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Embodiment Matters: Affordance Grounding From Robot And Human
Videos

Daniel Wright1,2 Anne Kemmeren2 Gertjan Burghouts2 Yke Bauke Eisma1

Abstract— Affordances, or action possibilities, have been
explored to enable robotic manipulation with everyday objects,
however the effect of an agent’s embodiment has not received
much attention. Here we investigate how embodiment changes
affordances between a human and robot. We present a method
to automatically generate affordance pseudo-labels from a
robotic manipulator for the task of grounding (localising)
affordances on an object, as there is no such existing dataset.
We then propose a general model for embodiment-conditioned
affordance grounding, and explore three ways to condition
on the embodiment. Our model learns to perform an affine
transformation on image embeddings based on the effect of
embodiment on the affordance. We evaluate all three vari-
ants of our model and compare them to a variant without
embodiment conditioning and a state-of-the-art affordance
grounding method. The results show that our best performing
model decreases affordance prediction error by 25% when
compared to the variant without embodiment conditioning and
by 68% when compared to the state-of-the-art method. Through
our results we demonstrate that embodiment matters when
perceiving affordances.

I. INTRODUCTION

For intelligent robots to operate in the real world and
perform useful tasks, they need to understand how to interact
with everyday objects. This requires detecting the actions
that an object affords to the robot [1], [2]. However, robots
with substantially different embodiments may interact with
objects differently. [25], [26]. For example, a human may
interact with food differently when using a fork as opposed to
tongs. This dependency of affordances on embodiments has
had little attention in previous works. This work examines
affordance grounding, the task of locating object regions that
enable interaction.

Traditional affordance grounding methods sought to learn
to locate where affordances occurred on an object from hand-
labelled affordance datasets [32], [15], [20], [33], [42]. This
research focussed on using the concept of affordances to
allow models to generalise in a more human-like manner,
learning how to interact with objects, rather than simply
where an object is in a scene. These methods also learn many
different affordances, which can overlap on a single object.
This inherent fuzzy nature of affordances made the manual
annotation of these datasets expensive and time consuming.
The labels were created from an explicitly human point-of-
view, including affordances such as ”ride” on a motorcycle.
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To avoid the effort of manually labelling datasets, re-
cent studies investigated extracting affordance information
from human-object interaction videos [3], [4], [5], [6], [34],
[43]. These methods simplify the concept of affordances
to interaction locations and so extract hand-object contact
point pseudo-labels from these videos using a hand-object
detection model [7]. They train affordance grounding models
on these pseudo-labels and use them for manipulation tasks.
How embodiment can change affordance is not considered.

Thus, there is a gap in the literature on affordance
detection models that capture how embodiments change
affordances. Affordances can be seen as the complement of
agent and object [1], [2], as your embodiment changes how
you perceive affordances. A robot with a dexterous hand
should perceive different object affordances than a robot with
a parallel jaw gripper.

We propose to learn to perceive affordances conditioned
on embodiment for robotic manipulation. Following previous
works [3], [4], [5] we adopt contact points as our affordance
representation. This representation is compact, the same
across embodiments, and allows for easy manual annotation.
If the predictions are highly precise, they also enable real-
world object manipulation with grasping models [4].

To address the gap in embodiment-aware affordance
grounding, we propose a model that conditions affordance
perception on embodiment. Rather than predicting affor-
dances solely from object appearance, our model also re-
ceives an input representing the robot’s embodiment, al-
lowing it to adapt predictions to the capabilities of the
agent. Conditioning in this way enables the model to capture
how different embodiments interact with the same object
in distinct ways. We explore three forms of conditioning:
a categorical embodiment variable, a learned embodiment
variable, and a natural language text prompt. By integrating
embodiment information into the learning process, we aim
to improve affordance grounding performance and generali-
sation across embodiments.

Learning embodiment-conditioned affordances for robotic
manipulation requires extracting affordance information from
different embodiments. As there are no existing affordance
grounding datasets for a non-human embodiment, we utilize
recently published robotic datasets [8], [30] and obtain
contact point pseudo-labels using foundation models for free
supervision.

We evaluate our method and the three conditioning inputs
on in-domain and out-of-domain embodiments. We perform
several experiments to answer the following research ques-
tions:



1) How much does conditioning on embodiment improve
affordance grounding?

2) What is the most effective way to condition on em-
bodiment?

3) Does conditioning on embodiment improve generali-
sation to unseen embodiments?

4) Why does embodiment change affordance?
5) How does our model condition on embodiment?

II. RELATED WORK

A. Visual Affordance Learning

Initial research on visual affordance learning relied on
manually annotated datasets [32], [15], [20], [49], [50].
Early methods used models based on convolutional neural
networks [53], [52], [51], which then progressed to methods
using transformer-based models [42], [14], [36]. The manual
annotation required to create these datasets made them
expensive, even for weakly supervised methods. This lead to
research into automatically extracting affordance information
from human-object interaction videos [3], [4], [5], [6], [34],
[43], [45]. In these methods affordances are represented as
heatmaps or contact points. Recent methods, also seeking to
avoid extensive manual labelling, have extracted affordance
knowledge from foundation models [16], [14], [35], [44],
[46], [47], [48]. Different from these methods, we propose
to automatically extract affordance information from robot-
object interaction videos, providing a new source of data
for visual affordance learning. This then enables us to learn
how affordances differ due to embodiment, which previous
methods are unable to do as they rely solely on human-object
interaction data.

B. Conditioning For Affordance Learning

Affordances are inherently dependent on a number of
factors, such as object size, shape, task semantics and agent’s
embodiment [25], [54]. To enable deep learning methods to
predict affordances based on these factors requires condition-
ing on them. Previous methods have conditioned affordance
predictions on the geometry of objects by using 3D infor-
mation [32], [33], [15], [14], [34], [37], [38], [39]. Other
methods explored the effect of physical properties of the
objects on their affordances [40], [35], [41]. Task semantics
have been included by conditioning predictions on natural
language prompts [5], [55], [56], [57]. One previous method
has shown that embodiment-aware affordances can improve
manipulation [61], but only explores one embodiment. These
methods all make significant contributions to understanding
affordances, but do not explore how different embodiments
can alter affordance. To explore this factor of affordance, we
condition our model on the embodiment of the agent.

C. Learning From Demonstrations

Learning from demonstrations involves using human ex-
amples of tasks, where the human controls the robot via tele-
operation, to teach robots. The state-of-the-art uses vision-
language-actions (VLA) models to learn to directly control
robots [27], [28], [58], [60]. VLAs are comprised of a vision

encoder and a large language model backbone, and have
achieved remarkable success when trained on large datasets
of demonstrations [28], [8], [59]. These methods achieve
cross-embodiment generalisation, but only for similar em-
bodiments, such as robots with different sizes of parallel jaw
grippers. They learn to output control commands specific to
an embodiment and so a model trained for a parallel jaw
gripper cannot control a dexterous hand. In contrast to these
methods, we extract the relevant affordance information from
the demonstrations. Furthermore, our approach does not learn
a one-size-fits-all model, but is able to switch between modes
for different embodiments. We hypothesize that this enables
the model to leverage similarities between embodiments and
generalisation capabilities, but it is also able to learn where
the embodiments are fundamentally different.

III. METHOD

Our goal is to learn embodiment-conditioned affordances
which can be used for robotic manipulation. The structure
of this section is as follows: in Section III-A we describe
how we use an existing affordance grounding dataset and
extract contact point pseudo-labels from a robotic dataset,
in Section III-B we detail our general model architecture, in
Section III-C we hypothesize how our model conditions on
the embodiment, and in Section III-D we describe the three
variations of how we condition on embodiment.

A. Affordance Pseudo-label Generation

To condition affordance grounding on different embod-
iments, we need a dataset which contains images with
contact point labels from two embodiments. We use existing
affordance labels from a human-object interaction dataset
and generate new affordance labels from a robot-object
interaction dataset.

1) Human Affordance Data Generation: We follow exist-
ing affordance learning methods which extract affordances
from human egocentric videos and use the publicly available
data from [6]. Their dataset consists of tuples of a pre-
interaction RGB image, xh and contact points cih. We take
the average of the contact points as the affordance label,
giving one contact point, c̄h and the final tuple (xh, c̄h). We
denote this dataset as the Hand dataset.

2) Robot Affordance Data Generation: We propose a
novel method to automatically extract affordance information
from the robot-object interactions in the DROID dataset [8],
shown in Figure 1. The DROID dataset consists of videos
and trajectory data of a Franka Panda robotic manipulator
with a parallel jaw gripper completing tasks teleoperated by
a human. The dataset contains videos of each task from two
exocentric cameras and one wrist camera, as well as the end-
effector pose and gripper state from the trajectories of the
robot arm. The DROID dataset was chosen due to its variety
of objects, tasks and scenes, as well as its large size and
inclusion of gripper state. Additionally, the embodiment rep-
resented in the DROID dataset is both significantly different
from a human embodiment, and common in the literature.
To automatically extract affordance pseudo-labels from the



Fig. 1. Dataset creation method: (1) shows the chosen interaction timestamp from the gripper position data, (2) shows the interaction frames being chosen
from the videos, (3) shows the contact point being projected from the wrist camera to the two exocentric cameras, and (4) shows the contact point being
projected from the interaction frame to the first frame for both exocentric videos. These final images in (4) are the data used to train the proposed models.

DROID dataset we need to determine when and where the
interaction takes place.

When the interaction takes places was determined auto-
matically using the gripper state data from the robot. The
interaction between the gripper and object begins when the
gripper is fully closed around the object. Each trajectory
in the DROID dataset contains the gripper state, which
describes the position of the gripper. The value of the gripper
state ranges from 0 to 1, where 0 is fully open and 1 is fully
closed. For a given interaction, the behaviour of the gripper
state is that of a rising edge, increasing as the gripper closes,
reaching a peak when fully closed around the object, and then
forming a plateau as the interaction unfolds. To automatically
obtain the timestamp of the interaction, the gripper state is
filtered to find peaks. Any trajectories where the gripper state
does not change is discarded. The first peak is taken as the
interaction timestamp and used to obtain the frames from
each of the three cameras. We denote these frames where
the interaction occurs as an interaction frame.

To determine where the interaction occurs in the video,
we exploit the fixed nature of the wrist camera. The wrist
camera is mounted directly above the robot’s gripper. As
the gripper closes, the interaction then occurs in the centre
point of the gripper’s two fingers. This contact point is
then projected from the wrist camera’s frame to the two
exocentric cameras’ frames. We obtain free supervision from
the VGGT [9] foundation model for this task. VGGT is a
transformer-based model that infers all 3D attributes of a
scene, including camera parameters. For our purposes, it also
has a point tracking head, which we use to predict where the
contact point in the wrist camera image is visible in the two
exocentric camera images.

Then for each exocentric camera, the contact point is
projected from the interaction frame to the first frame of
the video, again using VGGT. This reduces the domain gap
between the human and robot datasets, by ensuring the robot
gripper is not in the final image. The extracted pseudo-labels
were visually inspected to exclude outliers. This then gave
contact point pseudo-labels for each video in the DROID
dataset in the same tuple format of (xr, cr), which we denote
as the Gripper dataset.

3) Combining Datasets: We now have two datasets: the
Hand dataset containing tuples (xh, c̄h) and the Gripper
dataset containing tuples (xr, cr). To condition our affor-
dance prediction on the embodiment, we propose an embod-
iment variable, e. We define e as a categorical variable, with
e = 0 for the Hand dataset and e = 1 on the Gripper dataset.
We combine these two datasets into a single dataset which we
will denote as the Combined dataset, which contains tuples
(x, c, e), where x is an RGB image of the pre-interaction
scene, c is the pixel location of the contact point and e is
the embodiment variable.

To reduce the domain gap between the Hand and Gripper
datasets we crop the image to the relevant object. This crop
is the input image, xcrop, to the model.

4) Object Selection: Each dataset contains a wide range
of objects. We aimed to choose objects that fulfilled a number
of criteria. These criteria are:

1) The objects are common, everyday objects.
2) The objects have a range of sizes and geometries.
3) The objects may have different affordances for differ-

ent embodiments.

The set of objects present in the HOI4D and DROID
dataset fulfil the first criteria. From this set we selected five
specific objects: mugs, bottles, bowls, knives and scissors.
These objects span a range of geometries. The mug is
asymmetrical, the bowl is concave, the bottle is large and
symmetrical, while the knife and scissors introduce thin,
elongated geometries with specific interaction areas. This
range of geometries enables our method to control for
the effect of geometry and better determine the effect of
embodiment on affordance.

5) Affordance Task Relationship: Many previous studies
have shown the dependence of affordance localisation on
the task semantics [25]. We control for the effect of the task
on the affordance location by only choosing pick-and-place
tasks from HOI4D and DROID. For example, from HOI4D
a task is to “Pick and place the mug”, whilst from DROID
a task is to “Pick the mug and move it to the bottom left of
the table”.



Fig. 2. Overview of the proposed models’ architecture. It is comprised
of a DINOv2 image encoder which outputs image embeddings, an MLP
projector which projects the embodiment input to the image embedding
space and an MLP decoder which outputs the predicted contact point.

B. Model Architecture

The embodiment-conditioned affordance model takes an
image and an embodiment variable and predicts a contact
point. The general model architecture is shown in Figure
2. We propose three variations with different embodiment
variables and describe them in Section III-D. For ease of
notation, we denote the whole model as fθ and the modules
of the model as (·)θ, where θ denotes a neural network. The
input image xcrop is encoded using a frozen DINOv2 visual
encoder [10], gθ, to give image embeddings z. The image
embeddings from DINOv2 encode depth information [10],
which is why we do not include a depth map as additional
input to our model.

z = gθ(xcrop) (1)

With xcrop ∈ ℜh×w, where h is the height of the crop
in pixels, w is the width of the crop in pixels, z ∈ ℜp×l,
where p denotes the number of tokens output by the visual
encoder, and l is the token length.

The embodiment variable, e is projected by a modified
FiLM [11] layer, hθ, which we parametrise as a two-layer
MLP, to a size twice that of the token length. This is reshaped
into the scaling and bias terms, γ and β respectively:

γ, β = hθ(e) (2)

With γ, β ∈ ℜ1×l. The image embeddings are then altered
by the scaling and bias terms, before being decoded by a
two-layer MLP, fθ:

ĉ = fθ(γ · z + β) (3)

Where ĉ ∈ R2 is the predicted contact point. The loss
for the contact point is the mean square error between the
prediction, ĉ and the ground truth, c, formally:

L =
1

n
Σn

i=1(ci − ĉi)
2 (4)

With c ∈ R2, and n is the number of samples in the mini-
batch.

C. Conditioning on Embodiment

To condition the model’s predictions on the embodiment,
we seek to alter the image embeddings. We use a modi-
fied version of the general-purpose conditioning layer from
FiLM. FiLM layers learn an affine transformation which is
applied to the image embeddings, scaling or shifting them.
Intuitively this can be thought of as moving the conditioned
embeddings in the high-dimensional embedding space, en-
abling a model to draw a decision boundary between them.

As our method alters image embeddings [11], it can be
used with future affordance grounding methods which follow
the classic encoder-decoder model design.

D. Embodiment Input Variations

We propose three variations of model architecture based
on different embodiment inputs, which we denote as Cate-
gorical, Learned and Text.

1) Categorical: The embodiment variable is 0 for Hand
data and 1 for Gripper data, with e ∈ R1.

2) Learned: The embodiment variable is a learnable
embedding for each embodiment with dimension 1. The
embeddings are initialised as 0 for Hand data and 1 for
Gripper data, with e ∈ R1.

3) Text: The embodiment variable is a text description
of the gripper tokenised and encoded using the DINOv2 text
encoder [29]. For Hand data the text prompt is “Five fingered
dexterous hand” and for Gripper data the text prompt is “Two
fingered parallel jaw gripper”, with e ∈ Rl.

IV. EXPERIMENTS AND RESULTS

In this section we present a thorough evaluation of our
approach and answer the proposed research questions:

1) How much does conditioning on embodiment improve
affordance grounding?

2) What is the most effective way to condition on em-
bodiment?

3) Does conditioning on embodiment improve generali-
sation to unseen embodiments?

4) Why does embodiment change affordance?
5) How does our model condition on embodiment?

A. Experimental Setup

1) Train and Validation Splits: We split the Combined
dataset into a train set and a validation set. The train set
consists of 1,237 images and the validation set consists of
303 images. Each image in the train set has one annotation,
whilst the images in the validation set have two annotations:
their original annotation and a manually annotated contact
point for the other embodiment.

2) Model Settings: We train the baseline, Categorical,
Learned, Text and ablation models on an Nvidia RTX-3090
for 250 epochs with a learning rate of 5×10−4, a batch size
of 8 and an AdamW optimiser [31]. Loss curves are shown
in Appendix C.

3) Early Stopping: After training each model for 250
epochs, we report the metrics using the model checkpoint
from the epoch with the lowest validation loss.



4) Baseline Models: We compare our proposed model to
a baseline model, as well as a state-of-the-art affordance
grounding method, VRB [3]. The baseline consists of a
frozen DINOv2 encoder and 2 layer MLP decoder. This
architecture is the same as the proposed model in Figure
2 without the embodiment conditioning. It is trained with
the same MSE loss as the proposed model. As we want
to compare the accuracy of contact point predictions, to
have a fair comparison we constrain the output of VRB.
VRB outputs a heatmap, or probability distribution over the
affordance area. We take the point in the heatmap predicted
by VRB with the highest probability as the contact point.

5) Evaluation Metrics: For the purpose of measuring the
performance of our method, we create ground truth heatmaps
for the validation set. This allows us to compute more de-
tailed metrics which enable deeper analysis of our proposed
method. To create the heatmaps we apply a Gaussian blur to
the contact points, following [20], [21].

Root Mean Square Error (RMSE): The RMSE is
calculated as the average of the L2 distances between the
predicted contact points and the ground truths, normalised
for the size of the image. For predicted points, ĉ, and ground
truths c, the formula of RMSE is:

Err =

√
1

n
Σn

i=1(ĉi − ci)2 (5)

Normalised Scanpath Saliency (NSS): Measures the cor-
relation between saliency maps and fixed points, considering
their accuracy and saliency. A higher value corresponds to a
contact point closer the center of ground truth heatmap. We
use the metric adapted to calculate the average normalised
value of the ground truth map at the predicted contact points
[4]. For ground truth heatmap M , and predicted contact
points ĉ, the formula of NSS is:

NSS =
1

n
Σn

i=1(
M(ĉ)

maxc∈MM(c)
) (6)

Success Rate (SR): Success rate is calculated as the frac-
tion of predicted contact points which fall within the ground
truth heatmap. The values of the ground truth heatmap range
from 0 to 255, so a threshold of 122 is chosen to determine
if the output is feasible [4]. The formula of SR is:

SR =
1

n
Σ(si) (7)

Where the success value si for a predicted contact point
ĉ is given by:

si =

{
1, if M(ĉ) > 122

0, otherwise
(8)

Distance to Mask (DTM): This metric calculates the
shortest distance between the predicted contact point and the
ground truth heatmap. We threshold the mask using the same
value as in success rate and then calculate the distance. If
the predicted contact point is inside the thresholded mask,
the DTM value is 0. We report the average normalised value.

For a ground truth heatmap M , predicted contact point ĉ and
point p in M closest to c, The formula for DTM is:

DTM =

{
0, if ĉ ∈ M

min
p∈M

∥ĉ− p∥, if ĉ /∈ M
(9)

B. Affordance Grounding Results

1) Discussion of proposed methods: Table I presents the
experimental results for the entire validation set, for our
proposed methods and the comparison methods. We report
the mean and standard deviation for each metric over five
training runs for the baseline, Categorical, Learned and Text
models. Each individual run is reported in Appendix D. The
proposed Learned method achieves the lowest RMSE, 0.217,
outperforming the baseline by 25% and VRB by 68%. It
also achieves the highest NSS. This shows that the Learned
method’s predictions are more consistent and closer to the
correct affordance region, as they are closer to the center of
the ground truth heatmap. The proposed Categorical method
has the highest success rate and DTM. The Text method is
the worst performing of the proposed methods, which shows
that the text prompts do not allow the model to distinguish
embodiments as clearly as the other proposed methods.

TABLE I
CONDITIONING ON EMBODIMENT IMPROVES AFFORDANCE GROUNDING

PERFORMANCE.

Model RMSE ↓ NSS ↑ SR ↑ DTM ↓
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

VRB [3] 0.365 (-) 0.579 (-) 0.644 (-) 0.023 (-)
Baseline 0.272 (0.001) 0.697 (0.003) 0.770 (0.010) 0.019 (0.001)

Categorical 0.218 (0.001) 0.771 (0.001) 0.872 (0.010) 0.016 (0.001)
Learned 0.217 (0.003) 0.774 (0.004) 0.871 (0.008) 0.017 (0.003)

Text 0.255 (0.006) 0.718 (0.010) 0.821 (0.014) 0.019 (0.002)

2) Comparison to baselines: All of our proposed methods
outperform the baseline and VRB. The proposed methods’
improved performance over the baseline show the benefit of
conditioning on embodiment. The improvement over VRB is
more multifaceted. VRB is trained only on data from human
egocentric videos and so has not seen data from robot-object
interactions. It does not condition on embodiment, and uses
an image encoder trained from random initialisation on a
dataset curated specifically for affordance grounding. Our
simple approach, using a strong backbone, outperforms this
train-from-scratch approach.

C. Generalisation to Novel Object-Embodiment Combina-
tions

At test time we evaluate on novel combinations of object
and embodiment. While the models have prior exposure
to the object categories and embodiments separately from
the Hand and Gripper datasets, they have not seen object
instances from the Hand dataset with Gripper embodiment
labels and vice-versa. For each image in the validation set we
manually annotate an additional contact point corresponding



Fig. 3. RMSE by object and original or novel annotation for the baseline and proposed methods. Conditioning on the embodiment enables generalisation
to novel combinations of object instance and embodiment.

to the other embodiment. We denote these additional vali-
dation samples as “Novel Combination”, and the originally
generated contact point labels as “Original Combination”.

Figure 3 shows the validation RMSE for each object in the
dataset, split into “Original Combination” and “Novel Com-
bination” sets, for the baseline and the proposed methods,
from one training run. For all sets the Categorical method
outperforms the baseline method. In only the Scissors Novel
Combination split does the Learned method perform worse
than the baseline. This shows that these methods are able
to generalise to novel combinations of object instance and
embodiment. Whilst the baseline model learns the affordance
location solely based on the image features, thereby giving
the same prediction for each Original and Novel set, the
proposed methods are able to learn how the embodiment
changes the affordance location. The Text method performs
worse than the baseline for most of the Original sets, but
better for most of the Novel sets. This shows that the
information from the text encoder is not useful for affordance
grounding, but does enable the method to condition on
embodiment. This is unsurprising as the text encoder is
trained using a contrastive loss, aligning text captions to
images [29].

We posit that this difference is most significant for the
Mug and Bottle “Novel” sets as the difference in interaction
is also the most different for these two embodiments. Due
to the geometry, size and weight of these objects, the
two-fingered gripper and human hand interact with them
differently. Via inspection of the training data, see Appendix
A, we argue that for the mug the human hand interaction
largely occurs at the handle, whereas for the gripper the
interaction occurs at the rim of the mug. This may be due to
the two-fingered gripper being unable to pick up a mug at the
handle due to the small surface area and large, unbalanced
moment. For the bottle, the human hand interaction largely

occurs towards the bottom of the bottle, whilst the gripper
interaction occurs towards the top. This may be due to the
two-fingered grasp pose not balancing moments if it picked
up a bottle from the bottom, causing the bottle to rotate and
fall out of the gripper.

The difference in performance between the baseline and
proposed models is much less pronounced for knives, scis-
sors and bowls. This is due to the affordance location being
similarly placed for these objects across the two embodi-
ments. For the knives and scissors, their smaller size and
lower weight is likely why the affordance location is not
significantly different between embodiments. Inspection, see
Appendix A, shows that for the bowls, both embodiments
interact at the rim. The geometry of a bowl restricts the
locations where interactions are possible, explaining the
similarity in affordance location between the embodiments.

D. Data Efficiency Experiment

In this experiment, we aim to show how conditioning on
embodiment in our method is a powerful inductive bias.
We train from random initialisation a baseline model and
a Categorical model on increasing percentages of the Mug
training dataset, which consists of 356 images of mugs from
both embodiments. We evaluate these models on the Mug
validation split of the validation dataset. Figure 4 shows how
conditioning on embodiment enables the Categorical model
to more efficiently learn from data than the baseline model.
The Categorical model has a lower RMSE than the baseline
model with only 10% or 20% of the training data. While the
baseline model’s RMSE improves greatly from 10% to 40%
of the training data, it then plateaus, while the Categorical
model’s RMSE continues to decrease.



Fig. 4. RMSE for a Categorical and a baseline model trained on increasing
percentages of the Mugs training dataset. The Categorical model requires
less training samples for a lower RMSE, showing that conditioning on
embodiment is an inductive bias that improves learning efficiency.

E. Few-Shot Generalisation Experiment

The purpose of this experiment is to determine the ability
of the proposed methods to generalise to a new embodiment
given a few examples to learn from. We manually annotate a
small amount of data from the Google robot [30] interacting
with mugs. This robot has a two-fingered claw gripper, and
so interacts with mugs in a different manner than the Franka
Panda robot from DROID. We denote these data as the Claw
set, shown in Appendix B. Rather than picking up the mug
at the rim or handle, it grabs the body of the mug.

We train the baseline and proposed methods on the Com-
bined training dataset, with 0, 1, 2, 4 or 8 Claw samples
added. We assign the Google robot a categorical embodiment
variable of 2, initialise the Learned embodiment variable to
2 and set the text prompt to “Claw gripper”. In Figure 6
we report the RMSE of each method on a test set of data
annotated with Claw contact points from the Hand, Gripper
and Claw datasets.

Fig. 6. Embodiment-conditioned affordance grounding enables few-shot
generalisation. The Categorical model approaches its overall validation
RMSE score for a new embodiment with only 8 training samples.

None of the methods show a strong ability to perform
zero-shot generalisation to a new embodiment. However,

the Categorical method consistently improves, achieving
an RMSE of 0.252 with only 8 samples from the Claw
embodiment. The Learned method and baseline perform
similarly, indicating that learning the difference between the
embodiments requires more data than is available in the few-
shot setting. The Text method achieves the lowest RMSE of
0.248 with 4 samples but then performs worse, indicating
possibly unstable training.

F. Qualitative Results

We also show that the mechanism of the Categorical
model’s embodiment conditioning is as hypothesized. We ex-
pected that the FiLM parameters γ and β were performing an
affine transformation on the image embeddings, shifting the
embeddings to create a decision boundary [24]. This would
then allow the model to in some sense switch its predictions
between the embodiments. We validate this hypothesis by
obtaining the Categorical model’s embeddings of the Mug
validation data. We then use t-SNE [12] to reduce the high-
dimensional image embeddings to two dimensions for visu-
alisation. Figure 7 shows how the embodiment variable shifts
the image embeddings. The Hand images show a small but
significant shift from the categorical variable. Interestingly,
the Gripper images are entirely linearly separated by the
categorical embodiment variable. The model moves their
embeddings towards the Hand image embeddings.

We further validate this hypothesis with qualitative results
from our method. Figure 5 shows one example of each object
in the dataset, with affordance predictions form the baseline
and proposed methods. The top row shows Hand annota-
tions, whilst the bottom row shows Gripper annotations. The
baseline method makes the same prediction for both images,
whilst the proposed methods make different predictions.

G. Ablations

To validate the design choices in our method, we perform
several experiments using the Categorical model to determine
the influence of parts of our method.

1) Data Transformations: Our problem setting involves
images from two different data distributions. To reduce
the domain gap between the Hand and Gripper images
we investigate the effects of data transformations. Addi-
tionally, applying transformations to images during train-
ing has been shown to improve model generalisation [18],
[19]. Transformations prevent the model from overfitting
spurious correlations present in the training dataset [22],
and they inflate the amount of training samples that are
seen by the model [23]. We apply transformations of scale,
colour, rotation and perspective to determine if they improve
model generalisation. We always apply horizontal flip to our
methods to ensure our models learn vertical symmetry. We
report the mean and standard deviation over five training
runs for each transformation combination. Each individual
run is reported in Appendix D. Table II shows that large
scale jitter [17], rotation and perspective transformations
improve performance slightly, whilst colour jitter decreases
performance. As the validation set is taken from the same



Fig. 5. Visualisation of predicted contact points from the baseline and proposed methods. The top row shows a Hand embodiment label and the bottom
row shows a Gripper embodiment label.

Fig. 7. t-SNE plot of the Categorical model’s embeddings of validation
mug data with different embodiment variables. The model learns to separate
the same image’s embeddings based on the embodiment variable.

dataset as the training set, large changes in colour are
unlikely, whereas changes in scale, orientation and perspec-
tive are more likely. This is why colour jitter decreases
generalisation performance, whilst large scale jitter, rotation
and perspective transformations improve it. In our reported
results in Table I we use horizontal flip, large scale jitter,
rotation and perspective transformations when training. Note
that our implementation of large scale jitter places the object
randomly in the scene, not in the top left.

2) Encoder: To validate our choice of encoder, we tested
the method with several state-of-the-art image encoders. A
version of the Categorical model was trained using each en-
coder. We chose four encoders to compare against DINOv2:
VGGT, and the three Perception Encoders: Core, Language

TABLE II
ABLATION OF DATA TRANSFORMATIONS.

Transformation RMSE ↓ NSS ↑ SR ↑ DTM ↓
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Crop & Horizontal Flip 0.227 (0.003) 0.757 (0.005) 0.852 (0.007) 0.018 (0.003)
& w/ Large Scale Jitter [17] 0.222 (0.002) 0.770 (0.004) 0.874 (0.006) 0.016 (0.002)

& w/ Rotate 0.219 (0.001) 0.771 (0.003) 0.869 (0.007) 0.016 (0.002)
& w/ Colour Jitter 0.222 (0.003) 0.768 (0.005) 0.868 (0.006) 0.017 (0.001)
& w/ Perspective 0.219 (0.003) 0.771 (0.004) 0.870 (0.006) 0.016 (0.002)

and Spatial [13]. Previous research has shown that DINOv2
outperformed other image encoders for pixel level tasks [16],
but these four encoders were released after that research
was performed. The Perception Encoders were chosen as
they improved performance in a number of areas and in
particular PE Spatial outperformed DINOv2 in several pixel-
level tasks such as semantic segmentation [13]. We chose
VGGT as literature has shown that the 3D structure of objects
is important for affordance grounding [14], [15] and VGGT
excels at reconstructing 3D scenes. Table III reports the
results over the entire validation dataset, for one training
run. DINOv2 shows the best results, with an RMSE of
0.218. Whilst it is unexpected that DINOv2 outperforms PE
Spatial, we speculate this is due to the used hyperparameters.
It is out of scope of this research to perform a thorough
hyperparameter search to determine the cause.

TABLE III
ABLATION OF THE IMAGE ENCODER

Model RMSE ↓ NSS ↑ SR ↑ DTM ↓
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

DINOv2 [10] 0.218 (0.137) 0.769 (0.248) 0.858 (0.349) 0.016 (0.075)
PE Core [13] 0.378 (0.181) 0.490 (0.333) 0.512 (0.500) 0.026 (0.089)

PE Language [13] 0.277 (0.137) 0.542 (0.321) 0.569 (0.496) 0.026 (0.089)
PE Spatial [13] 0.579 (0.257) 0.658 (0.279) 0.764 (0.425) 0.026 (0.088)

VGGT [9] 0.306 (0.138) 0.647 (0.278) 0.752 (0.432) 0.025 (0.088)



3) Projector: To validate the performance of the projector,
we increase its size. In our proposed method, γ and β both
have size (1, 768) and are then broadcast across the image
embeddings, which have size (257, 768). We test a version
where γ and β both have size (257, 768) to see if this enables
more fine-grained manipulation of the image embedding
space. Table IV shows that the smaller size outperforms
the larger size for RMSE and NSS, whilst the larger size
performs slightly better on SR and DTM. As RMSE is our
primary metric, we choose the size (1,768) for our methods.
These results show that the smaller size projector is able to
learn all the necessary information, and we speculate that
this means that the larger projector is overfitting the data.

TABLE IV
ABLATION OF THE PROJECTOR SIZE

Size RMSE ↓ NSS ↑ SR ↑ DTM ↓
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

(1,768) 0.218 (0.137) 0.769 (0.248) 0.858 (0.349) 0.016 (0.075)
(257, 768) 0.228 (0.137) 0.762 (0.249) 0.859 (0.249) 0.015 (0.070)

H. Limitations

While our method shows that there is a noticeable dif-
ference in affordance grounding between the two embodi-
ments, further research is needed to confirm that our method
improves real-world grasping success rates. We believe that
our method may show larger gains for settings where the
embodiments show a higher degree of dissimilarity, for
example a dexterous hand compared to a pushing rod. How-
ever, this research requires generation of new high-quality
affordance datasets for these embodiments. As our method
is data-driven, it is heavily reliant on the quality of the data.
The pseudo-labels from the datasets limit the quality of the
predictions possible from the proposed models. Moreover,
limitations common to vision models such as perspective
apply to our method, see Appendix E.

V. CONCLUSION

In this paper we have presented embodiment-conditioned
affordance grounding, by learning affordances from robot
and human videos. We proposed a novel method to auto-
matically extract affordances from a large robot dataset. We
proposed three methods for conditioning on the embodiment,
and evaluated them against a baseline. Our method improves
the prediction accuracy compared to the baseline by 25%,
and by 68% when compared to the state-of-the-art method.
We have thus shown empirically that embodiment does
change how affordances are perceived. We also show how
our method achieves this performance, by altering the high-
dimensional image embedding space. This provides key in-
sights that our method can leverage similarities between em-
bodiments, but also learn when embodiment fundamentally
changes affordance. In the future we hope to explore other
embodiments, incorporate these ideas into more complex
architectures such as VLAs, and perform experiments with
real world robots.
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APPENDIX

A. Training Data From The Hand and Gripper Dataset

Figure 8 shows training data from each object category.
The top row corresponds to objects from the Hand dataset,



whilst the bottom row corresponds to objects from the
Gripper dataset.

Fig. 8. Example training data from the Hand and Gripper datasets.

B. Training Data From the Claw Dataset

Figure 9 shows the training data from the Claw dataset.

Fig. 9. Training data from the Claw datasets.

C. Proposed and Baseline Loss Curves

Figures 10-17 show the train and validation loss curves
for the three proposed models and the baseline model.

Fig. 10. Baseline model’s train loss curve.

D. Individual Run Results

The results of each individual run are reported in Tables
V-XIII. The mean and standard deviation for each metric is
reported over the validation dataset.

E. Failure Mode

If the region of the object which offers the affordance is
not visible, our method fails. This failure mode is shown in
Figure 18 for a mug where the handle is not visible. The
Categorical model cannot make a good prediction for the
Hand embodiment.

Fig. 11. Baseline model’s validation loss curve.

Fig. 12. Categorical model’s train loss curve.

Fig. 13. Categorical model’s validation loss curve.

Fig. 14. Learned model’s train loss curve.

TABLE V
BASELINE MODEL INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.27076 (0.1601) 0.69827 (0.2816) 0.77703 (0.4166) 0.01906 (0.0772)
2 0.26947 (0.1653) 0.69792 (0.2849) 0.76520 (0.4242) 0.01935 (0.0786)
3 0.26978 (0.1649) 0.69847 (0.2878) 0.76014 (0.4274) 0.01767 (0.0752)
4 0.27268 (0.1595) 0.69868 (0.2726) 0.78378 (0.4120) 0.01661 (0.0689)
5 0.27338 (0.1607) 0.69154 (0.2850) 0.76182 (0.4263) 0.01957 (0.0768)



Fig. 15. Learned model’s validation loss curve.

Fig. 16. Text model’s train loss curve.

Fig. 17. Text model’s validation loss curve.

TABLE VI
CATEGORICAL MODEL INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21812 (0.1365) 0.76923 (0.2475) 0.85811 (0.3492) 0.01681 (0.0754)
2 0.21725 (0.1320) 0.77198 (0.2421) 0.86655 (0.3403) 0.01639 (0.0728)
3 0.21819 (0.1379) 0.77295 (0.2470) 0.87500 (0.3310) 0.01579 (0.0715)
4 0.21783 (0.1295) 0.77231 (0.2425) 0.87838 (0.3271) 0.01620 (0.0723)
5 0.21961 (0.1289) 0.77067 (0.2374) 0.88176 (0.3232) 0.01723 (0.0757)

TABLE VII
LEARNED MODEL INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21325 (0.1302) 0.77947 (0.2389) 0.87669 (0.3291) 0.01586 (0.0679)
2 0.22088 (0.1364) 0.76690 (0.2491) 0.85980 (0.3475) 0.02037 (0.0830)
3 0.21532 (0.1342) 0.77347 (0.2481) 0.86993 (0.3367) 0.01902 (0.0802)
4 0.21533 (0.1366) 0.77730 (0.2428) 0.88176 (0.3232) 0.01509 (0.0697)
5 0.21930 (0.1363) 0.77350 (0.2427) 0.86824 (0.3385) 0.01388 (0.0673)

TABLE VIII
TEXT MODEL INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.25972 (0.1387) 0.70960 (0.2695) 0.81926 (0.3851) 0.01879 (0.0804)
2 0.24511 (0.1375) 0.73565 (0.2523) 0.84459 (0.3626) 0.01640 (0.0734)
3 0.25721 (0.1397) 0.71231 (0.2715) 0.80574 (0.3960) 0.02071 (0.0836)
4 0.25596 (0.1351) 0.71287 (0.2634) 0.81926 (0.3851) 0.02069 (0.0837)
5 0.25585 (0.1362) 0.71789 (0.2639) 0.81757 (0.3865) 0.01907 (0.0805)

TABLE IX
NO JITTER TRANSFORMATION INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.22421 (0.1405) 0.76257 (0.2547) 0.85642 (0.3510) 0.01477 (0.0708)
2 0.22281 (0.1442) 0.76252 (0.2624) 0.84797 (0.3594) 0.01542 (0.0700)
3 0.22993 (0.1349) 0.75498 (0.2540) 0.85811 (0.3492) 0.02049 (0.0834)
4 0.22617 (0.1408) 0.75240 (0.2630) 0.85642 (0.3510) 0.02066 (0.0847)
5 0.23050 (0.1451) 0.75118 (0.2688) 0.84122 (0.3658) 0.01927 (0.0809)

TABLE X
JITTER TRANSFORMATION INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21980 (0.1369) 0.77279 (0.2498) 0.87838 (0.3271) 0.01703 (0.0746)
2 0.21974 (0.1332) 0.77215 (0.2395) 0.87500 (0.3310) 0.01461 (0.0670)
3 0.22205 (0.1385) 0.77237 (0.2422) 0.87838 (0.3271) 0.01378 (0.0651)
4 0.22313 (0.1349) 0.76550 (0.2479) 0.87162 (0.3348) 0.01970 (0.0795)
5 0.22370 (0.1344) 0.76626 (0.2458) 0.86486 (0.3422) 0.01677 (0.0745)

TABLE XI
ROTATION TRANSFORMATION INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21846 (0.1319) 0.77238 (0.2394) 0.87669 (0.3291) 0.01606 (0.0698)
2 0.21781 (0.1351) 0.77382 (0.2455) 0.86993 (0.3367) 0.01701 (0.0745)
3 0.22100 (0.1310) 0.76536 (0.2462) 0.85811 (0.3492) 0.01945 (0.0791)
4 0.22080 (0.1392) 0.77059 (0.2473) 0.87162 (0.3348) 0.01458 (0.0675)
5 0.21854 (0.1354) 0.77353 (0.2437) 0.86655 (0.3403) 0.01492 (0.0698)

TABLE XII
COLOUR TRANSFORMATION INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21755 (0.1322) 0.77433 (0.2428) 0.87669 (0.3291) 0.01552 (0.0708)
2 0.21979 (0.1331) 0.77299 (0.2449) 0.87162 (0.3348) 0.01784 (0.0763)
3 0.22317 (0.1404) 0.76573 (0.2505) 0.86486 (0.3422) 0.01777 (0.0776)
4 0.22612 (0.1371) 0.76304 (0.2442) 0.86149 (0.3457) 0.01672 (0.0737)
5 0.22293 (0.1324) 0.76574 (0.2442) 0.86655 (0.3403) 0.01801 (0.0763)

TABLE XIII
PERSPECTIVE TRANSFORMATION INDIVIDUAL RUN RESULTS

Run RMSE ↓ NSS ↑ SR ↑ DTM ↓
1 0.21742 (0.1330) 0.77387 (0.2437) 0.87331 (0.3329) 0.01379 (0.0647)
2 0.22288 (0.1349) 0.76713 (0.2451) 0.86149 (0.3457) 0.01596 (0.0704)
3 0.22191 (0.1340) 0.76869 (0.2458) 0.86655 (0.3403) 0.01748 (0.0750)
4 0.21925 (0.1307) 0.77065 (0.2458) 0.87162 (0.3348) 0.01687 (0.0720)
5 0.21491 (0.1338) 0.77714 (0.2461) 0.87838 (0.3271) 0.01475 (0.0699)



Fig. 18. Failure mode where the mug’s handle is not visible.


