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Abstract

The image system of singulerities of an arbitrary exterior
potential field within a tri-axial ellipsoid is derived. It is fqund that
the image system consists of a source and doublet distribution over the
fundamental ellipsoid. The present contribution is a generalization of
previous theories on the image system of an exterior potential field with-
in a sphere and spheroid. A proof of Havelock's spheroid theoren which
appérently is not available in the literature is also given.

‘ The knowledge of the image system is required, for examplie, when
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immers
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hydrodynamical forces and moments acting on an ellipscd
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potential flow are computed by the Lagally theoremn.
- The two examples given consider the image system of singularities

of an ellipsoid in a uniform translatory motion and in pure rotabion.
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THE ULTIMATE IMAGE SINGULARITIES FOR
EXTERNAYL, SPHEROIDAL AND ELLIPSOIDAL HARMONICS

1. Introduction

The Lagally theorem [1] together with its recent generalizations
[2,'3]yiek@ exact expressions for the forceé and moments on Rankine bodies
immersed in arbitrary inviscid, potentisl flows. The main difficulty with
the application of the Lagally theorem is that it ié necessary to know the

image system of singularities associated with the analytic continuation of

the external potential flow into the body.

he sphere is the only threc-dimensional shape for which there
exists a "sphere theorem" [L,5,6] yvielding the disturbance potential due
to the presence of the sphere in terms of the undisturbed potential. Also
a theorem due to Hobson [7] (p. 13k4) provides an expression for any spherical
narmonic in terms of singularities (sourcesgdoublets or multipoles) at the

center of the sphere,

(—l)n —anNS 8‘ . 3 )S__l;

. i
R (n-s)! x5 oy 9z R

(1)

vhere (R, 6, ¢) are spherical coordinates, u = cos6, Pns(u) is the Legendre

function of the first kind defined by (5), and n and s are positive integers.
An inversion theorem similar to thg sphere theorem, ig not avail-

able for a spheroid. However, a most useful relation was given without

proof by Havelock [8]. This relation expresses an exterior sphefoidal har-

monic in terms of singularities distributed on the major axis of the spheroid

between the two foci. IT the foci are chosen to be at (£1,0,0) in Cartesian

notation, the Havelock formula may be written as
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where (u,g,$) are spheroidal coordinates defined by (L), and Qns(c) is

the Legendre function of the second kind given by (7).

A proof of the Havelock formula (2) is not available ipn the litera-
ture. However proofs of (2) are given in an unpublished thesis (9] and in
class notes of Professor L. Landweber. These proofs are based on a suggestion
of Havelock to expand the function 1/R in terms of an infinite series of
spheroidal harmonics, A briefer proof of the Havelock formula will be
presented in section 2. This_proof is based on analytic continuation applied to
a generalization of the Neumann formula for the Legendre function of the second

. ]
kind Qn {c).

Equations (1) and (2) provide exact expressions for the image system
within a sphere or spheroid of an arbitrary undisturbed external potential flow.
Once the image system of singularities is known within the body; the distur-
bance potential may be written immediat ely in terms of these singularities.

According to Morse and Feshbach [10] the most general ccordinates
for the separability of the Laplace equation are the ellipsoidal or thé focai
coordinates., The ellipsoidal harmonics are also the most general harmonics
which are a solution of the three-dimensional Laplace equatiqn. In fact the
tri-axial ellipsoid is a truly three-dimensional form, while both the sphere
and the spheroid are axisymmetrical forms.

An ellipsoid theorem, similar to the sphere (1) and the spheroid
(2) theérems9 would be most important in shi§ hydrodynamics since ship forms can
be better approximated by é tri-axial ellipsoid than by a spheroid. Such a

theorem, which yields the singularity system within the ellipsoid of an




arbitrary external potential function, .will be developed in section 3.

2. The Image System for a Spheroid

A spheroidal harmonic of degree n and order s, which vanishes

at infinity, is of the form

150, ¢, ¢) = P °(n) Q %(z) & 5¢ : (3)

n n n

vhere (u, Ty ¢) are spheroidal coordinates defiﬂed by
X = pgy  ytiz = Y{1-p?)(g2-1) ot® (W)

and the two foci of the spheroid are at (+ 1, 0, 0) in Cartesian representa-
tion.

The Legendre functions of the first kind, qu} and of the second

. {

kind, Qns, are defined by [11] (p. 1h2).

s
2 n+s
s \ 1 , P . A N ..
P (u) = == (1) e (WPe1), gl (5)
n 2nn! dun+u ;
8
2 n+s
1 a : .
P %(g) = —— (12-1) —— (¢2-1)7, e (6)
2 n! ag 7
S
s > a® {m ar
Q. (2) = (2-1)° — 4 P (c) (7)
| az Jr [P (2)12 (g2-1)

nojw

(u?-1) 7 2oy . 221) d
(n+s)! au (n-s)! dy

(p2-1)™ (8)

The above relation together with the Rodriguez formula (5) yield the

following expression for Pn(u):
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Q (x) = l-J . (10)

X~

is available.

When equation (9) is substituted into (10), and when the latter

is integrated by parts s times, equation (10) becomes

5
2_ 8,

q (x) = Sin=s)! ) Py 18D

“n (n+s)!

Jl (1-£2
s+l
T (x-£)
The above relation may be considered as a generalization of the
Nevmann formula (10), which corresponds to the case s = 0.

Equations (4), (5), and (6) imply that the exterior spheroidal

harmonic (3) may also be written in the form

S] s
d Pn(LO a Qn(c)

B Ow) o P(0)e ! =~ — (y+iz)® (12)
: dy ac”
On the part of the x~axis where Ix]>l, pu =1 sand
s
d Pn(l) - (11+S)! (13)
ay® 2.5 1 (n-s)!
Substituting equations (11) and (13) into (12) yields
.
S, 3 isd 2 ]
P Z(u)a P(g)e™™ s ooy (L (1-£2)7 P 7(£)
: n n o (=1)7.(2s)! n a (11)
i R T stl 2s+1 ¢
‘ (y+iz) 27 sl (x-£) ,




Analytic continuation arguments applied to (1h) imply that for

points off the x axis

{U)

N>

n n s+1

2y 5 . \S
eiSd) _ L:;lﬁ;igﬁll Jl (1~€ ) Pn (g)(y+1z) dgA
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The following relation is easily verified by mathematical induc-

tiOl’l"

S ' - - 2a )l bt o )S .
(§L.+ i é%)q [(5-£)? + y2+22] 2 £~;;:;i;§);ﬁ vwwitiﬁlmmm_wgljj' 16)
Y 27 ,st [(X~E)2+y4+z2]L 2

When the above relation is substituted into (15), the latter yields the
lavelock formula (2).

3. The Tmage System for an Ellipsoid

Tet the equation of the ellivscid be given by

2 2 2
LS S A

; arb>c (1
a2 bz C/‘

-
S

The ellipsoidal coordinates (p, u, v) are defined by the solution of the

cubic equation in i,

2(.._. + -.,.y—._.—. 4 (2 = ] . (18)

for fixed values of (x, y, z) where

2

et

= g2.c? : h? = a2.b? (19)
The three roots of (18) are chosen so that

w>p22k2 : k23P23h2 3 hziyzzp . (20)

The three surfaces, p = const (ellipsoids), u = const (hyperboloids
of one sheet) and v = const (hyperboloids of two sheets) then form a triply-

orthogonal coordinate system in space.
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The transformation between the Cartesian and the ellipsoidal

coordinates is given by (Hobson p. 455)

2.2
2 = PUNT (21)

h?k?

o _ (p?-n2)(u%n?)(h2-v?)

y? = AL ‘ 2 (22)
h?(k?-h?)
and
3 (02 2212 1. 2) (162 2
7 = LpZ-k ) (k%-:%) (k2-v?) (23)
k2(k?-h?)
An ellipsoidal harmonic which is regular at infinity is defined
as
m m m m
H (pou,v) = F (o) & "(u) E (v) (2h)

s . . Tl
where n and m are positive integers such that m < 2n + 1. Here E = denotes
F g . n

the Lsné function of the first kind wnich is regular st the origin, and

an is the Lamé function of the second kind which is regular at infinity.

The Lamé function of the second kind I m(p) is defined in terms of EAm(p)
n n

(Hobson p. h72),

F (o) = (2n+1) Enm(o) j,_, dp : (25)

[B_"(0)12/(67-07)(p7k?)

Following Hobson (p. k60), there exist four different classes of Lamé func-

tions given by Plp), p2-h2 P(p), Vp2-kZ P(p) and pZ2-12)(p2-n?) P(p),

where P(p) denotes a polynomial in p. Using Hobson's notation, the four classes
of the Lamé functions will be denoted by K(p), L(p), M(p) and N (p) res-
pectively. The normal functions K(p) K(u) K{v) and L(p) L(p) L(v) then

yield interior ellipsoidal harmonics which are even with respect to z, while




Proof of Theorem 1;7

Let us assume that the image system of an even exterior ellipsoidal
NPra+lr
harmonic consists of multipoles of the order ——-——-~-— distributed over
2x" oy 0"

the fundamental ellipsoid where p, ¢ and r are positive integers. The
above differential operator operates on 1/R, where R denotes the distance
between the point (£, n, 0) on the fundamental ellipsoid and a field point

(x, v, z). Since 1/R is an harmonic function, we have

r 3P+q 52 32 F
(-1) ( + ) (
axPayd ax?  ay?

ptq 2 2 T
+q-+
(-)Prare 2 s )

acPant 0e?  an

) (31)

The integraticn of (27) is carried out Qver‘both £ and n hence
the multipoles given by (21) may be reduced by &n integration by parts to
simple source-sink distribution over the fundamental ellipsoid and a line
distribution of multipoles over the contour of the ellipse gi&en bv (26).

The potential of a line multipole distribution is singular at points
of the distribution . On the other hand, the Stieltjes theorem implies that
(25) is a convergent integral for‘p=k for all points on the fundamental ellip-
sold. Heunce we exclude the possibility of a contouf distribution of multi-
péies on the ellipse (26).

In order to determine the source strength, use will be made of the

Gauss flux theorem which, since we are dealing with a plane distribution,

yields the following relation for the source distribution:

1 . 0 m
s(uiv') = 2= 1im == H “(x,y,2)] =

. 1 29 m
o0 2037 lim o { H " (p,u,v)l (32)

o p-rk hp ap n




where hp is the linearizing factor in the p direction given by

h 2 s (pZu?)(p?-v?)

(33)
P (p?-n?)(p?-x?)
Substituting.equations (24), (25) and (33) into (32) yields
(2041) B "(nt) B "(u1)
s(p',v') =~ n 1 (3k)

o Enm(k) V(2 2) (k2o ?)

For the case where p=k equations (21) and (22) may be solved

explicitly for u'(x,y) and v'(x,y). The resulting expressions are given by

(29} and (30

~er

3 e

1 et Tar -4y = SN e i K R 4
rcspcctlvcly. b;mllal"i}', the denominator of {34 is £iven in

[ON]

Cartesian representation by

i . 2 2
(kZop'2) (k%-v12) = k2 (k2-n2) (1 - *= - —L—) (35)
‘ k2  k?2.n?

Substituting (35) into (34) yields (28),

5

and the proof of Theorcn 1

1
o]

completed.

Theorem 2

An odd (in z) exterior ellipsoidal harmonic may be geperated by

a normal doublet distribution in the z-direction over the fundamental elliip-

soid,
/ n)ara ,
Fnrﬂ(p) E m\u) Enm(\)) = . _BQZJ‘ - d(g ]j) g(lﬂ : (36)
n ‘ (x-¢) 2+ (y-n)%+z°
O
where . n n
(2ntl) E (u') E (v')
alx,y) = — - (37)
ok B (k) vk®.h?
n
and n
= m By o)
E (k) = lim , ———— (38)

a ook T
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Proof of Theorem 2,

'By the same arguments as were used to prove Theorem 1, one can
show that an odd exterior ellipsoidal harmonic may be generated by a distribu-
tion of doublets oriented in the z-direction over the fundamental ellip-
soid |

An 0dd exterior ellipsoidal harmonic may be written as

m - m
H "(p,u,v) = (2n+l1) E (p) E N

(
| do }
| BM0)17 (2262)72 (o202) 7

p

{VQL—kz

The discontinuity in the potential across a normal doublet distribution then

implies that th

«

acrmel doublcet distribution over the [undawental ellipsoid,

which is the image system of an odd exterior ellipsoidal harmonic, is given by

dlpt,v') = Yim i " (o,,v) (4o)

By the Stieltjes theorem, the only singularity of the integrand of (39) as

=3/

no

o approaches k is (p?-k?) Integration by parts of (39) yields

H"(o,u,v) = (2041) B ™(0) E "(n) B (v)

S d
s » = [ # it s o
D[En (p)]z /g?:ﬁ? 0 P p[En (p)]2 Vp -h? kZ
Applying the limit p=k to Hnm(pgu,v), equations (40) and (k1)
yield the doublet distribution given by (37), and the proof of Thebrem 2 is

completed. -
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L. Examples

Let ®§03N9V) be a given potential function free of singularities
in the region p < a.® Introducing an ellipsoid disturbs the flow and the

velocity potential in the region p > a is then given by

®B(ogu,v) = ¢O(o,u,V) + ¢e(o,u,v) (L2)

vhere ¢e(p,u,v) is the velocity potential due to the image system within the

ellipscid.
Since both ¢O and 0, are harmonic functions, they may be expanded

in terms of ellipsoidal harmonics in the form

«  2ntl
u m m m ne .
¢ (ou,v) = ) ) A F (p)E (u)E (v) p<a (43)
o & n n n n
n=0 m=1
and

w 211—!_1 m m m m

GRS N B F o) B M) B () 02 { ki)

n=0 m=1

m m . . N .
where Ar and Bn are constants to be determined. For the Neumann problem, the
pormal derivative of @E mist vanish on the ellipsoid p = a. Since the ncrmal

derivative on the ellipsoid is that with respect to o, we then obtain from

(42), (43) and (L4k) the following expression in the region exterior to the

ellipscid p = &a:

o  2ntl Anm o 0 "

- .. —_—— Y B 53
¢ (0,u,v) Zo Zl e F (o) B (u) B () (45)

n=0 m N 0> n

where -
m Fn (a) ' :
o T (16)
En (2)

Here the dot denotes differentiation with respect to the argument.
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Equation (45) is an expression for the disburbance velocity poten-

tial when an ellipaoid is introduced in a potential flow field given by (43).

O(x,y,z) be given by

¢O(x,y,z> =Ux + Vy + Wz (h7)

which represents a uniform stream with velocities U, Vand W in the x,y and
z directions respectively.

As already mentioned there exists three Lamé functions of the first
order (n=1). These three functions are of the class K, L and M defined earlier
and will be denoted herein aé Kl, Ll and Ml. In terﬁs of these functions,
equation (47), written in ellipsoidal coordinates, is of the form

UKy (o) 16 (u) K () VEy () Ty () T 0v) o, (o) My (n) M, (v)

b (pou,v) = —3 : + At (48)

hk hicZ-h? k/k?-n?

Consider now the case-vhere a solid ellipsoid is introduced into the stream.
The disturbance velocity potential at peinte in the cxterior region may be
considered to be given by a certain singularity distribution over the funda-
mental ellipsoid.

Equations (34), (37) and (45) then imply that the image system

consists of a source distribution of strength

T 1! VY (L 2-h2 Heoy!2
S(u',v') = 3Rl WO (T
2rh V(k2-p2) (k2-v'Z) 1\:201(K) (x2-n?) Cl(L)
end a doublet distribution in the z~direction of strength
ke t2 k2~ 12
aut,v) = 3t e T2) (e ) (50)

)
21k4(k2-n2) Cl(M)
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Here Cl(K)9 Cl(L) and Cl(M) denote the three values of Clm defined in (L6)

m

corresponding to the three possible forms of El , L.e., K L. and Ml'

1° 71
It is more convenient to use Cartesian representation. The source

distribution (49) is then given by

, 3 %2 Ux N -
six,y) = B— (1L - = - M"ALWﬁ [ + Y Ji (51)
21k Vk2-h? k2  k2?-n? X2 ¢, (x) (k2-n?) ¢ (1)
and the doublet distribution (50) is
3W 2 2 %
7 X - -
d(x,y) = L (52)

L ,
Ok Cl(M) Vi?on? k2  x2-n?

image system of an ellipsoid in a uniform stream.

The coefficientes Cl(K)ﬁ ¢. (L) andg Cl(M) are given in the Appendix

1

In terms of tabulated elliptic integrals.

Ixample 2: Pure Rotation

Let us assume that the ellipsoid is rotating about its principal

axes in an infinite inviscid fluid otherwise at rest with sngular velocity,

w = (wX5 v o) : (53)

The boundary condition to be satisfied on the ellipsoid is

o (v x 7) . n (5k)
an . 4

> - . .
where r is a unit vector from the origin to a point (x,y,z) on the ellipsoid

and n denotes a unit normal vector to the surface of the ellipsoid. Following

Lemb (p. 14T7) the interior velocity potential is

2 02 2 g2 8212

¢0(x,y,z) = wxyz + T ZX ok T XY (55)
b2be? c?ra? ¥ 8.2+p?
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When n=2 there exist five Lamé functions, two of class K, and one function

each of classes L, M and N (Hobson p. U465). These five functions will be

2

’] ) .
denoted -asg KE, ng Lg, M2 and N2 respectively. The interior veloeity potential

expressed in terms of ellipsoidal coordinates is then given by
2.2 2 .2
w, (b%-c?) W, (p) W, (1) Wy(v) w (e?-a2) M,(p) M, (1) My(V)

\ 2
b losu,v) = - -+ , S
nk(b2+c?) (k2-h?) - hk?(c’+a?) vk? 7

Again equations (45) and (46) yield the expansion in ellipsoidal harmonics
of the exterior velocity potential in terms of the ellipsoidal harmonic
expansion of the interior potential. The image system of the exterior poten-

tial is given by Theorems 1 and 2. This system consists of source distribution

Swr?(az__bZ)“ '\)'\/(U'Z"hz) (hZ_sz)

slu',v') = - ' - e (57)
27k2n?(a?+p2) (k2-1n?) CE(L) V(k%=p'2) (k2-v ' 2Y
and normal doublet distribution
77 LIS 2 WL N S S SO S
Au0) = - 5/ (k?-p 7Y (cP-v ' ?) [ —xle a')u v
2rhk? (k?-h?) k2(c2+ a2) CQ(M)
w (bszZ) /(UIZ__hZ)(hQ_.\)IZ)
X
+ (58)
(b2+c?) (k?-n?) CQ(N)

Here the coefficients CQ(L), CP(M) and C_(N) are the three values of sz defined
in (46), which correspond to the replacement of E2m by L,, M, and N, respectively.

The equivalent expressions in Cartesian representation are

SMZ(aanZ)xy ) 5 <k
S(Xay) = 3 3/2 (l = j_;"" - ") (59)
27k” (a2+b2) (k2-h2) c. (1) k%2  x2-n?

2




(<]

and

a(x,y) = -

Expressions for C

are given in the Appendix.

=] 5

2 2 2
N
Ok Vi 212 k2  x2-h?
(60)
w (c2-82)x w (b2-c?)y
[ ¥ - + % -]
k2(c?+a?) C,(M)  (K?-h?)(b%+e?) C, (1)

(M) and C_ (W) in terms of elliptic integrals

A
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(4]

[10]

(11]

(12]
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Appendix

Expressions for the coefficients Cn in terms of elliptic integrals.

Since Kl(p) = p, equation (25) yields

Ro) =3 | ——S— | (1)

Hence (46) implies that

- 03 d 3 )
¢, (1) = 5J gy —— - (2)
a p?/ p?-k?)(p?-b?)  abe
The above equation may be expressed in terms of tabulated elliptic inte-
grals [lh ] as
¢, (K) = == [F (4,1) - B(g,8] - = 3)
kh? abe

vhere IF and IE denote the Legendre incomplete elliptic integrals of the first

and second kind respectively, and

~——

Similarly, the rest of the coefficients may be expressed in terms of the tabu-

lated incomplete elliptic integrals [14]. Here we will give only the final
resulvs:
) ‘ 2 2 sind cosd -
¢ (L) = —FE— [T (p,8) - (1 - B2) m(p,p) - - RESEH ) 2
h%(k?%-h?) K* x2 /1 - hg.sink¢ ahe
X
(5)
W .
Cl(M> = e 3 - [tgq) V1 - b;"“ Sil’léd) - I (¢9t)] - .,.:3__ (6)

k(k2-h?) k2 abe
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Appendix (continued)

[=y

C (L) el — {]F (¢ t) _ Sj.rlgb COS¢ ] _ 5
2 S ¢ J -
kh?(k”-h?) LB Lo ., eve(atin?)
k2
T
c, (M) = S S /* “— sin?¢
k3 (k2-n?)
2 2
S D) F () ¢ (- 2) m(e)] - ——
h? h? abe (a+c?)
t n? 2
gp (1 = sin ¢) + sing cos¢
¢ (1) = 2 k
2 / 2
(k -h ) 1l - Q* sin“¢
T L
2 2
© (5= -2) B(4,8) - ST (9,8)] - ——2

h h? abe (b4+e?)

(7)

(8)
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