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Abstract

The use of protons to treat cancer has expanded rapidly in the past two decades. For
safe and e↵ective proton therapy, the proton range in a patient’s body must be accu-
rately determined. Current treatment planning is based on X-ray computed tomogra-
phy images, which might cause uncertainty because of the di↵erent behaviour between
protons and X-rays. As an alternative, proton Computed Tomography (pCT) has
been proposed to directly measure the Relative Stopping Power (RSP) map in the
patient and reduce this uncertainty. During a proton CT scan, a high-energy proton
beam is directed at the patient. Then, the proton’s residual energy and position are
measured with a detector placed behind the patient. This information is used to
calculate the volumetric RSP. In the case of using a pixel based detector, a tracking
algorithm is required in order to increase the proton intensity capacity of the detec-
tor.

A proton track reconstruction system has been already developed by Pettersen [1],
however, it has some limitations on the track density that can be reconstructed
correctly. The algorithm is based on the track-following scheme, in which a growing
track searches for deeper- laying activated pixels.

This thesis introduces proton therapy and the advantages of pCT and proton ra-
diography for treatment planning. Then, the main track reconstruction techniques
found in the literature are reviewed. Improvements in the reconstruction process are
proposed and their e�ciencies are discussed. While current algorithm begins from
the layer closest to the patient, in the present study a new reconstruction algorithm
is developed. It di↵ers by starting the reconstruction process from the distal end of
the detector. Based on this new algorithm, studies related to its optimization are
conducted. Lastly, an algorithm based on the identification of the most probable
scenario is developed.

The potential algorithms are evaluated on data simulated with GATE (based on
Monte Carlo interactions) and PROCASIM (design to simplify the physical inter-
actions between protons and the detector). The fraction of correctly reconstructed
tracks and the computational e�ciency of the algorithms are analyzed to determine
the most viable one.

Keywords: proton Computed Tomography, tracking algorithm, Digital Tracking
Calorimeter
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Nomenclature

ALPIDE ALice PIxel DEtector

ATLAS A Toroidal LHC ApparatuS
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Chapter 1

Introduction

Cancer is a large family of diseases that involve abnormal cell growth with the po-
tential to invade or spread to other parts of the body. Cancer is the second leading
cause of death globally, and is responsible for an estimated 9.6 million deaths in
2018, causing about 1 in 6 deaths [9]. Currently, the three main therapies for cancer
are radical surgery (removing the tumor), radiotherapy (killing the tumor cells with
radiation), and chemotherapy (the use of anti-cancer drugs). The type of treatment
depends upon the location and grade of the tumor and the stage of the disease, as
well as the general state of the patient.

In the last two decades, radiotherapy using ions, commonly referred to as particle
therapy, has become increasingly popular to treat cancer patients. The Particle
Therapy Cooperative Group (PTCOG) reported that, by the end of 2017, 199 845
patients had been treated with particles. The potential of using these particles in
radiation therapy was first proposed by Wilson (1946) after discovering that protons
and heavy ions deposit a maximum dose, also called the Bragg peak, at a precise
depth in a tissue as shown in Fig. 1.1.

The most common form of particle therapy is performed with protons and carbon
ions and have several advantages over traditional radiotherapy using photons [10].
The primary advantage is a superior dose distribution, as particle therapy irradiates
a smaller volume of healthy tissue during treatment as can be seen in Fig. 1.2. This
is due to the finite range of ions in matter. By carefully selecting the energy of
the incoming ions, such that they stop inside the area to be irradiated, no dose is
delivered to the tissue downstream from the target. This has two implications. First
of all, a lower dose to the healthy tissues leads to fewer side e↵ects of the treatment.
Secondly, since the dose to tumour is often limited by what is tolerated by the normal
tissue, the target dose can be increased leading to better tumour control for some
tumours.

The advantages of particle therapy translate into a significantly reduced number of
patients su↵ering from side e↵ects from their radiation treatment cure [11]. Among
these are a reduction of the number of patients developing secondary cancers from
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Chapter 1. Introduction

Figure 1.1: The depth dose curve in water for 107 MeV protons [2]. The deposited dose is
low at the entrance region, and then increases rapidly towards the end of the particle range,
and then a maximum dose deposition in the Bragg Peak before the protons come to rest.

Figure 1.2: Comparison plans of Photon and Proton Beam Therapy for the treatment of
distal esophageal cancer. Note the relative amount of normal tissue spared of scattered doses
of radiation in the proton plan compared to the photon plan [3].
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the irradiation, a reduction of damage to normal tissue and less damage to nearby
organs [1]. In addition, pediatric patients could also benefit from this procedure as
it could limit the radiation exposure to healthy and developing tissues [12, 13].

1.1 Treatment accuracy

In particle therapy, one of the main concerns is the impact of range uncertainties on
tumour coverage. Due to the precise dose delivery, an error in the range calculation
could potentially cause the treatment beam to miss the distal part of a tumour or
irradiate more healthy tissue downstream of the tumour. Fig. 1.3 shows the main
causes of range uncertainties, where the less predominant e↵ect is on the top and the
main one at the bottom. The pyramid is topped by the uncertainties produced by
beam fluctuations (± 0.7 mm) [14], followed by the error introduced by variation in
the patient positioning (± 0.7 mm) [14]. Below the uncertainties produced by the use
of Computed Tomography (CT) images to calculate the dose plans (± 2.5% - 5% [15]
+ up to 18% [16]). At the bottom of the pyramid can be found the errors introduced
by variation in the patient anatomy during the course of the treatment planning
(± 2.5% up to 1) [17]. Range uncertainties are unique to heavy charged-particle
therapy and require additional margins along the beam path (whereas uncertainties
in conventional therapy can be considered as isotropic expansion of the volume to be
treated). Clinically, safety margins around the treatment volume are introduced in
order to ensure tumour coverage—i.e. of the order of 3.5% of the prescribed range
plus an additional millimetre [18]. This adds a substantial dose to healthy tissue.
Therefore, proton therapy has to be evaluated not just in terms of the success of the
irradiation in destroying the cancer, but most importantly in terms of how well the
e↵ects of the radiation on the rest of the body are minimized [19].

As mentioned before, nowadays, dose plans in proton therapy are based on CT images.
The CT images are reconstructed based upon photon interaction with matter, thus
a conversion is required for calculating the Relative Stopping Power (RSP) for how
the protons traverse and deposit dose in the patient’s body during proton therapy.
A problem with this approach is that x-rays interact very di↵erently with materials
compared with protons, resulting in relations between Hounsfield Units (HU) and
RSP that are not unique (and can therefore be ambiguous) [19]. This conversion
procedure introduces range uncertainties typically of the order of 2.5% – 5% [15],
corresponding to 5 – 10 mm at a treatment depth 20 cm into the patient [2]. On the
other hand, Dual Energy CT can further reduce these uncertainties by at least 0.4%
[20]. It combines information from two images made using di↵erent x-ray energies
in order to resolve the ambiguities in the HU to RSP conversion [19]. However,
resolution of CT images, including possible x-ray CT artifacts, can also a↵ect the
accuracy of reconstructed RSP maps [21, 16].

Proton CT o↵ers a potential solution to this discrepancy as it directly maps the RSP
of the particles in the patient, which will allow a reduction of treatment margins
[22]. While protons of therapeutic energies are stopped in the body, during a pCT
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Figure 1.3: Range uncertainties during particle therapy treatment. The main source of
uncertainty is introduced by variation in patient anatomy and range degradation, followed
by the use of CT images in the treatment planning. Then, the error introduce by patient
positioning and finally, the uncertainties produced by fluctuations of the beam [4].

scan, a high-energy proton beam is directed at the patient and the proton beam must
have su�cient energy to completely pass through the patient being imaged. Then,
the protons’ residual energies are measured in a detector behind the patient. The
information about the residual energy from each proton can then be used, together
with the proton’s estimated path through the patient, as a basis for reconstructing a
volumetric RSP. This RSP map can be used directly in a treatment planning system
[1].

Arbor et al. [21] showed that RSP reconstruction and proton range calculations
based on proton CT are more precise and more uniform, allowing a reduction of
the treatment margins used to plan proton therapy. Moreover, early on, it was
realized that proton radiography potentially provides better density resolution and
tissue contrast, compared to conventional x-ray imaging [23], and more recent work
appears to confirm it [24]. Proton radiography could also provide quick verification
of patient setup in a cancer treatment facility, with very low radiological dose, in
addition to a real- time monitoring of the treatment beam [25, 26]. Also, proton CT
does not su↵er from artifacts that often appear in reconstructions of x-ray CT scans
[19]. Another potential benefit is the reduction of imaging doses compared to x-ray
CT and Cone Beam Computed Tomography (CBCT) [21].
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1.2 Interactions of protons with matter

In general, proton interactions with matter can be divided into three main groups in
the therapeutic energy range under consideration:

1.2.1 Inelastic Coulomb interactions

Protons continuously lose kinetic energy via frequent inelastic collisions with atoms
(Subfigure (A) in Fig. 1.4). In the energy range considered for proton imaging (typ-
ically between 20 and 300 MeV), the energy loss process is dominated by interaction
of the proton with the bound outer-shell electrons of atoms in the matter penetrated.
Protons have a mass which is large compared to the mass of the electrons, so only
a small fraction of the proton’s energy is lost in a single interaction, however, any
deflection of the protons can be neglected. The mean energy loss per distance trav-
elled, also called stopping power S, is well-described by the Bethe theory [27].

For a particle with speed v, charge z, and energy E, travelling a distance x into a
target of electron number density n and mean excitation potential I, the relativistic
version of the formula reads, in SI units:
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where c is the speed of light and "0 the vacuum permittivity, � = v
c , e and me the

electron charge and rest mass respectively.

The electronic stopping power of protons in water is represented in Fig. 1.5. Through
Eq. 1.1, one can see what leads to the peculiar shape of the Bragg curve, that
characterizes the stopping power of the material as a function of the depth, and
particularly the peak (Bragg peak) for low values of � at the end of the range, as can
be seen of Fig. 1.1 [2].

Figure 1.4: Schematic illustration of proton interaction mechanisms: (A) energy loss via
inelastic Coulombic interactions, (B) deflection of proton trajectory by repulsive Coulomb
elastic scattering with nucleus, (C) removal of primary proton and creation of secondary
particles via inelastic nuclear interaction (p: proton, e: electron, n: neutron, �: gamma
rays) [5].
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Figure 1.5: The linear stopping power of protons in water [2].

1.2.2 Multiple Coulomb Scattering

In addition to slowing down in matter, protons in the energy range considered un-
dergo multiple small-angle deflections due to the Coulomb field of the nuclei, and
deviate from their original path but almost no energy loss [2, 18]. A schematic of
this interaction is represented in Subfigure (B) of Fig. 1.4. The amount of scattering
is dependent on the atomic weight of the scattering material; a material with high
atomic number scatters more strongly than a material with low atomic number. The
Coulomb scattering distribution can be represented by the theory of Molière [28, 29].

When protons pass through a slab of material they su↵er millions of collisions with
atomic nuclei. The statistical outcome is a multiple scattering angle, ✓0, whose
distribution is approximately Gaussian. The root mean square (RMS) scattering
angle ✓0 for “thin” objects (x ⌧ X0) can be computed using the Highland formula
[30]:

✓0 =
14.1MeV

p⌫

r
x
X0

✓
1 +

1
9
log10

x
X0

◆
(1.2)

where x is the target thickness, X0 is the radiation length of the target material and
p⌫ is the product of proton momentum and speed at the point of interest:

p⌫ =
⌧ + 2
⌧ + 1

E where ⌧ ⌘ E
mc2

(1.3)

and E and m represents the energy and mass of the proton, respectively, and c is the
speed of light.

1.2.3 Inelastic nuclear interactions

Inelastic nuclear reactions between protons and the atomic nucleus are less frequent
but have a much more profound e↵ect. In a nuclear reaction, the projectile proton
enters the nucleus where it is absorbed; the nucleus may emit secondary particles: a
proton, deuteron, triton, or heavier ion or one or more neutrons [5]. These secondaries
tend to have much lower energies and much larger angles than primary protons
(Subfigure (C) in Fig. 1.4).
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1.3 Research Objectives

In Section 1.1 the need for clinical development of a pCT system has been explained.
Although pCT has not yet been clinically realized as an imaging modality, several
experimental setups have been developed [19, 31, 32].

For the calculation of the RSP map, the protons’ residual energies in the detector
needs to be measured, in addition to the protons’ path estimation. However, one of
the main problems is the stochastic ‘zig-zag’ shape trajectories of protons within the
traversed material due to multiple Coulomb scattering (MCS). This physical e↵ect
limits the spatial resolution of proton radiographic images and consequently also
of the reconstructed volumetric images by “blurring” or “spreading” the incident
energy away from the primary interaction site. Moreover, a certain amount of spatial
resolution is necessary in order for proton imaging to be useful as a complementary
imaging modality in a proton therapy facility [7]. Therefore, the development of
an e�cient proton track reconstruction in the detector will mitigate the e↵ect of
MCS allowing that fewer protons are needed during the scan, i.e. a lower dose to
the patient and a shorter scan time and a higher signal to noise ratio. A proton
track reconstruction system has already been developed by Pettersen [1]; however,
it has some limitations on the track density that can be reconstructed correctly at
higher beam intensities. Consequently, an improvement of this track reconstruction
algorithm for protons traversing the detector needs to be carried out.

To this end, the general purpose of this thesis is to optimize the current reconstruction
algorithm to improve its performance, especially at higher beam intensities. This
general objective can be divided into the following specific objectives:

1. To provide a critical analysis of di↵erent particle track reconstruction algo-
rithms as well as key studies that have been completed on this specific topic
with the aim of proposing some improvement strategies.

2. To implement and evaluate di↵erent improvement proposals of the current al-
gorithm.

1.4 Outline of the manuscript

• Chapter 2: Technical background. In this chapter, the description of the
proton CT used in this work is presented. Additionally, di↵erent simulations
tools are introduced. Ultimately, the current reconstruction algorithm is de-
scribed.

• Chapter 3: State of the art. This section reviews the main track reconstruc-
tion techniques found in the literature and proposes potential improvements to
optimize the current algorithm and get a better e�ciency.

• Chapter 4: Improved reconstruction algorithms. This chapter describes
di↵erent modifications of the current algorithm to enhance its e�ciency.
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• Chapter 5: Most probable scenario algorithm. In this chapter a new
strategy is presented to get a better e�ciency. Based on the study of di↵erent
scenarios, this reconstruction algorithm determines which of them is the most
probable.

• Chapter 6: Discussion and conclusions.

• Chapter 7: Limitations and recommendations for future work.
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Chapter 2

Technical background

2.1 Proton CT concept

The proposed approach to proton CT is illustrated in Fig. 2.1. The object is traversed
by a beam of protons of known energy. The protons used for imaging must have
su�cient energy to penetrate the body part to be imaged. A proton-tracking detector
is placed behind the patient, which records the entrance and exit points and angles
of individual protons. This information is necessary to determine the most likely
proton path inside the patient. Then, the residual energy of protons traversing the
image object is measured with a detector. The information on this residual energy
is used to compute the water-equivalent path length (WEPL) of the protons and the
relative stopping power (RSP) of the tissues.

Figure 2.1: Proton CT imaging concept. The trajectory of each particle crossing an object
is measured using two trackers (after and before the object). The residual energy of the
particle is measured using a detector.
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The RSP, here noted %, of a tissue is defined as the ratio between the stopping power,
S (defined in Eq. 1.1) of the tissue to that of water:

% =
Stissue

Swater
(2.1)

The WEPL, here noted L, of a particle at the exit of the radiated object is the
distance this particle would have had to go through in water to exit with the same
energy, and is calculated by:

L =

Z l

0

%(~r)dl (2.2)

with l the path of the proton in the tissue. From the integration of the Bethe formula,
the WEPL is equal to the integration of the reciprocal stopping power of water, thus:

Z Ein

Eout

dE
Swater(E)

=

Z l

0

%(~r)dl (2.3)

By measuring the energy Eout upon exit from the object, and knowing the energy
Ein at the entry, the left side of Eq. 2.3 can be calculated. Alternatively, a cali-
bration of the system makes it possible to access directly pre-computed WEPL [2].
In consequence, it is possible to reconstruct the RSP on the right side of the same
equation. In order to do so, the path l of a proton needs to be estimated.

2.1.1 Detector design in proton CT project

For proton detection, a Digital Tracking Calorimeter (DTC) is going to be used (still
under development and construction), that measures the energy of each individual
proton after traversing the patient at the same time. The detector consists of ap-
proximately 40 layers, each layer ⇠ 27 × 15 cm2 high-granularity 1-bit pixel sensor
array using the ALice PIxel DEtector (ALPIDE) chip with an active area of 15 x 30
mm2 (1024 x 512 pixel array of 28 x 8 µm2 pixels) and readout rate of ⇠ 5 - 10 µs
[33]. This sensor layer is followed by an energy absorber of 3.5 mm aluminum. A
design based on the original prototype from [34] can be seen in Fig. 2.2.
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Figure 2.2: A close-up of two layers, consisting of the di↵erent components that approxi-
mate the current planned layer design. To fully slow down and stop a 230 MeV proton, 25 -
70 layers will be necessary depending on size of the Al absorber. If it’s fixed to 3.5 mm, 41
layers are needed.

2.2 Simulation of a proton radiographic image

As mentioned in the previous section, the DTC is currently under construction.
Therefore, to carry out the data analysis, simulations need to be performed. In this
thesis, the simulations are set up using both the GATE platform, which is based
on Monte Carlo interactions, and PROCASIM, a simulator created to simplify the
physical interactions between the protons and the detector and have more control
over the simulation process.

2.2.1 Monte Carlo Simulations

Monte Carlo (MC) methods are a class of computational algorithms that search for
solutions to mathematical problems using statistical sampling with random numbers.
This method can be used to automatically transport the particles shot into the detec-
tor by simulating the particle interactions in matter. The particle is generated at a
given position, with a given direction and energy. The principle of particle transport
in a MC simulation code can be schematically explained in three steps [2]:

(i) First, the mean free path � of the particle in the considered medium is com-
puted. The interaction length of the particle, x, is randomly selected. The
interaction length is defined as the distance that the particle will travel before
the next interaction. Then, the probability of interaction of the particle is cal-
culated following: p(x) = 1

� exp(� x
� ). During this distance, the particle will

travel in a straight line, following the direction and energy defined previously.
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(ii) A single particle can undergo di↵erent processes (like proton excitation in wa-
ter, proton ionization in water, . . . ), therefore, the physical process happening
during the interaction is randomly selected in the list of possibilities, according
to the cross-section of each process.

(iii) Finally, after the interaction process is selected, the new state of the particle is
computed.

These steps are repeated until the particles are stopped or leave the simulation vol-
ume. Most of the physics quantities (energy, position, energy deposit. . . ) are acces-
sible at anytime during the simulation.

2.2.1.1 GEANT4

Geant4 (GEometry ANd Tracking 4) is an open access toolbox developed by CERN
and written in C++ [35]. The response of a detector can be simulated and parti-
cles can be tracked inside volumes. For the calculations, models and experimental
cross-sections are used. The “detailed” simulation of multiple Coulomb scattering
(MCS), with all the collisions and interactions, is computationally very expensive,
therefore, in contrast to the MC workflow, explained previously, Geant4 makes use
of “condensed” simulations, where the global e↵ect of the collisions is simulated after
each particle position calculation. Most Geant4 multiple scattering models belong
to this second class, though hybrid approaches using both condensed and detailed
simulation processes also exist [2].

For condensed MCS models, multiple scattering is not selected among the processes
in step (ii) previously described, but is applied at each step. Therefore, the function
for each Monte Carlo step of charged particles in a media becomes [36]:

(i) Propose step limit. Before any step, a loop is performed over all physics pro-
cesses to establish the step limits.

(ii) Convert this step length into “true” step length taking into account scattering
along the step.

(iii) Sample scattering angle and change particle direction at the end of the step.

(iv) Sample displacement of end point.

2.2.1.2 GATE

GATE (Geant4 Application for Emission Tomogaphy) is an advanced opensource
software developed by the international OpenGATE collaboration and dedicated to
numerical simulations in medical imaging and radiotherapy. It is based on Geant4 and
plays a key role in the design of new medical imaging devices, including movement of
source(s) and detector(s) as well as a simplified management of geometry for detectors
and phantoms.

The various aspects of the simulation are described in a macro file [2]:
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• Scanner geometry.

• Detector model.

• Source(s) and phantom(s) definition.

• Physical interactions of each particle type (Physics list).

• Response of the detector.

2.2.1.3 Scanner description

In the simulated proton projections using GATE (version 7.1), the scanner contains
a Pencil Beam Scanning system (the spatial distribution of the beam is described
by a Gaussian (�xy)) [6], and a geometrical implementation of the DTC. A water
phantom of variable thickness is used to slow down a 250 MeV proton beam, in order
to present realistic energy spectra with residual proton ranges that span the complete
detector in depth [6]. The schematics of the setup is shown in Fig. 2.3.

Figure 2.3: Schematics of proposed prototype. In order to obtain a spectrum of di↵erent
proton beams to hit the DTC, the thickness of the energy degrading water phantom is
modulated from 0 cm to the maximum range of a 250 MeV beam [6].

A Physics List needs to be selected, which contains a set of physics models. There
are Physics Lists for electromagnetic physics, for hadronic elastic and for hadronic
inelastic physics, etc. For MC simulations in proton therapy and in proton imaging,
the recommended physics list is QGSP BIC EMY. It has been specifically created to
address simulation problems for which high level of accuracy is requested [1].

2.2.1.4 Output data

At the end of a run involving hundreds or thousands of particles, the protons’ position
and deposited energy when they traverse each layer of the detector are stored in
ROOT files [37]. ROOT is an analysis framework distributed freely as a C++ library.
It includes functionalities such as file I/O, e�cient data containers, least-squares
fitting and powerful visualization tools [6]. These files contain the information on all
interactions in the calorimeter. They contain, among others:
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• parentID: The parent track’s event ID. 0 if the current particle is a beam
particle.

• time: Time in simulation.

• edep: Deposited energy in this event / interaction.

• stepLength: The length of the current step.

• posX, posY and posZ: Global (X,Y,Z) position of event.

• localPosX, localPosY and localPosZ: Local (in mother volume) (X,Y,Z) position
of event.

• baseID: ID of mother volume scanner, == 0 if only one scanner defined.

• sourcePosX, sourcePosY and sourcePosZ: Global (X,Y,Z) position of source
particle.

• eventID: History number.

2.2.2 Simulations using PROCASIM

GATE takes into account all the physics processes involved, including MCS, elastic
and non elastic nuclear interactions as well as the transport of any generated sec-
ondary particle. For this reason, it is di�cult to determine whether an incorrect
track is due to MCS or nuclear interactions. Therefore, the goal of PROCASIM is to
simulate only MCS of a proton.

Protons that experience nuclear interactions lead to large scattering angles and are
the main cause for the wider envelopes obtained with the full physics list. They
propagate through air until they stop at larger distances from the spot centre than
those which have undergone MCS only. This e↵ect can be visualized in Fig. 2.4
where each dot represents a proton hitting the detector.
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Figure 2.4: Distribution of protons on the detector surface at 20 cm distance from the
water phantom. Yellow color represent protons that only experienced MCS. Blue and red
dots reflect protons that have undergone elastic/inelastic nuclear reactions, respectively. The
data was generated using GATE with the full physics list [7].

Protons that are subject only to MCS are selected and protons which have undergone
nuclear interactions can be partly filtered out by limiting the span of exit angles and
energy measurements. Consequently, the reconstruction algorithm should focus on
reconstructing protons that only undergo MCS.

It is currently complex to identify if a track has been incorrectly reconstructed due
to either inelastic nuclear interaction or MCS. The proposed simulator, PROCASIM
(PRoton CAlorimiter SIMulator), facilitates the study of the algorithm’s e�ciency
when only protons that underwent MCS are reconstructed.

In PROCASIM, each particle is generated from a single point in the first layer of the
calorimeter. Then, its trajectory in the material is computed from modeling based
on Highland’s equation (Eq. 1.2). In this model, the position of the proton in the
next layer is estimated using the expected RMS value of the MCS angle distribution
✓0 at each layer.

In the proposed model, the MCS e↵ect is simulated using cone-surface projections.
The cone is defined by the conicity angle equal to a random angle, �, selected from
the Gaussian distribution with � = ✓0. The position of the proton at each layer
is estimated by selecting a random point in the ellipse created by the intersection
between the cone and the next layer. Fig. 2.5 shows a 3D representation of this
concept.
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Figure 2.5: Schematic of the ellipse created by the intersection between the cone and the
next layer of the detector. The size of the cone is calculated by the selection of an angle, �,
in the Gaussian distribution with � = ✓0. Then, the value of ' 2 [0, 2⇡) is chosen randomly.

The energy and the proton density that will be simulated are selected directly by
the user. After simulating the indicated number of particles, the protons’ position
at each layer of the detector is stored in ROOT files, the framework in which this
analysis is performed, explained in Section 2.2.1.4.

2.2.2.1 Parameterization of the cone

Based on the idea outlined in Fig. 2.5, the estimated position can be numerically
calculated following the schematic represented in Fig. 2.6. The cone with its apex
situated at the origin of the coordinate system is defined by C(0,0;↵,�,�).

Figure 2.6: The intersection between the cone C(0,0;↵,�,✓) and a horizontal plane with z
� 0 is an ellipse with its major axis parallel to the x-axis and its minor axis parallel to the
y-axis [8].
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In the first layer, it is assumed that the rotational axis of the cone is oriented in the
vertical plane x0z and accordingly set �=0, where � is the rotation of 0xyz around
the vertical axis 0z. Following the procedure in [8], a point M(x, y, z) of the cone
C(0,0;↵,0,�) has the parametric representation:

8
>>><

>>>:

x = z sin↵ cos↵
cos2 ↵�sin2 �

+ sin � cos �
cos2 ↵�sin2 �

cos'

y = z sin �p
cos2 ↵�sin2 �

sin'

z = z

(2.4)

where:

• z � 0 corresponds to the layer.

• � represents the expected scatter of the proton. This value is calculated using
the Box–Muller transform [38], that generate a standard normal distributed
random number, which is transformed to a Gaussian distribution with � = ✓0.
The value of ✓0 is computed from Highland equation (Eq. 1.2) for 3.5 mm of
Aluminum. ✓0 changes depending on the energy of the proton.

• ' 2 [0, 2⇡) is defined as the intersection between the cone C(0,0;↵,0,�) and the
horizontal plane that includes M.

• ↵ is the angle between previous vector and 0z: ↵ = cos�1
⇣

dz
x2+y2+dz2

⌘
where

dz correspond to the distance between layers, in this case, 3.935 mm (3.5 mm
of Al + rest of components).

For the rest of the layers, the cone will be defined by C(0,0;↵,�,�), where � is the
angle between the major axis of the ellipse and Ox axis, as can be seen in Fig. 2.7.
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Figure 2.7: The cone’s axis has an arbitrary direction described by the angular parameters
↵ and �. The cone’s opening angle is �. The intersection between the cone and a horizontal
plane with z > 0 is an ellipse E(z;↵,�,�). The major axis of the ellipse forms the angle �
with the 0x axis [8].

Therefore, talking into account this new coordinate system, in the equation of the
cone (Eq. 2.5), x, y should be replaced by, respectively, x0 and y0. The equation of
the rotation is:

8
>>><

>>>:

x0 = x cos � + y sin �

y0 = �x sin � + y cos �

z = z

(2.5)

For each layer, a new cone C(0,0;↵,�,�) is calculated to determine the x and y position
of the particle in each interaction until the last layer is reached.
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2.3 Current tracking algorithm

One of the advantages of using a pixel-based detector design is the ability to recon-
struct many concurrent proton tracks. Therefore, an in-detector track reconstruction
algorithm needs to be able to handle the proton intensities and the high levels of
MCS between subsequent layers that are usually associated with the protons of ther-
apeutic energies, besides lost tracks due to inelastic collisions. Each incident proton
is expected to come to a complete stop inside the detector [34].

A track reconstruction algorithm has been developed for the geometry explained in
Section 2.1.1 by Pettersen [6]. This algorithm is based on the track-following scheme
explained in Section 3.1.1.1.2, in which a growing track searches for deeper-laying
activated pixels, while the accumulated angular change of the track, S, is compared
with a global maximum, Smax. The main steps of the algorithm are described below:

(i) Starting from the first layer of the detector, identify all starting hits of the
tracks, called seeds (hits in layer 0 in Subfigure (A) in Fig. 2.8). The search
of the rest of hits, called track candidates, goes towards the last layer of the
detector.

(ii) At each sensor layer, a search cone is applied for each seed in order to identify
all possible matches in the next layer (Subfigure (B) in Fig. 2.8). The angle of
the search cone is determined by Smax and its value determines the amount of
deflection that is allowed during track reconstruction. Too small values lead to
prematurely discarded track candidates, and too large values cause confusion
by including wrong candidates where there should be none [6].

(iii) Find the angular change for each candidate in the next layer and calculate:

Sn =
qPn

layer(�✓layer)2 (Subfigure (B) in Fig. 2.8), where n indicates the

proton density.

(iv) Identify the hits where Sn < Smax and add them to the track (Subfigure (C) in
Fig. 2.8). If several such hits are identified, the one with lowest Sn is chosen
as the next track segment (Subfigure (D) in Fig. 2.8).

(v) Repeat the above steps and follow all track candidates in the ”tree” recursively
(Subfigure (E) in Fig. 2.8) until the last layer is reached (Subfigure (F) in Fig.
2.8).

(vi) The hits from the resulted track are removed from the search pool and the
same process is repeated for the next seeds (Subfigure (G) in Fig. 2.8) until all
tracks are reconstructed (Subfigure (H) in Fig. 2.8).
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Figure 2.8: Schematic of the tracking algorithm steps. Hits in the di↵erent layers of the
detector are represented by black starts. Starting from the first layer of the detector, the
first hit (in yellow) of a track is selected (A). Then the next candidates are search using a
cone defined by Smax(B). If calculated Sn using the new candidate is lower than Smax, this
hit is added to the track (C). If more that one hit is identified, the candidate with lowest
Sn is added (D). These steps are repeated in the following layers (E) until the last layer of
the detector is reached (F). Subsequently, hits belonging to this track are removed from the
search pool and the reconstruction of the next track starts (G). The algorithm finishes when
all the identified tracks are reconstructed (H).
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An example of the track reconstruction applied on the data simulated with GATE is
shown in Fig. 2.9. Correctly reconstructed tracks are represented as black lines, cor-
rectly but not complete track are visualized as gray lines, incorrectly reconstructed
tracks as red lines and unused pixel hits as blue dots. Green lines are reconstructed
secondary particles. This classification is done through checks between the primary
proton identification ID tag obtained from MC simulations, which indicates the pri-
mary proton responsible for the cluster, and the final entry in the track. From the
correctly reconstructed tracks, the correct residual ranges can be calculated which
are the required values for the volumetric reconstruction of the stopping power map.
In this example, 47 of the 62 tracks have been reconstructed correctly and are com-
plete. A higher detector occupancy decreases the probability that all hits in a given
reconstructed track originate from the same primary proton.

Figure 2.9: Example of track reconstruction. Black lines represent tracks that have been
correctly reconstructed while gray lines are tracks that are well reconstructed but are not
complete. Incorrectly reconstructed tracks are visualized in red. Green lines show recon-
structed secondary particles. Blue dost correspond to unused hits.

In order to study the e�ciency of the algorithm and to be able to compare the
results with new proposals, the portion of tracks simulated with GATE that are
identified as correctly reconstructed was calculated for di↵erent proton beam energies.
A well reconstructed track means that it has the same proton history ID from GATE
(eventID) at its start- and endpoints, and it has to be fully tracked. In addition, the
fraction of tracks that have the same eventID in all the clusters is also calculated.
Fig. 2.10 shows the e�ciency graphs for both scenarios. Solid lines represent well-
reconstructed and complete tracks, while dashed lines indicate tracks that have been
reconstructed correctly but are incomplete. As can be observed, the higher the
detector occupancy, the lower the e�ciency of the algorithm.
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Figure 2.10: E�ciency of the current algorithm for di↵erent proton densities. In order
to compare results for various energies, a 250 MeV pencil beam is degraded with a water
phantom of di↵erent thicknesses (from 5 cm to 34 cm). E�ciency is measured as the fraction
of tracks in which all cluster have the same eventID (whole track correct graph) and the
fraction of tracks where the first and last cluster has the same eventID (correct endpoint
graph). Solid lines reflect only correctly and fully reconstructed tracks, while dashed lines
indicate the percentage of all well-reconstructed tracks, including the ones that are not
complete. Each reconstruction is iterated 50 times.
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A considerable amount of literature has been published on pCT. For example, recent
studies [39, 40, 41, 42, 43] have focused on the achievement of fast readout electronic
and development of a detector system that can be introduced into the clinic. Much
of the recent literature also focuses on proton path approximation in the imaged
object [7, 44, 45, 46, 47]. The current generation of pCT design utilizes detectors
that measure the position and direction of individual protons prior to and post-
traversing the patient to maximize the knowledge of the path of the proton within
the patient [48]. Other studies [49, 50, 51], have concentrated on developing the pCT
reconstruction algorithm to get a 3D volumetric image.

In conclusion, there has been relatively little literature published on the track re-
construction algorithm in the detector of a pCT. The main reason is that only pixel
based-calorimeters need in-detector tracking, where all the hits created by a proton
in the di↵erent layers need to be matched. This is in contrast to scintillator-based en-
ergy detectors [19]. The di↵erence between these two types of detectors is the number
of proton events that can be measured: while in scintillator-based energy detectors
a single proton event is detected, pixel based-calorimeters can measure many events
per readout. Apart from the system under study [6], only the Proton Radiotherapy
Verification and Dosimetry Applications (PRaVDA) Consortium is working on the
tracking algorithm on the pCT detector [52]. However, other studies have shown that
to improve the performance of the pCT, a proton track reconstruction algorithm in
the detector needs to be implemented [53, 54, 55, 56]. Therefore, a study of di↵erent
track reconstruction algorithms for other type of particles and systems was carried
out to find the best algorithm that can be implemented in the specific case of pCT,
covering in this way, the aforementioned need.

However, in most of these studies, high and intermediate energy particles are an-
alyzed, while in a pCT low energy protons are used. Since the particles interact
di↵erently depending on the energy, this factor is decisive when choosing the most
appropriate reconstruction algorithm. Therefore, after an extensive and thorough
investigation, none of the methods explained below will be used.
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3.1 Reconstruction Algorithms

In the topic under discussion, track reconstruction is the task of finding the tra-
jectories of the particles in the detector to measure their energy and estimate the
parameters of these tracks. The tracks can most easily be reconstructed and ex-
trapolated if they are not disturbed by material. If there were no material e↵ects
the charged particles would move parallel to the beam-line [57]. Low mass detectors
are used for the detection of proton position. However, absorbent material between
layers is needed to slow down and stop protons in the calorimeter. The interaction
of the proton with this detector material causes the proton’s path to change along
the track.

Track reconstruction can be subdivided into classical and adaptive methods [58].

3.1.1 Classical Methods

In the classical approach, the task of track reconstruction is traditionally divided into
two di↵erent stages: Track finding and track fitting.

3.1.1.1 Track finding

Track finding is a pattern recognition or classification problem and aims at dividing
the set of measurements in a tracking detector into subsets.

Each subset contains measurements, called track candidates, which are the hits in the
di↵erent layers of the detector believed to originate from the same particle. In Fig.
3.1 hits are represented with red dots. Then, the candidates of a specific track are
assigned to the same subset, represented by di↵erent colors in Fig. 3.1. An additional
subset contains measurements believed not to come from any of the relevant tracks,
but for instance from noise in the electronics or from low energy particles spiralling
inside the tracking detector. Track finding should be conservative and keep a track
candidate in case of doubt rather than discarding it, as a track candidate discarded
at this stage is impossible to recover at any later stage.

Track finding often uses the knowledge of how a charged particle moves inside the
bulk of the detector.

Many hypotheses have to be explored in order to find the set of interesting track
candidates, and track finding can in general be a cumbersome and time-consuming
procedure. Computational speed is an important issue, and the choice of algorithms
may be dictated by this fact [57].

Methods of track finding can in general be classified as global or local.

3.1.1.1.1 Global Methods
Global methods treat all measurements in the detector simultaneously and therefore,
result independent of the starting point or order of hits. An example of a global
approach that is recurrent in the literature is the Hough transform.
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Figure 3.1: Representation of the track find-
ing stage. Red dots correspond to the hits
produced by particles in the di↵erent layers
of the detector while they travel through it.
Hits that are considered to originate from the
same particle are assigned to an specific sub-
set. Each subset, represented with di↵erent
colors, corresponds to a di↵erent tracks.

Hough Transform
The Hough transform (HT) is a useful tool for establishing meaningful groups of
feature points that satisfy some parametric constraint. The actual constraint is spec-
ified by defining a feature space of possible parameters, with each point in the space
representing an instance of the ideal constraint [59]. Di↵erent studies propose HT as
a pattern recognition algorithm [60, 61] .

Fig. 3.2 summarizes the steps of this transform in 2D. In Subfigure (A) a track built
by di↵erent hits is shown in the pattern space. This track can also be parametrized
by ⇢ and ✓ following the function cos✓ · z + sin✓ · y = ⇢. In Subfigure (B) a feature
space is created using these parameters. The track is now represented as a dot in
the new feature space. However, through each hit many tracks can be drawn (only
a few are shown in Subfigure (C) and only for an specific hit). Each possible track
drawn in Subfigure (C) can be represented as a dot in the feature space (Subfigure
(D)). In the end, an infinite number of tracks can be built for each hit, resulting in
a continuous curved line in the feature space. In Subfigure (F) the potential tracks
for each hits are represented in the feature space by a curved line using the same
color as the corresponding hit in Subfigure (E). The track that connects all the hits
in Subfigure (E) corresponds to the dot in feature space (blue dot in Subfigure (F))
where curves intersect, or at least approach each other closely.

This filter can be combined with other algorithms: Delcourt [62] and Siklér [63] fit the
track candidates found with HT through a Kalman filter while Aggleton et al. in [64]
uses a combinatorial Kalman Filter (both filters are explained in Section 3.1.1.2.1).

Nevertheles, Aggleton et al.[64] showed that although HT is well suited to the task of
recognizing tracks from a set of hits in the detector, other algorithms can run faster
achieving the same score (e�ciency). Moreover, the resulting histogram can be very
complex when many tracks are taken into account [60].
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Figure 3.2: Steps in Hough Transform: A track built from di↵erent hits produced probably
by the same particle is drawn in (A). This track corresponds to a dot in the parameter space
(B). However, in reality, many tracks can be drawn through each hit (C). Each track in
(C) represents a dot in the parameter space (D). In (F) each curve of a color represents the
infinite number of tracks that go through the hit of the same color in (E). The blue point in
(F) indicates the track (represented in (E)) that connect all the hits in the pattern space.
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3.1.1.1.2 Local Methods
In contrast to global methods, local methods go through the list of measurements
sequentially. They start from so called track seeds: short segments of tracks that allow
to extrapolate the track with a track model. Via extrapolation to other measurement
sites, hits are picked up if they pass a certain quality criterion, i.e. fit to the track.
Three main techniques can be found in the literature: track following, track road
and Kalman Filter (KF). The latter can also be used as a track fitting algorithm,
therefore it will be explained in Section 3.1.1.2.1.

Track following
As outlined in [58], track following starts from a track seed. The seed provides an
initial estimate of the track parameters to be used as initial state vector. From the
seed, the track is extrapolated to the next detector layer containing a measurement.
The measurement closest to the predicted track is included in the track candidate.
A list of tracks for each event is then available and a parametric fit, such as �2, from
which a score is calculated to obtain an estimate of the track parameters. In case of
events with multiple tracks, the track with the best score from the fit is chosen. This
procedure is iterated until too many detector layers with missing measurements are
encountered or until the end of the detector system is reached [65].

Track following is relatively easy to apply to tracking scenarios with moderate track
density and often leads to a reasonable computational e↵ort since the number of hits
to be considered is roughly proportional to both the number of layers and the number
of tracks [60]. However, the application to situations with large hit density soon
reaches its limitations, since in dense environments, track following runs the risk of
losing its trail whenever several possible continuations exist. The main complications
can be summarized as follows:

• Some expected hits may be missing because of limited device e�ciency, called
a track fault. This also includes the case where the hit exists, but is out of
expected coordinate bounds.

• Wrong hits may be closer to the presumed trajectory than the proper hits and
be picked up instead. This can happen easily just after the seeding phase when
the precision of the track parameters is still limited, or when some false hits have
already been accumulated. A wrong hit may stem from another reconstructable
track or from detector noise.

• Track following will always accept the hit with, for example, the smallest �2

contribution, which is possibly a good solution when the hit density is small.
In the presence of multiple scattering and high hit densities, a wrong hit will
frequently have a smaller �2 contribution than the proper one, or replace a
proper hit which is missing due to detector ine�ciency, or shadowed by another
track passing the same cell. On the other hand, full evaluation of all possible
hit combinations would exceed all bounds of computing resources when applied
to dense events.
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In track following, seeds can be constructed in the region of the tracking detector
close to the interaction region, where the measurements frequently are of very high
precision, or in the most distant region, where the track density is lower [58].

There have been numerous studies in which the algorithm is started from the first
layer of the detector [66, 67, 68, 60]. Then a track candidate search algorithm is used
to compare and rate the individual tracks by assigning a relative track score to each
track. The track candidates compete against each other for the highest score and for
the hits that are shared between them. A similar algorithm is presented by Lacuesta
[69] where the pattern recognition works primarily inside-out but adding an outside-
in tracking in order to e�ciently reconstruct tracks from secondary interactions. The
main advantage of this technique is that first very loose track candidates are selected
and then a stringent ambiguity processor selects good track candidates.

Alternatively, an example of track following algorithm that starts from the outermost
layer is presented by Amrouche et al. [70]. In this case, the algorithm starts with a
random seed in the outer region and builds up a tree using the hits on the next layer
until the innermost layer is processed.

Track road
In contrast to track following methods, the track road algorithm does not use ex-
trapolation, but a much more precise interpolation between points to predict extra
points on the track. It is initiated with a set of measurements that could have been
created by the same charged particle. Therefore, by using initial points at both ends
a simple model of the track is now used to predict the positions of further points
on the track, by defining a ’road’ around the track model. Measurements inside the
boundaries of the road constitute the track candidate [58].

In principle, the better the model the narrower the road can be, but the theoretical
road width of three standard deviations of the detector resolution can rarely be used.
This is due to systematic errors in the position, to signal clusters, to signals being
hidden by background signals, etc. However, the method of track roads is slower
than the track following method [71].

3.1.1.2 Track fitting

Once the track finding is finished and hits supposedly belonging to the di↵erent tracks
are identified, the properties of the tracks (e.g. position of the particle, direction,
speed, momentum if there is a magnetic field...) need to be determined as accurately
as possible [57]. This information is needed to carry out further studies.

This track parametrization starts from the track candidates identified in the track
finding step. Fig. 3.3 shows an example of this stage: once hits (represented by
red dots) in the detector are assigned to a track, the properties of this track are
calculated. The resulted track estimations are represented by the black curved lines
connecting the hits.
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Figure 3.3: Representation of the track fit-
ting stage. Red dots correspond to the hits
produced by particles in the di↵erent layers
of the detector while they travel through it.
Hits are already assigned to a specific track in
the track finding stage. However, the tracks
needs to be parametrized using the selected
hits (black curved lines).

The track fit should be as computationally fast as possible, it should be robust against
mistakes made during the track finding procedure, and it should be numerically sta-
ble. The track fit is also used to decide whether the track candidate hypothesis is
valid. Such a test can be based on the value of the �2, i.e. the sum of the squared
standardized di↵erences between the measured positions in the track candidate, and
the estimated positions of the track at the points of intersection of the detector de-
vices. If this value is too high, the set of measurements is not statistically compatible
with the hypothesis of having been created by a single particle [58].

With very few exceptions (for example [72] or [73]), the estimation of the track pa-
rameters is based on least-squares methods. The linear, global least-squares method
is optimal if the track model is linear, i.e. if the track propagator between layers is a
linear function, and if all probability densities encountered during the estimation pro-
cedure are Gaussian. If the track propagator is non-linear, the linear least-squares
method is still the optimal linear estimator [58]. However, although least-squares
estimators are easy to compute, they lack robustness [74]. If there is substantial
multiple scattering, the estimated track can deviate significantly from the real track.
Therefore, the actual track can be followed more closely by explicitly estimating the
new position of the particle at each detector layer. However, large numbers of mea-
surements lead to a high computational cost of these methods due to the need of
inverting large matrices [58]. A recursive formulation of the least squares method is
the Kalman filter, which requires the inversion of only small matrices. KF can be
used as track finding and/or track fitting.

3.1.1.2.1 Kalman Filter
Experience at the Large Hadron Collider (LHC) located at CERN, in Geneva, has
shown that methods based on Kalman filter are robust and provide high performance.
Moreover, they can incorporate estimates of multiple scattering directly into the
trajectory of the particle [75].
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The KF was first described and partially developed in technical papers by Swerling
(1958), Kalman (1960) and Kalman and Bucy (1961) [76]. It was developed to
determine the trajectory of the state vector of a dynamical system from a set of
measurements taken at di↵erent times [77]. Therefore, Kalman filters are ideal for
systems which are continuously changing. They have the advantage that they are
light on memory (they don’t need to keep any history other than the previous state),
and they are very fast, making them well suited for real time problems and embedded
systems.

Depending on the energy of the particles, the e↵ects of multiple scattering can be
larger, the same, or smaller than the e↵ects of measurement error. At high energies,
where the measurement error dominates over the multiple scattering, the track fitting
step in KF is very important, it makes the best estimate of the proton track by
drawing a least-squared-fit straight line. However, at low energies, where multiple
scattering dominates, KF “connects the dots”, making a track from one hit to the
next. In the intermediate region, the KF is excellent at balancing the e↵ects of
measurement errors and multiple scattering errors [78].

The KF technique used for track fitting has several advantages over a global fit:

• The KF treats multiple scattering and energy loss in and between layers. As a
consequence, the fitted track better follows the true trajectory [60, 79].

• A global fit requires inversion of a matrix with the dimension of the state
vector. The KF only needs the inversion of a matrix with the dimension of the
measurement. This makes the KF a fast algorithm [60, 80].

• The fact that measurements are added step by step makes the KF an ideal
technique for finding the measurements on the track. A global fit would require
a re-fit when a new measurement is added to the track [60].

• The estimated state vector closely follows the actual path of the particle; ma-
terial e↵ects can be evaluated more precisely, and the quality of the linear
approximation is better [79, 80].

As mentioned in Section 3.1.1.1.2, KF can be used as a tracking finding and track
fitting algorithm, so it can be divided in two main steps:

• The prediction step (corresponding to the track finding stage): an estimate is
made for the next measurement from the current state vector. It is very useful
to discard noise signals and hits from other tracks. Once the outcome of the next
measurement is observed, these estimates are updated using a weighted average,
with more weight being given to estimates with higher certainty. In general,
the decision power will increase when more and more hits are accumulated in
the track candidate [60].

• The filter step (corresponding to the track fitting stage): the predicted track
parameters are updated with the measurement in the current plane which up-
dates the state vector [60].
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Figure 3.4: Kalman Filter algorithm: starting from the first layer, a new hit is added to an
specific track during the prediction step (green arrows). Afterwards, a recalculation of the
estimated track parameters is executed in the filter step (orange arrows). Both processes are
repeated until the last layer is reached. The triangular shadows surrounding the arrows reflect
the uncertainty at each step. As more measured are added to the track, the uncertainly in the
estimations is reduced, and therefore the shadows that surrounds the arrows are increasingly
narrow.

These steps are represented in Fig. 3.4. The fit proceeds in an iterative way through
the full list of hits, from the inside outwards. Starting from the first layer of the
detector, a hit in the next layer is assigned to a track in the prediction step (green
arrows). Then, in the filter step (orange arrow), the estimated track parameters
are recalculated using the new measurement. Subsequently, the prediction step is
repeated to add a new measurement in the next layer, followed by the filter step.
Both processes are repeated until the last layer of the detector is reached.

However, the full information about the trajectory is only available at the final hit of
the trajectory (when all hits are known), which, in the presence of multiple scattering,
has several consequences [80]:

• Predictions into detectors further outwards are not optimal.

• The power of discrimination between measurements which may be belong to
the track is rather poor at the begin of the track fit.
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Figure 3.5: Kalman filter-smoother algorithm: it start with the Kalman filter explained
in Fig. 3.4 (orange arrows). Then, a smoothing step (purple arrows) runs in the opposite
direction and using the results of the KF. Using the information of both filters, a better
estimation of the track parameters can be calculated. The triangular shadows surrounding
the arrows reflect the uncertainty at each step. The uncertainly in the estimations is reduced
as the number of measurements increases, and therefore the shadows surroundings the arrows
are increasingly narrow.

Therefore, adding a smoothing part to the KF is a very useful complement to solve
the problems mentioned above and extract the track parameters. The combined
filter-smoother algorithm is used in di↵erent studies [81, 82, 83]. This second filter
is initialized with the result of the KF, and is run backward towards the beam-line
(Fig. 3.5). The track parameters at the surface associated with any of its hits, can
then be obtained from the weighted average of the track parameters of these two
filters, evaluated on this same surface, as one filter uses information from all the hits
found before, and the other uses information from all the hits found after the surface.
Therefore, this algorithm allows the computation of optimal estimates of the track
parameters anywhere along the track, using the full information.

A number of studies have recognized that KF is the most useful algorithm for the
track algorithm problem [60, 84].

Some authors have also suggested a variation of the KF to reconstruct the tracks:
the Combinatorial Kalman Filter (CKF). It has been applied in various studies to
increase the tracking e�ciency [85, 86, 67, 68, 87]. The basic idea is an iterative
tracking in which the initial iterations search for tracks that are easiest to find (e.g.
produced near the interaction region). After each iteration, hits associated with
tracks are removed, thereby reducing the combinatorial complexity, and simplifying
subsequent iterations in a search for more di�cult classes of tracks.

Although the success of the KF has been proven, finding a suitable initial value can
be a complicated task [88, 85].
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3.1.2 Adaptive Methods

During track reconstruction, track candidates may be assigned wrong measurements.
Additionally, it is possible that a track passes two neighbouring cells in a layer.
Such an environment with multiple, ambiguous and faulty measurements poses a
challenge to the Kalman filter as it does not include a mechanism to handle competing
measurements or reject measurements. Adaptive methods incorporate mechanisms
that can handle competing measurements in a layer and optimize hit assignment [89].
At this point the traditional boundaries between pattern recognition (track finding)
and parameter estimation (track fitting) start to dissolve.

The most used adaptive methods for particle track reconstruction in a detector are:
Neural Networks (NN), Gaussian-Sum Filter (GSF), Deterministic Annealing Filter
(DAF) and Elastic nets and Deformable Templates.

3.1.2.1 Neural Networks

Track reconstruction presents a challenging pattern recognition problem at the High
Luminosity Large Hadron Collider (HL-LHC) [90]. Collision events contain on av-
erage 200 interactions and O(10k) particles which leave O(100k) space-point “hits”
in the detectors. Today’s algorithms have trouble scaling to these conditions [91].
It is thus worthwhile to investigate new solutions such as methods based on deep
learning. An artificial neuron manifests a simple processing unit, which evaluates a
number of input signals and produces an output signal. A Neural Network consists
of many neurons interacting with each other: the output signal of a neuron is fed
into the input of many other neurons [92]. Fig. 3.6 represents a simplified view of
NN. The connections between artificial neurons are called ’edges’. Artificial neurons
and edges typically have a weight that adjusts as learning proceeds. The weight in-
creases or decreases the strength of the signal at a connection. Artificial neurons may
have a threshold such that the signal is only sent if the aggregate signal crosses that
threshold. Typically, artificial neurons are aggregated into layers. Di↵erent layers
may perform di↵erent kinds of transformations on their inputs. Signals travel from
the first layer (the input layer), to the last layer (the output layer), possibly after
traversing the layers multiple times [93].

The idea of studying deep NN architectures is also supported by authors like Farrell
et al. [94] and Mankel [60]. NN are, in principle, well suited for the tracking problem,
given their ability to learn e↵ective representations of high-dimensional data through
training, and to model complex dynamics. The most commonly NN used in particle
track reconstruction are explained below.

3.1.2.1.1 Recurrent Neural Networks
The first attempt to equip track reconstruction methods with adaptive behaviour
was the application of the Hopfield network to track finding [95, 96]. Subfigure (A)
in Fig. 3.7 shows an schematic of this type of Recurrent Neural Network (RNN).
It has feedback loops from its outputs to its inputs. After applying a new input,
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Figure 3.6: A neural network is an in-
terconnected group of nodes. Each cir-
cular node represents an artificial neu-
ron and an arrow represents a connection
from the output of one artificial neuron
to the input of another. Each connection
has assigned a weight (Wij) that control
the strength of the signal.

the network output is calculated and fed back to adjust the input. This process
is repeated until the outcome become constant. The structure of the network is
not fixed but determined by the data, and each state of the network represents a
hypothesis about which hit belongs to which track. The weights of the connections
between the nodes are determined by some quality indicator and the sharing (or not
sharing) of common hits between the two track candidates [97]. In this case, the
competition takes place sequentially as each state of the network is superseded by a
better one due to the dynamics of the update.

The incorporation of a physical track model into the Hopfield network has never
been tried and its implementation is di�cult to accomplish [58]. For this reason, the
Hopfield network is not able to deliver a statistically optimal estimate of the track
parameters.

Another type of RNN was proposed in recent studies [94, 90, 70]: Long Short Term
Memory (LSTM) networks. This type introduces a memory cell, a special cell that
can process data when it has time gaps, connecting previous information to the
present task. It can process new measurements by “keeping in mind” the previous
ones. They have three “gates”: input, output, forget, and they also have just the
regular input. Each of these gates has its own weight meaning that connecting to this
type of cell entails setting up four weights (instead of just one). Input gate decides
how many information from last sample will be kept in memory; output gate regulate
the amount of data passed to next layer, and forget gates control the tearing rate of
memory stored. A schematic of this type of RNN is drawn in Subfigure (B) in Fig.
3.7.

LSTM networks can be used as state estimators in a way that is similar to a Kalman
Filter [98]. In this proposal, the detector layers form the sequence of the model, and
the predictions are classification scores of the hits for a given track candidate. Each
training sample input is prepared by using only the seed hit in the first layer plus all
of the event’s hits in the remaining layers. For each training sample, the LSTM model
reads the input sequence and returns a prediction sequence for each corresponding
detector layer. For the bins on the detector layer that have hits in them, this score
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quantifies confidence that a hit belongs to the track candidate. Once trained, the
model’s predictions can be used to assign labels to hits. Each event will contain a
number of track candidates and thus each hit will have an associated score from the
model predictions on each of those candidates. The assignment is made by choosing
the candidate that gave the highest prediction score to the hit.

Farrell et al. [94] consider LSTMs as an alternative to the combinatorial KF.

3.1.2.1.2 Convolutional Neural Networks
Convolutional neural networks (CNN) has also been explored in studies as a useful
method for pattern-recognition in track finding [94]. A CNN consists of an input and
an output layer, as well as multiple hidden layers that consist of convolutional layers.
Subfigure (C) in Fig. 3.7 shows an schematic of this type of NN. CNN are algorithms
that can identify aspects of visual data. Convolutional layers apply a convolution
operation to the input, passing the result to the next layer [99]. Each layer in the
network is tuned to respond to specific patterns, and the ensemble of features are
sampled as input to the next layer to form features that recognize more complex
patterns. For example, the first convolutional layers are commonly trained to detect
edges of varying orientation, and the second layer features are tuned to recognize
curved lines [100]. So it is expected that the initial layer of a CNN for tracking would
identify stubs of compatible hits in adjacent layers. Later layers of the network would
then connect stub features together to form track segments, and so on until a model
of an entire track or set of tracks is constructed. In [90] it was shown that CNNS are
able to construct representations of the detector data in a ground-up fashion, useful
for hit assignment or parameter and uncertainty estimation.

3.1.2.2 Gaussian-Sum Filter

A large number of existing studies agree that Kalman filter is optimal when the
model is linear and all random noise is Gaussian. However, the probability density
functions involved are usually non-Gaussian, as the measurement errors usually have a
Gaussian core with tails and the material e↵ects (energy loss and multiple scattering)
have long tails. Furthermore, the large background noise, occurring for example from
neighbouring tracks or electronic noise can cause hit assignment errors [79, 101, 102,
58, 103]. One method that takes non-Gaussian distributions better into account
is the Gaussian-sum filter (GSF) developed by Kitagawa [104]. In this method,
all involved distributions are modelled by combinations of multi-variate Gaussian
probability density functions [101].

GSF can be seen as the weighted sum of several Kalman filters. It is implemented
as a number of such filters run in parallel where only the weights of the components
are calculated separately. At each step, the mixture that models the state vector
is convoluted with the energy loss mixture, making that the number of components
of the state vector rises exponentially [105]. Thus, this number has to be limited
to a predefined maximum at each step, which is achieved by clustering (collapsing)
components which are close, according to a defined distance metric, pair-wise until
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Figure 3.7: Schematic of the most used Neural Networks: (A) Hopfield Neural Network:
all neurons are both input and output neurons. The network iterates to a stable state,
and the output of the network consists of the new activation values of the neurons. (B)
Long Short Term Memory network: apart from the input and output cells, memory cells
are also incorporated into hidden layers neurons. It remembers previous values and regulate
the flow of information into and out of the network taking into account previous values.
(C) Convolutional Neural Network: it consists of an input, an output and multiple hidden
convolutional layers. These convolutional layers apply a convolution operation to the input
passing the result to the next layer.

the desired number of components is reached [102]. The output of the filter is the
full Gaussian mixture of the state vector. To make this method more robust, Fruh-
wirth [106] introduced the concept of a missing hit, which implies that an additional
component is created whenever a detector unit with a measurement is reached.

The main drawback of this approach is the sensitivity to wrong or noisy measurements
particularly in the early phases of the filter where the track parameters are poorly
defined [58]. Therefore, good initialization of the track parameters is essential. In
[58], an experiment was done in which the robustness of the estimators was studied
by contaminating the tracks with noise, which deteriorated the performance of the
GSF considerably, showing its inherent lack of robustness.

3.1.2.3 Deterministic Annealing Filter

As discussed in [101], in very dense environment, hits may be degraded due to con-
tamination by nearby tracks since the wrong hit may be chosen by the Kalman filter.
The problem of insu�cient information in the initial phase of the filter can be over-
come by adopting an iterative procedure. After a first pass of filter plus smoother
the track position can be predicted in every layer, using information from all the
other layers. Based on these predictions, the assignment probabilities of all compet-
ing hits can be computed in every layer. The iteration stops when the weights have
converged [79]. This process is called Deterministic Annealing Filter (DAF) [107]. It
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is a single-track fit which allows for competition between hits, such that several hits
may compete for a track on the same surface.

The main limitation of this filter is the need of an initial track seeds. At present, the
initial pattern recognition is done by the combinatorial Kalman filter, and the tracks
to refit are selected in its output. For the DAF, the hits are simply collected in a
cone around the selected track. However, with this seeding strategy, the track finding
e�ciencies cannot be improved with respect to the combinatorial KF [79]. Therefore,
better seeding methods would be needed, since this step is especially delicate.

However, as they are slower than the stand alone KF, this method can only be used
where appropriate.

3.1.2.4 Elastic Nets and Deformable Templates

Some authors like Strandlie [58], Mankel [60] and Fruhwirth [79] proposed, as an
alternative solution, the application of the Elastic Arms algorithm (EAA) developed
by Ohlsson, Peterson and Yuille [108]. The algorithm aims to concurrently resolve the
problem of finding correct hit-to-track assignments together with fitting the selected
points to the respective tracks. This is done by defining a suitable energy function,
which is basically a sum of squared distances between the hits in the detector and
the arms, which describe the parameters of the tracks to be reconstructed. Each
term in the sum is switched on or o↵, depending on the state of a binary hit-to-arm
assignment variable. The global minimum of this energy function with respect to
the track parameters and the assignment variables gives the solution to the track
reconstruction problem [79].

The first test in an LHC scenario using EAA was done by Lindstrom in 1995 [109].
More recent studies showed the use of EAA in the ATLAS detector in CERN [110]
to reconstruct the particle tracks. EAA was initiated by the output of a Hough
transform track finding procedure [58, 60].

A related method called elastic tracking algorithm was proposed by Gyulassy [111].
The basic idea is to interpret the classical Radon transform as an interaction energy
between a template track and the hits in the detector. The parameters of the template
track giving the minimum interaction energy define the solution of the problem [79].

3.1.3 Other Methods

The present study focus on the more recurrent methods, however apart from the
described techniques, there are many other particle track reconstruction algorithms
found in the literature (for the sake of brevity, these examples are not explained
here):

• Broken lines [112, 113, 114].

• Tracklet algorithm [115, 62].

• Fuzzy random transform [60].

• Linear approximation algorithm [70].
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• Nearest neighbours algorithm [70].

• Matching algorithm [116].

• Cellular automaton [97].

• Greedy algorithm [97].

• Multi-track filter [101].

• Adaptive filter [102].

3.2 Discussion

The purpose of this literature study was to provide a critical analysis of main track
reconstruction techniques to improve the current algorithm.

Although very few studies studies were found about tracking algorithms used in the
pixel-based detector of a pCT, a considerable amount of literature has been published
related to particle track reconstructions in other scenarios.

This review has shown that although adaptive methods of track reconstruction are
in widespread use today [57], the most often used algorithm for track reconstruction
is still the Kalman filter. This filter is especially useful in the case of a measurement
error dominated tracking or in situations where the e↵ects of measurement errors and
multiple scattering errors need to be balanced. However, when the multiple scattering
e↵ect dominates, the prediction step in KF is just a local straight line propagation.

In the KF the residuals of the observations with respect to the predicted state vector,
are used only in the update of the state vector, and only in a linear fashion [79]. If
the filter is to solve the assignment problem by giving di↵erent weights to competing
hits, the innovations have to be used in a nonlinear fashion. An example of such a
nonlinear filter is the Gaussian-sum filter [117]. The GSF in turn is more adaptive
than a KF, as it explores several hypotheses about the observations in parallel until
in the end, one of them is selected as the winner or the most probable ones are
combined to the final result.

However, the potentially large computational cost of the GSF and a certain lack of
robustness have led to the development of a faster and more robust method, the
Deterministic Annealing Filter [79]. DAF is “more adaptive” than the GSF, as it
does not require an explicit outlier model and thus manages with less assumptions
about the data. Since the DAF itself is an iterated KF with reweighted observations,
the propagation part is identical to the standard case and therefore much faster than
with the GSF [58]. Moreover, the iteration procedure can be motivated from a desire
of overcoming the problem of insu�cient information in the initial phase of the GSF.

Nevertheless, if the average number of components in the DAF is large, it is worth-
while to give some thought to the implementation of the basic KF algorithm. For
example, Strandlie [58] showed that in large LHC experiments, despite the large track
multiplicity, track finding and fitting can still be comfortably accomplished by the
KF . In addition, Fruhwirth [79] proved that KF is much faster than all the other
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methods as it does not involve any iterations.

Regarding neural networks, deep learning has not yet been explored in depth for the
problems of particle tracking, so there are many open questions about the best way
to incorporate such techniques [94]. The elastic arm or deformable template, which
merges a continuous estimation problem with a combinatorial optimization problem,
was able to overcome this limitation but at the price of a numerical minimization of
a complicated energy function [57, 79].

3.3 Conclusions

Combining the information from the literature study about the di↵erent particle track
reconstruction methods and the structure of the current tracking algorithm, one of the
potential strategies that could be introduced to improve its e�ciency is the KF. First
of all, according to the literature, it is the most commonly used method nowadays to
track particles. Furthermore, it has shown high e�ciency, fast computational speeds
and simplicity in comparison with adaptive methods like GSF or DAF.

However, in most of these studies, high and intermediate energy particles were ana-
lyzed, where the KF is a perfect candidate to track particles. However, in a pCT low
energy particles are used, where MCS is the dominant e↵ect. Therefore, the tracking
problem becomes a pure “connecting the dots” problem. So, although the KF could
be used to solve the tracking problem, in our case, the measurement error can be
negligible, and the job can be done with a straight-line propagation to the next layer.

In conclusion, the best option would be to upgrade the existing algorithm, which
follows the track following method. Currently, the tracks are built one by one no
matter how much MCS that proton has underwent. Once the track has been com-
pleted, the hits belonging to that tracks are removed from the search pool so other
tracks cannot use them. Therefore, an improvement would be to prioritize the track
reconstruction depending on their di�culty: tracks with less scatter (less angle) will
be treated first, leaving the most di�cult for the end. Other option could be to begin
the track reconstruction from the distal end of the detector, which allow us to know
exactly the starting energy of each proton. With this information, the value of Smax

can be adapted depending on the expected scatter in each layer, i.e. in the first 4-6
layers the scattering should be higher due to the Bragg peak, but after that, a stricter
limit could be placed on Smax.
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Improved reconstruction algorithms

This chapter proposes improvement of the algorithm presented in Section 2.3.

4.1 Track reconstruction quality

The e�ciency of the algorithms are quantitatively evaluated as a fraction of correctly
reconstructed tracks for di↵erent numbers of protons per readout frame of the DTC
(⇠ 5 - 10 µs). A track is considered to have been reconstructed correctly if it has the
same eventID from GATE or PROCASIM at its start- and endpoints, and is fully
tracked, which means that the layer in which the proton stops is also included in the
reconstructed track. Moreover, the percentage of tracks that have the same eventID
in all the clusters is also calculated. Each study has been repeated 50 times and the
average is calculated.

Two di↵erent simulation softwares have been used. The setup explained in Section
2.2.1.3 has been simulated with GATE, for a pencil beam of size �xy = 3 mm. Addi-
tionally, tracks have been simulated using PROCASIM following the steps described
in Section 2.2.2. The same analysis methodology is applied to results from both sim-
ulators.

4.2 Last layer starting algorithm

There are di↵erent possible philosophies on how seeds can be constructed. The cur-
rent algorithm select seeds from the first layer of the detector. One way of improving
this is to start the reconstruction process by choosing seeds from the distal end of the
detector. In this case, the algorithm starts with a random seed in the outer region
and builds up a tree using the hits in the next layer until the innermost layer is pro-
cessed, following the same procedure as explained in Section 2.3. Once all particles
stopping in the last layer have been reconstructed, the same steps are repeated to
reconstruct particles stopping in the penultimate layer. This procedure is repeated
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until the protons stopping in the second layer are reconstructed.

An advantage of starting from the last layer is that the hit density is lowest because
not all particles reach this layer. Therefore, seeds can be combined more easily with
hits in the neighbouring layer [69]. Another advantage is that if the algorithm starts
at the detector end, each proton’s starting and stopping layer is known. This is
especially convenient with protons of a short range, e.g. due to nuclear interactions.
In the case of a forwards reconstruction, it’s very easy to continue such tracks.

Figures 4.1 and 4.2 show the e�ciency of the reconstruction algorithm when data is
simulated with GATE and PROCASIM, respectively. The e�ciency is calculated for
di↵erent beam energies and proton densities. Solid lines represent well-reconstructed
and complete tracks, while dashed lines indicate tracks that have been reconstructed
correctly but are not complete.

Higher e�ciency is reached when tracks are simulated with PROCASIM. Since pro-
tons only undergo small-angle deflections due to MCS, it is easier for the algorithm
to find the right candidate (they are closer to the expected position). For the same
reason, the di↵erence between fully tracked tracks and incomplete tracks is much
greater when particles undergo di↵erent physical interactions. In addition, it should
be noticed that the results with PROCASIM generally lie close together as compared
to Monte Carlo where the data is more spread.

Another trend that can be observed is that the loss of e�ciency increases with more
protons simulated. As the number of particles rises, the number of potential candi-
dates that are studied by each track, and the proximity between them, also increases.
This means that wrong hits may be falsely included because they are closer to the
presumed trajectory than the actual hit.

Furthermore, higher energy results in lower e�ciency. Also, the di↵erence between
the fully tracked and incomplete tracks becomes larger at higher energies. These
tendencies will be discussed in Section 4.5.

All these trends are applied to the rest of results obtained in the di↵erent studies of
this chapter.

Results shown in Fig. 4.1 reveal a significant improvement over the current algorithm
as shown in Fig. 2.10, especially at higher densities.
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Figure 4.1: E�ciency of the last layer starting algorithm as a function of proton den-
sity for di↵erent beam energies. Data simulated with GATE. The definition of correctly
reconstructed track is given in Section 4.1.
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Figure 4.2: E�ciency of the last layer starting algorithm as a function of proton density
for di↵erent beam energies. Data simulated with PROCASIM. The definition of correctly
reconstructed track is given in Section 4.1.
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4.3 Smax value optimization

As explained in Section 2.3, Smax determines the amount of curvature that is allowed
during track reconstruction. Its value will determine the clusters that will be ana-
lyzed as potential additions to the tracks being reconstructed. If this value is too
small, some candidates would be prematurely discarded. Conversely, too large values
can falsely add a cluster when none should be included (e.g. after inelastic nuclear
interactions at high particle densities) [6].

4.3.1 Constant Smax

The value of Smax must be adjusted to get the highest fraction of correctly recon-
structed tracks. A study carried out by Pettersen [6] shows how the optimal Smax

value can be calculated. First, the 2� value of the summed angular spread, Sn (ex-
plained in Section 2.3), is measured in each layer. Then, the value of Smax should be
selected to yield the maximum number of well reconstructed tracks.

Fig. 4.3 shows a two-dimensional histogram of the distribution of Sn values in each
layer, found using tracks reconstructed correctly. The value 2� in the layer where
most of the protons stop is 270 mrad. In this example, the value of Smax should be
⇠ 300 mrad (instead of, for example, 190 mrad) to get the maximum e�ciency.

Figure 4.3: Distribution of Sn values in each layer. Red line represents the 2� value of the
distribution. Two di↵erent Smax are shown. From [6].
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Di↵erent values of Smax should be applied depending on the particle density (np) and
the pencil beam’s size (�xy) following:

[Smax(np)]
�xy = T1n

T2
p rad (4.1)

where the value of T1 and T2 are calculated from an approximation of the function
Smax(np) (from a power fit of the np/Smax). For a pencil beam size of �xy = 3 mm,
Smax(np) = 0.469n�0.176

p rad [6].

A potential improvement of the algorithm would be an optimization of T1 and T2

in such a way that the value of Smax is adjusted as to yield the highest fraction of
correctly reconstructed tracks. Therefore, a study of the e�ciency changing the value
of T1 and T2 in Eq. 4.1 for di↵erent energies was developed. Three values have been
selected for T1: 0.047, 0.469 (original value), and 4.69. For T2, five values have been
studied: 0.1, 0.176 (original value), 0.5, 1 and 1.2.

Fig. 4.4 shows the e�ciency graphs when di↵erent values of T1 and T2 are used
for a proton beam with energy 250 MeV degraded by 25 cm of water phantom,
resulting in a mean energy of 133.93 MeV. In addition, the results when the beam is
degraded with a water phantom of 5 cm thickness (resulting in a 229.92 MeV beam)
are represented in Fig. 4.5. In Figures 4.4 and 4.5, T1 and T2 are defined as FirstTerm
and SecondTerm, respectively, and they are rounded to two decimals places in the
legend.
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Figure 4.4: E�ciency of last layer starting algorithm depending on the substituted values
in Eq. 4.1 for a energy pencil beam of 250 MeV degraded by 25 cm of water, resulting in a
mean energy of 133.96 MeV. The graphs represent the fraction of tracks in which its start-
and endpoints have the same eventID and are fully tracked.
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Figure 4.5: E�ciency of the last layer starting algorithm depending on the substituted
values in Eq. 4.1 when a proton beam of energy 250 MeV is degraded by 5 cm of water,
resulting in a mean energy of 229.92 MeV. The graphs represent the fraction of tracks in
which the first and last cluster added have the same eventID and are fully tracked.
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Previous studies show that di↵erent combinations of T1 and T2 can yield similar
results. However, higher e�ciency is achieved when T1=0.047 and T2 = 0.176, espe-
cially for densities between 40 and 300 protons. For higher densities, it seems that
the improvement is less meaningful. This means that, for this intensity range, the
algorithm is able to reconstruct correctly a higher number of tracks when altering
the first term and maintaining the second one. The result is a stricter Smax threshold
during the reconstruction process, which is reflected in the number of cluster that
will be studied as potential track candidates.

Fig. 4.6 shows the e�ciency when Smax(np) = 0.047n�0.176
p rad is applied for a

beam density up to 1000 protons per readout frame. This analysis is carried out to
study the e↵ectiveness of the new parameters not only for intensities greater than
500 protons per readout but for di↵erent energies as well. As can be observed,
the fraction of well-reconstructed tracks as a function of varying proton densities
and phantom thickness does not di↵er much from the results shown in Fig. 4.1.
Although for certain proton intensities slightly better results can be observed (for
example when ⇠ 100 protons are simulated with an energy of 299.92 MeV), overall,
it is di�cult to appreciate significant improvements. This indicates that, although a
stricter threshold is applied, it is di�cult to achieve better e�ciency by optimization
of Smax.
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Figure 4.6: E�ciency when Smax(np) = 0.047n�0.176
p rad is applied for the reconstruction

of a pencil beam degraded with a water phantom of various thickness, resulting in di↵erent
energies. Data simulated with GATE. The definition of correctly reconstructed track is given
in Section 4.1.
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4.3.2 Proton energy dependent Smax

Up to now the value of Smax is defined at the beginning of the reconstruction algo-
rithm as a constant value. However, the magnitude of multiple Coulomb scattering
(MCS) that protons undergo depends on the energy: protons are subjected to a
higher scattering power towards the Bragg peak. Therefore, the value of Smax should
be adapted during the reconstruction process depending on the expected scatter.

4.3.2.1 Theoretical MCS

As explained in Section 1.2.2, MCS can be estimated following Highland’s formula
(Eq. 1.2), a semianalytical Gaussian approximation to Molière’s distribution. Fig.
4.7 shows the RMS scatter angle depending on the energy (only the energy range
considered for proton imaging is represented) for 3.5 mm of Al. As can be observed,
MCS increases rapidly when the proton’s energy is close to 0 (Bragg peak).

Figure 4.7: The RMS angle (in rad) of Highland’s approximation (Eq. 1.2) depending on
the energy of the proton (in MeV).

Before the reconstruction process, the starting layer depth and stopping position of
each particle in the detector are known, allowing the calculation of the energy of the
proton, and therefore the estimated MCS. The energy of the proton is calculated
from a Look Up Table (LUT) that relates the distance the particle travelled in the
detector and its energy. There are di↵erent LUT depending on the material and
thickness of the absorber, in this case the LUT for 3.5 mm of Al is used.

From the energy, the expected scatter of the proton can be estimated using Highland’s
approximation and, therefore, the value of Smax can be updated in each layer, making
the search process of new track candidates more accurate.
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4.3.2.2 Measured MCS from simulated data

In order to prove that Highland’s formula (Eq. 1.2) can be applied to determine
the value of Smax, the distribution of the angular deviation was studied for each
layer. The severity of angular deviation reflects the amount of MCS at that layer.
These values are calculated using tracks that were reconstructed correctly from MC
simulations.

Two-dimensional histograms of the angular di↵erence’s distribution between each
layer and the 4� value of a fitted Gaussian distribution (being 99.99% the probability
that a hit belongs to the interval) for two di↵erent energies are shown in Fig. 4.8.

Figure 4.8: Distribution of angular change at di↵erent layers from reconstructed tracks.
Data were simulated with GATE with a 250 MeV beam modulated by a water phantom of
5 cm (229.93 MeV) and 11 cm (204.33 MeV). The red line represent the empirical 4� value
of the distribution at each layer.

A curve based on polynomial functions that has the best fit to the 4� graph is
calculated to obtain a smoother version. Left panel in Fig. 4.9 shows the fitted
curve (in blue) over the 4� curve (in red). Right panel in Fig. 4.9 illustrates the
fitted curve of 4� values of a fitted Gaussian distribution calculated for di↵erent
beam intensities. As can be observed, the fitted curve function is independent of the
number of detected hits.
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Figure 4.9: Left: Fitted curve (in blue) and 4� curve (in red) over the 2D histogram
of distribution of the angular di↵erence between layers. Right: Fitted curves for di↵erent
number of protons.

Finally, the same study is repeated for di↵erent proton beam energies. The resulting
fitted curve of the 4� values can be seen in Fig. 4.10 as a function of energy. The
three graph share similar base shapes, but higher energies stretch out the curve in
the horizontal direction.

Figure 4.10: Fitted curves for di↵erent energies.
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4.3.2.3 Comparison between theoretical and measured MCS values

In Fig. 4.11, the expected scatter calculated following Highland’s formula (Eq. 1.2)
is compared with the scatter measured from simulated tracks.

Figure 4.11: Comparison between the MCS values calculated following Highland’s equation
(in red) and the ones measured from simulated data (in blue) for two di↵erent energies.

As expected, the measured data are consistent with the theoretical values. Therefore,
Highland’s equation will be used for choosing the angle of the search cone at each
layer, which will change with the energy of the proton as it crosses the detector.

4.3.2.4 Track reconstruction

Track reconstructions using di↵erent values of Smax were compared. For all recon-
structions, data were simulated with GATE where a 250 MeV proton beam is mod-
ulated by a 5 cm water phantom. Fig. 4.12 shows an example of the results when
100 tracks are simulated for three choices of Smax:

(i) Following Highland’s formula and substituting the di↵erent variables for the

case of 3.5 mm of Al as target material, Smax = 2.36
p⌫ , where p⌫ = E

⇣
E+1876.54
E+938.27

⌘

and E represents the proton energy in MeV (Subfigure (A)).

(ii) Smax = 4 · 2.36
p⌫ , which corresponds to 4 times the value of Smax calculated

previously (Subfigure (B)). This is equivalent to the 4� value of the fitted
Gaussian distribution described in Section 4.3.2.2.

(iii) Smax(np) = 0.469n�0.176
p rad (Section 4.3.1)(Subfigure (C)).

As explained in Section 2.3, the algorithm is based on the comparison of S against a
global maximum Smax. In case (i) and (ii) the value of Smax depends on the expected
scatter, therefore, S is calculated as the angular change between the potential candi-
date and the last cluster added to the track. On the contrary, in option (iii), the value
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of S represents the accumulated angular change of the track (described in Section
2.3), and accordingly, the value of Smax is adjusted to get the highest e�ciency as
explained in Section 4.3.1.

Figure 4.12: Reconstruction of 100 simulated track when a 250 MeV proton beam is
degraded by water phantom of 5 cm thick and the value of Smax is based on: (A) Highland’s
formula, (B) four times Highland’s formula and (C) equation explained in Section 4.3.1
(constant value).

From Fig. 4.12 it can be inferred that when option (i) is chosen to determine the
Smax value, most of the reconstructed tracks are incomplete, as can be observed in
Subfigure (A), where most tracks are gray. It reflects that this threshold is too strict,
leading to correct candidates being discarded. In the other two choices (Subfigures
(B) and (C)), the fraction of correctly reconstructed tracks increases significantly.

Complementary to this, Table 4.1 shows the percentage of correctly reconstructed
tracks for the previous scenarios. The results are divided into tracks that have the
same eventID in all clusters (all and only complete tracks) and tracks that have the
same eventID in the first and last entry only (all and only complete tracks).
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Same ID in Same ID in all Same first/last Same first/last

all clusters clusters and complete ID ID and complete

i ⇠90% ⇠17% ⇠97% ⇠18%

ii ⇠75% ⇠55% ⇠85% ⇠57%

iii ⇠83% ⇠71% ⇠91% ⇠71%

Table 4.1: Percentage of correctly reconstructed tracks depending on the way Smax is
calculated.

One thing to note in Table 4.1 is that although the percentage of correctly recon-
structed tracks seems higher when Highland’s formula is used (option (i)), less than
20% are complete. Overall, the best results are obtained when the value of Smax

is calculated following option (iii) based on the equation explained in Section 4.3.1.
Additionally, the di↵erence between complete and incomplete tracks for the same def-
inition of well-reconstructed track is lower when choice (iii) is applied, while largest
di↵erence is reached for option (i). Multiplying the value calculated according to
Highland’s equation by four (option (ii)) seems to be insu�cient. The main reason is
the large-angle scatter in the first and intermediate layers due to nuclear interactions.

Fig. 4.13 shows how the algorithm reconstructs the trajectory of a proton that
has undergone at least one nuclear interaction. The left panel represents the recon-
structed track when option (ii) is chosen to define the search angle. The reason why
the reconstructed track is not fully tracked is due to the fact that Highland’s equa-
tion is an approximation of the MCS, where the scatter angle is small. When the
track reconstruction starts from layer 37, at layer 16, where the nuclear interaction
takes place (shown as sudden ”kink” in the graphs), the next candidate cannot be
found based on its search cone, hence, the reconstruction of the track stops. When
the algorithm is looking for new seeds in layer 23, it starts the previous tracks again,
however (since the algorithm thinks that this is the end of the particle), the expected
scatter is much higher in the following layers (from ⇠ 18 - 22) as was shown in Fig.
4.7, therefore, the track can handle this scatter but assigning a wrong origin. On the
contrary, right panel shows the result when the value of Smax is constant (Section
4.3.1). In this case, the track can be reconstructed correctly from the right seed.
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Figure 4.13: Reconstruction of MC simulated track of energy 229.92 MeV. The proton
enters from left side (layer 0) and continues until it stops (layer 37). At layer 17, one scatter
interaction happens and changes the direction of the proton by some angle. When option
(ii) is used to define the search angle, the track is not fully tracked (left). On the contrary,
when choice (iii) is applied, the track is correctly reconstructed (right).

Previous results show that the use of Smax as a threshold during the reconstruction
process is not enough to reconstruct as many tracks as when option (iii) is applied.
Therefore, with the objective of reconstructing tracks with larger scatter angle but
without increasing confusion, three di↵erent options will be used to calculate the
value of the search cone (Fig. 4.14):

(i) Smax = ✓0 rad.

(ii) Smax = 2 · ✓0 + 0.03 rad.

(iii) Smax = 4 · ✓0 + 0.07 rad.

Where ✓0 is the energy-dependent RMS scatter angle calculated following Highland’s
formula (Eq. 1.2).

The constants in the above formulae were a result of a series of simulation exper-
iments where e�ciency and duration were monitored and weighed. (i) was chosen
as a baseline threshold with relatively fast execution time. An experimental opti-
mization procedure was initiated in order to select the most viable threshold value
with a optimum trade-o↵ in duration and e�ciency. Therefore, two threshold were
considered: (ii) and (iii), where the addition term shifts the graph vertically while
the multiplication term increases the steepness. Most tracks where successfully re-
constructed using either (i) or (ii). However, certain outliers were only reconstructed
correctly with (iii). The study showed that higher threshold values than (iii) did
not result in a increase in well-reconstructed tracks and therefore (iii) was set as the
maximum search cone angle.

At first, the algorithm attempts to reconstruct the relatively straight track using (i).
If the reconstruction fails because no candidates were found, a new search cone is
defined using (ii). If still the track cannot be reconstructed, (iii) is applied to try
to find a potential candidate. If after this value no candidates are identified, the
reconstruction of this track stops and the reconstruction of the next one starts.
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Figure 4.14: Value of search angle is calculated following Highland’s formula for di↵erent
energies (red curve) and two variations of it (blue and green curves).

First, PROCASIM is used to simulate the tracks that will be reconstructed because
the algorithm focuses on reconstructing protons that only underwent MCS. Fig. 4.15
shows the fraction of correctly reconstructed tracks at di↵erent number of particles.

Additionally, the e�ciency of the algorithm needs to be tested with proton tracks
simulated with GATE to also study its e↵ectiveness in more real situations where
the particles undergo di↵erent types of physical interactions. Fig. 4.16 shows the
fraction of well-reconstructed tracks.

As expected, higher e�ciency is reached when protons only undergo small-angle de-
flections due to MCS (i.e. when tracks are simulated with PROCASIM). Because the
algorithm is not focused on reconstructing protons that undergo nuclear interactions,
in some cases, it is unable to find potential candidates due to a strict threshold in the
search process. As a result, the fraction of MC-simulated tracks that are correctly
reconstructed is lower. For the same reason, the di↵erence between tracks that are
fully tracked and those that are not is much greater when particles undergo di↵erent
physical interactions.

Although the same tendencies explained in Section 4.2 are applied, some di↵erences
can be mentioned. Even when the total number of correctly reconstructed tracks is
greater compared with the results shown in Section 4.2, the fraction of tracks that
are also fully reconstructed varies depending on the number of simulated tracks. For
proton densities lower than 200 - 300 tracks, the algorithm described in Section 4.2
shows slightly better results. On the contrary, the algorithm presented in this section
works more successfully at higher intensities, specially at higher energies. However,
the di↵erence is not very significant.

57



Chapter 4. Improved reconstruction algorithms

Figure 4.15: E�ciency when variable value of Smax is applied for the reconstruction of
a pencil beam degraded with a water phantom of various thickness, resulting in di↵erent
energies. Data simulated with PROCASIM. The definition of correctly reconstructed track
is given in Section 4.1.
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Figure 4.16: E�ciency results when the value of Smax changes throughout the reconstruc-
tion of the track depending on the expected scatter. In order to measure the e�ciency for
various energies, a pencil beam is degraded with a water phantom of di↵erent lengths. Data
simulated with GATE. The definition of a correctly reconstructed track is given in Section
4.1.
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4.4 Robustness of the reconstruction algorithm

The reconstruction algorithm should be equally e�cient regardless of the starting
point. In all of the previously mentioned methods, the algorithm starts by finding the
seeds in the last layer. Then, a seed is chosen and the reconstruction of this specific
track begins. Subsequently, another seed is considered and the process is repeated. In
order to check if the percentage of correctly reconstructed tracks changes depending
on the order in which seeds are selected, two di↵erent scenarios were analyzed:

1. Starting from the first seed identified in the layer.

2. Starting from the last seed identified in the layer.

Table 4.2 shows an example of the e�ciency of the algorithm depending on the
order in which tracks are reconstructed. In addition, Fig. 4.17 shows the resulting
track reconstructions. The starting seed is pointed out by a blue arrow. As can
be observed, the percentage of correctly reconstructed tracks changes depending on
where the origin of the reconstruction process is established. Although there is not
a very significant di↵erence, it reflects that the algorithm is not entirely robust.

Position Same ID all Same ID all Same first/ Same first/last

in layer clusters clusters & complete last ID ID & complete

First seed ⇠80% ⇠67% ⇠89% ⇠67%

Last seed ⇠83% ⇠71% ⇠91% ⇠71%

Table 4.2: Percentage of correctly reconstructed tracks depending on the starting seed
order.

Figure 4.17: Track reconstructed results when the algorithm starts from the first seed it
finds (left) and when the last identified seed is established as the origin of the reconstruction
process (right). Blue arrows indicate the staring seed for each scenario.

60



Chapter 4. Improved reconstruction algorithms

4.5 Proton beam width in the detector

From the e�ciency studies, it can be observed that the best results for the same
number of particles are obtained for the low-energy proton beam. Vice versa, the
lowest e�ciency corresponds to the higher energy. One of the reasons is that low-
energy protons transverse less layers before they stop. This means that the number
of physical interactions with matter is lower, making it easier to reconstruct its tra-
jectory. Another reason is the use of a water phantom of di↵erent thicknesses in MC
simulations (GATE) to degrade the initial 250 MeV proton beam to the desired mean
energy. The use of this degrader increases the width of the proton beam, i.e. the sep-
aration between protons at impact is greater in comparison with the distance between
particles from a same energetic beam but without the use of the phantom. This is in
tune with the proposed usage of the pCT, where the initial proton energy is always
the maximum available, and the residual energy is decided by patient/object thick-
ness. Fig. 4.18 shows an example of track reconstruction results using the algorithm
explained in Section 4.2 when a water phantom has been used to reduce the energy of
the proton beam (initially 250 MeV) and when protons are directly simulated with
the desired energy (no degrader). The final energy of a proton beam depends on
the thickness of the phantom as it degrades in an inversely manner. Moreover, the
resulting width of the beam is directly proportional to the length of the phantom.

Additionally, Fig. 4.19 shows the e�ciency graphs for both scenarios when tracks are
simulated with GATE and reconstructed with the algorithm explained in Section 4.2.
As may be seen, the results obtained when no degrader is used are worse for the same
reason explained above: tracks are closer to each other when no degrader is included
in the simulation. As expected, the lower energy beam (⇠ 69 MeV) experiences the
largest drop in e�ciency since a thicker water phantom is needed (34 cm). However,
the reconstruction results of the more energetic proton beam (⇠ 230 MeV) di↵er
slightly. In this case, only 5 cm of water are needed to get that energy.

61



Chapter 4. Improved reconstruction algorithms

Figure 4.18: Examples of track reconstructions. (A) A water phantom of di↵erent thick-
nesses is used to degrade a 250 MeV proton beam to get a mean energy of ⇠ 234 MeV (5 cm
degrader thickness) and ⇠ 69 MeV (34 cm degrader thickness). (B) Protons are simulated
directly with the intended energies. Data simulated with GATE.
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Figure 4.19: Fraction of correctly reconstructed tracks following the definitions in Section
4.1 when a proton beam of energy 250 MeV is degraded by water phantom of di↵erent
thickness (with degrader) and when protons are simulated directly with the desired energy
(without degrader). In both scenarios, tracks simulated with GATE are reconstructed using
the algorithm described in Section 4.2.
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Most probable scenario algorithm

The di↵erent algorithms proposed until now reconstruct one track at a time. This
means that once a cluster has been assigned to a track there is no way that the
following tracks can add that cluster, even when the probability that it belongs
to another track is greater. This introduces an error in the reconstruction process
that is inevitable to solve although a great e↵ort is made in the optimization of the
reconstruction parameters. Therefore, an improvement strategy is to calculate the
most probably scenario at each layer. In this proposal, the probability that a hit
belongs to a track is calculated for all hits and tracks per layer at once. This way, all
track combinations are studied before assigning a potential candidate to a track. This
approach o↵ers also a potential solution to the lack of robustness of the algorithms
presented previously since all tracks are reconstructed at the same time. A schematic
of this idea is reflected in Fig. 5.1, where all possible combinations of seeds-clusters
are shown for a given case (red frame). Then the probability of all these scenarios is
studied before deciding which cluster belongs to which track.

Figure 5.1: Example of the most probable scenario algorithm. Given 3 clusters in a layer
and 3 clusters in the next layer, all possible combinations are studied, in this case, 6 di↵erent
scenarios, represented by di↵erent colors.
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Starting from the last layer, the scatter angle between the seed and the possible
candidate in the previous layer is calculated using the following equation:

✓ = arccos

✓
~u · ~v

k~uk · k~vk

◆
(5.1)

Where ✓ is the angular deflection between the actual position of the hit and the
extrapolated anticipated position of the last cluster added to the track, and ~u and ~v
are the vectors defined in Fig. 5.2. The left panel in Fig. 5.2 represents the general
case, while right panel represents the situation at the first layer where no clusters
have been added yet, so the particle is assumed to enter perpendicular. Angular
deviation is calculated on basis of the di↵erence between the position of the potential
candidate and the horizontal axis.

Figure 5.2: Schematic of how the angular deflection ✓ between two clusters located in
consecutive layers is calculated for the general case (left) and when ✓ is computed between a
seed in the first layer and a cluster in the next one, where ~u is assumed to be perpendicular
to the detector plane (right).

Following Highland’s formula (Eq. 1.2), the expected RMS value of the MCS angle
distribution, ✓0, for a given energy is found. Then, the probability that the seed and
a hit belong to the same track is calculated by means of expected scatter and the
value of the angular deflection ✓:

P (✓min  ✓  ✓max) =
1

2⇡✓20

Z ✓max

✓min

exp
�x2

2✓20
dx (5.2)

where ✓min and ✓max represent the interval in which the probability of ✓ is calcu-
lated. The algorithm assumes that the interaction occurred in the center of the
pixel, however, this may occur at any position of the pixel. Therefore, the values of
✓max and ✓min correspond to maximum and minimum angular di↵erence between the
extrapolated position of the previous cluster and the position at the pixel where the
interaction can occur. Four di↵erent positions are evaluated (marked with yellow in
Subfigure (A) in Fig. 5.3). These are the most extreme positions of the pixel and
therefore also the positions where the maximum and minimum angle will be reached.
The angle between ~u and ~v is calculated for the four cases. Finally, ✓min corresponds
to the smallest angle calculated (Subfigure (B) in Fig. 5.3) while ✓max is the largest
angle (Subfigure (C) in Fig. 5.3).
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Figure 5.3: Two hits in consecutive layers are represented in pink. The four corners of the
pixel in which the second cluster was detected are represented as yellow stars in (A). The
angular deflection, ✓, is the di↵erence between initial direction of the first hit and the angle
between first hit and second hit. The smallest value is assigned to ✓min (B) while the largest
one to ✓max (C).

The calculation of P (✓min  ✓  ✓max) is calculated at once for all seed-cluster pairs
in the scenario under study. Assuming that these events are independent (i.e. the
interaction position of a proton in each layer does not influence where the other
protons will impact in the detector), the total probability of that scenario is computed
by multiplying the probabilities of each event:

Ptotal =
nY

P (✓min  ✓n  ✓max) (5.3)

where n represents the number of potential clusters in the layer under study.

Ptotal is calculated for all possible scenarios and the one with the highest score de-
termines which cluster will be added to each track.

5.1 Optimized version

The number of possible seed-cluster combinations increases with the factorial of the
number of seeds. That means if 100 tracks are simulated, the number of scenarios
that need to be analyzed is 100!(= 9.332622 ⇥ 10157). Naturally, such numbers of
combinations are extremely computationally expensive and renders the reconstruc-
tion process impractical.

Since many of the combinations are highly unlikely to occur, the number of scenarios
to be evaluated can be reduced. One method of conveying the problem of compu-
tational requirement is to narrow down the search criteria. A search cone with an
angle of 4 · ✓0 applied to each seed in order to identify possible matches would in
e↵ect mean that possible combinations are calculated using only the most adjacent
clusters.

In order to verify the e↵ectiveness of this optimization, its e�ciency is compared to
the e�ciency of the non-optimized version and the e�ciency of the algorithm de-
scribed in Section 4.2. For this purpose, 8 tracks simulated with PROCASIM are
reconstructed. In order to make a fair comparison, the proton density of this simula-
tion corresponds to the maximum number of tracks that the non-optimized version of
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the proposed algorithm can e�ciently reconstruct. Since the number of tracks to be
reconstructed can not be increased due to this computational limitation, the distance
between them in the detector is 10 times reduced (in comparison with the values nor-
mally used when the same number of tracks are simulated), in order to hinder the
reconstruction of the tracks. Left panel in Fig. 5.4 shows the reconstructed tracks
when the algorithm explained in Section 4.2 is applied, while right panel illustrates
the result when both versions of the proposed algorithm are used to reconstruct the
tracks. As can be observed, better results are achieved with the new reconstruction
algorithm, even when the optimized version is used.

Figure 5.4: Track reconstruction result when: algorithm explained in Section 4.2 is used
(left) and when most probable scenario algorithm (both original and optimized version) is
applied (right). In both studies, 8 tracks are simulated using PROCASIM.

However, as the number of simulated tracks increases, the number of potential clusters
also increases. Even a narrowed search cone with angle 4 · ✓0 will eventually include
too many clusters. Now, the number of possible combinations is

Qn
1 NPC, where

n is the number of seeds and NPC the number of potential clusters for an specific
seed. So, if two clusters are found per seed and 100 tracks are simulated, the number
of combinations to be analyzed will be: 2100 = 1.2676506 ⇥ 1030 and therefore still
requires unacceptable high computational power.

For practical applications, further cost reduction is required. Hence, the angle of the
search cone is reduced to 2 · ✓0. If no clusters are found for that seed, this value is
increased by ✓0. This process is repeated until the seed can find at least a potential
cluster. If the angle of the research cone reaches a value of 10 · ✓0 and the seed is not
able to identify any cluster, this seed will not be used for the calculation of the most
likely scenario. Fig. 5.5 shows the main steps of the algorithm. Red arrow shows the
path to be followed for this optimized version.
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Figure 5.5: Flowchart of the most probable scenario algorithm. Red arrow shows the
optimized version path (Section 5.1). Green arrow points the path to the adapted version
to MC simulations (Section 5.2).
1This step is described in Fig. 5.1.
2Following Eq. 5.3.
3This step is described in Fig. 5.9.
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Fig. 5.6 shows the percentage of tracks simulated with PROCASIM with the same
ID in the first and last clusters added. The fraction of tracks with the same ID in
all clusters is not shown since similar results are obtained . Only ⇠ 1 � 2% of the
tracks are wrong in the middle but regain the correct entrance points. Moreover,
tracks that are reconstructed correctly but are incomplete are not represented either
because the di↵erence with the fully tracked ones is minimal.

Although in some cases higher e�ciency is achieved when the energy of the proton
beam is lower, overall, the di↵erence is almost negligible.

Figure 5.6: Fraction of tracks whose start- and endpoints have the same eventID for
di↵erent proton densities when the most probable scenario is calculated before assigning
each cluster to the respective track. Data simulated with PROCASIM.

As explained in Section 2.2.2, in PROCASIM, each particle is generated from a single
point in the first layer of the calorimeter. From this starting point, a stochastic
trajectory is generated taking into account only the angular deviation produced by
MCS. However, sometimes, some trajectories are created very close, resulting in more
than one confusing cluster at the time of the reconstruction process. This deteriorates
the e�ciency of the algorithm. The e↵ect can be observed in Fig. 5.7, where two
tracks (marked with green arrows) are generated so close to each other that in certain
cases, the probability that a cluster belongs to the wrong track is greater than the
probability that it belongs to the correct track.
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Figure 5.7: Example of a type of error in the reconstruction process due to the proximity of
two tracks. Subfigures (A) and (B) show the same reconstruction result from two di↵erent
points of view. Subfigures (C) and (D) show the zoomed image of the area selected in
Subfigures (A) and (B) with green and yellow frames respectively. The two tracks that
introduce confusion in the reconstruction process are marked with blue arrows. As can be
seen, the tracks are so close to each other that it is di�cult to di↵erentiate them in most of
their trajectory.

5.2 Adaptation to Monte Carlo simulations

So far, the e↵ectiveness of the algorithm has only been demonstrated using tracks
simulated with PROCASIM, where only MCS is taken into account. However, other
types of physical interactions occur in real-life situations (e.g. elastic and non elastic
nuclear interactions), therefore the algorithm has also been tested with MC-based
simulations.

One of the main problems when trying to reconstruct tracks using the described
algorithm is the existence of single hits in di↵erent layers of the detector, represented
as blue dots in Fig. 5.8. They correspond to secondary particles whose origin may
vary: stray photons, delta electrons, neutrons. Some of these hits (marked with red
arrows) introduce errors when calculating the probabilities, since the same cluster is
assigned to two or more seeds.
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Figure 5.8: Examples of the reconstruction result when a energy pencil beam of 250 MeV
is degraded by 5 cm (left) and 16 cm (right) of water. During the reconstruction process, the
algorithm has to deal with single hits (marked with red arrows) that can introduce errors
and cause tracks to be reconstructed erroneously.

An equal number of scenarios and seeds that share the same cluster are studied to
determine the most likely seed. In each of them, the cluster is assigned only to one
seed, while the rest of the seeds are not considered. Then the probability of this
cluster-seed combination is calculated. Subfigure (A) in Fig. 5.9 shows an example
of this situation when a cluster is assigned to two hits (one of them is already part
of a track (in yellow) and a single hit (in blue)). In case more than one cluster is
assigned to di↵erent seeds, all possible combinations are studied, as can be seen in
Subfigure (B) in Fig. 5.9. In this example, two clusters can be assigned to two seeds
each. In total four possible combinations are analyzed from an original scenario. In
the end, the most likely combination is chosen. Additionally, Fig. 5.5 shows the main
steps of the algorithm. The path to be followed for this new version is indicated by
a green arrow.
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Figure 5.9: Schematic of the most probable seed-cluster selection process. In case the
same cluster is assigned to multiple hits in the prior layer, di↵erent probabilities of the
whole scenario (e.g. all combination between seeds-clusters) are calculated combining each
time the shared cluster with one of the hits, while the rest are not linked to any cluster. In
(A) a cluster (black star in red frame) is shared by two hits in the previous layer (yellow
and blue stars in red frame), so the probability of two di↵erent scenarios are calculated. The
same process is repeated in (B), where two clusters (black stars in red frames) match with
more than one seed in the prior layer (yellow and blue stars in red frames). In this scenario,
the probability of four di↵erent combinations are computed. In the end, the most likely
combination is chosen.

In order to study the e�ciency of this algorithm with data simulated with GATE, the
number of tracks reconstructed correctly is analyzed for di↵erent proton densities.
Fig. 5.10 shows the percentage of tracks that have the same eventID in the first and
last entry. The fraction of tracks with the same ID in all clusters is not shown since
the e�ciency di↵erence with respect to the results shown in Fig. 5.10 is less than
2%.

These results follow some trends explained in Chapter 4. Higher energy results in
lower e�ciency and the di↵erence between the fully tracked and incomplete tracks
become larger at higher energies. However, greater e�ciency can be observed in
comparison with the results shown in Chapter 4.
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Figure 5.10: Study of the fraction of tracks whose start- and endpoints have the same
eventID for di↵erent proton densities and energies. Data simulated with GATE.

5.3 Discussion and conclusions

In this chapter a new reconstruction algorithm based on the identification of the most
probable scenario is discussed. As can be seen in Figures 5.6 and 5.10, the number
of tracks that are reconstructed correctly is considerably greater than when the same
beam intensities are reconstructed with the algorithms explained in Chapter 4.

However, one of the main disadvantages of this algorithm is the time required for the
analysis and reconstruction of the tracks. As the proton density rises, the number
of combinations that the algorithm has to analyze also increases. Therefore, the
computational e�ciency of this algorithm for large intensities is much lower compared
to the other algorithms previously described. For this reason, the maximum number
of tracks that can be reconstructed is ⇠ 80 regardless of the simulator used. The
studies were carried out in a MacBook Pro 13”, with 8 GB RAM and Intel Core i5
CPU at 2.7 GHz, utilizing a single core for the task.

For example, the time required for the concurrent reconstruction of 80 protons varies
between 10-30 min, depending on the energy of the protons (and therefore, the num-
ber of layers). On the contrary, the reconstruction of the same number of particles
with the algorithms described in previous chapter takes a few seconds.

Considering that the electronic readout time of the DTC is 5 µs and assuming that
80% of the tracks should be reconstructed correctly (this value has to be adjusted to
reach a compromise between image quality / noise (due to fake tracks) and image
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acquisition time), which correspond to 80 protons per readout frame for a 133.96
MeV proton beam (Fig. 5.10), the number of protons that should be reconstructed
simultaneously per second is 16 millions, however, the algorithm needs ⇠ 15 min to
reconstruct the protons measured per readout frame, which means 3⇥107 minutes to
reconstruct one second of acquisition. For this reason, the time needed for the track
reconstruction process is a key factor when choosing the most suitable algorithm.

All in all, although e↵orts have to be made in order to achieve a greater speed of
reconstruction, e�ciency results show a great potential, opening the door to a new
track reconstruction method based on the study of the most probable scenario.
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Discussion and conclusions

Over the past few years, the use of proton therapy to treat cancer has increased, op-
timizing the dose deliver to patients. However, in order to get an accurate treatment
planning, the use of a pCT is needed. To this end, the proton’s residual energies
can be measured using a pixel-based calorimeter behind the patient. However, due
to stochastic trajectories followed by protons, an e↵ective track reconstruction algo-
rithm is required to handle reconstruction of multiple tracks per readout cycle.

The current proton track reconstruction algorithm presented by Pettersen [1] has
some limitations, especially at higher beam intensities. Therefore, an optimization
of this algorithm would ensure a better performance.

Since the calorimeter is still under development, the whole study was performed
using two types of simulations: GATE and PROCASIM. MC simulations (GATE)
were used to generate and track particles that undergo di↵erent physical interactions
(e.g. MCS, elastic nuclear interaction, inelastic nuclear interactions...). PROCASIM
was based on the generation of stochastic trajectories of protons taking into account
only the angular deviation produced by MCS. Both tools are used to develop and
study the performance of di↵erent proton tracking algorithms.

In order to analyze and compare the di↵erent reconstruction algorithms proposed in
this thesis, a study of their e�ciency was conducted. Being the e�ciency the number
of correctly reconstructed tracks, identified through checks against the event ID from
simulations. From these results, several common trends can be observed. First of
all, the higher the number of protons, the lower the probability that all hits in a
given reconstructed track originate from the same primary proton. Better e�ciency
is reached when the number of tracks to be reconstructed per readout is lower than
100. Secondly, better results are obtained for the less energetic proton beam. The
main reason are that less layers are traversed by low-energy protons and the use of
a water phantom of di↵erent thicknesses in MC simulations to degrade the initial
250 MeV proton beam to the desired mean energy. This increases the width of the
proton beam, facilitating the track reconstruction process.
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Overall, the fraction of tracks reconstructed correctly is higher when particle trajec-
tories are simulated with PROCASIM because the angular deviation that the protons
undergo is, in general, smaller and more gradual than in the case of particles simu-
lated with GATE. Therefore, following the method outlined in Fig. 5.2, the position
of the next cluster in the subsequent layer is closer to the estimated position, increas-
ing the probability that it is assigned to the correct track. Regarding the algorithm
with the higher e�ciency, studying the di↵erent combinations before assigning each
cluster to the corresponding track results in a greater number of tracks reconstructed
correctly for at least a beam density of up to 80 protons. This is the maximum
number of tracks that the algorithm can reconstruct. With this proposal (Chapter
5), the order in which tracks are reconstructed does not influence the final result,
making it a much more robust algorithm than the rest of algorithms explained in
the present work. However, although e↵orts have been made regarding the compu-
tational e�ciency of the code, it is still very computational ine�cient. This renders
its use relatively limited in real situations where ⇠ 1 - 25 millions of particles need
to be reconstructed per second. On the other hand the algorithm with a constant
Smax o↵ers greater e�ciency especially up to a beam densities of 200 - 300 protons.
However, it comes at the cost of robustness. For a larger number of protons, the
algorithm where the value of Smax varies depending on the expected scatter provides
a larger fraction of correctly reconstructed tracks.

In terms of the most e�cient algorithm when tracks are simulated using GATE,
the concurrent study of the most probable combinations between clusters in two
consecutive layer occupies the first position. However, as with the results obtained
with PROCASIM, the computational ine�ciency limits the number of tracks that
can be reconstructed, with 80 being the maximum allowed. As for the rest of the
proposals, the use of a variable value of Smax depending on the expected scatter,
increases the number of correctly reconstructed tracks. However, the percentage of
complete tracks is minor compared to the results obtained when a constant Smax is
used, especially for a beam intensity less than 400 protons per readout. The main
reason for this decrease is that, although most of the scatter is small-angle due to
MCS, there are high-angle contributions in the first layers due to nuclear interactions.

In conclusion, although all the proposed algorithms exceed the e�ciency of the cur-
rent algorithm, especially at high beam intensities, the most viable algorithm seems
to be the one presented in Section 4.2. In this algorithm, the value of Smax is cal-
culated based on the particle density and the pencil beam’s size, and is constant
throughout the reconstruction process. Although it is not very robust, since its ef-
ficiency depends on its starting point, it is the algorithm that, with results similar
to others presented in this project, is the most computationally e�cient, which is
a key factor in quasi-online reconstruction. However, there are still limitations on
the track density that can be reconstructed correctly. Therefore, the probability ap-
proach explained in Chapter 5 shows a great potential. If the algorithm is optimized,
a significant improvement in e�ciency could be achieved at higher beam intensities.
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Limitations and recommendations for
future work

Although di↵erent proton track reconstruction proposals for a DTC prototype have
been presented in this thesis, and a considerable improvement has been achieved,
there are still some limitation. The algorithm that analyzes the most probable sce-
nario before assigning the corresponding cluster to each track seems to give better
results, however, its computational ine�ciency precludes its use. Therefore, a deeper
optimization of the code needs to be carried out. One option can be the execution
in parallel on several CPU cores of the reconstruction track, decreasing the required
time spent on the analysis. Moreover, the computational e�ciency of the algorithm
can be tested in more powerful computers than the one used in this study (MacBook
Pro 13”, with 8 GB RAM and Intel Core i5 CPU at 2.7 GHz).

Another limitation found in the reconstruction results is the large di↵erence found,
in most cases, between all tracks reconstructed correctly and those that are also
complete. Therefore, an improvement strategy of the code could be to identify the
cause and try to increase the percentage of fully reconstructed tracks.

During this thesis, for the sake of simplicity, the deposited energy is directly used
in the track reconstruction as read out from the MC simulator. However, in a real
situation, large clusters with sizes varying between 1 and 35 pixels are activated by
the charge di↵usion of electron-hole pairs, created by the interaction between protons
and the detector [1]. The number of pixel activated by charge di↵usion is proportional
to the energy deposited by the proton, and some clusters can merge, complicating
the reconstruction process. Future work should focus on the implementation of a
charge clustering model and the consequent reconstruction process adaptation. For
example, clusters should not be removed from the search pool when a track has been
reconstructed because that cluster may contain more than one hit.

Additionally, one potential strategy to improve the track reconstruction algorithm
is based on forward and backward reconstruction. The tracking can be performed
simultaneously in both directions, track segments that match are stored while track
segment that do not match can be treated with more care.
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[117] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov. Reconstruction of
electrons with the gaussian-sum filter in the CMS tracker at the LHC. Journal
of Physics G: Nuclear and Particle Physics, 31(9):N9–N20, jul 2005.

87


