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Abstract

Maritime Safety and Security systems represent a novel
kind of large-scale distributed component-based systems in
which the individual components are elaborate and complex
systems in their own right. Two distinguishing characteris-
tics are their ability to evolve during runtime, that is, joining
and leaving of components, and the need for high reliability
of the system.

In this paper we identify the challenges that will have
to be addressed, given the current state of the art in
component-based software engineering in order to build
such system-of-systems. In particular, we highlight the spe-
cific difficulties regarding acceptance and testing. A first
group of testing challenges is raised by the need of accept-
ing the integration of such large systems, and the ability
to reconfigure them at runtime. A second group of testing
challenges comes from the fact that, generally, not all the
sub-systems are designed along the same kind of architec-
ture (e.g. client-server vs. publish-subscribe architecture).
Devising an integration testing process for such hybrid ar-
chitecture is inherently harder than for a homogeneous one.

1. Introduction

The commission of the European communities has recently
pushed for the establishment of a European Network for
Maritime Surveillance [4]. Such a network will provide safe
and secure usage of the seas around Europe, integrated and
coordinated maritime planning, research, climate control,
and sustainable development.

This network will require the cooperation of the Mem-
ber States’ security agencies, and an efficient usage and in-
tegration of not only existing navigation, monitoring and
tracking systems, but also the systems in the respective op-

erations and control centres.
This new kind of large-scale component-based system,

in which the components have an operational entity of their
own, and usually a managerial entity as well, is known as
“system-of-systems” (SoS) [9]. SoS present considerable
engineering challenges that have been acknowledged by the
Dutch Embedded Systems Institute and Thales Nederland.
They have set up the Poseidon research project [3], commit-
ted to devising engineering best practices for developing,
integrating and deploying such maritime safety and security
(MSS) systems.

In this “industrial/academic challenges” paper, we will
outline the general software engineering challenges that
providers of MSS solutions such as Thales Nederland are
facing, and we will focus on the particularities that make
the quality assurance and acceptance of this kind of system-
of-systems a challenging line of research. In particular, the
highly dynamic nature of these systems and high reliabil-
ity required are of interest. Some other challenging issues,
in a more technical realm, stem from the choice of runtime
model used to develop the system.

In the next section (Sect. 2), we will briefly outline the
more general challenges encountered when building MSS
SoS. Sections 3 and 4 will focus more on the specific issues
related to integrating and accepting MSS SoS, and Section 5
summarizes the paper and gives an outline of current and
future work.

2. Challenges of MSS Systems

The challenges of Maritime Safety and Security systems
are defined by the typical requirements of highly flexi-
ble, adaptable and evolvable large-scale systems. This im-
plies [3]:

• The development of adaptable and evolvable SoS ar-
chitectures
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• An integration and acceptance method for reliable dy-
namic reconfigurations
• Trustworthy fusion and processing of information

sources in terms of type, role, syntax, and semantics
• Intelligent analysis of the available information to

solve application tasks.

Although, the last two items are more concerned with
domain-specific issues of surveillance-oriented SoS, they
do have implications on how such systems are built and de-
ployed.

Systems-of-Systems comprise a large number of au-
tonomous interoperable nodes which cannot be anticipated
completely and precisely [8]. Most sub-systems in an
SoS have operational and managerial independence [6, 9].
These imply that parts of the SoS may be changed without
the SoS integrator having too much to say in the decision,
or may not even be notified. In such cases, the integrity of
the entire SoS must still be guaranteed. The fact that MSS
SoS evolve dynamically during operation time also brings
implications for quality assurance, in particular for testing.

A specific requirement for MSS SoS, is geographic dis-
tribution. An example scenario is a UN peace keeping oper-
ation along a foreign coast line, in which different surveil-
lance ships with different kinds of systems have to coop-
erate in a meaningful way in order to provide situational
awareness of the controlled coast. Distribution of an MSS
SoS, in this case, over various frigates from a number of
different countries brings up diverse security and confiden-
tiality issues that must be dealt with by the complete SoS.

The following paragraphs shortly summarize the chal-
lenges to be considered (with emphasis on the integration)
when building MSS systems. Sections 3 and 4 describe the
challenges in more detail that are related to quality assur-
ance, in general, and testing, in particular.

Dynamic Reconfigurability. Systems can join or leave
the SoS, meaning that offered services may vary in terms
of function, as well as quality. When a sub-system joins or
leaves the SoS, the other sub-systems may have to be re-
configured to take advantage of new services and improved
quality of service, or they may have to be notified that ser-
vices are degraded. The reconfiguration must be compatible
with the need for high reliability of the MSS system. The
problem space covers, amongst others, fault detection, sys-
tem degradation, fault recovery, architectural completeness,
and system evolution. In the UN peace keeping scenario,
frigates may join and leave the task-force. This process
should be mostly seamless for the system operators and be
executed within a short time, without any major disruption
on the operation of the rest of the SoS.

Interoperability. Since an SoS usually consists of sys-
tems of different vendors, their integration may not be
straight-forward. This could have various reasons, ranging
from mismatching hardware connections to different elec-
trical signals, or deviating protocols for transmitting ser-
vice requests and data. Our primary focus is on the last
item. Typically, when setting up a connection between sys-
tems, the semantics of the transmitted data is different, and
the protocols are not compatible. In that case, adaptation
must be performed, either manually, or it can be assisted by
means of automatic protocol adapter generation [12]. In the
UN-peace keeping scenario, frigates exchange information
about high value objects, for instance fighter aircrafts, of
participating countries in the mission area. For each nation
the services that manage the information on the frigates use
different data models and different communication proto-
cols.

Trustworthiness. There may be constraints on sub-
systems that allow them to use, or prevent them from using
information coming from other sub-systems, or pass this in-
formation on to other parties. This is known as trustworthi-
ness and integrity of supplied services and information [1].
When a system joins the SoS, its collaboration must be ac-
cepted by all other systems, and the data and services which
it may access have to be determined. In case of the UN
peace keeping scenario, the quality of all services must be
re-evaluated when a frigate of another nation joins, simply
because of specific treaties between the nations constraining
information to be passed.

In the two subsequent sections, the paper will concen-
trate on the testing-related challenges of MSS SoS.

3. Integration, Reconfiguration and Testing

Systems-of-Systems rely heavily on runtime techniques for
integration, evolution, and for ensuring the quality of the
system. SoS cannot be completely predicted at design time.
This prevents the systems from being fully tested during
development or during first deployment.

3.1 Integration and Reconfiguration

A typical MSS SoS will undergo many changes during its
operation. There are several different scenarios that lead
to a reconfiguration of the system. One of those scenarios
is the late arrival of a vessel into the system (evolution of
the SoS). When this vessel arrives, the information obtained
through the various sensors it supports must be transmitted
to the rest of the SoS. Similarly, this new vessel will need to
access the aggregated data of the SoS.

Another scenario is the update of one of the software
components within one of the sub-systems (evolution of a
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system within the SoS), for instance, an improved anomaly
detector in the harbour command centre. In this case, one
will have to assure that no regression has been brought in
by the modified component.

Evolution of the Acceptance Requirements. The evolu-
tion problem is part of the dynamic reconfigurability chal-
lenge and also induced by the strong autonomy of the sub-
systems. As new components and updated versions of pre-
vious components can be inserted at runtime, the tests used
to ensure the integration of the system have to evolve si-
multaneously as the SoS evolves. In particular, functional-
ities of a component which were not exercised in the ini-
tial configuration of the SoS may be required by compo-
nents inserted at runtime. These functionalities have to be
tested before being used, even though no tests were orig-
inally provided to verify them. Acceptance requirements
need not to be restricted to testing, nor to a fixed set of re-
quirements. Therefore, the platform must support differ-
ent types of acceptance checks (static contracts, monitoring
of resources, etc.), and dynamic insertion and removal of
these, in the same way it supports join and leave of com-
ponents. So far, our approach has been to rely on Built-In
Testing (BIT) [7], since it permits close association of the
integration tests with a component, and even with a specific
version of a component. However, it will be useful to ex-
tend the approach with more dynamic BIT capabilities, in
order to allow for removing or adding requirements inde-
pendently of the component, for example.

Cost of the Acceptance Process at Runtime. This prob-
lem is part of the dynamic reconfigurability challenge. By
their very nature, SoS are large-scale systems, with a large
number of components, contained in the sub-systems. As
after each reconfiguration, the integration of the SoS has
to be re-accepted, one of the main goals of the Poseidon
project is to achieve the highest degree of automation of
the acceptance process possible. We will address this prob-
lem, firstly, by devising a framework that automates most
of the testing process, and secondly, reduces the number
of test cases by adequately selecting and prioritizing them,
therefore minimizing the cost of testing after each modi-
fication by testing only the altered parts of the SoS, and
by finding the most defects with the lower number of tests.
Moreover, a model-based approach could be used to detect
incompatibilities between components without resorting to
testing [2, 10, 13]. This makes the verification of a modi-
fication as little disruptive as possible for the running con-
figuration and reduces the latency between the moment a
reconfiguration is requested and the moment it is deployed.

The fact that SoS are made of relatively independent sub-
systems will likely be a useful property on which one can

depend for restraining the number of components to test af-
ter a reconfiguration.

Limitation of Shared Information and Testing. This
problem is part of the trustworthiness challenge. The man-
agerial independence between sub-systems comes also with
the need to limit the amount of information shared between
pairs of sub-systems. Typically, this can be due either to po-
litical reasons or to business reasons. The main implication
is that data exchanged between the sub-systems has to be
scrutinized.

Although this challenge concerns the computer security
community, rather than the software testing community, it
is also important that during the execution of test cases, no
confidential information can leak, for instance, by accessing
a component via normally unused testing interfaces, or by
requesting specific information to be used for testing that
should not be shared. Moreover, the fact that a particular
part of a system has been modified might also be considered
confidential. In this case, the modified sub-system might
have to avoid sending messages to the rest of the SoS such
as “this particular component and bindings have been mod-
ified in this way.” Rather, it should only send information
such as “the sub-system has been modified”.

3.2 Runtime Testing

Testing usually relies on creating a testing instance of the
component or system under test (for the case of integration
testing). Due to the huge size of the SoS, the limited ac-
cess to the system’s code or executables, the need to keep
SoS always available, or the fact that some components use
resources that cannot be duplicated, a) testing will have to
be executed concurrently to the working configuration and
b) some component instances will be shared between the
tested and the working configurations. Therefore, runtime
testing [15] is the only realistic option when integrating and
reconfiguring MSS SoS.

Test Isolation. The test isolation problem is induced both
by the interoperability and the dynamic reconfigurability
challenges. Testing involves interactions with the System
Under Test (SUT), sending stimuli to verify that the SUT
responds as expected. Runtime testing bears the danger that
testing interactions with the component will affect its other
users. We must ensure that test operations and data stay in
the testing realm and do not affect the other clients of a com-
ponent or sub-system. We refer to this as test isolation [14].

Test Awareness. The test awareness problem is part of
the interoperability challenge. In order to achieve test iso-
lation, two related aspects have to be taken into account:
test sensitivity [14], and test awareness. On the one hand,

SERG González, Piel, Gross – Testing Challenges of MSS SoS

TUD-SERG-2008-027 3



components are test-sensitive if interactions originated in
the “testing world” can have effects on the “production
world”. These effects comprise modification of the com-
ponent data or state, generation of new data or events that
will be received by other components, or repercussions in
the “real world”, e.g. controlling some peripheral. On the
other hand, components are test-aware if the execution en-
vironment provides a way to “tell the difference” between
test and non-test invocations and data, for example by us-
ing two ports, or two versions of the same port, one used
for working and other for testing. Test-insensitive compo-
nents do not need to be test-aware. In contrast, test-sensitive
components have to be test-aware. However, this imposes
extra responsibilities on the developers that we would like
to minimize as much as possible, moving most of the run-
time testing responsibilities to the SoS runtime platform.

Fault Detection. An MSS SoS is under constant risk of
sabotage or terrorist attacks against the system itself. For in-
stance in the UN peace keeping scenario, a series of radars
on the coast will suddenly stop reporting data, or all the
data provided by a frigate will be incorrect and incoherent
with the data provided by the other systems. Such attacks
should be detected automatically by the system. Moreover,
it would be helpful to differentiate faults happening acci-
dentally (real faults), from the other faults, caused by mali-
cious attacks, as, depending on the case, the reaction of the
system to be taken will be very different.

Component monitoring and diagnosis, also termed fault
localization, will be necessary to detect incorrect data, com-
ponent misbehaviour, and to pin-point the origin of a prob-
lem. However, higher level of analysis (e.g. pattern recog-
nition) will be required in order to be able to estimate the
chances that a particular fault is caused by malicious action.
One specific issue for MSS SoS is that the components are
geographically distributed. Thus, providing a component
framework which allows to take the physical position of a
faulty component into account can help in distinguishing
the likely causes correctly.

4. Design-originated Challenges

MSS systems will have to integrate systems from heteroge-
neous sources, implemented in a myriad of different plat-
forms. This means that the interconnection of the systems
will not be homogeneous either.

For instance, the client-server model, or its more recent
incarnation, the service oriented computing model, seem
like natural choices when implementing services inside a
command and control center. This means accepting systems
programmed in CORBA, CCM or Enterprise JavaBeans.
However, sensor networks will play an important role in the
MSS, as they will provide the necessary input from the real

world to construct the situation awareness picture. Further-
more, many of the already existing systems in the maritime
world are data-centric. Publish and subscribe platforms [5],
such as the OMG data distribution service (DDS) [11], are,
therefore, readily used in this domain. Other component
models (for instance, Peer-to-Peer) may also be encoun-
tered when integrating the SoS. Due to the fact that SoS
are comprised of many different systems, the most likely
situation is that the interaction between components will be
hybrid, i.e. based on many different types of platforms.

We have identified three main aspects, stemming from
the interconnection and interaction design of the MSS, that
will influence the testing strategy.

Explicit vs. Implicit Dependencies. Most service-centric
architectural models, like CORBA or EJB are based on
binding required to provided interfaces. Bindings make
dependencies and communication between components ex-
plicit, i.e. components are constrained to interact with a
certain set of other components, defined by the system ar-
chitect. When a part of the system is modified, obtaining
the list of components affected by the reconfiguration is a
matter of following the dependency graph derived from the
bindings. Publish-subscribe systems, on the other hand, are
characterized by loose coupling of their components. Each
component reads data messages of specific types and gen-
erates other data messages. There are no explicit depen-
dencies between components, but a many-to-many depen-
dency implicit in the data model they publish, or subscribe
to. This simplifies the integration process considerably, but
on the other hand, it makes the task of finding dependen-
cies between component instances more difficult, and, thus,
regression testing after a reconfiguration of the SoS much
more difficult.

Synchronous vs. Asynchronous Interaction. In some
architectures, when a component requests the service of
another component, it is blocked until the second compo-
nent finishes. In other architectures, component interactions
are asynchronous, meaning that a component is still active
while the service is being processed. When the called com-
ponent finishes the processing, it can alert the first compo-
nent through some event. Asynchrony is advantageous in
terms of performance and independence, but it also intro-
duces complexity when testing. Because the return event
can occur at various times during the execution of the first
component, additional care must be taken to ensure that all
situations have been assessed.

Call-Return vs. Data Flow. In a service-centric architec-
ture, activities originate from a rich set of different events
that components send to each other and respond to. The
system follows what could be called a call-return model,
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the basis of a client-server architecture. A component needs
a service (the client) and calls a component that provides
this service (the server) with the specific data to be treated.
Once the processing is finished, the server returns the re-
sult. Writing integration test-cases for such an architecture
is relatively easy. From the client side, it is possible to ex-
press both the input and the expected output of the server,
because the component has an expectation towards the ser-
vice (model) that can be translated into test cases.

Conversely, in a data-centric architecture, there exists
only one event that triggers activity: the reception of new
data. The system is better understood as a series of data
flows. A component receives data from the previous com-
ponent in the flow, processes the data and sends the result to
the next component in the flow. In this component model,
integration test-cases cannot be associated with one specific
component alone, because components do not have any re-
quirements on their predecessors or successors; they only
know about the data. Integration testing must, therefore,
be associated to a set of components, and the integration
test suite has to verify that the data input to this set is cor-
rectly processed. Defining such test-cases and determining
how they should be applied during reconfiguration is much
harder than with the call-return model. In the context of
SoS, it is also challenging to define a testing infrastructure
that incorporates concepts from both worlds.

5. Summary and Future Work
In this paper, we have presented the general software en-
gineering challenges and the particular integration, testing,
and acceptance challenges that we are facing in the de-
velopment of highly dynamic maritime safety and security
systems-of-systems. These encompass component auton-
omy, geographical distribution, and high dynamicity cou-
pled with high reliability. These characteristics of MSS
systems lead to the requirement that they should be able
to be tested during runtime while they evolve. The vision
of the Poseidon project is to provide (semi-)automatic inte-
gration and acceptance (testing) mechanisms for MSS sys-
tems. That way, subsystems could be joining or leaving au-
tonomously without threatening the integrity of the overall
MSS application.

Our current research work, in collaboration with Thales,
aims at resolving the problems of runtime evolution of ac-
ceptance requirements and reduction of the costs of accep-
tance, as well as the definition of a runtime platform that en-
ables us to demonstrate our propositions. Future work will
concentrate on the testing challenges of publish and sub-
scribe platforms, in particular the effects of their decoupling
characteristics on fault identification, and on how MSS can
be protected from side effects of runtime testing.
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