
n−1∑

j=k+1

(j + 1)(cj+1 − pσ−j−2
0 )qn+k−j, k = 0, 1, . . . , n− 2, (6.15)
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sk =
n−1∑

j=k

qjcj−k, k = 1, 2, . . . , n− 1, (6.16)

The formulas in the sequel of this chapter refer to the actual evaluation of the
stress components.

The choice of a point ζ, such that |ζ| ≤ 1 and ζ 6= 0, defines a point in the
physical z-plane,

z = ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k. (6.17)

The stresses in this point will be calculated.
First the following auxiliary functions (the first and second derivative of the

conformal transformation function ωn(ζ)) are needed,

ω′
n(ζ) = −

p

(ζ − σ0)2
+

n∑

k=1

kckζ
k−1, (6.18)

ω′′
n(ζ) =

2p
(ζ − σ0)3

+
n∑

k=2

k(k − 1)ckζk−2. (6.19)

The stress function Φ(ζ) and its first derivative Φ′(ζ) can be calculated from
the following two formulas

Φ(ζ) = 1
4
i
{2n−1∑

k=0

Bkζ
k +

n−1∑

k=0

Akζ
k +

A

ζ − σ0

}
/ω′

n(ζ), (6.20)

Φ′(ζ) = 1
4i

{2n−1∑

k=1

kBkζ
k−1 +

n−1∑

k=1

kAkζ
k−1 − A

(ζ − σ0)2
−

ω′′
n(ζ)Φ(ζ)

}
/ω′

n(ζ), (6.21)

Next the following auxiliary functions must be calculated consecutively

h(ζ) = pσ−n−1
0 [nζ − (n + 1)σ0]/(ζ − σ0)2, (6.22)

h′(ζ) = −pσ−n−1
0 [nζ − (n + 2)σ0]/(ζ − σ0)3, (6.23)

R(ζ) =
n−1∑

k=0

Bn+kζ
k + Aσ−n

0 /(ζ − σ0), (6.24)

R′(ζ) =
n−1∑

k=1

kBn+kζ
k−1 −Aσ−n

0 /(ζ − σ0)2, (6.25)
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F (ζ) = R(ζ) − h(ζ)
n−1∑

k=0

qkζ
k −

n−2∑

k=0

rkζ
k, (6.26)

F ′(ζ) = R′(ζ) − h′(ζ)
n−1∑

k=0

qkζ
k − h(ζ)

n−1∑

k=1

kqkζ
k−1 −

n−2∑

k=1

krkζ
k−1, (6.27)

G(ζ) = F (ζ)/ω′
n(ζ), (6.28)

G′(ζ) =
{
F ′(ζ) −G(ζ)ω′′

n(ζ)
}
/ω′

n(ζ), (6.29)

H(ζ) = −pσ0(1 − ζ|ζ|)Φ′(ζ)
|ζ − σ0|2

+ Φ′(ζ)
n∑

k=0

ck ζ
k

+

C1

ζ − σ0
+

2n−1∑

k=0

Ck+2ζ
k − pσ2

0Φ(ζ)
(ζ − σ0)2

(6.30)

K(ζ) = −G(ζ)
n−1∑

k=0

(k + 1)cn−k−1ζ
k − G′(ζ)

n∑

k=0

cn−kζ
k −

n−1∑

k=1

kskζ
k−1, (6.31)

L(ζ) = 1
2 i[H(ζ) +K(ζ)]/ω′

n(ζ), (6.32)

M (ζ) = 2[Φ(ζ) + Φ(ζ)]. (6.33)

The components of incremental stress are now obtained as

σxx/ρg = 1
2 [M (ζ) −<{L(ζ)}], (6.34)

σyy/ρg = 1
2 [M (ζ) + <{L(ζ)}], (6.35)

σxy/ρg = 1
2
={L(ζ)}. (6.36)

Finally, when the total stresses (i.e. initial stresses plus incremental stresses)
are needed, these can be calculated from

τxx/ρg = σxx/ρg +K0={ωn(ζ)}, (6.37)

τyy/ρg = σyy/ρg + ={ωn(ζ)}, (6.38)

τxy/ρg = σxy/ρg. (6.39)

It may be mentioned that, when ζ is considered as being dimensionless, then,
since z has the dimension of a length, p and ck will also have the dimension of a
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length. The dimensions of all other quantities can then easily be investigated,
and it turns out that L(ζ) and M (ζ) both have the dimension of a length. This
implies that the quantities σxx, σyy and σxy indeed have the dimension of a
stress, as they should.

The above formulas are somewhat simplified when the region R in the z-
plane is symmetric with respect to the y-axis. In that case when σ0 = −i (so
that in the ζ-plane the axis of symmetry is likewise the imaginary axis), the
constant p is real and the coefficients ck are alternatively purely real and purely
imaginary, i.e.

<{ckik} = 0, k = 0, 1, . . . , n.

This then enables to write the equations (6.6) – (6.16) in such a way that
they involve only real quantities. No particular difficulties are encountered
and no particularly interesting results are obtained, therefore this will not be
elaborated here.



Chapter 7

CIRCULAR ARC NOTCH

In this chapter the case of a single circular arc notch in a half plane (fig. 7.1)
is considered. In order to apply the results of chapters 5 and 6 it is necessary
to find the conformal transformation of the region into the interior of the unit
circle ‖ζ| = 1, and to bring this transformation into the form

ωn(ζ) +
p

ζ − σ0
+

n∑

k=0

ckζ
k.

Figure 7.1: Half plane with circular arc notch.

Once that the parameters p, σ0 and ck have been found the calculation of the
stresses along the lines of chapter 6 requires only simple algebraic operations.
These operations have been assembled in a computer program and need not be
reconsidered here. Therefore the considerations of this chapter can be restricted
to the indication of a procedure for the calculation of p, σ0 and ck. The same
is true for any specific case in the class of problems considered in this thesis
for which the stresses are to be calculated.

In section 7.1 such a procedure for the determination of the parameters p,
σ0 and ck will be presented. In section 7.2 some results for two special cases
will be given. Finally, in section 7.3 an alternative method of solution will
be presented, using Fourier integrals. This will enable a comparison of results
obtained by the two methods.

41
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7.1 The conformal transformation

In the complex plane let the regionR be the region below the open lineC, which
consists of the parts (−∞,−1) and (1,+∞) of the real axis, and, between the
points z = −1 and z = +1, of a circular arc. The interior angle at z = ±1
is denoted by α (fig. 7.1). When α = π the region R is a half plane, when
0 < α < π the region R is a half plane with a circular arc noth, and when
π < α < 2π the region R is a half plane with a circular arc mound.

The interior of the unit circle γ in the ζ-plane can be mapped onto the
region R by the conformal transformation

z = ω(ζ) =
a(ζ + 1)α/π + (ζ − 1)α/π/a

a(ζ + 1)α/π − (ζ − 1)α/π/a
, |ζ| ≤ 1, (7.1)

where

a = exp(3iα/4). (7.2)

In the formula (7.1) the arguments of the quantities ζ + 1 and ζ − 1 are to be
taken as follows

|ζ| ≤ 1 : −π/2 ≤ arg(ζ + 1) ≤ π/2,
|ζ| ≤ 1 : π/2 ≤ arg(ζ − 1) ≤ 3π/2. (7.3)

These conditions ensure that the function ω(ζ) as defined by (7.1) is single
valued.

That equation (7.1) indeed represents the conformal transformation of S+

(the interior of γ) onto R can easily be verified. In the first place for a point σ
on the upper half of γ one has (fig. 7.2),

Figure 7.2: Point on upper half of unit circle.

arg(ζ + 1) = θ/2,
arg(ζ − 1) = (π + θ)/2,
|ζ + 1| = 2 cos(θ/2),
|ζ − 1| = 2 sin(θ/2),

where θ is the argument of ζ, i.e. ζ = σ = exp(iθ), with 0 ≤ θ ≤ π. Then after
some elaboration and simplification equation (7.1) reduces to

0 ≤ θ ≤ π : z = ω(ζ) =
c2α/π − s2α/π − 2i(cs)α/π sin(α)
c2α/π + s2α/π − 2(cs)α/π cos(α)

, (7.4)
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where

c = cos(θ/2), s = sin(θ/2). (7.5)

Taking the real and imaginary parts of the expression (7.4) enables to verify
that

x2 + [y + cot(α)]2 = 1/ sin2(α), (7.6)

which is the equation of the circle of which the circular arc forms a part.
for a point σ on the lower half of the unit circle γ one has (fig. 7.3), in

accordance with eqs. (7.3),

arg(ζ + 1) = (θ − 2π)/2,
arg(ζ − 1) = (π + θ)/2,
|ζ + 1| = 2 sin[(θ − π)/2],
|ζ − 1| = 2 cos[(θ − π)/2].

Figure 7.3: Point on lower half of unit circle.

This then leads to the following reduced form of (7.1),

π ≤ θ ≤ 2π : z = ω(σ) =
s
α/π
∗ + c

α/π
∗

s
α/π
∗ − c

α/π
∗

, (7.7)

where

c∗ = cos[(θ − π)/2], s∗ = sin[(θ − π)/2]. (7.8)

Since (7.7) is real it follows that to the lower half of the unit circle γ there
correspond points on the real axis in the z-plane, as required. The points
θ = π and θ = 2π correspond to z = −1, respectively z = +1. For θ = 3π/2
the denominator in (7.7) is zero, indicating that then x = ±∞. The behaviour
near this point, which is a singularity of the conformal transformation (7.1)
deserves some special attention.

By writing ζ = −i + ε in eq. (7.1) and then elaborating each factor, one
obtaines a series expansion of ω(ζ) increasing powers of ε. If in this series ε is
replaced by ζ + i the result is the following Laurent series expansion of ω(ζ)
around ζ = −i:

|ζ + i| � 1 : ω(ζ) =
2π/α
ζ + i

+
πi

α
− 1

6

(π
α
− α

π

)
(ζ + i) + . . . (7.9)
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This shows that the singularity ζ = −i is a first order pole, and that the region
in the z-plane indeed approximates a half plane at infinity. For a point on the
unit circle γ close to ζ = −i one may write

ζ = σ = exp(iθ) = exp[i(3π/2 + δ)].

Expanding this for small values of δ shows that

ζ = −i+ δ + iδ2/2− δ3/6,

hence

ζ + i = δ + iδ2/2 + δ3/6.

Using this result equation (7.9) can be rewritten in terms of increasing powers
of δ. When δ is then replaced by θ − 3π/2 one obtains

|θ − 3π/2| � 1 : ω(σ) =
2π/α

θ − 3π/2
− 1

6

(2π
α

− α

π

)
(θ − 3π/2) + . . .(7.10)

In chapter 4 the general conformal transformation was written as follows
(see eq. (4.1)),

ω(ζ) =
p

ζ − σ0
+ ω0(ζ), ζ ∈ S+ + γ. (7.11)

where the function ω0(ζ) is holomorphic in S+ and continuous (and thus
bounded) in S+ + γ. It follows from (7.9) that for the class of problems con-
sidered in this chapter

σ0 = −i, p = 2π/α. (7.12)

It may be observed from (7.12) that p/σ0 is an imaginary quantity, which
was obtained in chapter 4 as a condition to be imposed on the conformal
transformation, see (4.18).

The regular part of the conformal transformation, the function ω0(ζ), is
now given by

ω0(ζ) = ω(ζ) − 2π/α
ζ + i

, (7.13)

and, in accordance with the considerations of chapter 4, this function is ex-
panded in a Taylor series around ζ = 0,

ω0(ζ) =
∞∑

k=0

ckζ
k. (7.14)

An approximation to the conformal transformation is obtained by taking into
acoount the first n terms only,

ω(ζ) ≈ ωn(ζ) =
2π/α
ζ + i

+
n∑

k=0

ckζ
k. (7.15)
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The coefficients ck may be calculated from the equations (4.10), i.e.

ck =
1
2π

∫ 2π

0

ω∗(θ) exp(−kiθ) dθ, k = 0, 1, 2, . . ., (7.16)

where

ω∗(θ) = ω0(σ) = ω0(exp[iθ]). (7.17)

In principle the problem of determining the approximate conformal transfor-
mation is now solved, since σ0 and p are known, and the coefficients ck can be
calculated from (7.16).

In general, the integrals (7.16) may be calculated numerically using Filon’s
methods (see appendix A). The values of the function ω∗(θ), needed for the
application of this method, can be determined by first calculating the value of
ω(σ) in the point σ = exp(iθ), using either (7.4) or (7.7), and then subtracting
the value of 2π/[α(σ + i)]. This procedure works well, except near σ = −i,
where the value of ω∗(θ) is best obtained by combining (7.9) and (7.13). This
gives

|θ − 3π/2| � 1 : ω∗(θ) =
πi

6
− 1

6

(π
α
− α

π

)
(θ − 3π/2) + . . . ,

where the error is of magnitude O(θ − 3π/2)3.
For the special case α = π/2 the integrals (7.16) happen to admit an exact

evaluation. The details of this integration will not be given here, but only the
result, which is

α = π/2 : c0 = (3 −
√

2)i, ck = 2ik+1 − i
√

2
k−j∑

j=0

ikbj, k = 1, 2, . . .,

where

b0 = 1, b1 = 0, bk = [(k − 3)/k]bk−2, k = 2, 3, . . . .

For this special case (α = π/2), which is the case of a semi-circular arc notch,
some numerical results are given in table 7.1. Since the coefficients are alter-
natively imaginary and real, only the values of =(ckik are given, the values of
<(ckik) being zero for all values of k. In the second column of the table the
exact values of the coefficients are given. The third column (marked Filon2)
shows the values obtained using Filon’s method. In this method (Filon, 1928)
the function ω∗(θ), see eq. (7.16), is approximated by a second order polyno-
mial, using a subdivision of the integration interval (0, 2π) into a large number
of equal parts. The fourth column (marked Filon4) shows the results obtained
using an extension of Filon’s method (see appendix A), in which a fourth order
polynomial approximation is used. The interval (0, 2π) was subdivided into 40
equal parts. Computer time for both calculations was about the same (approx-
imately 150 seconds for the calculation of 50 coefficients, on the Telefunken
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=(ckik)
k exact Filon2 Filon4
0 +1.58579 +1.58586 +1.58582
1 −0.58579 −0.58586 −0.58582
2 −0.12132 −0.12139 −0.12135
3 +0.12132 +0.12139 +0.12135
4 +0.05546 +0.05553 +0.05549
5 −0.05546 −0.05553 −0.05549
6 −0.03293 −0.03301 −0.03296
7 +0.03293 +0.03301 +0.03293
8 +0.02231 +0.02238 +0.02234
9 −0.02231 −0.02238 −0.02233
10 −0.01636 −0.01643 −0.01640
20 +0.00606 +0.00613 +0.00609
30 −0.00334 −0.00343 −0.00338
40 +0.00219 +0.00227 +0.00222
50 −0.00157 −0.00163 −0.00160

Table 7.1: Coefficients ck for α = π/2.

TR4 of the Delft University of Technology) and it is found that the extended
Filon rule yields somewhat more accurate results. It has been observed that
by using the extended Filon rule with a subdivision into 20 equal parts about
the same accuracy is achieved as with the normal Filon rule with a subdivision
into 200 equal parts. The gain in computer time then is about 50 %.

Examples

The region corresponding to the interior of the circle |ζ| = 1 by the approximate
conformal transformation is shown in figure 7.4. The left half of the figure has
been determined using 50 terms in the Taylor series expansion. In the right half
of the figure the results are shown of an approximation using 100 terms. Both
parts of the figure have been drawn using the exact values of the Taylor series
coefficients, but use of the coefficients calculated by Filon’s method would not
lead to discernible differences.

As a further illustration some more results are shown in figures 7.5 and 7.6.
These figures show the approximate regions obtained by using 50 terms of the
Taylor series for α = 5π/6 and α = 3π/2.

The most striking difference between the figures 7.4 and 7.6 is that in the
former figure the approximation close to the corner point is rather bad, whereas
in the latter figure the approximation is extremely good. The accuracy for this
case is further illustrated in figure 7.7, which shows a detail of figure 7.6, close
to the corner point. The drawn line is the original contour, whereas the dots
respresent points on the approximate contour. The very good approximation
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Figure 7.4: Approximation of half plane with semi-circular notch.

Figure 7.5: Approximation of half plane with circular arc notch.

near a re-entrant angle is in accordance with results for a plate with a square or
triangular hole (see Muskhelishvili, 1963). It appears that the approximation
near a salient angle is much worse. Fortunately, such a corner point is, in the
absence of external loadings, a dead corner with respect to the stresses, i.e. the
stresses tend to zero near such a point. A closer investigation of this property
is presented below.
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Figure 7.6: Approximation of half plane with semi-circular mound.

Figure 7.7: Detail of corner point.
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Generalization of the approximation procedure

The approximation of a complex function f(θ, continuous for 0 ≤ θ ≤ 2π,
and satisfying the condition f(0) = f(2π), by the first n terms of its Fourier
expansion, represents a least squares approximation with a uniform weight
function. This means that the quantity

E =
∫ 2π

0

{
f(θ) −

n∑

k=0

ck exp(kiθ)
}{
f(θ) −

n∑

k=0

ck exp(−kiθ)
}
dθ,

attains the least possible value when the coefficients ck are chosen as

ck =
∫ 2π

0

f(θ) exp(−kiθ) dθ.

Thus the deviations from the original function f(θ) are minimized with a weight
A∆θ per elementary arc of length ∆θ, where A is a constant. Since in general
for a conformal transformation z = ω(ζ) one has

|∆z| = |∆ζ||ω′(ζ)|,

and since for points on the unit circle |∆ζ| = ∆θ, it now follows that the error
on an arc of length |∆z| in the z-plane is counted with a weight A|∆z|/|ω′(ζ)|,
and this is certainly not the same for all elementary arcs of the same length
|∆z|. In fact, it has been seen in chapter 4, see eq. (4.5), that near a point σm

corresponding to a corner point of the contour in the z-plane,

ω′(ζ) = B(ζ − σm)α/π[1 + o(1)],

where 0 < α < π for a re-entrant angle and −π < α < 0 for a salient angle.
Hence in a re-entrant angle ω′(ζ) vanishes, and in a salient angle ω′(ζ) is
unbounded. From this it follows that the weight A|∆z|/|ω′(ζ)| becomes zero
near a salient angle, and this weight is infinite near a re-entrant angle. This
explains why the Taylor series approximation is so bad for a salient angle, and
leads to such extremely good results near a re-entrant angle.

The considerations just given suggest to investigate the possibility of im-
proving the approximation near salient angles by the introduction of a variable
weight function in the least squares approximation. This then leads to different
values for the coefficients ck, which then have to be calculated from a system
of linear equations. Indeed, it has been found that, by using weight functions
which concentrate the weight in points corresponding to salient angles, a con-
siderable improvement for the immediate neighbourhood of salient angles can
be achieved. However, the result is also that then in the remaining parts of
the contour the approximation becomes much worse than it was before, and
this completely spoils the total results. It may thus be possible to find a better
approximation of the region, but then larger errors are made in parts of the
region where the stresses are not small.



50 7. CIRCULAR ARC NOTCH

7.2 Numerical results

In this section some numerical results, which may serve as an illustration of
the considerations of chapter 5, will be presented. This will also give the
opportunity to compare certain results with an exact solution for a special
case. Some of the results have already been presented elsewhere (Verruijt,
1969). This section also contains some general considerations on the accuracy
of the method.

In the first place attention will be paid to the case α = π/2, i.e. the case
of a semi-circular notch. For this case an exact solution, valid only for K0 = 1
exists1, namely

τxx/ρgR = −(R/r) sinψ cos2ψ + (r/R) sinψ,
τyy/ρgR = −(R/r) sin3ψ + (r/R) sinψ, (7.18)
τxy/ρgR = −(R/r) sin2ψ cosψ,

where r and ψ are polar coordinates and R is the radius of the semi-circle.
That this solution satisfies the conditions of a stress free boundary can be
verified without difficulty. The incremental stresses (due to the excavation
only) are represented by the first terms in the right hand members of eqs.
(7.18). Actually, these stresses also represent the solution of the problem of
a concentrated load of magnitude πρgR2 (the weight of the material in the
excavation), acting on the lower half plane y ≤ 0 (the Boussinesq-Flamant
problem, see e.g. scshape Timoshenko & Goodier, 1951, p. 87).

It can be shown that in this case the contours of constant (σxx +σyy)/2, the
isotropic part of the incremental stress tensor, and those of constant maximum
shear stress,

τ =
√

(σxx − σyy)2/4 + σ2
xy,

are circles passing through the origin. In figure 7.8 the contours of constant
(σxx + σyy)/2 for the exact solution are represented by the drawn lines. In
the same figure the results of calculations by the approximate method pre-
sented in this thesis are represented by the dots. The results were obtained by
approximating the conformal transformation by a series containing the first
50 terms of the Taylor series expansion of the regular part. The stresses
were calulated in 240 points, namely those for which |ζ| = 0, 0.1, . . ., 1 and
arg(ζ) = 0, π/12, . . . , 2π. The points in which (σxx +σyy)/2 has a certain value
were obtained by linear interpolation (in the ζ-plane) between the 240 points
for which the stresses were calculated.

In figure 7.9 the contours of maximum incremental shear stress are shown.
Again the fully drawn lines repesent the circles corresponding to the incre-
mental part of the exact solution (7.18), and the dots are the results of the
approximate complex variable method. In both figures 7.8 and 7.9 the cor-
respondence between the exact and approximate resluts is fairly good, except

1This solution was brought to the author’s attention by H.L. Koning
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Figure 7.8: Contours of (σxx + σyy)/2 for semi-circular notch, K0 = 1.

close to the boundary, where considerable errors (of about 10 %) occur. A gen-
eral consideration on errors, which explains why these errors occur, is presented
below.

In general the conformal transformation is approximated by a formula of
the form

ωn(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k.

It can be expected that the deviation (ε) of the approximate boundary from
the exact one is of the order of magnitude of the last term,

ε ≈ |cn|. (7.19)
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Figure 7.9: Contours of (τ/2 for semi-circular notch, K0 = 1.

The last term of the series, cnζn, results in a wave of constant amplitude and
variable period in the boundary in the z-plane (fig. 7.10). The wave length
(2`) can be calculated by noting that an increase of arg(ζ) by 2π/n results in
the term cnζ

n to return to its original value. In general the relation between
the lengths of small elementary arcs in the planes of ζ and z is

|∆z|/|∆ζ| = |ω′
n(ζ)|.

Now, since in this case |∆ζ| = 2π/n corresponds to |∆z = 2`, it follows that

` ≈ π|ω′
n(ζ)|/n. (7.20)

In order to investigate the influence of this wave on the radius of curvature of
the arc it is noted that in general the height f of an arc of chord length ` and
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Figure 7.10: Wave on boundary.

radius R (fig. 7.11) is

f = `2/8R,

Figure 7.11: Stresses on boundary element.

provided that `2 � R2. When in f an error ε is made, the radius of curvature
will be different, say R∗. Then

f ± ε = `2/8R∗.

It now follows that
1
R

−
1
R∗ ±

8ε
`2
,

or, with (7.19) and (7.20),

1
R∗ ≈ 1

R
± 8n2|cn|
π2|ω′

n(ζ)|2
. (7.21)

The influence of this error in the radius of curvature of the boundary on the
stresses can be realized by investigating its effect on the equation of equilibrium
in the direction normal to the boundary (fig. 7.11),

∂τnn

∂n
+
τnn − τtt

R
+
∂τnt

∂t
+ ρg sin β = 0,
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where β is the angle of the normal to the boundary with the vertical direction.
In order to obtain an over-estimation of the error in the stresses it will now
be investigated what error (∆τtt) must occur in the stress component τtt to
balance the error in the radius of curvature. This means that in the equation
of equlibrium all stresses are assuemd to remain unchanged, except τtt. This
equation then becomes, with (7.21),

∂τnn

∂n
+
τnn − τtt − ∆τtt

R
± (τnn − τtt − ∆τtt)

8n2|cn|
π2|ω′

n(ζ)|2 +

∂τnt

∂t
+ ρg sin β = 0.

With the aid of the original equation of equilibrium this gives

−
∆τtt
R

± (τnn − τtt − ∆τtt)
8n2|cn|

π2|ω′
n(ζ)|2 ≈ 0.

Hence, since along the boundary τnn = 0, one obtains, taking the largest of the
two possible values,

∣∣∣∆τtt
τtt

∣∣∣ ≤ 1
|1− π2|ω′

n(ζ)|2/(8n2|cn|R)| . (7.22)

It should be noted that eq. (7.22) provides merely a probable upper boud for
the error in the stresses.

In the case of a semi-circular arc notch of radius R = 1, the values n = 49
and cn = 0.00167 correspond to each other. The smallest value of |ω′

n(ζ)| along
the boundary occurs for ζ = i, which corresponds to z = −i, the deepest point
of the notch. For ζ = i the value of |ω′(ζ)| is obtained from (7.1) as 0.5. With
these numerical values it is found that

π2|ω′(ζ)|2/(8n2|cn|R = 0.00769,

and hence with (7.22) this gives
∣∣∣∆τtt
τtt

∣∣∣ ≤ 1.08.

It can now be concluded that the approximate calculations will lead to
values for the stresses in points of the boundary which may differ from the
exact values by errors at the most of the same order of magnitude as the
stresses themselves. It is to be remembered that the considerations just given
can merely be interpreted as providing some insight in the order of accuracy.
In reality the situation is more complicated because of the fact that the shape
of the boundary in the z-plane is the result of a large number of waves, of which
only the one with the highest frequency has been taken into account here.

The conclusion to be drawn from the above considerations is that the ap-
proximate method of this thesis is not well suited for the calculation of the
stresses along the boundary. This general conclusion is confirmed by the results
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shown in figures 7.8 and 7.9, in which along the boundary errors of about 10 %
occur. In section 7.3 (fig. 7.19) results of another example will be presented
in which even larger errors occur. There it will also appear that these errors
occur in the form of a wave of short period, with a wave length corresponding
to the predicted one.

The expression (7.22) for the order of magnitude of the relative errors in the
stresses along the boundary also shows that taking more terms into account
results in an improvement only when the series converges more rapidly than
1/n2. In the case of a semi-circular arc notch this is not the case (then ncn → 0,
but n2cn is unbounded for n → ∞) and therefore the errors may increase
when more terms are taken into account. In general it may stated that the
approximate complex variable method of this thesis yields accurate results for
the stresses along the boundary if

8n2|cn|R/(π2|ω′(ζ)|2) � 1. (7.23)

The effect mentioned above is somewhat disturbing and is certainly a dis-
advantage of the approximate method considered here. On the other hand,
however, it is to be expected that this effect occurs only in the immediate
vicinty of the boundary. More specifically, it can be expected, on the basis of
De Siant-Venant’s principle, that at a distance large compared to ` and ε the
edge disturbance is no longer of importance. In the case of a semi-circular arc
notch this is certainly confirmed by the results shown in figures 7.8 and 7.9,
away from the boundary. Also, many other specific examples that have been
elaborated (and of which some results will be presented in other sections of
this thesis) have reconfirmed the validity of De Saint-Venant’s principle for the
type of problems considered.

Figure 7.12: Vertical stress τyy on plane y = −R.

As a further illustration of the numerical results obtained for the case of a
semi-circular arc notch, figure 7.12 shows the vertical normal stress τyy along
the horizontal line y = −R (a horizontal line passing through the deepest point
of the notch) for two particular values of the coefficient of neutral earth pressure
(indicated by θ in the figure), namely K0 = 0 and K0 = 1. This figure shows
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that the coefficient of neutral earth pressure has a considerable influence also
on the vertical stresses.

As a final illustration the stresses along the base of a semi-circular mound
(α = 3π/2) are shown in figure 7.13, for K0 = 0 and n = 19. It appears
from this figure that the stresses (in particular the normal stress in a direction
tangent to the boundary) have a singularity in the corner point z = R. It is to
be noted that the results of figure 7.13 can be expected to be rather accurate,
since the appproximation of the boundary has been found to be very good in
this case, see figures 7.6 and 7.7. It may also be mentioned that in this case
formula (7.22) leads to an estimate of the relative error in the stresses along
the boundary of abou 0.08. Moreover, by taking more terms into account the

Figure 7.13: Stresses on the base of a semi-circular mound, K0 = 0.

accuracy is improved in this case, since now it happens that the series converges
more rapidly, in fact,

lim
n→∞

n2cn = 0.

Apart from the singularity in the corner point the vertical components of stress,
τyy, along the base of the mound appear to be fairly constant.

7.3 Comparison with Fourier integral method

This section presents an alternative method of solution of the problem of a
circular arc notch in an elastic half plane. The solution is exact, and there-
fore it provides a suitable test for the verification of the approximate complex
variable solution of the preceding chapters. The method was suggested by
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Koiter (1968), and is analogous to a method for the calculation of stress con-
centrations in a stretched half plane with a circular arch notch ((Ling, 1947;
see also Green & Zerna, 1954, p. 317). Since the method of this section
is completely different from the methods generally used in this thesis, it re-
quires a somewhat different terminology, and therefore the problem is setup
and elaborated independently.

Figure 7.14: Half plane with circular arc notch.

Statement of the problem

The problem of an elastic half plane −∞ < x < +∞, y ≤ 0 with a circular arc
notch is considered (fig. 7.14)/ The stresses due to gravity are to be calculated.
Following Koiter (1968) the stresses are decomposed as follows,

τxx = K0ρgy + sxx + txx,

τyy = ρgy + syy + tyy, (7.24)
τxy = sxy + txy,

where K0 is the coefficient of neutral earth pressure (which is considered as a
given constant). In eq. (7.24) the stresses sxx, syy , sxy are the stresses corre-
sponding to the solution for a given concentrated force P , equal in magnitude
to the weight of the excavated soil, acting in the origin of a lower half plane
(fig. 7.15). The value of P is

P = ρgR2(β − sinβ cos β), (7.25)

where R and β define the circular arc notch (fig. 7.14). The solution of the
problem for a concentrated force P on a lower half plane (the Boussinesq-
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Figure 7.15: Half plane with concentrated force.

Flamant problem) is, see Timoshenko & Goodier (1951, p. 87),

sxx = −2P
πr

sinψ cos2 ψ,

syy = −2P
πr

sin3 ψ, (7.26)

sxy = −2P
πr

sin2 ψ cosψ,

where r and ψ are polar coordinates in the x, y-plane.
The stresses txx, tyy, txy have to satisy the equations of equilibrium in the

absence of body forces. The boundary conditions are to be determined from
the requirement that the boundary EABCD (fig. 7.14) is to be free of external
stress.

Stress function

The stresses txx, tyy, txy can be derived from a biharmonic function (Airy’s
stress function) U1(x, y) according to the following formulas

txx = −∂
2U1

∂y2
, tyy = −∂

2U1

∂x2
, txy = − ∂2U1

∂x∂y
. (7.27)

The boundary conditions for the total stresses are :

EA : τyy = τxy = 0,
CD : τyy = τxy = 0, (7.28)
ABC : τxxνx + τxyνy = τxyνx + τyyνy = 0,
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where νx and νy are the components in x and y direction of the outwardly
directed unit vector ν, normal to the boundary. With (7.24) and (7.26) the
first two conditions are easily transformed into conditions for txx, tyy, txy,

EA : tyy = txy = 0,
(7.29)

CD : tyy = txy = 0.

The boundary condition along ABC requires some more investigation. There-
fore, a coordinate ϕ, defining points on the arc ABC is introduced, see figure
7.16. If the cartesian coordinates of a point on ABC are denoted by x0, y0,

Figure 7.16: Point on arc ABC of boundary.

the relation with ϕ is

x0 = R sinϕ, y0 = R(cos β − cosϕ). (7.30)

From this it follows that

dx0/dϕ = R cosϕ, dy0/dϕ = R sinϕ. (7.31)

Furthermore, along ABC the values of νx and νy are (fig. 7.16),

νx = − sinϕ = − 1
R

dy0
dϕ

, νy = cosϕ =
1
R

dx0

dϕ
. (7.32)

Together with (7.27) these expressions enable to write

txxνx + txyνy = − 1
R

{∂2U1

∂y2

dy0
dϕ

+
∂2U1

∂x∂y

dx0

dϕ

}
= − 1

R

d

dϕ

(∂U1

∂y

)
0
,

(7.33)

txyνx + tyyνy =
1
R

{ ∂2U1

∂x∂y

dy0
dϕ

+
∂2U1

∂x2

dx0

dϕ

}
=

1
R

d

dϕ

(∂U1

∂x

)
0
.
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In these equations the subscript 0 indicates that the values are to be taken in
points of the arc ABC.

In order to relate the stresses txx, tyy, txy to the stresses τxx, τyy, τxy along
ABC the expressions (7.24) and (7.26) must be used. The polar coordinates r0
and ψ0 of a point on ABC are related to ϕ as follows

r0 =
√
x2

0 + y2
0 = R

√
1 − 2 cos β cosϕ+ cos2 β,

cosψ0 = x0/r0 = sinϕ/
√

1 − 2 cos β cosϕ+ cos2 β, (7.34)

sinψ0 = y0/r0 = (cos β − cosϕ)/
√

1 − 2 cos β cosϕ + cos2 β.

It now follows that, for points on ABC,

txx = τxx −K0ρgR(cos β − cosϕ) +
2P
πR

(cos β − cosϕ) sin2ϕ

(1 − 2 cos β cosϕ+ cos2 β)2
,

tyy = τyy − ρgR(cos β − cosϕ) +
2P
πR

(cos β − cosϕ)3

(1 − 2 cos β cosϕ+ cos2 β)2
,

txy = τxy +
2P
πR

(cos β − cosϕ)2 sinϕ
(1 − 2 cos β cosϕ+ cos2 β)2

,

Hence, with (7.32) and the third of eqs. (7.28),

ABC : txxνx + txyνy = X(ϕ), (7.35)

ABC : txyνx + tyyνy = Y (ϕ), (7.36)

where

X(ϕ) = K0ρgR(cos β − cosϕ) sinϕ−
2P
πR

sinϕ(cos β − cosϕ)(1 − cos β cosϕ)
(1 − 2 cos β cosϕ+ cos2 β)2

, (7.37)

Y (ϕ) = −ρgR(cos β − cosϕ) cosϕ −
2P
πR

sinϕ(cos β − cosϕ)2(1 − cos β cosϕ)
(1 − 2 cos β cosϕ+ cos2 β)2

, (7.38)

Equations (7.35) and (7.36) are the boundary conditions for the stresses txx, tyy, txy

along the circular arc ABC. With (7.33) these conditions can be expressed in
terms of the stress function U1. This gives

ABC : − 1
R

d

dϕ

(∂U1

∂y

)
0

= X(ϕ), (7.39)

ABC :
1
R

d

dϕ

(∂U1

∂x

)
0

= Y (ϕ). (7.40)
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The boundary conditions along EA and CD, see (7.29), lead to

EA, CD :
∂2U1

∂x2
=
∂2U1

∂x∂y
= 0.

Since along EA and CD the value of y is constant (y = 0) these equations can
be integrated in the x direction,

EA, CD :
∂U1

∂x
= constant,

∂U1

∂y
= constant.

Along one part of the boundarys the constants can be chosen arbitrarily. Choos-
ing the constants zero along EA gives

EA :
∂U1

∂x
= 0,

∂U1

∂y
= 0, (7.41)

which are the boundary conditions for U1 along EA. With (7.39) and (7.40)
the boundary conditions along ABC can be written as

ABC :
∂U1

∂x
= R

∫ ϕ

−β

Y (ϕ) dϕ,

(7.42)

ABC :
∂U1

∂y
= −R

∫ ϕ

−β

X(ϕ) dϕ.

By taking the lower limit of integration of the integrals (7.42) as ϕ = −β it
has been ensured that in the point A the quantities ∂U1/∂x and ∂U1/∂y are
continuous. The values of ∂U1/∂x and ∂U1/∂y in the point C are given by

C :
∂U1

∂x
= R

∫ β

−β

Y (ϕ) dϕ,
∂U1

∂y
= −R

∫ β

−β

X(ϕ) dϕ. (7.43)

These integrals can be evaluated using (7.37) and (7.38). In both cases the
result is exactly zero, which is, physically speaking, a consequence of the fact
that the loading system for the stresses txx, tyy, txy along the arc ABC is
itself in equilibrium. In its turn this is a consequence of the separation (7.24)
of the total stresses τ in a part accounting for the body forces, in a part s
which accounts for the resulting force P of the loading, and a remaining part t.
Beacuse of the vanishing of the integrals (7.43) the constants in the boundarys
condition along CD are equal to those on EA. Hence these conditions are

CD :
∂U1

∂x
= 0,

∂U1

∂y
= 0, (7.44)

The boundary condition ∂U1/∂x = 0, valid along EA and CD expresses that U1

is constant along these parts of the boundary. In order that U1 be continuous
at infinity these constant values must be equal along EA and CD. Without loss
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of generality these constants may be taken as zero. The mathematical problem
is now

∇2∇2U1 = 0, (7.45)

with the boundary conditions

EA, CD : U1 = 0, ∂U1/∂y = 0, (7.46)

ABC :
∂U1

∂x
= R

∫ ϕ

−β

Y (ϕ) dϕ, (7.47)

ABC :
∂U1

∂y
= −R

∫ ϕ

−β

X(ϕ) dϕ, (7.48)

where X(ϕ) and Y (ϕ) are given by (7.37) and (7.38).

Introduction of potentials

The problem will be solved using potentials. Therefore it is used that every so-
lution of the biharmonic equation (7.45), which is to hold in the region occupied
by the body, can be written as

U1(x, y) = −2ayΦ1(x, y) + (x2 + y2 − a2)Ψ1(x, y), (7.49)

where Φ1 and Ψ1 are harmonic functions,

∇2Φ1 = 0, ∇2Ψ1 = 0, (7.50)

and where

a = R sin β. (7.51)

The decomposition (7.49) of the biharmonic function U1 into two harmonic
functions deserves some further clarification. The general solution of Goursat
of the biharmonic equation (Muskhelishvili, 1953, p. 110) is

2U1 = zf1(z) + zf1(z) + f2(z) + f2(z),

where f1(z) and f2(z) are holomorphic functions of z in the region occupied by
the body. Let this region be denoted by S. It is now assumed that there exists
a real number a such that z = a and z = −a are points outside a. Then the
functions g1(z) and g2(z) defined by

g1(z) =
f2(z) + zf1(z)

z2 − a2
,

g2(z) =
a2f1(z) + zf2(z)

a(z2 − a2)
,
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are also holomorphic in S. The functions f1(z) and f2(z) can be expressed into
g1(z) and g2(z) by

f1(z) = zg1(z) − ag2(z),

f2(z) = azg2(z) − a2g1(z),

and the biharmonic function U1 can therefore be written as

2U1 = (zz − a2)[g1(z) + g1(z)] + a(z − z)[g2(z) − g2(z)].

By writing

<{g1(z)} = Ψ1,

={g2(z)} = Φ1,

it follows that

U1(x, y) = −2ayΦ1(x, y) + (x2 + y2 − a2)Ψ1(x, y),

which is precisely equation (7.49). The representation of the solution of the
biharmonic equation in terms of the two complex functions f1(z) and f2(z) is
complete, i.e. for any solution of the biharmonic equation there exists at least
one pair of functions f1 and f2(z). Furthermore, from any pair of functions
f1(z), f2(z) there can be derived a pair of functions g1(z) and g2(z). This
means that for any solution of the biharmonic equation there exists at least
one pair of functions Φ1(= =g2) and Ψ1(= <g2). Or, in other words, the
representation (7.49) is complete, provided that x±a, y = 0 are points outside
the region occupied by the body.

Conformal transformation

In a similar way as done by Ling (1947), see also Green & Zerna (1954,
p. 317), the variables x and y are repolaced by variables ξ and η through the
conformal transformation

z = x+ iy = a coth(1
2ζ) = a coth(1

2ξ + 1
2iη). (7.52)

Separation into real and imaginary parts gives

x =
a sinh ξ

cosh ξ − cos η
, y = − a sinη

cosh ξ − cos η
. (7.53)

The conformal transformation (7.52) maps the half plane y ≤ 0 with a circular
arc notch onto the interior of an infinite strip of width π − β, see figure 7.17.

Two quantities useful for future reference are

−2ay =
2a2 sin η

cosh ξ − cos η
, (7.54)
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Figure 7.17: Conformal transformation.

x2 + y2 − a2 =
2a2 cos η

cosh ξ − cos η
. (7.55)

Furthermore, it follows from (7.53) that

∂x

∂ξ
=
∂y

∂η
= a

1 − cosh ξ cos η
(cosh ξ − cos η)2

, (7.56)

∂x

∂η
= −∂y

∂ξ
= −a sinh ξ sin η

(cosh ξ − cos η)2
. (7.57)

Through the relations (7.53) the original independent variables x and y are
relaced by ξ and η. The functions U1(x, y), Φ(x, y) and Ψ1(x, y) then become
functions of ξ and η. These functions will be denoted by U (ξ, η), Φ(ξ, η) and
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Ψ(ξ, η). Since Laplace’s equation is invariant for conformal transformations the
functions Φ and Ψ are harmonic,

∂2Φ
∂ξ2

+
∂2Φ
∂η2

= 0,
∂2Ψ
∂ξ2

+
∂2Ψ
∂η2

= 0. (7.58)

It should be noted that the function U (ξ, η) is not biharmonic, because the
biharmonic equation is not invariant for conformal transformations. The func-
tional relationship between U , Φ and Ψ can be obtained by expressing the
coefficients in eq. (7.49) in terms of ξ and η with the aid of (7.54) and (7.55).
This gives

U =
2a2(Φ sinη + Ψ cos η)

cosh ξ − cos η
. (7.59)

Operational solution

Because of the symmetry of the problem and the conformal transformation
with respect to the y-axis, it can be expected that U will be an even function
of ξ,

U (−ξ, η) = U (ξ, η), (7.60)

and hence it is also expected that Φ and Ψ are even functions of ξ. This
suggests to express the solutions of the differential equations (7.58) by means
of Fourier cosine integrals (Titchmarsh, 1948; Sneddon, 1951),

Φ(ξ, η) =
∫ ∞

0

[F1(λ) cosh(λη) + F2(λ) sinh(λη)] cos(λξ) dλ, (7.61)

Ψ(ξ, η) =
∫ ∞

0

[G1(λ) cosh(λη) +G2(λ) sinh(λη)] cos(λξ) dλ. (7.62)

It may be mentioned here that the introduction of these Fourier integrals can be
considered as the result of solving eqs. (7.58) by means of Fourier transforms.
The success of the Fourier method for the type of problem considered here is a
consequence of the fact that in the ζ-plane the geometry of the region is that
of an infinite strip. It will be shown that the four functions F1, F2, G1, G2

can be determined from the boundary conditions of the problem.
First the boundary conditions along EA and CD (fig. 7.14) will be consid-

ered. In the ζ-plane the parts EA and CD of the boundary are mapped on the
real axis, η = 0. Hence conditions (7.46) can be written as

η = 0 : U1 = 0, ∂U1/∂y = 0. (7.63)

In general one has

∂U

∂η
=
∂U1

∂x

∂x

∂η
+
∂U1

∂y

∂y

∂η
,
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and because along EA and CD both ∂U1/∂x and ∂U1/∂y vanish, the boundary
conditions (7.63) become, in terms of ξ and η,

η = 0 : U = 0, (7.64)

η = 0 : ∂U/∂η = 0. (7.65)

In order to transform these conditions into terms of Φ and Ψ use is to be made
of (7.59), and of its partial derivative with respect to η,

∂U

∂η
(cosh ξ − cos η) + U sin η =

2a2
(∂Φ
∂η

sin η + Φ cos η +
∂Ψ
∂η

cos η − Ψ sin η
)
. (7.66)

It now follows from (7.59) and (7.60) that the conditions (7.64) and (7.65) can
only be satisfied if and only if

η = 0 : Ψ = 0, (7.67)

η = 0 : Φ + ∂Ψ/∂η = 0. (7.68)

Substitution of these conditions into the general expressions (7.61) and (7.62)
gives

∫ ∞

0

G1(λ) cos(λξ) dλ = 0,

∫ ∞

0

F1(λ) cos(λξ) dλ +
∫ ∞

0

λG2(λ) cos(λξ) dλ = 0.

These equations should be satisfied for all ξ. Hence

G1(λ) = 0, (7.69)

F1(λ) + λG2(λ) = 0. (7.70)

Using (7.69) and (7.70) the general solutions (7.61) and (7.62) reduce to

Φ(ξ, η) =
∫ ∞

0

[−λG2(λ) cosh(λη) + F2(λ) sinh(λη)] cos(λξ) dλ, (7.71)

Ψ(ξ, η) =
∫ ∞

0

G2(λ) sinh(λη) cos(λξ) dλ. (7.72)

The two remaining unknown functions F2 and G2 must be determined from
the boundary conditions along ABC.

The boundary ABC corresponds to the straight line η = π − β in the ζ-
plnae. The boundary conditions (7.47) and (7.48) express that along ABC
the quantities ∂U1/∂x and ∂U1/∂y are prescribed. From these quantities the
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values of U1 and its derivative normal to the boundary can be determined (at
least in principle), thereby starting from the value U1 = 0 in A or C. Expressed
in terms of ξ and η this means that U and ∂U/∂η can be considered as given
along the line η = π − β. We now write

η = π − β : U (cosh ξ − cos η) =
∫ ∞

0

A(λ) cos(λξ) dλ, (7.73)

η = π − β :
∂U

∂η
(cosh ξ − cos η) + U sinλ =

∫ ∞

0

B(λ) cos(λξ) dλ. (7.74)

These equations can be considered as the definitions of A(λ) and B(λ). It is
assumed that A(λ) and B(λ) can be determined from the boundary conditions.

From (7.59) and (7.73) it now follows, with (7.71) and (7.72), that

2a2 sin β{−λG2 cosh[λ(π − β)] + F2 sinh[λ(π − β)]} −
2a2 cos βG2 sinh[λ(π − β)] = A. (7.75)

Furthermore, it follows from (7.66) and (7.74), with (7.71) and (7.72), that

2a2 sin β{−λ2G2 sinh[λ(π − β)] + F2 cosh[λ(π − β)]} −
2a2 cos β{−λG2 cosh[λ(π − β)] + F2 sinh[λ(π − β)]} −
2a2 cos βλG2 cosh[λ(π − β)] − 2a2 sin βG2 sinh[λ(π − β)] = B. (7.76)

From the system of equations (7.75) and (7.76) it is possible to determine F2

and G2. This gives

2a2F2(λ) = (1 + λ2)A sin β sinh[λ(π − β)]/N (λ) −
B{λ sin β cosh[λ(π − β)] + cos β sinh[λ(π − β)]}/N (λ), (7.77)

2a2G2(λ) = A{λ sin β cosh[λ(π − β)] − cos β sinh[λ(π − β)]}/N (λ) −
B sinβ sinh[λ(π − β)]/N (λ), (7.78)

in which

N (λ) = sinh2[λ(π − β)] − λ2 sin2 β. (7.79)

In principle, the problem has now been solved. Elaboration of the solution for
a specific case requires the following operations

1. Evaluation of U and ∂U/∂η along ABC from (7.47) and (7.48),

2. Representation of the left hand members of equations (7.73) and (7.74)
as Fourier integrals, in order to obtain expressions for A and B,

3. Calculation of integrals of the type (7.71) and (7.79).

It will be shown below that for the special case of a semi-circular arc notch
(β = π/2) the first two operations can be performed analytically, as predicted
by Koiter (1968). This then leads to expressions for the stresses in the form
of definite integrals, which may be evaluated numerically. In the general case
of β 6= π/2 the final fomulas will be multiple integrals, which can be calculated
numerically, at the cost of considerable computation effort.
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Elaboration for β = π/2

When β = π/2 the weight P of the excavation is, with (7.25),

P = 1
2
πρgR2.

The functions X(ϕ) and Y (ϕ), as defined by (7.37) and (7.38), then are

X(ϕ) = (1 −K0)ρgR sinϕ cosϕ, (7.80)

Y (ϕ) = 0. (7.81)

Equations (7.47) and (7.48) now become

ABC : ∂U1/∂x = 0, (7.82)

ABC : ∂U1/∂y = 1
2(1 −K0)ρgR2 cos2 ϕ. (7.83)

It may be noted that when the coefficient of neutral earth pressure K0 =
1, the values of ∂U1/∂x and ∂U1/∂y both vanish identically along ABC. In
that special case the problem is particularly simple, since then the part of the
solution described by the stresses txx, tyy, txy vanishes. This reconfirms the
statement in section 7.2 that for K0 = 1 the problem of a semi-circular arc
notch has as its solution the Boussinesq-Flamant solution.

Along ABC one has

∂U1

∂ϕ
=
∂U1

∂x

dx0

dϕ
+
∂U1

∂y

dy0
dϕ

.

Hence, with (7.31), (7.82) and (7.83),

ABC :
dU1

dϕ
= 1

2(1 −K0)ρgR3 cos3ϕ sinϕ.

Integration gives

ABC : U1 = −1
6
(1 −K0)ρgR3 cos3 ϕ, (7.84)

in which the integration constant has been omitted in order to obtain that
U1 = 0 for ϕ = −β = −π/2.

Next the equations (7.82) – (7.84) will be transformed into terms a and ξ
rather than R and ϕ. In general a = R sin β, so that with β = π/2 it follows
that

a = R. (7.85)

Furthermore, with β = π/2 the second of equations (7.30) gives

cosϕ = −y0/R,

and from the second of equations (7.53) it is found that for η + π − β = π/2,

y0/a = y0/R = −1/ cosh ξ.
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Hence, along ABC :

cosϕ = 1/ cosh ξ. (7.86)

With (7.85) and (7.86) equations (7.82) – (7.84) can be written as

ABC : U1 = −1
6
(1 −K0)ρga3/ cosh3 ξ, (7.87)

ABC : ∂U1/∂x = 0, (7.88)

ABC : ∂U1/∂y = 1
2(1 −K0)ρga2/ cosh2 ξ. (7.89)

In equations (7.73) and (7.74) the following quantities are needed

A(ξ) =
∫ ∞

0

A(λ) cos(λξ) dλ = (cosh ξ + cos β)U (ξ, π − β), (7.90)

B(ξ) =
∫ ∞

0

B(λ) cos(λξ) dλ =

(cosh ξ + cos β)
(∂U
∂η

)
η=π−β

+ sin β U (ξ, π − β), (7.91)

or, with β = π/2,

A(ξ) = cosh ξ U (ξ, π/2), (7.92)

B(ξ) = cosh ξ
(∂U
∂η

)
η=π/2

+ U (ξ, π/2). (7.93)

Beacuse the boundary ABC corresponds to the line η = π/2 in the ζ-plane it
follows directly from (7.87) and (7.92) that

A(ξ) = −1
6 (1 −K0)ρga3/ cosh2 ξ. (7.94)

In order to determine B(ξ) it is noted that laong ABC

∂U

∂η
=
∂U

∂x

∂x

∂η
+
∂U

∂y

∂y

∂η
= 1

2 (1 −K0)ρga3/ cosh4 ξ,

where use has been made of (7.56), (7.57), (7.57), (7.88) and (7.89). Thus
equation (7.93) now gives

B(ξ) = 1
3 (1 −K0)ρga3/ cosh3 ξ. (7.95)

With the aid of the integral representations (B.10) and (B.11), see appendix
B, equations (7.94) and (7.95) can be written as

A(ξ) = −
∫ ∞

0

(1 −K0)ρga3λ/6
sinh(πλ/2)

cos(ξλ) dλ, (7.96)
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B(ξ) =
∫ ∞

0

(1 −K0)ρga3(1 + λ2)/6
cosh(πλ/2)

cos(ξλ) dλ. (7.97)

This means, see equations (7.90) and (7.91), that A(λ) and B(λ) in this case
are

A(λ) = −1
6
(1 −K0)ρga3λ/ sinh(πλ/2), (7.98)

B(λ) = 1
6 (1 −K0)ρga3(1 + λ2)/ cosh(πλ/2). (7.99)

Using these results the functions F2(λ) and G(λ) are obtained from (7.77) and
(7.78) as follows

F2(λ) = 1
6 (1 −K0)ρga

λ(1 + λ2)
sinh2(πλ/2) − λ2

, (7.100)

G2(λ) = −1
6
(1 −K0)ρga

sinh2(πλ/2) + λ2 cosh(πλ)
sinh(πλ)[sinh2(πλ/2) − λ2]

. (7.101)

Now that F2(λ) and G2(λ) are known, the integral expressions (7.71) and (7.72)
for the stress functions Φ and Ψ are completely defined. Analytical expressions
of these integrals is, unfortunately, impossible. However, for a given value of
ξ and η (that is : for given x and y) the values of Φ and Ψ as well as their
partial derivatives can be calculated numerically without essential difficulties.
Since the Fourier integral method in the context of this thesis has merely the
purpose of a check on the complex variable method, only one quantity, namely
the sum of the principal stresses, will be elaborated here.

The sum of the principal stresses

It follows from (7.27) that the sum of the principal stresses, which is equal to
txx + tyy, is given by

txx + tyy =
∂2U1

∂x2
+
∂2U1

∂y2
.

With (7.49) this gives, because Φ and Ψ are harmonic,

1
4 (txx + tyy) = −a∂Φ1

∂y
+ Ψ1 + x

∂Ψ1

∂x
+ y

∂Ψ1

∂y
.

With equations (7.53) – (7.57) this can be expressed in terms of ξ and η instead
of x and y. The result is

1
4 (txx + tyy) = − sinh ξ sinη

∂Φ
∂ξ

− (1 − cosh ξ cos η)
∂Φ
∂η

+

Ψ − sinh ξ cos η
∂Ψ
∂ξ

− cosh ξ sin η
∂Ψ
∂η

. (7.102)
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Expressions for the partial derivatives of Φ and Ψ can be obtained from (7.71)
and (7.72). This gives

∂Φ
∂ξ

=
∫ ∞

0

[λ2G2 cosh(λη) − λF2 sinh(λη)] sin(λξ)dλ,

∂Φ
∂η

=
∫ ∞

0

[−λ2G2 sinh(λη) + λF2 cosh(λη)] cos(λξ)dλ,

∂Ψ
∂ξ

=
∫ ∞

0

[−λG2 sinh(λη)] sin(λξ)dλ,

∂Ψ
∂η

=
∫ ∞

0

[λG2 cosh(λη)] cos(λξ)dλ.

Because F2 andG2 can be calculated for any value of λ from (7.100) and (7.101),
equation (7.102) can now be evaluated numerically. The integrals appear to
be rapidly convergent, because for λ → ∞ the integrands tend towards zer as
exp(−bλ), where b is always greater than π/2. For the numerical calculations
the upper limit of integration has been taken equal to 10 instead of ∞. Some
care is needed to evaluate the integrands for values of λ close to zero, since for
λ = 0 the denominators vanish. It may be verified, however, that all terms
in the integrands are bounded for λ → 0. In the computer program used for
the numerical calculation, the quantities λF2 and λG2 are calculated first, and
then these are used to calculate the values of the integrands. The integrals are
then calculated by means of a standard program based on Simpson’s rule.

Once that txx + tyy is knwon, the value of τxx + τyy can be obtained with
(7.24) and (7.26). In the expressions (7.26) the quantities sinψ, cosψ and r
may be replaced by

sinψ =
x√

x2 + y2
, cosψ =

y√
x2 + y2

, r =
√
x2 + y2,

and the value of P in this case is, because β = π/2,

P = 1
2πρgR

2.

The final expression for τxx + τyy is

τxx + τyy

ρgR
= (1 +K0)

y

R
− yR

x2 + y2
+
txx + tyy

ρgR
. (7.103)

The results obtained for points on the y-axis (i.e. x = 0, or ξ = 0), for
k0 = 0, are shown in figure 7.18. In the same figure the values obtained by the
approximate complex variable method are indicated by the heavy dots, taking
39 terms into account, see section 7.2. It appears from the figure that the
correspondence in general is extremely good (differences in numerical values
of at the most 0.003, which can not be visualized on the scale of the figure),
except in the upper most point. In this point, which is the deepest point of
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Figure 7.18: Sum of principal stresses along x = 0.

the notch, the exact value (as calculated by the Fourier integral method) is
1.298, whereas the complex variable method leads to a value of 1.650. This
confirms the conclusion, already given in section 7.2, that along the boundary
the approximate complex variable method is not accurate, but in the interior of
the body it is very accurate. In fact, by taking a somewhat different number of
terms in the approximate conformal transformation, the results for the interior
of the body are hardly modified, but the values along the boundary may be
completely different. Thus, for instance, instead of the 1.650, values up to
2.100 have been obtained by taking a somewhat smaller number of terms into
account. For other values of K0 similar results as those shown in figure 7.18
are obtained: extremely good agreement in interior points, and considerable
errors in boundary points.

K0 τξξ/ρgR
0.00 +1.298
0.25 +0.724
0.50 +0.149
0.75 −0.425
1.00 −1.000

Table 7.2: Influence of K0.

Since the quantity τxx + τyy is invariant for rotations of the coordinate
system, and since along the boundary the stress component normal to it is
zero, this quantity equals the normal stress acting on a plane normal to the
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boundary. This stress may be denoted bt τξξ . For various values of K0 the
stress in the deepest point of the notch (ξ = 0, η = π/2, or x = 0, y = −R) is
recorded in table 7.2.

As a final illustration the values of τxiξ along the boundary of the notch
are represented in figure 7.19, for the case K0 = 0, togethre with some val-
ues (represented by the dots) obtained by the approximate complex variable
method (with n = 49). In this case the agreemnet is very bad. Only the general
tendency is the same, but locally large deviations occur. The reason for these
differences is that locally the shape of the boundary is irregular, thus resulting
in large errors in the stresses in points located on the boundary. In fact, figure

Figure 7.19: Stresses along boundary of notch.

7.19 very clearly confirms the considerations of section 7.2. There it was argued
that errors of about 100 % can be expected, and it was also shown that these
errors will occur in the form of a wave. Even the wave length predicted in
section 7.2 corrsponds to the one observed in figure 7.19. It is observed from
figure 7.19 that, for small values of ϕ, the wave length 2` is equal to about 4◦,
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or 2π/90 radians. Hence

` ≈ π/90.

On the other hand, near the deepest point of the notch, the value of |ω′(ζ)| is
0.5, and therefore with the formula (7.20) the predicted value of ` is

` ≈ π/98

and this corresponds very well with the observe value of about π/90.
In conclusion it may be said that the comparison with the Fourier integral

method shows that the approximate complex variable method leads to accurate
results in interior points of the region. However, the values of stress in points in
the immediate vicinity of the boundary (say at a distance from it of the order
of magnitude of the irregularities in the approximation of the boundary), are
inaccurate. The conclusion must also be that if one is particularly interested
in the stresses along the boundary (which is not the case in applications in
Soil Engineering), then Fourier methods are to be preferred to an approximate
complex variable method.



Chapter 8

DIKE PROBLEM

As a second class of problems which can be solved with the aid of the procedures
described in chapters 5 and 6, the case of a homogeneous symmetric dike will be
considered. The dike has been built upon a half space of the same elastic ma-
terial. This problem has been discussed earlier by Perloff, Baladi & Harr
(1967), but their method of solution is based upon the (implicit) assumption
that the biharmonic equation is invariant for conformal transformations, which
is incorrect.

Just as in the preceding chapter restriction can be made to an approxima-
tion of the conformal transformation of the standard form

ω(ζ) ≈ p

ζ − σ0
+

n∑

k=0

ckζ
k.

Procedures for the determination of p, σ0 and ck will be given in section 8.1.
Once these parameters are known, the stresses can be calculated in a straight-
forward way, along the lines of chapter 6. Some results of numerical calculations
will be presented in section 8.2.

8.1 The conformal transformation

Figure 8.1: Half plane with symmetrical dike.

Let there be given a symmetric dike on a half plane (fig. 8.1), defined by the
four corner points z1, z2, z3, z4, with coordinates

z1 = L,
z2 = L −H cotα+ iH,
z3 = −L +H cotα+ iH,
z4 = −L.

(8.1)

Here 2L represents the width of the dike (measured at the toe), H its height,
and α is the inclination of the slopes. The ratio of H and L will be called the
relative height h,

h = H/L. (8.2)

75
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The region occupied by the dike and the sub-soil is mapped onto the interior
of the unit circle |ζ| = 1, see fig. 8.2. The points ζ = σ1 and ζ = σ4, which are
to correspond with z = z1 and z = z4, are taken as σ1 = +1, σ4 = −1. The
point ζ = σ0 = −i corresponds to z = z0 = ∞. The location of these three
points has been taken as convenient as posiible, in accordance with the general
property of the conformal transformation that the images of three points can
be located arbitrarily on the unit circle. The points ζ = σ2 and ζ = σ3, which
correspond to z = z2 and z = z4, can be assumed to lie symmetrically with
respect to the imaginary axis in the ζ-plane. Hence

σ1 = 1,
σ2 = exp(iθ0,
σ3 = exp[i(π − θ0],
σ4 = −1.

(8.3)

Figure 8.2: Unit circle in ζ-plane.

Here the value of θ0 is as yet unknown. It can be expected that θ0 depends
upon the ratio of height and width of the dike. This will be elaborated in a
later stage.

General character of the conformal transformation

The conformal transformation from the interior of the unit circle |ζ| = 1 onto
the region in the z-plane occupied by the dike and the sub-soil is denoted by

z = ω(ζ), |ζ| ≤ 1. (8.4)

In accordance with the general formula for the conformal transformation of a
polygon onto a unit circle (a variant of the Schwartz-Christoffel transformation,
see e.g. Nehari, 1952), the first derivative of the mapping function will be of
the following form
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ω′(ζ) = −A(ζ − 1)α/π[ζ − exp(iθ0)]−α/π×

[ζ + exp(−iθ0)]−α/π(ζ + 1)α/π(ζ + i)−2.

Figure 8.3: Arguments of elementary functions of ζ.

In order that the rational powers are uniquely defined for all values of ζ inside or
on the unit circle, the arguments of ζ−1, ζ−exp(iθ0), etc., have to be assigned
definite intervals. For a certain point ζ the arguments of these fumctions are
indicated in figure 8.3. These arguments correspond to the following choices
for their intervals,

π/2 < arg(ζ − 1) < 3π/2,
π/2 + θ0 < arg[ζ − exp(iθ0)] < 3π/2 + θ0,
−π/2 − θ0 < arg[ζ + exp(−iθ0)] < π/2 − θ0,
−π/2 < arg(ζ + 1) < π/2.

(8.5)

The expression for ω′(ζ) as given above may alternatively be written as

ω′(ζ) = −A
( ζ2 − 1
ζ2 − 2iζ sin θ0 − 1

)α/π

(ζ + i)−2, |ζ| ≤ 1. (8.6)

Here the value of A as well as the value of θ0 is as yet undetermined. The func-
tion ω(ζ) itself can be foiund by integration. This involves another arbitrary
constant B, according to

ω(ζ) =
∫ ζ

i

ω′(ζ)dζ + B. (8.7)

The constants A, B, and θ0, which will be called the transformation parameters,
will be determined below.
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Determination of transformation parameters

The constants A, B and θ0 are to be taken such that the corner points in the
z-plane are located in the correct positions. Varying of the constant B results
in a translation of the region in the z-plane, and thus B can be determined by
fixing a certain point. The constant A is merely a multiplication factor, see
equation (8.6). Thus, by changing |A| only the scale of the figure is affected,
and a modification of arg(A) merely results in a rotation of the entire region.
This means that only the parameter θ0 depends upon the shape of the region.
This shape is determined by the relative height h and by the slope α. The
slope α has already been taken into account, and thus for a certain value of α,

θ0 = θ0(h). (8.8)

Choosing ζ = i as the lower limit of integration in equation (8.7) means that
z = B corresponds to ζ = i. The point in the z-plane corresponding to ζ = i
is z = iH. Hence

B = iH. (8.9)

Thus one the transformation parameters has been found. Next a procedure for
the calculation of θ0 and A will be presented.

For the determination of θ0 and A from a given set of values of H and L a
semi-inverse procedure will be followed. Therefore let there be chosen a certain
value for θ0. As stated above this determines the shape of the dike, and the
constant A must now be chosen such that for instance the location of the point
corresponding to ζ = 1 is z = L. Hence the problem is to determine A and
h = H/L when L and θ0 are considered as given.

With (8.7) and (8.9) the locations of the points z2 and z1, as given in (8.1),
are found as

z2 = L −H cotα+ iH =
∫ exp(iθ0)

i

ω′(ζ)dζ + iH,

z1 = L =
∫ 1

i

ω′(ζ)dζ + iH,

where use has been made of σ2 = exp(iθ0) and σ1 = 1. The first of these
equations may be written as

L −H cotα = A

∫ exp(iθ0)

i

[ω′(ζ)/A]dζ, (8.10)

and in the second equation it is convenient to eliminate L with the aid of (8.10).
This leads to

H(cotα− i) = A

∫ 1

exp(iθ0)

[ω′(ζ)/A]dζ. (8.11)
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Since θ0 is considered as given, the integrand ω′(ζ)/A of (8.10) and (8.11) is
completely determined, see (8.6). Thus the integrals appearing in (8.10) and
(8.11) can be calculated. For convenience, the path of integration in both
integrals will be taken along the unit circle. Then

ζ = σ = exp(iθ), dζ = i exp(iθ) dθ. (8.12)

The arguments of the quantities σ− σ1, σ− σ2, σ− σ3, σ− σ4, must be taken
in accordance with (8.5). After some elaboration of the integrand ω′(ζ)/A the
integral in equation (8.10) then appears to be real,

∫ exp(iθ0)

i

[ω′(ζ)/A]dζ = a, (8.13)

and its value is

a = 1
2

∫ π/2

θ0

( sin θ
sin θ − sin θ0

)α/π dθ

1 + sin θ
. (8.14)

On the other hand, elaboration of the integral in equation (8.11) with (8.6)
shows that this intgeral contains a factor (cotα− i). Hence one may write

∫ 1

exp(iθ0)

[ω′(ζ)/A]dζ = b(cotα− i), (8.15)

in which b is a real quantity, namely

b = 1
2

sinα
∫ θ0

0

( sin θ
sin θ0 − sin θ

)α/π dθ

1 + sin θ
. (8.16)

In a later part of this section the numerical calculation of the quantities a and
b will be considered. For the present considerations it is sufficient to note that
they are completely determined.

Substitution of (8.13) and (8.15) into (8.10) and (8.11) gives

L −H cotα = Aa,

H = Ab,

from which A and H/L can be solved, in terms of L, α, a and b. The solution
can be written as

h = H/L = b/(a+ b cotα), (8.17)

A = L/(a+ b cotα). (8.18)

The formulas (8.17) and (8.18) enable to calculate h and A when θ0 and α are
given.

The results of numerical computations have been used to construct the
graphs presented in figures 8.4 and 8.5. These figures not only serve as an
illustration, but can also be used to determine the values of θ0 and A corre-
sponding to certain given values of α, H and L.
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Figure 8.4: Relationship between h = H/L and θ0 and α.

Figure 8.5: A/L as a function of θ0 and α.
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Numerical calculation of a and b

The numerical calculation of the real parameters a and b, as defined by (8.14)
and (8.16), is somewhat complicated by the circumstance that the integrals are
improper. For θ = θ0 the integrand becomes infinitely large, but since α/π is
always smaller than 1, this does not prevent the existence of the integrals. In
order to calculate the integrals the interval is split into two parts, one of length
ε (ε being small) near the end θ − θ0, and the other one being the remaining
part. For the small part of length ε the integral is evaluated by expanding the
integrand around θ0. This leads to

a = a0 + 1
2

∫ π/2

θ0+ε

( sin θ
sin θ − sin θ0

)α/π dθ

1 + sin θ
, (8.19)

b = b0 + 1
2

sinα
∫ θ0−ε

0

( sin θ
sin θ0 − sin θ

)α/π dθ

1 + sin θ
, (8.20)

where

a0 =
ε1−α/π tan θ0

2(1 − α/π)(1 + sin θ0)

{
1 +

π − α

2π − α

[α
π

(cot θ0 + 1
2 tan θ0) −

cos θ0
1 + sin θ0

]
ε+ . . .

}
, (8.21)

b0 =
ε1−α/π sinα tan θ0

2(1 − α/π)(1 + sin θ0)

{
1 −

π − α

2π − α

[α
π

(cot θ0 + 1
2 tan θ0) −

cos θ0
1 + sin θ0

]
ε+ . . .

}
. (8.22)

In (8.21) and (8.22) the truncation errors in the expressions between paren-
theses are of order O(ε2). The integrals in (8.19) and (8.20) can be calculated
by any standard numerical integration procedure. The result should of course
be independent of the choice of ε. In order to check this some integrals were
calculated for various (small) values of ε. A change of a factor 10 in ε (ε = 104

instead of ε = 10−5) appeared to result in a relative modification of the values
of h and A by at the most 0.0004. This has been considered as sufficient evi-
dence for the accuracy of the calculation of h and A, as represented graphically
in figures 8.4 and 8.5

Approximation of the conformal transformation

The considerations presented above have shown that, when the shape of the
dike is given by the slope α and the relative height h, then the values of A/L
and θ0 can be determined from the figures 8.4 and 8.5. Hence the derivative of
the conformal transformation, ω′(ζ), is completely known, see (8.6), i.e.

ω′(ζ)
L

= −A
L

( ζ2 − 1
ζ2 − 2iζ sin θ0 − 1

)α/π

(ζ + i)−2, |ζ| ≤ 1. (8.23)
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Throughout this section the length L will be considered as a reference length.
In order to apply the stress calculation porcedures of chapters 5 and 6, the
conformal transformation ω(ζ) must be brought into the standard form

ω(ζ) =
p

ζ − σ0
+

n∑

k=0

ckζ
k, (8.24)

and the values p, σ0, n and ck (k = 0, 1, . . . , n) ought to be given as these are
the basic parameters for the stress calculation. In chapter 4 it was suggested
that these parameters can be calculated by starting from an expression for
ω(ζ). In the present case this procedure fails, since an expression for ω(ζ) can
not be found by analytical integration of (8.23). Rather than use a numerical
integration procedure to find ω(ζ) and retain the original procedure for the
calculation of the coefficients, it is simpler to calculate the coefficients ck from
equations (4.7), i.e.

kck =
1

2πi

∫

γ

ω′
0(ζ)ζ

−kdζ, k = 1, 2, . . ., (8.25)

where ω′
0(ζ) is the first derivative of the function ω0(ζ), which is defined as

ω0(ζ) = ω(ζ) − p

ζ − σ0
,

hence

ω′
0(ζ) = ω′(ζ) +

p

(ζ − σ0)2
. (8.26)

In the present case, see (8.23), the second order pole of ω′(ζ) is located at
ζ = −i, hence

σ0 = −i. (8.27)

The coefficient p can be found by determining the limit

lim
ζ→−i

[(ζ + i)2ω′(ζ)].

Determining this limit from (8.23) as well as (8.24) leads to

p/L = (A/L)(1 + sin θ0)−α/π . (8.28)

Now that p and σ0 have been found, the function ω′
0(ζ), as defined by (8.26), is

completely known. Hence now the coefficients c1, c2, . . . , cn can be calculated
from (8.23). For points on γ

ζ = σ = exp(iθ), (8.29)

and if one now writes

ω′
0(σ) = ω′

0(exp(iθ)) = ω′
∗(θ), (8.30)
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then equation (8.25) can be transformed into

ck/L =
1

2πk

∫ 2π

0

[ω′
∗(θ)/L] exp[−(k − 1)iθ] dθ, k = 1, 2, . . .. (8.31)

A detailed evaluation of these integrals will be presented later. For the moment
it suffices to note that the integrals (8.31) in general are improper, since near a
corner point the function ω′

∗(ζ) may be infinite, but the integrals in general do
exist as improper integrals, because the function ω′

∗(θ) possesses singularities
near which

ω′
∗(θ) = O(θ − θm)αm/π,

with αm > −π, see section 4, equations (4.5) and (4.6).
All necessary coefficients ck can be caluclated from (8.31), except c0. Since

this coefficient only affects the position of the region R in the z-plane, and not
the shape of R, see equation (8.24), its determination should not be essential
or difficult. Two possibilities have been examined, both in connection with the
formulat (4.23) for the last coefficient, i.e.

cn = 1
2
pσ−n−1

0 − 1
2
σ−n

0

n−1∑

k=0

[(1 + k/n)ckσk
0 − (1 − k/n)ckσ−k

0 ]. (8.32)

Since the regions in the ζ-plane and the z-plane are symmetric with respect to
the imaginary axis, one may write

ck = cki
k+1, (8.33)

where now the coefficients ck are real. Substitution of (8.33) into (8.32) gives,
using σ0 = −i,

cn = 1
2p −

n−1∑

k=0

ck. (8.34)

The condition (8.34) must always be satisfied for the solution of chapter 5 to be
applicable. When it is required that the approximate conformal transformation
passes exactly through the point z = iH, which corresponds to ζ = i (see figures
8.1 and 8.2), a second requirement is obtained from (8.24) with ζ = i,

iH =
p

2i
+

n∑

k=0

ck i
k+1 ik,

hence

H = −1
2p+

n∑

k=0

ck(−1)k. (8.35)
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From the two equations (8.34) and (8.35) both c0 and cn can be determined. If
n is chosen uneven, one obtains after elemination of cn from (8.34) and (8.35),

c0 = 1
2(H + p) −

n−1∑

k=2,4,...

ck. (8.36)

The coefficient cn can then be calculated from (8.34).
Experience with this scheme of calculating c0 and cn has shown, however,

that the condition that the boundary of the region should pass excatly through
the point z = iH may lead to a fairly large value for the coefficient cn (in
fact, all errors made are then balanced by the value of cn), and this means
that the series expansion (8.24) contains a last term with a fairly large last
coefficient. This results in a ”high frequency” wave of considerable amplitude
in the boundary of the region R.

In order to prevent this irregularity it has been found more convenient to
use a different scheme of calculating c0 and cn. In this alternative method the
condition that the boundary should pass exactly through the point z − iH is
dropped. Instead, the value of cn is taken as zero, cn = 0, and equation (8.34)
is considered as an equation for the determination of c0, i.e.

c0 = 1
2
p −

n−1∑

k=1

ck. (8.37)

Calculation of the improper integrals

Now returning to equation (8.31) it will finally be elaborated how these integrals
can be calculated. According to (8.30) and (8.26) one has, with (8.23)

ω′
∗(θ) = − A

(σ + i)2
{( σ2 − 1
σ2 − 2iσ sin θ0 − 1

)α/π −
( 1
1 + sin θ0

)α/π
}
, (8.38)

where σ = exp(iθ), 0 ≤ θ ≤ 2π. In general the factors involving σ in (8.38) can
be written as

σ2 − 1
σ2 − 2iσ sin θ0 − 1

=
sin θ

sin θ − sin θ0
,

1
(σ + i)2

= − sin θ + i cos θ
2(1 + sin θ)

,

as can be verified by using σ = exp(iθ). If sin θ/(sin θ− sin θ0) is non-negative,
i.e. when either θ0 ≤ θ ≤ π − θ0 or π ≤ θ ≤ 2π, equation (8.36) gives

θ0 ≤ θ ≤ π − θ0 or π ≤ θ ≤ 2π :

ω′
∗(θ) =

A(sin θ + i cos θ)
2(1 + cos θ)

{( sin θ
sin θ − sin θ0

)α/π −
( 1
1 + sin θ0

)α/π
}
. (8.39)
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A minor difficulty arises near θ = 3π/2, where both the term between paren-
theses as the denominator vanish. A series expansion near θ = 3π/2 shows
that near this point equation (8.39) tends towards the limit

|θ − 3π/2| � 1 :

ω′
∗(θ) = −

A(sin θ + i cos θ)
(1 + sin θ0)α/π

α

2π
sin θ0

1 + sin θ0
+O(θ − 3π/2)2. (8.40)

When 0 ≤ θ ≤ θ0 the expression sin θ/(sin θ − sin θ0) is negative, and before
raising it to the power α/π it must be investigated whether the minus sign
stands for exp(iπ) or exp(−iπ). This can best be done by letting a point σ on
the unit circle γ pass through one of the points θ = 0 or θ = θ0. For instance,
when σ passes through the point exp(iθ0), see figure 8.6, with θ decreasing,
the argument of σ − exp(iθ0) increases by π, in accordance with (8.5). That

Figure 8.6: Detail of unit circle near σ2.

this is necessary can be understood by noting that points on γ are the limiting
states of points inside γ, or, in other words, the branch cuts necessary to make
the functions single valued should not reach into the interior of γ. It now
follows that for the path shown in figure 8.6 the argument of the expression
(σ2 − 1)/(σ2 − 2iσ sin θ0 − 1) decreases by π, which means that in this case −1
stands for exp(−iπ), and thus the first term between brackets in (8.38) will be
exp(−iα). Hence, after some elaboration,

0 ≤ θ ≤ θ0 :

ω′
∗(θ) =

A[sin(θ + α) + i cos(θ + α)]
2(1 + sin θ)

( sin θ
sin θ0 − sin θ

)α/π −

A(sin θ + i cos θ)
2(1 + sin θ)

( 1
1 + sin θ0

)α/π
. (8.41)

In a similar way it is possible to show that in the interval π − θ0 ≤ θ ≤ π the
function ω′

∗(θ) should be calculated from the formula

π − θ0 ≤ θ ≤ π :

ω′
∗(θ) =

A[sin(θ − α) + i cos(θ − α)]
2(1 + sin θ)

( sin θ
sin θ0 − sin θ

)α/π −

A(sin θ + i cos θ)
2(1 + sin θ)

( 1
1 + sin θ0

)α/π
. (8.42)
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The equations (8.39) – (8.42) enable to calculate ω′
∗(θ) for all values of θ in the

interval from 0 to 2π.
It should be noted that for θ = θ0 and θ = π − theta0 the function ω′

∗(θ)
has a singularity. This singularity does not prohibit the integrability, but it
presents a small difficulty for the numerical calculation of the integrals (8.31).
This difficulty can be removed by splitting up the interval of integration into
three parts, i.e. by writing (8.31) as

2πkck =
∫ θ0−ε

0

ω′
∗(θ) exp[−(k − 1)iθ)] dθ +

∫ π−θ0−ε

θ0+ε

ω′
∗(θ) exp[−(k − 1)iθ)] dθ +

∫ 2π

π−θ0+ε

ω′
∗(θ) exp[−(k − 1)iθ)] dθ + J, (8.43)

where

J =
∫ θ0+ε

θ0−ε

ω′
∗(θ) exp[−(k − 1)iθ)] dθ +

∫ π−θ0+ε

π−θ0−ε

ω′
∗(θ) exp[−(k − 1)iθ)] dθ. (8.44)

The two integrals in (8.44) can be calculated approximately by expanding ω′
∗(θ)

around θ = thea0, respectively θ = π − θ0. After some elabortaion this leads
to the following first approximation for J ,

J =
iAε exp(−iπk/2)

1 + sin θ0

{
−2

( 1
1 + sin θ0

)α/π cos[k(π/2− θ0)] +

(tan θ0/ε)α/π

1 − α/π

(
cos[k(π/2− θ0)] + cos[k(π/2− θ0 − α]

)}
. (8.45)

In equation (8.45) the error is of order O(ε2−α/π), which is at least of order
O(ε), since α < π. The three remaining integrals in equation (8.45) have
bounded integrands, and can therefore directly be calculated using Filon’s
method (see appendix A).

Conclusion

The above considerations have resulted in expressions for the parameters p,
σ0 and ck, (k = 0, 1, . . . , n), which together define the approximate conformal
transformation. On the basis of these coefficients the stresses can be calculated
with the aid of the procedures developed in chapter 5 and assembled in chap-
ter 6. In the following section some results of numerical calculations will be
presented.
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8.2 Numerical results

The procedures described in the previous section have been used to compose a
computer program. Some numerical results will be presented here.

The conformal transformation

First some attention is paid to the approximation of the conformal transfor-
mation. In this part of the numerical calculations the basic parameters are
the relative height h = H/L of the dike, and the slope angle α (see figure 8.1).
From figures 8.4 and 8.5 the Scwarz-Christoffel transformation parameters A/L
and θ0 can then be obtained. On the basis of these four parameters the com-
puter program evaluates the coefficients p and ck of the approximate conformal
transformation

ωn(ζ) =
p

ζ + i
+

n∑

k=0

ckζ
k,

using the procedures developed in section 8.1.
In figure 8.7 the results are presented for the case α = π/4 and h = 0.5, for

which θ0/π = 0.3165 and A/L = 1.802. The number of coefficients used was

Figure 8.7: Approximation of half plane with dike, n = 39.

n = 39, the value of ε in equation (8.43) was taken as 0.02, and the integrals
were evaluated by the extension of Filon’s method, described in appendix A.
The integration intervals were subdivided into 20 equal parts (m = 10 in equa-
tion (A.3)). It appears from the figure that the approximation is rather good.
As before, see section 7.1, the approximation near the re-entrant angle at the
toe of the dike is very good, but near the salient angle at the upper end of the
slope the deviations are somewhat larger. very good, but near the salient angle
at the upper end of the slope the deviations are somewhat larger. Fortunately,
this is not a very serious defect of the method, since it can be expected that
the stresses vanish at such a point. A slight improvemnet can be obtained by
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Figure 8.8: Approximation of corner point with n = 39 (scale as in figure 8.7).

taking more terms into account, as is illustrated in figure 8.8, which has been
obtained by taking n = 99.

The stresses

Using the approximation of the conformal transformation with 39 terms the
stresses in the interior of the dike have been calculated along the lines of chapter

Figure 8.9: Vertical stress τyy along base of dike, K0 = 3/7.

6. Some results, for the case K0 = 3/7, are presented in the figures 8.9, 8.10
and 8.11. Figure 8.9 shows the vertical stresses at the base of the dike (i.e. the
original surface y = 0 of the half plane), and figure 8.10 shows the distribution

Figure 8.10: Shear stress τxy along base of dike, K0 = 3/7.

of shear stresses along this surface. In these two figures the results of Perloff,
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Baladi & Harr (1967) are represented by dashed lines. As mentioned before,
these results were obtained by an incorrect method.

In applied soil mechanics it is often assumed, for reasons of simplicity, that
the distribution of vertical stress along y = 0 is conformal to the shape of the
dike, and that the shear stresses vanish along y = 0. The stresses in the subsoil
are then calculated by solving the problem of a half plane with a vertical load
in the shape of the dike. It appears from figure 8.9 that in the correct solution
the vertical stresses at the base of the dike are more homogeneous than in this
traditional approach.

Figure 8.11: Horizontal stress τxx along x = 0, K0 = 3/7.

Figure 8.11 shows the distribution of horizontal stress along the vertical axis
(x = 0). Again the dashed line represents the results obtained by Perloff,
Baladi & Harr (1967), who recorded values only for y < 0, that is: in the
original half plane. It appears that there is a considerable difference between
the two curves.
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Conclusion

As a final illustration the approximate boundary for the case α = π/2, i.e.
the case of a dike with vertical faces, is shown in figure 8.12. The left half

Figure 8.12: Approximation of dike with vertical faces on half plane.

of the figure was obtained with 39 terms, and the right half with 99 terms.
In this case the approximation is much worse than in the case of figure 8.7.
Fortunately, however, most dikes in practice are not built with vertical faces,
but rather with slopes having an inclination of π/6 or less. For such cases the
method used here gives sufficiently accurate results.



Chapter 9

POLYGONAL EDGE NOTCH

In this chapter the general case of a polygonal edge notch is investigated (see
figure 9.1), with the aim to obtain a general procedure for the determination
of the conformal transformation onto the unit circle |ζ| ≤ 1, starting from the
location of the corner points on the contour. A method for the determination
of the Schwarz-Christoffel parameters, which define such a transformation, has
been presented by Kantorovich & Krylov (1964). This is in fact a gener-

Figure 9.1: Half plane with polygonal edge notch.

alization to n dimensions of the Newton-Raphson method for the solution of
non-linear equations. The method presented here, though less rigorous, seems
somewhat simpler to operate, and it will appear that it leads to sufficiently
accurate results.

Once that the conformal transformation is known, the stresses in the half
plane with a polygonal edge notch can be calculated by the method described
in chapters 4 and 5.

Schwarz-Christoffel transformation

Let there be given an open line C, composed of non-intersecting straight line
segments connecting the points

z0 = +∞, z1, z2, . . . , zn = −∞, (9.1)

in the complex z-plane, see figure 9.1. Here +∞ and −∞ denote the point at
infinity when approached along the real axis to its right and left ends, respec-
tively. The points z1 and zn−1 are also located on the real axis,

=(z1) = =(zn−1) = 0.

91
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The positive direction on C is defined by the order of subscripts in the sequence
of points (9.1). The line C divides the entire z-plane into two parts. The region
to the left of C is denoted by R.

The properties of the line C specified above ensure that the region R is the
lower half plane =(z) < 0 with an edge notch in the shape of an open polygon.
The conformal transformation of R onto the interior of a unit circle will be
determined, but first the conformal transformation onto the lower half plane
=(w) < 0 will be considered. Subsequent transformation onto a circle is then
a simple matter.

The conformal transformation of the lower half plane =(w) < 0 onto R is
denoted by

z = f(w). (9.2)

The function f(w) will be of the following general form (the Schwarz-Christoffel
transformation, see Nehari, 1952),

f(w) = α∗
∫ w

0

(λ − u1)−k1(λ− u2)−k2 . . . (λ− un)−kn dλ+ β, (9.3)

where α∗ and β are complex constants, and u1, u2, . . . , un are the points on
the real axis =(w) = 0 corresponding to the corner points of the boundary C
of R. The value of kjπ is the abrupt change in direction (in counter-clockwise
direction) at the corner point corresponding to uj . An alternative form of (9.3)
is

df

dw
= α∗(w − u1)−k1(w − u2)−k2 . . . (w − un)−kn . (9.4)

The point at infinity in the z-plane is chosen to correspond to the point at
infinity in the w-plane. Thus un is taken at infinity. Letting un become very
large in (9.4) and at the same time letting α∗ tend to zero or infinity in such a
way that α∗(w − un)−kn tends to a definite constant, say α, leads to

df

dw
= α(w − u1)−k1(w − u2)−k2 . . . (w − un−1)−kn−1 . (9.5)

In the present case of a lower half plane with a polygonal edge notch, the
directions of the line segments for ∞ to z1 and from zn−1 to −∞ must be the
same, hence

n−1∑

i=1

ki = 0. (9.6)

This condition is necessary, but not sufficient for the region corresponding to
the lower half plane =(w) < 0 according to the transformation z = f(w)
to approximate a half plane at infinity. Sufficient conditions are obtained by
requiring that near infinity the function f(w) is of the form

w → ∞ : f(w) = aw + b+ cw−1 + . . . , (9.7)
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or, by requiring that df/dw is the form

w → ∞ : df/dw = a− cw−2 + . . . , (9.8)

The essential feature of condition (9.8) is that it does not contain a term of
order w−1. Such a term would correspond to a logarithmic term in (9.7).
Elaboration of (9.5) shows that in general for w → ∞

df

dw
= α

[
1 +

k1u1

w
+
k2u2

w
+ . . .+

kn−1un−1

w
+O(

1
w2

)
]
, (9.9)

where use has been made of (9.6). Thus, in order that the coefficient of w−1

vanishes,

n−1∑

i=1

kiui = 0. (9.10)

Determination of parameters

In general it is impossible to integrate (9.5) analyticially. Numerical integration
presents the difficulty that the parameters u1, u2, . . . , un−1 must be given in
order to perform the numerical integration process. These parameters are usu-
ally not given beforehand, however, but rather the points z1, z2, . . . , zn−1 in
the z-plane, corresponding to u1, u2, . . . , un−1. For the mathematical prob-
lem of determining the parameters ui such that their images zi are located in
the appropriate points of the z-plane an approximate method will be presented.

As is well known from the theory of conformal transformations (Nehari,
1952) three parameters can be taken arbitrarily without loss of generality. Since
un has been taken at infinity, this property leaves two more parameters to be
chosen arbitrarily. As such the parameters u1 and un−1 will be taken, assuming
them to be located at

u1 = 1,

un−1 = −1.

}
(9.11)

Equation (9.5) then still contains the following independent and unknown pa-
rameters

u2, . . . , un−2, |α|, arg(α). (9.12)

The parameter arg(α) produces merely a rotation of the region in the z-plane,
and does not influence the shape of the region. In fact, it follows from (9.9)
that arg(α) is the rotation of the line segments near infinity. Since both the
regions in the w-plane and the z-plane approximate a half plane at infinity, and
their orientation is the same, it follows that

arg(α) = 0, (9.13)
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and thus there remain n− 2 parameters,

u2, . . . , un−2, |α|. (9.14)

In the z-plane the shape of the region R is determined by the following quan-
tities, which can be considered as given,

l1 = |z2 − z1|,
l2 = |z3 − z2|,
......................
ln−2 = |zn−1 − zn−2|,

}
(9.15)

and, of course, by the values of the coefficients kj (j = 1, 2, . . . , n − 1). The
quantity lj represents the length of the line segment from zj towards zj+1. The
sum of all lj ’s will be denoted by l,

l =
n−2∑

j=1

lj. (9.16)

The problem now is to determine the n − 2 parameters u2, . . . , un−2, |α|,
such that the n− 2 lengths have the preassigned values, given by (9.15).

The following quantities are now introduced,

v1 = u1 − u2,
v2 = u2 − u3,
...................
vn−2 = un−2 − un−1.

}
(9.17)

Then

n−2∑

j=1

vj = u1 − un−1 = 2. (9.18)

The newly introduced parameters vj represent the length of the line segment
between the two succesive points uj and uj+1 on the axis =(w) = 0. These
parameters vj are related to the lengths lj in the z-plane. The parameter |α|
(or α, because arg(α) = 0 anyway) represents a constant multiplication factor.
Thus α cal always be chosen such that the total length of the notch in the
z-plane is l. The parameters vj should be chosen in such a ratio to each other
that the total length l is correctly subdivided into parts lj . Although each
parameter vj wil be dependent upon all the lengths lj , it is to be expected that
vj depends most strongly upon that length lj which has the same subscript.
This suggests the following iterative procedure for the determination of the
parameters.
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Iterative calculation of parameters

As an initial estimate the parameters vj are chosen as

vj = v1
j = 2lj/l, j = 1, 2, . . . , n− 2. (9.19)

Because of (9.16) the condition (9.18) is now identically satisfied.
With (9.17) and (9.19) the initial values of u1, u2, . . . , un−2 can now be

determined as

u1 = 1,

uj = u1
j = 1 − 2

∑j−1
i=1 li/l, j = 2, . . . , n− 1.

(9.20)

It follows from (9.5) that in general the lengths lj can be calculated from

lj = |α|
∫ uj

uj+1

|w− u1|−k1 |w− u2|−k2 . . . |w− un−1|−kn−1 dw. (9.21)

Thus the lengths l1j , corresponding to the values uj as given by (9.20), can be
calculated. This gives

l1j = |α|
∫ u1

j

u1
j+1

|w− u1
1|−k1|w − u1

2|−k2 . . . |w− u1
n−1|−kn−1 dw, (9.22)

where |α| should be such that the total length is l, hence

|α| = l/

∫ un−1

u1

|w − u1
1|−k1|w − u1

2|−k2 . . . |w − u1
n−1|−kn−1 dw. (9.23)

The values of l1j/l will in general not be equal to the prescribed values lj/l,
since the initial estimate (9.19) may not be accurate enough. When for a
certain value of j the value of l1j/l is greater than lj/l it can be expected that
vj has been chosen too large. As a second series of estimates one may take

vj = v2
j = v1

j + c(lj − l1j )/l, j = 1, 2, . . . , n− 2. (9.24)

where c is some constant, which can be determined experimentally by requiring
that the approximation procedure converges rapidly.

As may be clear from the considerations given above, the iterative method
is based upon two assumptions: 1) the distance vj depends most strongly upon
that value of li for which i = j, and much less upon the other values of li; 2)
vj is a monotonic increasing function of lj .

Transformation onto unit circle

Once that the transformation from a lower half plane onto R is known, it
remains to derive from this the transformation from the unit circle |ζ| < 1.
This can be done by the function

w = (iζ + 1)/(ζ + i), (9.25)
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which maps the interior of the unit circle |ζ| = 1 onto the lower half plane
=(w) < 0. The points ζ = +1, ζ = i, ζ = −1 and ζ = −i correspond to
w = 1, w = 0, w = −1 and w = ∞, respectively, see figure 9.2. Denoting the

Figure 9.2: Conformal transformation w = (iζ + 1)/(ζ + i).

conformal transformation from the interior of the unit circle |ζ| = 1 onto the
rgeion R in the z-plane as before by z = ω(ζ) it follows with (9.2) that

ω′(ζ) =
df

dw

dw

dζ
,

or, with (9.5) and (9.25),

ω′(ζ) = α
( iζ + 1
ζ + i

− u1

)−k1
. . .

( iζ + 1
ζ + i

− un−1

)−kn−1 i− 1
(ζ + i)2

. (9.26)

With (9.6) this can be written in the following form

ω′(ζ) = A(ζ − b1)−k1 . . . (ζ − bn−1)−kn−1 (ζ + i)−2, (9.27)

where

A = 2α(1 + iu1)−k1 . . . (1 + iun−1)−kn−1 , (9.28)

bj = i(1 − iuj)/(1 + iuj), j = 1, . . . , n− 1. (9.29)

The coefficients A and bj can be calculated from (9.28) and (9.29) when α and
uj are known, and thus now a possible procedure for the determination of the
derivaive ω′(ζ) of the mapping function has been found. The coefficients of the
apporximate mapping function

ωn(ζ) +
p

ζ − σ0
+

n∑

k=1

ckζ
k, (9.30)

can next be determined in the same way as done in chapter 8 for the case of a
dike. The calculation of the stresses due to gravity acting in the region R can
then be executed along the lines of chapter 5 or 6.

For the procedure outline above a computer program has been written.
To test the program and the iteration procedure the case of a dike has been
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Figure 9.3: Dike on a half plane

investigated once more, see figure 9.3. It turned out that after 10 iteratiuons
(with c = 1) the relative accuracy of the locations of the corner points is about
10−3, whereas after 15 iterations the error is less than 10−4. Each iteration
too about 20 seconds computer time on the TR4 of the Delft University of
Technology. For the case α = π/4, h = H/L = 0.5, the following values for
A, b1, b2, b3, b4 were obtained:

A/L = 1.803,
b1 = 1,
b2 = exp(0.317iπ),
b3 = − exp(0.683iπ),
b4 = −1.

These results may be compared with the results of the direct computations of
chapter 8. There the value of A/L in the same case was found as 1.802, and the
argument of b2 was found to be 0.316π. The correspondence of these critical
values is close enough to justify the conclusion that the method exposed here
leads to sufficiently accurate results.

Remarks

Two remarks may be made to conclude this section. The first is that the
calculation of the lengths l1j by the formulas (9.22) presents the difficulty that
the points u1

1, u1
2, etc. are singular points of the integrand. When kj is positive

(as it is for a re-entrant corner) the integrand is even unbounded at w = uj,
although the integrals always exist as improper integrals (provide that kj < 1,
which is a restriction of no significance). A method for the calculation of such
integrals has been describe by Kantorovich & Krylov (1964). This method
is based, as usual, upon the decomposition of the integrals into a singular part
which is evaluated by an exact formula, and a regular part (having a bounded
integrand) which is evaluated by a numerical technique. A similar technique has
been described in section 8.1, where the parameters for the case of a dike were
calculated. The computer program written for the approximate calculations
described in this section, uses an even simpler (and less accurate) method,
in which the improper integral is simply approximated by the proper integral
obtained by letting the interval of integration start (or end) at a very small
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distance ε from the singular point. Of course in this way an error is introduced
into the calculations, of order O(ε1−kj ). That this is not intolerable follows from
the fact that the Schwarz-Christoffel parameters are not the final objectives of
the calculations. Once they are known, the conformal transformation must
be approximated anyway to bring it in the form suitable for the application
of the stress-calculation procedures of chapters 5 and 6. It is clearly of little
importance to calculate the Schwarz-Christoffel parameters with an accuracy
that greatly surpasses the accuracy of the approximation procedure used in the
second stage of the computations.

A second final remark is that the procedure of this section is a direct method,
in contrast with the method used in section 8.1 for the dike problem. The
latter is an inverse method, leading to the graphs in figures 8.4 and 8.5 for
the determination of the Schwarz-Christoffel parameters. The advantage of
the present direct technique is that it can be used in a chain of computer
programs, which then enables to obtain directly the approximate shape of the
dike, and the stresses in its interior, using as input for the computer program
only the corner points of the dike, and some parameters related to the accuracy
that is required.



Appendix A

AN EXTENSION OF FILON’S INTEGRATION METHOD

The usual numerical integration procedures, such as those associated with the
names of Simpson, Newton-Cotes, Gauss, etc., are not very suited for the
approximate evaluation of integrals of the form

∫ b

a

f(x) exp(−kix) dx, k = 0, 1, 2, . . . , (A.1)

for large values of the parameter k. This is caused by the rapidly oscillating
character of the integrand of equation (A.1), which in its turn is due to the
factor exp(−kix). A special method for the evaluation of this type of integral
was devised by Filon (1928). In this method the interval of integration is
subdivided into a number of relatively small subintervals, and in each subinter-
val the function f(x) is approximated by a second order polynomial coinciding
with the function in the end points and the midpoint of the subinterval. Af-
ter replacing f(x) in the integral by its apporximation the integration can be
performed exactly, and thus an approximation of the integral is obtained (see
also Abramowitz & Stegun, 1965). In this appendix Filon’s method is ex-
tended by approximating the function f(x) in each subinterval by a fourth
order polynomial. A measure for the error will also be derived.

Consider the integrals

sk =
1

b− a

∫ b

a

f(x) exp(−kix) dx, k = 0, 1, 2, . . ., (A.2)

where f(x) is a given (complex) function, bounded in the interval a ≤ x ≤ b.
This interval is now divided into a number of equal subintervals. For reasons
of convenience, the number of subintervals is chosen even, 2m. Then equation
(A.2) can be rewritten as

sk =
1

b− a

2m−1∑

p=0

exp(−kixp)skp, k = 0, 1, 2, . . . , (A.3)

where

skp =
∫ xp+1

xp

f(x) exp[−ki(x− xp)] dx, (A.4)

and where

xp = a+ (b− a)p/(2m). (A.5)

By writing y = x− xp in equation (A.4), and introducing a quantity h defined
as

h = (b − a)/(8m), (A.6)
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one obtains

skp =
∫ 4h

0

f(xp + y) exp(−kiy) dy, k = 0, 1, 2, . . .. (A.7)

For this elementary contribution to the original integral (A.2) an approximation
will be developed below.

In the small interval of length 4h the function f(xp +y) is approximated by
a Lagrangian formula (see e.g. Hildebrand, 1956), or, stated more explicitly,
by a fourth order polynomial which coincides with the function f(xp + y) in
the points for which y = 0, y = h, y = 2h, y = 3h and y = 4h. It is easily
verified that this is accomplished by writing

24h4f(xp + y) = (y − h)(y − 2h)(y − 3h)(y − 4h)f(xp)−
4y(y − 2h)(y − 3h)(y − 4h)f(xp + h)+
6y(y − h)(y − 3h)(y − 4h)f(xp + 2h)−
4y(y − h)(y − 2h)(y − 4h)f(xp + 3h)+
y(y − h)(y − 2h)(y − 3h)f(xp + 4h)+
24h4Ep(y).

(A.8)

In this expression the term Ep(y) represents the error. When the function f(x)
possesses at least 5 continuous derivatives in the interval xp < x < xp + 4h the
error term is given by the following formula (see e.g. Hildebrand, 1956, p.
63),

Ep(y) =
1
5!
y(y − h)(y − 2h)(y − 3h)(y − 4h)f5(xp + 4ξh), (A.9)

where the superscript 5 indicates the fifth derivative and ξ is some number in
the interval 0 < ξ < 1.

Substitution from (A.8) into (A.7) gives

24h4skp = f(xp

∫ 4h

0 (y − h)(y − 2h)(y − 3h)(y − 4h) exp(−kiy) dy−
4f(xp + h)

∫ 4h

0 y(y − 2h)(y − 3h)(y − 4h) exp(−kiy) dy+
6f(xp + 2h)

∫ 4h

0
y(y − h)(y − 3h)(y − 4h) exp(−kiy) dy−

4f(xp + 3h)
∫ 4h

0
y(y − h)(y − 2h)(y − 4h) exp(−kiy) dy+

f(xp + 4h)
∫ 4h

0
y(y − h)(y − 2h)(y − 3h) exp(−kiy) dy+

24h4
∫ 4h

0
Ep(y) exp(−kiy) dy.

(A.10)

The first five integrals appearing in equation (A.10) can be evaluated using the
general integration formula

∫ 4h

0

yn exp(−kiy) dy =
(−i)n+1n!
kn+1

{
1 − exp(−4ikh)

n∑

j=0

(4ikh)j

j!

}
. (A.11)
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After some elaboration the following result is obtained

skp = 1
24h4k5

{
[a1 + b1 exp(−4it)]f(xp)+

[a2 + b2 exp(−4it)]f(xp + h)+
[a3 + b3 exp(−4it)]f(xp + 2h)+
[a4 + b4 exp(−4it)]f(xp + 3h)+

[a5 + b5 exp(−4it)]f(xp + 4h)
}
+

εkp,

(A.12)

where t = kh, and where the coefficients are given by

a1 = −24i− 60t+ 70it2 + 50t3 − 24it4,
b1 = 24i− 36t− 22it2 + 6t3,
a2 = 4(24i+ 54t− 52it2 − 24t3),
b2 = 4(−24i+ 42t+ 28it2 − 8t3),
a3 = 6(−24i− 48t+ 38it2 + 12t3),
b3 = 6(24i− 48t− 38it2 + 12t3),
a4 = 4(24i+ 42t− 28it2 − 8t3),
b4 = 4(−24i+ 54t+ 52it2 − 24t3),
a5 = −24i− 36t+ 22it2 + 6t3,
b5 = 24i− 60t− 70it2 + 50t3 + 24it4,

(A.13)

Equation (A.12) enables to calculate an approximation to the true value of
the contribution skp to the original integral. By summing the contributions of
all subintervals, according to (A.3), an approximation to the integral itself is
obtained.

For small values of the parameter t = kh the expression (A.12) is inaccurate.
By using the Taylor series expansion of exp(−4it) around t = 0, and retaining
the first ten terms only, the following formula can be derived

skp = 2h
45

{
(7 + 20

7
t2 − 80

21
it3 − 32

9
t4 + . . .)f(xp)+

(32 − 32it − 192
7
t2 + 512

21
it3 + 1280

63
t4 + . . .)f(xp + h)+

(12 − 24it− 48
7
t2 − 128

7
it3 − 640

21
t4 + . . .)f(xp + 2h)+

(32 − 96it− 1088
7 t2 + 512

3 it3 + 2801
9 t4 + . . .)f(xp + 3h)+

(7 − 28it− 372
7 t2 + 1408

21 it3 + 4000
63 t4 + . . .)f(xp + 2h)

}
+

εkp.

(A.14)

In the limit t → 0 equation (A.14) reduces to one of the well known Newton-
Cotes integration formuals (Hildebrand, 1956, p. 73).
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An estimation of the truncation error can be found in the following way.
Substitution from (A.9) into (A.10) gives

εkp =
1
5!

∫ 4h

0

y(y − h)(y − 2h)(y − 3h)(y − 4h) exp(−kiy) ×

f5(xp + 4ξh) dy.

An estimation of the error is obtained by replacing f5(xp + 4ξh) (in which ξ

depends upon an unknown way on y) by some average vale f5. Taking an
upper bound for the remaining integral leads to

|εkp| ≤
f5

5!

∫ 4h

0

|y||y − h||y − 2h||y − 3h||y − 4h|dy =
19
360

h6f5.

The average value of f5 of the fifth derivative of f(x) in the neighbourhood
of xp can be estimated by some finite difference approximation. In order to
obtain a simple symmetric expression it is most convenient to write

4h4f5 ≈ f4(xp + 4h) − f4(xp),

and to use forward difference expressions for the fourth derivatives. This leads
to

4h4f5 ≈ f(xp + 8h) − 4f(xp + 7h) + 6f(xp + 6h) − 4f(xp + 5h) +
4h4f(xp + 3h) − 6f(xp + 2h) + 4f(xp + h) − f(xp). (A.15)

This approximation of the fifth derivative can be applied in the intervals (xp, xp+1)
and (xp+1, xp+2). It involves only points in which the functional value has to be
calculated anyway for the approximate evaluation of the integral. In order to
obtain the contribution to the error in the original integral εkp is to be divided
by (b− a), see equation (A.3). Thus one obtains for the total error

E = 2
2m−2∑

p=0,2,4,...

Ep, (A.16)

where

Ep =
|εkp|
b− a

=
1

8mh
19
360

h6f5 =
19

11520m
(4h4f5),

or, with (A.15),

Ep =
19

11520m

{
f(xp + 8h) − 4f(xp + 7h) + 6f(xp + 6h) −

4f(xp + 5h) + 4f(xp + 3h) − 6f(xp + 2h) +

4f(xp + h) − f(xp)
}
. (A.17)
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Example

In several chapters of this thesis it was found necessary to evaluate integrals
of the type considered in this appendix. These were all calculated by means
of a standard ALGOL-procedure (procedure FOURIER), which determines
the integrals (A.2) for k = 0, 1, . . . , n when the lower and upper limits of
integration (a and b), the number of subintervals (2m), a function procedure
(f(x) = <(f(x))+i=(f(x))) and n are given. The following example may serve
as an illustration and as a check on the formulas and their representation in
the computer program. This example concerns the first 10 coefficients of the
Fourier expansion of the function exp(x),

ck =
1
2π

∫ 2π

0

exp(x) exp(−kix) dx, k = 0, 1, . . . , 10. (A.18)

The coefficients c3, c4, . . . , c10 were calculated with m = 10 and with the for-
mula (A.12). For the coefficients c0, c1 and c2 the corresponding values of hk
would have been rather small (less than 0.2), and therefore these were calcu-
lated using (A.14), and by taking m 5 times as large as before (i.e. m = 50)
in order to make hk small enough for the expansions in (A.14) to be conver-
gent. The results are shown in table A.1, together with the exact results, which
happen to be easily calculated in this case,

ck =
1 + ik

2π
exp(2π) − 1
k2 − 1

, k = 0, 1, . . . . (A.19)

Exact Filon’s method
k <(c) =(c) <(c) =(c)
0 85.066989 0.000000 85.066989 0.000000
1 42.533494 42.533494 42.533494 42.533495
2 17.013398 34.026795 17.013396 34.026796
3 8.506699 25.520096 8.506699 25.520097
4 5.003941 20.015762 5.003941 20.015762
5 3.271807 16.359036 3.271807 16.359036
6 2.299108 13.794647 2.299108 13.794647
7 1.701340 11.909378 1.701340 11.909378
8 1.308723 10.469783 1.308723 10.469783
9 1.037403 9.336621 1.037403 9.336621
10 0.842247 8.422474 0.842247 8.422474

Table A.1: Example.

It can be seen from the table that the approximate and exact results agree to
at least 6 significant figures. The truncation error estimated by the numerical
procedure itself, according to (A.16) was found to be 3 × 10−6, whereas the
maximum total error (which includes accumulated errors due to rounding off)
appears to be about 2 × 10−6.



Appendix B

SOME FOURIER TRANSFORMS

In this appendix some definite integrals of the Fourier transform type will be
evaluated. Some of these integrals are used in section (7.3).

The basic integral to be considered is

J1 =
∫ +∞

−∞

sinh(ax)
sinh(πx)

exp(iξx) dx, −π < α < +π, (B.1)

where π/α is not an integer, and where ξ is some real number. In the complex
x-plane the integrand has simple poles at the zeroes of sinh(πx), i.e. for

x = ki, k = ±1,±2,±3, . . ..

By extending the line of integration with a large semi-circle in the upper half
plane the integral is replaced by a contour intgeral (see figure B.1). It can be

Figure B.1: Contour in complex x-plane

shown that the contribution of the integration along the semi-circle tends to
zero, provided that ξ > 0 and |α| < π. The integral (B.1) then is equal to the
contour integral, which, by the residue theorem, equals 2πi times the sum of
the residues in the poles encircled by the contour. This leads to

J1 = −2=
{ ∞∑

k=1

(−1)k exp[−k(ξ − iα)]
}
.

The expression between parentheses is the sum of a geometrical series, hence,
if ξ < 0,

J1 = 2= exp[−(ξ − iα)]
1 + exp[−(ξ − iα)]

=
sinα

cosh ξ + cosα
.
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Hence
∫ +∞

−∞

sinh(αx)
sinh(πx)

exp(iξx) dx =
sinα

cosh ξ + cosα
, |α| < π. (B.2)

This formula (see also Sneddon, 1951, p. 523) is also valid for negative values
of ξ. In that case the derivation requires extension of the line of integration
with a semi-circle in the lower half plane.

An alternative form of (B.2) is
∫ ∞

0

sinh(αx)
sinh(πx)

cos(ξx) dx =
sinα

2(cosh ξ + cosα)
. |α| < π. (B.3)

In the sequel a number of integrals will be derived from (B.3). This will be done
by differentiation or integration of expressions such as (B.3) with respect to the
parameters ξ and α. This is permitted since (B.3) and all similar integrals to
be presented below are uniformly convergent for all ξ, and for all α such that
|α| < π − δ, where δ is an arbitrarily small positive fixed number.

Differentiation of (B.3) with respect to α gives
∫ ∞

0

x cosh(αx)
sinh(πx)

cos(ξx) dx =
1 + cosh ξ cosα

2(cosh ξ + cosα)2
. (B.4)

Differentiating this again with respect to α gives
∫ ∞

0

x2 sinh(αx)
sinh(πx)

cos(ξx) dx =

2 sinα+ sinα cosα cosh ξ − sinα cosh2 ξ

2(cosh ξ + cosα)3
. (B.5)

By taking various combinations of (B.3) – (B.5) the following three integral
representations can be obtained, all valid for |α| < π,

1
cosh ξ + cosα

=
∫ ∞

0

2 sinh(αx)
sinα sinh(πx)

cos(ξx) dx, (B.6)

1
(cosh ξ + cosα)2

=
∫ ∞

0

2x sinα cosh(αx) − 2 cosα sinh(αx)
sin3α sinh(πx)

cos(ξx) dx, (B.7)

1
(cosh ξ + cosα)3

=

∫ ∞

0

[(1 + x2) sin2 α+ 3 cos2 α] sinh(αx) − 3x sinα cosα cosh(αx)
sin5 α sinh(πx)

×

cos(ξx) dx, (B.8)



106 B. SOME FOURIER TRANSFORMS

For α = π/2 equations (B.6) – (B.8) reduce to

1
cosh ξ

=
∫ ∞

0

1
cosh(πx/2)

cos(ξx) dx, (B.9)

1
cosh2 ξ

=
∫ ∞

0

x

sinh(πx/2)
cos(ξx) dx, (B.10)

1
cosh3 ξ

=
∫ ∞

0

1 + x2

2 cosh(πx/2)
cos(ξx) dx. (B.11)

The limiting values of (B.6) – (B.8) for α→ 0 can be determined with the aid
of l’Hopital’s rule. This leads to

1
1 + cosh ξ

=
∫ ∞

0

2x
sinh(πx)

cos(ξx) dx, (B.12)

1
(1 + cosh ξ)2

=
∫ ∞

0

2x(1 + x2)
3 sinh(πx)

cos(ξx) dx, (B.13)

1
(1 + cosh ξ)3

=
∫ ∞

0

x(1 + x2)(4 + x2)
15 sinh(πx)

cos(ξx) dx. (B.14)

Another set of integrals can be obtained by returning to (B.4) and integrating
with respect to ξ. This gives

∫ ∞

0

cosh(αx)
sinh(πx)

sin(ξx) dx =
sinh ξ

2(cosh ξ + cosα)
, (B.15)

as can easily be verified by differentiation of (B.15) with rerspect to ξ. No
integration constant needs to be added to (B.15) since for ξ = 0 both members
are zero. The integral (B.15) can also be found in Bateman (1954), p. 88.

Differentiation of (B.15) with respect to α gives
∫ ∞

0

x sinh(αx)
sinh(πx)

sin(ξx) dx =
sinα sinh ξ

2(cosh ξ + cosα)2
, (B.16)

Differentiating this again with respect to α gives
∫ ∞

0

x2 cosh(αx)
sinh(πx)

sin(ξx) dx =

sinh ξ[cosα(cosh ξ + cosα) + 2 sin2α]
2(cosh ξ + cosα)3

. (B.17)

For α = π/2 the formulas (B.15) – (B.17) reduce to

sinh ξ
cosh ξ

=
∫ ∞

0

1
sinh(πx/2)

sin(ξx) dx, (B.18)
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sinh ξ
cosh2 ξ

=
∫ ∞

0

x

cosh(πx/2)
sin(ξx) dx, (B.19)

sinh ξ
cosh3 ξ

=
∫ ∞

0

x2

2 sinh(πx/2)
sin(ξx) dx. (B.20)

The last two integral representations could also have been obtained from (B.9)
and (B.10) by differentiating these with respect to ξ.
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des, Ing.-Arch., 35, 25-30, 1966.
Ling, C.B. On the stresses in a notched plate under tension, J. Math. Phys., 26,

284-289, 1947.
Mitchell, L.H. Stress concentration at semicircular notch, J. Appl. Mech., 32,

938-939, 1965.
Muskhelishvili, N.I. Some basic problems of the mathematical theory of elas-

ticity (translated from the 3rd Russian edition by J.R.M. Radok), Noordhoff,
Groningen, 1953.

Muskhelishvili, N.I. Applications of the theory of functions of a complex vari-
able to the theory of elasticity, Proc. IUTAM Symp. Tbilisi, 56-75, Nauka
Publishing House, Moscow, 1965.

Nehari, Z. Conformal mapping, McGraw-Hill, New York, 1952.
Neuber, H. Die belastete Parabelkerbe, ZAMM, 42, 477-487, 1962.
Paria, G. A mixed boundary value problem of elasticity with parabolic boundary,

J. Appl. Mech., 24, 122-124, 1957.
Perloff, W.H., Baladi, G.Y. & Harr, M.E. Stress distribution within and

under long elastic embankments, Highway Res. Recoird, 181, 12-40, 1967.
Seika, M. Stresses in a semi-infinite plate containing a U-type notch under uniform

tension, Ing.-Arch., 27, 285-294, 1960.
Sneddon, I.N Fourier transforms, McGraw-Hill, New York, 1951.
Sokolnikoff, I.S. Mathematical theory of elasticity, 2nd ed., McGraw-Hill, New

York, 1956.
Thron, W.J. The theory of functions of a complex variable, Wiley, New York, 1953.
Timoshenko, S. & Goodier, J.N. Theory of elasticity, 2nd ed., McGraw-Hill, New

York, 1951.

108



109

Titchmarsh, E.C. The theory of functions, 2nd ed., Oxford University Press, Lon-
don, 1939.

Titchmarsh, E.C. Introduction to the theory of Fourier integrals, 2nd ed., Claren-
don Press, Oxford, 1948.

Turteltaub, M.J. & Sternberg, E. Elastostatic uniqueness in the half-space,
Arch. Rational Mech. Anal., 24, 233-242, 1967.

Verma, H.K. A mixed boundary-value problem of elasticity with parabolic bound-
ary, Acta Mech., 2, 392-397, 1966.

Verruijt, A. Stresses due to gravity in a notched half-plane, Ing.-Arch., 38, 107-
118, 1969.

Warren, W.E. & Mitchell T.P. Singular loadings in a notched half-plane, Proc.
2nd Southeastern Conf. Theor. Appl. Mech., 131-145, pergamon Press, Ox-
ford, 1965.



SAMENVATTING

In dit proefschrift wordt een algemene oplossingsmethode voor een bepaalde
klasse van problemen uit de twee-dimensionale elasticiteitstheorie aangegeven.
Het betreft hier problemen die als gemeenschappelijk kenmerk hebben dat
het elastische lichaam de vorm heeft van een beneden-halfvlak met een iets
gewijzigde bovenrand, waarop als belasting uitsluitend het eigen gewicht van
het materiaal werkt. Deze klasse van problemen omvat onder meer het pro-
bleem van een dijk, bestaande uit elastisch materiaal, gebouwd op een elastisch
halfvlak, en ook de problemen van een ontgraving of een ontgronding in een
lichaam dat aanvankelijk een halfvlak innam.

Na een beschrijving van het algemene probleem in hoofdstuk 2, en de
wiskundige formulering ervan in hoofdstuk 3, wordt in de hoofdstukken 4 en 5
de eigenlijke oplossingsmethode behandeld. Deze valt uiteen in twee gedeelten.
In de eerste plaats wordt in hoofdstuk 4 beschreven hoe de conforme afbeelding
van het gebied ingenomen door het elastische lichaam, op het inwendige van
de eenheidscirkel in standaardvorm kan worden gebracht. Deze standaardvorm
bestaat uit een singulier gedeelte, dat er voor zorgt dat op het oneindige het
gebied een halfvlak benadert, en een regulier gedeelte, dat geschreven kan wor-
den in de vorm van een reeks van Taylor. Bewezen wordt dat deze Taylor-reeks
in het algemeen convergeert, niet alleen binnen, maar ook op de eenheidscirkel,
mits keerpunten in de contour worden uitgesloten. Ook wordt aangegeven hoe
de coëfficiënten van de termen uit de Taylor-reeks kunnen worden berekend.
Daarbij wordt gebruik gemaakt van een methode van Filon voor de numerieke
berekening van trigonometrische integralen. Van de Taylor-reeks worden ver-
volgens alleen de eerste n termen in aanmerking genomen. Dit betekent dat
niet het oorspronkelijke probleem wordt opgelost, maar een probleem met een
iets afwijkende vorm van de rand. Door voldoende termen van de Taylor-
reeks in aanmerking te nemen kan de afwijking kleinder gemaakt worden dan
een willekeurig kleine maat. Afgezien van deze benadering van de rand is de
oplossingsmethode exact.

De oplossing van het randvoorwaarde-probleem wordt, in een algemene
vorm, gegeven in hoofdstuk 5. Deze oplossing wijkt alleen af van de bekende
technieken (zoals ontwikkeld door Muskhelishvili) doordat de afbeeldingsfunc-
tie een singulariteit, namelijk een pool van de eerste orde, heeft op de rand
van de eenheidscirkel. Dit leidt tot enige complicaties, maar verhindert niet
dat een algemene oplossing kan worden gegeven. Uitwerking van de oplossing
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voor een specifiek geval vereist alleen algebräısche bewerkingen. Daarbij is de
meest gecompliceerde bewerking het oplossen van een stelsel van 2n lineaire
vergelijkingen met 2n onbekenden (n is het aantal termen van de afgebroken
reeks van Taylor). In hoofdstuk 6 zijn de uit te voeren bewerkingen verzameld.

Bij wijze van voorbeeld wordt vervolgens in hoofdstuk 7 beschouwd het
geval van een halfvlak met een uitsnijding in de vorm van een cirkelboog. Enige
numerieke resultaten worden gegeven. Voor een speciaal geval blijkt een exacte
oplossing te betsaan, en dit maakt een toetsing van de benaderingsmethode
mogelijk. Een goede overeenstemming met de exacte oplossing toont aan dat
de methode tot vrij nauwkeurige resultaten leidt, behalve voor punten juist
op (of zeer dicht bij) de rand gelegen. In paragraaf 7.2 wordt ook verklaard
waarom de methode onnauwkeurig is voor randpunten. In paragraaf 7.3 worden
de resulaten van de benaderde complexe berekeningsmethode nog vergeleken
met enige resultaten verkregen met een (exacte) methode die gebruik maakt
van Fourier-integralen. Ook daar blijkt de overeenstemming uitstekend te zijn
in punten in het inwendige van het gebied.

Als een tweede type van voorbeelden wordt in hoofdstuk 8 het probleem
van een dijk op een halfvlak beschouwd. Ook voor dit geval worden enige
numerieke resultaten gegeven. In hoofdstuk 9 tenslotte wordt een generalisatie
hiervan, namelijk het geval van een halfvlak met een kerf in de vorm van een
willekeurige veelhoek, behandeld. Het blijkt mogelijk te zijn een keten van
procedures samen te stellen, waarbij, uitgaande van de coöordinaten van de
hoekpunten van de rand, als resultaat de spanningen in het inwendige worden
verkregen.
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