
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Domain-Specific Languages in Practice: A
User Study on the Success Factors

Felienne Hermans & Martin Pinzger & Arie van Deursen

Report TUD-SERG-2009-013

SERG



TUD-SERG-2009-013

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Domain-Specific Languages in Practice:
A User Study on the Success Factors

Felienne Hermans, Martin Pinzger, and Arie van Deursen

Delft University of Technology
{f.f.j.hermans,arie.vandeursen,m.pinzger}@tudelft.nl

Abstract. Domain specific languages (DSLs) are languages in which the prop-
erties of a specific domain can be expressed. In this paper we present an empir-
ical study on the use of a DSL in industry. This DSL encapsulates the details of
services that communicate using Windows Communication Foundation (WCF).
From definitions of the data contracts between clients and servers, WCF/C# code
for service plumbing is generated. We conducted a survey amongst developers
that use this DSL while developing applications for customers. The DSL has
been used in about 30 projects all around the world.
We describe the known success factors of the use of DSLs, such as improved
maintainability and ease of re-use, and assert how well this DSL scores on all of
them. The analysis of the results of this case study also shows which conditions
should be fulfilled in order to increase the chances of success in using a DSL in a
real life case.

1 Introduction

Domain-specific languages (DSLs) have been described in literature for several decades.
They often appear under different guises, such as special purpose [19], application-
oriented [14], specialized [4] or task-specific [12]. Most authors agree that the use
of domain-specific languages has significant benefits, amongst which reduced time-
to-market [7] and increased maintainability [2, 18]. However, very little research has
been done to the use of DSLs in industry. Are DSLs really as helpful as we think when
used within large companies? And if they are, what makes them?

In order to answer questions like these, empirical studies of actual DSL usage are
required. In this paper, we report on such a study. It involves the DSL called ACA.NET
that is used to create web services that communicate using Windows Communication
Foundation (WCF). ACA.NET has been used in over 30 projects all around the world.

In this paper we investigate factors that contribute to the success of this DSL. In
particular, we conducted a study among 18 users of ACA.NET, by means of a system-
atic survey, investigating such issues as usability, reliability, and learnability. With the
results of this study, we seek to answer the following research question:

R1 What are the main factors contributing to the success of a DSL?

The remainder of this paper is structured as follows. In Section 2 we summarize
related work with focus on papers describing known success factors of DSLs. Section

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 1



2

3 introduces ACA.NET, the studied DSL, to the reader. Section 4 presents DSL success
factors, the questionnaire and the experimental set-up. The results of the survey can be
found in Section 5. In Section 6 we answer the research questions, both for ACA.NET
as well as for domain-specific languages in general. A summary of our contributions as
well as an outlook towards future work can be found in Section 7.

2 Related work

Several papers discuss advantages and disadvantages of using domain-specific lan-
guages. For instance, van Deursen and Klint [18] observe that DSLs can substantially
ease the maintenance of specific modifications anticipated in the design of a DSL, how-
ever they also indicate that the cost of extending a DSL for unanticipated changes can
be substantial. Kieburtz et al. describe that DSLs can increase flexibility, productivity
and reliability [8]. Reusability is also mentioned by some authors as an advantage of
the use of DSLs, for instance by Ladd and Ramming [5] and Krueger [9]. The latter
furthermore point out that a DSL can reduce the effort to create a system from a speci-
fication and also mentions that the development of a DSL is difficult. From Bell [3] and
Spinellis and Guruprasad [16] we learn that DSLs can ease design and implementation
of a system, by reducing the distance between problem and program.

Spinellis [15] furthermore describe reliability as an advantage; because of the small
domain and limited possibilities of a DSL, correctness of generators or interpreters can
be easily verified. However, he also discusses disadvantages, such as training costs for
users of the DSL and the lack of knowledge of how to fit the use of a DSL into stan-
dard software development processes [15]. Finally, Mernik, Heering and Sloane [11]
mention that a DSL can also be used as a domain-specific notation. This way, existing
jargon can be formalized.

Most of these papers primarily provide anecdotal evidence for the benefits claimed,
often based on a handful of usage scenarios for the language in question. While this
provides useful information, more confidence can be gained from rigorous empirical
studies. Unfortunately, we only found a few of such studies in the literature. Batory et
al [2] describe a case study where a DSL is used for simulations. They report improved
extensibility and maintainability. Kieburtz et al. [8] describe a series of experiments
comparing code generation using a DSL to code generation via templates. Herndon and
Benzins [7] report on improvements, amongst which reduced time-to-market, improved
maintainability and maintainability due to the use of DSLs. Unfortunately they lack to
report how they come to their observations. Furthermore, their Kodiyak language has
been used in only four cases.

Empirical work in the area of model-driven engineering in general is somewhat
more common. For example, Baker et al. [1] describe a large case study, in which code
and test cases were generated from models. They present numbers on increased pro-
ductivity, quality and maintainability. White et al [20] also describe a case study in
which code is generated. Their paper reports on reduced effort on development and
improved quality, but they only describe the results of one case. We have found one
account where a questionnaire was used to study the ideal situations for model-driven
development [17]. This questionnaire, however, addressed model-driven engineering in

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

2 TUD-SERG-2009-013



3

general, rather than the specific merits of the domain-specific notation used in a soft-
ware project. To the best of our knowledge, no user study like ours has been performed
before.

3 About ACA.NET

ACA.NET,1Avanade Connected Architectures for .NET, is a visual DSL developed by
Avanade.2 It is used to build web services that communicate via Windows Communi-
cation Foundation.3 Developers from Avanade noticed that for many projects in which
a service oriented application had to be created, the same simple, but time consum-
ing tasks had to be repeated for each project. Typical tasks include creating classes for
service contracts, data contracts, writing service configuration, writing endpoint defini-
tions and creating service clients. Because these tasks appeared very similar for each
project, Avanade decided to create an abstraction for these tasks.

With ACA.NET a large part of the development of service oriented applications
can be automated. ACA.NET enables the user to draw a model of a service oriented
application on the Visual Studio-integrated design surface. This model consists of server
and client objects and the data contracts between them. From this model, a large part
of the C#-code is generated. Only the business logic that describes the behavior of the
service has to be implemented by hand, which can be done through C# partial classes.

ACA.NET is built with Microsoft DSL Tools [6]. The code generation is imple-
mented using Microsoft’s Text Template Transformation Toolkit (T4) that is part of the
DSL Tools suite.

4 Experimental Design

To measure the success of ACA.NET we conducted a survey amongst ACA.NET de-
velopers. The survey was set up according to the guidelines of Pfleeger and Kitchen-
ham [13]. Their guidelines propose to start by setting the survey objective(s). The ob-
jective of our study is to provide answers to the following ACA.NET specific research
question:

Q1 What are the main factors contributing to the success of ACA.NET?

4.1 DSL Success Factors

To reason about the success of ACA.NET, we identified a number of success factors
of DSLs. We obtained these factors from the related work in the field which has been
presented in the Section 2. We aimed at making this list of factors specific to the use of
DSLs. Thus general success factors, such as commitment from higher management or
the availability of skilled staff were not taken into consideration, as they are not directly
affected by the use of a DSL. The resulting factors under consideration are:

1 See http://www.avanade.com/delivery/acanet/
2 Avanade is a joint venture between Accenture and Microsoft. See www.avanade.com
3 See http://en.wikipedia.org/wiki/Windows_Communication_Foundation

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 3



4

Learnability (L) [15] Developers have to learn an extra language, which takes time
and effort. Furthermore, as the domain changes the DSL has to evolve and devel-
opers need to stay up-to-date.

Usability (U) [3, 16] Tools and methods supporting the DSL should be easy and con-
venient to use.

Expressiveness (E) [11] Using a DSL, domain specific features can be implemented
compactly, however, the language is specific to that domain and limits the possible
scenarios that can be expressed.

Reusability (R) [5, 9] With a DSL, reuse is possible at model level, making it easier
to reuse partial or even entire solutions, rather than pieces of source code.

Development costs (C) [7] The DSL helps developers to model domain concepts
that otherwise are time-consuming to implement. The corresponding source code
is generated automatically. This lowers development costs and shortens time-to-
market.

Reliability (I) [15, 8] In addition to reducing development costs, automation of large
parts of the development process leads to fewer errors.

4.2 Questionnaire to measure DSL success factors

Every question in the questionnaire relates to one or more of these factors of a DSL,
because to cite [13] it’s essential that the survey questions relate directly to the survey
objectives. In the following we review the success factors and describe the questions
that we use to measure them. Table 4.2 provides an overview of the questionnaire. A pdf
version of the questionnaire can be downloaded from http://www.st.ewi.tudelft.
nl/˜hermans/.

The questionnaire basically consists of three parts. The first part, questions Q1 and
Q2, is about the background of the subject. The second part, questions Q4–Q10, con-
tains the questions related to one specific ACA.NET project. For all subjects we inves-
tigated the set of projects for which they were listed as contact person. We obtained
this list from the intranet of the company. Most of the answers to these questions are
in free-text that allows the subjects to present their point of view on ACA.NET and its
application in their project. The third part of the survey, questions Q11–Q20, comprises
questions on ACA.NET in general. In this part, we limited the answer-space to two
five-point Likert scales to facilitate the measurement of the various success factors. The
first one ranges from strongly disagree, disagree, neutral, agree, to strongly agree. The
second Likert scale ranges from very often, often, sometimes, sometimes, seldom, to
never.

Learnability of ACA.NET (L) The time invested in actually learning and staying
up-to-date represents our first success factor for DSLs. For measuring the learnability
of ACA.NET we first ask the subjects for their level of experience in terms of years
worked as professional software developer (Q1) and in terms of years worked with
ACA.NET (Q2). Later on in the questionnaire we ask for the detailed effort numbers.
In particular, we were interested in the number of days of 8 working hours invested in
learning ACA.NET (Q11) and the number of hours invested in staying up-to-date on
ACA.NET (Q12).

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

4 TUD-SERG-2009-013



5

ID Question Factor
Background Questions
Q1 How many years have you worked as a professional software developer? L
Q2 How much experience do you have with ACA.NET L
Project specific questions
Q3 Was this a new ACA.NET project or built on an existing version? R
Q4 If you start a new ACA.NET project, how do you proceed? R
Q5 Did the ACA.NET user interface help you modeling? U
Q6 Did you use other tools for modeling in this project, next to the ACA.NET

interface?
U

Q7 Can you estimate the percentage of time that would be spent on the following
tasks if ACA.NET was not used for this project?

C

Q8 Can you estimate the percentage of time that you actually spent on the following
tasks?

C

Q9 Estimate the percentage of code that was generated C
Q10 How many lines of code did this project consist of? C
General ACA.NET questions
Q11 How many days did it take you to get to know ACA.NET? L
Q12 How many hours a month does it take you to stay up to date on ACA.NET? L
Q13 Did you ever consider to use ACA.NET but decided against? U
Q14 In case you answered Yes to the previous question, please indicate why. U,E
Q15 Indicate your agreement with
Q15a The code is more readable I
Q15b Fewer errors occur I
Q15c The product complies better with the customers requirements I
Q16a ACA.NET makes designing easier U
Q16b ACA.NET makes implementing easier U
Q16c ACA.NET is powerful U,E
Q17 Did you ever deny a customer a feature because you knew you would not be

able to implement it using ACA.NET?
E

Q18 Did you ever have to write extra code (other than custom code for business
logic) to implement features?

E

Q19 Indicate your agreement with
Q19a ACA.NET is difficult to use U
Q19b ACA.NET restricts my freedom as programmer E
Q19c ACA.NET doesn’t have all features I need E
Q20a I look into the generated code in order to be able to understand the underlying

models
E

Q20b I look into the generated code in order to be able to be able to write custom code E

Table 1. Overview of the questionnaire used for the ACA.NET survey.

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 5



6

Usability of ACA.NET (U) Learning and mastering ACA.NET is a prerequisite for
using the DSL. Another factor is ease of using the DSL and the tools that support
it. We included several questions dedicated to the usability of the ACA.NET toolkit
for developing web services. For instance, does the ACA.NET user interface help in
modeling web-services (Q5) and were other tools used in the project (Q6). We asked
whether subjects decided against the use of ACA.NET (Q13) in any project, and, if
yes, reasons why they did so (Q14). Descriptions of reasons could be provided in free-
text. We also added questions to assess whether ACA.NET eases designing (Q16a) and
implementing web services (Q16b), and summarizing that ACA.NET is a powerful DSL
(Q16c). Question Q19a is used to obtain the level of agreement on the statement that
ACA.NET is difficult to use.

Expressiveness of ACA.NET DSL (E) In addition to the support provided by the
ACA.NET toolkit, the expressiveness of a DSL is an important factor for whether or
not to use it. To measure the expressiveness of ACA.NET we asked the subjects how
often they had to deny a customer a feature, because it could not have been imple-
mented with ACA.NET (Q17) or how often they had to write extra code to implement a
feature (Q18). Answers to both questions are given by a five-point Likert scale ranging
from very often, often, sometimes, seldom, to never. We further investigated whether
respondents feel that ACA.NET restricts their freedom (Q19b) and whether ACA.NET
does provide all the features needed to develop web services (Q19c). The answers to
the latter two questions are also given with a five-point Likert scale.

To obtain a deeper insight into the expressiveness of ACA.NET we use the questions
Q20a and Q20b. We ask whether developers look into the source code to understand the
models defined with ACA.NET (Q20a). Question Q20b assesses whether developers
use the generated source code instead of the models to add custom code. Frequent use
of the generated code indicates the model does not express all properties of the domain.

Reusability of ACA.NET models (R) As with traditional software engineering, one
goal of a DSL is to reuse existing solutions. We addressed the reusability of ACA.NET
models in question Q3. We ask the subjects whether they reuse models of existing
projects. For instance, when they start a new project do they start from existing assets
or from scratch.

Reduction of development costs (C) With the use of ACA.NET developers can fo-
cus on the business logic while other web-service related source code is generated by
ACA.NET. Because of that time-to-marked is assumed to be shorter and development
costs to be lower. For measuring the effect of ACA.NET on develpment costs we formed
a set of questions related to the experiences with the selected project. For instance, we
ask each subject to estimate the percentage of time that would have been spent on
the following tasks if ACA.NET was not used: design contracts, write contract inter-
faces, write contract classes, write service end-points, write service configuration, and
write business logic (Q7). Next, we ask the subjects to estimate the percentage of time
they spent on actually: design contracts, generate the source code, and write the busi-
ness logic with ACA.NET for the selected project (question Q8). From both questions,

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

6 TUD-SERG-2009-013



7

we expect that designing and writing contracts and interfaces can be done faster with
ACA.NET, hence, overall development time of web services is lowered. In addition, we
ask the subjects to estimate the percentage of source code that has been generated with
ACA.NET (Q9).

Reliability of ACA.NET solutions (I) Because parts of the development process are
automated, software constructed using a DSL is expected to be less error prone. To
measure the reliability of ACA.NET we ask the subjects whether they think that the
use of ACA.NET increases the quality of the delivered code in the following ways:
the code is more readable (Q15a), fewer bugs occur (Q15b), and the product complies
better with the customer requirements (Q15c). The possible answers to each question
are defined by a five point Likert scale ranging from strongly disagree, disagree, neutral,
agree to strongly agree. We expect that DSLs help to communicate requirements better
to the customer and developers. Furthermore, ACA.NET code is assumed to be more
readable and easier to understand. Both aspects are expected to lead to fewer bugs in
ACA.NET web services.

4.3 Survey set-up

We conducted our survey online, in a Sharepoint environment, making it cost-effective
and also appropriate, because our target group is used to this kind of surveys. We choose
a self-control study, comparing user experience with and without the use of ACA.NET.
The fact that the subjects are not able to see each others results makes the survey more
resilient to bias. The fact that the survey is cost-effective, appropriate and resilient to
bias, makes it efficient according to Pfleeger and Kitchenham [13]. Furthermore, au-
tomation reduces the contact between subjects and researchers, giving the researchers
less opportunity to bias responders.

In total we invited 48 people to participate in this survey. Of 21 subjects we knew
for sure they used ACA.NET and of 27 people we thought they might have experience
with it. 28 people responded, of which 10 indicated they did not use ACA.NET, or
their experience was too limited to answer the questions. We got 18 meaningful results,
giving our survey an effective response rate of 38%. Since our target population is small,
we did not use any form of sampling.

With the invitation for the survey, developers received an email explaining them the
purpose of the survey; helping to improve the tool set they work with everyday. We
expect this to be a good motivation for them to participate, especially since there has
been no opportunity to give official feedback, other than bug reports on ACA.NET.

By testing the survey, we estimated the time needed to fill out the questionnaire
at about 60 minutes, which is appropriate for a self-administered survey on a subject
important to responders. As recommended by Pfleeger and Kitchenham [13], we added
a neutral option to all Likert-scaled [10] questions.

We believe in the survey there is little risk of researcher bias, because the researchers
are not part of the users or designers of ACA.NET. This ensures that subjects get the
possibility to reflect on both, the positive and the negative aspects of ACA.NET.

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 7



8

5 Results

In this section we present the results of the survey, grouped by success factor.

5.1 Learnability (L)

The respondents indicate that it took them quite some time to learn the basics of
ACA.NET, as shown in Figure 1. Most respondents were able to learn ACA.NET
within one week, while the maximum time mentioned was 15 days. Apart from learning
ACA.NET, it also takes time to stay up to date, as shown in Figure 2.

Fig. 1. Question 11. How many days did it
take you to get to know ACA.NET?

Fig. 2. Questions 12. How many hours a
month does it take you to stay up to date
on ACA.NET?

5.2 Usability (U)

Over 75% of the developers indicate that ACA.NET aids them in modeling by giving
them a good overview of the whole connected system of servers and clients (Figure 3).
The reasons indicated by the respondents include that “using ACA.NET gives us a better
overview at higher abstraction”, and that “the DSL design surface helps to model the
services even before business logic has been designed”. Furthermore, the ACA.NET
tools were considered easy to use (“ACA.NET provides an easy to use interface that
can be taught to others very quickly.”). Note that none of the respondents agrees to the
statement that ACA.NET is difficult to use (Question 19a) as shown in Figure 4.

5.3 Expressiveness (E)

The developers turn out to be satisfied with the expressive power of ACA.NET: 60%
of them agrees that ACA.NET is powerful (Figure 5). Furthermore, we see that the
limited scope is not considered a problem; only few developers indicate their freedom
is restricted (Figure 6). There are also some developers that indicate they miss features
(Question 19c, Figure 6).

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

8 TUD-SERG-2009-013



9

Fig. 3. Question 5. Did the ACA.NET user
interface help you in modeling?

Fig. 4. Question 19a. ACA.NET is difficult
to use.

Fig. 5. Question 16c. Is ACA.NET power-
ful?

Fig. 6. Question 19. Is ACA.NET restrictive
/ feature-incomplete?

The model is a good representation of the code, since developers do not have to
look into the code to understand or complete their own code (see Figure 7). However,
respondents mention that it is very hard to evolve the models along with the code, which
indicates lack of expressiveness. “When the models get more complicated, such as for
the web factory where you can set a lot of properties, the model loses its value - its not
practical to maintain or set a lot of properties using the visual tool.” and “For the more
complex, it was to time-consuming to maintain the graphical details between updates,
and you lost the overview.”

5.4 Reusability (R)

A somewhat surprising result is that reuse hardly plays a role in ACA.NET. The answers
to Question 3, Figure 8, tell us ACA.NET models are never reused, not even in the
sense that conceptual designs are reused. One possible explanation is that the current
ACA.NET implementation does not directly support exporting or importing models. In
particular, respondents indicated that they would like to be able to import parts of earlier

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 9



10

models, to reuse standard architectures for services across projects, and to compose
services from multiple earlier defined models.

Fig. 7. Question 20. Inspection of generated
code for different purposes

Fig. 8. Question 3. If you start with a new
ACA-project, how do you proceed?

5.5 Development costs (C)

Based on the results of the survey, we can conclude that the use of ACA.NET indeed
reduces programming time. One of the respondents says: “It speeds up the implementa-
tion of trivial tasks”. From the answers to Question 7 and Question 8 we can conclude
that time spent on actually coding the services is reduced from 46% to only 18%, as
shown in Figure 9. The shift in focus to the more important business logic is also un-
derlined by a subject who responded: “We don’t think too much about Windows Com-
munication Foundation services or the Data Access Layer anymore as we are able to
concentrate on the business requirements.”

Time is not the only measure for reduced costs: we also take the amount of gener-
ated code into account. The respondents estimate that on average 40% of the code is
generated, distributed as shown in Figure 10.

According to the answers on Question 16a and Question 16b, developers also feel
that ACA.NET eases the design and implementation phases (Figure 11), which is likely
to result in less time (and lower costs) for these tasks.

5.6 Reliability (I)

Developers clearly believe that the use of ACA.NET increases the quality of the deliv-
ered code, since 40% of the respondents agree and 50% strongly agree with Question
15b as shown in Figure 12. As one of the respondents put it: “The application becomes
less error prone since lots of tasks are automated”. Note that only one respondent dis-
agrees with this statement.

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

10 TUD-SERG-2009-013



11

Fig. 9. Question 7 and 8. Please estimate the
percentage of time you spent on typical de-
velopment tasks

Fig. 10. Question 9. Estimate the percent-
age of code that was generated

Fig. 11. Question 16. ACA.NET makes de-
signing and implementing easier

Fig. 12. Question 15b. Agreement with the
statement that “fewer errors occur”

6 Discussion

6.1 Lessons Learned Concerning ACA.NET

Based on our study we can draw several lessons concerning ACA.NET. First, the use of
this DSL helped in reducing time-to-market and development costs, and in increasing
reliability. The developers indicate they save time on programming service layers and
we notice large percentages of the code are generated. Furthermore, the vast majority
of developers agree that the use of ACA.NET helps to avoid faults.

Underlying success factors were usability of the language and tool set (which was
rated as positive), the learnability of the language (several days initial learning, and
several hours per month to stay up to date), and the expressiveness of the language
which was focused specifically towards the web services domain (and which was rated
as powerful). Much to our surprise, reuse of models dit not play a role in the success of
ACA.NET.

Conducting the study also resulted in several suggestions for improving the
ACA.NET language and tool set. A first observation is that adding the possibility to

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 11



12

import or export partial models would make it possible to actually reuse (parts of) mod-
els, adding further benefits to the use of ACA.NET.

Second, some of the developers observed that the abstraction that is made in
ACA.NET for web services is specific to .NET/WCF services: “ACA.NET is very good
for modeling the service layer of an enterprise application structure, but only for the
.NET based services, not for Java and SAP platform based services.” By appropriately
extending the code generators, ACA.NET could be used to integrate services from dif-
ferent platforms.

Furthermore, several respondents indicated that ACA.NET was not used as often as
possible, because customers do not want to make use of or be dependent on proprietary
software. To cite one of the respondents: “Customers don’t use ACA.NET in quite some
cases since it’s an Avanade specific tool.” A way out of this could be to give customers
access to the source code of the underlying code generation infrastructure.

Last but not least, several of the developers would have liked access themselves
to the generator and underlying meta-models, as this would enable them to build in
customer-specific features in an easier way. This actually calls for proper extension
points and hooks in the language, and suggests that the level of expressiveness of the
language could be further improved.

6.2 Beyond the Case at Hand

An interesting question is which general lessons we can learn from the case at hand.
First of all, the case provides further evidence that the use of a domain-specific

language can reduce time-to-market and development costs, and can improve system
reliability. The evidence, in this case, not just comes from the creators of the language,
but from the people who are actually using the language to deliver working software to
their customers.

Second, the case suggests that reuse is not a critical success factor. Reuse is a notori-
ously hard problem, involving the identification, adaptation, and integration of existing
parts. For many application domains, light-weight, copy-paste based forms of reuse
may be enough, having the additional benefit of full flexibility.

Another lesson we can draw from the study is that the questionnaire itself is a use-
ful instrument for, e.g., identifying opportunities for improving the language. In fact,
we would recommend engineers involved in the design of a new domain-specific to
compose a questionnaire as part of their design effort. This questionnaire, for which
ours can form a starting point, can then be used in a later stage to evaluate whether the
language has met its design goals.

6.3 Threats to Validity

Content Validity One of the threats to content validity when conducting an (online)
survey is the fact that respondents could be influenced by other replies [13]. Therefore
we made sure that it was not possible for respondents to view each others results. Fur-
thermore, responses came from different divisions of Avanade, making it less likely that
responders spoke to each other about the survey.

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

12 TUD-SERG-2009-013



13

Another threat to content validity is the fact that respondents have to estimate the
percentage of generated code and time spent on different tasks. This is the case be-
cause corresponding data were not collected during the development process. Develop-
ers could be unprecise in their memory. Because all results show similar numbers, we
believe the results are sufficiently reliable.

The survey was pre-tested on a focus group, consisting of domain experts — the
developers that created ACA.NET — and members of the target population. The survey
questions were also reviewed by university staff with experience in empirical research.
Their feedback helped in further assuring content validity.

Internal Validity The calculations used to manipulate the data were all very simple,
and constitute no threat to internal validity.

An issue of concern could be that the respondents have a commercial interest in
putting up a bright picture, thus giving answers that are too positive. While we cannot
exclude this possibility, we do not believe this is the case. We explicitly announced the
questionnaire as an opportunity to suggest improvements for ACA.NET, encouraging
them to be as critical as possible.

Survey Reliability In order to ensure repeatability of the experiment, the full question-
naire including answer options and descriptions is available online.4 Unfortunately we
were not able to make Avanade’s answers available too, for reasons of confidentiality.

External Validity Some of the issues concerning external validity were discussed in
Section 6.2, where we addressed the implications of our study beyond ACA.NET. Fur-
thermore, we have no reason to believe that our results are specific to the web services
domain. One characteristic of this domain, however, is that it is a “horizontal” domain,
applicable in many different settings, and aimed at developers as language users. This
has clearly had some influence on our questionnaire, which is tailored towards develop-
ers. Note, however, that the questionnaire contains many concrete, Likert-scaled ques-
tions, which are directly applicable to other domains as well.

Another issue may be that the results were obtained in a commercial setting: we
have no reason to believe that they would be different for, e.g., open source projects.

7 Conclusions

The goal of the present paper is to obtain a deeper understanding of the factors affecting
the success of a domain-specific language in practice. To that end, we have analyzed
experiences of developers that made use of the ACA.NET DSL in over 30 projects
around the world.

The key contributions of this paper are as follows:

– The identification of a number of DSL success factors;

4 See http://www.st.ewi.tudelft.nl/˜hermans/

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 13



14

– A questionnaire that can be used to assess these factors in concrete DSL projects.
– The ACA.NET empirical study, in which we use the proposed questionnaire to

evaluate successfactors in the use of ACA.NET.

The outcomes of the study indicate that in the given case study the DSL helped to
improve reliability, and to reduce costs. Furthermore, conducting the survey resulted
in a number of suggestions for improving the DSL under study, such as increasing the
level of reuse.

We see several areas for future work. One direction is to conduct a similar survey in
a DSL from a less technical (horizontal) domain, but from a vertical, highly specialized
DSL. The challenge here will be to find such a DSL in an industry that is willing to
collaborate in such a survey. A second direction is to compare the results we obtained
from interviewing with “hard” data obtained from, e.g., measurements on code or the
software repository used. One of the challenges here will be the availability of accurate
data on, e.g., reliability of projects conducted with the DSL under study.

Acknowledgements We owe our thanks to all responders that took the time to fill out
our survey. Special thanks go out to Gerben van Loon and Steffen Vorein, for reviewing
the questionnaire extensively.

References

1. P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial context –
motorola case study. In Proceedings 8th International Conference on Model Driven Engi-
neering Languages and Systems (MoDELS), volume 3713 of Lect. Notes in Comp. Sc., pages
476–491. Springer-Verlag, 2005.

2. D. Batory, C. Johnson, B. MacDonald, and D. von Heede. Achieving extensibility through
product-lines and domain-specific languages: A case study. In Software Reuse: Advances in
Software Reusability; Proceedings 6th Int. Conf. on Sw. Reuse (ICSR), volume 1844 of Lect.
Notes in Comp. Sc., pages 117–136. Springer-Verlag, 2000.

3. J. Bell, F. Bellegarde, J. Hook, and R.B. Kieburts. Software design for reliability and reuse:
a proof-of-concept demonstration. In Proceedings Conference on TRI-Ada, pages 396–404.
ACM Press, 1994.

4. T. J. Bergin, Jr. and R. G. Gibson, Jr., editors. History of programming languages—II. ACM,
New York, NY, USA, 1996.

5. D. L. Christopher and J.C. Ramming. Two application languages in software production. In
USENIX Symposium on Very High Level Languages Proceedings, pages 169–187. USENIX,
1994.

6. S. Cook, G. Jones, S. Kent, and A. Cameron Wills. Domain-Specific Development with
Visual Studio DSL Tools. Microsoft .NET Development Series. Addison-Wesley, 2007.

7. R.M. Herndon and V.A. Berzins. The realizable benefits of a language prototyping language.
IEEE Transactions on Software Engineering, 14:803–809, 1988.

8. R.B. Kieburtz, L. McKinney, J.M. Bell, J. Hook, A. Kotov, J. Lewis, D.P. Oliva, T. Sheard,
I. Smith, and L. Walton. A software engineering experiment in software component genera-
tion. In International Conference on Software Engineering (ICSE’96), pages 542–552. IEEE
Computer Society, 1996.

9. C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183, 1992.

Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

14 TUD-SERG-2009-013



15

10. R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 22(140),
1932.

11. M. Mernik, J. Heering, and A.M. Sloane. When and how to develop domain-specific lan-
guages. ACM Computing Surveys, 37(4):316–344, December 2005.

12. B. A. Nardi. A small matter of programming: perspectives on end user computing. MIT
Press, 1993.

13. S. Pfleeger and B. Kitchenham. Principles of survey research. ACM SIGSOFT Software
Engineering Notes, 26:16–18, 2001.

14. J. E. Sammet. Programming languages: history and future. Communications of the ACM,
15(7):601–610, 1972.

15. D. Spinellis. Notable design patterns for domain-specific languages. Journal of Systems and
Software, 56:91–99, 2001.

16. D. Spinellis and V. Guruprasad. Lightweight languages as software engineering tools.
In Proceedings of the Conference on Domain-Specific Languages (DSL’97), pages 67–76.
USENIX, 1997.

17. M. Staron. Adopting model driven software development in industry: A case study at two
companies. In Proceedings 9th Int. Conf. on Model-Driven Engineering Languages and
Systems (MoDELS’06), volume 4199 of Lect. Notes. in Comp. Sc., pages 57–72. Springer-
Verlag, 2006.

18. A. van Deursen and P. Klint. Little languages: little maintenance. Journal of Software
Maintenance, 10(2):75–92, 1998.

19. R. L. Wexelblat, editor. History of programming languages I. ACM, New York, NY, USA,
1981.

20. J. White, D. C. Schmidt, and A. Gokhale. Simplifying autonomic enterprise java bean ap-
plications via model-driven development: A case study. In Proceedings 8th International
Conference on Model Driven Engineering Languages and Systems (MoDELS), volume 3713
of Lect. Notes in Comp. Sc., pages 601–615. Springer-Verlag, 2005.

SERG Domain-Specific Languages in Practice: A User Study on the Success Factors

TUD-SERG-2009-013 15



Domain-Specific Languages in Practice: A User Study on the Success Factors SERG

16 TUD-SERG-2009-013





TUD-SERG-2009-013
ISSN 1872-5392 SERG


