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Abstract
The design of multi-target rendezvous trajectories, which see a spacecraft approaching a sequence of objects
in orbit as efficiently (by some metric) as possible, is a challenging problem of critical importance for Active
Debris Removal (ADR), On-Orbit Servicing (OOS) and cis-Lunar logistics more widely. This thesis investigates
two primary challenges in space Vehicle Routing Problems (VRPs): the application of Neural Combinatorial
Optimization (NCO) methods for ADR missions and the integration of verifiable trajectory optimization techniques
for OTV payload deployment.

The first research focus assesses the efficacy of NCO methods in designing multi-target rendezvous trajectories for
ADR missions. An Attention-based routing policy, comprising a Graph Attention Network and a Pointer Network,
was developed and trained using Reinforcement Learning (RL) algorithms, including REINFORCE, Advantage
Actor-Critic (A2C), and Proximal Policy Optimization (PPO). Through hyperparameter analysis utilizing ANOVA,
embedding dimension and the number of encoder layers were identified as critical factors influencing model
performance. The trained policy was evaluated on scenarios involving 10, 30, and 50 transfers based on the
Iridium 33 debris cloud. In missions with 10 transfers, the NCO policy achieved a mean optimality gap of
32%, outperforming the Dynamic RAAN Walk (DRW) heuristic in both mission cost and runtime. However,
performance degraded in more complex scenarios with 30 and 50 transfers, indicating limited generalization
beyond the training conditions. Grid search hyperparameter optimization revealed that while model performance
improves with increased complexity, gains are marginal, and larger training datasets enhance convergence speed
with only slight improvements in final performance. These findings demonstrate that NCO methods are effective
for ADR missions with a limited number of targets but face scalability and generalization challenges in more
complex scenarios.

The second research focus involves the design and optimization of multi-rendezvous trajectories for the UARX
Space OSSIE mission using a modular framework that integrates Heuristic Combinatorial Optimization (HCO)
with Sequential Convex Programming (SCP). This framework successfully determined optimal target sequences
and generated near fuel-optimal trajectories for OSSIE, a translational and mass-dynamic payload delivery platform.
An Attention-based routing policy trained with RL was integrated into the combinatorial optimization process,
enhancing the efficiency of mission planning. Applied to the OSSIE mission, the framework effectively explored the
mission design space, optimizing 5000 mission scenarios and affirming the vehicle’s capability to fulfill advertised
services. The modularity of the framework ensures adaptability to mission-specific constraints and facilitates
future extensions, such as the incorporation of low-thrust propulsion profiles.

Overall, this thesis confirms that NCO methods are applicable and effective for specific instances of space VRPs,
particularly in optimizing ADR missions with a limited number of targets and in near-static mission scenarios where
RAAN convergence is not required. The integration of verifiable trajectory optimization techniques with advanced
routing policies presents a viable approach for efficient and adaptable mission planning. However, scalability and
generalization remain challenges that necessitate further research. Recommendations include refining NCO model
architectures to enhance scalability and generalization, exploring hybrid approaches that combine NCO with
traditional heuristics, and developing automated machine learning frameworks to optimize model performance
and robustness.

The project successfully achieved its primary objectives: developing and implementing heuristic and neural
combinatorial optimization solvers for space VRPs, designing a modular trajectory optimization framework, and
conducting comprehensive mission analyses for the OSSIE OTV. In doing so it has increased the mission design
capabilities for space logistics missions at SENER Aerospace & Defence, as well as a provided a strong foundation
for future research and development aimed at addressing the increasing complexities of space operations.
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Nomenclature
Abbreviations

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
ADR Active Debris Removal
ANOVA Analysis of Variance
AOP Argument of Perigee
CO Combinatorial Optimization
DNN Deep Neural Network
DRW Dynamic RAAN Walk
ECI Earth-Centered Inertial frame
FYS Fisher-Yates Shuffle
GAT Graph Attention Network
GNN Graph Neural Network
GPU Graphics Processing Unit
IPC Impulsive Plane Change
JIT Just-In-Time compilation
KS Knuth’s Algorithm for Uniform Permutation Sampling using Sobol Points
LFC Lyapunov Feedback Control
LEO Low Earth Orbit
LVLH Local-Vertical Local-Horizontal frame
MEE Modified Equinoctial Elements
MDP Markov Decision Process
MEO Medium Earth Orbit
MHT Multiple Hohmann Transfer
MINLP Mixed-Integer Nonlinear Programming
ML Machine Learning
NCO Neural Combinatorial Optimization
NN Nearest-Neighbour Search
NIC Nodal Inclination Change maneuver

Abbreviation Meaning

Continued on next page
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OOS On-Orbit Servicing
OSSIE UARX Orbit Solutions to Simplify Injection and Exploration, UARX Space OTV
OTV Orbital Transfer Vehicle
PN Pointer Network
PPO Proximal Policy Optimization
Q-Law Lyapunov Feedback Control Law based on the proximity quotient Q
REINFORCE Monte Carlo Policy Gradient Algorithm
RL Reinforcement Learning
RQ-Law Rendezvous Q-Law
RSW Radial, Along-track (S), Cross-track (W) frame
SCP Sequential Convex Programming
RCS Radar Cross-Section
SHP Sobol Hypercube Permutations
SMA Semi-major Axis
SP Sobol Permutations
STSP Spacecraft Traveling Salesman Problem
TOF Time of Flight
TSP Traveling Salesman Problem
VRP Vehicle Routing Problem

Abbreviation Meaning

Mathematical Notation

r Scalar variable
r Vector variable
∥r∥ Euclidean norm of vector r
r Mean value of r

r ∼ P r is sampled from distribution P
E[X] Expectation of random variable X
∇Q Gradient of function Q
∇θ Gradient with respect to θ
∇ϕ Gradient with respect to ϕ
Q̇ Time derivative of Q
⌈x⌉ Ceiling function of x

min(a, b) Minimum of a and b
|x| Absolute value of x

Notation Meaning

Continued on next page
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argsort(z) Indices that would sort vector z
clip(x, a, b) Clipping function limiting x to the interval [a, b]

sin(x), cos(x), tan−1(x) Trigonometric functions
B(p, q) Beta function
F−1
j (x) Inverse cumulative distribution function
Rn n-dimensional real space
Sd−1 Unit sphere in Rd

Sn Symmetric group of permutations of n elements
πθ(at|st) Policy probability of action at given state st under parameters θ
πθold(at|st) Policy with old parameters θold

rt(θ) Probability ratio at time t
r(i)(θ) Probability ratio for instance i
τ Trajectory (sequence of states, actions, rewards)

Notation Meaning

Latin Symbols

a Semi-major axis m
aT Target semi-major axis m
A Reference area; advantage function m2; –
At Advantage at time t –
A(i) Advantage for instance i –
at Action at time t –
a(i) Solution for instance i –

aJ2,r , aJ2,θ , aJ2,ϕ Components of acceleration due to J2 perturbation m s−2

c Constant or parameter –
CD Drag coefficient –
d Dimension –
e Eccentricity –
eT Target eccentricity –

f, g, h, k Equinoctial elements –
fburn Burn frequency s−1

G Universal gravitational constant 6.674 30e−11 m3 kg−1 s−2

Gt Return at time t –
G(i) Return for instance i –
g0 Standard Earth gravity 9.806 65 m s−2

Symbol Meaning Units/Value

Continued on next page
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i Index; inclination –; rad
i1, i2 Inclinations of initial and target orbits rad
Isp Specific Impulse –
J2 Second zonal harmonic coefficient 1.0826e−3
j Index –
k Number of burns; scaling parameter –

kd, kc Number of burns for departure and circularization –
kNIC Number of burns for NIC –
kIPC Number of burns for IPC –
L True longitude; loss function rad; –
Lt Clipped objective at time t –
L(i) Clipped objective for instance i –
Lpolicy Policy loss –
Lvalue Value function loss –
L0, L1 Initial and target true longitude rad
m Spacecraft mass kg
m0 Initial mass kg
mf Fuel mass kg

m1,m2 Masses of bodies 1 and 2 kg
n Orbital mean motion s−1

êr, êθ, êϕ Basis vectors in LVLH frame –
û Thrust direction unit vector –

PMHT Average orbital period during MHT s
p Semi-latus rectum m
P Orbital period s
Π Set of permutations –
r Radial distance; scalar variable m; –
r0 Radius of initial orbit m
r1 Radius of target orbit m
rp Periapsis radius m
rpmin Minimum periapsis radius m

R(x(i), a(i)) Reward function for instance i –
s2 Variable in Gauss Variational Equations –
st State at time t –
T Thrust magnitude; time horizon N; –

Tburn Burn time s
Tcooldown Cooldown time s

Symbol Meaning Units/Value

Continued on next page
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t Time index –
t0 Start time s
T Best time-to-go s
v Variable in Gauss Variational Equations; velocity –; m s−1

veq Exhaust velocity m s−1

V0 Orbital velocity m s−1

Vϕ(st) Estimated value function at state st –
Vϕ(x

(i)) Estimated value function for instance x(i) –
w Variable in Gauss Variational Equations –
x Vector in Rn; problem instance –
x(i) Problem instance i –
aD Acceleration due to drag m s−2

aJ2 Acceleration due to J2 perturbation m s−2

F1,2 Gravitational force between bodies 1 and 2 N
r1,2 Position vector from body 1 to body 2 m
r(i)(θ) Probability ratio for instance i –
rt(θ) Probability ratio at time t –
v Velocity vector m s−1

ṁf Mass flow rate kg s−1

Wx,Wp,Wœ,WL,Wscl Weights in Q-law and RQ-law –
œ Modified Equinoctial Elements (a, f, g, h, k) –

œT Target orbital elements –
œT,aug Augmented target elements –

Symbol Meaning Units/Value

Greek Symbols

α Learning rate for policy –
β Learning rate for value function –
γ Relative inclination rad
δ Small change or variation –
ϵ Clipping parameter –
µ Earth’s gravitational parameter 3.986e14 m3 s−2

ξ Ratio of orbit radii (r1/r0) –
ρ Atmospheric density kg m−3

θ Policy parameters; true anomaly –; rad

Symbol Meaning Units/Value

Continued on next page
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θold Previous policy parameters –
ϕ Value function parameters; spherical coordinates –

πθ(at|st) Policy probability of action at given state st under parameters θ –
πθold(at|st) Policy with old parameters θold –

σ True anomaly rad
τ Trajectory (sequence of states, actions, rewards) –
ω Argument of Perigee rad
Ω Right Ascension of the Ascending Node rad

Ω1,Ω2 RAAN of initial and target orbits rad
Ψ Transformation matrix in MEEs –
∆i Change in inclination rad
∆V Delta-V (change in velocity) m s−1

∆VMHT Total delta-V for MHT m s−1

∆Vd Departure delta-V m s−1

∆Vc Circularization delta-V m s−1

∆VNIC Delta-V for NIC m s−1

∆VIPC Delta-V for IPC m s−1

∆r,∆t,∆n Perturbing accelerations in radial, tangential, normal directions m s−2

∆L[−π,π] Difference in true longitude wrapped to [−π, π] rad

Symbol Meaning Units/Value

Subscripts

t At time step t
(i) For instance i
r Radial component
n Normal component
θ Tangential component
ϕ Normal component (in LVLH frame)
I Inertial frame
s Spacecraft
C Central body (Earth)
old Previous parameter value
0 Initial value
T Target value

MHT Related to Multiple Hohmann Transfer

Subscript Meaning

Continued on next page
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NIC Related to Nodal Inclination Change
IPC Related to Impulsive Plane Change
burn Burn time

cooldown Cooldown time
ECI Earth-Centered Inertial frame

MEE Modified Equinoctial Elements frame
D Related to drag
J2 Related to J2 perturbation

Subscript Meaning

Reinforcement Learning Jargon Terms

Monte Carlo Policy Gradient Method An approach that estimates policy gradients us-
ing complete sampled trajectories from the environ-
ment without requiring knowledge of the environ-
ment’s dynamics [1].

Gradient Ascent An optimization technique that adjusts parameters
in the direction of the positive gradient to maximize
a function.

Policy Parameters θ The set of parameters that define the policy πθ.
Policy πθ(a|s) A mapping from states s to a probability distribu-

tion over actions a, parameterized by θ.
Trajectory τ A sequence of states, actions, and rewards observed

when an agent interacts with the environment: τ =
{s0, a0, r0, . . . , sT , aT , rT }.

State st The representation of the environment at time step
t.

Action at The decision made by the agent at time step t.
Reward rt The immediate scalar feedback received after tak-

ing action at in state st.
Return Gt The cumulative future reward from time t onwards,

defined as Gt =
∑T
k=t rk.

Expected Return E[Gt|st] The expected cumulative reward obtained by fol-
lowing a policy πθ from a given state st, defined as
E[Gt|st] = E

[∑T
k=t rk

∣∣∣st].
Gradient of the Log-Likelihood ∇θ logπθ(at|st) The derivative of the log-probability of taking ac-

tion at in state st with respect to the policy param-
eters θ.

Policy Gradient ∇θJ(θ) The gradient of the expected return with respect
to the policy parameters θ.

Term Symbol Definition

Continued on next page
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Policy Rollout The process of generating trajectories by following
the policy in the environment.

Convergence The point at which the policy parameters θ stabilize
and further updates become negligible.

Variance A measure of dispersion in the estimates of the pol-
icy gradient, affecting the stability and speed of
learning.

Baseline Vϕ(st) A function subtracted from the return Gt to reduce
the variance of the policy gradient estimate without
introducing bias [1].

Actor The component of the algorithm that represents
the policy πθ, responsible for selecting actions.

Critic The component that estimates the value function
Vϕ(s), providing feedback to the actor.

Value Function Vϕ(s) A function estimating the expected return from
state s, parameterized by ϕ.

Advantage Function At A measure of how much better or worse an action
at is compared to the critic’s estimated value of
state st, defined as At = Gt − Vϕ(st).

Minimize the Squared Error The process of updating the value function param-
eters ϕ to reduce the difference between estimated
and actual returns.

Variance Reduction Techniques used to decrease the variance in policy
gradient estimates, improving learning stability.

Surrogate Objective Function An objective function that approximates the true
objective but is designed to be more tractable or
stable during optimization.

Clipping Mechanism ϵ A method to limit the change in the probability
ratios during policy updates to within a specified
range, controlled by the clipping parameter ϵ.

Probability Ratio rt(θ) The ratio of the probabilities of an action under the
new and old policies, defined as rt(θ) = πθ(at|st)

πθold (at|st)
.

Clipped Surrogate Objective Lt An objective function that includes the minimum
of the unclipped and clipped policy objectives to
prevent large deviations in policy updates.

Exploration and Exploitation The trade-off between trying new actions to dis-
cover their effects (exploration) and using known
actions that yield high rewards (exploitation).

Term Symbol Definition
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1 Introduction

The design of multi-target rendezvous manoeuvres, which see a spacecraft approaching a sequence of objects in
orbit as efficiently (by some metric) as possible, has seen a considerable surge in interest in recent years for the
purposes of Active Debris Removal (ADR) missions [2]–[7] to tackle the space debris problem [8], [9], as well as
On-Orbit Servicing (OOS) missions [4], [10], [11] and advanced space logistics concepts [12].

1.1 The Space Traveling Salesman Problem
The problem of designing such trajectories, known as the Space Traveling Salesman Problem (STSP), is an
example of a Mixed Integer Non-Linear Programming (MINLP) problem with factorial complexity over the number
of targets. MINLP problems are notoriously difficult to approach. An optimal solution to the STSP consists of the
optimal sequence in which to visit a set of targets and the optimal (by some metric) transfer trajectory between
each target in the optimal sequence. The STSP is conceptually related to the classical Traveling Salesman Problem
(TSP), with the added complexities inherent to the space environment: notably, a 6-dimensional non-Euclidean
state space, mass dynamics, spacecraft propulsion constraints, and the progressive drift of the states of orbiting
bodies due to secular perturbations, chiefly J2 for Earth-orbiting spacecraft.

Formally, the STSP is the problem of finding a minimum weight path (if the spacecraft must end the tour back
at its initial state, a Hamiltonian path) in a complete weighted graph G := {V(t),W(π)}, where V(t) is the
set of graph vertexes (targets, the state of which drifts over time) and W(π) := V × V → R+ is a map that
associates an edge weight (a transfer cost) to each ordered vertex pair [2], and may depend on the sequence π
in which the targets are visited. One such case is when payload mass is a large percentage of the spacecraft’s
wet mass, and thus deployment sequence has a non-negligible impact on fuel consumption. A standard approach
to solve the STSP is Benders decomposition [4]–[7], where the MINLP problem is divided into a higher-level
Combinatorial Optimization (CO) problem and a lower-level trajectory optimization problem. A transfer cost
estimator is then used to calculate the cumulative cost of tours in the CO problem. Transfer cost estimators may
be database-dependent [13], [14], database-independent (analytical), or learning-based [15].

State-of-the-art CO methods fall in two camps: exact methods and heuristic methods, which are less costly and
can produce near-optimal results, but cannot offer optimality guarantees whatsoever [2], [16]. Exact methods
based on tree searches are the norm for highly complex, large STSP variants; all winning submissions of the
Global Trajectory Optimization Competitions have made use of tree search approaches [2], [13], [17]. Heuristic
optimization methods however are an attractive option to solve smaller STSP instances (up to hundreds of targets
[2]) due to their capacity to achieve near-optimal results with lower computational cost [2], and are widely applied
in literature to tackle multi-rendezvous mission design [2]–[5], [7]. Heuristic optimization methods have also
been successfully applied to complex STSP instances where the cost of exact approaches is unfeasible [13]. High
quality approximate solutions are highly desirable for the heuristic optimization process. As the complexity of the
generalized Vehicle Routing Problem (VRPs) increases, high quality approximate solutions become more difficult
to obtain [18]. This bodes ill for the field of space logistics, as the complexity of space VRPs beyond the STSP is
bound to increase over time: this will happen as Low Earth Orbit (LEO) and Medium Earth Orbit (MEO) become
more congested, the in-space manufacturing and servicing industries rise, and space logistics operations become
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more complex [19]. It becomes pressing to ask whether learning-based methods from the field of CO could be
applied in the space domain.

Machine Learning (ML) approaches for spacecraft trajectory design have seen a surge of interest in recent years
[20], with strong results achieved both for trajectory cost estimation [15] and spacecraft guidance [21]. Neural
Combinatorial Optimization (NCO) uses Deep Neural Networks (DNNs) to automate the problem-solving process,
mostly under the Reinforcement Learning (RL) paradigm, as supervised learning is often unfeasible for large or
theoretically hard problems. NCO offers the attractive prospect of alleviating the scaling issues of exact approaches,
while removing the need for handcrafted heuristics, which often require significant domain-specific adjustments
[18]. This is more the case as the realism of VRPs increases to match real operational conditions —with more
constraints, more complicated and dynamic environments, possibly multiple agents. NCO has shown promising
performance on various CO problems [18], especially when coupled with advanced policy search procedures [16].

1.1.1 Space Debris and Active Space Debris Removal
The present work focuses on the design of multi-rendezvous trajectories for ADR missions. This section starts
with a historical overview of the space debris problem, as well as assessments of the current situation of space
debris and recommendations from authoritative sources. The origin, evolution and impact of the most critical
fragmentation events of the last 20 years are discussed afterwards. The section ends with a discussion of the ADR
mission concept considered in this work.

Historical Overview and Space Debris Remediation
Since the launch of Sputnik-1 in 1957, Earth orbit has increasingly accumulated space debris, posing significant
risks to operational satellites and space exploration. The first recorded catastrophic fragmentation event occurred
in 1961, generating over 300 trackable debris pieces [22]. Over subsequent decades, more than 200 such events
have contributed to a current population of approximately 34,000 trackable fragments larger than 10 cm in LEO
[23].

Kessler and Cour-Palais [24] hypothesized in 1978 a scenario, now known as Kessler Syndrome, where the density
of objects in LEO is high enough that collisions between objects could cause a cascade, exponentially increasing
the number of debris and rendering space activities in certain orbital ranges unfeasible. NASA studies have
suggested that some regions of LEO may have already reached this critical density, implying that even without
new launches, the debris population could continue to grow due to ongoing collisions [25].

Awareness of the space debris problem has grown rapidly in recent years, both at the technical and policy levels
[19], [26]. International agreements and guidelines, such as the United Nations Space Debris Mitigation Guidelines
of the Committee on the Peaceful Uses of Outer Space [27] and the 25-year rule, accepted by both the United
States National Air and Space Administration (NASA) and the European Space Agency (ESA), whereby defunct
satellites must be de-orbited within 25 years after mission completion [28]. The ESA Space Debris Mitigation
Requirements [29], in effect since November 20231, further reduced the maximum disposal phase in low-Earth
orbit from 25 to 5 years. Adherence to these however is not globally enforced. The mitigation of existing debris
is largely a problem to be solved at the economic, technology, testing, political and legal level [28].

ADR has emerged as a crucial strategy to mitigate this threat. Shan, Guo, and Gill [30] provided a comprehensive
review of various ADR methods, including robotic arms, nets, harpoons, and electrodynamic tethers. Prioritizing
the removal of large, massive debris objects—such as defunct satellites and spent rocket upper stages in densely
populated orbital regions—is essential[9], [31]–[33], and is the chief priority in ADR mission development up to
the present day.

ESA has been at the forefront of ADR mission development. The e.Deorbit programme [34] aimed to study the
removal of large ESA-owned objects from orbit, involving extensive feasibility studies and technology development
[34]. In 2018 the RemoveDEBRIS mission [35], funded by the European Commission, became the first operative
ADR mission, demonstrating various cost-effective key technologies for ADR including net and harpoon capture
using miniaturized systems designed for the capture of large uncompliant objects[36]. As of the present day, the

1https://esoc.esa.int/new-space-debris-mitigation-policy-and-requirements-effect

https://esoc.esa.int/new-space-debris-mitigation-policy-and-requirements-effect
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Figure 1.1: Gabbard diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408 debris clouds as of
September 2024. Point size proportional to RCS. Color intensity in top row proportional to lifetime before natural
decay. Data obtained from Celestrak as of September 2024. Own work.

ESA ClearSpace-12 mission aims to de-orbit ESA-owned objects with mass greater than 100 kg by 2025 [37].
These efforts underscore the current emphasis on removing large, massive debris objects to mitigate the risk of
catastrophic collisions.

Recent economic analysis from the NASA Orbital Debris Program Office Phase 2 report highlights the cost-
effectiveness of certain debris remediation methods [19]. The report indicates that remediation approaches target-
ing small debris removal and just-in-time collision avoidance can yield net benefits within a decade. Specifically,
methods like removing 1–10 cm debris or nudging large debris to prevent collisions may provide substantial
economic returns by reducing collision risks and associated costs for satellite operators. These conditions herald
opportunity for efficient multi-rendezvous ADR missions, and further on ADR constellations, to mitigate the space
debris problem. This study aims to investigate the viability of NCO methods for the design of such missions.

Critical Fragmentation Events: Origin, Evolution and Impact
On February 10, 2009, the operational Iridium 33 satellite collided with the defunct Russian satellite Cosmos 2251
at an altitude of approximately 790 km, resulting in the first recorded collision between two intact satellites in
orbit [38]. The collision generated over 2,000 pieces of trackable debris, significantly increasing collision risks for
operational spacecraft in LEO [38]. The debris cloud, dispersed along the original orbits of the satellites, further
congested the already crowded 700–800 km altitude region [28]. Subsequent space debris generation events,
notably the Chinese Fengyun-1C anti-satellite test in 2007 [39], which produced over 3,000 pieces of debris, and
the Russian Cosmos 1408 destruction in 2021 [40], have exacerbated debris congestion in LEO.

The Gabbard diagram [41] is a plot which shows the distribution of a cloud of orbiting objects across the altitude-
period and Right Ascension of the Ascending Node (RAAN)-inclination axes. Gabbard diagrams are useful to
intuitively assess the evolution of a cloud over time and the cost of an ADR mission targeting it, and are widely
used to characterize fragmentation events [2], [41]. The Gabbard diagrams of the four debris clouds —Iridium
33, Cosmos 2252, Fengyun 1C and Cosmos 1408— as of September 2024 can be seen in Fig. 1.1. Up-to-date

2https://www.esa.int/Space_Safety/ClearSpace-1

https://www.esa.int/Space_Safety/ClearSpace-1
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Figure 1.2: Joint altitude-RAAN-inclination diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos
1408 debris clouds as of September 2024. Point size proportional to RCS. Color intensity in top row proportional
to lifetime before natural decay. Color trails, top: perigee to apogee altitude. Data obtained from Celestrak as of
September 2024. Own work.

satellite tracking data is obtained from CelesTrak3. The Gabbard diagrams in Fig. 1.1 display two more important
pieces of information: the Radar Cross-Section (RCS) of the debris, and the expected natural decay time of debris.
Decay time data is obtained from the ESA Database and Information System Characterising Objects in Space
(DISCOS)4.

In Fig. 1.2 the altitude and RAAN distributions of the four clouds are displayed together as a function of
inclination. This offers a mission designer’s view of the problem: a map relating the most important orbital
parameters for mission design in LEO to the likelihood of collisions with debris from the Iridium 33, Cosmos 2252,
Fengyun 1C and Cosmos 1408 clouds.

Debris clouds evolve over time due various perturbations. The most important perturbations are atmospheric
drag, which causes debris to shed altitude over time and eventually decay, and the gravity gradient perturbation.
As can be seen in Tab. 1.1 decay has considerably reduced the size of the clouds since their fragmentation events.
Cosmos 1408, the lowest of the four clouds —see Fig. 1.2, is an extreme example of natural decay due to drag
with over 96% of all fragments having decayed between 2021 and the present day in 2024. The Fengyun 1C
cloud will outlast all of them. Up to 1000 pieces of debris will remain in orbit by the year 2100 according to ESA
estimates. The secular impact of the gravity gradient perturbation causes a linear drift in the Argument of Perigee
(AOP) and RAAN of the orbit drift over time. This effect is fast (for context, SSO orbits see a RAAN drift of
360° per year) and has a profound impact on rendezvous cost, as the RAAN gap to be closed is the greatest
contributor to plane change ∆V for high inclination orbits [2].

The combination of the altitude-period and RAAN-inclination distributions in Fig. 1.1 is helpful to gain intuition
about the evolution of the clouds over time. Observe how as of 2024 the range of RAAN values of the Cosmos
2251 as well as the evenness of the distribution of debris over RAAN are both remarkably large. This is caused by
the low inclination of the cloud, which causes RAAN drift to accelerate, and the large range of semi-major axes
and eccentricities in the cloud, which cause variations in the rates of drift of different pieces of debris within the
cloud. The Cosmos 1408 and Iridium 33 clouds have higher inclinations as well as lower variances in semi-major
axis and eccentricity, leading to considerably more dense clouds along RAAN. The Fengyun 1C cloud towers

3https://celestrak.org
4https://discosweb.esoc.esa.int

https://celestrak.org
https://discosweb.esoc.esa.int
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Table 1.1: Number of debris fragments and RCS in [m2] of the Iridium 33, Cosmos 2252, Fengyun 1C and Cosmos
1408 debris clouds at the moment of fragmentation event (T0), as of the present day in 2024, and estimates for
the year 2050 and 2100. Estimates are obtained from the ESA DISCOS database.

Iridium 33 Cosmos 2251 Fengyun 1C Cosmos 1408
Count RCS Count RCS Count RCS Count RCS

T0 631 20,64 1626 34,81 3043 55,29 1801 7,51
2024 193 10,24 831 21,13 2192 42,96 68 7,50
2050 19 3,61 207 7,63 903 20,65 0 0,00
2100 5 3,01 76 3,38 435 11,04 0 0,00

above all others both in physical terms —the ranges of RAAN and inclination, the ranges of semi-major axis and
eccentricity, the number of active debris and the lifetime of active debris— as well as damage to space operations,
as the 96-98° inclination range is critical for many spacecraft in LEO that rely on Sun-Synchronous Orbits (SSO)
for their operations. As the cost of rendezvous is primarily driven by plane change cost [2], ADR missions are
bound to require extreme amounts of ∆V .

These events underscore the economic impact of space debris proliferation and emphasize the urgent need for
remediation strategies to safeguard space assets and ensure sustainable orbital use.

Active Debris Removal Mission Concept
This study considers an ADR mission targeting the Iridium 33 debris cloud. The characteristics of the spacecraft
considered through the rest of this work follow in Tab. 1.2. The propulsion system is based on the specifications
of existing Gridded Ion Thruster designs for small spacecraft, using the same power to thrust ratio of 21 kW N−1 of
the MiXi GIT propulsion system developed at UCLA [42] (for more information refer to O’Reilly’s extensive review
of electric propulsion systems for small spacecraft [43]). Spacecraft structural, fuel and payload mass are only
indicative of a spacecraft fit for this type of mission; payload mass is sized to 10-30 active de-orbiting payloads
[30], [35].

Table 1.2: Debris chaser spacecraft specifications.

Wet mass Fuel mass Payload mass Max aT Min aT Isp ∆V budget Max thrust Max power
1200 kg 450 kg 500 kg 3e−4 m s−2 1e−5 m s−2 3000 s 6.00 km s−1 0.36 N 7.55 kW

1.1.2 Sequential Payload Deployment to Low Earth Orbit
We demonstrate its capabilities by solving the multi-rendezvous trajectory optimization problem of UARX Space’s
OSSIE5 OTV: a translational and mass-dynamic multi-satellite deployment problem in LEO.

UARX Space OSSIE OTV
To demonstrate the capabilities of the proposed framework, the UARX Space Orbit Solutions to Simplify Injection
and Exploration OTV, known as OSSIE, will be used as a case study. Depicted in Fig. 1.3, OSSIE is a modular
payload delivery platform with LEO, MEO and cis-lunar capability. In this paper, we consider a nominal mission
profile aiming to deliver 4 PocketQubes, 8 CubeSats, and 1 small satellite to LEO.

The propulsion system used for this mission consists of 4 parallel Dawn Aerospace B20 bi-propellant (nitrous
oxide and propene) thrusters6 (specifications in Tab. 1.3). As of the time of writing, the duty-cycle constraints
of the thruster cluster constrain manoeuver design to multiple-revolution transfers, with up to two impulses per
orbit in LEO. Attitude control is performed using Dawn Aerospace B1 thrusters and magnetorquers. The vehicle

5https://www.uarx.com/projects/ossie.php
6https://www.dawnaerospace.com/green-propulsion

https://www.uarx.com/projects/ossie.php
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must retain attitude control authority at all times while ensuring correct pointing for thrusting as well as all other
operational modes. This poses a challenge for fuel consumption, as the B1 thrusters are the main attitude control
actuators and share fuel with the B20 thrusters used to perform orbital transfers.

Figure 1.3: UARX Space OSSIE OTV. Credit: UARX Space.

Table 1.3: Specifications of the OSSIE OTV and Dawn Aerospace B20 thrusters.

OSSIE OTV Dawn Aerospace B20
Specification Value Specification Value
Wet mass 235 kg Specific impulse 277 s
Payload mass 80 kg Peak thrust 12.6 N
Fuel mass 35 kg Minimum impulse bit 1 N s
Cargo capacity 48 U

The specifications of the current configuration of OSSIE follow in Tab. 1.3. OSSIE has a wet mass of approxi-
mately 235 kg, of which close to 50% is shed through the mission —either deployed or consumed propellant; this
means that the mass deployment sequence may have a considerable impact on the fuel required to complete the
mission. OSSIE is deployed to a nominal insertion orbit in LEO, which constraints transfer sequence design, and,
furthermore, must conduct a decommissioning manoeuvre to ensure it decays within 5 years of EOL as per the
ESA Space Debris Mitigation Requirements [29].

Optimization Problem Statement
Under the previous considerations, the OSSIE trajectory optimization problem results in a highly tailored multi-
rendezvous trajectory optimization problem. The goal of the problem is to construct a fuel-optimal optimal
trajectory which reaches all payload destination orbits. The number of payloads will be variable in each mission
and up to 13, considering the advertised carrying capacity of OSSIE of 8 CubeSats, 4 PocketCubes and 1 small
satellite. A solution to the problem must minimize fuel consumption considering:

• The impact of the relevant perturbations on multi-revolution impulsive manoeuvres.

• The impact of mass deployment sequence on propellant consumption.

• Insertion and decommissioning orbit constraints.

• Ensuring the spacecraft retains attitude control authority through the manoeuvre.

1.2 Research Questions
RQ.1 Can NCO methods be used to learn effective routing policies for space VRPs?
RQ.2 What is a suitable approach for the design of multi-rendezvous trajectories with strict feasibility guarantees?
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Research subquestions
1. Can NCO methods be used to improve the performance of state-of-the-art solvers for space VRPs?

(a) What is a suitable NCO architecture to learn routing policies for space VRPs?
(b) What are the optimal training procedures for NCO agents designed to solve the STSP?
(c) Can NCO methods yield improved performance with respect to state-of-the-art HCO algorithms for

the STSP?
(d) Can NCO methods be leveraged to improve the performance and speed of HCO algorithms?

2. How can trajectory optimization methods with feasibility guarantees, specifically Sequential Convex Pro-
gramming (SCP), be efficiently integrated in the multi-rendezvous trajectory optimization process?

1.3 Project Goals
G.1 To implement and optimize a multi-rendezvous trajectory optimization solver based on HCO methods.
G.2 To implement and optimize a multi-rendezvous trajectory optimization solver based on NCO.
G.3 To design a multi-rendezvous trajectory optimization software architecture covering the end-to-end guidance design

process from mission specification to trajectory refinement and verification for use in on-board GNC, and to apply
it to obtain optimal multi-rendezvous trajectories for the OSSIE OTV.

G.4 To analyze the nominal mission scenario designed for the OSSIE OTV and assess the capability of the OSSIE OTV
to achieve that scenario considering the full envelope of feasible customer demands (advertised services).

Project subgoals
1. To implement a near-optimal and efficient LEO-to-LEO LTTO algorithm

(a) To assess LTTO approaches in literature and choose an optimal approach for the conceptual design
of low-thrust multi-rendezvous missions

(b) To implement a 6-element targeting low-thrust guidance policy
(c) To implement an optimal simulator to generate trajectories for use in the conceptual design of low-

thrust ADR missions in LEO
(d) To implement an accurate transfer cost estimation method to be used in CO

2. To implement a near-optimal LEO-to-LEO impulsive trajectory optimization algorithm, capable of consid-
ering the mission objectives and constraints of the OSSIE OTV

(a) To assess impulsive trajectory design approaches in literature and choose an optimal approach for the
OSSIE OTV

(b) To implement a 3-element targeting impulsive guidance policy
(c) To implement an optimal simulator to generate feasible trajectories for the OSSIE OTV fit for use as

warm starts in SCP
(d) To implement an accurate transfer cost estimation method to be used in CO

3. To implement a state-of-the-art space VRP solver using HCO

(a) To model the dynamic environment of space VRPs in LEO
(b) To implement a population sampling algorithm capable of leveraging approximate solutions obtained

with other methods
(c) To determine the optimal HCO method for the ADR STSP and OSSIE mission design cases

4. To implement a state-of-the-art space VRP solver using NCO
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(a) To assess NCO approaches in literature and select an optimal policy for the solution of space VRPs
(b) To assess the performance of various RL algorithms to train space VRP routing policies, and find an

optimal choice
(c) To implement a state-of-the-art hyperparameter optimization process
(d) To assess the performance of NCO routing policies in comparison with HCO

5. To investigate the viability of the nominal mission scenarios designed for the OSSIE OTV

(a) To implement a highly performant space VRP solver tailored for the OSSIE OTV
(b) To implement a large-scale Monte Carlo analysis tool capable of efficiently generating and solving

arbitrary mission scenarios
(c) To conduct a statistical analysis of the performance requirements of nominal mission scenarios, and

assess the capacity of the OSSIE OTV to satisfy all nominal mission scenarios

1.4 Thesis Focus and Structure
The present work aims to answer two fundamental research questions. The first has to do with the applicability
and effectiveness of NCO approaches for the design of multi-target rendezvous trajectories. The second has to
do with the design of trajectories with feasibility guarantees for OSSIE. Two research lines were drawn in this
work with the goal of giving a definitive answer to each research question: a study of the design of Active Debris
Removal missions in LEO using NCO, and the design of a guidance system to generate multi-rendezvous for
the OSSIE OTV with correctness guarantees. At the core of both pieces of research is a solution framework for
multi-rendezvous problems capable of integrating NCO policies. As a result this thesis consists of two different
research papers, and accompanying material.

The accompanying material in this thesis consists of two chapters and four appendices, and has two aims. The
first aim is to provide a unified and coherent discussion of topics which are transversal in both papers, and of
topics which are not common to both papers but complementary, e.g. trajectory design. The second aim is to
provide greater depth in the discussion of selected topics, when such depth would not be warranted in a paper
limited to a maximum number of pages.

The background —common and complementary— of the research presented in this thesis is presented in Chap-
ter 2. Orbital mechanics are discussed in Section 2.1, followed by impulsive trajectory design in Section 2.2 and
low-thrust trajectory design in Section 2.3. Combinatorial Optimization follows. Section 2.4 discusses HCOmbi-
natorial Optimization. Lastly, Section 2.5 discusses Neural Combinatorial Optimization.

Chapter 3 deals with verification and validation, the design of the experiments conducted in this work and
sensitivity analysis. The purpose of this chapter is to provide the reader with a unified discussion of the measures
taken to ensure the correctness of all methods implemented in this work, in Section 3.1; to ensure the robustness
of all experiments conducted in this work, in Section 3.2; and to study the sensitivity of NCO policy performance
on the hyperparameters of the model and training process, in Section 3.3.

Chapter 4 contains the paper titled Neural Combinatorial Optimization for Multi-Rendezvous Mission Design.
This paper aims to answer Research Question 1: Can NCO methods be used to learn effective routing policies for
space VRPs?

Chapter 5 contains the paper titled Design And Optimization Of Multi-rendezvous Maneuvres Based On Re-
inforcement Learning And Convex Optimization, presented at the 2024 International Astronautical Congress in
Milan, Italy. This paper aims to answer Research Question 2: What is a suitable approach for the design of
multi-rendezvous trajectories with strict feasibility guarantees?

Chapter 6 concludes the thesis outlining the main results of this thesis. Section 6.1 assesses the outcomes of
the thesis, in two parts. Firstly, the two research questions are reviewed in light of the research done. Then, a
thorough analysis of compliance with project goals is presented.
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The conclusion is followed by the bibliography and four appendices. Appendix A deals with the statistical
modelling of space debris clouds, vital for the creation of realistic environments to train NCO policies for ADR
missions. Appendix B contains an in-depth discussion of statistical models for permutations, which lay at the
foundation of the HCO framework presented in this work. Appendix C discusses the architecture of the software
developed for this research. Lastly, the planning and execution of the project is discussed in Appendix D.
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2 Background

This chapter establishes the fundamental theoretical background for the two lines of research conducted in this
work. This comprises physical models, discussed in Section 2.1, trajectory design methods, discussed in Section 2.2
and Section 2.3 and heuristic and neural combinatorial optimizatation methods, discussed in Section 2.4 and
Section 2.5 respectively. This chapter is supported by Appendix A and Section B.2, dedicated to statistical
models for space debris clouds and permutations.

2.1 Orbital Mechanics
This section introduces the reference frames (Section 2.1.1), translational physical models (Section 2.1.2) and
orbit propagation models (Section 2.1.3) used in this work.

2.1.1 Reference Frames
Earth-Centered Inertial reference frame

The Earth-Centered Inertial (ECI) reference frame is defined with its origin at the Earth’s center of mass and
remains fixed with respect to the celestial sphere [44]. The basis vectors are oriented as follows:

• xI points towards the March equinox, also known as the First Point of Aries, where the Earth’s equatorial
plane intersects the ecliptic plane.

• yI lies in the equatorial plane, orthogonal to xI , completing the right-handed coordinate system.

• zI aligns with the Earth’s rotation axis, pointing towards the North Celestial Pole.

Local-Vertical Local-Horizontal reference frame
The Local-Vertical Local-Horizontal (LVLH) reference frame is a non-inertial, rotating coordinate system centered
at the spacecraft [45]. This reference frame is also known as the RSW frame and CSN frame in literature. We
make use of the Hintz convention with the radial component pointing away from the center of gravity of the
Earth [45], [46]. The basis vectors are defined as follows:

• êr points away the center of gravity of the Earth, aligned with the negative position vector −r (Local
Vertical).

• êϕ is oriented opposite to the orbit angular momentum vector h.

• êθ forms a right-handed coordinate system, and is tangential to the instantaneous velocity of the spacecraft.

The LVLH and ECI frames is visualized in Fig. 2.1. The transformation of a vector ûECI defined in the ECI frame
to the LVLH frame ûMEE is defined in Eq. 2.1.

ûECI = [êr êθ êϕ]ûMEE (2.1a)
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Figure 2.1: ECI and LVLH reference frames.

êr =
r
∥r∥ ; êϕ =

r× v
∥r× v∥ ; êθ = êϕ × êr (2.1b)

2.1.2 Environment Model
Point-Mass Gravity Field Model

The simplest possible gravity field model is the point mass approximation [47]. Newton’s law of gravitation for
two point masses is given by:

(F1)2 =
Gm1m2

∥r1,2∥3
r1,2 (2.2)

where (F1)2 is the force exerted on body 1 due to the gravitational pull of body 2, r1,2 is the vector from the
center of gravity of body 1 to the center of gravity of body 2, G is the universal gravitational constant, and m1

and m2 are the masses of the bodies. Assuming that spacecraft mass is negligible with respect of that of the
central body yields the following expression for the gravitational acceleration of a spacecraft s orbiting a central
body C:

(as)C = −G mE

∥rC,s∥3
rC,s (2.3)

where rC,s is the vector from the center of gravity central body to that of the spacecraft. As the only problems
considered in this work are two-body problems in Earth orbit, the convention ak will be used to refer to the
acceleration exerted on a spacecraft due to a factor k, e.g. aJ2 will be used to refer to the acceleration exerted
on a spacecraft corresponding to the J2 zonal harmonic coefficient. This perturbation in particular is discussed
next.

Natural Perturbations
Natural perturbations are those that stem from differences between the model of the space environment and
real physical phenomena. Two natural perturbations must be considered for the design of near-Earth orbits:
atmospheric drag, and gravity gradient perturbations. The perturbing acceleration from atmospheric drag is
modelled by Eq. 2.4,

aD = −CD
1

2
ρ
A

m
v∥v∥ (2.4)
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where CD is the drag coefficient related to the reference area A of the spacecraft, m is the mass of the spacecraft,
ρ stands for atmospheric pressure and v is the velocity of the satellite relative to the rotating atmosphere of
the Earth [47]. Drag is a non-conservative force which constantly drains the orbital energy of an orbiting body,
causing orbital decay. Drag is the most important natural perturbations for orbits at an altitude of 200 km, and
can be neglected for orbits with altitudes above 1000 km [47].

The gravity gradient perturbation is the natural perturbation with the greatest impact for trajectory design in
the operational regimes considered in this work: the location of the Iridium 33 debris cloud at an altitude of
approximately 800 km, and the nominal altitude envelope of the OSSIE OTV centered at 600 km. The gravity
gradient perturbation is caused by the difference between the real gravity field of the Earth and the ideal point-
mass model of the Earth’s gravity field. The greatest contribution to the gravity gradient perturbation comes from
the Earth oblateness gravity potential distortion [2], [48], characterized by the second zonal harmonic coefficient
or J2. The instantaneous acceleration components due to the J2 perturbation follow in Eq. 2.5, expressed in the
LVLH frame.

aJ2,r = −3µJ2R
2
e

2r4

(
1− 12v2

s4

)
aJ2,θ = −12µJ2R

2
e

r4

(
v(h cosL+ k sinL)

s4

)
aJ2,ϕ = −6µJ2R

2
e

r4

(
v(1− h2 − k2)

s4

) (2.5)

The J2 perturbation has a secular impact on the RAAN and the AOP over a full orbit [47], modelled by Eq. 2.6,

dΩ
dt

=− 3

2
J2

(
Re
p

)
n cos i;

dω
dt

=− 3

4
J2

(
Re
p

)
n(5 cos2 i− 1));

(2.6)

where n =
√
µ/a3 is the mean motion of the orbiting body.

Thrust Acceleration
The thrust acceleration aT applied by the spacecraft in the RWS frame is defined in Eq. 2.7, where û is the
direction of application of thrust.

aT =
T

m
û (2.7)

2.1.3 Orbit Propagation Model
The translational state of spacecraft is propagated using the Modified Equinoctial Elements (MEEs) described
by Hintz [45] including the retrograde factor I, which are nonsingular for all eccentricities and inclinations. A
visualization of the physical meaning of each MEE follows in Fig. 2.2. The conversion from classical Keplerian
elements [45] to MEEs follows in Eq. 2.8:

p = a(1− e2);
f = e cos(ω +Ω);

g = e sin(ω +Ω);

h = tan(i/2) sin(Ω);
k = tan(i/2) cos(Ω);
L = θ + IΩ+ ω;

(2.8)
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Figure 2.2: Modified Equinoctial Elements (MEE) with respect to orbital plane.

where a stands for the semimajor axis, e for orbital eccentricity, i for orbital inclination, Ω for RAAN, ω for AOP,
and θ the true anomaly.

The Gauss Variational Equations for MEEs [45], in Eq. 2.9, are used to model the time evolution of the
spacecraft’s state:

dp
dt
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µ
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(2.9)

where s2, v and w are defined as follows,

s2 = 1 + h2 + k2;

v = h sin(L)− k cos(L);
w = 1 + f cos(L) + g sin(L);

(2.10)

and ∆r, ∆t and ∆n are perturbing accelerations in the radial, tangential, and normal directions of the spacecraft’s
LVLH frame ê depicted in Fig. 2.1. The spacecraft’s mass is propagated according to Eq. 2.11, assuming constant
Isp through a single burn.

dm
dt

=
T

veq
; (2.11)
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2.2 Impulsive Trajectory Design
This section introduces the impulsive trajectory design policies used for the UARX Space OSSIE OTV. OSSIE
sports a propulsion system consisting of four Dawn Aerospace B20 thrusters in parallel, with a duty cycle reminis-
cent of an impulsive propulsion system but with a fairly low maximum thrust of 45 [N]. This means OSSIE must
perform multi-revolution transfers applying many, weak impulsive burns to reach its targets. OSSIE is required
to achieve 3-element targeting: semi-major axis, inclination and phase. Hohmann transfers are commonly used
to transfer between coplanar circular orbits with varying radii. Nodal Inclination Change (NIC) maneuvers are a
standard approach used to adjust orbital inclination without altering RAAN [5], [47]. This section discusses the
design of multi-revolution Hohmann transfers in Section 2.2.1, multi-revolution NIC manoeuvres in Section 2.2.2,
multi-revolution IPC manoeuvres in Section 2.2.3, and sequential manoeuvres targeting both semi-major axis and
plane changes, by combining MHT, NIC and IPC manoeuvres Section 2.2.4.

2.2.1 Multiple Hohmann Transfer manoeuvres
A Hohmann transfer is the optimal manoeuvre to transfer between two coplanar circular orbits of different radii. It
is a two-impulse manoeuvre consisting of an initial burn, either raising apogee or lowering perigee —if the transfer
aims to lower the Semi-Major Axis (SMA) of the initial orbit— and a circularization burn when the apogee (or
perigee) of the transfer manoeuvre is reached. For OSSIE, the ∆V required to perform a direct Hohmann transfer
may not be achievable. This limitation is dealt with by performing Multiple Hohmann Transfers (MHT) instead.
The MHT splits the departure and circularization burns into many consecutive insertion and circularization smaller
burns, affordable by the maximum ∆V that can be injected at a time with the employed thrusters.

Required ∆V , fuel mass and number of burns
The ∆V required by the MHT is equal to the one of a direct Hohmann Transfer achieving the same altitude
change. The total magnitude can be computed as follows in Eq. 2.12, where ∆Vd and ∆Vc stand for departure
and circularization ∆V , V0 =

√
µ/r0 is the orbital velocity at the departure orbit and ξ = r1/r0 is the ratio of

target to departure orbit [47].

∆VMHT = ∆Vd +∆Vc (2.12a)

∆Vd = V0

∣∣∣∣√ 2n

ξ + 1
− 1

∣∣∣∣ (2.12b)

∆Vc = V0

√
1

ξ

∣∣∣∣√ 2n

ξ + 1
− 1

∣∣∣∣ (2.12c)

The fuel mass required to perform the MHT is calculated as follows in Eq. 2.13, assuming constant Isp through
the manoeuvre; the number k of burns required to perform a manoeuvre is obtained as the ceil fraction of required
fuel mass over mass flow ṁf = T/(Ispg0) (see Eq. 2.13). The mass flow is assumed constant, as T and Isp are
assumed constant through the transfer.

mf = m0

[
1− exp

(
− ∆V

Ispg0

)]
; k =

⌈
mf

ṁf

⌉
(2.13)

Time Of Flight
The total TOF of the MHT follows in Eq. 2.14,

TOFMHT = min(1, fburn) · (kd + kc) · PMHT (2.14)

where kd and kc are the number of burns required to perform the departure and circularization legs of the
manoeuvre respectively, calculated using Eq. 2.13, fburn stands for the burn frequency, and P stands for the
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average orbital period through the transfer. The burn frequency is the maximum number of burns per second
that the spacecraft can perform, defined in Eq. 2.15,

fburn = (Tburn + Tcooldown)
−1 (2.15)

where Tburn is the burn time of the spacecraft’s propulsion system and Tcooldown is the required cooldown time
after one burn. The average orbital period through the transfer, P , can be derived to be Eq. 2.16:

PMHT =
4π

5
√
µ (r2 − r1)

(
r

5
2
2 − r

5
2

1

)
(2.16)

Phasing
The spacecraft ends the MHT at true longitude L0 + π. To avoid phasing manoeuvres after reaching the
required orbit, in order to acquire the target true longitude, the MHT start epoch is selected so that L0(t0) =
L1(t0 + TOFMHT)− π, where TOF is the estimated time of flight. This correction is computed after the MHT
calculation, thus TOFMHT is known.

2.2.2 Nodal Inclination Change manoeuvres
An NIC manoeuvre modifies the inclination of an orbit without affecting its RAAN. Thrust is applied impulsively
as the spacecraft crosses the ascending or descending node, such that the resulting velocity vector is that of the
orbit with the desired inclination. A multiple NIC manoeuvre consists of splitting the impulsive ∆V that must be
applied into multiple burns, up to twice per orbit, as the spacecraft crosses the orbit ascending and descending
nodes.

Required ∆V , fuel mass and number of burns
The ∆V required for an NIC follows in Eq. 2.17,

∆VNIC = 2V0 sin
(
∆i

2

)
(2.17)

where mf stands for fuel mass, and kNIC is the number of burns required for to perform the NIC, which is
calculated using Eq. 2.13. As the ∆V depends only on the change in inclination and orbital velocity (constant
through the manoeuvre), the cost of a multiple NIC is the same as the cost of a single-burn NIC [47].

Time Of Flight
The TOF of a multiple NIC is calculated using Eq. 2.18,

TOFNIC = min(2, fburn) · (kNIC) · P (2.18)

where P = 2π
√
r3/µ is the constant orbital period.

2.2.3 Impulsive Plane Change Manoeuvres
An Impulsive Plane Change (IPC) manoeuvre modifies the inclination and RAAN of an orbit simultaneously. This
is done by applying thrust at the intersection of the original and target orbit [2], [5]. A multiple IPC manoeuvre
consists of splitting the impulsive ∆V that must be applied into multiple burns, up to twice per orbit, as the
spacecraft’s orbit intersects the target orbit. Critically this assumes circular orbits with equal radius (otherwise it
is not a given that there will be any intersections between the two orbits at which to apply thrust).
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Required ∆V , fuel mass and number of burns
The ∆V required for an IPC follows in Eq. 2.19a, where γ is the relative inclination, defined in Eq. 2.19b [2],
[5]. As the ∆V depends only on the change in relative inclination and orbital velocity (constant through the
manoeuvre), the cost of a multiple IPC is the same as the cost of a single-burn IPC. The fuel mass mf and
number of burns kIPC required for to perform the IPC is calculated using Eq. 2.13.

∆VIPC = 2V0 sin
(γ
2

)
(2.19a)

γ = arccos(cos i1 cos i2 + sin i1 sin i2[cosΩ1 cosΩ2 + sinΩ1 sinΩ2]) (2.19b)

Time Of Flight
The TOF of a multiple IPC is calculated with Eq. 2.20, where P = 2π

√
r3/µ is the constant orbital period.

TOFIPC = min(2, fburn) · (kIPC) · P (2.20)

2.2.4 Sequential impulsive manoeuvres
From Eq. 2.17 it is of paramount importance to lower orbital velocity before performing an NIC. This is the case for
IPCs as well, see Eq. 2.19. OSSIE will often have to reach targets with different semi-major axes and inclinations
than its current ones: the most common case is orbit acquisition for payloads which require a particular orbital
altitude to carry out their activity as well as a sun-synchronous orbit —commonly the case for Earth observation
and mapping satellites. Algorithm 1 is used to plan sequential MHT and plane change manoeuvres, either NIC
or IPC, by conducting the plane change when the semi-major axis is highest, such that the ∆V required for the
plane change leg is minimized.

Algorithm 1: Sequential MHT-NIC/IPC Transfer
if r2 > r1 then // Orbit raising

Step 1: MHT
Compute coast time to L0

Compute ∆VMHT
Compute time of flight tMHT
Step 2: Plane change
Compute coast time to closest node
Compute ∆VNIC/IPC
Compute time of flight tNIC/IPC

else // Orbit lowering
Step 1: Plane change
Compute coast time to closest node
Compute ∆VNIC/IPC
Compute time of flight tNIC/IPC
Step 2: MHT
Compute coast time to L0

Compute ∆VMHT
Compute time of flight tMHT

2.3 Low-Thrust Trajectory Design
Low-Thrust Trajectory Optimization (LTTO) is a critical aspect of mission planning for spacecraft employing elec-
tric propulsion systems. Traditionally, these optimization problems are formulated as Optimal Control Problems
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(OCPs), suitable for continuous spacecraft dynamics with real variables and parameters [49]. However, electric
propulsion systems exhibit hybrid dynamical behavior due to discrete operational modes—thrusting and coasting—
and mission design variables [50]. In these cases LTTO is tackled as a Hybrid Optimal Control Problem [50]. Solv-
ing HOCPs is challenging due to the interconnection of continuous and discrete dynamics, rendering methods
for Continuous Optimal Control Problems (COCPs) and purely discrete optimization unsuitable [51]. The Hybrid
Minimum Principle (HMP) provides first-order necessary conditions for HOCPs by generalizing Pontryagin’s Max-
imum Principle, but it requires the sequence of discrete events to be specified by the user, converting the HOCP
into a multi-point boundary value problem solvable by indirect methods [52]. Dynamic programming has been
extended to HOCPs, but convergence to the true value function is not generally guaranteed [53]. Consequently,
HOCPs are typically solved using direct methods formulated as MINLP, which are NP-hard to solve [50]. To
reduce computational time, hybrid optimization schemes with nested loops are employed, where the inner loop
solves continuous variables using gradient-based solvers, and the outer loop handles discrete variables using heuris-
tic algorithms. Other methods include branch and bound, branch and cut, outer approximation, and generalized
Benders decomposition [50].

2.3.1 Approaches
Morante et al. [50] identify two types of LTTO approaches: analytical and numerical. Analytical methods provide
closed-form or semi-analytical solutions for specific LTTO scenarios by simplifying assumptions such as constant
thrust direction or specific boundary conditions [54], [55]. Analytical methods are seldom feasible for most LTTO
problems, hence the numerical approach is the norm for low-thrust mission design [50]. Numerical methods are
classified in direct methods, indirect methods and dynamic programming [50]. Each method may then be solved
using either gradient-based, heuristic or hybrid algorithms [50].

Direct methods, such as direct collocation, transcribe the OCP into a nonlinear programming problem, allowing
for the incorporation of complex constraints and mission requirements [56]. Direct methods are the most common
LTTO approach, but they are computationally costly and rely on initial guesses of the final trajectory [50]. Less
accurate but faster direct approaches have been developed, notably the Sims-Flanagan Transcription (SFT) scheme
[50]. An important family of direct methods are those that derive control laws from predefined guidance schemes,
which yield suboptimal solutions but are faster [50]. Indirect methods [49], [57] derive the necessary conditions for
optimality using Pontryagin’s Maximum Principle but are particularly sensitive to initial guesses and challenging for
problems with path constraints [49]. The homotopy method is often used to generate progressively better initial
guesses [58]. Dynamic programming methods solve optimal control problems by decomposing them into simpler
subproblems, solving each recursively, and utilizing the principle of optimality to construct the overall solution
[59]. Whiffen [60] developed the Static/Dynamic optimal Control (SDC) algorithm, a form of Differential Dynamic
Programming (DDP) implemented in the software Mystic, which is considered state-of-the-art and was used in
designing missions like NASA’s DAWN [61]. Computational cost limits trajectories optimized by Mystic to 250
revolutions [50]. Other approaches trade-off accuracy in favor of faster generation [50]. Examples are Hybrid
Differential Dynamic Programming (HDDP) [62], [63], and the DDP approach proposed by Aziz et al. [64] making
use of a Sundman transformation, capable of optimizing geocentric trajectories of up to 2000 revolutions. Despite
their robustness and flexibility, dynamic programming methods are computationally intensive, making them less
practical for high-dimensional problems and conceptual design [50].

2.3.2 Lyapunov Control
Of the family of direct Low-Thrust Trajectory Optimization (LTTO) methods [49], [50] that make use of predefined
control laws [50], [65], Lyapunov Control (LC) methods are notable for being both fast and able to generate
reasonable estimates of optimal planetocentric trajectories [50]. Since their introduction by Ilgen in 1993 [66], LC
methods have been extended to incorporate a variety of mission constraints [50], [67], [68]. A notable advantage
of LC laws is that they naturally drive the spacecraft to the desired final state, removing the need to include
boundary conditions on the final state [50]. The Q-Law in particular, introduced and refined by Petropoulos [67],
[69], has been widely used for preliminary mission design [50] as well as to generate initial guesses for high-fidelity
tools, notably JPL’s Mystic [50], [70], [71]. In 2023 Narayanaswamy et al. [46] introduced the Rendezvous Q-Law



45 Lyapunov Control

(RQ-Law), capable of dynamic six-element targeting by means of a semi-major axis augmentation scheme.

Q-Law
The Q-Law, originally introduced by Petropoulos [69], is a Lyapunov feedback control law for low-thrust trajectory
optimization based on the “proximity quotient” Q, a candidate Lyapunov function that approximates the best
quadratic time-to-go [69]. MEE formulations of the Q-Law were later developed by Petropoulos [67] and Varga
[68]. Q is defined in Eq. 2.21,

Q(œ,œT ,Wx) = (1 +WpP )
∑

œ
SœWœ

(
œ−œT

œ̇xx

)2

, œ = a, f, g, h, k. (2.21)

where the periapsis penalty P is defined in Eq. 2.22 and the element scaling factors Sœ are defined in Eq. 2.23.

P = exp
(
k

(
1− rp

rpmin

))
(2.22)

Sœ =


(
1 +

(
|a− aT |
maT

)n) 1
r

œ = a,

1 œ = f, g, h, k.

(2.23)

The feedback control law is derived such that Q̇ is negative definite, and follows in Eq. 2.24. This follows
from applying the chain rule Q̇ = ∇Qœ̇ and observing that œ̇ = Ψu, where Ψ stands for the Gauss variational
equations in MEEs (Eq. 2.9).

u = −Ψ⊤∇Q (2.24)

The original law has 11 scalar parameters:

• WP : periapsis penalty weight in Eq. 2.21

• Wœ: element weights (for elements a, f , g, h and k) in Eq. 2.21

• rp,min: minimum periapse radius rp,min in Eq. 2.22

• k: minimum periapse penalty parameter parameter in Eq. 2.22

• m, n and r: semi-major axis scaling parameters in Eq. 2.23.

Rendezvous Q-Law
The Rendezvous Q-Law (RQ-Law), proposed by Narayanaswamy [46], builds on the work of Lantukh et al. [72]
extending the Q-Law to enable dynamic six-element targeting by means of a semi-major axis augmentation scheme
(Eq. 2.25). The scheme is designed to induce an error in the semi-major axis related to the difference between
the current and desired true longitude. This scheme adds two parameters to the feedback control law: the true
longitude weight WL and Wscl, which determines the slope of the induced error. The scheme becomes active
after reaching 5-element convergence, splitting the manoeuvre in two phases: orbit acquisition and longitude
acquisition, or phasing.

œT,aug =

aT + 2WL

π

(
aT − rp,min

1−
√
f2
C+g2C

)
tan−1(Wscl∆L[−π,π]), œ = a

œT , œ ∈ {f, g, h, k}
(2.25)
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Perturbations and Constraints
The most relevant perturbations for planetocentric trajectories are gravity field distortions, chiefly J2 in the case
of the Earth [13], [68]. Perturbing terms are seldom included in the formulation of the Q-Law, as the feedback
control tends to waste fuel to counter-act the perturbing accelerations instead of taking advantage of them [67],
[68]: instead, the parameters of the Q-Law are optimized to obtain near-optimal results under the effect of
perturbations, using either conventional [68] or ML-based methods [73]. Eclipse and duty cycle constraints are
also important for electric propulsion spacecraft [68].

Minimizing trajectory generation time is highly desirable, as a very large number of trajectories must be generated
to train the NCO policy and assess the viability of NCO for space VRPs. The dynamicity of orbiting debris however,
chiefly driven by the secular impact of the J2 perturbation, is critical to the complexity of the STSP, and cannot
be neglected [2]. To balance performance and realism this study considers unperturbed transfers between orbiting
targets, while propagating the cloud according to the secular impact of the J2 perturbation [13], [17].

Parameters, Weights and Tolerances
Tab. 2.1 lists the values of the Q-Law and RQ-Law parameters used. Tab. 2.2 lists the element weights and
convergence tolerances used. The values of the parameters and weights are those recommended by Varga et al.
[68] in the case of the Q-Law and by Narayanaswamy et al. [46] in the case of the RQ-Law. Note the presence
of a relaxed tolerance. The relaxed tolerance is used to end the manoeuvre once it has been met 10 times, if
convergence has not been achieved by that point. This is to avoid convergence issues, especially in the case of
the RQ-Law [46]. Tolerances are set so that at worst (that is, in the case the relaxed tolerances are met 10 times)
the Cartesian position error of an RQ-Law transfer between two average debris objects in the Iridium 33 cloud
(average altitude of 700 km) will be of approximately 100 km, which is considered a reasonable distance at which
to switch to rendezvous guidance strategies (such as relative navigation guidance schemes).

Table 2.1: Q-Law and RQ-Law parameter values.

k m n r b Wp Wl Wscl

100.0 3.0 4.0 2.0 0.01 1.0 0.0594 3.6230

Table 2.2: Element weights and convergence tolerances.

Element Wœ Wœ,phasing Tolerance Relaxed Tolerance
a 1 10 1× 102 m 1× 103 m
e 1 1 1× 10−3 deg 1× 10−2 deg
i 1 1 1× 10−3 deg 1× 10−2 deg
Ω 1 1 1× 10−3 deg 1× 10−2 deg
ω 1 1 1× 10−3 deg 1× 10−2 deg
θ — — 1× 10−1 deg 1 deg

Integrator Selection
The Tudat Space1 astrodynamics library [74] is used to implement the simulator. Tudat supports a wide variety
of integrators, including fixed and variable step Runge-Kutta (RK) integrators, Bulirsch-Stoer (BS) extrapolation
integrators and variable-order Adams-Bashfort-Moulton (ABM) integrators. For further information about integra-
tor families and particular integratrators refer to the Tudatpy documentation2, Press et al. [75] and Montenbruck
and Gill [44].

1https://docs.tudat.space/en/latest/
2https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/propagation_setup/integration_setup.h

tml

https://docs.tudat.space/en/latest/
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/propagation_setup/integration_setup.html
https://docs.tudat.space/en/latest/_src_user_guide/state_propagation/propagation_setup/integration_setup.html
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Table 2.3: Integrators available in the Tudat Space astrodynamics library. V.S.: variable-step.

Name V.S. Description
Forward Euler Method First-order explicit method
Runge-Kutta 4th Order Method Classic 4th-order Runge-Kutta method
Explicit Midpoint Method Second-order explicit midpoint method
Explicit Trapezoid Rule Second-order explicit trapezoid rule (Heun’s method)
Ralston’s Method (2nd Order) Second-order Ralston’s method
Runge-Kutta 3rd Order Method Third-order Runge-Kutta method
Ralston’s Method (3rd Order) Third-order Ralston’s method
SSPRK3 Method Third-order Strong Stability Preserving Runge-Kutta method
Ralston’s Method (4th Order) Fourth-order Ralston’s method
Runge-Kutta 3/8 Rule Fourth-order Runge-Kutta 3/8-rule method
Heun-Euler Method 7 Second-order Heun’s method with embedded first-order Euler method
Runge-Kutta-Fehlberg 1(2) Method 7 Second-order RKF method with embedded first-order method
Runge-Kutta-Fehlberg 4(5) Method 7 Fifth-order RKF method with embedded fourth-order method
Runge-Kutta-Fehlberg 5(6) Method 7 Sixth-order RKF method with embedded fifth-order method
Runge-Kutta-Fehlberg 7(8) Method 7 Eighth-order RKF method with embedded seventh-order method
Dormand-Prince 8(7) Method 7 Eighth-order Dormand-Prince method with embedded seventh-order method
Runge-Kutta-Fehlberg 8(9) Method 7 Ninth-order RKF method with embedded eighth-order method
Runge-Kutta-Verner 8(9) Method 7 Ninth-order Runge-Kutta-Verner method with embedded eighth-order method
Runge-Kutta-Feagin 10(8) Method 7 Tenth-order RKF method with embedded eighth-order method
Runge-Kutta-Feagin 12(10) Method 7 Twelfth-order RKF method with embedded tenth-order method
Runge-Kutta-Feagin 14(12) Method 7 Fourteenth-order RKF method with embedded twelfth-order method
Bulirsch-Stoer Integrator 7 Extrapolation integrator using Bulirsch-Stoer sequence
Deufelhard Integrator 7 Extrapolation integrator using Deufelhard sequence
Adams-Bashforth-Moulton Integrator 7 Variable order and step size predictor-corrector integrator of orders 6–12
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Figure 2.3: Benchmark step size selection. Test EOM
error: error as of the last epoch of the tested (higher
step size) trajectory. Convergence point error: distance
between the last point of the tested and benchmark
(lower step size) trajectories.

Figure 2.4: Integrator selection summary. Red line, top:
final integration error requirement of 1 meter. Purple
line, bottom: output density requirement of 100 nodes
per orbit.

A trade-off considering all integrators available in Tudat was conducted to determine the best integrator for this
use case. The complete list of Tudat integrators can be seen in Tab. 2.3. The selection of numerical integrator
was based on the performance in simulating the average transfer in the RAAN walk [2] that traverses the Iridium
33 debris cloud.

A benchmark had to be constructed to measure the performance of the integrators. Benchmark selection was
performed using the Q-Law, as Q-Law convergence is considerably more robust than RQ-Law phasing convergence
[46]. The Runge-Kutta-Feagin 14(12) (RKF1412) integrator was chosen to generate the benchmark trajectory.
The benchmark timestep was chosen as the largest time-step before the integration error of the benchmark
becomes driven by numerical rounding error. An array of candidate benchmark timesteps t was created containing
log-spaced timesteps between 10,000 [s] and 1 [s]. For each pair of timesteps ti and ti+1 —where ti > ti+1—,
a benchmark integration error was obtained as the difference in Cartesian position between the final state of the
spacecraft in the ti propagation, and the state of the spacecraft in the ti+1 at the final epoch of the ti propagation.
The latter value is obtained by interpolating the reference ti+1 propagation; Runge’s phenomenon is avoided by
discarding the last 5 timesteps of the interpolated ti+1 propagation. This error decreases as ti and ti+1 become
smaller until plateauing, meaning that further reduction of the benchmark’s timestep does not improve integration
error anymore. The result can be seen in Fig. 2.3. A benchmark step size of 4.5 [s] was selected. Note the rather
large convergence point error seen in Fig. 2.3, it indicates that agreement about the convergence point is much
harder to achieve than rounding-error level integration error. This is considerably dependent on the convergence
tolerances, and is of no concern for benchmark selection.

Selection criteria are a maximum final Cartesian position error of 1 meter and a minimum node density of 100
nodes per orbit to ensure feasible and realistic interpolation of trajectories. Each integrator was evaluated under
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Table 2.4: Performance of the 15 best integrators. Note how the 6 best integrators perform very similarly. Any
of these would be fairly good choices for this use case.

Settings Step Size Control F. Evals [-] Final Error [m] Density [n/o] CPU Time [s]
ABM 6-8 tol = 3.2× 10−9 5.625× 104 2.873× 10−1 1.820× 102 2.148
ABM 6-9 tol = 3.2× 10−9 5.627× 104 2.857× 10−1 1.820× 102 2.140
Ralston 3 dt = 32 s 5.840× 104 9.768× 10−1 1.909× 102 1.710
RK4 dt = 32 s 7.300× 104 2.560× 10−1 1.909× 102 2.810
RK4 3/8 dt = 32 s 7.300× 104 1.624× 10−1 1.909× 102 2.139
Ralston 4 dt = 32 s 7.300× 104 3.079× 10−1 1.909× 102 2.138
ABM 6-9 tol = 1× 10−10 8.248× 104 1.610× 10−2 2.678× 102 3.171
ABM 6-8 tol = 1× 10−10 8.345× 104 7.553× 10−2 2.709× 102 3.217
RKF4(5) higher dt = 32 s 1.022× 105 2.825× 10−1 1.909× 102 3.593
RKF4(5) lower dt = 32 s 1.022× 105 2.870× 10−1 1.909× 102 2.992
RKF5(6) higher dt = 32 s 1.314× 105 1.878× 10−2 1.909× 102 3.837
RKF5(6) lower dt = 32 s 1.314× 105 1.944× 10−2 1.909× 102 3.861
DP8(7) higher dt = 32 s 2.044× 105 1.318× 10−3 1.909× 102 6.120
DP8(7) lower dt = 32 s 2.044× 105 1.374× 10−2 1.909× 102 6.080
RKF7(8) lower dt = 32 s 2.044× 105 9.511× 10−4 1.909× 102 5.822

both fixed and variable step sizes. Fixed-step integrators were tested with five timesteps ranging from 1 second
to 1000 seconds. Variable-step integrators were assessed using five tolerance levels (global and relative tolerances
set equally) from 1× 10−10 to 1× 10−6. Variable-order integrators were examined with lower orders 6 and 7, and
higher orders 6, 8, and 9. Extrapolation integrators were evaluated using step counts from 1 to 10.

Integrators meeting the criteria were ranked based on the number of function evaluations, final error, node
density, and CPU time, in that order. The performance of the top 5 integrators from each family is visualized
in Fig. 2.4. The top 15 integrators are summarized in Tab. 2.4. The most performant integrator is the ABM
integrator with variable orders 6-8 and variable step size, using a tolerance of 3.2× 10−9. Observe however that
the 6 best integrators in the table perform very similarly. Any of the 6 best integrators in Tab. 2.4 would be a
good choice for this use case. The ABM integrator is used for the rest of this work based on the lower number
of function evaluations.

Fig. 2.5 shows the average transfer in the Iridium 33 RAAN walk. The transfer in question consists of raise of
SMA of 84 km, a change in eccentricity of 4 1e−3, a change in inclination of 1 1e−3°, a change in RAAN of
2 79e−2°, and changes in AOP and True Anomaly (TA) of approximate 1.4°. The total manoeuvre time is of 55
hours, of which 51 are spent in the orbit acquisition leg and the phasing leg lasting under slightly under 4 hours.
This will be a relevant consideration for transfer time estimation, which is the next topic of discussion. Lastly,
Fig. 2.6 shows extreme transfers scenarios in the Iridium 33 and Fengyun 1C debris clouds, with the spacecraft
traveling from the center-of-RCS of the cloud to the center-of-RCS of the cloud plus 3 times the standard deviation
of each element in the cloud.

Transfer Cost Estimation
The capacity to quickly estimate the duration and cost (in ∆V or fuel mass) of low-thrust transfers without
the need to propagate is highly attractive for NCO, as the training process requires estimating the cost of many
(millions of) transfers. Fast, approximate transfer cost estimation methods are commonly used in conventional in
STSP practice, especially for complex problems [13], [17]. Transfer cost estimation approaches (both impulsive
and low-thrust) may be either analytical [5], [17], [76], which rely on simplifying assumptions to obtain closed-form
expressions of transfer cost, or numerical, which rely on the pre-computation of many transfers, which are later
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(a) (b)

Figure 2.5: Average transfer in the Iridium 33 debris cloud. (a) Keplerian element history through the transfer.
(b) Control history; α and β are the in-ecliptic and out-of-ecliptic thrust angles with respect to the orbital velocity
unit vector êθ [46].

(a) (b)

Figure 2.6: Extreme 6-element rendezvous transfers in the Iridium 33 and Fengyun 1C debris clouds using the
RQ-Law. Origin: cloud center-of-RCS. Target: cloud centroid plus 3 times the standard deviation of elements in
the cloud. (a) Iridium 33. (b) Fengyun 1C.
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Figure 2.7: Estimation of RQ-Law TOFs using the Q proximity quotient. Histogram bin width (right side): 6
hours.

used to infer transfer costs in the optimization process: numerical approaches may either database-dependent
[13], often relying on transfer window constraints, or based on multivariate regression. Deep Learning (DL) has
been particularly successful for the latter [15].

A linear model based on the best time-to-go T (Eq. 2.26) is used to estimate the duration of RQ-Law transfers.
The model is defined in Eq. 2.27. T follows from the definition of the proximity quotient Q, which approximates
the best quadratic time-to-go [69].

T =
√

Q (2.26)

The model in Eq. 2.27 is obtained by linear regression of measured TOFs using the RQ-Law with respect to
predicted TOFs using the best time-to-go. The analysis was done considering all RAAN walk [2] transfers through
the Iridium 33, Cosmos 2251 and Fengyun 1-C debris clouds. Both Q-Law and RQ-Law transfers were considered.
The clouds are considered static through the tour to make the target dataset independent of the transfer strategy:
static RAAN walk transfers are considered representative of possible transfers in LEO, and so valid for analysis.
No instantaneous perturbations nor coasting phases are considered in these transfers, as discussed previously.

Tab. 2.5 reports the results of the linear regression analysis for both the Q-Law and RQ-Law. A strong positive
correlation between the best time-to-go T and the measured TOF exists for both Q-Law and RQ-Law transfers
(Pearson r > 0.99), indicating a strong linear relationship [77]. Fig. 2.7 shows predicted and observed RQ-Law
TOFs and summarizes the performance of the linear model. Observe the strongly linear relationship of measured
TOFs as a function of predicted TOFs, as well as the highly concentrated and highly symmetric distribution of
residuals with mean at 0.

A linear model was fit for each strategy. Outlier TOFs, outliers outside of the 3σ range, were excluded. In
both cases the linear model explains over 99% of the variance in observations (R2 > 0.99), demonstrating an
excellent fit [78]; the mean estimation error ε is close to 0 as well. Distribution similarity is verified using the
Kolmogorov-Smirnov (KS) test [79]. In both cases the KS p-values indicate that there is no statistically significant
difference between the estimated and observed TOF distributions.

Table 2.5: Goodness-of-fit analysis of the TOF models. ε: estimation error.

Pearson r Slope Intercept [h] R-squared KS statistic KS p-value ε [min] σε [min]
Q-law 0.9972 1.4329 -15.9 0.995 2.55e-02 0.28 1.5 45.0

RQ-law 0.9970 1.4309 -9.72 0.994 2.31e-02 0.39 1.5 46.5
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TOF = 1.4309T + C; C = −9.72 [hours] (2.27)

The required fuel mass mf,req is calculated by multiplying the estimated TOF by the constant fuel mass flow ṁ
(see Eq. 2.11). ∆V cost is estimated using Eq. 2.28, which assumes refuelling takes place when the spacecraft’s
fuel mass Mf is spent. The same approach is used to calculate the cumulative ∆V cost of complete tours.
Critically, this model is suitable for the aforementioned debris clouds, using the specified RQ-Law parameters and
tolerances. Application to other cases should follow careful analysis and verification.

∆V =



veq log
(
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)
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(
m0

m0−Mf

)
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⌊
mf,req
mf,req

⌋
mrem = mf,req − nMf

else.
(2.28)

2.4 Heuristic Combinatorial Optimization
A modular STSP solver based on population-based Heuristic Combinatorial Optimization (HCO) is used to obtain
near-optimal solutions. The choice for HCO is motivated by the widespread use of HCO methods to solve STSPs
in literature [2]–[5], [7] and the availability of highly performant, open-source heuristic multi-objective optimization
libraries such as pygmo3 [80] and pymoo4 [81] greatly eases the application, benchmarking and selection of diverse
HCO algorithms for specific problem variants. The combinatorial optimization component is implemented using
the pygmo, a parallel multi-objective global optimization library based on the Archipelago meta-heuristic [80].

2.4.1 Meta-heuristic
Combinatorial optimization meta-heuristics are algorithms that efficiently explore large discrete search spaces
to find optimal or near-optimal solutions to combinatorial problems [82]. pygmo implements the Archipelago
meta-heuristic [80]. The Archipelago algorithm evolves sub-populations, or “islands”, concurrently, starting from
different initial populations and possibly using different evolutionary strategies. Periodic migrations of individuals
between islands promote diversity and prevent premature convergence, improving the algorithm’s ability to avoid
local optima and thoroughly explore the search space. This parallel and cooperative framework accelerates the
optimization process and improves the robustness and quality of the solutions obtained [83].

2.4.2 Population Sampling
High quality population sampling is crucial for heuristic global optimization algorithms which are sensitive to
initialization conditions [84]. Examples are population-based algorithms and algorithms with memory mechanisms
such as Simulated Annealing [85]. Tab. 2.7 indicates which of the pygmo global optimizers which is sensitive to
initialization conditions.

Population sampling in the case of CO problems involves sampling permutations σ ∈ Sn of length n. Uniform
permutation sampling is used to cover the search space as widely as possible. Sobol permutations [84] are used to
obtain high quality uniform samples of Sn. Critically, advanced approaches and hand-crafted heuristics are often
used in CO to determine near-optimal solutions prior to HCO [2], [13]. Distance-based permutation sampling is
used to leverage known approximate solutions, using the Mallows Model [86]–[88] under the Hamming distance,
which is defined as the number of positions at which two sequences differ [88], [89]. Empirical results show that
a combination of both approaches is best to balance the exploration of the search space and the exploitation of
known approximate solutions.

3https://esa.github.io/pygmo2/
4https://pymoo.org/

https://esa.github.io/pygmo2/
https://pymoo.org/
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2.4.3 Permutation Encoding
Random keys permutation encoding [90] is selected for its versatility for optimizing complex discrete optimization
problems across various domains [91], [92]. Permutations are encoded using vectors of continuous values, or
random keys, in the [0, 1) range. A permutation σ ∈ Sn is encoded by generating a vector of random keys
x ∈ [0, 1)n, sorting it, and permuting it by σ. Decoding is done by applying the standard argsort operation to
x, which takes an array of numerical values s and returns a permutation σ containing the index of each value of
s in the sorted array s∗, such that the permutation of s by σ results in the sorted array s∗.

2.4.4 Approximate Solutions
Active Debris Removal
Izzo et al. [2] showed that the optimal solution of the STSP closely resembles a monotonically increasing RAAN
walk. This result is intuitive as transfer cost is primarily driven by plane change cost, and plane change cost
(Eq. 2.19) is primarily driven by the RAAN gap that must be closed [2], [5] for orbits with relatively high
inclination. Most Earth orbiting spacecraft [93] and all the debris clouds under consideration (Fig. 1.1). The
RAAN walk holds only for static orbiting targets however, and ADR missions in LEO are an example of a highly
dynamic perturbed STSP due to the RAAN drift induced by the J2 perturbation [2]. Fig. 2.8 shows the impact of
RAAN drift on the cost of the RAAN walk through the Iridium 33 debris cloud, using the RQ-Law and MHT-NIC
with a spacecraft with equal impulse (∆V output over time): the increase in cost is dramatic. Furthermore, the
optimal static and dynamic tours are not related, with their Spearman rank correlation quickly decreasing over
time [2], as RAAN drift rates are independent of the original ranking (Eq. 2.6). Observe how the increase in
tour cost is greater when using MHT-IPC manoeuvres, as transfers are considerably slower, and thus RAAN drift
demerits the RAAN walk faster.

Two tree search approaches and one STSP routing heuristic are considered to obtain approximate solutions.
The tree search approaches considered are Beam Search (BS) and Nearest-Neighbor (NN) search [94], [95], both
considering transfer cost using a given transfer strategy. Fig. 2.9a and Fig. 2.9b show the cumulative cost of the
RAAN walk, NN and BS tours through the Iridium 33 cloud, under RAAN drift, for the RQ-Law and MHT-IPC
transfer strategies respectively. A detailed definition of the BS algorithm follows in Algorithm 3. The key concept
to keep in mind is that the algorithm consists of a sequential expansion-pruning process with a fixed beam width
w. At each step w active paths exist, each with a number m of available locations to be visited. The expansion
step consists of calculating the cost of all possible transfers, from the last node of each active path to all available
nodes, e.g. for w = 8 active paths and m = 4 nodes left to visit, the cost of all possible w ·m = 32 transfers
is estimated. This results in 32 active paths. The pruning step consists of ranking these 32 paths by cost, and
keeping the top w paths only. This results in a fixed number of active paths w which are kept for the next
iteration, now with 3 targets left to visit. NN is effectively a BS of beam width equal to 1.

The STSP routing heuristic considered is the Dynamic RAAN Walk (DRW). The DRW is defined as a greedy
search over a nearest-RAAN target ranking policy, which is performed sequentially in the dynamic STSP environ-
ment until all targets have been visited. Algorithm 2 describes the process in pseudocode. The benefit of using a
heuristic over a search is runtime, as can be seen in Tab. 2.6. Despite its simplicity the DRW performs surprisingly
well, as can be seen in Fig. 2.9a.

Table 2.6: Time required to generate an approximate solution for the Iridium 33 STSP of 167 transfers.

RAAN walk DRW NN BS (w = 20)
Runtime 0,2 ms 80,9 ms 2,1 s 79,3 s



Approximate Solutions 54

(a) RQ-Law cost per transfer. (b) RQ-Law cumulative cost.

(c) MHT-IPC cost per transfer. (d) MHT-IPC cumulative cost.

Figure 2.8: Impact of RAAN drift on the cost of the RAAN walk through the Iridium 33 debris cloud, using
RQ-Law and MHT-IPC transfers.
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(a) RQ-Law. (b) MHT-IPC.

Figure 2.9: Cumulative cost of tours traversing the Iridium 33 debris cloud as a function of transfer index, under
RAAN drift.

Algorithm 2: Dynamic RAAN Walk (DRW) for STSP Routing
Data: Starting state x0, Set of targets X = {x1, x2, . . . , xN}
Result: Optimal tour p, Total Delta V c
p← [x0]
U ← X
c← 0
while U ̸= ∅ do

Rank U based on nearest RAAN to p[−1]
xnext ← first target in ranked U
∆V ← EstimateDeltaV(p[−1], xnext)
p← p+ [xnext]
c← c+∆V
U ← U \ {xnext}

return p, c

Beam Search is the superior approach, though choosing an optimal beam width is challenging, and the cost of
the search quickly grows as beam width is increased. A Beam Search with a beam width of 2 is used to generate
approximate solutions. Fig. 2.9 shows considerable improvement from using NN and BS for the Iridium 33 walk,
for both RQ-Law and MHT-IPC transfers. BS yields the best improvement out of the three, especially for the
latter.

Orbital Insertion
The OSSIE OTV STSP variant is concerned with changes in semi-major axis, inclination and phase. The primary
cost driver in this case are inclination changes. Four hand-crafted heuristics are considered to provide candidate
solutions: ascending and descending inclination and payload mass walks.

2.4.5 Heuristic Optimization Algorithm
Optimizer selection is conducted by trading off the all global heuristic optimizers available in pygmo based on their
performance on the STSP variant at hand. All algorithms listed in Tab. 2.7 are considered in the trade-off. For
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Algorithm 3: Beam Search in a dynamic graph (state transitions cause a change in the global state).
Input: w, x0, X = {x1, x2, . . . , xN}, k(xi, xj), f(X, T )
Output: Optimal tour p
B ← {(0, [x0], [0], [0])} // Initialize min-heap with total cost, tour, TOFs and ∆V s
for t = 1 to N do

B′ ← ∅ // Initialize min-heap B′ with size limit w
for (c, p,T,�V) in B do // Expansion

X′ ← f(X,
∑
T) // Propagate global state

for xj /∈ p do
p′ ← p+ [x′j ] // Update path
Tj ,�Vj ← k(xs, xj) // Compute TOF and ∆V of current transfer
c′ ←

∑
�V // Compute tour ∆V so far

B′ ← (c′, p′,T,�V) // Append node to heap

while |B′| > w do // Pruning to w
Remove element with maximal c′ from B′ // Prune based on cumulative ∆V

B ← B′

Return p from B with minimal c

further information about specific algorithms refer to the pygmo capabilities page5 and optimizer documentation
pages. Critically, optimizers of the family of Evolutionary Strategies depend on internal sampling processes and
are thus not sensitive to initial populations: in general terms other optimizers are preferrable if candidate solutions
can be leveraged.

Heuristic Optimizer Selection for the ADR STSP
The choice of heuristic global optimizer for the ADR STSP was determined by a trade-off of all pygmo global
optimizers on a reduced 50-transfer Iridium 33 ADR STSP. A 16-island archipelago is used with 80 individuals
per island. 5 evolutionary cycles are carried out, each consisting of 500 generations of isolated evolution in each
island followed by a migratory process between islands. Two variants of the optimization process are considered:
one with uniformly sampled populations over all islands, and another with 8 of the 16 initial populations sampled
around approximate Beam Search solutions using the Mallows Model under the Hamming distance. To ensure the
trade-off is robust, the performance of each optimizer is evaluated by considering 10 optimizations using different
random seeds.

Fig. 2.10 summarizes the performance of all the considered algorithms. The figure shows, for each optimizer,
the performance of the best individual in the algorithm as a function of generation. This is shown for both the
optimization starting from a uniformly sampled initial population, and the optimization starting from a population
sampled in the proximity of the candidate solution obtained using the BS algorithm defined previously. Observe
how the improvement that comes from sampling initial populations around approximate solutions is large across
final performance, consistency, and convergence speed. The Simple Genetic Algorithm6 shows both superior
performance and consistency than any other option, consistently reaching the best tour found even when starting
from a uniformly sampled population.

Heuristic Optimizer Selection for the OSSIE STSP
A similar process was followed to determine the choice of heuristic global optimizer for the OSSIE STSP. A 13-
transfer mission scenario —the maximum number of transfers OSSIE is capable in its nominal mission scenario—
was used to measure integrator performance. A 16-island archipelago is used with 80 individuals per island. 2
evolutionary cycles are carried out, each consisting of 50 generations of isolated evolution in each island followed

5https://esa.github.io/pygmo2/overview.html
6https://esa.github.io/pygmo2/.../sga

https://esa.github.io/pygmo2/overview.html
https://esa.github.io/pygmo2/algorithms.html#pygmo.sga
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Table 2.7: Global optimizers available through the pygmo optimization library. SIC: sensitive to initial conditions.

Name Codename MO SIC Notes
Extended Ant Colony Optimization GACO ✓ Utilizes pheromone trails for solution generation
Differential Evolution DE ✓ Can initialize with a user-provided population
Self-adaptive DE jDE and iDE ✓ Evolves from the initial population
Self-adaptive DE pDE ✓ Evolves from the initial population
Grey Wolf Optimizer GWO Initializes with a wolf pack representing the population
Improved Harmony Search IHS ✓ ✓ Generates harmony memory independently
Particle Swarm Optimization PSO ✓ Particles are initialized based on the provided population
Particle Swarm Optimization Generational GPSO ✓ Particles are initialized based on the provided population
(N+1)-ES Simple Evolutionary Algorithm SEA ✓ Employs internal sampling mechanisms
Simple Genetic Algorithm SGA ✓ Directly utilizes the initial population
Corana’s Simulated Annealing SA ✓ Starts from a single initial guess, not a population
Artificial Bee Colony ABC ✓ Initializes bee positions based on the provided population
Covariance Matrix Adaptation Evolution Strategy CMA-ES Can use an initial mean and population
Exponential Evolution Strategies xNES Uses its own internal sampling process
Non-dominated Sorting GA NSGA2 ✓ ✓ Utilizes the initial population for multi-objective sorting
Multi-Objective EA with Decomposition MOEA/D ✓ ✓ Relies on the initial population for decomposed subproblems
Generational Multi-Objective EA with Decomposition GMOEA/D ✓ ✓ Uses the initial population in generational cycles
Multi-objective Hypervolume-based ACO MHACO ✓ ✓ Generates solutions based on hypervolume criteria
Non-dominated Sorting PSO NSPSO ✓ ✓ Initializes particles based on the provided population

by a migratory process between islands.
As previously optimizations with uniformly sampled populations and populations sampled around candidate

solutions are performed. To ensure the trade-off is robust, the performance of each optimizer is evaluated
considering 100 randomized 13-transfer STSP instances based on the nominal mission scenario of the OSSIE
OTV.

Fig. 2.11 summarizes the performance of all the considered algorithms. The figure is equivalent to Fig. 2.10 in all
but content. Observe how, in contrast with the 50-transfer ADR case, most optimizers are able to find the global
optimum in this case. Generational Particle Swarm Optimization7 is the most consistent algorithm in this case.
The Exponential Evolutionary Strategies optimizer8 is also a good option, displaying the fastest convergence.

Notably, the improvement that comes from sampling initial populations around approximate solutions is not large
for this problem. The candidate solutions do not provide good approximations of optimal tours. This is caused by
the highly localized nature of the targets, which are constrained to narrow semi-major axis and inclination bands,
together with the constraints imposed on the initial and final stops of the tour —the nominal insertion orbit and
nominal decomissioning orbit—, which results in an open-loop STSP the optimal path of which is hard to assess
a priori.

Conclusions
Three fundamental conclusions are drawn from the study of HCO methods applied to the ADR and OSSIE OTV
STSPs:

• Firstly, HCO is a robust and performant approach to solve small STSP instances up to 20 targets.

• Secondly, the robust performance achieved for smaller problems does not extend to larger and more dynamic
STSPs, and neither problems with more convoluted constraints such as acceptance windows.

• Lastly, high quality approximate solutions are highly desirable for difficult STSP instances.

Larger problems with more convoluted constraints are of particular concern for the developing space industry
7https://esa.github.io/pygmo2/.../pso_gen
8https://esa.github.io/pygmo2/.../xnes

https://esa.github.io/pygmo2/algorithms.html#pygmo.pso_gen
https://esa.github.io/pygmo2/algorithms.html#pygmo.xnes
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Figure 2.10: Performance of all pygmo optimizers on the dynamic Iridium 33 ADR STSP over 100 optimizations.
Red line: best cost obtained across all cases, achieved with SGA. Grey bands: distinct evolutionary periods,
500 generations each. Blue: uniformly sampled initial populations. Orange: initial populations sampled around
approximate solutions. Shaded area: best to worst cost achieved. Solid lines: mean cost.

Figure 2.11: Performance of all pygmo optimizers on 100 different 13-transfer OSSIE STSP instances. Performance
is represented by the optimality gap as different instances have different optimal costs. Red line: optimum, on
average 26.72 [kg] of fuel mass spent with a standard deviation of 2.25 [kg]. Grey bands: distinct evolutionary
periods, 50 generations each. Blue: uniformly sampled initial populations. Orange: initial populations sampled
around approximate solutions. Shaded area: best to worst losses (tour costs) achieved. Solid lines: mean loss.
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[19]. Problem variants considering multiple agents and constraints such as acceptance windows, split deliveries
and others [18], which are common in operations research, are expected to grow in importance for spacecraft
operations and logistics over time [19] as LEO and MEO become more congested, in-space manufacturing and
servicing rise, and space logistics operations become as a consequence more complex [19].

The promise of NCO methods is to automate the process of discovering high quality heuristics for highly complex
CO problems [16], [18]. It becomes pressing to ask whether these methods could be applied in the domain of
space logistics as well.

The two problems studied so far provide a well-suited test set to assess the applicability and performance of NCO
approaches for space logistics problems. The OSSIE STSP is a smaller, less demanding STSP which can be used
to assess the feasibility of applying NCO in the space environment, and for which optimal solutions can be readily
obtained to assess the performance of NCO solvers. The ADR STSP on the other hand is a far more challenging
problem where NCO methods could yield real operational advantage in tandem with HCO approches.

2.5 Neural Combinatorial Optimization
NCO uses DNNs to automate the process of determining heuristics to solve CO problems. RL is the dominant
paradigm for NCO, as supervised learning is often unfeasible for large or theoretically hard problems. NCO
offers the attractive prospect of alleviating the scaling issues of exact approaches, while removing the need for
handcrafted heuristics [18], and has shown promising performance on various CO problems [18], and has been
shown to achieve high quality results, especially when coupled with advanced policy search procedures [16].

The RL4CO9 NCO library is used to implement and train the STSP routing policy. RL4CO is a benchmark library
for NCO based on PyTorch [96] with standardized, modular, and highly performant implementations of various
environments, policies and RL algorithms, covering the entire NCO pipeline [18].

2.5.1 Environment
The state of the targets is described using Keplerian elements (which is practical and common practice when
analyzing debris clouds [2]). The global state is propagated through the sequential decision-making process.
This is done by estimating the transfer times, and using a secular perturbation model to propagate the state of
the cloud. The Q-based TOF estimation method defined in Eq. 2.27 is used to estimate transfer times. The
secular perturbation model used for LEO multi-rendezvous missions is the J2 secular perturbation model defined
in Eq. 2.6.

Active Debris Removal
The capacity to automatically generate large amounts of realistic Active Space Debris removal scenarios is funda-
mental for training. These scenarios are generated using statistical models of real debris clouds. The models are
obtained by fitting cloud observations with the parametric statistical models that best match the observations.
All 19 parametric statistical models available in PyTorch10 [96] are considered. Goodness of fit is assessed using
the Kolmogorov-Smirnov (KS) test [79]. The result is a composite model of the translational state and other
properties of a debris cloud, comprising 6 or more parametric models: one for each Keplerian element, and more
for other measurements such as radar-cross section if relevant. Fig. 2.12 shows the model generated for the
Iridium 33 cloud. In this work the environment is limited to the translational state of the cloud.

The range of values which may be sampled by each model is limited to the range of observed values. This is
achieved with inverse transform sampling [97] when the Inverse Cumulative Distribution Function (ICDF) of the
parametric model is defined and implemented in PyTorch, and with vectorized rejection sampling [98] if the ICDF
is not available.
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Figure 2.12: Statistical model of the translational state of the Iridium 33 debris cloud. Histograms: observations.
Curve, red: parametric model that best matches the observations, where goodness of fit is measured using the
KS statistic. Curve, black: second-best parametric model.

Table 2.8: Top: OSSIE insertion and decommissioning orbits. Bottom: statistical model describing expected
payload Keplerian states. In commercial operations the target state of each payload is specified by the client.
SSO stands for SSO inclination variance.

Orbit a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg] Mass [kg]

OSSIE Insertion 500 0 97 158 0 0
Decommissioning 250 0 - - - -

Payload
Nominal 500 0 97 158 0 0 Variable
Spread 50 0 SSO 180 180 180 15%
Distribution Uniform Exponential Uniform Uniform Uniform Uniform Exponential

OSSIE STSP
The generation of realistic mission scenarios for the OSSIE STSP is considerably simpler, as payload states are
limited to the advertised payload delivery range of the OSSIE OTV. Tab. 2.8 describes the nominal mission
scenario for OSSIE and the statistical model used to generate the target Keplerian states for a given payload.
OSSIE payloads are highly likely to be destined for SSO orbits with altitude priority, but not necessarily. A worst
case scenario is assumed, uniformly sampling payload inclinations in the entire SSO inclination range, defined as
the range from iSSO(amin) to iSSO(amax), where iSSO(a) is the inclination required to achieve an SSO orbit (RAAN
drift of 360°per year, see Eq. 2.6) at a given a. Payload masses are sampled from an exponential distribution,
assuming a worst case scenario where payload masses are never below their nominal value: 6 kg for CubeSats,
1.5 kg for PocketQubes and 25 kg for small satellites. Payloads may be released individually or at once.

OSSIE payloads may be released individually or bundled with other payloads. This variable is both client-
dependent and so highly unpredictable, and greatly impactful for mission cost as it determines the number of

9https://rl4.co
10https://pytorch.org/docs/stable/distributions.html

https://rl4.co
https://pytorch.org/docs/stable/distributions.html
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transfers that must be carried out. We model this by uniformly sampling number of bundles between 2 (all
payloads in two bundles) and the total number of payloads, which is 13 for OSSIE (every payload launched to a
distinct target orbit); payloads are assigned to each bundle uniformly at random.

2.5.2 Policy
An autoregressive Attention-based policy11 is used to learn the routing problem. First introduced by Kool et al.
[99], the policy encodes the input graph using a Graph Attention Network (GAT), and decodes the solution using
a Pointer Network. Kool et al. train this policy using the REINFORCE RL algorithm to achieve considerably
better performence than other learned heuristics [99]. Fraçois et al. find this policy to be a highly efficient learning
component in their comprehensive analysis of learning performance in NCO methods [16].

2.5.3 Policy Search
Policy search strategies determine how actions are selected based on the learned policy, balancing exploration and
exploitation to find optimal or near-optimal solutions. Policy search is fundamental for the performance of NCO
algorithms [16]. We consider two policy search strategies implemented in RL4CO: greedy search and sampling.

Greedy Search
Greedy search is the simplest policy search strategy, where at each decision step, the action with the highest
probability (or highest estimated reward) is selected deterministically. This approach is computationally efficient
but may lead to suboptimal solutions due to its myopic nature, potentially getting trapped in local optima.

Algorithm 4: Greedy Search Strategy
Data: Trained policy πθ, initial state s0
Result: Solution path
s← s0
path← []
while not terminal state do

Select action a← argmaxa πθ(a|s)
Append a to path
Transition to next state s← f(s, a)

return path

Sampling Search
Sampling search introduces stochasticity by selecting actions based on the probability distribution defined by the
policy. Instead of always choosing the most probable action, actions are sampled according to their probabilities,
allowing for greater exploration of the action space. This strategy can escape local optima and explore diverse
solution paths but may require more computational resources and time to converge to high-quality solutions.

Beam Search
Beam search strikes a balance between greedy and sampling strategies by maintaining a fixed number of the most
promising partial solutions (beams) at each step. At each decision point, all possible extensions of the current
beams are considered, and the top k beams with the highest cumulative probabilities are retained for the next
step. This approach enhances exploration while controlling computational complexity, leading to better solution
quality compared to greedy search without incurring the full cost of exhaustive search.

11https://rl4.co/docs/.../AttentionModelPolicy

https://rl4.co/docs/content/api/zoo/constructive_ar/#models.zoo.am.policy.AttentionModelPolicy
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Algorithm 5: Sampling Search Strategy
Data: Trained policy πθ, initial state s0
Result: Solution path
s← s0
path← []
while not terminal state do

Sample action a ∼ πθ(·|s)
Append a to path
Transition to next state s← f(s, a)

return path

Algorithm 6: Beam Search Strategy [94], [95]
Data: Trained policy πθ, initial state s0, beam width k
Result: Best solution path
B ← {(s0, [])}
while not all beams have terminal states do

B′ ← []
foreach beam (s, path) in B do

foreach action a in available_actions(s) do
pa ← πθ(a|s)
s′ ← f(s, a)
path′ ← path ∪ {a}
B′ += {(s′, path′, pa)}

Sort B′ by cumulative probability in descending order
B ← top k beams from B′

path← beam with the highest cumulative probability
return path
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2.5.4 Reinforcement Learning Algorithms
Three RL algorithms are considered to train the routing policy: REINFORCE, Advantage Actor-Critic, and Proxi-
mal Policy Optimization.

Definition of Important Terms
RL literature makes use of a significant amount of non-trivial jargon terms. Please refer to Tab. 6 for the definition
of all jargon terms that will be used in the following sections.

Stochastic Policy Gradient: The REINFORCE Algorithm
The REINFORCE algorithm12, introduced by Williams in 1992 [100], is a Monte Carlo policy gradient method used
to optimize stochastic policies. It is based on the principle of gradient ascent, aiming to maximize the expected
return of a policy by adjusting the policy parameters, denoted by θ. The algorithm operates by iteratively
generating full trajectories of interaction with the environment and using these to compute an unbiased estimate
of the policy gradient. The algorithm does not require explicit knowledge of the environment’s dynamics, instead
relying on the experiences gathered through policy rollouts. A summary of the algorithm in pseudocode can be
seen in Algorithm 7.

The process begins with the initialization of the policy parameters θ and a learning rate α. A trajectory
τ = {s0, a0, r0, . . . , sT , aT , rT } is sampled by following the current policy πθ, where st represents the state at
time step t, at is the action taken at that state, and rt is the immediate reward received. This sequence of
state-action-reward tuples is used to compute the return Gt for each timestep t, defined as:

Gt =

T∑
k=t

rk (2.29)

This return serves as the total cumulative reward from time step t to the end of the episode. For each timestep
in the trajectory, the gradient of the log-likelihood of the taken action under the current policy, ∇θ logπθ(at|st),
is computed. This quantity measures how the likelihood of taking action at under the policy changes with respect
to the policy parameters. The product of this gradient with the return Gt gives an estimate of how changes to
the policy would impact the cumulative reward:

∇θJ(θ) ≈ ∇θ logπθ(at|st) ·Gt (2.30)

The policy parameters θ are then updated via gradient ascent:

θ ← θ + α∇θ logπθ(at|st) ·Gt (2.31)

This process is repeated for each timestep in the trajectory. The policy parameters are adjusted in the direction
that increases the likelihood of actions leading to higher cumulative returns. The process continues, with new
trajectories being sampled, until the policy converges, defined by negligible updates to θ over iterations.

Although REINFORCE provides an unbiased estimate of the policy gradient, the use of complete trajectories
can introduce high variance into the gradient estimates, which can slow down convergence in practice. Various
techniques, such as baselines or variance reduction methods, can be introduced to mitigate this issue, though
they are not inherently part of the algorithm.

12REINFORCE stands for: Monte Carlo REward Increment = Nonnegative Factor × Offset Reinforcement × Characteristic
Eligibility
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Algorithm 7: REINFORCE Algorithm [100]
Data: Initial policy parameters θ, learning rate α
Result: Optimized policy parameters θ
while not converged do

Sample a trajectory τ = {s0, a0, r0, s1, a1, r1, . . . , sT } using policy πθ
Compute the return Gt =

∑T
k=t rk for each timestep t

for each timestep t in τ do
Compute the gradient estimate ∇θ logπθ(at|st) ·Gt
Update parameters: θ ← θ + α∇θ logπθ(at|st) ·Gt

Advantage Actor-Critic
The Advantage Actor-Critic (A2C) algorithm refines the classical REINFORCE method by incorporating a learned
value function as a baseline to reduce the variance of the policy gradient estimates. This approach, initially
formulated by Konda and Tsitsiklis [101], is designed to optimize both a policy and a value function simultaneously,
referred to as the actor and critic, respectively. The actor represents the policy πθ, parametrized by θ, while the
critic estimates the state value function Vϕ(s), parametrized by ϕ. The critic’s role is to provide an estimate of
the expected return from a given state, which serves as a baseline to stabilize the updates made to the actor.
By subtracting the value function from the total return, A2C computes an advantage function that quantifies
how much better or worse a specific action was compared to the expected outcome, thereby improving learning
efficiency. A summary of the algorithm in pseudocode can be seen in Algorithm 8.

The algorithm begins by initializing the policy parameters θ, the value function parameters ϕ, and the respective
learning rates α (for the policy) and β (for the value function). The interaction with the environment proceeds
by sampling a trajectory τ = {s0, a0, r0, . . . , sT } from the current policy πθ. At each timestep t, the total return
Gt, representing the cumulative reward from time t until the end of the trajectory, is computed as:

Gt =

T∑
k=t

rk (2.32)

Next, the critic estimates the value function at time t, denoted as Vϕ(st). The advantage At at timestep t is
then computed by subtracting the estimated value from the total return:

At = Gt − Vϕ(st) (2.33)

This advantage quantifies the relative quality of the action taken compared to the critic’s baseline estimate of
the state’s value. The policy parameters θ are updated by performing gradient ascent, using the gradient of the
log-likelihood of the action taken under the current policy, scaled by the computed advantage:

θ ← θ + α∇θ logπθ(at|st) ·At (2.34)

Simultaneously, the value function parameters ϕ are updated using the difference between the return and the
value function estimate, which serves as the error signal for the critic:

ϕ← ϕ+ β(Gt − Vϕ(st))∇ϕVϕ(st) (2.35)

This update step minimizes the squared error between the estimated and actual returns, allowing the critic to
improve its estimation of the value function. The process repeats, iteratively updating the policy and value function
parameters, until convergence, which occurs when the changes in the policy parameters become negligible.



65 Reinforcement Learning Algorithms

A2C benefits from the reduced variance in gradient estimates due to the use of the value function as a base-
line. However, it still relies on complete trajectories for updates, similar to REINFORCE, and is not inherently
parallelized, as is its asynchronous counterpart A3C [102].

Algorithm 8: Advantage Actor-Critic Algorithm [101], [102]
Data: Initial policy parameters θ, value function parameters ϕ, learning rates α, β
Result: Optimized policy parameters θ and value function parameters ϕ
while not converged do

Sample a trajectory τ = {s0, a0, r0, s1, a1, r1, . . . , sT } using policy πθ
for each timestep t in τ do

Compute the return Gt =
∑T
k=t rk

Estimate the value Vϕ(st)
Compute the advantage At = Gt − Vϕ(st)
Update policy: θ ← θ + α∇θ logπθ(at|st) ·At
Update value function: ϕ← ϕ+ β(Gt − Vϕ(st))∇ϕVϕ(st)

Proximal Policy Optimization
Proximal Policy Optimization (PPO), proposed by Schulman et al. [103], addresses the instability and large policy
update deviations found in traditional policy gradient methods like A2C. PPO introduces a surrogate objective
function that constrains the magnitude of policy updates through a clipping mechanism, ensuring more gradual
and stable learning. By enforcing limits on the size of the update steps, PPO effectively balances exploration
and exploitation during training, making it suitable for a wide range of reinforcement learning applications. A
summary of the algorithm in pseudocode can be seen in Algorithm 9.

The algorithm begins by initializing the policy parameters θ, the value function parameters ϕ, the learning rates
α (for the policy) and β (for the value function), and the clipping parameter ϵ, which controls the extent to which
policy updates are clipped. The training process involves iteratively sampling a batch of trajectories {τi} from
the environment using the current policy πθ. For each trajectory τi, and at each timestep t, the following steps
are performed:

1. Return Calculation: The total return Gt at timestep t, defined as the sum of future rewards from time t
until the end of the trajectory, is computed as:

Gt =

T∑
k=t

rk

2. Value Estimation: The critic estimates the value of the current state st using the value function Vϕ(st).

3. Advantage Calculation: The advantage At is then computed as the difference between the actual return
and the estimated value:

At = Gt − Vϕ(st)

This advantage function measures how much better the action at taken at state st performed compared to
the expected value, thereby informing policy improvement.

4. Probability Ratio: The probability ratio rt(θ) between the current policy and the previous policy πθold is
calculated:

rt(θ) =
πθ(at|st)
πθold(at|st)

This ratio indicates how much the new policy diverges from the old one.
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5. Clipped Surrogate Objective: To prevent excessively large policy updates, PPO uses a clipped surrogate
objective function. This objective limits the change in the probability ratio by clipping rt(θ) to lie within
the range [1− ϵ, 1 + ϵ]. The clipped objective is computed as:

Lt = min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)

The objective ensures that updates only happen when the advantage is sufficiently large, and constrains the
update if the ratio rt(θ) deviates too much from 1.

6. Accumulating Losses: The policy loss is accumulated over all timesteps in the trajectory:
Lpolicy += −Lt

The value loss, which penalizes the squared error between the estimated value and the return, is also
accumulated:

Lvalue += (Gt − Vϕ(st))2

7. Parameter Updates: After accumulating the losses over the entire batch of trajectories, the policy parameters
are updated by performing gradient descent on the policy loss:

θ ← θ − α∇θLpolicy

Similarly, the value function parameters are updated based on the value loss:
ϕ← ϕ− β∇ϕLvalue

This process repeats iteratively, with new batches of trajectories being sampled, until the policy and value
function parameters converge.

PPO’s clipped objective ensures more stable training by preventing overly large policy updates, and it has proven
to be effective in various domains, from combinatorial optimization to control tasks in robotics.

Proximal Policy Optimization Variant for Autoregressive Policies
PPO is modified by Kool et al. [104] for use with autoregressive policies in combinatorial optimization tasks. In
contrast to classical PPO, which treats actions independently in a Markov Decision Process (MDP), this variant
models the entire autoregressive decoding process as a single decision step, capturing the sequential dependencies
between actions. A summary of the algorithm in pseudocode can be seen in Algorithm 10.

This approach aligns with the Attention Model framework, streamlining training and solution generation in tasks
with sequential decision-making. However, treating the decoding process as a single-step MDP introduces certain
trade-offs:

• Approximation Bias: Temporal dependencies between actions are not explicitly modeled, which can lead
to approximation bias.

• Entropy Estimation: Computing policy entropy over the full solution space is intractable, requiring Monte
Carlo sampling and reducing entropy estimate accuracy.

• Reduced Gradient Information: The lack of multi-step transitions limits gradient information, potentially
slowing policy improvement.
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Algorithm 9: Proximal Policy Optimization Algorithm [103]
Data: Initial policy parameters θ, value function parameters ϕ, learning rates α, β, clipping parameter ϵ
Result: Optimized policy parameters θ and value function parameters ϕ
while not converged do

Sample a batch of trajectories {τi} using current policy πθ
for each trajectory τi do

for each timestep t in τi do
Compute the return Gt =

∑T
k=t rk

Estimate the value Vϕ(st)
Compute the advantage At = Gt − Vϕ(st)
Compute the probability ratio rt(θ) = πθ(at|st)

πθold (at|st)

Compute the clipped objective: Lt = min(rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At)
Accumulate policy loss: Lpolicy += −Lt
Accumulate value loss: Lvalue += (Gt − Vϕ(st))2

Update policy parameters: θ ← θ − α∇θLpolicy
Update value function parameters: ϕ← ϕ− β∇ϕLvalue

Algorithm 10: PPO Variant for Autoregressive Policies [104]
Data: Initial policy parameters θ, value function parameters ϕ, learning rates α, β, clipping parameter ϵ
Result: Optimized policy parameters θ and value function parameters ϕ
while not converged do

Sample a batch of solutions {a(i)} for problem instances {x(i)} using policy πθ
for each solution a(i) for instance x(i) do

Compute the return G(i) = R(x(i), a(i))

Estimate the value Vϕ(x(i))
Compute the advantage A(i) = G(i) − Vϕ(x(i))
Compute the probability ratio r(i)(θ) = πθ(a

(i)|x(i))
πθold (a

(i)|x(i))

Compute the clipped objective: L(i) = min(r(i)(θ)A(i), clip(r(i)(θ), 1− ϵ, 1 + ϵ)A(i))

Accumulate policy loss: Lpolicy += −L(i)

Accumulate value loss: Lvalue += (G(i) − Vϕ(x(i)))2

Update policy parameters: θ ← θ − α∇θLpolicy
Update value function parameters: ϕ← ϕ− β∇ϕLvalue
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3 Verification, Validation
and Robustness

The purpose of this chapter is to provide a unified discussion of verification, validation and robustness in the
present work. The focus of this chapter are the four main modules developed in this work: the Impulsive
Trajectory Design module, the Low Thrust Trajectory Design module, the Heuristic Combinatorial Optimization
module and the Neural Combinatorial Optimization module. Refer to Appendix C for a detailed discussion of
software architecture.

Section 3.1 discusses the verification and validation —where applicable— of all methods implemented in this
work. The methods and procedures used to ensure experimental robustness across this research are presented in
Section 3.2. Lastly, Section 3.3 discusses the sensitivity analysis methodology used to determine the impact of
hyperparameters on the performance of Neural Combinatorial Optimization models.

3.1 Verification & Validation
Verification and validation are the most critical aspect of scientific software design. Without correctness guarantees
for each method involved in a piece of research there can be no confidence in the results produced. Furthermore,
the validation of the impulsive multi-rendezvous manoeuvres produced for the OSSIE OTV is of critical importance
to answer Research Question 2: What is a suitable approach for the design of multi-rendezvous trajectories with
strict feasibility guarantees?

Verification was of primary concern from the start of development. The development process used through
this work adhered to the principles of test-driven development as outlined by Beck [105]. Refer to Appendix C
for further details on the architecture of the software and the software development process. Down to its core,
TDD can be summarized as: develop by testing. This research required the implementation of a large variety of
compatible modules and methods, requiring a wide range of component and integration tests. The result is four
large test sets verifying the four main modules developed in this work.

This section presents the verification test campaign of each of the four main modules. Section 3.1.1 discusses the
verification of the Impulsive Trajectory Design module. Section 3.1.3 discusses the verification of the Low Thrust
Trajectory Design module. Section 3.1.4 discusses the verification of the Heuristic Combinatorial Optimization
module. Lastly, Section 3.1.5 discusses the verification of the Neural Combinatorial Optimization module.

3.1.1 Impulsive Trajectory Design
The experimental campaign for the Impulsive Trajectory Design (IPD) module focused on three fundamental
areas: analytical trajectory design tests, sequential trajectory tests, and perturbation tests. The summary of all
conducted tests is presented in Tab. 3.1
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Test Targets and Outcomes
Analytical Trajectory Design Tests

Analytical trajectory design tests were conducted to verify the accuracy of Multiple Hohmann Transfer (IPD.T1)
and inclination change (IPD.T2) implementations. These tests ensured that the analytical methods correctly
compute MHT trajectories and accurately model inclination changes. The outcomes confirmed that the analytical
implementations produced trajectories consistent with theoretical expectations, demonstrating the correctness of
the trajectory design methods.

Sequential Trajectory Tests
Sequential trajectory tests involved validating the analytical sequence of impulsive maneuvers (IPD.T3). The
objective was to ensure that the sequence of maneuvers generates trajectories that align with expected analyt-
ical predictions. The tests successfully demonstrated that the analytical sequences produce accurate trajectory
outcomes, confirming the reliability of the maneuver sequencing processes.

Perturbation Tests
Perturbation tests aimed to verify that the analytical method can generate transfer trajectories considering pertur-
bations, specifically by propagating them under perturbations analytically using the secular RAAN drift equation
(IPD.T4). These tests evaluated whether the analytical implementation of the secular J2 perturbation accurately
accounts for the effects of perturbative forces in trajectory generation. The results indicated that the analyti-
cal implementation of secular J2 perturbations matched the expected theoretical results, confirming the correct
incorporation of perturbative effects into the trajectory design methods.

Conclusion
The experimental campaign for the IPD module successfully verified the functionality and performance of the four
core analytical impulsive trajectory design methods: MHT, NIC, IPC and sequential impulsive trajectory design.
All tests passed, confirming that the module operates as intended. These verifications establish the reliability of
the IPD module’s trajectory generation capabilities, providing a solid foundation for its integration into mission
planning systems.

Table 3.1: Impulsive trajectory design test summary table. Pass criterions are to be read as follows. Successful
completion: completion of the test with no errors; no assertions are made. Consistency (different
types): assertion test; test result matches expected value. Inspection: manual inspection of test
results; applied when the design of assertion tests is difficult.

IPD.T1 MHT Verify the analytical MHT
trajectory design method

Analytical MHT results
match expected theoretical
trajectories

✓

IPD.T2 NIC Verify the analytical NIC
trajectory design method

Analytical NIC results
match expected theoretical
trajectories

✓

IPD.T3 Sequential guidance
policy

Verify that the analytical
sequence of maneuvers produces
correct outcomes

Analytical sequential
impulsive manoeuvre
results match expected
theoretical trajectories

✓

IPD.T4 Secular perturbation
model

Verify that J2 perturbations are
correctly accounted for

Analytical implementation
of secular J2 perturbation
matches expected
theoretical results

✓

Code Component Test rationale Test criterion Status
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Figure 3.1: OSSIE FES validation results for a coplanar manoeuvre raising semi-major axis by 50 km. Top 3
panels: moving averages, 30 minute window.

3.1.2 Re-Optimization and Validation of Impulsive Trajectories
The SENER OSSIE Functional Engineering Simulator (FS) is the high-fidelity simulation environment serves as the
core framework for modelling, testing and validating the guidance, navigation and control systems of the spacecraft.
Matlab Simulink[106] is used to handle simulation, while Matlab[107] is used for pre- and post-processing tasks.

Translational dynamics are simulated using the Cowell propagator. Five natural perturbations are considered in
the acceleration model: non-spherical Earth effects accounting for zonal harmonics of up to degree 6, atmospheric
drag (density obtained from the U.S. Standard Atmosphere model), third-body perturbations from the Sun and
Moon and solar radiation pressure. Spacecraft mass is propagated using a constant Isp mass propagator.
Attitude dynamics are modeled using Euler’s equation, which incorporates the effects of external torques: as
OSSIE makes no use of internal momentum devices, internal torques are not considered in this analysis as they
have a negligible magnitude in the actual spacecraft configuration. The key external torques considered are gravity
gradient (modeled using the J2 gravitational coefficient), magnetic torques (perturbation by means of residual
magnetic dIPDle moment), aerodynamic drag, and solar radiation pressure. Other potential torque sources, such
as control system torques by means of the reaction control system, are modeled according to the precise thrust
curves provided by the actuator constructed models.
The simulation is integrated using a fixed-step 4th order Runge-Kutta integrator running at 200 Hz (timestep
of 5 ms), enabling accurate system characterization while maintaining sufficient simulation speed, to perform
consequent testing campaigns.

The results of the preliminary validation of co-planar transfers in the FES are presented in Fig. 3.1: the first upper
three plots depict the evolution in time of the orbital parameters during the simulation (in blue), demonstrating
that the optimized trajectory was correctly followed, as contrasted by the error with respect to the SCP (in orange).
The test shows that the achieved error range is compliant with client requirements. The last subplot presents a
comparison between the ∆V consumption achieved by the FES and the SCP: the additional ∆V requested by
GNC results from pointing correction maneuvres, to allign the B20 thrusters with the thrusting direction computed
in the optimization framework.
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The validation of non-coplanar and sequential transfers is an ongoing task taking place at SENER. No other
validation results are available for inclusion in this work as of the time of writing. The validation results presented
and preliminary results from in-house experimentation look promising. Research Question 2 receives a positive
answer.

3.1.3 Low Thrust Trajectory Design
The testing campaign comprised sixteen distinct tests, each targeting specific functionalities of the LTTO module.
The summary of these tests is presented in Tab. 3.2.

Verification Strategy
The verification process for the LTTO module focused on ensuring the correct and reliable operation of the
Lyapunov feedback control guidance policies, specifically the Q-Law and RQ-Law. Given the complexity inherent
in the analytical formulation of these guidance laws, a two-pronged verification approach was adopted:

1. Custom Propagator Verification: The Q-Law and RQ-Law were initially verified using a custom propagator.
This approach provided enhanced control over each step of the trajectory propagation process, facilitating
a detailed assessment of the guidance policies’ implementation.

2. Tudat Integration Verification: Subsequently, the guidance policies were integrated into the Tudat simula-
tion environment. Propagation results obtained from the custom propagator were compared against those
from Tudat to ensure coherence and consistency between the two systems. Prior to verifying the guidance
policies, both the custom propagator and the integrators were independently validated against Tudat to
establish baseline accuracy.

This verification strategy ensured a comprehensive evaluation of the LTTO module’s functionality, addressing
both internal implementation accuracy and external integration compatibility.

Test Targets and Outcomes
Orbital Element Transformations (LTTO.T1)

Test Rationale: To ensure that orbital element transformations introduce minimal error.
Outcome: Transformation consistency was achieved, as all relevant tests completed without discrepancies.

Propagator Verification
• Cowell Propagator (LTTO.T2): The custom Cowell propagator was verified against Tudat using constant

axial force trajectories with the Euler integrator. The Cartesian position error remained below 1e-7 meters
after 30 hours, meeting the pass criterion.

• MEE Propagator (LTTO.T3): Similarly, the custom MEE propagator was validated against Tudat under the
same conditions, achieving the required accuracy.

• MEE Multitype Propagator (LTTO.T4): The multitype MEE propagator was tested using Q-Law trajectories
with the Euler integrator, maintaining Cartesian position errors below 1e-7 meters after 30 hours.

• MEE with Propagator (LTTO.T5) and MEE with Multitype Propagator (LTTO.T6): Both configurations were
successfully verified against Tudat, adhering to the stringent error thresholds.

Integrators Verification
• Integrators (LTTO.T7 to LTTO.T9): The MEE propagator, along with RK4 and RK56 integrators, were

rigorously tested against Tudat. All integrators maintained Cartesian position errors below 1e-7 meters
after 30 hours. Additionally, inner step state propagation within custom integrators was verified, ensuring
accurate state transitions.
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Guidance Policy Integration
• Q-Law and RQ-Law in Tudat (LTTO.T10 and LTTO.T11): Both guidance policies were correctly implemented

and successfully integrated with Tudat for trajectory simulations. The tests concluded with successful
completions and inspections.

• Simulator Test (LTTO.T12): The MEE multitype propagator, along with RK4 and RK56 integrators, was val-
idated using a mean Q-Law transfer over the Iridium 33 cloud. The Cartesian position error was maintained
below 1e-5 meters after 50 hours, satisfying the pass criterion.

• Guidance Policy Inspections (LTTO.T13 and LTTO.T14): Inspections of the Q-Law and RQ-Law implementa-
tions using the custom propagator and integrator confirmed the correct functioning of the ADR trajectories
and guidance policies.

Decoupled Guidance Policy Verification
• Decoupled RQ-Law (LTTO.T15 and LTTO.T16): Both decoupled implementations of the Q-Law were veri-

fied using custom propagators and within the Tudat propagator framework. The tests were successfully
completed and inspected, ensuring the decoupled guidance policies operate as intended.

Conclusion
The LTTO module’s test campaign successfully fulfilled all defined pass criteria across sixteen distinct tests. The
comprehensive verification process demonstrated the module’s robust implementation and reliable performance in
trajectory generation, orbital element transformations, and thoroughly verified the Q-Law and RQ-Law guidance
policies using both custom and Tudat propagators. Test outcomes verify the robust implementation and reliable
performance of the module’s functionalities. Detailed discussions and in-depth analyses of these findings are
documented in subsequent sections of this work.

Table 3.2: Low thrust trajectory design test summary table.

LTTO.T1 Orbital element
transformations

Ensure that orbital element
transformations introduce minimal
error

Transformation consistency ✓

LTTO.T2 Cowell
propagator

Verify custom Cowell propagator
against Tudat using constant axial
force trajectories (Euler integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T3 MEE
propagator

Verify Custom MEE propagator
against Tudat using constant axial
force trajectories (Euler integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T4 MEE multitype
propagator

Verify multitype MEE propagator
using Q-Law trajectories (Euler
integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T5 MEE with a
propagator

Verify MEE with a propagator
against Tudat using constant axial
force trajectories (Euler integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T6 MEE with a
multitype
propagator

Verify multitype MEE with a
propagator against Tudat using
constant axial force trajectories
(Euler integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

Code Component Test rationale Pass criterion Status

Continued on next page
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Table 3.2: Low thrust trajectory design test summary table. (Continued)

LTTO.T7 Integrators Verify MEE propagator and RK4
and RK56 integrators against Tudat
using constant axial force
trajectories (Euler integrator)

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T8 Integrators Verify MEE multitype propagator
and RK4 and RK56 integrators
against Tudat using constant axial
force trajectories

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T9 Integrators Verify inner step state propagation
in custom integrators

Cartesian position error
below 1e-7 meters after 30
hours

✓

LTTO.T10 Q-Law Tudat
guidance policy

Verify Q-Law is correctly
implemented and integrates with
Tudat software for trajectory
simulations

Successful completion,
inspection

✓

LTTO.T11 RQ-Law Tudat
guidance policy

Verify RQ-Law is correctly
implemented and integrates with
Tudat software for trajectory
simulations

Successful completion,
inspection

✓

LTTO.T12 Simulator Verify MEE multitype propagator
and RK4 and RK56 integrators
against Tudat using mean Q-Law
transfer over Iridium 33 cloud

Cartesian position error
below 1e-5 meters after 50
hours

✓

LTTO.T13 Q-Law
guidance policy

Inspect Q-Law ADR trajectories
using custom propagator and
integrator

Successful completion,
inspection

✓

LTTO.T14 RQ-Law
guidance policy

Inspect RQ-Law implementation
using custom propagator

Successful completion,
inspection

✓

LTTO.T15 Decoupled
RQ-Law
guidance policy

Verify decoupled implementation of
Q-Law using custom propagator

Successful completion,
inspection

✓

LTTO.T16 Decoupled
RQ-Law Tudat
guidance policy

Verify decoupled implementation of
Q-Law in Tudat propagator

Successful completion,
inspection

✓

Code Component Test rationale Pass criterion Status

3.1.4 Heuristic Combinatorial Optimization
The experimental campaign for the Heuristic Combinatorial Optimization (HCO) module focused on 15 compo-
nents. The aim of this campaign was to verify the correct implementation of all components, and the correct
integration of all components, resulting in a considerable collection of tests. The summary of all tests conducted
to verify the HCO module is presented in Tab. 3.3.
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Test Targets and Outcomes
Archipelago

Function: Manages multiple evolutionary populations that evolve in parallel and periodically exchange individuals,
enhancing genetic diversity and exploration of the solution space.
Tests:

• HCO.T1 (Archipelago HCO meta-heuristic): Verified the functionality of the archipelago framework. The
framework executes without errors and properly manages populations..

Population
Function: Handles the creation, encoding, and decoding of solution populations for optimization algorithms.
Tests:

• HCO.T2 (Creation, encoding and decoding of populations): Verified population handling. Populations are
created, encoded, and decoded correctly without errors..

• HCO.T3 (Encoding scheme correctness): Ensured encoding consistency. Transformations between encod-
ings are accurate..

• HCO.T7 (Archipelago populations with sampling methods): Verified that archipelago populations are cor-
rectly sampled using both uniform and distance-based methods. Populations are diverse and consistent with
sampling methods..

Permutation Sampling
Function: Generates initial populations by sampling permutations of possible solutions, aiding in thorough explo-
ration of the solution space.
Tests:

• HCO.T5 (Uniform permutation sampling): Verified uniform sampling. Permutations are sampled uniformly
without bias..

• HCO.T6 (Distance-based permutation sampling): Verified distance-based sampling. Sampling prioritizes
permutations based on the Hamming distance..

Traveling Salesman Problem (TSP)
Function: Implements the classical TSP as a baseline for route optimization.
Tests:

• HCO.T4 (Classical TSP problem class): Verified classical TSP implementation. Solves standard TSP in-
stances accurately..

Postprocessing
Function: Processes and logs the results of optimization runs, including evolutionary histories.
Tests:

• HCO.T8 (STSP evolution logging): Ensured accurate logging. Evolutionary data is logged correctly..

• HCO.T9 (Sparse Evolutionary Histories Test): Confirmed history consistency. Sparse records match dense
records..

Visualization
Function: Provides graphical representations of optimization processes and results.
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Tests:

• HCO.T10 (STSP Local Evolution Visualization Test): Verified island-level evolution visuals. Visualizations
are accurate, complete, and effectively communicate results..

• HCO.T11 (STSP Evolution Visualization Test): Verified global evolution visuals. Visualizations are accurate,
complete, and effectively communicate results..

• HCO.T12 (STSP Evolution Visualization with Initial Guesses Test): Verified visualization of initial guess
impact on optimization performance. Visualizations correctly incorporate initial guesses and convey impact
effectively..

• HCO.T13 (Gabbard Diagram Test): Verified Gabbard diagrams. Diagrams correctly represent trajectory
parameters and effectively convey relevant information about each debris cloud..

STSP
Function: Extends the classical TSP to the STSP, adapting it for space mission planning where orbital mechanics
are considered.
Tests:

• HCO.T14 (STSP global optimization): Verified correctness of the generalized STSP problem class and as-
sessed global optimization performance. Algorithms find optimal solutions efficiently..

Integer STSP
Function: Implements the STSP using integer solution encoding, for the purpose of testing integer global opti-
mization algorithms.
Tests:

• 7 HCO.T15 (Integer STSP global optimization): Verified correctness of the generalized Integer STSP problem
class and assessed global optimization performance. Negative outcome: the integer optimization algorithms
in pygmo could not achieve any progress on this variant of the problem. This reinforced the already strong
choice of using random-keys permutation encoding [91], [92] to embed decision vectors into a continuous
space. Refer to Appendix B for further details on permutation encoding and sampling.

Optimizers
Function: Incorporates various optimization algorithms to solve the STSP and its variants.
Tests:

• HCO.T16 (STSP global optimization with Simulated Annealing): Assessed Simulated Annealing performance.
Converges to high-quality solutions..

• HCO.T17 (STSP local optimization): Tested local optimization capability. Succeeds in locally improving
solutions..

• HCO.T18 (STSP Monotonic Basin Hopping for local optimization): Evaluated Basin Hopping effectiveness.
Escapes local optima, finds superior solutions, but overall less efficient than global optimizers..

RAAN Walk and Initial Guesses
Function: Manages the progression of the Right Ascension of the Ascending Node (RAAN) in orbital trajectories
and utilizes initial guesses to enhance optimization.
Tests:

• HCO.T19 (RAAN walk test): Verified RAAN walk optimality. RAAN walk is a near-optimal policy for static
STSP as expected [2]..
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• HCO.T20 (STSP Initial Guesses Test): Verified initial guess effectiveness. Initial guesses improve optimization
metrics..

Low-Thrust Trajectory Optimization (LTTO) Module
Function: Generates trajectories using low-thrust propulsion models, specifically the Q-Law and RQ-Law, essential
for efficient mission planning.
Tests:

• HCO.T21 (Q-Law ADR trajectory generation): Verified Q-Law ADR trajectory generation. Trajectories meet
accuracy and efficiency criteria..

• HCO.T22 (RQ-Law ADR trajectory generation): Verified RQ-Law ADR trajectory generation. Trajectories
meet accuracy and efficiency criteria..

Trajectory Estimation
Function: Estimates costs and parameters of various orbital transfer trajectories, including low-thrust and impul-
sive maneuvers.
Tests:

• HCO.T23 (MHT trajectory estimation): Verified MHT transfer cost estimation. Estimations align with
theoretical models..

• HCO.T24 (MHT-IPC trajectory estimation): Verified MHT-IPC transfer cost estimation. Accurate cost and
parameter assessments..

• HCO.T25 (MHT-NIC trajectory estimation): Verified MHT-NIC transfer cost estimation. Estimations are
accurate and consistent..

• HCO.T26 (RQ-Law trajectory estimation): Verified RQ-Law transfer cost estimation. Estimations match
theoretical models..

• HCO.T27 (MHT-IPC optimized trajectory estimation): Verified just-in-time (JIT) compiled MHT-IPC trans-
fer cost estimation. Optimized estimations show improved metrics..

• HCO.T28 (Q-Law optimized trajectory estimation): Verified JIT-compiled Q-Law transfer cost estimation.
Optimized estimations meet performance metrics..

• HCO.T29 (MHT-IPC dynamic STSP tour cost estimation): Verified JIT-compiled dynamic MHT-IPC tour
cost estimation. Cost estimations reflect mission requirements accurately..

• HCO.T30 (Q-Law dynamic STSP tour cost estimation): Verified JIT-compiled dynamic Q-Law tour cost
estimation. Cost estimations are accurate and consistent..

Heuristic Search Methods
Function: Implements heuristic methods like Nearest Neighbor and Beam Search to construct initial solutions
and improve optimization performance.
Tests:

• HCO.T31 (Dynamic Q-Law STSP Nearest Neighbor search): Tested nearest neighbor heuristic. Produces
high-quality initial solutions..

• HCO.T32 (MHT-IPC Q-Law STSP Nearest Neighbor search): Assessed heuristic with MHT-IPC. Generates
effective initial solutions..

• HCO.T33 (Dynamic Q-Law STSP Beam Search): Verified beam search implementation. Explores multiple
paths, improves solution quality..
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Generalized STSP
Function: Addresses complex versions of the STSP, incorporating factors like variable payload masses, dynamic
environments, and different propulsion models.
Tests:

• HCO.T34 (Static Q-Law STSP global optimization): Tested static global optimization. Identifies optimal
solutions correctly..

• HCO.T35 (Dynamic Q-Law STSP global optimization using initial guesses): Verified dynamic optimization
with initial guesses. Improved convergence and solution quality..

• HCO.T36 (Static MHT-IPC STSP global optimization): Assessed static MHT-IPC optimization. Finds optimal
solutions aligning with requirements..

• HCO.T37 (Dynamic MHT-IPC STSP global optimization using initial guesses): Tested dynamic MHT-IPC
optimization with initial guesses. Enhanced performance metrics achieved..

• HCO.T38 (Mass-varying payload generation): Ensured variable payload handling. Payloads generated ac-
curately and consistently..

• HCO.T39 (Mass-varying tour cost estimation): Verified cost estimation with varying payloads. Cost estima-
tions accurately reflect payload variations..

• HCO.T40 (OSSIE STSP global optimization): Tested OSSIE STSP optimization performance. Solves complex
scenarios meeting all criteria..

Active Debris Removal Coasting Transfer Policy (ADR CTP)
Function: Implements coasting strategies in low-thrust trajectory planning to optimize fuel consumption and
mission duration in ADR missions.
Tests:

• HCO.T41 (RQ-Law coasting strategy for the dynamic STSP): Verified RQ-Law coasting strategy. Optimizes
fuel consumption and mission duration correctly..

Conclusion
The experimental campaign for the HCO module successfully verified the functionality and performance of its
key components. All tests, except HCO.T15, passed, confirming that the module operates as intended. Test
HCO.T15 failed due to the inability of integer optimization methods to make progress on the problem variant,
reinforcing the choice of using random-keys permutation encoding. These verifications establish the reliability of
the HCO module’s optimization capabilities, providing a solid foundation for its integration into mission planning
systems.

Table 3.3: Heuristic Combinatorial Optimization test summary table.

HCO.T1 Archipelago Verify archipelago framework
functionality

Executes without errors, proper
population management

✓

HCO.T2 Population Verify population handling Correct creation, encoding,
decoding without errors

✓

HCO.T3 Population Ensure encoding consistency Accurate transformations between
encodings

✓

Code Component Test rationale Test criterion Status

Continued on next page
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Table 3.3: Heuristic Combinatorial Optimization test summary table. (Continued)

HCO.T4 TSP Verify classical TSP
implementation

Solves standard TSP instances
accurately

✓

HCO.T5 Permutation
Sampling

Verify uniform sampling Permutations sampled uniformly
without bias

✓

HCO.T6 Permutation
Sampling

Verify distance-based sampling Sampling prioritizes permutations
based on the Hamming distance

✓

HCO.T7 Population Verify that archipelago
populations are correctly
sampled using both uniform
and distance-based methods

Populations are diverse and
consistent with sampling methods

✓

HCO.T8 Postprocessing Ensure accurate logging Evolutionary data logged correctly ✓
HCO.T9 Postprocessing Confirm history consistency Sparse records match dense

records
✓

HCO.T10 Visualization Verify island-level evolution
visuals

Island-level visualizations are
accurate, complete and effectively
communicate results

✓

HCO.T11 Visualization Verify global evolution visuals Global optimization visualizations
are accurate, complete and
effectively communicate results

✓

HCO.T12 Visualization Verify visualization of initial
guess impact on optimization
performance

Visualizations correctly
incorporate initial guesses and
convey impact effectively

✓

HCO.T13 Visualization Verify Gabbard diagrams Diagrams correctly represent
trajectory parameters, effectively
convey all relevant information
about each debris cloud

✓

HCO.T14 STSP Verify correctness of
generalized STSP problem
class, and assess global
optimization performance

Algorithms find optimal solutions
efficiently

✓

HCO.T15 STSP Verify correctness of
generalized Integer STSP
problem class, and assess
global optimization
performance

Integer methods do not progress,
confirming encoding choice

7

HCO.T16 Optimizers Assess Simulated Annealing
performance

Converges to high-quality
solutions

✓

HCO.T17 Optimizers Test local optimization
capability

Succeed in locally improving
solutions

✓

HCO.T18 Optimizers Evaluate Basin Hopping
effectiveness

Escapes local optima, finds
superior solutions, overall less
efficient than global optimizers

✓

Code Component Test rationale Test criterion Status

Continued on next page
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Table 3.3: Heuristic Combinatorial Optimization test summary table. (Continued)

HCO.T19 STSP Verify RAAN walk optimality RAAN walk is near-optimal policy
for static STSP as expected [2]

✓

HCO.T20 STSP Verify initial guess
effectiveness

Initial guesses improve
optimization metrics

✓

HCO.T21 LTTO Module Verify Q-Law ADR trajectory
generation

Trajectories meet accuracy and
efficiency criteria

✓

HCO.T22 LTTO Module Verify RQ-Law ADR trajectory
generation

Trajectories meet accuracy and
efficiency criteria

✓

HCO.T23 Trajectory
Estimation

Verify MHT transfer cost
estimation

Estimations align with theoretical
models

✓

HCO.T24 Trajectory
Estimation

Verify MHT-IPC transfer cost
estimation

Accurate cost and parameter
assessments

✓

HCO.T25 Trajectory
Estimation

Verify MHT-NIC transfer cost
estimation

Estimations are accurate and
consistent

✓

HCO.T26 Trajectory
Estimation

Verify RQ-Law transfer cost
estimation

Estimations match theoretical
models

✓

HCO.T27 Trajectory
Estimation

Verify JIT-compiled MHT-IPC
transfer cost estimation

Optimized estimations show
improved metrics

✓

HCO.T28 Trajectory
Estimation

Verify JIT-compiled Q-Law
transfer cost estimation

Optimized estimations meet
performance metrics

✓

HCO.T29 Trajectory
Estimation

Verify JIT-compiled dynamic
MHT-IPC tour cost estimation

Cost estimations reflect mission
requirements accurately

✓

HCO.T30 Trajectory
Estimation

Verify JIT-compiled dynamic
Q-Law tour cost estimation

Cost estimations are accurate and
consistent

✓

HCO.T31 Nearest
Neighbor
Search

Test nearest neighbor heuristic Produces high-quality initial
solutions

✓

HCO.T32 Nearest
Neighbor
Search

Assess heuristic with
MHT-IPC

Generates effective initial
solutions

✓

HCO.T33 Beam Search Verify beam search
implementation

Explores multiple paths, improves
solution quality

✓

HCO.T34 Generalized
STSP

Test static global optimization Identifies optimal solutions
correctly

✓

HCO.T35 Generalized
STSP

Verify dynamic optimization
with initial guesses

Improved convergence and
solution quality

✓

HCO.T36 Generalized
STSP

Assess static MHT-IPC
optimization

Finds optimal solutions aligning
with requirements

✓

HCO.T37 Generalized
STSP

Test dynamic MHT-IPC
optimization with guesses

Enhanced performance metrics
achieved

✓

Code Component Test rationale Test criterion Status

Continued on next page
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Table 3.3: Heuristic Combinatorial Optimization test summary table. (Continued)

HCO.T38 Generalized
STSP

Ensure variable payload
handling

Payloads generated accurately
and consistently

✓

HCO.T39 Generalized
STSP

Verify cost estimation with
varying payloads

Cost estimations accurately
reflect payload variations

✓

HCO.T40 Generalized
STSP

Test OSSIE STSP
optimization performance

Solves complex scenarios meeting
all criteria

✓

HCO.T41 ADR CTP Verify RQ-Law coasting
strategy

Optimizes fuel consumption and
mission duration correctly

✓

Code Component Test rationale Test criterion Status

3.1.5 Neural Combinatorial Optimization
The experimental campaign for the NCO module focused on 6 key areas: the default NCO loop using REINFORCE,
logging, environment, Advantage Actor-Critic, Proximal Policy Optimization and hyperparemter optimization.
Test-driven development was of critical importance for the development of the NCO module, enabling the quick
buildup of a reliable NCO codebase thanks to progressive verification. The summary of all tests conducted to
verify the HCO module is presented in Tab. 3.4.

Test Targets and Outcomes
Neural Combinatorial Optimization

Function: Develops and trains neural network policies using reinforcement learning algorithms to solve combina-
torial optimization problems specific to spacecraft routing in ADR missions.

Tests:

• NCO.T1 (Verify simplest NCO setup on the classical TSP): Tested the NCO module on the classical Traveling
Salesman Problem to ensure that the routing policy can be learned correctly.

• NCO.T8 (Test default NCO setup for static ADR scenarios using the relative inclination cost function): Eval-
uated the NCO setup on static ADR scenarios using the relative inclination cost function. Observed consis-
tent validation loss reduction over training.

• NCO.T9 (Test default NCO setup for static ADR scenarios using MHT maneuvers): Assessed the NCO mod-
ule using MHT maneuvers in static ADR scenarios. Consistent validation loss reduction was achieved.

• NCO.T10 (Test default NCO setup for static ADR scenarios using NIC maneuvers): Tested the module with
NIC maneuvers. Training showed consistent validation loss reduction.

• NCO.T11 (Test default NCO setup for static ADR scenarios using IPC maneuvers): Evaluated the NCO setup
using IPC maneuvers. Consistent reduction in validation loss was observed.

• NCO.T12 (Test default NCO setup for static, fuel-optimal ADR scenarios using MHT-IPC maneuvers): Tested
combined MHT and IPC maneuvers in static, fuel-optimal ADR scenarios. Training resulted in consistent
validation loss reduction.

• NCO.T13 (Test default NCO setup for static, fuel-optimal ADR scenarios using IPC maneuvers): Assessed
the module using IPC maneuvers in fuel-optimal scenarios. Observed consistent validation loss reduction.

• NCO.T14 (Test default NCO setup for static ADR scenarios using MHT-IPC maneuvers): Evaluated the
module with MHT-IPC maneuvers in static scenarios. Consistent validation loss reduction was achieved.

• NCO.T15 (Test default NCO setup for static ADR scenarios using Q-Law maneuvers): Tested the NCO setup
using Q-Law maneuvers. Training showed consistent reduction in validation loss.
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• NCO.T16 (Test default NCO setup for dynamic ADR scenarios using IPC maneuvers): Evaluated the module
in dynamic ADR scenarios with IPC maneuvers. Consistent validation loss reduction was observed.

• NCO.T17 (Test default NCO setup for dynamic, fuel-optimal ADR scenarios using MHT-NIC maneuvers):
Assessed the module using MHT-NIC maneuvers in dynamic, fuel-optimal scenarios. Training resulted in
consistent validation loss reduction.

• NCO.T18 (Test default NCO setup for dynamic ADR scenarios using Q-Law maneuvers): Tested the NCO
setup with Q-Law maneuvers in dynamic scenarios. Consistent reduction in validation loss was achieved.

Logging
Function: Manages the recording and storage of training logs and geometric data during the training process,
facilitating monitoring and analysis of training progress.

Tests:

• NCO.T2 (Verify logging functionality): Verified that logs are correctly recorded during training sessions.

• NCO.T7 (Verify logging functionality for generalized STSPs): Ensured that geometric data is logged accu-
rately for generalized Spacecraft Traveling Salesman Problems (STSPs).

Environment
Function: Generates realistic ADR mission scenarios for training, based on statistical models derived from real-
world debris clouds, and implements cost functions for different transfer maneuvers.

Tests:

• NCO.T3 (Verify generation of realistic ADR mission scenarios based on the Iridium 33 debris cloud): Con-
firmed that scenarios are generated according to statistical models from the Iridium 33 debris cloud.

• NCO.T4 (Verify vectorized cost functions and cumulative cost functions against HCO cost functions): Ver-
ified that vectorized cost functions for impulsive and low-thrust transfers are correctly implemented and
that static and dynamic cumulative cost functions align with those used in the HCO module.

Advantage Actor-Critic
Function: Implements the Advantage Actor-Critic reinforcement learning algorithm for training the neural routing
policy, balancing exploration and exploitation during training.

Tests:

• NCO.T5 (Test A2C algorithm to solve fuel-optimal ADR mission scenarios): Evaluated the A2C algorithm
on fuel-optimal ADR mission scenarios. The algorithm converged and performed as expected.

Proximal Policy Optimization
Function: Implements the Proximal Policy Optimization reinforcement learning algorithm for training the neural
routing policy, aiming to improve training stability and performance.

Tests:

• NCO.T6 (Test PPO algorithm to solve fuel-optimal ADR mission scenarios): Tested the PPO algorithm on
fuel-optimal ADR mission scenarios. The algorithm did not perform as well as expected. Potential causes
for this could be the default settings of the PPO algorithm in RL4CO, or less likely a more fundamental
inadequacy of the method for highly dynamic Vehicle Routing Problems (VRP).

Hyperparameter Optimization
Function: Applies various techniques to identify the main effects of hyperparameters in the training process and
enhance model performance.
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Tests:

• NCO.T19 (Verify ANOVA experiment design with Taguchi L27 array on a mock system identification test
case): Verified that ANOVA results are correctly computed and that the main effects of all parameters in
the test are accurately identified.

Conclusion
The experimental campaign for the NCO module successfully verified the functionality and performance of its key
components. All tests passed, confirming that the module operates as intended. These verifications establish the
reliability of the NCO module for the training of NCO policy for space vehicle routing problems, providing a solid
foundation for its integration into mission planning systems.

Table 3.4: NCO test summary table.

NCO.T1 NCO Verify simplest NCO setup on the
classical TSP

TSP routing policy learned
correctly

✓

NCO.T2 Logging Verify logging functionality Logs are correctly recorded ✓
NCO.T3 Environment Verify generation of realistic ADR

mission scenarios based on the
Iridium 33 debris cloud

Scenarios are generated as
per statistical models

✓

NCO.T4 Environment Verify vectorized cost functions for
impulsive and low thrust transfers,
and verify static and dynamic
cumulative cost functions against
HCO cost functions

Successfully verified cost
calculations for JGCD
scenarios

✓

NCO.T5 A2C Test A2C algorithm to solve
fuel-optimal ADR mission scenarios

A2C algorithm converges
and performs as expected

✓

NCO.T6 PPO Test PPO algorithm to solve
fuel-optimal ADR mission scenarios

PPO algorithm converges,
performs worse than
expected

✓

NCO.T7 Logging Verify logging functionality for
generalized STSP’s

Geometric data is logged
accurately

✓

NCO.T8 NCO Test default NCO setup for static
ADR scenarios using the relative
inclination cost function

Consistent validation loss
reduction over training

✓

NCO.T9 NCO Test default NCO setup for static
ADR scenarios using MHT
manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T10 NCO Test default NCO setup for static
ADR scenarios using NIC manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T11 NCO Test default NCO setup for static
ADR scenarios using IPC manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T12 NCO Test default NCO setup for static,
fuel-optimal ADR scenarios using
MHT-IPC manoeuvres

Consistent validation loss
reduction over training

✓

Code Component Test rationale Test criterion Status

Continued on next page
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Table 3.4: NCO test summary table. (Continued)

NCO.T13 NCO Test default NCO setup for static,
fuel-optimal ADR scenarios using IPC
manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T14 NCO Test default NCO setup for static
ADR scenarios using MHT-IPC
manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T15 NCO Test default NCO setup for static
ADR scenarios using Q-Law
manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T16 NCO Test default NCO setup for dynamic
ADR scenarios using IPC manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T17 NCO Test default NCO setup for dynamic
fuel-optimal ADR scenarios using
MHT-NIC manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T18 NCO Test default NCO setup for dynamic
ADR scenarios using Q-Law
manoeuvres

Consistent validation loss
reduction over training

✓

NCO.T19 Hyperparameter
optimization

Verify ANOVA experiment design
with Taguchi L27 array on a mock
system identification test case

ANOVA results are
correctly computed, main
effects of all parameters in
the test are correctly
identified

✓

Code Component Test rationale Test criterion Status

3.2 Robust Experiment Design
Second only to verification and validation in importance, the design of robust and reproducible experiments and
the correct and thorough analysis of experimental results are fundamental for the integrity and value of scientific
research.

This section aims to discuss the experiment design and analysis approach used in this work. The results of the
experimental campaigns that are discussed in these sections are the results that have been presented so far in this
work, and those that are yet to be discussed. The purpose of this section is not to give a detailed overview of the
results obtained, as that is the scope of the thesis itself. Instead, this section aims to provide the reader with a
fine-grained reference to the design of all experiments carried out in this work.

A set of fundamental general experiment design maxims applied throughout this work are presented in Sec-
tion 3.2.1. This is followed a detailed report of the experimental campaigns conducted with each of the four
main modules developed in this research: Impulsive Trajectory Design in Section 3.2.2, Low Thrust Trajectory
Design in Section 3.2.3, Heuristic Combinatorial Optimization in Section 3.2.4, and lastly Neural Combinatorial
Optimization in Section 3.2.5.

3.2.1 General Considerations
Random Number Generation

• All random number generation processes are controlled by set seeds to ensure reproducibility.
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Experimental Robustness
• All data gathering experiments are repeated using different random seeds between 5 and 100 times, depend-

ing on the cost of the experiment, to ensure the robustness of gathered data.

Storage and Post-processing of Results
• All experimental results are stored using human-readable filenames encoding experiment information.

• All NCO training runs are thoroughly logged using either Weights and Biases1 (WandB) or TensorBoard2.

Consistent Experimental Environment
• All experiments are conducted in a controlled environment with consistent hardware and software configu-

rations to eliminate variability due to external factors [108].

Version Control
• All code and experiment configurations are version-controlled using Git3 [109] to ensure reproducibility and

traceability.

Data Validation
• Experimental data is validated before use to prevent errors due to corrupted or invalid data [110].

Statistical Analysis
• Appropriate statistical methods are used to analyze results, and statistical tests are applied to determine

significance [77].

Documentation
• All experiment settings, parameters, and procedures are thoroughly documented to facilitate reproducibility

[111].

Automation
• Experiments are automated where possible to reduce human error and increase efficiency [112].

Control Experiments
• Control experiments are conducted to establish baseline performance and validate the experimental setup

[113].

Data Integrity and Backup
• Experimental data is backed up across the servers and machines used in this research. Critical experimental

data is version-controlled [114].

Sample Size and Statistical Power
• Adequate sample sizes are used to ensure statistical power and reliability of results [77]. This is particu-

larly important for the the ANOVA analyses conducted to assess hyperparameter impact on NCO model
performance. Refer to Section 3.3 for an in-depth discussion of this topic.

3.2.2 Impulsive Trajectory Design
Analysis Summary and Key Outcomes
The experimental test campaign for the Impulsive Trajectory Design (IPD) module aimed to generate realistic
Multiple Hohmann Transfer (IPO.A1), Node Inclination Change (IPO.A2), and sequential MHT-NIC (IPO.A3)

1https://wandb.ai/site
2https://www.tensorflow.org/tensorboard
3https://git-scm.com/

https://wandb.ai/site
https://www.tensorflow.org/tensorboard
https://git-scm.com/
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trajectories for the OSSIE OTV under J2 perturbations. These trajectories were then used as warm starts for the
trajectory re-optimization process using SCP. Tab. 3.5 summarizes the experiments conducted. In each case, the
perturbed trajectories were successfully used as warm starts for the SCP trajectory re-optimization process. These
results confirm the IPO module’s ability to generate accurate perturbed trajectories, supporting its integration
into mission planning workflows.

Table 3.5: Impulsive trajectory design experimental campaign summary table.

IPO.A1 MHT Produce realistic MHT trajectories for
the OSSIE OTV under J2

Perturbed MHT trajectories
succesfully used as warm starts for the
SCP trajectory re-optimization
process

IPO.A2 NIC Produce realistic NIC trajectories for
the OSSIE OTV under J2

Perturbed NIC trajectories succesfully
used as warm starts for the SCP
trajectory re-optimization process

IPO.A3 MHT-NIC Produce realistic sequential MHT-NIC
trajectories for the OSSIE OTV under
J2

Perturbed MHT-NIC trajectories
succesfully used as warm starts for the
SCP trajectory re-optimization
process

Code Area Analysis Target Outcome

3.2.3 Low Thrust Trajectory Design
Analysis Summary and Key Outcomes
The experimental campaign for the Low Thrust Trajectory Optimization (LTTO) module encompassed ten exper-
iments across four primary research areas. The summary of these experiments is presented in Tab. 3.6.

Benchmark Selection
Experiment LTTO.A1 focused on determining the appropriate integrator step size for benchmarking purposes.
The outcome of this experiment established an adequate step size that ensures reliable integration results for
subsequent analyses.

Integrator Selection
Experiments LTTO.A2 and LTTO.A3 addressed the selection of optimal integrators for the Q-Law guidance policy
within the Tudat framework. LTTO.A2 involved trial testing of the Q-Law guidance policy with various integrators,
resulting in successful trials across different integrator configurations. LTTO.A3 conducted a trade-off analysis of
all available integrators in Tudat to identify the most performant integrator-setting combinations for generating
ADR Q-Law trajectories. This analysis led to the identification and selection of the optimal integrator settings.

OSSIE Mission Design
A series of experiments (LTTO.A4 to LTTO.A8) were conducted to design missions for the OSSIE scenario using
both Q-Law and RQ-Law guidance policies integrated with Tudat. LTTO.A4, LTTO.A5, LTTO.A6, and LTTO.A7
successfully designed missions using RQ-Law and Q-Law, both integrated and standalone within Tudat. Ad-
ditionally, LTTO.A8 focused on decoupled mission design using Q-Law with Tudat, resulting in the successful
implementation of decoupled Q-Law mission designs.

ADR Mission Design
Experiments LTTO.A9 and LTTO.A10 concentrated on mission design for the ADR scenario using the RQ-Law
guidance policy within Tudat. Both experiments successfully designed missions employing RQ-Law, demonstrating
the capability of the LTTO module to support ADR mission planning effectively.
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Table 3.6: Low thrust trajectory design experimental campaign summary table.

LTTO.A1 Benchmark
selection

Determining the benchmark
integrator step size

Determined adequate benchmark
integration step size

LTTO.A2 Integrator
selection

Trial testing of Q-Law guidance
policy with different integrators

Successfully trialed Q-Law guidance
policy with various integrators

LTTO.A3 Integrator
selection

Trade-off all available integrators in
Tudat to find the optimal integrator
for generating ADR Q-Law
trajectories

Identified list of highly performant
integrator-setting combinations,
selected optimal integrator

LTTO.A4 OSSIE mission
design

Mission design using RQ-Law
integrated with Tudat for OSSIE
scenarios

Successfully designed missions using
RQ-Law with Tudat

LTTO.A5 OSSIE mission
design

Mission design using RQ-Law for
OSSIE scenarios

Successfully designed missions using
RQ-Law

LTTO.A6 OSSIE mission
design

Mission design using Q-Law
integrated with Tudat for OSSIE
scenarios

Successfully designed missions using
Q-Law with Tudat

LTTO.A7 OSSIE mission
design

Mission design using Q-Law for
OSSIE scenarios

Successfully designed missions using
Q-Law

LTTO.A8 OSSIE mission
design

Decoupled mission design using
Q-Law with Tudat for OSSIE
scenarios

Successfully implemented decoupled
Q-Law mission designs with Tudat

LTTO.A9 ADR mission
design

Mission design using RQ-Law with
Tudat for ADR scenarios

Successfully designed missions using
RQ-Law with Tudat for ADR

LTTO.A10 ADR mission
design

Mission design using RQ-Law for
ADR scenarios

Successfully designed missions using
RQ-Law for ADR

Code Area Analysis Target Outcome

3.2.4 Heuristic Combinatorial Optimization
This section summarizes the experimental campaign conducted on the Heuristic Combinatorial Optimization
(HCO) module, focusing on various strategies and methodologies applied to space mission planning and opti-
mization problems. The primary objectives were to evaluate different sampling methods, optimization strategies,
trajectory estimations, and their impacts on mission design, particularly in the context of space debris modeling
and active debris removal missions.

Analysis Summary and Key Outcomes
The experimental campaign explored several key areas:

Permutation Sampling
The impact of different permutation sampling methods on optimization performance was assessed. Uniform
sampling served as a baseline, while distance-based sampling demonstrated improved solution diversity, leading to
enhanced optimization results.

Space Debris Modeling and Study
Statistical analyses were conducted to understand the characteristics and evolution of space debris clouds. Models
predicting future debris population trends were developed, and Gabbard diagrams were created to visualize orbital
parameters, providing valuable insights for long-term space mission planning.
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Approximate Solutions Visualization
Visualization techniques were employed to illustrate the progression of the Right Ascension of the Ascending Node
(RAAN) in dynamic scenarios. These visualizations aided in understanding RAAN adjustments using Q-Law and
impulsive maneuvers, contributing to better mission planning strategies.

Optimizer Trade-Off Studies
Various optimization strategies were evaluated, including local and global optimization methods, meta-heuristic al-
gorithms, and the use of initial guesses. The studies revealed that initial guesses significantly enhance optimization
efficiency and that combining strategies can lead to improved results.

Trajectory Estimation
Regression models for Time of Flight (TOF) and the Q parameter were developed using RQ-Law and Q-Law with
Tudat software. These models facilitate accurate trajectory parameter predictions, essential for effective mission
planning and fuel estimation.

Perturbation Impact Studies
The effects of dynamic trajectories, RAAN walks, beam search algorithms, and impulsive maneuvers on mission
planning were analyzed. Findings indicated that dynamic strategies and initial guesses significantly improve
optimization performance, and beam search algorithms enhance optimization in dynamic scenarios.

Optimization Performance
The influence of initial guesses and different sampling methods on global optimization was examined. High-quality
initial guesses were found to substantially improve optimization results, and the choice of sampler was identified
as a critical factor affecting optimization effectiveness.

OSSIE and ADR Mission Design
For OSSIE (Optimization with Spacecraft and Space-based Infrastructure Evolution) and ADR missions, dynamic
global optimization strategies were evaluated. The use of Multiple Hohmann Transfers without Inclination Change
(MHT-NIC), impulsive maneuvers, and RQ-Law trajectories demonstrated benefits in mission design. Initial
guesses further enhanced optimization performance, and fuel consumption estimates were accurately provided.

Reinforcement Learning
Optimality gaps in reinforcement learning (RL) training datasets were analyzed for both OSSIE and ADR missions.
Quantifying these gaps provided insights for refining RL models and improving their accuracy in mission planning
applications.

Coasting Transfer Policies
The impact of coasting transfer policies on mission efficiency was evaluated. Implementing coasting strategies
was found to offer benefits in fuel savings and mission duration, contributing to more efficient ADR missions.

Table 3.7: Heuristic Combinatorial Optimization experimental campaign summary table.

HCO.A1 Permutation
sampling

Evaluating uniform sampling in
optimization

Assessed impact of uniform sampling
on solution quality

HCO.A2 Permutation
sampling

Analyzing the impact of
distance-based sampling on
optimization

Demonstrated advantages of
distance-based sampling in solution
diversity

Code Area Analysis Target Outcome

Continued on next page
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Table 3.7: Heuristic Combinatorial Optimization experimental campaign summary table. (Continued)

HCO.A3 Space debris
modelling

Providing a statistical summary of
debris cloud characteristics

Presented key statistics of debris
cloud for analysis

HCO.A4 Space debris
study

Summarizing statistics of debris
cloud with static RAAN walk

Generated statistical data on debris
cloud behavior with static RAAN

HCO.A5 Space debris
study

Analyzing the evolution of space
debris over time

Modeled and predicted debris
population changes

HCO.A6 Space debris
study

Creating Gabbard diagrams for
debris analysis

Produced diagrams illustrating debris
orbital characteristics

HCO.A7 Approximate
solutions

Visualizing dynamic RAAN walk
using Q-Law

Created visual representations of
RAAN progression

HCO.A8 Approximate
solutions

Visualizing dynamic RAAN walk
with impulsive maneuvers

Provided visual insights into
impulsive RAAN changes

HCO.A9 Optimizer
trade-off

Rapid evaluation of global
optimization strategies

Quickly identified effective global
optimizers

HCO.A10 Optimizer
trade-off

Rapid evaluation of local
optimization strategies

Provided quick insights into local
optimization performance

HCO.A11 Optimizer
trade-off

Assessing trade-offs in local
optimization methods

Identified strengths and weaknesses
of local optimization approaches

HCO.A12 Optimizer
trade-off

Evaluating local optimization with
initial guesses

Showed initial guesses improve local
optimization efficiency

HCO.A13 Optimizer
trade-off

Testing local optimization on
constrained problems

Demonstrated local optimization
effectiveness under constraints

HCO.A14 Optimizer
trade-off

Analyzing combined local
optimization strategies

Found that combining strategies
enhances optimization results

HCO.A15 Optimizer
trade-off

Evaluating global optimization
techniques

Assessed the performance of various
global optimizers

HCO.A16 Optimizer
trade-off

Impact of initial guesses on global
optimization

Confirmed initial guesses improve
global optimization efficiency

HCO.A17 Optimizer
trade-off

Analyzing combined global
optimization strategies

Improved results using combined
optimization approaches

HCO.A18 Optimizer
trade-off

Evaluating different meta-heuristic
algorithms

Compared performance of various
meta-heuristics

HCO.A19 Trajectory
estimation

Time of Flight and Q parameter
regression analysis using RQ-Law
with Tudat for ADR

Derived regression models for
TOF-Q relationships

HCO.A20 Trajectory
estimation

Time of Flight and Q parameter
regression analysis using Q-Law with
Tudat for ADR

Developed regression models for
Q-Law trajectories

HCO.A21 Perturbation
impact

Assessing the impact of using
dynamic RQ-Law trajectories

Demonstrated benefits in trajectory
optimization

Code Area Analysis Target Outcome

Continued on next page
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Table 3.7: Heuristic Combinatorial Optimization experimental campaign summary table. (Continued)

HCO.A22 Perturbation
impact

Evaluating the impact of dynamic
RAAN walk using Q-Law

Showed improved mission planning
with dynamic RAAN walk

HCO.A23 Perturbation
impact

Assessing impact of dynamic RAAN
walk with impulsive maneuvers

Analyzed effectiveness of impulsive
RAAN adjustments

HCO.A24 Perturbation
impact

Evaluating beam search in dynamic
RAAN walk using RQ-Law

Found beam search enhances RAAN
optimization

HCO.A25 Perturbation
impact

Beam search in dynamic RAAN walk
using MHT with Impulsive Plane
Changes

Improved optimization with beam
search and MHT-IPC

HCO.A26 Perturbation
impact

Assessing the impact of dynamic
Q-Law trajectories

Confirmed advantages in mission
planning

HCO.A27 Perturbation
impact

Evaluating the impact of dynamic
impulsive maneuvers

Demonstrated effectiveness in
trajectory optimization

HCO.A28 Perturbation
impact

Analyzing fuel mass consumption in
dynamic impulsive maneuvers

Provided insights into fuel efficiency

HCO.A29 Perturbation
impact

Impact of initial guesses in dynamic
global optimization with Q-Law

Improved optimization results with
initial guesses

HCO.A30 Optimization
performance

Assessing the impact of initial
guesses on global optimization

Found that good initial guesses
significantly improve optimization
results

HCO.A31 Optimization
performance

Assessing initial guesses in dynamic
global optimization with impulsive
maneuvers

Confirmed initial guesses enhance
optimization in dynamic impulsive
scenarios

HCO.A32 Optimization
performance

Assessing the impact of different
samplers in global optimization

Determined the influence of sampler
choice on optimization

HCO.A33 Optimizer
trade-off

Evaluating dynamic global
optimization with initial guesses
using impulsive maneuvers

Identified performance benefits of
using initial guesses in dynamic
optimization

HCO.A34 Optimizer
trade-off

Evaluating dynamic global
optimization using impulsive
maneuvers

Assessed the effectiveness of
impulsive maneuvers in dynamic
global optimization

HCO.A35 Optimizer
trade-off

Evaluating combined strategies in
dynamic global optimization with
impulsive maneuvers

Showed improved optimization
results with combined strategies

HCO.A36 Optimizer
trade-off

Evaluating dynamic meta-heuristics
with impulsive maneuvers

Showed effectiveness of
meta-heuristics in dynamic impulsive
scenarios

HCO.A37 Optimizer
trade-off

Evaluating dynamic meta-heuristics
using Q-Law

Showed Q-Law’s effectiveness in
dynamic meta-heuristics

HCO.A38 OSSIE mission
design

Analyzing OSSIE dynamic global
optimization with MHT without
Inclination Change

Demonstrated benefits in OSSIE
scenarios

Code Area Analysis Target Outcome

Continued on next page
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Table 3.7: Heuristic Combinatorial Optimization experimental campaign summary table. (Continued)

HCO.A39 OSSIE mission
design

Impact of initial guesses in OSSIE
dynamic global optimization using
MHT-NIC

Confirmed initial guesses improve
optimization

HCO.A40 OSSIE mission
design

Combined strategies in OSSIE
dynamic global optimization with
MHT-NIC

Showed improved results with
combined approaches

HCO.A41 ADR mission
design

Evaluating combined strategies in
dynamic global optimization using
RQ-Law for ADR

Improved optimization outcomes
with RQ-Law

HCO.A42 ADR mission
design

Evaluating dynamic global
optimization using RQ-Law for ADR

Assessed RQ-Law effectiveness in
optimization

HCO.A43 ADR mission
design

Impact of initial guesses in dynamic
global optimization with RQ-Law for
ADR

Improved optimization with initial
guesses

HCO.A44 OSSIE mission
design

Verifying mass changes during
OSSIE tours

Confirmed correctness of mass
change calculations in OSSIE tours

HCO.A45 OSSIE mission
design

Generating mission scenarios for
OSSIE

Successfully generated mission
scenarios for analysis

HCO.A46 OSSIE mission
design

Analyzing optimality gap in RL
training datasets for OSSIE

Quantified optimality gaps to
improve reinforcement learning
training

HCO.A47 OSSIE mission
design

Nominal OSSIE dynamic global
optimization using impulsive
maneuvers without Inclination
Change

Evaluated nominal performance in
OSSIE missions

HCO.A48 OSSIE mission
design

OSSIE dynamic global optimization
with Impulsive Plane Changes

Analyzed performance with IPC
maneuvers

HCO.A49 OSSIE mission
design

Estimating fuel mass consumption in
OSSIE missions

Provided accurate fuel consumption
estimates

HCO.A50 OSSIE mission
design

Analyzing optimal tours in OSSIE
using dynamic global optimization

Identified optimal tour strategies for
OSSIE missions

HCO.A51 OSSIE mission
design

Performing Monte Carlo analysis on
OSSIE scenarios

Generated statistical insights from
Monte Carlo simulations

HCO.A52 ADR mission
design

Generating trajectories using Q-Law
with Tudat for ADR

Successfully generated RQ-Law ADR
trajectories through the Iridium33
cloud

HCO.A53 RL Analyzing optimality gap in RL
training datasets for ADR

Quantified gaps to enhance
reinforcement learning training

HCO.A54 ADR CTP Evaluating the impact of coasting
transfer policies

Identified benefits of coasting
strategies

Code Area Analysis Target Outcome
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3.2.5 Neural Combinatorial Optimization
This section describes the experimental test campaign conducted to study the performance of NCO approaches.
The primary objective of this campaign was to evaluate the performance and reliability of various NCO algorithms
and their configurations in optimizing mission scenarios for the OSSIE and ADR STSP mission scenarios. The
experiments aimed to assess the effectiveness of different RL strategies in training policies that achieve fuel-
optimal trajectories, as well as to determine the best-performing algorithms through comprehensive measurements
of algorithm performance, the impact of various hyperparameters on model performance, and hyperparameter
optimization.

Analysis Summary and Key Outcomes
Performance Measurement

The performance measurement area focused on exporting validation datasets for OSSIE and ADR mission scenarios
(NCO.A1, NCO.A2). The objective was to ensure that the datasets accurately represent the mission parameters
required for subsequent policy training and evaluation. The outcomes confirmed the successful export of datasets
for OSSIE scenarios (NCO.A1) and JGCD scenarios (NCO.A2), providing a robust foundation for validating the
NCO module’s performance across different mission types.

OSSIE Mission Design
In the OSSIE mission design area, experiments evaluated various RL algorithms, including REINFORCE, A2C,
and PPO, for training fuel-optimal policies in the OSSIE STSP (NCO.A3, NCO.A4, NCO.A5, NCO.A6). The
rationale was to determine the most effective RL algorithm based on policy performance and training efficiency.
The results demonstrated that REINFORCE, A2C, and PPO successfully trained NCO policies for the OSSIE
STSP (NCO.A3, NCO.A4, NCO.A5). Furthermore, a trade-off analysis (NCO.A6) measured the performance of
all RL algorithms, identifying the best-performing algorithm by evaluating policy performance and training time.

Low Thrust OSSIE Mission Design
The low thrust OSSIE mission design area extended the evaluation of RL algorithms by incorporating the Q-
Law guidance policy (NCO.A7, NCO.A8, NCO.A9). These experiments aimed to assess the effectiveness of
REINFORCE, A2C, and PPO in training NCO policies specifically tailored for Q-Law guided OSSIE STSP scenarios.
The outcomes confirmed that all three RL algorithms successfully trained NCO policies for the Q-Law OSSIE STSP
(NCO.A7, NCO.A8, NCO.A9), demonstrating the versatility and robustness of the NCO module in handling
different guidance policies.

ADR Mission Design
In the ADR mission design area, the focus was on evaluating RL algorithms for the Iridium 33 ADR scenario
(NCO.A10, NCO.A11, NCO.A12, NCO.A13, NCO.A14). The experiments aimed to determine the efficacy of
REINFORCE, A2C, and PPO in training fuel-optimal policies and to identify the most suitable algorithm through
performance trade-offs. REINFORCE and A2C successfully trained NCO policies for the Iridium 33 ADR STSP,
with results logged using WandB and TensorBoard (NCO.A10, NCO.A11, NCO.A12). However, PPO (NCO.A13)
did not outperform A2C and REINFORCE, indicating a need for further refinement. A comprehensive trade-
off analysis (NCO.A14) evaluated the performance of all RL algorithms, determining that A2C offered the best
balance between policy performance and training efficiency for the ADR scenarios.

Hyperparameter Optimization
The hyperparameter optimization area addressed the fine-tuning of the A2C algorithm to enhance its performance
in the Iridium 33 ADR STSP scenario (NCO.A15, NCO.A16). Conducting ANOVA statistical analysis (NCO.A15)
successfully identified the most significant parameters influencing A2C performance. Additionally, grid search
hyperparameter optimization (NCO.A16) was performed, resulting in the determination of optimal hyperparameter
settings for A2C in JGCD scenarios. These optimizations contributed to improved training outcomes and policy
effectiveness.
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Table 3.8: NCO experimental campaign summary table.

NCO.A1 Performance
measurement

Export validation datasets of OSSIE
mission scenarios

Successfully exported datasets for
OSSIE scenarios

NCO.A2 Performance
measurement

Export validation datasets of ADR
mission scenarios

Successfully exported datasets for
JGCD scenarios

NCO.A3 OSSIE mission
design

Evaluate REINFORCE for the
fuel-optimal OSSIE STSP

REINFORCE successfully trains NCO
policy for OSSIE STSP

NCO.A4 OSSIE mission
design

Evaluate A2C for the fuel-optimal
OSSIE STSP

A2C successfully trains NCO policy
for OSSIE STSP

NCO.A5 OSSIE mission
design

Evaluate PPO for the fuel-optimal
OSSIE STSP

PPO successfully trains NCO policy
for OSSIE STSP

NCO.A6 OSSIE mission
design

Trade-off REINFORCE, A2C and
PPO for the fuel-optimal OSSIE
STSP

Measured performance of all RL
algorithms on OSSIE STSP scenario
and determined best RL algorithm
based on policy performance and
training time

NCO.A7 Low Thrust
OSSIE mission
design

Evaluate REINFORCE for the
fuel-optimal OSSIE STSP using the
Q-Law

REINFORCE successfully trains NCO
policy for the Q-Law OSSIE STSP

NCO.A8 Low Thrust
OSSIE mission
design

Evaluate A2C for the fuel-optimal
OSSIE STSP using the Q-Law

A2C successfully trains NCO policy
for the Q-Law OSSIE STSP

NCO.A9 Low Thrust
OSSIE mission
design

Evaluate PPO for the fuel-optimal
OSSIE STSP using the Q-Law

PPO successfully trains NCO policy
for the Q-Law OSSIE STSP

NCO.A10 ADR mission
design

Evaluate REINFORCE for the
Iridium 33 ADR scenario; results
logged with WandB

REINFORCE successfully trains NCO
policy for the Iridium 33 ADR STSP

NCO.A11 ADR mission
design

Evaluate A2C for the Iridium 33
ADR scenario; results logged with
WandB

A2C successfully trains NCO policy
for the Iridium 33 ADR STSP

NCO.A12 ADR mission
design

Evaluate A2C for the Iridium 33
ADR scenario; results logged with
TensorBoard

A2C successfully trains NCO policy
for the Iridium 33 ADR STSP.
Locally logged results useful for
fast-paced experimentation with
smaller training datasets, batch sizes

NCO.A13 ADR mission
design

Evaluate PPO for the Iridium 33
ADR scenario; results logged with
WandB

7 PPO successfully trains NCO
policy for the Iridium 33 ADR STSP,
yet considerably underperforms A2C
and does not outperform
REINFORCE in a determinant way

Code Area Analysis Target Outcome

Continued on next page
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Table 3.8: NCO experimental campaign summary table. (Continued)

NCO.A14 ADR mission
design

Trade-off REINFORCE, A2C and
PPO for the Iridium 33 ADR STSP

Measured performance of all RL
algorithms on Iridium 33 ADR STSP
scenario and determined best RL
algorithm based on policy
performance and training time

NCO.A15 Hyperparameter
optimization

Conduct ANOVA statistical analysis
on A2C performance in the Iridium
33 ADR STSP scenario

Successfully identified the most
significant parameters for A2C
performance in the Iridium 33 ADR
STSP scenario

NCO.A16 Hyperparameter
optimization

Perform grid search hyperparameter
optimization for A2C in the Iridium
33 ADR STSP scenario

Successfully performed grid search
hyperparameter optimization for
A2C in JGCD scenarios

Code Area Analysis Target Outcome

3.3 Sensitivity Analysis: Hyperparameter Impact Determination
with ANOVA

This section deals with sensitivity analysis. Sensitivity analysis was critical to study the impact of the various
hyperparameters on the performance of the NCO policy used in this work, to choose a reduced set of hyperpa-
rameters to optimize, and to study the behavior of policy performance as a function of these key parameters.
Section 3.3.1 discusses the analysis performed to efficiently determine the most relevant hyperparameters for
policy performance. Section 3.3.2 discusses the full factorial ANOVA conducted to find an optimal set of key
hyperparameters, and study the behavior of policy performance as a function of model complexity.

3.3.1 Fractional Factorial ANOVA with the Taguchi L27 Design
Optimizing the performance of NCO models involves tuning a multitude of hyperparameters. Determining the
statistical relevance of these hyperparameters is essential to identify which ones significantly influence model
performance and to prioritize them for further optimization [115]. ANOVA serves as a robust statistical procedure
to assess the significance of multiple factors simultaneously [116].

Orthogonal arrays, particularly Taguchi factorial designs, facilitate efficient experimentation by systematically
varying hyperparameters across predefined levels while minimizing the number of required experimental runs [117]–
[119]. The Taguchi L27 orthogonal array, also known as L27-A313-10 fractional factorial design [79], is specifically
designed to evaluate up to 13 factors at three levels, making it suitable for comprehensive hyperparameter analysis
with limited resources [79]. Table 3.9 presents the Taguchi L27 orthogonal array utilized in this study.

A linear ANOVA was conducted using the statsmodels library [120] to evaluate the main effects of 13 hy-
perparameters on the model’s performance. The 13 chosen hyperparameters, their function, and the rationale
for choosing them can be seen in Tab. 3.10. The choice of a linear model is justified by the initial focus on
identifying straightforward, additive relationships between hyperparameters and performance metrics, with the
goal of identifying the most impactful hyperparameters for further optimization.

Tab. 3.11 presents the ANOVA results for the linear effects of each hyperparameter. The Sum of Squares (Sum
Sq), degrees of freedom (df), F-statistic (F), and p-values (PR(>F)) are reported for each factor. ANOVA relies
on two fundamental assumptions: normality of residuals, and homogeneity of variances across all factor levels
—the property known as homoscedasticity [79], [116]. Residual normality was verified by the Shapiro-Wilk test
[79], [121] (p = 0.57) and the Anderson-Darling test [79] (p = 0.27). Homoscedasticity was verified by visual
inspection of the residuals. Furthermore as will be seen, the impacts estimated by the ANOVA match those
expected from domain expertise. The ANOVA is thus considered valid to diagnose the main effects of the 13
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Table 3.9: Taguchi L27 orthogonal array, also known as L27-A313-10 fractional factorial design [79].

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
X1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
X2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 1
X3 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 2
X4 0 0 0 1 1 1 2 2 2 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 1 1 1
X5 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0
X6 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 1 0 0 2 0 1 2 0 1 0 1 0
X7 0 1 2 0 1 2 0 1 2 2 0 1 1 0 0 2 1 1 1 2 0 2 1 0 2 0 1
X8 0 1 2 1 2 0 2 1 0 0 1 2 0 1 2 1 0 2 2 1 2 1 2 1 2 1 2
X9 0 1 2 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 0 1 2 1 2 1 1 2 2
X10 0 1 2 1 2 0 1 2 0 3 0 1 1 2 0 2 2 1 1 2 0 2 1 0 1 0 1
X11 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 1 0 1 1 0 2 2 1 3 1 2 1
X12 0 1 2 2 0 1 2 3 0 2 1 2 1 3 0 0 1 2 3 2 1 1 3 1 2 1 2
X13 0 1 2 2 0 1 2 3 0 3 2 1 0 1 2 3 2 1 1 3 2 1 2 1 3 2 1

hyperparameters considered on policy performance.
The ANOVA results indicate that embedding dimension and number of encoder layers are the only hyperpa-

rameters with statistically significant effects on model performance, with p-values of 0,005776 and 0,048680,
respectively. embedding dimension exhibits the highest Sum of Squares (3,46E+09), suggesting it has the most
substantial impact. number of encoder layers follows with a Sum of Squares of 1,50E+09, indicating a meaningful
but slightly lesser influence. All other hyperparameters do not show significant linear effects, as their p-values
exceed the conventional threshold of 0, 05. The linear model accounts for approximately 69,87% of the total
observed variance (R2 = 69, 87%). A considerable portion of variability (30.13%) is not explained by the linear
effects of the analyzed hyperparameters, indicating the presence of higher order effects which are not modelled.

The significant effect of embedding dimension suggests that increasing this hyperparameter enhances the model’s
capacity to capture and represent input features effectively, thereby improving performance. The significance of
the number of encoder layers implies that adding more layers may contribute to deeper feature extraction and
more complex graph representations, although its impact is less pronounced compared to embedding dimension.
The non-significant effects of other hyperparameters indicate that, within the tested ranges, their individual linear
contributions to model performance are minimal. However, it is possible that these hyperparameters may interact
with each other or exhibit non-linear relationships that are not captured in the current linear ANOVA model. The
R2 value of 69,87% indicates a moderately strong fit. While the linear model explains a substantial portion of
the variance, there remains considerable unexplained variability, potentially due to unmodeled factors or complex
relationships among hyperparameters.

The ANOVA analysis identifies embedding dimension as the most statistically significant hyperparameter influ-
encing model performance, followed by a marginal effect from the number of encoder layers. These findings
suggest that increasing the embedding dimension is desirable to enhance feature representation capabilities, and
that optimizing the number of encoder layers can potentially improve the depth and quality of feature extrac-
tion, albeit with a less substantial impact. Embedding dimension and number of encoder layers were chosen for
hyperparameter optimization, discussed next.
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Table 3.10: Policy architecture and training hyperparameters considered in the 3-level ANOVA.

Hyperparameter Component Function Rationale ANOVA Levels
Embedding
Dimension

Embedding
Layer

Size of node embeddings
representing input fea-
tures.

Influences the capacity to
capture feature represen-
tations.

64, 128, 256

Number of
Encoder Layers

GAT Number of layers in the
GAT, affecting depth and
representation learning.

Determines the depth of
feature extraction and
complexity of graph repre-
sentations.

2, 3, 4

Number of
Attention Heads

GAT Number of parallel atten-
tion mechanisms per GAT
layer.

Enhances the model’s
ability to focus on differ-
ent parts of the graph
simultaneously.

4, 8, 16

Feedforward
Hidden Size

GAT Size of the hidden layer
in GAT’s feedforward net-
work.

Affects the model’s ca-
pacity and computational
complexity.

256, 512, 1024

Dropout Rate GAT Probability of dropping
units during training to
prevent overfitting.

Helps in regularizing the
model and improving gen-
eralization.

0.1, 0.3, 0.5

Temperature PN Scales logits before soft-
max to control random-
ness in action selection.

Balances exploration and
exploitation during policy
generation.

0.5, 1.0, 2.0

Tanh Clipping PN Limits the output of the
tanh activation to prevent
extreme values.

Ensures numerical stabil-
ity by preventing large ac-
tivation values.

0, 10, 20

Actor Learning
Rate

Actor
Optimizer

Learning rate for the ac-
tor (policy) network opti-
mizer (e.g., Adam).

Influences the speed and
stability of policy updates.

1e-5, 1e-4, 1e-3

Weight Decay Actor
Optimizer

Regularization parameter
to prevent overfitting by
penalizing large weights.

Controls the model’s gen-
eralization and prevents
overfitting.

0, 1e-4, 1e-3

Gradient
Clipping Value

Actor
Optimizer

Maximum allowed value
for gradients during back-
propagation to prevent ex-
ploding gradients.

Ensures training stability
by avoiding excessively
large gradients.

0.5, 1.0, 2.0

Critic Learning
Rate

Critic
Optimizer

Learning rate for the critic
network optimizer (e.g.,
Adam).

Affects the stability and
speed of value estimation
updates.

1e-5, 1e-4, 1e-3

Reward Scaling REINFORCE
Baseline

Scales the reward sig-
nal to stabilize training
and improve gradient esti-
mates.

Enhances training stabil-
ity by normalizing reward
magnitudes.

1, 10, 100

Critic Hidden
Dimension

Critic
Network

Size of the hidden layers
within the critic network.

Influences the critic’s ca-
pacity to accurately esti-
mate value functions.

128, 256, 512
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Table 3.11: ANOVA results. Dashed line separates statistically significant factors (p < 0.05) from non-significant
factors.

Hyperparameter Sum Sq df F PR(>F) R2

Embedding Dimension 3,46E+09 1 10,9 0,005776 25,20%
Number of Encoder Layers 1,50E+09 1 4,73 0,04868 10,96%
Feedforward Hidden Size 7,82E+08 1 2,46 0,140893 5,70%
Weight Decay 7,28E+08 1 2,29 0,154256 5,30%
Number of Attention Heads 7,03E+08 1 2,21 0,160724 5,13%
Actor Learning Rate 6,66E+08 1 2,1 0,171374 4,86%
Critic Hidden Dimension 6,18E+08 1 1,94 0,18656 4,51%
Gradient Clipping Value 5,55E+08 1 1,75 0,209273 4,04%
Dropout Rate 3,24E+08 1 1,02 0,331401 2,36%
Tanh Clipping 2,11E+08 1 0,66 0,429799 1,54%
Critic Learning Rate 3,58E+07 1 0,11 0,742551 0,26%
Temperature 1,58E+06 1 0,00 0,944904 0,01%
Reward Scaling 4,52E+05 1 0,00 0,970506 0,00%
ANOVA model 9,58E+09 13 - - 69,87%
Residuals 4,13E+09 13 - - 30,13%

3.3.2 Full Factorial ANOVA
A full factorial (grid search) approach was conducted to optimize the embedding dimension and number of encoder
layers, considering four levels. The levels considered for each hyperparameter are those previously presented in
Tab. 3.10. Fig. 3.4 shows the optimality gaps obtained by each of the models in the grid search, using BS to
decode the policies. No statistically significant improvement is observed in comparison with the default parameters.
Fig. 3.3 shows the combined learning curve all grid search runs. Fig. 3.2 shows the Pareto front of the grid search.
An interesting feature in Fig. 3.4 is the underperformance of models in the diagonal. The amount of trainable
parameters of the models considered can be seen in Fig. 3.5.

Table 3.12: Results of the full factorial ANOVA of embedding dimension (ED) and number of encoder layers (NL).
The ANOVA model includes linear, quadratic and interaction terms.

Term Sum Sq df F PR(>F) R2

ED 1,57E+09 1.0 97,805333 0,002199 66,30%
NL 7,73E+07 1.0 4,831624 0,115377 3,28%
ED2 4,72E+08 1.0 29,455497 0,012275 19,97%
NL2 3,77E+07 1.0 2,352144 0,222656 1,59%
ED*NL 1,61E+08 1.0 10,067658 0,050366 6,82%
ANOVA model 2,31E+09 3.0 - - 97,97%
Residual 4,80E+07 3.0 - - 2,03%



Impact of Training Dataset Size on Policy Performance 98

Figure 3.4: Optimality gaps obtained for each run in the
grid search, using beam search to decode the policy.

EL
2 3 4

128 53,68% 40,85% 45,95%
256 74,54% 59,46% 39,03%EB
512 41,87% 36,79% 66,04%

Figure 3.5: Number of trainable parameters for each
configuration considered in the grid search.

EL
2 3 4

ED
128 0.51M ×1,4 ×1,8
256 ×3,0 ×4,0 ×5,0
512 ×9,8 ×12,8 ×15,9

Figure 3.2: Pareto front of the full factorial design, us-
ing beam search to decode the learned policies.

Figure 3.3: Grid search learning curve. During training
the policy is decoded using greedy search.

A second ANOVA was performed on the results of the grid search. This time quadratic and interaction effects
were included in the ANOVA model. The results follow in Tab. 3.12. The Shapiro-Wilk test (p = 0.9004) and
Anderson-Darling test (p = 0.153) again confirm that the residuals are normally distributed, and homoscedasticity
is visually verified, confirming the validity of the analysis. The ANOVA model accounts for 97.97% of the observed
variance, indicating a strong fit. The full factorial ANOVA confirms that both embedding dimension and number
of layers have significant effects on performance. Embedding dimension shows a strong main effect (F = 97.81,
p = 0.0022) and a significant quadratic term (F = 29.46, p = 0.0123). The interaction between embedding
dimension and number of layers is marginally significant (F = 10.07, p = 0.0504), indicating that their combined
influence affects performance. These findings confirm the significant linear effects identified by the L27 fractional
ANOVA and indicate the presence of additional non-linear relationships.

The results indicate that network architecture is the principal driver of model performance, but model performance
increases asymptotically slowly with the number of parameters.

3.3.3 Impact of Training Dataset Size on Policy Performance
The amount of data provided to the model for training is key for its performance [18]. This is especially the case
for attention-based ML models [122]–[124]. Fig. 3.6 shows the effect of increasing the size of the training dataset
from 1M to 3M tours of 10 transfers. Observe the large increase in convergence speed. The final performance
improves as well. Notwithstanding, model performance eventually plateaus to a validation optimality gap in
training of approximately 50%. This confirms that the architecture of the ML model is the factor limiting further
learning.
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Figure 3.6: Final learning curves. Note the impact of increasing training dataset size from 1M to 3M. Notwith-
standing, the capacity of the model to learn asymptotically approaches a similar limit at 50% optimality gap.

3.3.4 Final Performance and Generalization to Larger Routing Problems
The final policy was trained on 3 million tours consisting of 10 transfers. To evaluate the capacity of the policy
to generalize to larger problems, the trained policy was employed to plan scenarios with 10, 30, and 50 transfers.
BS was used to search the trained policy. Tab. 3.13 presents the final performance results of the trained NCO
policy compared to the DRW heuristic across scenarios with 10, 30, and 50 transfers. Each case consisted in the
planning of 1000 missions. The metrics include the mean and standard deviation of ∆V (change in velocity), the
optimality gap percentage, and the evaluation time in milliseconds. Optimality gaps are obtained by comparison
with the solution obtained using HCO.

The trained NCO policy exhibits better performance in the 10-node scenario than the DRW heuristic. However,
as the number of nodes increases to 30 and 50, the performance of the NCO policy greatly deteriorates. This
indicates a limitation in the policy’s ability to generalize to mission scenarios with a higher number of transfers:
the learned policy is not generally applicable for the design of ADR missions.

In terms of computational efficiency, the NCO policy outperforms DRW across the board. The difference is large
for small mission scenarios, but becomes less significant for 30 and 50 transfer scenarios.

Table 3.13: Policy performance compared to the DRW STSP heuristic for STSPs with 10, 30 and 50 targets.
Performance measured on test datasets of 1000 missions.

Number of nodes 10 30 50
Heuristic AM BS DRW AM BS DRW AM BS DRW

∆V [km/s] µ 106,4 122,1 573,5 208,1 1041,8 261,2
σ 16,2 31,4 83,9 46,2 68,2 52,6

Optimality gap [%] µ 32,6 50,5 616,0 50,4 555,4 63,9
σ 25,5 36,8 132,7 37,2 97,4 38,3

Evaluation time [ms] µ 99,2 2494,9 3592,0 8534,5 8630,0 16147,1
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Optimal solutions to space vehicle routing problems are essential for space logistics activity

such as Active Debris Removal (ADR), which addresses the growing threat of space debris. This

research investigates the applicability and effectiveness of Neural Combinatorial Optimization

(NCO) methods in designing low-thrust multi-target rendezvous trajectories for ADR missions.

An attention-based routing policy, comprising a graph attention network and a pointer net-

work, was trained using REINFORCE, Advantage Actor-Critic, and Proximal Policy Optimiza-

tion. Hyperparameter analysis with ANOVA identified embedding dimension and encoder lay-

ers as the critical factors influencing model performance. The trained policy was evaluated

on scenarios with 10, 30, and 50 transfers based on the Iridium 33 debris cloud. In missions

with 10 transfers, the NCO policy achieved a mean optimality gap of 32%, outperforming the

Dynamic RAAN Walk heuristic. However, performance degraded in scenarios with 30 and 50

transfers, indicating limited generalization beyond training conditions. Grid search hyperpa-

rameter optimization revealed that model performance improves asymptotically with model

complexity, while larger training datasets enhanced convergence speed with marginal gains in

final performance. This research demonstrates that NCO methods can be effective for ADR

missions with a limited number of targets, but face scalability and generalization challenges in

more complex scenarios.

Nomenclature

Abbreviations

A2C Advantage Actor-Critic

A3C Asynchronous Advantage Actor-Critic

ADR Active Debris Removal

ANOVA Analysis of Variance

AOP Argument of Perigee



CO Combinatorial Optimization

DNN Deep Neural Network

DRW Dynamic RAAN Walk

ECI Earth-Centered Inertial frame

FYS Fisher-Yates Shuffle

GAT Graph Attention Network

GNN Graph Neural Network

GPU Graphics Processing Unit

KS Knuth’s Algorithm for Uniform Permutation Sampling using Sobol Points

LFC Lyapunov Feedback Control

LEO Low Earth Orbit

LVLH Local-Vertical Local-Horizontal frame

MEE Modified Equinoctial Elements

MDP Markov Decision Process

MEO Medium Earth Orbit

MINLP Mixed-Integer Nonlinear Programming

ML Machine Learning

NCO Neural Combinatorial Optimization

NN Nearest-Neighbour Search

OOS On-Orbit Servicing

PN Pointer Network

PPO Proximal Policy Optimization

Q-Law Lyapunov Feedback Control Law based on the proximity quotient 𝑄

REINFORCE Monte Carlo Policy Gradient Algorithm

RL Reinforcement Learning

RQ-Law Rendezvous Q-Law

RSW Radial, Along-track (S), Cross-track (W) frame
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SCP Sequential Convex Programming

RCS Radar Cross-Section

SHP Sobol Hypercube Permutations

SMA Semi-major Axis

SP Sobol Permutations

STSP Spacecraft Traveling Salesman Problem

TOF Time of Flight

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

Mathematical Notation

𝑟 Scalar variable

r Vector variable

‖r‖ Euclidean norm of vector r

𝑟 Mean value of 𝑟

𝑟 ∼ 𝑃 𝑟 is sampled from distribution 𝑃

¤𝑄 Time derivative of 𝑄

d𝑥e Ceiling function of 𝑥

min(𝑎, 𝑏) Minimum of 𝑎 and 𝑏

|𝑥 | Absolute value of 𝑥

argsort(𝑧) Indices that would sort vector 𝑧

sin(𝑥), cos(𝑥), tan−1 (𝑥) Trigonometric functions

𝐵(𝑝, 𝑞) Beta function

𝐹−1
𝑗 (𝑥) Inverse cumulative distribution function

R𝑛 𝑛-dimensional real space

S𝑑−1 Unit sphere in R𝑑
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𝔖𝑛 Symmetric group of permutations of 𝑛 elements

Latin Symbols

𝑎 Semi-major axis m

𝑎𝑇 Target semi-major axis m

𝐴 Reference area; advantage function m2; –

𝐴𝑡 Advantage at time 𝑡 –

𝐴(𝑖) Advantage for instance 𝑖 –

𝑎𝑡 Action at time 𝑡 –

𝑎 (𝑖) Solution for instance 𝑖 –

𝑎𝐽2,𝑟 , 𝑎𝐽2, 𝜃 , 𝑎𝐽2,𝜙 Components of acceleration due to 𝐽2 perturbation m s−2

𝑐 Constant or parameter –

𝐶𝐷 Drag coefficient –

𝑑 Dimension –

𝑒 Eccentricity –

𝑒𝑇 Target eccentricity –

𝑓 , 𝑔, ℎ, 𝑘 Equinoctial elements –

𝑓burn Burn frequency s−1

𝐺 Universal gravitational constant 6.674 30e−11m3 kg−1 s−2

𝐺𝑡 Return at time 𝑡 –

𝐺 (𝑖) Return for instance 𝑖 –

𝑔0 Standard Earth gravity 9.806 65m s−2

𝑖 Index; inclination –; rad

𝑖1, 𝑖2 Inclinations of initial and target orbits rad

𝐼𝑠𝑝 Specific Impulse –

𝐽2 Second zonal harmonic coefficient 1.0826e−3
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𝑗 Index –

𝑘 Number of burns; scaling parameter –

𝑘𝑑 , 𝑘𝑐 Number of burns for departure and circularization –

𝐿 True longitude; loss function rad; –

𝐿𝑡 Clipped objective at time 𝑡 –

𝐿 (𝑖) Clipped objective for instance 𝑖 –

𝐿policy Policy loss –

𝐿value Value function loss –

𝐿0, 𝐿1 Initial and target true longitude rad

𝑚 Spacecraft mass kg

𝑚0 Initial mass kg

𝑚 𝑓 Fuel mass kg

𝑚1, 𝑚2 Masses of bodies 1 and 2 kg

𝑛 Orbital mean motion s−1

ê𝑟 , ê𝜃 , ê𝜙 Basis vectors in LVLH frame –

û Thrust direction unit vector –

𝑝 Semi-latus rectum m

𝑃 Orbital period s

Π Set of permutations –

𝑟 Radial distance; scalar variable m; –

𝑟0 Radius of initial orbit m

𝑟1 Radius of target orbit m

𝑟𝑝 Periapsis radius m

𝑟𝑝min Minimum periapsis radius m

𝑅(𝑥 (𝑖) , 𝑎 (𝑖) ) Reward function for instance 𝑖 –

𝑠2 Variable in Gauss Variational Equations –

𝑠𝑡 State at time 𝑡 –
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𝑇 Thrust magnitude; time horizon N; –

𝑇burn Burn time s

𝑇cooldown Cooldown time s

𝑡 Time index –

𝑡0 Start time s

T Best time-to-go s

𝑣 Variable in Gauss Variational Equations; velocity –; m s−1

𝑣𝑒𝑞 Exhaust velocity m s−1

𝑉0 Orbital velocity m s−1

𝑉𝜙 (𝑠𝑡 ) Estimated value function at state 𝑠𝑡 –

𝑉𝜙 (𝑥 (𝑖) ) Estimated value function for instance 𝑥 (𝑖) –

𝑤 Variable in Gauss Variational Equations –

𝑥 Vector in R𝑛; problem instance –

𝑥 (𝑖) Problem instance 𝑖 –

a𝐽2 Acceleration due to 𝐽2 perturbation m s−2

F1,2 Gravitational force between bodies 1 and 2 N

r1,2 Position vector from body 1 to body 2 m

𝑟 (𝑖) (𝜃) Probability ratio for instance 𝑖 –

𝑟𝑡 (𝜃) Probability ratio at time 𝑡 –

v Velocity vector m s−1

¤𝑚 𝑓 Mass flow rate kg s−1

𝑊𝑥 ,𝑊𝑝 ,𝑊œ,𝑊𝐿 ,𝑊scl Weights in Q-law and RQ-law –

œ Modified Equinoctial Elements (𝑎, 𝑓 , 𝑔, ℎ, 𝑘) –

œ𝑇 Target orbital elements –

œ𝑇,aug Augmented target elements –
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Greek Symbols

𝛼 Learning rate for policy –

𝛽 Learning rate for value function –

𝛾 Relative inclination rad

𝛿 Small change or variation –

𝜖 Clipping parameter –

𝜇 Earth’s gravitational parameter 3.986e14m3 s−2

𝜉 Ratio of orbit radii (𝑟1/𝑟0) –

𝜌 Atmospheric density kgm−3

𝜃 Policy parameters; true anomaly –; rad

𝜃old Previous policy parameters –

𝜙 Value function parameters; spherical coordinates –

𝜋𝜃 (𝑎𝑡 |𝑠𝑡 ) Policy probability of action 𝑎𝑡 given state 𝑠𝑡 under parameters 𝜃 –

𝜋𝜃old (𝑎𝑡 |𝑠𝑡 ) Policy with old parameters 𝜃old –

𝜎 True anomaly rad

𝜏 Trajectory (sequence of states, actions, rewards) –

𝜔 Argument of Perigee rad

Ω Right Ascension of the Ascending Node rad

Ω1,Ω2 RAAN of initial and target orbits rad

Ψ Transformation matrix in MEEs –

Δ𝑖 Change in inclination rad

Δ𝑉 Delta-V (change in velocity) m s−1

Δ𝑟 ,Δ𝑡 ,Δ𝑛 Perturbing accelerations in radial, tangential, normal directions m s−2

Δ𝐿 [−𝜋,𝜋 ] Difference in true longitude wrapped to [−𝜋, 𝜋] rad
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Subscripts

𝑡 At time step 𝑡

(𝑖) For instance 𝑖

𝑟 Radial component

𝑛 Normal component

𝜃 Tangential component

𝜙 Normal component (in LVLH frame)

𝐼 Inertial frame

𝑠 Spacecraft

𝐶 Central body (Earth)

old Previous parameter value

0 Initial value

𝑇 Target value

ECI Earth-Centered Inertial frame

MEE Modified Equinoctial Elements frame

𝐷 Related to drag

𝐽2 Related to 𝐽2 perturbation

Introduction

THE design of multi-target rendezvous manoeuvres, which see a spacecraft approaching a sequence of objects in

orbit as efficiently (by some metric) as possible, has seen a considerable surge in interest in recent years for the

purposes of Active Debris Removal (ADR) missions [1–6] to tackle the space debris problem [7, 8], as well as On-Orbit

Servicing (OOR) missions [3, 9, 10] and advanced space logistics concepts [11].

The problem of designing such trajectories, known as the Space Traveling Salesman Problem (STSP), is an example

of a Mixed Integer Non-Linear Programming (MINLP) problem with factorial complexity over the number of targets.

MINLP problems are notoriously difficult to approach. An optimal solution to the STSP consists of the optimal se-

quence in which to visit a set of targets and the optimal (by some metric) transfer trajectory between each target in the

optimal sequence. The STSP is conceptually related to the classical Traveling Salesman Problem (TSP), with the added

complexities inherent to the space environment: notably, a 6-dimensional non-Euclidean state space, mass dynamics,
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spacecraft propulsion constraints, and the progressive drift of the states of orbiting bodies due to secular perturbations,

chiefly 𝐽2 for Earth-orbiting spacecraft.

Formally, the STSP is the problem of finding a minimum weight path (if the spacecraft must end the tour back at

its initial state, a Hamiltonian path) in a complete weighted graph 𝐺 := {V(𝑡),W(𝜋)}, where V(𝑡) is the set of graph

vertexes (targets, the state of which drifts over time) and W(𝜋) := V×V → R+ is a map that associates an edge weight

(a transfer cost) to each ordered vertex pair [1], and may dependent on the sequence 𝜋 in which the targets are visited.

One such case is when payload mass is a large percentage of the spacecraft’s wet mass, and thus deployment sequence

has a non-negligible impact on fuel consumption. A standard approach to solve the STSP is Benders decomposition

[3–6], where the MINLP problem is divided into a higher-level Combinatorial Optimization (CO) problem and a lower-

level trajectory optimization problem. A transfer cost estimator is then used to calculate the cumulative cost of tours in

the CO problem. Transfer cost estimators may be database-dependent [12, 13], database-independent (analytical), or

learning-based [14].

State-of-the-art CO methods fall in two camps: exact methods and heuristic methods, which are less costly and

can produce near-optimal results, but cannot offer optimality guarantees whatsoever [1, 15]. Exact methods based on

tree searches [16, 17] are the norm for highly complex, large STSP variants; all winning submissions of the Global

Trajectory Optimization Competitions have made use of tree search approaches [1, 12, 18]. Heuristic optimization

methods however are an attractive option to solve smaller STSP instances (up to hundreds of targets [1]) due to their

capacity to achieve near-optimal results with lower computational cost [1], and are widely applied in literature to tackle

multi-rendezvous mission design [1–4, 6]. Heuristic optimization methods have also been successfully applied to

complex STSP instances where the cost of exact approaches is unfeasible [12]. High quality approximate solutions are

highly desirable for the heuristic optimization process. As the complexity of the generalized Vehicle Routing Problem

(VRPs) increases, high quality approximate solutions become more difficult to obtain [19]. This bodes ill for the field

of space logistics, as the complexity of space VRPs beyond the STSP is bound to increase over time: this will happen as

LEO and MEO become more congested, the in-space manufacturing and servicing industries rise, and space logistics

operations become more complex [20]. It becomes pressing to ask whether learning-based methods from the field of

CO could be applied in the space domain.

Machine Learning (ML) approaches for spacecraft trajectory design have seen a surge of interest in recent years [21],

with strong results achieved both for trajectory cost estimation [14] and spacecraft guidance [22]. Neural Combinatorial

Optimization (NCO) uses Deep Neural Networks (DNNs) to automate the problem-solving process, mostly under

the RL paradigm, as supervised learning is often unfeasible for large or theoretically hard problems. NCO offers

the attractive prospect of alleviating the scaling issues of exact approaches, while removing the need for handcrafted

heuristics, which often require significant domain-specific adjustments [19]. NCO has shown promising performance

on various CO problems [19], especially when coupled with advanced policy search procedures [15].
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The present work aims to assess the applicability and effectiveness of NCO approaches for the design of multi-target

rendezvous trajectories. It is of interest to consider both the standalone effectiveness of NCO approaches to solve the

STSP, as well as the performance of NCO approaches combined with conventional methods.

I. Background and Preliminaries
This section will introduce the necessary background for the discussion and assessment of NCO methods for space

VRPs. A brief historical overview of the space debris crisis is presented in Section I.A along with the case study

considered in this work: an ADR mission targeting the Iridium 33 debris cloud. Orbital dynamics are discussed in

Section I.B, followed by Low-Thrust Trajectory Optimization in Section I.C. Heuristic combinatorial optimization is

discussed last in Section I.D.

A. Space Debris and Space Debris Remediation

The present work focuses on the design of multi-rendezvous trajectories for ADRmissions. Since the first recorded

catastrophic fragmentation event in 1961 [23], more than 200 such events have contributed to a population of over

34,000 trackable fragments larger than 10 cm in Low Earth Orbit (LEO) [24]. The rapid increase of debris density led

to the Kessler Syndrome hypothesis in 1978 [25]: recent studies indicate critical debris density may have been reached

as of the present day [26, 27]. Awareness of the problem has grown rapidly in recent years [20, 27]. Efforts to mitigate

space debris so far have been strongly biased towards prevention [28–30]; compliance with measures is not globally

enforced however. Active Debris Removal (ADR) has emerged as a crucial means to mitigate the threat from existing

debris [31]. The removal of large uncompliant objects from orbit has been the primary focus of ADR mission design

up to the present day [8, 32–38]. Against this trend, the 2024 NASA OTPS Phase 2 report [20] finds that de-orbiting

1–10 cm debris to prevent collisions may yield substantial economic returns by reducing collision risks and associated

costs for satellite operators. These conditions herald opportunity for efficient multi-rendezvous ADR missions and

constellations to mitigate the threat from existing debris. This study aims to investigate the viability of NCO methods

for the design of such missions.

The case study considered in this work is an ADR mission targeting the Iridium 33 debris cloud [29, 39]. Iridium

33 is one of the most widely studied clouds in LEO, other notable clouds being the Cosmos 2242 [39], Fengyun 1C

[40] and Cosmos 1408 [41] clouds. The Gabbard diagram [42] of the four clouds can be seen in Fig. 1. Radar Cross-

Section (RCS) and expected decay time data is present as well. A tabulated summary of the four clouds follows in

Table 6. The Fengyun 1C cloud will outlast all other clouds: up to 1000 pieces of debris will remain in orbit by the year

2100 according to ESA estimates. Up-to-date satellite tracking data is obtained from CelesTrak∗, and decay time data

is obtained from the ESA Database and Information System Characterising Objects in Space (DISCOS) database†.
∗https://celestrak.org
†https://discosweb.esoc.esa.int
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Fig. 1 Gabbard diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408 debris clouds as of
September 2024. Point size proportional to RCS. Color intensity in top row proportional to lifetime before
natural decay. Data obtained from Celestrak as of September 2024. Own work.

Table 6 Number of debris fragments and RCS in [m2] of the Iridium 33, Cosmos 2252, Fengyun 1C and Cosmos
1408 debris clouds at the moment of fragmentation event (T0), as of the present day in 2024, and estimates for
the year 2050 and 2100. Estimates are obtained from the ESA DISCOS database.

Iridium 33 Cosmos 2251 Fengyun 1C Cosmos 1408
Count RCS Count RCS Count RCS Count RCS

T0 631 20,64 1626 34,81 3043 55,29 1801 7,51
2024 193 10,24 831 21,13 2192 42,96 68 7,50
2050 19 3,61 207 7,63 903 20,65 0 0,00
2100 5 3,01 76 3,38 435 11,04 0 0,00

Fig. 2 displays the altitude and RAAN distributions of the four clouds together as a function of inclination. This

offers a mission designer’s view of the problem: amap relating themost important orbital parameters for mission design

in LEO to the likelihood of collisions with debris from the Iridium 33, Cosmos 2252, Fengyun 1C and Cosmos 1408

clouds. Observe the large range of RAAN values in the three main clouds —Iridium 33, Cosmos 2252 and Fengyun

1C—. The Fengyun 1C cloud stands out in stark contrast both in terms of physical properties —the ranges of RAAN

and inclination, the ranges of semi-major axis and eccentricity, the number of active debris and the lifetime of active

debris— as well as damage to space operations, as the 96°-98° inclination range is critical for Sun-Synchronous Orbits

(SSO) in LEO. As the cost of redezvous is primarily driven by plane change cost [1], ADR missions are bound to

require extreme amounts of Δ𝑉 .

Electrical propulsion is the only viable means for very high Δ𝑉 missions [43, 44]. An electrical propulsion ADR

11



Fig. 2 Joint altitude-RAAN-inclination diagram of the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408
debris clouds as of September 2024. Point size proportional to RCS. Color intensity in top row proportional to
lifetime before natural decay. Color trails, top: perigee to apogee altitude. Data obtained from Celestrak as of
September 2024. Own work.

spacecraft concept will be considered in this work; specifications follow in Table 7. The propulsion system is based on

the specifications of existing Gridded Ion Thruster designs for small spacecraft, using the same power to thrust ratio

of 21 kWN−1 as the MiXi GIT propulsion system developed at UCLA [45] (for more information refer to O’Reilly’s

extensive review of electric propulsion systems for small spacecraft [44]). Spacecraft structural, fuel and payload mass

are only indicative of a spacecraft fit for this type of mission; payload mass is sized to 10-30 active de-orbiting payloads

[31, 38].

Table 7 Debris chaser spacecraft specifications.

Wet mass Fuel mass Payload mass Max 𝑎𝑇 Min 𝑎𝑇 𝐼𝑠𝑝 Delta V budget Max thrust Max power

1200 kg 450 kg 500 kg 3e−4m s−2 1e−5m s−2 3000 s 6.00 km s−1 0.36N 7.55 kW

B. Dynamics

The state of the spacecraft is propagated using the MEEs described by Hintz [46] including the retrograde factor 𝐼,

which are nonsingular for all eccentricities and inclinations. The conversion from classical Keplerian elements [46] to

MEEs follows in Eq. 1:
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Fig. 3 Modified Equinoctial Elements (MEE)
with respect to orbital plane.

Fig. 4 ECI and LVLH reference frames.

𝑝 = 𝑎(1 − 𝑒2);

𝑓 = 𝑒 cos(𝜔 +Ω);

𝑔 = 𝑒 sin(𝜔 +Ω);

ℎ = tan(𝑖/2) sin(Ω);

𝑘 = tan(𝑖/2) cos(Ω);

𝐿 = 𝜃 + 𝐼Ω + 𝜔;

(1)

The Gauss Variational Equations for MEEs [46], in Eq. 2, are used to model the time evolution of the spacecraft’s

state:

d𝑝
d𝑡

=
2𝑝
𝑤

√
𝑝

𝜇
Δ𝑡 ;

d 𝑓
d𝑡

=
√

𝑝

𝜇

{
Δ𝑟 sin(𝐿) + (𝑤 + 1) cos(𝐿) + 𝑓

𝑤
Δ𝑡 − 𝑔

𝑣

𝑤
Δ𝑛

}
;

d𝑔
d𝑡

=
√

𝑝

𝜇

{
−Δ𝑟 cos(𝐿) + (𝑤 + 1) sin(𝐿) + 𝑔

𝑤
Δ𝑡 − 𝑓

𝑣

𝑤
Δ𝑛

}
;

dℎ
d𝑡

=
√

𝑝

𝜇

𝑠2

2𝑤
cos(𝐿)Δ𝑛;

d𝑘
d𝑡

=
√

𝑝

𝜇

𝑠2

2𝑤
sin(𝐿)Δ𝑛;

d𝐿
d𝑡

=
√
𝜇𝑝

(
𝑤

𝑝

)2
+

√
𝑝

𝜇

𝑣

𝑤
Δ𝑛;

(2)

where 𝑠2, 𝑣 and 𝑤 are defined as follows,
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𝑠2 = 1 + ℎ2 + 𝑘2;

𝑣 = ℎ sin(𝐿) − 𝑘 cos(𝐿);

𝑤 = 1 + 𝑓 cos(𝐿) + 𝑔 sin(𝐿);

(3)

and Δ𝑟 , Δ𝑡 and Δ𝑛 are perturbing accelerations in the radial, tangential, and normal directions of the spacecraft’s LVLH

frame 𝑒 depicted in Fig. 4. The unit thrust vector in the ECI frame, ûECI, is related to the unit thrust vector in the LVLH

frame ûMEE by Eq. 4.

ûECI = [ê𝑟 ê𝜃 ê𝜙]ûMEE (4a)

ê𝑟 =
r
‖r‖ ; ê𝜙 =

r × v
‖r × v‖ ; ê𝜃 = ê𝜙 × ê𝑟 (4b)

Then, the thrust acceleration a𝑇 applied by the spacecraft in the RWS frame is defined in Eq. 5,

a𝑇 =
𝑇

𝑚
û (5)

where û is the direction of application of thrust. The spacecraft’s mass is propagated assuming constant specific impulse

(𝐼𝑠𝑝) through the burn. The change in mass over time is defined by Eq. 6:

d𝑚
d𝑡

=
𝑇

𝑣eq
; (6)

where 𝑇 is the applied thrust and 𝑣eq = 𝐼𝑠𝑝𝑔0 is the equivalent exit velocity of the engine.

C. Low-Thrust Trajectory Optimization

Of the family of direct Low-Thrust Trajectory Optimization (LTTO) methods [43, 47] that make use of predefined

control laws [43, 48], Lyapunov Control (LC) methods are notable for being both fast and able to generate reasonable

estimates of optimal planetocentric trajectories [43]. Since their introduction by Ilgen in 1993 [49], LC methods have

been extended to incorporate a variety of mission constraints [43, 50, 51]. A notable advantage of LC laws is that

they naturally drive the spacecraft to the desired final state, removing the need to include boundary conditions on

the final state [43]. The Q-Law in particular, introduced and refined by Petropoulos [50, 52], has been widely used

for preliminary mission design [43] as well as to generate initial guesses for high-fidelity tools, notably JPL’s Mystic

[43, 53, 54]. In 2023 Narayanaswamy et al. [55] introduced the Rendezvous Q-law (RQ-law), capable of dynamic

six-element targeting by means of a semi-major axis augmentation scheme.
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1. Q-Law

The Q-law, originally introduced by Petropoulos [52], is a Lyapunov feedback control law for low-thrust trajectory

optimization based on the “proximity quotient” Q, a candidate Lyapunov function that approximates the best quadratic

time-to-go [52]. MEE formulations of the Q-Lawwere later developed by Petropoulos [50] and Varga [51]. Q is defined

in Eq. 7,

Q(œ,œ𝑇 ,𝑊𝑥) = (1 +𝑊𝑝𝑃)
∑
œ

𝑆œ𝑊œ

(
œ − œ𝑇

¤œ𝑥𝑥

)2
, œ = 𝑎, 𝑓 , 𝑔, ℎ, 𝑘 . (7)

where the periapsis penalty 𝑃 is defined in Eq. 8 and the element scaling factors 𝑆œ are defined in Eq. 9.

𝑃 = exp
(
𝑘

(
1 −

𝑟𝑝

𝑟𝑝min

))
(8)

𝑆œ =


(
1 +

(
|𝑎 − 𝑎𝑇 |
𝑚𝑎𝑇

)𝑛) 1
𝑟

œ = 𝑎,

1 œ = 𝑓 , 𝑔, ℎ, 𝑘 .

(9)

The feedback control law is derived such that ¤𝑄 is negative definite, and follows in Eq. 10. This follows from

applying the chain rule ¤𝑄 = ∇𝑄 ¤œ and observing that ¤œ = Ψu, where Ψ stands for the Gauss variational equations in

MEEs (Eq. 2).

u = −Ψ>∇𝑄 (10)

2. Rendezvous Q-Law

The Rendezvous Q-law (RQ-law), proposed by Narayanaswamy [55], builds on the work of Lantukh et al. [56]

extending the Q-law to enable dynamic six-element targeting by means of a semi-major axis augmentation scheme

(Eq. 11). The scheme is designed to induce an error in the semi-major axis related to the difference between the current

and desired true longitude. The scheme becomes active after reaching 5-element convergence, splitting the manoeuvre

in two phases: orbit acquisition and longitude acquisition, or phasing.

œ𝑇,aug =


𝑎𝑇 + 2𝑊𝐿

𝜋

(
𝑎𝑇 − 𝑟𝑝,min

1−
√

𝑓 2
𝐶
+𝑔2

𝐶

)
tan−1 (𝑊sclΔ𝐿 [−𝜋,𝜋 ]), œ = 𝑎

œ𝑇 , œ ∈ { 𝑓 , 𝑔, ℎ, 𝑘}
(11)
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3. Perturbations and Constraints

The most relevant perturbations for planetocentric trajectories are gravity field distortions, chiefly 𝐽2 in the case

of the Earth [12, 51]. Perturbing terms are seldom included in the formulation of the Q-Law, as the feedback control

tends to waste fuel to counter-act the perturbing accelerations instead of taking advantage of them [50, 51]: instead,

the parameters of the Q-Law are optimized to obtain near-optimal results under the effect of perturbations, using ei-

ther conventional [51] or ML-based methods [57]. Eclipse and duty cycle constraints are also important for electric

propulsion spacecraft [51].

Minimizing trajectory generation time is highly desirable, as a very large number of trajectories must be generated

to train the NCO policy and assess the viability of NCO for space VRPs. The dynamicity of orbiting debris however,

chiefly driven by the secular impact of the 𝐽2 perturbation, is critical to the complexity of the STSP, and cannot be

neglected [1]. To balance performance and realism this study considers unperturbed transfers between orbiting targets,

while propagating the cloud according to the secular impact of the 𝐽2 perturbation [12, 18]. The secular impact of 𝐽2 on

the Right Ascension of the Ascending Node (RAAN) and Argument Of Perigee (AOP) or orbiting debris is described

by Eq. 12 [58], where 𝑛 =
√
𝜇/𝑎3 is the mean motion of the orbiting body.

dΩ
d𝑡

= − 3
2
𝐽2

(
𝑅𝑒

𝑝

)
𝑛 cos 𝑖;

d𝜔
d𝑡

= − 3
4
𝐽2

(
𝑅𝑒

𝑝

)
𝑛(5 cos2 𝑖 − 1));

(12)

4. Simulation

The Tudat Space‡ astrodynamics library [59] is used to implement the simulator. Integration is performed using

an Adams-Bashforth-Moulton integrator of orders 6-8 and variable step size (using global and relative tolerance of

3.2 × 10−9). The choice of integrator results from a trade-off of all Tudat integrators considering computational cost,

accuracy and output density. The original Q-Law has eleven parameters (five being element weights), and the RQ-Law

adds two parameters more (one being an element weight). Table 8 lists the values of the Q-Law and RQ-Law parameters

used. Table 9 lists the element weights and convergence tolerances used. The values of the parameters and weights are

those recommended by Varga et al. [51] in the case of the Q-Law and by Narayanaswamy et al. [55] in the case of the

RQ-Law.

Fig. 5 shows the average transfer in the RAANwalk [1] across the Iridium 33 cloud. The transfer consists of raise of

SMA of 84 km, a change in eccentricity of 4 1e−3, a change in inclination of 1 1e−3°, a change in RAAN of 2 79e−2°,

and changes in AOP and True Anomaly (TA) of approximate 1.4°. The total manoeuvre time is of 55 hours, of which

51 are spent in the orbit acquisition leg and the phasing leg lasting under slightly under 4 hours. This will be a relevant
‡https://docs.tudat.space/en/latest/
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Table 8 Q-Law and RQ-Law parameter values.

𝑘 𝑚 𝑛 𝑟 𝑏 𝑊𝑝 𝑊𝑙 𝑊scl

100.0 3.0 4.0 2.0 0.01 1.0 0.0594 3.6230

Table 9 Element weights and convergence tolerances.

Element 𝑊œ 𝑊œ,phasing Tolerance Relaxed Tolerance
𝑎 1 10 1 × 102 m 1 × 103 m
𝑒 1 1 1 × 10−3 deg 1 × 10−2 deg
𝑖 1 1 1 × 10−3 deg 1 × 10−2 deg
Ω 1 1 1 × 10−3 deg 1 × 10−2 deg
𝜔 1 1 1 × 10−3 deg 1 × 10−2 deg
𝜃 — — 1 × 10−1 deg 1 deg

consideration for transfer time estimation, which is the next topic of discussion. Lastly, Fig. 6 shows extreme transfers

scenarios in the Iridium 33 and Fengyun 1C debris clouds, with the spacecraft traveling from the center-of-RCS of the

cloud to the center-of-RCS of the cloud plus 3 times the standard deviation of each element in the cloud.

5. Transfer Cost Estimation

The capacity to quickly estimate the duration and cost (in Δ𝑉 or fuel mass) of low-thrust transfers without the need

to propagate is highly attractive for NCO, as the training process requires estimating the cost of many (millions of)

transfers. Fast, approximate transfer cost estimation methods are commonly used to solve the higher level combinatorial

problem in STSPs, especially for complex problems [12, 18]. Transfer cost estimation approaches (both impulsive

and low-thrust) may be either analytical [4, 18, 60], which rely on simplifying assumptions to obtain closed-form

expressions of transfer cost, or numerical, which rely on the pre-computation of many transfers, which are later used

to infer transfer costs in the optimization process: numerical approaches may either database-dependent [12], often

relying on transfer window constraints, or based on multivariate regression. DL has been particularly successful for

the latter [14].

A linear model based on the best time-to-go T (Eq. 13) is used to estimate the duration of RQ-Law transfers. The

model is defined in Eq. 14. T follows from the definition of the proximity quotient Q, which approximates the best

quadratic time-to-go [52].

T =
√
Q (13)

The model in Eq. 14 is obtained by linear regression of measured TOFs using the RQ-Law with respect to predicted

TOFs using the best time-to-go. The analysis was done considering all RAAN walk [1] transfers through the Iridium

33, Cosmos 2251 and Fengyun 1-C debris clouds. Both Q-Law and RQ-Law transfers were considered. The clouds
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(a) (b)

Fig. 5 Average transfer in the Iridium 33 debris cloud. (a) Keplerian element history through the transfer. (b)
Control history; 𝛼 and 𝛽 are the in-ecliptic and out-of-ecliptic thrust angles with respect to ê𝜃 (Eq. 4) [55].

(a) (b)

Fig. 6 Extreme 6-element rendezvous transfers in the Iridium 33 and Fengyun 1C debris clouds using the RQ-
Law. Origin: cloud centroid. Target: cloud centroid plus 3 times the standard deviation of elements in the cloud.
(a) Iridium 33. (b) Fengyun 1C.
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Fig. 7 Estimation of RQ-Law TOFs using the Q proximity quotient. Histogram bin width (right side): 6 hours.

are considered static through the tour to make the target dataset independent of the transfer strategy: static RAAN

walk transfers are considered representative of possible transfers in LEO, and so valid for analysis. No instantaneous

perturbations nor coasting phases are considered in these transfers, as discussed in Section I.C.3. Fig. 7 shows predicted

and observed RQ-Law TOFs and summarizes the performance of the linear model. Table 10 reports the results of the

linear regression analysis for both the Q-Law and RQ-Law. A strong positive correlation between the best time-to-

go T and the measured TOF exists for both Q-Law and RQ-Law transfers (Pearson 𝑟 > 0.99), indicating a strong

linear relationship [61]. A linear model was fit for each strategy. Outlier TOFs, outliers outside of the 3𝜎 range, were

excluded. In both cases the linear model explains over 99% of the variance in observations (𝑅2 > 0.99), demonstrating

an excellent fit [62]; the mean estimation error 𝜀 is close to 0 as well. Distribution similarity is verified using the

Kolmogorov-Smirnov (KS) test [63]. In both cases the KS p-values indicate that there is no statistically significant

difference between the estimated and observed TOF distributions.

Table 10 Goodness-of-fit analysis of the TOF models. 𝜀: estimation error.

Pearson r Slope Intercept [h] R-squared KS statistic KS p-value 𝜀 [min] 𝜎𝜀 [min]

Q-law 0.9972 1.4329 -15.9 0.995 2.55e-02 0.28 1.5 45.0

RQ-law 0.9970 1.4309 -9.72 0.994 2.31e-02 0.39 1.5 46.5

TOF = max(1.4309T + 𝐶,T); 𝐶 = −9.72 [hours] (14)

The required fuel mass 𝑚 𝑓 ,req is calculated by multiplying the estimated TOF by the constant fuel mass flow ¤𝑚 (see

Eq. 6). Δ𝑉 cost is estimated using Eq. 15, which assumes refuelling takes place when the spacecraft’s fuel mass 𝑀 𝑓

is spent. The same approach is used to calculate the cumulative Δ𝑉 cost of complete tours. Critically, this model is
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suitable for the aforementioned debris clouds, using the specified RQ-Law parameters and tolerances. Application to

other cases should follow careful analysis and verification.

Δ𝑉 =



𝑣eq log
(

𝑚0
𝑚0−𝑚 𝑓 ,req

)
𝑚 𝑓 ,req ≤ 𝑀 𝑓

𝑛Δ𝑉tank + 𝑣eq log
(

𝑚0
𝑚0−𝑚rem

)
, where



Δ𝑉tank = 𝑣eq log
(

𝑚0
𝑚0−𝑀 𝑓

)
𝑛 =

⌊
𝑚 𝑓 ,req
𝑚 𝑓 ,req

⌋
𝑚rem = 𝑚 𝑓 ,req − 𝑛𝑀 𝑓

else.
(15)

D. Heuristic Combinatorial Optimization

A modular STSP solver based on population-based heuristic optimization is used to obtain near-optimal solutions.

The choice for heuristic optimization is motivated by the widespread use of heuristic optimization methods to solve

STSPs in literature [1–4, 6] and the availability of highly performant, open-source heuristicmulti-objective optimization

libraries such as pygmo§ [64] and pymoo¶ [65], which greatly eases the benchmarking and selection of diverse heuristic

optimization algorithms for specific problem variants. The combinatorial optimization component is implemented

using pygmo, a parallel multi-objective global optimization library based on the Archipelago meta-heuristic [64].

1. Meta-heuristic

Combinatorial optimization meta-heuristics are algorithms that efficiently explore large discrete search spaces to

find optimal or near-optimal solutions to combinatorial problems [66]. pygmo implements the Archipelago meta-

heuristic [64]. The Archipelago algorithm evolves sub-populations, or “islands”, concurrently, starting from different

initial populations and possibly using different evolutionary strategies. Periodic migrations of individuals between is-

lands promote diversity and prevent premature convergence, improving the algorithm’s ability to avoid local optima

and thoroughly explore the search space. This parallel and cooperative framework accelerates the optimization process

and improves the robustness and quality of the solutions obtained [67].

2. Population Sampling

High quality population sampling is crucial for heuristic global optimization algorithms which are sensitive to

initialization conditions [68]. Examples are population-based algorithms and algorithms with memory mechanisms

such as Simulated Annealing [69].

Population sampling in the case of CO problems involves sampling permutations 𝜎 ∈ 𝔖𝑛 of length 𝑛. Uniform

permutation sampling is used to cover the search space as widely as possible. Relevant algorithms are the Fisher-
§https://esa.github.io/pygmo2/
¶https://pymoo.org/
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Yates Shuffle (FYS) [70], Knuth’s algorithm using Sobol points (KS) [68, 71] and Sobol Permutations (SP) [68]. A

fourth algorithm is proposed: uniformly sampling the [0, 1)𝑛 hypercube using Sobol points and applying an argsort

operation to obtain uniformly sampled permutations of 𝔖𝑛. This algorithm was found to yield more uniform samples

than FYS and KS while being orders of magnitude faster than SP.

Notably, advanced approaches and hand-crafted heuristics are often used in CO to determine near-optimal solutions

prior to heuristic optimization [1, 12]. Distance-based permutation sampling is used to leverage known approximate

solutions, using the Mallows Model [72–74] under the Hamming distance. Empirical results show that a combination

of both approaches is best to balance the exploration of the search space and the exploitation of known approximate

solutions.

3. Permutation Encoding

Random keys permutation encoding [75] is selected for its versatility for optimizing complex discrete optimization

problems across various domains [76, 77]. Permutations are encoded using vectors of continuous values, or random

keys, in the [0, 1) range. A permutation 𝜎 ∈ 𝔖𝑛 is encoded by generating a vector of random keys x ∈ [0, 1)𝑛, sorting

it, and permuting it by 𝜎. Decoding is done by applying an argsort operation to x.

4. Approximate Solutions

Izzo et al. [1] showed that the optimal solution of the STSP closely resembles a monotonically increasing RAAN

walk. This result is intuitive as transfer cost is primarily driven by plane change cost, and plane change cost (Eq. 16)

is primarily driven by the RAAN gap that must be closed [1, 4] for orbits with relatively high inclination. Most Earth

orbiting spacecraft [78] and all the debris clouds under consideration (Fig. 1).

Δ𝑉𝛾 = 2𝑉0 sin
(𝛾
2

)
(16a)

𝛾 = arccos(cos 𝑖1 cos 𝑖2 + sin 𝑖1 sin 𝑖2 [cosΩ1 cosΩ2 + sinΩ1 sinΩ2]) (16b)

The RAANwalk holds only for static orbiting targets however, and ADRmissions in LEO are an example of a highly

dynamic perturbed STSP due to the RAAN drift induced by the 𝐽2 perturbation [1]. Fig. 8 shows the impact of RAAN

drift on the cost of the RAAN walk through the Iridium 33 debris cloud: the increase in cost is dramatic. Furthermore,

the optimal static and dynamic tours are not related, with their Spearman rank correlation quickly decreasing over time

[1], as RAAN drift rates are independent of the original ranking (Eq. 12).

Two tree search approaches and one STSP routing heuristic are considered to obtain approximate solutions. The

tree search approaches considered are Beam Search (BS) and Nearest-Neighbor (NN) search [79, 80], both considering
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(a) Cost per transfer. (b) Cumulative cost.

Fig. 8 Impact of RAAN drift on the cost of the RAAN walk through the Iridium 33 debris cloud.

transfer cost using a given transfer strategy, in this case RQ-Law transfers. Fig. 9 shows the cumulative cost of the

RAAN walk, NN and BS tours through the Iridium 33 cloud, under RAAN drift. BS is the superior approach, though

choosing an optimal beam width is challenging, and the cost of the search quickly grows as beam width is increased.

A BS with a beam width of 2 is used to generate approximate solutions.

The STSP routing heuristic considered is the Dynamic RAAN Walk (DRW). The DRW is defined as a greedy

search over a nearest-RAAN target ranking policy, which is performed sequentially in the dynamic STSP environment

until all targets have been visited. The benefit of using a heuristic over a search is runtime, as can be seen in Table 11.

Despite its simplicity the DRW performs surprisingly well, as can be seen in Fig. 9.

Table 11 Time required to generate an approximate solution for the Iridium 33 STSP of 167 transfers.

RAAN walk DRW NN BS (𝑤 = 20)

Runtime 0,2 ms 80,9 ms 2,1 s 79,3 s

5. Heuristic Optimization Algorithm

Optimizer selection is conducted by trading off the performance of all global heuristic optimizers available in pygmo

(refer to the pygmo capabilities page‖) on the STSP variant at hand. Critically, optimizers of the family of Evolutionary

Strategies depend on internal sampling processes and are thus not sensitive to initial populations: in general terms other

optimizers are preferrable if candidate solutions can be leveraged.

The choice of heuristic global optimizer is determined by a trade-off of all pygmo global optimizers on a reduced

50-transfer Iridium 33 ADR STSP. A 16-island archipelago is used with 80 individuals per island. 5 evolutionary cycles
‖https://esa.github.io/pygmo2/overview.html
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Fig. 9 Cumulative cost of tours traversing the Iridium 33 debris cloud as a function of transfer index, under
RAAN drift. BS beam width: 20.

are carried out, each consisting of 500 generations of isolated evolution in each island followed by a migratory process

between islands. Two variants of the optimization process are considered: one with uniformly sampled populations

over all islands, and another with 8 of the 16 initial populations sampled around approximate BS solutions using the

MallowsModel under the Hamming distance, which is defined as the number of positions at which two sequences differ

[74, 81]. To ensure the trade-off is robust, the performance of each optimizer is evaluated considering 10 optimizations

using different random seeds.

Fig. 10 summarizes the performance of all the considered algorithms. The figure shows, for each optimizer, the

performance of the best individual in the algorithm as a function of generation. This is shown for both the optimization

starting from a uniformly sampled initial population, and the optimization starting from a population sampled in the

proximity of the candidate solution obtained using the BS algorithm defined previously. Observe how the improvement

that comes from sampling initial populations around approximate solutions is large across final performance, consis-

tency and convergence speed. The Simple Genetic Algorithm∗∗ shows both superior performance and consistency than

any other option, consistently reaching the best tour found even when starting from a uniformly sampled population.

High quality approximate solutions are very desirable. As the complexity of VRPs increases high quality approxi-

mate solutions become more difficult to obtain however. This bodes ill in the field of space logistics, as the complexity

of space VRPs is bound to increase as LEO and MEO become more congested, the in-space manufacturing and ser-

vicing industries rise, and space logistics operations become more complex [20]. The promise of NCO methods is

to automate the process of discovering high quality heuristics for highly complex CO problems [15, 19]. It becomes

pressing to ask whether these methods could be applied in the space domain as well.

∗∗https://esa.github.io/pygmo2/.../sga
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Fig. 10 Global optimization performance summary. Red line: best cost obtained across all cases, achieved
with SGA. Grey bands: distinct evolutionary periods, 500 generations each. Blue: uniformly sampled initial
populations. Orange: initial populations sampled around approximate solutions. Shaded area: best to worst
losses (tour costs) achieved. Solid lines: mean loss.

II. Neural Combinatorial Optimization for Space VRPs
NCO uses DNNs to automate the process of determining heuristics to solve CO problems. RL is the dominant

paradigm for NCO, as supervised learning is often unfeasible for large or theoretically hard problems. NCO offers

the attractive prospect of alleviating the scaling issues of exact approaches, while removing the need for handcrafted

heuristics [19], and has shown promising performance on various CO problems [19], and has been shown to achieve

high quality results, especially when coupled with advanced policy search procedures [15].

The RL4CO†† NCO library is used to implement and train the STSP routing policy. RL4CO is a benchmark library

for NCO based on PyTorch [82] with standardized, modular, and highly performant implementations of various envi-

ronments, policies and RL algorithms, covering the entire NCO pipeline [19].

This section discusses the implementation of an STSP environment for NCO in Section II.A, the NCO routing

policy in Section II.B, training algorithms in Section II.D and policy search procedures in Section II.C.

A. Environment

The state of the targets is described using Keplerian elements (which is practical and common practice when ana-

lyzing debris clouds [1]). The agent is trained in realistic Active Space Debris removal scenarios. These scenarios are

generated using statistical models of real debris clouds. The models are obtained by fitting cloud observations with
††https://rl4.co
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the parametric statistical models that best match the observations. All 19 parametric statistical models available in

PyTorch‡‡ [82] are considered. Goodness of fit is assessed using the Kolmogorov-Smirnov (KS) test [63]. The result

is a composite model of the translational state and other properties of a debris cloud, comprising 6 or more paramet-

ric models: one for each Keplerian element, and more for other measurements such as radar-cross section if relevant.

Fig. 11 shows the model generated for the Iridium 33 cloud. In this work the environment is limited to the translational

state of the cloud.

Fig. 11 Statistical model of the translational state of the Iridium 33 debris cloud. Histograms: observations.
Curve, red: parametric model that best matches the observations, where goodness of fit is measured using the
KS statistic. Curve, black: second-best parametric model.

The range of values whichmay be sampled by eachmodel is limited to the range of observed values. This is achieved

with inverse transform sampling [83] when the Inverse Cumulative Distribution Function (ICDF) of the parametric

model is defined and implemented in PyTorch, and with vectorized rejection sampling [84] if the ICDF is not available.

The global state is propagated through the sequential decision-making process. This is done by estimating the

transfer times, and using a secular perturbation model to propagate the state of the cloud. The Q-based TOF estimation

method defined in Eq. 14 is used to estimate transfer times. The secular perturbation model used for LEO multi-

rendezvous missions is the 𝐽2 secular perturbation model defined in Eq. 12.
‡‡https://pytorch.org/docs/stable/distributions.html
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B. Policy

An autoregressive Attention-based policy§§ is used to learn the routing problem. First introduced byKool et al. [85],

the policy encodes the input graph using a Graph Attention Network (GAT), and decodes the solution using a Pointer

Network. Kool et al. train this policy using the REINFORCE RL algorithm to achieve considerably better performence

than other learned heuristics [85]. Fraçois et al. find this policy to be a highly efficient learning component in their

comprehensive analysis of learning performance in NCO methods [15].

C. Policy Search

Policy search strategies determine how actions are selected based on the learned policy, balancing exploration and

exploitation to find optimal or near-optimal solutions. Policy search is fundamental to improve the performance of

NCO algorithms [15]. Three policy search strategies are considered: greedy search, sampling search and beam search.

1. Greedy Search

Greedy search is the simplest policy search strategy, where at each decision step, the action with the highest prob-

ability (or highest estimated reward) is selected deterministically. This approach is computationally efficient but may

lead to suboptimal solutions due to its myopic nature, potentially getting trapped in local optima.

2. Stochastic Search

Stochastic policy search, also known as sampling search, introduces randomness in the policy search by selecting

actions based on the probability distribution defined by the learned policy. Instead of always choosing themost probable

action, actions are sampled according to their probabilities, allowing for greater exploration of the action space. This

strategy can escape local optima and explore diverse solution paths but may require more computational resources and

time to converge to high-quality solutions.

3. Beam Search

Beam search (BS) strikes a balance between greedy and sampling strategies by maintaining a fixed number of the

most promising partial solutions (beams) at each step. At each decision point, all possible extensions of the current

beams are considered, and the top 𝑘 beams with the highest cumulative probabilities are retained for the next step. This

approach enhances exploration while controlling computational complexity, leading to better solution quality compared

to greedy search without incurring the full cost of exhaustive search.
§§https://rl4.co/docs/.../AttentionModelPolicy
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D. Reinforcement Learning Algorithms

Three RL algorithms are considered to train the routing policy: REINFORCE, Advantage Actor-Critic, and Prox-

imal Policy Optimization. This section consists of a brief introduction of each method, followed by an RL algorithm

trade-off based on the training cost and policy performance achieved in a 10-transfer ADR STSP scenario based on the

Iridium 33 debris cloud.

1. Overview

Stochastic Policy Gradient The REINFORCE algorithm, introduced byWilliams [86], is a stochastic policy gradient

method that uses Monte Carlo sampling to compute an unbiased estimate of the policy gradient. Full trajectories are

sampled, and the return for each trajectory is used to update policy parameters via gradient ascent to maximize expected

reward. REINFORCE suffers from high variance in gradient estimates, slowing convergence.

Advantage Actor-Critic Advantage Actor-Critic (A2C), introduced by Konda and Tsitsiklis [87] and extended by

Mnih et al. [88], reduces variance in policy gradient estimates by incorporating a baseline. The baseline, given by

the value function estimated by a critic, is subtracted from the return to compute an advantage, stabilizing policy

updates. A2C concurrently optimizes the actor (policy) and critic (value function) in a single process, improving

learning efficiency.

Proximal Policy Optimization for Autoregressive Policies Proximal PolicyOptimization (PPO), proposed by Schul-

man et al. [89], addresses the instability of A2C by introducing a clipped objective function that limits the magnitude

of policy updates. This improves the stability of training, making PPO widely applicable in reinforcement learning

tasks.

The variant of PPO byKool et al. [90], used here, modifies PPO for autoregressive policies, which generate solutions

sequentially, where each action depends on prior actions. Kool’s variant treats the entire autoregressive process as a

single decision step, reducing the complexity of the Markov Decision Process (MDP). While effective in capturing

sequential dependencies, this approach can introduce approximation bias and reduce gradient information due to its

single-step treatment of the decoding process [90].

2. Algorithm Selection

The three RL algorithms under consideration were traded-off on a 10-transfer scenario. Training was repeated

5 times using different random seeds to ensure the trade-off was robust. To establish an intuitive scale for policy

performance, the validation dataset was extracted and optimized using the HCOmodule. Model validation performance

is expressed in terms of optimality gaps with respect to the cost of the tours optimized with HCO. Table 12 lists the

most relevant training settings and policy architecture hyperparameters. With the exception of of the embedding size of
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Fig. 12 Learning curve for each algorithm, repre-
sented by the validation reward. Shaded areas: 1 stan-
dard deviation range, min-max range.

Fig. 13 Training time for each algorithm. Shaded ar-
eas: 1 standard deviation range, min-max range.

Table 12 Training and policy architecture settings used to compare RL algorithm performance.

Training dataset Batch size Optimizer Learning rate Epochs Embedding size Encoder layers Att. Heads
1M scenarios 32768 Adam 1,00E-04 100 256 3 8

256, all RL algorithm and policy architecture hyperparameters used at this stage were the defaults in RL4CO. Training

was conducted for 100 epochs on NVIDIA L40 GPU systems (16 vCPUs, 250GB RAM). The training runs of each

algorithm were conducted simultaneously on different machines to avoid polluting training time measurements.

The experimental results, summarized in Table 13 and illustrated in Fig. 12 and Fig. 13, indicate that A2C con-

sistently outperforms REINFORCE and the modified PPO across multiple metrics. Specifically, A2C achieves the

lowest mean Δ𝑉 and optimality gap, with values of 110. km/s and 29.0%, respectively, using the beam search policy

search strategy. In contrast, REINFORCE and PPO exhibit higher mean Δ𝑉 values of 206.4 km/s and 169.4 km/s, and

optimality gaps of 156.7% and 110.6%, respectively.

Training times for REINFORCE and A2C are comparable, averaging around 1.5 hours, while PPO requires sig-

nificantly more time at approximately 2.27 hours. Evaluation times remain similar across all algorithms, with minor

variations attributable to the search strategies employed.

These observations suggest that A2C not only produces better-performing policies but also does so with training

efficiency similar to REINFORCE and superior to PPO. The lower standard deviations in Δ𝑉 and optimality gap for

A2C indicate more stable and reliable policy learning.

Despite PPO’s effectiveness in various reinforcement learning tasks [89], its modified version for autoregressive

policies does not demonstrate the expected performance gains in this context. The reduced performance of PPO may

stem from approximation biases introduced by treating the entire decoding process as a single-stepMDP and challenges

in entropy estimation, as discussed in Section II.D.1. Additionally, the loss of detailed gradient information due to the
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Table 13 RL training performance using REINFORCE, A2C and PPO. Bold: best result. Multiple results
highlighted if best cannot be decided considering mean and observed variance.

REINFORCE A2C PPO
Search strategy Greedy Stoch. BS Greedy Stoch. BS Greedy Stoch. BS

Δ𝑉 [km/s]
𝜇 206,4 212,7 172,6 129,6 130,1 111,0 169,4 178,4 154,6
𝜎 39,7 39,7 29,6 28,1 28,4 19,7 36,6 36,4 30,0

Optimality gap [%]
𝜇 156,7 164,6 114,7 61,3 61,9 38,3 110,6 121,7 92,1
𝜎 56,0 57,2 43,1 39,1 39,2 29,0 50,28 50,1 41,6

Training time [h]
𝜇 - 1,44 - - 1,49 - - 2,27 -
𝜎 - 0,13 - - 0,09 - - 0,11 -

Evaluation time [ms]
𝜇 36,1 43,7 86,5 37,9 43,8 87,1 35,3 43,5 86,6
𝜎 4,5 11,1 6,5 7,42 11,7 6,58 4,8 12,9 11,0

simplified MDP formulation could hinder effective policy updates.

Based on these results, A2C is selected as the reinforcement learning algorithm for training the routing policy in

the ADR STSP problem. Its superior performance and efficient training make it the most suitable choice among the

algorithms evaluated.

E. Hyperparameter Impact Determination with ANOVA

Optimizing the performance of neural combinatorial optimization (NCO) models involves tuning a multitude of

hyperparameters. Determining the statistical relevance of these hyperparameters is essential to identify which ones

significantly influence model performance and to prioritize them for further optimization [91]. Analysis of Variance

(ANOVA) serves as a robust statistical procedure to assess the significance of multiple factors simultaneously [92].

Orthogonal arrays, particularly Taguchi factorial designs, facilitate efficient experimentation by systematically vary-

ing hyperparameters across predefined levels while minimizing the number of required experimental runs [93–95]. The

Taguchi L27 orthogonal array, also known as L27-A313-10 fractional factorial design [63], is specifically designed to

evaluate up to 13 factors at three levels, making it suitable for comprehensive hyperparameter analysis with limited

resources [63]. Table 14 presents the Taguchi L27 orthogonal array utilized in this study.

A linear ANOVA was conducted using the statsmodels library [96] to evaluate the main effects of 13 hyperpa-

rameters on the model’s performance. The 13 chosen hyperparameters, their function, and the rationale for choosing

them can be seen in Table 15. The choice of a linear model is justified by the initial focus on identifying straightfor-

ward, additive relationships between hyperparameters and performance metrics, with the goal of identifying the most

impactful hyperparameters for further optimization.

Table 16 presents the ANOVA results for the linear effects of each hyperparameter. The Sum of Squares (Sum

Sq), degrees of freedom (df), F-statistic (F), and p-values (PR(>F)) are reported for each factor. ANOVA relies on two

fundamental assumptions: normality of residuals, and homogeneity of variances across all factor levels —the property

29



Table 14 Taguchi L27 orthogonal array, also known as L27-A313-10 fractional factorial design [63].

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
X1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
X2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 1
X3 0 0 0 1 1 1 2 2 2 1 1 1 0 0 0 1 1 1 2 2 2 0 0 0 1 1 2
X4 0 0 0 1 1 1 2 2 2 2 2 2 0 0 0 1 1 1 0 0 0 2 2 2 1 1 1
X5 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 0
X6 0 1 2 0 1 2 0 1 2 1 2 0 2 0 1 1 0 0 2 0 1 2 0 1 0 1 0
X7 0 1 2 0 1 2 0 1 2 2 0 1 1 0 0 2 1 1 1 2 0 2 1 0 2 0 1
X8 0 1 2 1 2 0 2 1 0 0 1 2 0 1 2 1 0 2 2 1 2 1 2 1 2 1 2
X9 0 1 2 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 0 1 2 1 2 1 1 2 2
X10 0 1 2 1 2 0 1 2 0 3 0 1 1 2 0 2 2 1 1 2 0 2 1 0 1 0 1
X11 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 1 0 1 1 0 2 2 1 3 1 2 1
X12 0 1 2 2 0 1 2 3 0 2 1 2 1 3 0 0 1 2 3 2 1 1 3 1 2 1 2
X13 0 1 2 2 0 1 2 3 0 3 2 1 0 1 2 3 2 1 1 3 2 1 2 1 3 2 1

known as homoscedasticity [63, 92]. Residual normality was verified by the Shapiro-Wilk test [63, 97] (𝑝 = 0.57) and

the Anderson-Darling test [63] (𝑝 = 0.27). Homoscedasticity was verified by visual inspection of the residuals. Further-

more as will be seen, the impacts estimated by the ANOVAmatch those expected from domain expertise. The ANOVA

is thus considered valid to diagnose the main effects of the 13 hyperparameters considered on policy performance.

The ANOVA results indicate that embedding dimension and number of encoder layers are the only hyperparame-

ters with statistically significant effects on model performance, with p-values of 0,005776 and 0,048680, respectively.

embedding dimension exhibits the highest Sum of Squares (3,46E+09), suggesting it has the most substantial impact.

number of encoder layers follows with a Sum of Squares of 1,50E+09, indicating a meaningful but slightly lesser in-

fluence. All other hyperparameters do not show significant linear effects, as their p-values exceed the conventional

threshold of 0, 05. The linear model accounts for approximately 69,87% of the total observed variance (𝑅2 = 69, 87%).

A considerable portion of variability (30.13%) is not explained by the linear effects of the analyzed hyperparameters,

indicating the presence of higher order effects which are not modelled.

The significant effect of embedding dimension suggests that increasing this hyperparameter enhances the model’s

capacity to capture and represent input features effectively, thereby improving performance. The significance of the

number of encoder layers implies that adding more layers may contribute to deeper feature extraction and more complex

graph representations, although its impact is less pronounced compared to embedding dimension. The non-significant

effects of other hyperparameters indicate that, within the tested ranges, their individual linear contributions to model

performance are minimal. However, it is possible that these hyperparameters may interact with each other or exhibit

non-linear relationships that are not captured in the current linear ANOVA model. The R2 value of 69,87% indicates a

moderately strong fit. While the linear model explains a substantial portion of the variance, there remains considerable

unexplained variability, potentially due to unmodeled factors or complex relationships among hyperparameters.

The ANOVA analysis identifies embedding dimension as the most statistically significant hyperparameter influenc-
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Table 15 Policy architecture and training hyperparameters considered in the 3-level ANOVA.

Hyperparameter Component Function Rationale Levels
Embedding
Dimension

Embedding
Layer

Size of node embeddings
representing input features.

Influences the capacity to
capture feature representa-
tions.

• 64
• 128
• 256

Number of
Encoder Layers

GAT Number of layers in the GAT,
affecting depth and represen-
tation learning.

Determines the depth of fea-
ture extraction and complex-
ity of graph representations.

• 2
• 3
• 4

Number of
Attention Heads

GAT Number of parallel attention
mechanisms per GAT layer.

Enhances the model’s ability
to focus on different parts of
the graph simultaneously.

• 4
• 8
• 16

Feedforward
Hidden Size

GAT Size of the hidden layer in
GAT’s feedforward network.

Affects the model’s capacity
and computational complex-
ity.

• 256
• 512
• 1024

Dropout Rate GAT Probability of dropping units
during training to prevent
overfitting.

Helps in regularizing the
model and improving gener-
alization.

• 0.1
• 0.3
• 0.5

Temperature PN Scales logits before softmax
to control randomness in ac-
tion selection.

Balances exploration and ex-
ploitation during policy gen-
eration.

• 0.5
• 1.0
• 2.0

Tanh Clipping PN Limits the output of the tanh
activation to prevent extreme
values.

Ensures numerical stability
by preventing large activa-
tion values.

• 0
• 10
• 20

Actor Learning
Rate

Actor
Optimizer

Learning rate for the actor
(policy) network optimizer
(Adam).

Influences the speed and sta-
bility of policy updates.

• 1e-5
• 1e-4
• 1e-3

Weight Decay Actor
Optimizer

Regularization parameter to
prevent overfitting by penal-
izing large weights.

Controls the model’s gener-
alization and prevents over-
fitting.

• 0
• 1e-4
• 1e-3

Gradient
Clipping Value

Actor
Optimizer

Maximum allowed value for
gradients during backpropa-
gation to prevent exploding
gradients.

Ensures training stability by
avoiding excessively large
gradients.

• 0.5
• 1.0
• 2.0

Critic Learning
Rate

Critic
Optimizer

Learning rate for the critic
network optimizer (Adam).

Affects the stability and
speed of value estimation
updates.

• 1e-5
• 1e-4
• 1e-3

Reward Scaling Baseline Scales the reward signal to
stabilize training and im-
prove gradient estimates.

Enhances training stability
by normalizing reward mag-
nitudes.

• 1
• 10
• 100

Critic Hidden
Dimension

Critic
Network

Size of the hidden layers
within the critic network.

Influences the critic’s capac-
ity to accurately estimate
value functions.

• 128
• 256
• 512
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Table 16 ANOVA results. Dashed line separates statistically significant factors (𝑝 < 0.05) from non-significant
factors.

Hyperparameter Sum Sq df F PR(>F) R2

Embedding Dimension 3,46E+09 1 10,9 0,005776 25,20%
Number of Encoder Layers 1,50E+09 1 4,73 0,04868 10,96%
Feedforward Hidden Size 7,82E+08 1 2,46 0,140893 5,70%
Weight Decay 7,28E+08 1 2,29 0,154256 5,30%
Number of Attention Heads 7,03E+08 1 2,21 0,160724 5,13%
Actor Learning Rate 6,66E+08 1 2,1 0,171374 4,86%
Critic Hidden Dimension 6,18E+08 1 1,94 0,18656 4,51%
Gradient Clipping Value 5,55E+08 1 1,75 0,209273 4,04%
Dropout Rate 3,24E+08 1 1,02 0,331401 2,36%
Tanh Clipping 2,11E+08 1 0,66 0,429799 1,54%
Critic Learning Rate 3,58E+07 1 0,11 0,742551 0,26%
Temperature 1,58E+06 1 0,00 0,944904 0,01%
Reward Scaling 4,52E+05 1 0,00 0,970506 0,00%
ANOVA model 9,58E+09 13 - - 69,87%
Residuals 4,13E+09 13 - - 30,13%

ing model performance, followed by a marginal effect from the number of encoder layers. These findings suggest that

increasing the embedding dimension is desirable to enhance feature representation capabilities, and that optimizing

the number of encoder layers can potentially improve the depth and quality of feature extraction, albeit with a less

substantial impact. Embedding dimension and number of encoder layers were chosen for hyperparameter optimization,

discussed next.

F. Hyperparameter Optimization

A full factorial (grid search) approach was conducted to optimize the embedding dimension and number of encoder

layers, considering four levels. The levels considered for each hyperparameter are those previously presented in Ta-

ble 15. Fig. 16 shows the optimality gaps obtained by each of the models in the grid search, using BS to decode the

policies. No statistically significant improvement is observed in comparison with the RL algorithm trade-off results in

Table 13. Fig. 15 shows the combined learning curve all grid search runs. Fig. 14 shows the Pareto front of the grid

search. An interesting feature in Fig. 16 is the underperformance of models in the diagonal. The amount of trainable

parameters of the models considered can be seen in Fig. 17.

A second ANOVA was performed on the results of the grid search. This time quadratic and interaction effects were

included in the ANOVA model. The results follow in Table 17. The Shapiro-Wilk test (𝑝 = 0.9004) and Anderson-

Darling test (𝑝 = 0.153) again confirm that the residuals are normally distributed, and homoscedasticity is visually

verified, confirming the validity of the analysis. The ANOVA model accounts for 97.97% of the observed variance,
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Table 17 Results of the full factorial ANOVA of embedding dimension (ED) and number of encoder layers (NL).
The ANOVA model includes linear, quadratic and interaction terms.

Term Sum Sq df F PR(>F) R2

ED 1,57E+09 1.0 97,805333 0,002199 66,30%
NL 7,73E+07 1.0 4,831624 0,115377 3,28%
ED2 4,72E+08 1.0 29,455497 0,012275 19,97%
NL2 3,77E+07 1.0 2,352144 0,222656 1,59%
ED*NL 1,61E+08 1.0 10,067658 0,050366 6,82%
ANOVA model 2,31E+09 3.0 - - 97,97%
Residual 4,80E+07 3.0 - - 2,03%

Fig. 14 Pareto front of the full factorial design, using
beam search to decode the learned policies.

Fig. 15 Grid search learning curve. During training
the policy is decoded using greedy search.

indicating a strong fit. The full factorial ANOVA confirms that both embedding dimension and number of layers have

significant effects on performance. Embedding dimension shows a strong main effect (𝐹 = 97.81, 𝑝 = 0.0022) and

a significant quadratic term (𝐹 = 29.46, 𝑝 = 0.0123). The interaction between embedding dimension and number of

layers is marginally significant (𝐹 = 10.07, 𝑝 = 0.0504), indicating that their combined influence affects performance.

These findings confirm the significant linear effects identified by the L27 fractional ANOVA and indicate the presence

of additional non-linear relationships.

The results indicate that network architecture is the principal driver of model performance, but model performance

increases asymptotically slowly with the number of parameters.

G. Impact of Training Dataset Size on Policy Performance

The amount of data provided to the model for training is key for its performance [19]. This is especially the case for

attention-based ML models [98–100]. Fig. 18 shows the effect of increasing the size of the training dataset from 1M

to 3M tours of 10 transfers. Observe the large increase in convergence speed. The final performance improves as well.

Notwithstanding, model performance eventually plateaus to a validation optimality gap in training of approximately
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Fig. 16 Optimality gaps obtained for each run in the
grid search, using beam search to decode the policy.

EL
2 3 4

128 53,68% 40,85% 45,95%
256 74,54% 59,46% 39,03%EB
512 41,87% 36,79% 66,04%

Fig. 17 Number of trainable parameters for each con-
figuration considered in the grid search.

EL
2 3 4

ED
128 0.51M ×1,4 ×1,8
256 ×3,0 ×4,0 ×5,0
512 ×9,8 ×12,8 ×15,9

50%. This confirms that the architecture of the ML model is the factor limiting further learning.

Fig. 18 Final learning curves. Note the impact of increasing training dataset size from 1M to 3M. Notwith-
standing, the capacity of the model to learn asymptotically approaches a similar limit at 50% optimality gap.

H. Final Performance and Generalization to Larger Routing Problems

The final policy was trained on 3 million tours consisting of 10 transfers. To evaluate the capacity of the policy to

generalize to larger problems, the trained policy was employed to plan scenarios with 10, 30, and 50 transfers. BS was

used to search the trained policy. Table 18 presents the final performance results of the trained NCO policy compared to

the DRW heuristic across scenarios with 10, 30, and 50 transfers. Each case consisted in the planning of 1000 missions.

The metrics include the mean and standard deviation of Δ𝑉 (change in velocity), the optimality gap percentage, and the

evaluation time in milliseconds. Optimality gaps are obtained by comparison with the solution obtained using HCO.

The trained NCO policy exhibits better performance in the 10-node scenario than the DRW heuristic. However, as

the number of nodes increases to 30 and 50, the performance of the NCO policy greatly deteriorates. This indicates a

limitation in the policy’s ability to generalize to mission scenarios with a higher number of transfers: the learned policy

is not generally applicable for the design of ADR missions.

In terms of computational efficiency, the NCO policy outperforms DRW across the board. The difference is large

for small mission scenarios, but becomes less significant for 30 and 50 transfer scenarios.
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Table 18 Policy performance compared to the DRW STSP heuristic for STSPs with 10, 30 and 50 targets.
Performance measured on test datasets of 1000 missions.

Number of nodes 10 30 50
Heuristic AM BS DRW AM BS DRW AM BS DRW

Δ𝑉 [km/s]
𝜇 106,4 122,1 573,5 208,1 1041,8 261,2
𝜎 16,2 31,4 83,9 46,2 68,2 52,6

Optimality gap [%]
𝜇 32,6 50,5 616,0 50,4 555,4 63,9
𝜎 25,5 36,8 132,7 37,2 97,4 38,3

Evaluation time [ms] 𝜇 99,2 2494,9 3592,0 8534,5 8630,0 16147,1

III. Conclusion
This study evaluated the applicability and effectiveness of Neural Combinatorial Optimization (NCO) methods for

space Vehicle Routing Problems (VRPs), focusing on the Active Debris Removal (ADR) Space Traveling Salesman

Problem (STSP) using the Iridium 33 debris cloud as a case study.

A statistical model of the Iridium 33 space debris cloud was created to enable the generation of millions of realistic

ADR scenarios for the training of NCO policies. An electric propulsion ADR spacecraft concept is used in this work.

Lyapunov Feedback Control was used to generate low-thrust trajectories. In particular, the Rendezvous Q-Law (RQ-

Law) Lyapunov Feedback Control low thrust guidance policy is used to 6-element rendezvous transfer trajectories

between targets. An efficient transfer cost estimator based on the best quadratic time to go was designed and verified.

Finally, a generalized STSP environment model was implemented considering the secular 𝐽2 perturbation on Right

Ascension of the Ascending Node (RAAN) and Argument Of Perigee (AOP).

An Attention-based routing policy, integrating a Graph Attention Network (GAT) and a Pointer Network (PN),

was implemented and trained using Reinforcement Learning (RL) algorithms, specifically REINFORCE, Advantage

Actor-Critic (A2C), and Proximal Policy Optimization (PPO). Among these, A2C demonstrated the best performance.

Hyperparameter analysis through ANOVA identified embedding dimension and the number of encoder layers as critical

factors influencing model efficacy. Subsequent grid search hyperparameter optimization revealed that while increasing

model complexity marginally enhances performance, larger training datasets significantly improve convergence speed

with minimal gains in final performance, converging to a 50% optimality gap under greedy policy search.

The trained NCO policy achieved a mean optimality gap of 32% over 1000 missions with 10 transfers, outperform-

ing Heuristic Combinatorial Optimization (HCO) methods and the Dynamic RAAN Walk (DRW) heuristic in both

mission cost and runtime. This indicates that NCO methods are effective for ADR missions with a limited number of

targets, offering efficient and viable routing solutions. However, the policy’s performance declined in more complex

scenarios involving 30 and 50 transfers, highlighting limitations in generalizing beyond the conditions encountered

during training.

These findings underscore the potential of NCO methods in optimizing ADR missions but also emphasize the need
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for advancements to address scalability and generalization challenges. Future research should focus on refining NCO

model architectures to better handle dynamic VRPs, and to achieve generalization to unseen numbers of targets. The

development of RL training procedures exposing policies to problems with variable numbers of nodes while training

should be a priority for future research. Alternative machine learning approaches, such as Deep Reinforcement Learn-

ing algorithms that incorporate tree search strategies like Monte Carlo Tree Search (MCTS), are an attractive option

to improve the performance and scalability of policies. Leveraging data augmentation and transfer learning techniques

may further improve policy robustness and effectiveness in larger-scale missions.

In conclusion, this research demonstrates that NCOmethods hold promise for learning effective and efficient routing

policies for space VRPs, particularly in ADR scenarios with a constrained number of targets. However, to realize their

full potential, further development of policy models is required. The integration of NCO with established optimization

techniques offers a viable pathway for enhancing mission planning capabilities, paving the way for more sophisticated

and scalable solutions for mission planning and autonomy in space logistics.
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Abstract
Optimizing space vehicle routing is crucial for critical applications such as on-orbit servicing, constellation deploy-

ment, and space debris de-orbiting. Multi-target Rendezvous presents a significant challenge in this domain. This
problem involves determining the optimal sequence in which to visit a set of targets, and the corresponding optimal
trajectories: this results in a demanding NP-hard problem. We introduce a framework for the design and refinement of
multi-rendezvous trajectories based on heuristic combinatorial optimization and Sequential Convex Programming. Our
framework is both highly modular and capable of leveraging candidate solutions obtained with advanced approaches
and handcrafted heuristics. We demonstrate this flexibility by integrating an Attention-based routing policy trained
with Reinforcement Learning to improve the performance of the combinatorial optimization process. We show that
Reinforcement Learning approaches for combinatorial optimization can be effectively applied to spacecraft routing
problems. We apply the proposed framework to the UARX Space OSSIE mission: we are able to thoroughly explore
the mission design space, finding optimal tours and trajectories for a wide variety of mission scenarios.

Nomenclature

Symbol Meaning Value/Units
µ Earth gravitational constant 3.986e5 km3 s−2

g0 Standard Earth gravity 9.806 65 m s−2

Re Earth mean equatorial radius 6378.14 km
J2 Second Earth zonal harmonic 1.0826e−3
Isp Specific impulse s
a Semi-major axis m
p Semi-latus rectum m
e Eccentricity −
i Inclination rad
Ω RAAN rad
ω AOP rad
σ True Anomaly rad
L True Longitude rad
n Orbital mean motion s−1

Acronyms/Abbreviations

Term Acronym
Mixed-Integer Nonlinear Programming (MINLP)
Traveling Salesman Problem (TSP)
Vehicle Routing Problem (VRP)
Operations Research (OR)
Space Traveling Salesman Problem (STSP)
Orbit Transfer Vehicle (OTV)
Modified Equinoctial Elements (MEEs)
Multiple Hohmann Transfer (MHT)
Nodal Inclination Change manoeuvre (NIC)
Semi-major Axis (SMA)
Right Ascension of Ascending Node (RAAN)
Argument Of Perigee (AOP)
Time Of Flight (TOF)
Sequential Convex Programming (SCP)
SENER Optimization Toolbox (SOTB)
Machine Learning (ML)
Reinforcement Learning (RL)
Neural Combinatorial Optimization (NCO)
Deep Neural Network (DNN)
Graph Attention Network (GAT)
Advantage Actor-Critic (A2C)
Proximal Policy Optimization (PPO)
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1. Introduction

The present work introduces a general optimization
framework for multiple-rendezvous manoeuvres, which
see a spacecraft approaching a sequence of objects in or-
bit as efficiently as possible. An optimal solution to the
multi-target rendezvous trajectory optimization problem
or STSP consists of the optimal sequence in which to visit
a set of targets and the optimal transfer trajectory between
each target in the optimal sequence. The STSP is an NP-
hard MINLP problem with factorial complexity over the
number of targets. The STSP bears resemblance to the
classical TSP, albeit with the added complexities inher-
ent to the space environment, notably a 6-dimensional
state space, mass dynamics, propulsion constraints, and
the change over time of target states due to secular pertur-
bations, chiefly J2 for Earth-orbiting spacecraft.

Formally, the STSP is the problem of finding a min-
imum weight path (if the spacecraft must end the tour
back at its initial state, a Hamiltonian path) in a complete
weighted graph G := {V(t),W(π)}, where V(t) is the set
of graph vertexes (targets, the state of which drifts over
time) and W(π) := V × V → R+ is a map that asso-
ciates an edge weight (a transfer cost) to each ordered ver-
tex pair[1], and may dependent on the sequence π in which
the targets are visited. One such case is when payload
mass is a large percentage of the spacecraft’s wet mass,
and thus deployment sequence has a non-negligible im-
pact on fuel consumption. The STSP is an example of
a MINLP problem, which are notoriously difficult to ap-
proach, and has seen a considerable surge in interest in
active debris removal missions[1–6] to tackle the space
debris problem[7, 8], as well as on-orbit servicing mis-
sions[3, 9, 10] and advanced space logistics concepts[11].
A standard approach to solve MINLP problems is Ben-
ders decomposition[5, 12], where the MINLP problem
is divided into a higher-level combinatorial optimization
problem and a lower-level trajectory optimization prob-
lem; the higher level combinatorial problem is then solved
exactly by applying Benders optimality cuts. Decomposi-
tion approaches using heuristic optimization are common
as well[3, 4, 6]. In both approaches a transfer cost es-
timator is used to calculate the cumulative cost of tours
in the combinatorial optimization problem. Transfer cost
estimators may be database-dependent[13, 14], database-
independent (analytical), or learning-based[15].

State-of-the-art combinatorial optimization methods
fall in two camps: exact methods and heuristic methods,
which are less costly and can produce near-optimal re-
sults, but cannot offer optimality guarantees whatsoever[1,
16]. Exact methods based on tree searches are the norm

for highly complex, large STSP variants; all winning sub-
missions of the Global Trajectory Optimization Compe-
titions have made use of tree search approaches[1, 13,
17]. Heuristic optimization methods however are an at-
tractive option to solve smaller STSP instances (up to
hundreds of targets[1]) due to their capacity to achieve
near-optimal results with lower computational cost[1], and
are widely applied in literature to tackle multi-rendezvous
mission design[1–4, 6]. Heuristic optimization methods
have also been successfully applied to complex STSP
instances where the cost of exact approaches is unfea-
sible[13]. Furthermore, the availability of highly per-
formant, open-source heuristic multi-objective optimiza-
tion libraries such as pygmo1[18] and pymoo2[19] greatly
eases the application, benchmarking and selection of di-
verse heuristic optimization algorithms for specific prob-
lem variants. We thus opt for population-based heuris-
tic optimization to develop the combinatorial optimization
component of our solver.

Convex optimization is leveraged to tailor optimal ma-
noeuvres to the specific vehicle requirements, such as the
specifics of the propulsion system. The applications of
convex optimization in the field of aerospace have grown
in importance in the recent years. SOCP, in particular, is
a common choice when nonlinear constraints are involved
in the formulation of the OCP at the base of the orbit trans-
fer optimization[20, 21]. These methods however are vul-
nerable to convergence issues: this has been tackled in lit-
erature by using SCP solvers provided with an initial guess
close to the optimal solution, and by keeping propagation
and accumulation errors due to the iterations of the algo-
rithm low; Foust et al.[22] and Ramírez and Hewing[23]
propose the implementation of an SCP solver in combi-
nation with an 4th-order Runge-Kutta, to integrate in the
OCP an accurate model of the dynamics and reduce error
accumulation. Discretization is crucial in determining the
ability of the solver to find an optimal solution, re-adapting
the dynamics and constraints of the OCP as functions of
a finite number of parameters. Topputo et al.[24] develop
an SCP solver based on mesh refinement to obtain a quasi-
optimal warm starting, demonstrating the robustness of
the algorithm and its efficiency to generate warm starts
for the SCP solver. SCP solvers based on interior-point
methods, in particular, allow to significantly reduce com-
putational cost, making convex programming algorithms
suitable also for demanding applications, such as on-line
guidance[23, 25].

This work presents a modular and adaptable STSP op-
timization framework based on Benders decomposition

1https://esa.github.io/pygmo2/
2https://pymoo.org/
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and heuristic combinatorial optimization, capable of solv-
ing highly tailored versions of the STSP. We demonstrate
its capabilities by solving the multi-rendezvous trajectory
optimization problem of UARX Space’s OSSIE3 OTV:
a translational and mass-dynamic multi-satellite deploy-
ment problem in LEO.

The paper is organized as follows: Section 2 describes
the operational profile and performance envelope of the
OSSIE OTV. Section 3 defines the models used for the or-
bital dynamics and perturbations. Section 4 proceeds to
define the trajectory design and trajectory cost estimation
methods used for the UARX Space OSSIE OTV. Section 4
presents the Bolza formulation of the MINLP, the architec-
ture of our optimization framework, introduces the heuris-
tic combinatorial optimization methodology, and defines
the SCP algorithm together with the OCP and the solver
tailoring based on SOTB. Experimental results are dis-
cussed in Section 7. Subsection 7.1 defines a model to
generate randomized mission scenarios for OSSIE. Sub-
section 7.2 and Subsection 7.3 discuss the results obtained
from heuristic and neural combinatorial optimization. A
statistical mission feasibility analysis follows in Subsec-
tion 7.4. Subsection 7.5 presents the trajectory optimiza-
tion results from SCP. The results section concludes with
the formal verification of the obtained trajectories in a
high-fidelity simulator in Subsection 7.6. Lastly, Sec-
tion 8 lays out our main conclusions and recommendations
for future research.

2. Mission Profile
To demonstrate the capabilities of the proposed frame-

work, the UARX Space Orbit Solutions to Simplify Injec-
tion and Exploration OTV, known as OSSIE, will be used
as a case study. Depicted in Fig. 1, OSSIE is a modular
payload delivery platform with LEO, MEO and cis-lunar
capability. In this paper, we consider a nominal mission
profile aiming to deliver 4 PocketQubes, 8 CubeSats, and
1 small satellite to LEO.

The propulsion system used for this mission consists
of 4 parallel Dawn Aerospace B20 bi-propellant (nitrous
oxide and propene) thrusters4 (specifications in Table 1).
As of the time of writing, the duty-cycle constraints of the
thruster cluster constrain manoeuver design to multiple-
revolution transfers, with up to two impulses per orbit in
LEO.

The specifications of the current configuration of
OSSIE follow in Table 1. OSSIE has a wet mass of approx-
imately 235 kg, of which close to 50% is shed through the

3https://www.uarx.com/projects/ossie.php
4https://www.dawnaerospace.com/green-propulsion

Fig. 1. UARX Space OSSIE OTV. Credit: UARX Space.

Table 1. Specifications of the OSSIE OTV and Dawn
Aerospace B20 thrusters.

OSSIE Value Dawn Aerospace B20 Value
Wet mass 235 kg Specific impulse 277 s
Payload mass 80 kg Peak thrust 12.6 N
Fuel mass 35 kg Minimum impulse bit 1 N s
Cargo capacity 48 U

mission —either deployed or consumed propellant; this
means that the mass deployment sequence may have a
considerable impact on the fuel required to complete the
mission. OSSIE is deployed to a nominal insertion orbit
in LEO, which constraints transfer sequence design, and
must conduct a decommissioning manoeuvre to ensure it
decays within 5 years of EOL as per the ESA Space Debris
Mitigation Requirements [26].

Under the previous considerations, the OSSIE trajec-
tory optimization problem results in a highly tailored
multi-rendezvous trajectory optimization problem, which
aims to minimize fuel consumption while accounting for:

• Multi-revolution impulsive manoeuvres in LEO un-
der perturbations.

• The impact of mass deployment sequence on propel-
lant consumption.

• Insertion and decommissioning orbit constraints.

3. Environment Model
To setup the optimization space, the spacecraft state is

modelled using the MEEs described by Hintz[27], includ-
ing the retrograde factor I , which are nonsingular for all
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Fig. 2. Modified Equinoctial Elements (MEE) with re-
spect to orbital plane.

Fig. 3. ECI and LVLH reference frames.

eccentricities and inclinations. The conversion from clas-
sical elements to MEEs follows in Eq. 1:

p = a(1− e2);

f = e cos(ω +Ω);

g = e sin(ω +Ω);

h = tan(i/2) sin(Ω);
k = tan(i/2) cos(Ω);
L = θ + IΩ+ ω;

(1)

The Gauss Variational Equations for MEEs[27] in
Eq. 2, are used to model the time evolution of the space-
craft’s translational state:

dp
dt

=
2p

w

√
p

µ
∆t;

df
dt

=

√
p

µ

{
∆r sin(L);

+
(w + 1) cos(L) + f

w
∆t − g

v

w
∆n

}
;

dg
dt

=

√
p

µ

{
−∆r cos(L);

+
(w + 1) sin(L) + g

w
∆t − f

v

w
∆n

}
;

dh
dt

=

√
p

µ

s2

2w
cos(L)∆n;

dk
dt

=

√
p

µ

s2

2w
sin(L)∆n;

dL
dt

=
√
µp

(
w

p

)2

+

√
p

µ

v

w
∆n;

(2)

where s2, v and w are defined as follows,

s2 = 1 + h2 + k2;

v = h sin(L)− k cos(L);
w = 1 + f cos(L) + g sin(L);

(3)

and ∆r, ∆t and ∆n are perturbing accelerations in the ra-
dial, tangential, and normal directions of the spacecraft’s
LVLH frame. The LVLH and ECI frames are depicted in
Fig. 3. The unit thrust vector in the ECI frame, ûECI, is
related to the unit thrust vector in the LVLH frame ûMEE
by Eq. 4.

ûECI = [êr êθ êϕ]ûMEE (4a)

êr =
r

∥r∥ ; êϕ =
r × v

∥r × v∥ ; êθ = êϕ × êr (4b)

Then, the thrust acceleration aT applied by the space-
craft in the RWS frame is defined in Eq. 5, where û is the
direction of application of thrust. The spacecraft’s mass
is propagated according to Eq. 6, assuming constant Isp
through a single burn.

aT =
T

m
û (5)

dm
dt

=
T

Ispg0
; (6)

With regards to perturbations, the greatest impact for
trajectory design in the case of near-Earth orbits comes
from the Earth oblateness gravity potential distortion[28],
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characterized by the second zonal harmonic coefficient or
J2. The instantaneous acceleration components due to
J2 are included in the environmental model, which in the
LVLH frame follow in Eq. 7.

∆J2,r
= −3µJ2R

2
e

2r4

(
1− 12v2

s4

)
∆J2,θ

= −12µJ2R
2
e

r4

(
v(h cosL+ k sinL)

s4

)
∆J2,ϕ

= −6µJ2R
2
e

r4

(
v(1− h2 − k2)

s4

) (7)

The J2 perturbing acceleration causes a secular pertur-
bation on RAAN and AOP over a full orbit[29], modelled
by Eq. 8, where n =

√
µ/a3 is the mean motion of the

orbiting body.

dΩ
dt

=− 3

2
J2

(
Re

p

)
n cos i;

dω
dt

=− 3

4
J2

(
Re

p

)
n(5 cos2 i− 1));

(8)

4. Guidance Policies and Transfer Cost Estimation
As discussed in Section 2, OSSIE is constrained to

multi-revolution impulsive manoeuvres. For the payload
deployment mission scenario under consideration, OSSIE
must achieve high accuracy SMA, inclination and phase
convergence: RAAN targeting is not of interest to the cur-
rent mission, as RAAN drift is very large for LEO orbits.
This section presents the orbit guidance policies used to
achieve insertion and the analytical models used to esti-
mate their cost in ∆V , fuel mass and time of flight. MHT
manoeuvres are discussed in Subsection 4.1, NIC manoeu-
vres in Subsection 4.2, and sequential MHT-NIC manoeu-
vres in Subsection 4.3. Lastly, Subsection 4.4 discusses
the impact of the J2 perturbation on the manoeuvres.

4.1 Multiple Hohmann Transfer manoeuvres

A Hohmann transfer is the optimal manoeuvre to trans-
fer between two coplanar circular orbits of different radii.
It is a two-impulse manoeuvre consisting of an initial
burn, either raising apogee or lowering perigee (depending
on objective),and a circularization burn when the apogee
(or perigee) of the transfer manoeuvre is reached. For
OSSIE, the ∆V required to perform a direct Hohmann
transfer may not be achievable. Instead, a MHT approach
is used. The MHT splits the departure and circularization
burns into many consecutive insertion and circularization

smaller burns, affordable by the maximum ∆V that can
be injected at a time with the employed thrusters.

4.1.1 Required ∆V , fuel mass and number of burns

The ∆V required by the MHT is equal to the one of
a direct Hohmann Transfer achieving the same altitude
change. The total magnitude can be computed as follows
in Eq. 9, where ∆Vd and ∆Vc stand for departure and cir-
cularization ∆V , V0 =

√
µ/r0 is the orbital velocity at

the departure orbit and ξ = r1/r0 is the ratio of target to
departure orbit[29].

∆VMHT = ∆Vd +∆Vc (9a)

∆Vd = V0

∣∣∣∣√ 2n

ξ + 1
− 1

∣∣∣∣ (9b)

∆Vc = V0

√
1

ξ

∣∣∣∣√ 2n

ξ + 1
− 1

∣∣∣∣ (9c)

The fuel mass required to perform the MHT is calcu-
lated as follows in Eq. 10, assuming constant Isp through
the manoeuvre; the number k of burns required to perform
a manoeuvre is obtained as the ceil fraction of required
fuel mass over mass flow ṁf = T/(Ispg0) (see Eq. 10).
The mass flow is assumed constant, as T and Isp are as-
sumed constant through the transfer.

mf = m0

[
1− exp

(
− ∆V

Ispg0

)]
; k =

⌈
mf

ṁf

⌉
(10)

4.1.2 Time Of Flight

The total TOF of the MHT follows in Eq. 11, where
the burn frequency fburn is defined in Eq. 12, P stands
for the average orbital period through the transfer defined
in Eq. 13, and kd and kc are the number departure and
circularization burns respectively, defined in Eq. 10.

TOFMHT = min(1, fburn) · (kd + kc) · PMHT (11)

fburn = (Tburn + Tcooldown)
−1 (12)

PMHT =
4π

5
√
µ (r2 − r1)

(
r

5
2
2 − r

5
2

1

)
(13)
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4.1.3 Phasing

The spacecraft ends the MHT at true longitude L0+π.
To avoid phasing manoeuvres after reaching the required
orbit, in order to acquire the target true longitude, the
MHT start epoch is selected so that L0(t0) = L1(t0 +
TOFMHT)−π, where TOF is the estimated time of flight.
This correction is computed after the MHT calculation,
thus TOFMHT is known.

4.2 Nodal Inclination Change manoeuvres

An NIC manoeuvre modifies the inclination of an or-
bit without affecting its RAAN. Thrust is applied impul-
sively as the spacecraft crosses the ascending or descend-
ing node, such that the resulting velocity vector is that of
the orbit with the desired inclination. A multiple NIC ma-
noeuvre consists of splitting the impulsive ∆V that must
be applied into multiple burns, up to twice per orbit, as
the spacecraft crosses the orbit ascending and descending
nodes.

4.2.1 Required ∆V , fuel mass and number of burns

The ∆V required for a multiple NIC is the same as for
a single burn and follows in Eq. 14. The fuel mass mf and
number of burns kNIC required for to perform the NIC is
calculated using Eq. 10[29].

∆VNIC = 2V0 sin
(
∆i

2

)
(14)

4.2.2 Time Of Flight

The TOF of a multiple NIC is calculated with Eq. 15,
where P = 2π

√
r3/µ is the constant orbital period.

TOFNIC = min(2, fburn) · (kNIC) · P (15)

4.3 Sequential MHT-NIC manoeuvres

From Eq. 14 it is of paramount importance to lower
orbital velocity before performing an NIC. OSSIE will of-
ten have to reach targets with different semi-major axes
and inclinations than its current ones: the most common
case is orbit acquisition for payloads which require a par-
ticular orbital altitude to carry out their activity as well as
a sun-synchronous orbit —commonly the case for Earth
observation and mapping satellites. Algorithm 1 resolves
sequential MHT and NIC manoeuvres by conducting the
NIC when the semi-major axis is highest, such that the
∆V required for the NIC leg is minimized.

Algorithm 1: Sequential MHT-NIC Transfer
if r2 > r1 then // Orbit raising

Step 1: MHT
Compute coast time to L0

Compute ∆VMHT
Compute time of flight tMHT
Step 2: NIC
Compute coast time to closest node
Compute ∆VNIC
Compute time of flight tNIC

else // Orbit lowering
Step 1: NIC
Compute coast time to closest node
Compute ∆VNIC
Compute time of flight tNIC
Step 2: MHT
Compute coast time to L0

Compute ∆VMHT
Compute time of flight tMHT

end

4.4 J2 perturbation

RAAN and AOP drift according to Eq. 8 for the dura-
tion of the manoeuvre. In the case of the MHT this only
impacts the phasing coasting leg due to the drift of AOP.
The NIC manoeuvre is unaffected.

5. Trajectory Optimization
This section presents the optimization framework pro-

posed for solving the problem introduced in Section 2 sub-
ject to dynamics of Section 3 and manoeuvres as described
in Section 4. In Subsection 5.1 we present a modular
solver architecture based on integer-nonlinear decomposi-
tion and heuristic combinatorial optimization, capable of
integrating diverse trajectory estimation methods, heuris-
tic optimization algorithms, and trajectory refinement pro-
cedures. Subsection 5.2 discusses the combinatorial opti-
mization components of the solver. Subsection 5.3 dis-
cusses trajectory generation, and Subsection 5.4 presents
the SCP trajectory re-optimization block and specific tai-
loring to the OSSIE mission design case.

5.1 Solver Architecture

Our aim is to design a highly adaptable solver capa-
ble of generating multi-rendezvous trajectories for space-
craft guidance with strict feasibility guarantees, and to use
it to design trajectories for the OSSIE OTV. We achieve
this using a 3-stage solver architecture (Fig. 4) consisting
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of target sequence optimization, trajectory generation and
re-optimization, and trajectory verification. Each compo-
nent is implemented modularly using standardized inter-
faces, resulting in a framework that is highly adaptable to
new mission design scenarios, while benefiting from high
component reusability.

5.2 Sequence Optimization Problem

We make use of heuristic, population-based combina-
torial optimization to optimize target sequences. Knowl-
edge of near-optimal solutions, obtained by any means, is
leveraged by initializing populations using distance-based
permutation sampling. Later in Section 6 we demonstrate
this versatility by integrating an attention-based STSP
routing model trained using RL to greatly improve con-
vergence to the global optimum.

5.2.1 Population Sampling and Encoding

High quality population sampling is crucial for
population-based global combinatorial optimization[30].
We make use of uniform permutation sampling to cover
the search space as widely as possible. The combinatorial
optimization space is vast however, and advanced methods
and hand-crafted heuristics are often used to determine
near-optimal solutions prior to heuristic optimization[1,
13]. When these are available we make use of distance-
based permutation sampling to spawn initial populations
in the vicinity of candidate solutions, greatly helping the
search space exploration process. We find that a combina-
tion of both approaches is optimal to balance exploration
and exploitation of the search space.

Uniform Permutation Sampling We uniformly sample
the permutation group Sn by drawing Sobol points in
the [0, 1)n hypercube and applying an argsort operation.
This algorithm was found to yield superior samples than
the Fisher-Yates shuffle[31] and Knuth’s algorithm[30],
while being orders of magnitude faster than advanced ap-
proaches such as Sobol Permutations[30].

Distance-based Permutation Sampling The Mallows
model[32] (and related methods), first introduced in
1957[33], is the most relevant distance-based statistical
model for permutations[34]. Permutations are exponen-
tially less probable as they stray further from a central per-
mutation σ0. Refer to Irurozki, 2014[34] for a comprehen-
sive definition of the model.

Population Encoding Random keys permutation en-
coding[35] is selected for its versatility for optimizing
complex discrete optimization problems across various do-
mains[36, 37]. Permutations are encoded using vectors of
continuous values, or random keys, in the [0, 1) range. A
permutation σ ∈ Sn is encoded by generating a vector of
random keys x ∈ [0, 1)n, sorting it, and permuting it by σ.
Decoding is done by applying an argsort operation to x.

5.2.2 Combinatorial optimization
The generalized STSP to be solved is described in

Eq. 16, where T is the set of all targets and cπ is the cumu-
lative cost function of a tour. The cumulative cost function
sequentially estimates transfer cost and time of flight and
propagates the environment according to a perturbation
model (see inputs in Fig. 4 for reference). Transfer cost
estimation and environment propagation are implemented
modularly, resulting in a highly flexible modelling process
and high module reusability. In the case of OSSIE this is
the J2 secular perturbation model in Eq. 8. Departure state
h and a decommissioning orbit d are implemented as op-
tional search space constraints.

min
π

n−1∑
k=0

cπ(k),π(k+1)

s.t. π(0) = h,

π(n) =

{
h (Hamiltonian cycle)
d (Decom.)

,

{π(k)}n−1
k=1 , = T \ {h},
π(k) ∈ T ∪ {d}, k ∈ 0, 1, . . . , n

(16)

The combinatorial optimization component is imple-
mented using the pygmo 5 parallel multi-objective global
optimization library, which is based on the underlying
PAGMO C++ library[18]. This choice allows us to quickly
evaluate the performance of a wide variety of global and
local optimization algorithms, and design optimal solvers
for particular mission design scenarios such as that of
OSSIE.

Meta-heuristic Combinatorial optimization meta-
heuristics are sophisticated algorithmic frameworks
designed to efficiently explore large and complex discrete
search spaces to identify optimal or near-optimal solu-
tions for combinatorial problems. We make use of the
Archipelago meta-heuristic implemented in pygmo. The
Archipelago meta-heuristic is based on the concurrent

5https://esa.github.io/pygmo2/overview.html
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Fig. 4. STSP solver architecture. In black: complex components (integrated using standardized interfaces) the internal
structure of which is out of the scope of this diagram.

evolution of sub-populations, or ”islands,” starting from
distinct initial populations, and possibly using distinct
evolutionary strategies. Periodic migrations of indi-
viduals between islands promote diversity and prevent
premature convergence, enhancing the algorithm’s ability
to escape local optima and explore diverse regions of the
search space. This parallel and cooperative framework
not only accelerates the optimization process but also
improves the robustness and quality of the solutions
obtained.

Heuristic Optimization Algorithm Optimizer selec-
tion is conducted by trading off the performance of all
global heuristic optimizers available in pygmo (refer to
the pygmo capabilities page6) on the STSP variant at hand.
Critically, optimizers of the family of Evolutionary Strate-
gies depend on internal sampling processes and are thus
not sensitive to initial populations: in general terms other
optimizers are preferrable if candidate solutions can be
leveraged (this is not the case for OSSIE, as will be shown
in Section 7).

5.3 Trajectory Generation
Trajectories are generated by propagating the state of

the spacecraft under a guidance policy. The guidance
policy is implemented as a state machine that determines
when and how to apply thrust through the manoeuvre, fol-
lowing the guidance policy API of the Tudat Space7 astro-
dynamics library[38]. This provides ample flexibility for
the implementation of the simulator itself. In the case of

6https://esa.github.io/pygmo2/overview.html
7https://docs.tudat.space/en/latest/

OSSIE we generate trajectories using a simple analytical
propagator, considering impulsive orbital changes and sec-
ular J2 perturbations (see Subsection 4.4). In more com-
plex scenarios we make use of Tudat to implement and
refine the simulator used to generate spacecraft trajecto-
ries.

5.4 Trajectory re-optimization with Sequential Convex
Programming

The final block of the optimization chain is in charge
of adapting the ideal transfer maneuvers to spacecraft fea-
sible trajectories. To account for actuation constraints, by
introducing the state vector:

x = [p, f, g, h, k, L,m]T (17)

as well as the control vector:
u = [ur, uθ, uϕ]

T (18)

the following OCP is formulated for each transfer arc:

min
X∈Rnx ,U∈Rnu

1

2
(xN − xref )

TP (xN − xref )

+
1

2
UTRU

s.t. xi+1 = f(xi, ui) i ∈ {0, . . . , N − 1}
∥ui∥ ≤ Tmaxi i ∈ {0, . . . , N − 1}
x0 = x̂0

(19)
where N is the length of the optimization horizon, i.e.,
the number of stages; nx = 7(N + 1) and nu = 3N
the total number of state and control optimization vari-
ables, respectively; so that X = col(x0, · · · , xN ) and
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U = col(u0, · · · , uN−1); f(xi, ui) the discretized non-
linear orbital dynamics, x̂0 the initial state and being xref

the reference trajectory, i.e., the optimized arc obtained
from the combinatorial problem.

The Euclidean norm of the control input || · || is con-
strained to a maximum thrust Tmaxi , mission and poten-
tially time-dependent. The penalty of the thrust action is
weighted by R ∈ Rnu×nu , R ≽ 0, against the final error
(xN − xref ), weighted by matrix P ∈ R7×7, P ≽ 0. It is
highlighted that here the penalty over the final state error
is a relaxation of the hard constraint x(tN ) = xN with xN

the final state of each arc of trajectory from the combina-
torial problem, to avoid unfeasibilities when adapting to
spacecraft dynamics and constraints. The TOF between
x̂0 and xN is then used to adapt the optimization horizon.
Note that the number of arcs simultaneously optimized de-
termines the authority given to this layer of the framework
to modify the transfers, being the case with a single arc
focused on replicating the Hohmann arc, autonomously
adapting it to the spacecraft constraints.

Finally, note that the OCP in Eq. 19 does not include
attitude constraints, e.g., for guaranteeing that the thrust
vector can be oriented in time to perform the required im-
pulses. Certain smoothness of the attitude can be argued
in the implicit effect of the control cost regularization, yet
the formulation is currently under development for explicit
attitude constraints inclusion.

5.4.1 Solution with SCP
The resultant generic OCP in Eq. 19 is convex except

for the non-linear dynamics implicit in f(xi, ui). To solve
it, an SCP solver is used from the SOTB8 library. The al-
gorithm implemented follows a classical SCP logic, solv-
ing guess-based convexified iterations of the original prob-
lem until a convergence criterion is matched. Dynamic
trust regions are employed to control the iteration progress
and avoid divergence or solution chattering due to non-
linear effects. We refer to [23] for further details on the
solver.

To reduce errors arising from numerical discretiza-
tion and propagation during the iterations of the optimiza-
tion solver, the same MEEs formulation of Section 3 are
adopted in the SCP with a proper discretization step for
the horizon length and integrator selection. Furthermore,
the optimization variables and the dynamics model have

8SOTB is an independent in-house toolbox developed in MATLAB
devoted for real-time embedded applications. Within available solvers,
SCP algorithms focused on nonlinear numerical optimal control pow-
ered by Interior Point Method (IPM) solvers are ideal for the developed
application.

been normalized, i.e., the state variables have been scaled
according to the MEE parametrization of the latter point
of each optimization horizon, and the control input se-
quence has been scaled according to the maximum value
of the thrust. This normalization moves the optimum re-
gion to similar orders of magnitude in states and control,
providing a smoother behavior of the SCP internal IPM
and smaller linearization errors, aside from easing the al-
gorithm tuning.

5.4.2 OSSIE actuation constraints

Addressing now the particularities of the study case,
OSSIE OTV presents a limitation in the thruster actuation
that impedes the continuous firing for more than∆Ton sec-
onds, requiring after a minimum off-time for cool-down.
To comply with the maximum firing time of the OSSIE
thruster actuators, Tmaxi shall be set so that after the maxi-
mum firing time the constraint is set to zero until the min-
imum off-time is reached. To simplify the problem and
avoid introducing the time as a constrained optimization
variable, the input TOF between consecutive ∆V from
the combinatorial problem is used to compute Tmaxi as
sketched in Fig. 5, i.e., forcing Tmaxi = 0 for transfer peri-
ods which are already larger than the minimum off-time.

Fig. 5. On-time constraints scheme and warm-starting
procedure

Note that this decision enforces the actuation windows
based on the combinatorial solution and Hohmann trans-
fers. For multiple arcs optimization, this might create a
source of suboptimality. Nonetheless, for the single arc
optimization, this does not generate a problem because
maintaining the TOF is an objective thus the action win-
dow coincides with the perigee or apogee, i.e., the most
efficient times to act. This simplification results into a
pragmatic solution because few simultaneous arcs opti-
mization is sufficient in the considered mission.
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5.4.3 Multi-impulsive warm starting
Warm starting can significantly reduce the number of

required iterations in an SCP algorithm. For the mission
case, an efficient initialization is created with the solution
of the combinatorial problem. The departure and com-
plete ∆V time sequence are used to automatically adapt
the discretization scheme of the trajectory arc(s) optimiza-
tion and on-time constraints, based on the number of con-
secutive arcs to be simultaneously optimized (parameter).
Then, ∆V s are translated to forces realizing equivalent
total pulse but uniformly distributed in ∆Ton. Fig. 5 il-
lustrates the warm start creation process. This approach
generally situates the initial guess close to the optimum,
significantly reducing the required convexification itera-
tions.

6. Reinforcement Learning for Combinatorial
Optimization
ML approaches for spacecraft trajectory design have

seen a surge of interest in recent years[39], with strong
results achieved both for trajectory cost estimation[15]
and spacecraft guidance[40]. NCO uses DNNs to auto-
mate the problem-solving process, mostly under the RL
paradigm, as supervised learning is often unfeasible for
large or theoretically hard problems. NCO offers the at-
tractive prospect of alleviating the scaling issues of ex-
act approaches, while removing the need for handcrafted
heuristics, which often require significant domain-specific
adjustments[41]. NCO has shown promising performance
on various combinatorial optimization problems[41], es-
pecially when coupled with advanced policy search proce-
dures[16].

We make use of RL4CO9 to implement and train the
STSP routing policy. RL4CO is a benchmark library for
NCO with standardized, modular, and highly performant
implementations of various environments, policies and
RL algorithms, covering the entire NCO pipeline[41].

6.1 Environment
The space environment is modelled in MEEs. The

translational state is extended with the mass of the vehi-
cle and targets. The resulting 7-dimensional state space is
embedded using a feedforward NN into a 128-dimensional
space in which the policy operates. The global state is
propagated through the sequential decision-making pro-
cess. Environment propagation is implemented by means
of a transfer TOF estimation method and perturbation
model: in the case of OSSIE these are the sequential

9https://rl4.co

MHT-NIC trajectory estimator, and secular J2 perturba-
tion model defined in Section 4.

6.2 Policy
We make use of an autoregressive attention model10

first introduced by Kool et al.[42], which encodes the in-
put graph using a GAT, and decodes the solution using
a Pointer Network. This policy trained using the REIN-
FORCE RL algorithm has been demonstrated to perform
considerably better than other learned heuristics[42], as
well as to have a highly efficient learning component[16].

6.3 Reinforcement Learning Algorithms
We make use of three RL algorithms implemented in

RL4CO to train the policy: REINFORCE, Advantage Actor-
Critic, and Proximal Policy Optimization.

Stochastic Policy Gradient The REINFORCE algo-
rithm, introduced by Williams[43], is a stochastic policy
gradient method which uses Monte Carlo sampling to es-
timate policy gradient. By generating complete trajec-
tories and using the returns from these trajectories, RE-
INFORCE provides an unbiased estimate of the gradient.
It updates the policy parameters by maximizing the ex-
pected reward through gradient ascent. However, REIN-
FORCE often suffers from high variance in gradient esti-
mates, which can hinder convergence.

Advantage Actor-Critic A2C methods enhance REIN-
FORCE by incorporating a baseline to reduce the variance
of gradient estimates. Introduced by Konda and Tsitsik-
lis[44] and popularized in the asynchronous framework by
Mnih et al.[45], A2C simultaneously learns a policy (ac-
tor) and a value function (critic). The critic estimates the
value function, which serves as a baseline to compute the
advantage, thereby stabilizing and accelerating training.

Proximal Policy Optimization PPO, introduced by
Schulman et al.[46], addresses some of the limitations of
A2C by ensuring that policy updates do not deviate exces-
sively from the current policy. PPO employs a clipped ob-
jective function to constrain the policy updates, balancing
exploration and exploitation more effectively. This leads
to more stable and reliable training, making PPO a popular
choice for various RL applications, including combinato-
rial optimization tasks.

10https://rl4.co/docs/.../AttentionModelPolicy
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Table 2. Top: OSSIE insertion and decommissioning orbits. Bottom: statistical model describing expected payload
Keplerian states. In commercial operations the target state of each payload is specified by the client. SSO stands for
SSO inclination variance.

Orbit a [km] e [-] i [deg] Ω [deg] ω [deg] θ [deg] Mass [kg]

OSSIE
Insertion 500 0 97 158 0 0
Decommissioning 250 0 - - - -

Payload
Nominal 500 0 97 158 0 0 Variable
Spread 50 0 SSO 180 180 180 15%
Distribution Uniform Exponential Uniform Uniform Uniform Uniform Exponential

6.4 Policy Search

Policy search strategies determine how actions are se-
lected based on the learned policy, balancing exploration
and exploitation to find optimal or near-optimal solutions.
Policy search is fundamental for the performance of NCO
algorithms[16]. We consider three policy search strategies
implemented in RL4CO: greedy search, sampling and beam
search.

7. Results

This section presents empirical results obtained for
the OSSIE OTV trajectory optimization problem. Sub-
section 7.1 describes the mission scenarios for OSSIE
and presents a statistical model used to randomly gener-
ate realistic mission scenarios. In Subsection 7.2 we re-
port and analyze heuristic optimization performance. In
Subsection 7.3 we analyze the performance of the RL
Attention-based routing policy for this STSP variant.In
Subsection 7.4 presents a study of OSSIE’s mission design
envelope based on a Monte Carlo campaign spanning all
feasible mission modes. Subsection 7.5 presents the tra-
jectory re-optimization results obtained using Sequential
Convex Programming. Lastly, Subsection 7.6 discusses
the verification of the generated trajectories on the OSSIE
Functional Engineering Simulator developed at SENER.

7.1 Mission Modelling

Table 2 describes the nominal mission scenario for
OSSIE and the statistical model used to generate the tar-
get Keplerian states for a given payload. OSSIE payloads
are highly likely to be destined for SSO orbits with alti-
tude priority, but not necessarily. A worst case scenario is
assumed, uniformly sampling payload inclinations in the
entire SSO inclination range, defined as the range from
iSSO(amin) to iSSO(amax), where iSSO(a) is the inclination
required to achieve an SSO orbit (RAAN drift of 360°per

year, see Eq. 8) at a given a. Payload masses are sam-
pled from an exponential distribution, assuming a worst
case scenario where payload masses are never below their
nominal value: 6 kg for CubeSats, 1.5 kg for PocketQubes
and 25 kg for small satellites. Payloads may be released
individually or at once.

OSSIE payloads may be released individually or bun-
dled with other payloads. This variable is both client-
dependent and so highly unpredictable, and greatly im-
pactful for mission cost as it determines the number of
transfers that must be carried out. We model this by uni-
formly sampling number of bundles between 2 (all pay-
loads in two bundles) and the total number of payloads,
which is 13 for OSSIE (every payload launched to a dis-
tinct target orbit); payloads are assigned to each bundle
uniformly at random.

Fig. 6. Best fuel mass achieved as a function of genera-
tion (13-transfer mission, GPSO). Shaded regions: evo-
lutionary cycles.
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Table 3. Policy test performance and training time for the three RL algorithms considered. BS: Beam Search.

RL algorithm REINFORCE A2C PPO
Search strategy Greedy Stoch. BS Greedy Stoch. BS Greedy Stoch. BS
Fuel mass [kg] 21.65 22.58 20.67 24.31 25.51 22.93 22.25 22.98 21.14
Optimality gap [%] 7.86 12.53 3.02 21.17 27.15 14.28 10.86 14.52 5.35
Training time [min] 15.1 - - 9.8 - - 30.6 - -

Fig. 7. Optimization of 100 randomized 13-transfer
OSSIE mission scenarios using GPSO and xNES.
Best: on average 26.72 [kg] of fuel mass spent with
a standard deviation of 2.25 [kg]. Shaded regions:
evolutionary cycles.

Fig. 8. Training validation reward curve (expressed as a
mean optimality gap) with REINFORCE, A2C and
PPO.

7.2 Heuristic Combinatorial Optimization
We find that GPSO11 and xNES12 perform best in the

case of OSSIE. Fig. 6 shows the evolutionary curve of
a realistic 13-transfer mission scenario for OSSIE using
GPSO, which is sensitive to initial populations. Fig. 7
shows the evolutionary curve of 100 randomized 13-
transfer mission scenarios.

Four hand-crafted heuristics are used to provide candi-
date solutions: ascending and descending inclination and
payload mass walks. The increasing inclination walk is
a fairly good heuristic in Fig. 6, but this fails to replicate
over more cases, with optimizations leveraging the four
heuristics performing very similarly to those starting with
uniformly sampled populations in Fig. 7. xNES outper-
forms GPSO in this case, exhibiting more uniform con-
vergence. This dynamic only increases with problem size:
improved heuristics are highly desirable, and more so as

11https://esa.github.io/pygmo2/.../pso_gen
12https://esa.github.io/pygmo2/.../xnes

problem size increases, as is likely to be the case through
the operational life of OSSIE.

7.3 Reinforcement Learning

We train the Attention policy on 100,000 10-transfer
mission scenarios using a batch size of 5096, for 50 epochs.
The policy is tested on 1000 mission scenarios. Near-
optimal solutions for all scenarios are obtained a priori
using heuristic optimization, and used as a benchmark to
calculate optimality gaps. Training is repeated 10 times
with each algorithm using different random seeds.

Table 3 reports mean policy training times and perfor-
mances obtained with REINFORCE, A2C and PPO. Fig. 8
shows the corresponding learning curves. REINFORCE
yields the best training out of the three RL algorithms,
with a mean optimality with respect to the heuristic so-
lutions of 3.02% using Beam Search. As expected[16]
Beam Search improves the final result compared to the
greedy and sampling searches. The policy’s performance
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Fig. 9. Cost of 5000 optimized mission scenarios. Fuel mass, ∆V and TOF are plotted against, from left to right:
number of bundles, minimum payload mass, semi-major axis standard deviation and range, and inclination standard
deviation and range. Observe the strong correlations between number of bundles and cost, and between inclination
spread and cost.

is superior to that of the hand-crafted heuristics considered
for OSSIE (Fig. 7).

Having a reliably performant learned heuristic is con-
siderably beneficial for combinatorial optimization (see
Fig. 6); in the sections that follow we use GACO with
initial populations determined by the policy to optimize
OSSIE mission scenarios.

7.4 Mission Analysis

We proceed to perform a Monte Carlo analysis cover-
ing all feasible mission scenarios based on the nominal
payload list of OSSIE of 8 CubeSats, 4 PocketQubes and
1 small satellite. 5000 mission scenarios are solved and
reported.

Fig. 9 shows tour cost in terms of fuel mass consump-
tion, ∆V required and TOF as a function of number of
bundles, minimum payload mass, semi-major axis stan-
dard deviation and range, and inclination standard devi-
ation and range. As expected, number of bundles and
inclination range is the greatest driver of mission cost.
Fig. 10 desegregates fuel consumption by number of bun-
dles, which is clearly the greatest driver of mission cost.
In all cases OSSIE is, on average, capable of fulfilling its
mission and decommissioning afterwards.

Fig. 10. Fuel consumption as a function of number of bun-
dles.
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Table 4. Summary of OSSIE scenarios under analysis: 1) coplanar transfer, 2) noncoplanar transfer, 3) inclination
change (0.25◦), 4) large inclination change (1◦).

Test Case TOF [hr] ati [km] atf [km] iti [deg] itf [deg]
Case 1 163.45 6950 7000 97.3964 97.3964
Case 2 263.93 6950 7000 97.2714 97.5214
Case 3 99.57 7000 7000 97.2714 97.5214
Case 4 192.87 7000 7000 96.8964 97.8964

Table 5. Comparison between the SCP manoeuvre arrival orbit and the desired target orbit.

Test Case TOF [hr] ∆V SCP [m/s] ∆V combin [m/s] ∆V reduct [%] ∆atarget [km] ∆etarget [deg] ∆itarget [-]
Case 1 163.37 29.59 27.09 9.20 1.54 -0.0007 0.0007
Case 2 262.43 29.91 32.71 -8.53 0.06 0.0116 0.0537
Case 3 99.47 32.71 32.71 0.00 1.57 0.0167 0.0040
Case 4 192.87 132.42 132.72 0.22 0.05 0.0052 0.0144

7.5 SCP

To validate the SCP algorithm for trajectory re-
optimization and adaptation to spacecraft constraints, a
selection of orbit transfers of the previous section are re-
optimized. Table 4 gather the test cases and Table 5 gath-
ers the errors computed as SCP result with respect to tar-
get and the change in ∆V with respect to combinatorial
problem solution.

The results show that the SCP manages to adapt the
transfer manoeuvres to the spacecraft constraints with min-
imum impact over injection errors or ∆V . Note that the
SCP is tuned to prioritize the mission objectives and en-
courage that output results meet the orbit injection accu-
racy requirements (∆a ≤ 10[km],∆i ≤ 0.1◦). This
might result in an increment of the overall∆V cost if com-
pared to the combinatorial solution, as seen in cases 1 and
3 of Table 5, even if control cost is minimized.

For the non-coplanar scenarios, i.e., change of height
followed by change of altitude, the SCP manages to reduce
the propellant consumption of the 8.5357% if compared
with the combinatorial approximation. Note, however,
that complete eccentricity elimination is not achieved: the
latter can be solved, if required, by orbit circularization
procedures, which would hinder propellant cost reduc-
tions gained by the SCP.

In general, we have observed that the current tuning
benefits from a division of transfer arcs without mixing
inclination and altitude change objectives simultaneously.
This might be driven by the warm starting that assumes
such specific procedure. Other warm starting strategies or

Fig. 11. SCP-tailored noncoplanar maneuver (correspond-
ing to the Test Case 2 in Table 4)

SCP tunings are currently being explored for further pro-
pellant minimization by combination of objective changes.
A 3D overview of the optimized transfer maneuvre is
shown in Figure 11.

7.6 Verification in High-fidelity Simulator

The SENER OSSIE FES high-fidelity simulation envi-
ronment serves as the core framework for modelling, test-
ing and verifying. Matlab Simulink[47] is used to han-
dle simulation, while Matlab[48] is used for pre- and post-
processing tasks.
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Translational dynamics are simulated using the Cow-
ell propagator. Five natural perturbations are considered
in the acceleration model: non-spherical Earth effects ac-
counting for zonal harmonics of up to degree 6, atmo-
spheric drag (density obtained from the U.S. Standard At-
mosphere model), third-body perturbations from the Sun
and Moon and solar radiation pressure. Spacecraft mass
is propagated using a constant Isp mass propagator.
Attitude dynamics are modeled using Euler’s equation,
which incorporates the effects of external torques: as
OSSIE makes no use of internal momentum devices, in-
ternal torques are not considered in this analysis as they
have a negligible magnitude in the actual spacecraft con-
figuration. The key external torques considered are gravity
gradient (modeled using the J2 gravitational coefficient),
magnetic torques (perturbation by means of residual mag-
netic dipole moment), aerodynamic drag, and solar radia-
tion pressure. Other potential torque sources, such as con-
trol system torques by means of the reaction control sys-
tem, are modeled according to the precise thrust curves
provided by the actuator constructed models.
The simulation is integrated using a fixed-step 4th order
Runge-Kutta integrator running at 200 Hz (timestep of
5 ms), enabling accurate system characterization while
maintaining sufficient simulation speed, to perform con-
sequent testing campaigns.

Fig. 12. Preliminary verification results of case 1. Top 3
panels: moving averages, 30 minute window.

The results of the preliminary verification of case 1 in
Table 4 in the FES are presented in Fig. 12: the first up-
per three plots depict the evolution in time of the orbital
parameters during the simulation (in blue), demonstrat-

ing that the optimized trajectory was correctly followed,
as contrasted by the error with respect to the SCP (in or-
ange). The test shows that the achieved error range is com-
pliant with client requirements. The last subplot presents a
comparison between the∆V consumption achieved by the
FES and the SCP: the additional ∆V requested by GNC
results from pointing correction maneuvres, to allign the
B20 thrusters with the thrusting direction computed in the
optimization framework.

8. Conclusion
We have presented a framework for addressing the

Multi-target Rendezvous problem, applied to the UARX
Space OSSIE mission. The framework determines op-
timal sequences for visiting multiple targets and gener-
ates near fuel-optimal trajectories. By integrating an
Attention-based routing policy trained with Reinforce-
ment Learning, the combinatorial optimization process
is enhanced, demonstrating the effectiveness of RL in
spacecraft routing. The framework accommodates the
propulsion requirements of the OSSIE system, ensuring
high modularity and adaptability to mission-specific con-
straints. This tool provides feasible and optimal guidance
with minimal design effort and allows for future exten-
sions, including the incorporation of more complex thrust
profiles such as low-thrust scenarios. The proposed ap-
proach advances space vehicle routing methodologies and
supports further development using reinforcement learn-
ing and advanced optimization techniques.
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6 Conclusions and
Recommendations

The aim of the present work was to address two challenges in the design of multi-target rendezvous missions:
the application of Neural Combinatorial Optimization (NCO) methods for Active Debris Removal (ADR) missions
and the integration of verifiable trajectory optimization techniques for the design of Orbit Transfer Vehicle (OTV)
payload deployment multi-rendezvous missions. The main conclusions from this work are laid out in Section 6.1.
A second result of this work is a set of recommendations for the design of multi-rendezvous missions, and for the
further research of Neural Combinatorial Optimization approaches to space Vehicle Routing Problems (VRPs).
These recommendations are offered in Section 6.2. The work is wrapped with a final assessment of the research
questions that motivated it, in Section 6.3, and an assessment of compliance with the stated goals of the project,
in Section 6.4.

6.1 Conclusions
In evaluating NCO methods for ADR, an Attention-based routing policy incorporating a Graph Attention Network
(GAT) and a Pointer Network (PN) was implemented. The policy was trained using Reinforcement Learning (RL)
algorithms, specifically REINFORCE, Advantage Actor-Critic (A2C), and Proximal Policy Optimization (PPO).
The A2C algorithm demonstrated superior performance. Hyperparameter analysis identified embedding dimension
and the number of encoder layers as critical factors influencing model performance. The trained policy effectively
solved missions with 10 transfers, achieving an optimalit gap of 32% compared to Heuristic Combinatorial Opti-
mization (HCO) solutions, and outperforming the Dynamic RAAN Walk (DRW) heuristic both in terms of mission
cost and the time required to generate tours. However, performance did not translate to missions with 30 and 50
transfers, indicating limited generalization capabilities beyond the training conditions.

Regarding trajectory optimization for OTV payload deployment, a modular framework combining HCO, trajec-
tory re-optimization with Sequential Convex Programming (SCP), and trajectory verification and validation was
designed and implemented. Applied to the UARX Space OSSIE mission, this framework successfully determined
optimal target sequences and generated near fuel-optimal trajectories for OSSIE. An Attention-based routing
policy was trained on the OSSIE STSP scenario. In this near-static case —as RAAN is not targeted— the policy
performed considerably better than handcrafted heuristics, achieving a 3% optimality gap with respect to the
optimum. This demonstrates the feasibility of applying NCO methods in simpler —less dynamic— spacecraft
VRPs, such as payload deployment scenarios. The framework’s modularity ensured adaptability to mission-specific
constraints and facilitated future extensions, such as incorporating low-thrust propulsion profiles.

Overall, the research confirms that NCO methods are applicable and can be effective to learn routing policies
for space VRPs, particularly for short ADR missions with a limited number of targets, and for near-static mission
scenarios where RAAN convergence is not required. Furthermore, NCO policies can be efficiently evaluated to
generate tours and select individual targets to visit, offering interesting possibilities for vehicle autonomy. However,
their scalability and generalization to more complex missions with a higher number of transfers remain challenges.
The integration of verifiable trajectory optimization techniques with advanced routing policies presents a viable
approach for efficient and adaptable mission planning, although further advancements are necessary to enhance
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performance in larger-scale scenarios.

6.2 Recommendations
This section offers recommendations for the design of multi-rendezous missions, and for the development of NCO
methods, and ML methods more generally, for space VRPs.

6.2.1 Recommendations for Mission Design
Active Debris Removal in the Spaceship Era
Schedule to perform its first Moon landing in September 2026 and possibly entering service in late 2024, Spaceship1

will be the world’s most powerful launch vehicle ever developed, capable of carrying up to 150 metric tonnes fully
reusable and 250 metric tonnes expendable. This enormous carrying capacity will upend the economy of spacecraft
design, and will likely cause a continental drift away from mass-conscious spacecraft development. With large
scale in-orbit refueling already in the horizon, Spaceship will bring missions that are completely unfeasible today
from the realm of imagination —and academic research— to that of real engineering possibility.

ADR and OTV missions are in a good position under this new space launch paradigm. Extremely high-tonnage,
monolithic launches pose a boon for the fine-grained orbit insertion services offered by OTVs. As regards the
design of ADR missions, the possibility of in-orbit refueling and component re-stocking offers large opportunity.
We recommend research into the economic viability of persistent ADR operations in Low Earth Orbit using multiple
spacecraft, considering in-orbit refueling and in-orbit re-stocking of debris de-orbiting payloads. As regards the
role of NCO algorithms, we believe that NCO algorithms will become more applicable and useful —not less— as
uncertainty and multi-agent interactions become more relevant in ADR mission design.

6.2.2 Methods and Future Research
Neural Combinatorial Optimization Methods for Space Vehicle Routing Problems
As far as NCO methods are concerned, future research should focus on refining NCO model architectures to better
handle dynamic VRPs, and to achieve generalization to unseen numbers of targets. Recently developed models
aiming to establish foundational models for CO, such as RouteFinder by Berto et al. [125], are attractive research
targets. We recommend research into methods better suited to capture the dynamicity of the problem [126], as
well as ways to model multiple-spacecraft ADR mission scenarios with path constraints.

Alternative Machine Learning Approaches
In terms of alternative approaches, we recommend research into Deep RL algorithms incorporating tree search
strategies, such as Monte Carlo Tree Search (MCTS) [127].

Automatic Design of Model Architectures and Reinforcement Learning Algorithms
The automatic design of ML models and optimal RL algorithms, known as AutoML and AutoRL2, is critical
to improve model performance and robustness. Most commonly this process consists in the optimization of
the hyperparameters that define ML model architectures and RL algorithms. Parker and Holder conducted a
thorough review of the field in 2022 [128]. Random search and grid search approaches are commonly used for
hyperparameter optimization in literature [15], [128]. Bayesian optimization has seen wide use in the field to
improve over the former naïve approaches [128]. Hyperband is a successful AutoML algorithm based on tree
searches and a resource allocation pruning strategy [129]. Hyperband is widely available through the Optuna
[130], Ray Tune [131] and Keras [132] among other libraries. It has been succesfully applied for hyperparameter
optimization both in ML and RL settings [133]. State-of-the art approaches combine Bayesian optimization and
tree search approaches. This concept was introduced by Falkner et al. with the BOHB3 [134] algorithm. The
development of this family of algorithms is a highly active research area [135]. As of the time of writing the

1https://www.spacex.com/vehicles/starship/
2https://autorl.org/
3https://www.automl.org/blog_bohb/

https://www.spacex.com/vehicles/starship/
https://autorl.org/
https://www.automl.org/blog_bohb/
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DEHB4 [136] and SMAC35 [137] algorithms are the considered state-of-art. Advanced algorithms are often used
in distributed optimization frameworks to improve optimization performance, such as Ray Tune6 [131].

6.3 Final Assessment of Research Questions

RQ.1 Can NCO methods be
used to learn effective
routing policies for
space VRPs?

NCO methods can be applied to space VRPs. NCO can
learn heuristics which are more efficient and more effec-
tive than the considered alternatives. However, NCO poli-
cies do are found to fail in generalizing to missions with
different numbers of targets than those seen in training.

Chapter 4

RQ.2 What is a suitable
approach for the design
of multi-rendezvous
trajectories with strict
feasibility guarantees?

We propose a 3-stage STSP trajectory optimization
framework integrating Combinatorial Optimization, tra-
jectory re-optimization and trajectory verification and val-
idation. This framework is tested to design and verify
impulsive trajectories for the OSSIE OTV payload deploy-
ment STSP variant.

Chapter 5

SQ.1 Can NCO methods be
used to improve the
performance of
state-of-the-art solvers
for space VRPs?

NCO methods do not at the moment outperform state-of-
the-art Combinatorial Optimization methods. NCO meth-
ods can be used effectively to generate approximate solu-
tions to speed up the HCO process. The Attention NCO
policy studied in this work, however, does not generalize
to mission scenarios with different numbers of nodes than
those seen in training. NCO policies with robust general-
ization capabilities are required before NCO approaches
can be recommended for integration in practical space
VRP solvers.

Chapter 4

SQ.1.a What is a suitable NCO
architecture to learn
routing policies for
space VRPs?

The architectures championed by current literature con-
sist of Graph Neural Networks (GNNs) trained using Re-
inforcement Learning. The Attention based GNNs intro-
duced by Kool, et al., consisting of a GAT and a PN, is
used in this work.

Chapter 4

SQ.1.b What are the optimal
training procedures for
NCO agents designed
to solve the STSP?

Advantage Actor-Critic (A2C) yields best results for
highly dynamic STSPs, outperforming REINFORCE and
Proximal Policy Optimization (PPO). In the case of
the near-static OSSIE payload deployment STSP, REIN-
FORCE yields the best results. A2C is recommended for
future practitioners. Further research into improving the
performance of PPO is warranted as well, as the algorithm
has a record of very strong performance which belies the
results observed in this work.

Chapter 4

Code Question Answer References

Continued on next page

4https://automl.github.io/DEHB/latest/
5https://automl.github.io/SMAC3/v2.1.0/
6https://docs.ray.io/en/latest/tune/index.html

https://automl.github.io/DEHB/latest/
https://automl.github.io/SMAC3/v2.1.0/
https://docs.ray.io/en/latest/tune/index.html
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SQ.1.c Can NCO methods
yield improved
performance with
respect to
state-of-the-art HCO
algorithms for the
STSP?

NCO methods do not at the moment outperform state-
of-the-art Combinatorial Optimization methods. The At-
tention NCO policy considered in this work approaches
the performance of Heuristic Combinatorial Optimization
methods only for the short sequence, relatively unper-
turbed target deployment STSP of the OSSIE OTV.

Chapter 4

SQ.1.d Can NCO methods be
leveraged to improve
the performance and
speed of HCO
algorithms?

NCO methods can be used effectively to generate approx-
imate solutions to speed up the HCO process. The At-
tention NCO policy studied in this work, however, does
not generalize to mission scenarios with different num-
bers of nodes than those seen in training. NCO policies
with robust generalization capabilities are required before
NCO approaches can be recommended for integration in
practical space VRP solvers.

Chapter 4

SQ.2 How can trajectory
optimization methods
with feasibility
guarantees, specifically
Sequential Convex
Programming (SCP),
be efficiently integrated
in the multi-rendezvous
trajectory optimization
process?

Trajectory re-optimization methods, and in particular
SCP, are integrated in the STSP solution framework by
defining a data flow architecture from mission specifica-
tion and approximate STSP solutions to trajectory veri-
fication. The architecture is implemented through a set
of data interfaces, allowing the integration of modules
implemented in different languages. The STSP solver is
successfully applied to design multi-rendezvous trajecto-
ries for the OSSIE OTV.

Chapter 5

Code Question Answer References

6.4 Final Assessment of Compliance with Project Objectives

G.1 Heuristic Combinatorial
Optimization

✓ Implemented and HCO solver for multi-
rendezvous mission design, applied it for
ADR and OTV mission design. Re-
searched and traded-off solution encod-
ing schemes, population sampling meth-
ods and meta-heuristics to design baseline
solver. Determined optimal global heuris-
tic optimization algorithms for the OSSIE
and ADR STSP mission scenarios.

Section 2.4
Code Context Goal Achieved Executive summary References

Continued on next page
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G.2 Neural Combinatorial
Optimization

✓ Implemented a NCO solver for space vehi-
cle routing problems. Demonstrated ca-
pability to learn routing policies for 3-
element payload delivery STSP’s and 6-
element ADR STSP’s. Researched hyper-
parameter impact on NCO policy using
ANOVA. Applied results to perform hy-
perparameter optimization of NCO policy.
Studied NCO model performance ADR
STSP scenarios based on the Iridium 33
debris cloud with 10, 30 and 50 transfers.

Section 2.5

G.3 Software Architecture
Design

✓ Designed and implemented a 3-stage,
modular STSP solver architecture inte-
grating combinatorial optimization, trajec-
tory re-optimization and trajectory verifi-
cation and validation for use in real mis-
sions. Implemented distance-based per-
mutation sampling to leverage candidate
solutions from advanced combinatorial op-
timization methods, enabling integration
of heuristic, tree-search and NCO based
approaches into STSP solver.

Appendix C

G.4 Mission Analysis of the
OSSIE OTV

✓ Implemented OSSIE mission scenario
model accounting for: variable payload
target states, masses and bundling. Opti-
mized 5000 mission scenarios based on the
specifications of the first OSSIE satellite
deployment mission. Positively assessed
capability of vehicle to fullfil advertised
services.

Chapter 5

SG.1 LTTO LTTO
Algorithm

✓ Implemented and thoroughly verified Q-
Law and RQ-Law low-thrust transfer guid-
ance policies.

Section 2.3

SG.1.a LTTO LTTO
Approach
Assessment

✓ Assessed literature to select an optimal
LTTO approach for conceptual design. Se-
lected Q-Law Lyapunov Feedback Control
due to proven use for preliminary mission
design, speed of trajectory generation.

Section 2.3

SG.1.b LTTO Guidance
Policy
Implementation

✓ Implemented Q-Law (5-element target-
ing) and RQ-Law (6-element targeting)
low-thrust guidance policy. Implemented
policies for both custom and Tudat
propagators.

Section 2.3

Code Context Goal Achieved Executive summary References

Continued on next page
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SG.1.c LTTO Optimal
Simulator

✓ Selected benchmark optimizer for LTTO.
Determined optimal benchmark integra-
tion step. Selected optimal integrator for
LTTO based on computational cost of in-
tegration and output density.

Section 2.3

SG.1.d LTTO Cost
Estimation
Method

✓ Developed Q-Law and RQ-Law transfer
cost estimation methods for use in CO
based on the best quadratic time of
flight. Verified transfer cost estimation
method against simulated transfer time
measurements.

Section 2.3

SG.2 IPD Impulsive
Trajectory
Algorithm

✓ Implemented analytical 3-element tar-
geting impulsive trajectory design algo-
rithm for the OSSIE OTV under the J2
perturbation.

Section 2.2

SG.2.a IPD Impulsive
Approach
Assessment

✓ Assessed literature to select an optimal
IPD approach for the OSSIE mission. Se-
lected MHT and NIC manoeuvres.

Section 2.2

SG.2.b IPD Guidance
Policy
Implementation

✓ Implemented sequential guidance policy
for 3-element targeting with impulsive
manoeuvres, chaining MHT and NIC
manoeuvres.

Section 2.2

SG.2.c IPD Feasible
Trajectory
Simulator

✓ Implemented an analytical simulator con-
sidering the J2 perturbation. Used the
simulator to generate feasible trajectories
used as warm starts for SCP.

Section 2.2

SG.2.d IPD Cost
Estimation
Method

✓ Developed impulsive transfer cost estima-
tion methods for use in CO based on an-
alytical transfer cost derivations. Veri-
fied cost estimation methods against sim-
ulated transfer time measurements.

Section 2.2

SG.3 HCO Space VRP
Heuristic
Solver

✓ Assessed literature to verify choice for
HCO. Implemented HCO solver for gen-
eralized space VRPs using pygmo.

Section 2.4

SG.3.a HCO Dynamic
Environment
Modeling

✓ Created a generalized STSP environment
model considering RAAN and AOP drift
due to the J2 perturbation. Created
spacecraft modelling module and used it
to model OSSIE, the concept ADR space-
craft, and more. Implemented STSP
cost functions for low-thrust and impulsive
spacecraft.

Section 2.4

Code Context Goal Achieved Executive summary References

Continued on next page
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SG.3.b HCO Population
Sampling
Algorithm

✓ Implemented and evaluated multiple uni-
form permutation sampling algorithms,
selecting Sobol Hypercube Permutations.
Implemented Mallows Model for permu-
tations to perform distance-based permu-
tation sampling based on the Hamming
distance.

Section 2.4

SG.3.c HCO Heuristic CO
Method
Selection

✓ Identified the optimal heuristic global
optimizers for the ADR and OSSIE
STSPs among all global optimizers avail-
able in pygmo. Demonstrated supe-
rior performance against local optimiza-
tion under the following meta-heuristics:
shotgun-and-scatter and Monotonic Bas-
ing Hopping.

Section 2.4

SG.4 NCO Space VRP
NCO Solver

✓ Implemented NCO solver for generalized
space VRPs based using RL4CO.

Section 2.5

SG.4.a NCO NCO Approach
Assessment

✓ Assessed literature to select optimal NCO
approach. Selected attention GNN rout-
ing policy.

Section 2.5

SG.4.b NCO RL Algorithm
Performance

✓ Assessed performance of three RL algo-
rithms to train OSSIE and ADR STSP
policies: REINFORCE, A2C and PPO.
Found REINFORCE to be best for the
OSSIE STSP. Found A2C to be best for
ADR STSP.

Section 2.5

SG.4.c NCO Hyperparameter
Optimization

✓ Performed 3-level ANOVA to deter-
mine hyperparameters driving perfor-
mance. Performed 3-level grid search of
key hyperparameters. Found that model
architecture and size of training dataset
drives model performance.

Section 3.3

SG.4.d NCO Performance
Comparison

✓ Assessed performance of NCO methods
compared to HCO methods for ADR
STSP mission scenarios with 10, 30 and
50 transfers.

Section 3.3

SG.5 OSSIE Mission
Viability
Analysis

✓ Analyzed feasibility of nominal mission
scenarios. Positively assessed capability of
vehicle to fulfill advertised services.

Chapter 5

SG.5.a OSSIE Mission
Modelling

✓ Implemented OSSIE mission scenario
model accounting for: variable payload
target states, masses and bundling.

Chapter 5

Code Context Goal Achieved Executive summary References

Continued on next page
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SG.5.b OSSIE Statistical
Performance
Analysis

✓ Optimized 5000 mission scenarios based
on the specifications of the first OSSIE
satellite deployment mission. Positively
assessed capability of vehicle to fullfil ad-
vertised services.

Chapter 5
Code Context Goal Achieved Executive summary References
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A Statistical Modelling of
Space Debris Clouds

The generation of realistic synthetic datasets is fundamental for training Deep Learning (DL) policies using RL. A
statistical modelling procedure is required to create realistic models of space debris clouds. This section presents
the statistical modelling procedure used, as well as the procedure used to impose bounds on the resulting statistical
models, such as to ensure synthetic datasets are realistic.

A.1 Statistical Modelling Procedure
An optimal (in terms of goodness-of-fit) statistical model of the translational state of a debris cloud is required
to generate realistic synthetic debris datasets. These datasets are fundamental for the training of routing policies
using RL. The state of the cloud is described using Keplerian elements (which is practical and common practice
when analyzing debris clouds [2]). The model must be implemented using the PyTorch1 library [96] DL library.

The process begins with the characterization of the Keplerian orbital elements of the debris objects in orbit. This
involves fitting multiple parametric statistical distributions to each orbital element in the debris cloud dataset. The
fitting process is conducted using the SciPy2 Python library [138], as it provides a better interface for parametric
model fitting than PyTorch. Candidate distributions encompass all distributions available both in both SciPy and
PyTorch. The candidate distributions can be seen in Tab. A.1.

The goodness-of-fit for each fitted distribution is assessed using the Kolmogorov-Smirnov (KS) statistic, which
quantifies the maximum discrepancy between the empirical Cumulative Distribution Function (CDF) of the ob-
served data and the theoretical CDF of the proposed model3 [79]. The distribution that minimizes the KS statistic
for each orbital element is selected as the optimal model. The result is an aggregate model of the translational
state of the cloud suitable for generating training data for RL algorithms.

Fig. A.1 shows the statistical model created for the Iridium 33 cloud. The circular Von Mises distribution is
chosen for RAAN, AOP and true anomaly.

1https://pytorch.org
2https://scipy.org
3https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm

https://pytorch.org
https://scipy.org
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.htm
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Table A.1: Single-variable distributions available in SciPy and PyTorch respectively. HT: Heavy-tailed.

Name HT SciPy PyTorch Description
Beta beta Beta Skewed, used in Bayesian statistics
Cauchy 7 cauchy Cauchy Symmetric, heavy-tailed
Chi-squared chi2 Chi2 Skewed, used in hypothesis testing
Exponential expon Exponential Skewed, modeling time between events
Fisher-Snedecor 7 f FisherSnedecor Skewed, used in ANOVA and variance analysis
Gamma gamma Gamma Skewed, modeling waiting times
Gumbel gumbel_<r,l> Gumbel Skewed, used in extreme value theory
Half-Cauchy 7 halfcauchy HalfCauchy Skewed, used as priors in Bayesian statistics
Laplace laplace Laplace Symmetric, used in signal processing
Log-normal lognorm LogNormal Skewed, modeling multiplicative processes
Normal norm Normal Symmetric, widely used in statistics
Pareto 7 pareto Pareto Skewed, modeling wealth distribution
Uniform uniform Uniform Symmetric, modeling equal probability across range
Von Mises vonmises VonMises Symmetric, used for circular data
Weibull weibull_<min,max> Weibull Skewed, used in reliability and survival analysis
Inverse Gamma 7 invgamma Inversegamma Skewed, used in Bayesian statistics as priors
Student’s t 7 t StudentT Symmetric, robust to outliers in regression

Figure A.1: Statistical model of the Iridium 33 debris cloud.
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A.2 Imposing Bounds on Statistical Models of Debris Clouds
The statistical models resulting from the procedure may make use of heavy-tailed distributions, which may generate
values very far from the mean of the distribution. To ensure the synthetic datasets created with space debris cloud
models are realistic it is of vital importance that the models be bounded to feasible debris states. A bounding
procedure is necessary, which must not impact the statistical properties of the models. A combination of Inverse
Transform Truncated Sampling (ITTS) and Vectorized Rejection Sampling (VRS) is used to impose bounds on
cloud models. Element values are bounded to the extremal values found in the real dataset. ITS and VRS are
discussed next, followed by the combined algorithm (Algorithm 13).

A.2.1 Inverse Transform Truncated Sampling
Inverse Transform Sampling is a fundamental method for generating samples at random from any probability
distribution given its CDF [97]. Formally, given a target distribution with CDF FX(x), ITS operates by drawing
a uniform random variable U ∼ U(0, 1) and computing the sample X = F−1

X (U). This technique leverages the
property that FX(X) ∼ U(0, 1), ensuring that the generated samples X adhere to the desired distribution [139].
ITTS consists in imposing sampling bounds [a, b] on an arbitrary distribution, by sampling U uniformly within the
CDF range [FX(a), FX(b)], and applying the Inverse CDF (ICDF) to obtain X.

Algorithm 11: Inverse Transform Truncated Sampling
Input: CDF FX(x), bounds a, b, sample shape k
Output: Tensor of truncated samples X
U ∼ U(FX(a), FX(b)) with shape k
X ← F−1

X (U)
return X

A.2.2 Vectorized Rejection Sampling
Rejection Sampling is a sampling technique that imposes bounds on sample values without altering the statistical
properties of the underlying distribution [98]. This is achieved by repeatedly generating candidate samples from
the target distribution and rejecting those that fall outside the specified range [a, b], continuing until n valid
samples are obtained [98]. VRS (Algorithm 12) parallelizes the traditional rejection sampling method, making it
highly suitable for GPU-accelerated environments. VRS involves initializing a sample tensor of shape k filled with
NaNs, and iteratively: replacing NaN entries with new samples, and overwriting samples outside [a, b] with NaN.
The procedure continues for as long as NaN entries exist in X. The approach replaces loops with batch boolean,
sampling and allocation operations.

Algorithm 12: Vectorized Rejection Sampling
Input: Distribution D, bounds a, b, sample shape k
Output: Tensor of Tensor of truncated samples X
X ← tensor of shape k filled with NaN
while NaN in X do

m← number of NaN entries in X
S ∼ D with size m
X[X == NaN] ← S
X[X < a or X > b]← NaN

return X

A.2.3 Hybrid Truncated Distribution Sampling
Effective sampling from truncated distributions within PyTorch necessitates the availability and implementation
of the inverse CDF (ICDF) of the target distribution. When the ICDF is defined, ITTS (Algorithm 11) offers
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a direct and efficient sampling pathway. In the absence of an ICDF, VRS (Algorithm 12) provides a robust
alternative. Algorithm 13 dynamically selects the appropriate sampling strategy based on the availability of the
icdf, prioritizing ITTS for distributions with an implemented icdf and defaulting to VRS otherwise.

Algorithm 13: Hybrid Truncated Distribution Sampling
Input: Distribution D, bounds a, b, sample shape k
Output: Tensor of truncated samples X
if D has as icdf method then

X ← ITTS(D, a, b, k) // Algorithm 11
else

X ← VRS(D, a, b, k) // Algorithm 12
return X
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B Statistical Models for
Permutations

High quality population sampling is crucial for heuristic global optimization algorithms which are sensitive to
initialization conditions [84]. Examples are population-based algorithms and algorithms with memory mechanisms
such as Simulated Annealing [85].

Population sampling in the case of CO problems involves sampling permutations σ ∈ Sn of length n. Uniform
permutation sampling is used to cover the search space as widely as possible. Relevant algorithms are the
Fisher-Yates Shuffle (FYS) [140], Knuth’s algorithm using Sobol points (KS) [84], [141] and Sobol Permutations
(SP) [84]. A fourth algorithm is proposed: uniformly sampling the [0, 1)n hypercube using Sobol points and
applying an argsort operation to obtain uniformly sampled permutations of Sn. This algorithm is found to
yield more uniform samples than FYS and KS while being orders of magnitude faster than SP. Notably, advanced
approaches and hand-crafted heuristics are often used in CO to determine near-optimal solutions prior to heuristic
optimization [2], [13]. Distance-based permutation sampling is used to leverage known approximate solutions,
using the Mallows Model [86]–[88] under the Hamming distance. Empirical results show that a combination of
both approaches is best to balance the exploration of the search space and the exploitation of known approximate
solutions.

This appendix defines and compares the statistical models for permutations considered in this work. Uniform
statistical models for permutations are discussed first in Section B.1, and distance-based statistical models for
permutations are discussed in Section B.2.

B.1 Uniform Models
This section introduces the four uniform permutation sampling models considered in this work. FYS is discussed
in Section B.1.1, SP in Section B.1.3, KS in Section B.1.2 and SHP in Section B.1.4. Lastly, Section B.1.5
discusses empirical results and the choice of uniform permutation sampling algorithm used throughout this work.

B.1.1 Fisher-Yates Shuffle
The FYS (Algorithm 14) generates uniformly random permutations of a finite sequence in linear time by iteratively
swapping each element with a randomly selected element from its current position to the end of the sequence
[140].

B.1.2 Knuth's Algorithm
The argsort operation is effectively a map between a Euclidean space Rn and a permutation group Sn. This
transformation has radial symmetry, breaking up the unit hypersphere into Voronoi cells of equal area. Knuth’s
algorithm leverages this connection to obtain uniformly sampled permutations. The algorithm is summarized in
Algorithm 15. Our implementation makes use of Sobol points to obtain uniformly sampled points in Rn−1. The
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Algorithm 14: Fisher-Yates Uniform Permutation Sampling
Input: Permutation A of length n
Output: Uniformly randomized permutation
for i← {2, ..., n} do

j ← Integer sampled u.a.r. in [1, i]
Swap A[i] and A[j]

return A

projection matrix Û is defined as follows in Eq. B.1 [84]:
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The algorithm relies on the following geometric argument: the Euclidean distances between the vertexes of
the Sn permutohedron are related to permutation distances, ergo points uniformly sampled in Euclidean space
will result in uniformly distant permutations under the Kendall-τ , Spearman distances, and other permutation
distances.

Algorithm 15: Knuth’s algorithm for uniformly sampling permutations.
Input: m, n
Output: Π
for i← 1 to m do

x← SobolPoint(i, n, d) // x ∈ (−1, 1)d−1

y ← x
∥x∥

z ← ÛT y // z ∈ Rn
Πi ← argsort(z)

return Π

B.1.3 Sobol Permutations
Mitchell et al. [84] leverage the relationship between the Sd−1 hypersphere and Sn used by Knuth [141] to obtain
uniform permutation samples with superior statistical properties. The hypersphere Sd−2 = {x ∈ Rd−1 : ∥x∥ = 1}
that inscribes the Sn permutahedron is used as a continuous relaxation of Sn. Mitchell et al. then use Sobol
points evenly spaced over the surface of Sd−2 to obtain high quality uniform permutation samples. The procedure
is described in Algorithm 16. Sobol points are sampled uniformly from the hypercube [0, 1)d−2, transformed to
uniformly distributed Blumenson generalized spherical coordinates [142] by means of an inverse CDF, projected
to the hyperplane inscribing the hypersphere, and transformed to permutations by applying an argsort.

Finding the inverse CDF of the Blumenson generalized spherical coordinates means solving a set of d − 2
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Algorithm 16: Uniform permutation sampling using Sobol permutations, adapted from Mitchell et al. [84].
Input: m, n
Output: Π
for i← 1 to m do

x← SobolPoint(i, n, d) // x ∈ [0, 1)d−2

ϕ← 0
for j ← 1 to d− 2 do

ϕj ← F−1
j (xj) // Inverse CDF

y ← PolarToCartesian(1, ϕ) // y ∈ Rd−1

z ← ÛT y // z ∈ Rn
Πi ← argsort(z)

return Π

transcendental equations, as the PDF of the generalized spherical coordinates is:

f(ϕj) =


1

2π
j = d− 2

1

B(d−j−1
2 , 12 )

sind−j−2(ϕj) 1 ≤ j < d− 2
(B.2)

where B is the beta function [142]. Mitchell et al. propose using root finding methods to obtain the inverse
CDF. This comes at great computational cost for even moderately long sequences and sample sizes. Eliminating
the transformation to generalized spherical coordinates means that the explicit discrepancy convergence rates of
Sobol points do not translate to Sn [84], hampering the quality of samples, and so is not an option.

B.1.4 Directly Sampling the Unit Hypercube in Rn

Both Knuth’s algorithm and SP rely on hyperspheres, as the Euclidean distance between points in the hypersphere
that inscribes a permutohedron Sn are closely related to various distances metrics between permutations of Sn.
We propose an alternative: directly sampling the unit hypercube in Rn and applying an argsort operation to
obtain permutations of Sn. We make use of Sobol points to sample the Rn hypercube. The algorithm will be
referred to as Sobol Hypercube Permutations (SHP).

The algorithm relies on the following argument of probability: as the argsort operation bins Rn into Voronoi cells
of equal volume, an algorithm that samples Rn with uniform probability density should sample all permutations
of Sn with equal likelihood. The algorithm is described in Algorithm 17.

Algorithm 17: Uniform permutation sampling using Sobol points in the [0, 1)n hypercube.
Input: m, n
Output: Π
for i← 1 to m do

x← SobolPoint(i, n, d) // x ∈ [0, 1)d

y ← x
∥x∥

Πi ← argsort(y)
return Π
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B.1.5 Sample Quality and Optimization Performance
Sample quality is determined by its uniformity. Sample uniformity is evaluated using the Chi-Squared test [143],
[144]. Uniformity is evaluated considering the frequency with which each number x ∈ [0, n] appears in each index
of the sampled permutations of Sn. The expected distribution is uniform: at index 0 of all permutations sampled
from Sn we expect to find every number x ∈ [0, n] with equal probability.

The null hypothesis of the Chi-Squared test is that the distribution underlying the observations is uniform, and
that the difference between the observed and expected frequencies is due to random chance. The Chi-Squared
test p-value is the probability that the null hypothesis in this case is true: that is, that the discrepancies between
expected and observed frequencies is due to random chance. A small p-value (< 0.05) indicates that it is unlikely
that the underlying distribution is the expected uniform distribution.

Fig. B.1 shows the uniformity of samples of 1000 permutations of S100 obtained using FYS, Knuth’s algorithm
using Sobol points, SP and SHP. The computation time of the three algorithms was of approximately 1 [ms]
for FYS, Knuth’s algorithm and SHP, and 150 [s] for SP. The uniformity of the samples produced by the four
algorithms is comparable, while SHP, Knuth’s algorithm and FYS are orders of magnitude faster than SP. SP is
discarded due to its large computational cost and marginal benefit.

Figure B.1: Performance comparison of FYS (red),
Knuth’s algorithm using Sobol points (green), SP and
SHP (ours, orange). 1000 samples of S100.

Figure B.2: Performance comparison of FYS, Knuth’s
algorithm using Sobol points and SHP. 10,000 samples
of S1000.

The performance of Knuth’s algorithm, SHP and FYS was evaluated for sampling larger batches of longer
sequences. Fig. B.2 shows the uniformity of samples of 10,000 permutations of S1000. At similar runtimes SHP
delivers superior uniformity, especially at the extremes. FYS has inferior performance across the board. Knuth’s
algorithm behaves well, but sample uniformity quickly degrades close to the extremes. This was to a certain
degree expected from the remarks of Mitchell et al. [84].

Empirical results showed no statistically relevant change in optimization performance from sampling initial
populations using FYS as opposed to SHP. SHP is used for uniform permutation sampling in this work due to its
high speed and the superior statistical properties of the permutation samples obtained with it. That being said,
FYS is a simple and cheap alternative to obtain uniformly sampled permutations for combinatorial optimization.

B.2 Distance-based Models
The Mallows model [87] (and variants), first introduced in 1957 [86], is the most relevant distance-based statistical
model for permutations [88]. It assigns permutations a probability p(σ) based on their proximity to a central
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permutation σ0, as measured by some distance metric, and a dispersion parameter θ. The Mallows model is
defined in Eq. B.3. Permutations are exponentially less probable as they stray further from σ0.

p(σ) =
exp(−θd(σ, σ0))

ψ(θ)
(B.3)

The normalization constant ψ(θ) =
∑
σ exp(−θd(σ)) can be expressed as the sum in Eq. B.4, where Sh(n, d)

is the number of permutations of length n at a given distance d from the central permutation:

ψ(θ) =

n∑
d=0

Sh(n, d) exp(−θd) (B.4)

Choosing a permutation distance metric relevant for the problem at hand is thus vital. We make use of the
Hamming distance in this case, defined in Eq. B.5. The Hamming distance for rankings is a metric that quantifies
the dissimilarity between two permutations by counting the number of positions at which the corresponding
elements differ. The number of permutations Sh(n, d) of length n at a Hamming distance d of any other
permutation is defined in Eq. B.6, where Sd (Eq. B.7) is the number of derangements (permutations with no
fixed point) of length d [88].

dH(π, σ) =

n∑
i=1

I(π(i) ̸= σ(i)) (B.5)

Sh(n, d) =

(
n

d

)
S(d) (B.6)

S(d) =


1 if d = 0,

0 if d = 1,

(d− 1)[S(d− 1) + S(d− 2)] otherwise.
(B.7)

Algorithm 18: Sampling Permutations via Mallows Model
Input: Number of samples m, permutation length n, dispersion parameter θ, central permutation σ0
Output: sample ∈ Smn
for d← 0 to n do

Sh ←
(
n
d

)
· S(d)

p(d)← She
−θd

ψ(θ)←
∑n
d=0 p(d)

∀ d, p(d)← p(d)
ψ(θ)

{di}mi=1 ← Multinomial(m, {p(d)}nd=0)
for i← 1 to m do

Select di indices F ⊆ {1, . . . , n} uniformly at random
Permute F as a derangement π
σi ← σ0
σi[F ]← π
sample[i]← σi

return sample
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C Software Architecture
and Development

This chapter discusses the architecture and development process of the software developed in this work. Section C.1
discusses the architecture of the modular STSP solver developed. Section C.2 describes its four principal modules:
the Impulsive Trajectory Design module, the Low Thrust Trajectory Design module, the Heuristic Combinatorial
Optimization module and the Neural Combinatorial Optimization module. Section C.3 describes the software
development process used to implement all software produced in this project, and concludes the chapter with a
summary of the code base as of the time of writing.

C.1 Software Architecture
The architecture of the software developed in this work is based on a modular STSP solver concept, described
in Fig. C.1. The final aim of this architecture is to enable the construction of tailorable, modular STSP solvers
capable of offering feasibility guarantees for the generated trajectories.

Figure C.1: STSP solver architecture. In black: complex components (integrated using standardized interfaces)
the internal structure of which is out of the scope of this diagram.

This final aim is achieved using a 3-stage architecture: target sequence optimization, trajectory generation and re-
optimization, and trajectory verification and validation. The architecture itself consists of standardized interfaces
between each component. The integration of the different components may be done at the language/module
level, or at execution level if the modules are implemented using different languages or programs. In the case
of OSSIE the SCP module and the OSSIE Functional Engineering Simulator module, which are implemented in
MATLAB. Interfacing these modules with the combinatorial optimization modules was possible thanks to the
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standardized data interfaces defined. The result is a framework that is highly adaptable to new mission design
scenarios, while benefiting from high component reusability.

C.2 Overview of Main Modules
C.2.1 Impulsive Trajectory Optimization
The purpose of the Impulsive Trajectory Optimization module is to generate coplanar and out-of-plane impulsive
transfer trajectories under the J2 perturbation, considering spacecraft propulsion system requirements. The
module was used for the design impulsive ADR maneuvers, to generate trajectories for the OSSIE mission, and
to verify impulsive trajectory estimation methods.

C.2.2 Low-Thrust Trajectory Optimization
The purpose of the Low-Thrust Trajectory Optimization module is to generate low-thrust rendezvous maneuvers
targeting all six orbital elements using the Q-Law and RQ-Law Lyapunov Feedback Control guidance laws. The
module was used to generate trajectories for ADR mission scenarios, to design warm starts for the OSSIE OTV
based on Lyapunov Feedback Control, and to validate low-thrust transfer cost estimation methods.

C.2.3 Heuristic Combinatorial Optimization
The purpose of the Heuristic Combinatorial Optimization module is to solve generalized combinatorial optimization
problems, specifically multi-rendezvous spacecraft routing problems, using heuristic optimization techniques. The
module can leverage advanced solutions to accelerate the heuristic optimization process and includes candidate
solution generation methods based on heuristics and tree search methods. The module was used to solve the
OSSIE and ADR mission design Spacecraft Traveling Salesman Problems (STSPs).

C.2.4 Neural Combinatorial Optimization
The purpose of the NCO module is to train ML policies for space vehicle routing problems, and specifically NCO
policies based on Graph Neural Networks (GNNs) trained using RL. The module was used to train attention-based
NCO policies for the OSSIE and ADR STSPs and evaluate the applicability and performance of NCO methods to
solve various STSPs.

C.3 Software Development Approach and Codebase Summary
The development process employed adheres to principles of test-driven development (TDD) as outlined by Beck
[105]. The methodology is structured as follows:

1. Module Creation: Initiate by developing a Python module corresponding to the desired functionality, such
as low-thrust trajectory design.

2. Test Directory Setup: Establish a tests directory. For each new functionality, a specific test file is authored
to verify the respective component.

3. Architectural Planning: Prior to implementation, the necessary architecture is determined. Ensuring uni-
form interfaces across all modular components is critical, particularly for impulsive and low-thrust trajectory
estimation and generation modules.

4. Development Workflow: Implementation proceeds based on the test files, utilizing the Python debugger to
examine internal mechanics thoroughly.

5. Integration and Deployment: Upon completion of functionality, both the test file and the implementation
are committed to the version control system.
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C.3.1 Analysis Process
The analysis process diverges from testing by focusing on data processing and management. This involves:

• Analysis Directory: Each repository contains an analysis directory with scripts designed to perform single,
reliable, and reproducible analyses, producing data and visualizations.

• Granular Extensions: When extending analyses, tasks are bifurcated to minimize logical complexity and
enhance reproducibility.

C.3.2 Software Tools
Software tools integrated into the development include:

• Version Control: Git1 [109] was used for version control.

• Development Environment: Microsoft Visual Studio Code (VSCode)2 was used for development.

• Computational Resources: CPU-intensive workloads were executed on the TU Delft Thales server, while
Graphics Processing Unit (GPU)-intensive workloads are run using Paperspace3 and RunPod4. RunPod was
superior both in terms of ease of development (SSH’ing to the running compute nodes) as well as GPU
availability, and is recommended by the author

• DL Training Analysis: Weights and Biases5 (WandB) and TensorBoard6 were used to monitor NCO training.
WandB relies on cloud storage and TensorBoard on local storage. WandB enabled concurrent training on
multiple machines reporting to a centralized WandB project, while TensorBoard was overall more reliable
and comfortable to use. The ability to concurrently train and analyze multiple runs was too valuable however.
WandB was the platform of choice for most of this work.

This structured approach ensures that development is systematically guided by tests, facilitating robust and
maintainable code, while the analysis framework supports reproducible research practices.

C.3.3 Codebase Summary
Tab. C.1 summarizes the structure and magnitude of the codebase produced in this work. The summary was
obtained using cloc7. The codebase consits of the following modules:

• Spacecraft Modelling: various models of impulsive and low-thrust spacecraft, as well as statistical modelling
methods for OTV missions

• Space Debris Dataset Construction: methods and scripts to obtain space debris data using Celestrak8 and
the ESA DISCOS (Database and Information System Characterising Objects in Space) database9

• Impulsive Trajectory Design: implementation, tests and analysis of impulsive trajectory design methods

• Low Thrust Trajectory Design: implementation, tests and analysis of Lyapunov Control low-thrust trajectory
optimization methods

1https://git-scm.com
2https://code.visualstudio.com
3https://www.paperspace.com
4https://www.runpod.io
5https://wandb.ai/site
6https://www.tensorflow.org/tensorboard
7https://github.com/AlDanial/cloc
8https://celestrak.org
9https://discosweb.esoc.esa.int

https://git-scm.com
https://code.visualstudio.com
https://www.paperspace.com
https://www.runpod.io
https://wandb.ai/site
https://www.tensorflow.org/tensorboard
https://github.com/AlDanial/cloc
https://celestrak.org
https://discosweb.esoc.esa.int
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• Neural Combinatorial Optimization: implementation, tests and analysis of neural combinatorial optimiza-
tion methods. Implemented in this module: vectorized space debris cloud models, vectorized cost functions,
RL4CO environments among others

• Heuristic Combinatorial Optimization: implementation, tests and analysis of heuristic combinatorial op-
timization methods. Implemented in this module: permutation sampling methods, statistical modelling
procedures for space debris clouds, population sampling and distribution for archipelagos, various approxi-
mate solution algorithms, cost functions, pygmo problem classes and pygmo implementation code among
others

Table C.1: Codebase summary.

Module Files Blank Comment Code
Spacecraft Modelling 13 126 141 466
Space Debris Dataset Construction 3 90 146 168
Impulsive Trajectory Design 47 1,029 1,156 2,940
↼ Spacecraft Modelling

Low Thrust Trajectory Design 91 3,605 4,083 10,907
↼ Spacecraft Modelling

Heuristic Combinatorial Optimization 295 9,313 12,276 31,938
↼ Spacecraft Modelling
↼ Space Debris Dataset Construction
↼ Impulsive Trajectory Design
↼ Low Thrust Trajectory Design

Neural Combinatorial Optimization 115 2,705 2,785 10,551
↼ Spacecraft Modelling
↼ Space Debris Dataset Construction

Total (unique) 406 11,774 14,914 40,594
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D Planning and
Management of the
Project

The completion of the present work involved the research and development of a fairly large amount of independent
and interdependent components and modular interfaces, amounting to over 40,000 lines of Python code when
adding implementations, tests and different performance analyses (see Tab. C.1). Furthermore, a considerable
amount of development happened along two parallel avenues: impulsive multi-rendezvous trajectory design for the
OSSIE OTV, resulting in the paper presented at the 2024 International Astronautics Conference in Milan, and low-
thrust multi-rendezvous trajectory design for ADR. Both avenues required separate research, implementation and
testing under different mission requirements and different deadlines, while ensuring coherence with the research
direction and objectives of the thesis.

The project involved interaction between 3 developing stakeholders: the SENER Aerospace & Defence on-board
navigation and control development team working on OSSIE, the UARX Space OSSIE propulsion team (and by
proxy the Dawn Aerospace test engineering team in New Zealand), and the author. As in any complex project
contingencies took place and plans had to be continuously assessed and adapted to ensure the success of the
project. Critically, the long-term project plan was assessed and re-drawn after the Midterm Review, leading to
an extension of the duration of the thesis from the original allotted time of 28 weeks to a thesis duration of 37
weeks. 37 weeks was chosen as it is the maximum nominal duration of a full-time MSc thesis project as per the
TU Delft graduation guidelines after 20221. All original research goals and project objectives were met by the end
of the project.

The author was responsible for the definition of the research direction, the definition of all project objectives with
the exception of top-level requirements related to the OSSIE OTV mission, and planning and managing both the
long-term and short-term development of the project. The author was also responsible for all external consulting
engaged through the project, with the exception of the Midterm Review. The aim of this appendix is to give
insight into how the project was planned, how the development of the project was managed, and how the entire
process was informed by stakeholders and external consultants to ensure the successful completion of the project.
Section D.1 is concerned with the planning of the project and Section D.2 with its management.

D.1 Project Planning
Project planning was divided into a long-term plan and short-term sprints. The key priorities for project planning
were to ensure that the planning of short-term tasks was informed by long-term priorities, and to make progress
measurable and relatable to long-term goals so as to assess the long-term status of the project on-the-go.

1https://www.tudelft.nl/studenten/lr-studentenportal/onderwijs/master/thesis

https://www.tudelft.nl/studenten/lr-studentenportal/onderwijs/master/thesis
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D.1.1 Long-Term Planning
Planning started by establishing a research direction attractive to TU Delft and a set of project goals attractive
for SENER Aerospace & Defence. This resulted in the creation of a long-term project plan and project proposal
which was presented to Marc Naeije. The process carried out to establish the research direction, construct an
initial project plan was the following:

1. Literature Review and Research Question Identification
A literature review was conducted to survey existing work in the field, leading to the formulation of two
relevant research questions and a set of project objectives. With exception of the project objectives related
to the OSSIE OTV mission, all research questions and project objectives were independently determined by
the author.

2. High-Level Project Plan Development
The high-level project plan was developed by:

(a) Identifying the necessary research and development tasks to create the space Vehicle Routing Problem
(VRP) solver.

(b) Determining the sequential dependencies among the top-level project components.
(c) Estimating the duration of each top-level task.
(d) Creating a Gantt chart to illustrate the development timeline [145].

3. Project Proposal Preparation and Review
The project proposal, including the literature review and development plan, was written by the author. It
was reviewed by Jesús Ramírez, supervisor at SENER Aerospace & Defence, and subsequently approved by
Marc Naeije, the primary project supervisor.

4. Initial Project Duration Consideration
The original plan estimated a duration of 28 weeks, considerably below the TU Delft MSc Thesis program’s
thesis project duration of 32-37 weeks.

D.1.2 Short-Term Planning
Weekly and day-to-day planning focused on implementing the high-level project plan through detailed, actionable
steps:

1. Task Identification
Specific low-level development tasks were identified for each top-level project component.

2. Task Estimation
The research and development time for each low-level task was estimated based on complexity and size.
Estimated completion times were often difficult to estimate accurately.

3. Priority Setting
Tasks were prioritized based on their importance to the project’s success and their position within the critical
development path.

4. Sprint Allocation
Development tasks were assigned to weekly sprints to facilitate iterative progress.

5. Progress Tracking
A Kanban board was utilized to monitor and communicate task statuses [146].

This process was conducted recursively in the case of complex lower level tasks.
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D.1.3 Initial Project Plan
The initial project plan can be seen in Fig. D.1. While theoretical understanding existed of the modules that
would be required, development uncertainty was large for development blocks farther on in the future, especially
for NCO, for which extensive research into DL frameworks was required. The main priority in the initial phases of
the project was to start development of blocks with high certainty as early as possible. Early development blocks
were planned down to the level of weekly obectives to estimate development time as accurately as possible. This
allowed an assessment of the available development time for later blocks. The development time of such blocks
was then estimated based on expected complexity.

Feb Mar Apr May Jun Jul Aug Sep Oct
MILESONE: PROJECT PROPOSAL APPROVAL Feb 15 Feb 15

1 Impulsive Trajectory Design 7 Feb 15 Feb 22
1.1 Multiple Hohmann transfers 5 Feb 15 Feb 20
1.2 Impulsive plane change manoeuvres 2 Feb 20 Feb 22
2 Low-Thrust Trajectory Design 21 Feb 15 Mar 07
2.1 LTTO approach trade-off 5 Feb 15 Feb 20
2.2 Q-Law 12 Feb 20 Mar 03
2.2.1 Guidance law 10 Feb 20 Mar 01
2.2.5 Transfer cost estimation 2 Mar 01 Mar 03
2.3 RQ-Law 4 Mar 03 Mar 07
2.3.1 Guidance law 2 Mar 03 Mar 05
2.3.2 Transfer cost estimation 2 Mar 05 Mar 07
3 Approximate Solutions 8,5 Mar 15 Mar 23
3.1 RAAN walk 0,5 Mar 15 Mar 15
3.2 Dynamic RAAN nearest-neighbor search 3 Mar 15 Mar 18
3.3 Dynamic Beam Search 5 Mar 18 Mar 23
4 Heuristic Combinatorial Optimization 14 Mar 23 Apr 06
4.1 Dynamic environment modelling 2 Mar 23 Mar 25
4.2 Population Sampling 4 Mar 25 Mar 29
4.2.1 Uniform permutation sampling 2 Mar 25 Mar 27
4.2.2 Distance-based permutation sampling 2 Mar 27 Mar 29
4.3 Population encoding 1 Mar 29 Mar 30
4.4 Optimizer trade-off 7 Mar 30 Apr 06
5 Neural Combinatorial Optimization Apr 06 May 12

MILESONE: MIDTERM REVIEW May 13 May 13
6 Integration of SCP May 13 Jul 02
7 Study of STSP Variants Jun 01 Jun 15
8 Writing Jul 02 Aug 02

MILESONE: GREEN LIGHT MEETING Aug 03 Aug 03
MILESONE: IAC 2024 PAPER DEADLINE Aug 21 Aug 21
MILESONE: DEFENSE Aug 31 Aug 31

Feb Mar Apr May Jun Jul Aug Sep Oct
MILESONE: PROJECT PROPOSAL APPROVAL Feb 15 Feb 15

1 Impulsive Trajectory Design 7 10 43% Feb 15 Feb 25
1.1 Multiple Hohmann transfers 5 7 40% Feb 15 Feb 22
1.2 Impulsive plane change manoeuvres 2 3 50% Feb 22 Feb 25
2 Low-Thrust Trajectory Design 21 65 210% Feb 15 Apr 20
2.1 LTTO approach trade-off 5 10 100% Feb 15 Feb 25
2.2 Q-Law 12 51 325% Feb 25 Apr 16
2.2.1 Guidance law 10 21 110% Feb 25 Mar 17
2.2.2 Trajectory generation 0 8 Unacc. Mar 17 Mar 25
2.2.3 Verification 0 15 Unacc. Mar 25 Apr 09
2.2.4 Integrator selection 0 2 Unacc. Apr 09 Apr 11
2.2.5 Transfer cost estimation 2 5 150% Apr 11 Apr 16
2.3 RQ-Law 4 4 0% Mar 17 Apr 18
2.3.1 Guidance law 2 2 0% Mar 17 Mar 19
2.3.2 Transfer cost estimation 2 2 0% Apr 16 Apr 18
3 Approximate Solutions 8,5 15 76% Mar 15 Apr 01
3.1 RAAN walk 0,5 1 100% Mar 15 Mar 16
3.2 Dynamic RAAN nearest-neighbor search 3 7 133% Mar 16 Mar 23
3.3 Dynamic Beam Search 5 7 40% Mar 23 Mar 30
4 Heuristic Combinatorial Optimization 14 36 157% Apr 01 May 12
4.1 Dynamic environment modelling 2 2 0% Apr 01 Apr 03
4.2 Population Sampling 4 18 350% Apr 03 Apr 21
4.2.1 Uniform permutation sampling 2 8 300% Apr 03 Apr 11
4.2.2 Distance-based permutation sampling 2 10 400% Apr 11 Apr 21
4.3 Population encoding 1 2 100% Apr 21 Apr 23
4.4 Optimizer trade-off 7 14 100% Apr 23 May 07

MILESONE: MIDTERM REVIEW May 13 May 13
5 Neural Combinatorial Optimization May 14 Jul 01
6 Integration of SCP Jun 24 Jul 15
7 Study of STSP Variants Jul 01 Jul 15
8 Writing Jun 15 Aug 02

MILESONE: GREEN LIGHT MEETING Aug 03 Aug 03
MILESONE: IAC 2024 PAPER DEADLINE Aug 21 Aug 21
MILESONE: DEFENSE Aug 31 Aug 31

Feb Mar Apr May Jun Jul Aug Sep Oct
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7.2.1 Mass-dynamic STSP 5 10 100% May 14 May 24
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JGCD 8.2 Paper JGCD 25 31 24% Sep 01 Oct 02
JGCD 8.3 Thesis 30 17 -43% Sep 15 Oct 02
IAC MILESONE: IAC 2024 PAPER DEADLINE Aug 21 Aug 21

MILESONE: GREEN LIGHT MEETING Oct 03 Oct 03
MILESONE: DEFENSE Oct 31 Oct 31

48

36

END
CALENDAR

50
14

TASK
DAYS 

EXPECTED
DAYS 
DONE

BUDGET 
DEVIATION

START

7

8,5
14

10
65
15
32

21

CALENDAR

CALENDAR

48
21
14
48

TASK
BUDGET 

DEVIATION
START END

ENDTASK
BUDGET 

DEVIATION
START

DAYS 
EXPECTED

DAYS 
DONE

DAYS 
EXPECTED

DAYS 
DONE

Figure D.1: Gantt chart of the original top level plan.

D.2 Project Management
Project management involved overseeing the project’s execution in accordance with the established plan. It
included communicating the project’s status, assessing progress with key stakeholders, and re-planning when
necessary.

D.2.1 Communication with Stakeholders and External Consultants
Effective communication was essential to ensure all parties were privy to the state of the project and maintaining
alignment of all relevant stakeholders with respect to development priorities and project management decisions.
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Regular Communication
1. Weekly Supervisor Meetings

Weekly meetings were conducted with Marc Naeije and Jesús Ramírez to discuss progress updates and
evaluate the project’s current state. These meetings were essential for managing short-term development
activities.

2. Monthly Industrial Presentations
Monthly presentations were delivered to the SENER Aerospace & Defence GNC group to report on the
project’s progress, specifically regarding the multi-rendezvous trajectory optimization problem of the OSSIE
OTV.

Irregular Communication
1. External Consultant Engagement

Communications were maintained with external consultants—professors and industry professionals special-
izing in astrodynamics, statistics, and related fields—to obtain expert insights and validate methodological
decisions. The external consultants included:

• Javier Roa Vicens (SpaceX): Regularization techniques, specifically Sundman transformations.
• José Antonio López Ortí (Universidad Jaume I): Generalized Sundman anomalies and regularization

methods.
• Dario Izzo (ESA Advanced Concepts Team): STSP research interests and learning algorithms.
• Ekhine Irurozki (Universidad del País Vasco, France Telecom): Statistical models for permutations.
• Dominic Dirkx (TU Delft): Regularization vs. variable step integration and verification of the Lyapunov

control module.
• Steve Gehly (TU Delft): Hybrid ML-tree search approaches for STSP and sensor allocation problems.
• Regino Criado Herrero (Universidad Rey Juan Carlos): Statistics for permutation groups.
• Erik-Jan van Kampen (TU Delft): RL applications to dynamic STSPs and performance measurement

of ML policies.
• Máximo Fernández (SENER Aerospace & Defence): ML for regression and Kolmogorov-Arnold Net-

works.

2. Private Management Meetings
Private meetings were held with upper management at SENER Aerospace & Defence to evaluate the
feasibility of integrating project developments into the company’s commercial offerings in on-board GNC
and mission planning markets.

3. Midterm Review
A Midterm Review was conducted in Delft on May 13, 2024, consisting of a formal presentation of the state
of the project in relation to its final objectives and project plan, followed by a discussion. Present were
TU Delft faculty members Erwin Mooij, Dominic Dirkx, Marc Naeije, and SENER Aerospace & Defence
supervisor Jesús Ramírez. The Midterm Review served as a checkpoint to assess the health of the project
and make necessary adjustments to the project plan.

D.2.2 Project Assessment and Re-planning
Regular assessments were conducted to monitor progress, evaluate alignment with objectives, and identify nec-
essary adjustments. These assessments were categorized into short-term and long-term evaluations, guiding
re-planning strategies and facilitating effective communication with stakeholders.

Short-Term Assessment and Re-planning
Weekly assessments reviewed immediate project progress, completed tasks, identified challenges, and adjusted
priorities. Short-term tasks were re-planned in weekly sessions to address progress and emerging issues, ensuring
resource allocation to high-priority tasks.
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Feb Mar Apr May Jun Jul Aug Sep Oct
MILESONE: PROJECT PROPOSAL APPROVAL Feb 15 Feb 15

1 Impulsive Trajectory Design 7 Feb 15 Feb 22
1.1 Multiple Hohmann transfers 5 Feb 15 Feb 20
1.2 Impulsive plane change manoeuvres 2 Feb 20 Feb 22
2 Low-Thrust Trajectory Design 21 Feb 15 Mar 07
2.1 LTTO approach trade-off 5 Feb 15 Feb 20
2.2 Q-Law 12 Feb 20 Mar 03
2.2.1 Guidance law 10 Feb 20 Mar 01
2.2.5 Transfer cost estimation 2 Mar 01 Mar 03
2.3 RQ-Law 4 Mar 03 Mar 07
2.3.1 Guidance law 2 Mar 03 Mar 05
2.3.2 Transfer cost estimation 2 Mar 05 Mar 07
3 Approximate Solutions 8,5 Mar 15 Mar 23
3.1 RAAN walk 0,5 Mar 15 Mar 15
3.2 Dynamic RAAN nearest-neighbor search 3 Mar 15 Mar 18
3.3 Dynamic Beam Search 5 Mar 18 Mar 23
4 Heuristic Combinatorial Optimization 14 Mar 23 Apr 06
4.1 Dynamic environment modelling 2 Mar 23 Mar 25
4.2 Population Sampling 4 Mar 25 Mar 29
4.2.1 Uniform permutation sampling 2 Mar 25 Mar 27
4.2.2 Distance-based permutation sampling 2 Mar 27 Mar 29
4.3 Population encoding 1 Mar 29 Mar 30
4.4 Optimizer trade-off 7 Mar 30 Apr 06
5 Neural Combinatorial Optimization Apr 06 May 12

MILESONE: MIDTERM REVIEW May 13 May 13
6 Integration of SCP May 13 Jul 02
7 Study of STSP Variants Jun 01 Jun 15
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MILESONE: GREEN LIGHT MEETING Aug 03 Aug 03
MILESONE: IAC 2024 PAPER DEADLINE Aug 21 Aug 21
MILESONE: DEFENSE Aug 31 Aug 31
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2 Low-Thrust Trajectory Design 21 65 210% Feb 15 Apr 20
2.1 LTTO approach trade-off 5 10 100% Feb 15 Feb 25
2.2 Q-Law 12 51 325% Feb 25 Apr 16
2.2.1 Guidance law 10 21 110% Feb 25 Mar 17
2.2.2 Trajectory generation 0 8 Unacc. Mar 17 Mar 25
2.2.3 Verification 0 15 Unacc. Mar 25 Apr 09
2.2.4 Integrator selection 0 2 Unacc. Apr 09 Apr 11
2.2.5 Transfer cost estimation 2 5 150% Apr 11 Apr 16
2.3 RQ-Law 4 4 0% Mar 17 Apr 18
2.3.1 Guidance law 2 2 0% Mar 17 Mar 19
2.3.2 Transfer cost estimation 2 2 0% Apr 16 Apr 18
3 Approximate Solutions 8,5 15 76% Mar 15 Apr 01
3.1 RAAN walk 0,5 1 100% Mar 15 Mar 16
3.2 Dynamic RAAN nearest-neighbor search 3 7 133% Mar 16 Mar 23
3.3 Dynamic Beam Search 5 7 40% Mar 23 Mar 30
4 Heuristic Combinatorial Optimization 14 36 157% Apr 01 May 12
4.1 Dynamic environment modelling 2 2 0% Apr 01 Apr 03
4.2 Population Sampling 4 18 350% Apr 03 Apr 21
4.2.1 Uniform permutation sampling 2 8 300% Apr 03 Apr 11
4.2.2 Distance-based permutation sampling 2 10 400% Apr 11 Apr 21
4.3 Population encoding 1 2 100% Apr 21 Apr 23
4.4 Optimizer trade-off 7 14 100% Apr 23 May 07

MILESONE: MIDTERM REVIEW May 13 May 13
5 Neural Combinatorial Optimization May 14 Jul 01
6 Integration of SCP Jun 24 Jul 15
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JGCD 5.5 Hyperparameter optimization 20 14 -30% Oct 03 Oct 17
IAC 5.6 OSSIE mission design STSP 5 6 20% Jul 12 Jul 18
JGCD 5.7 ADR STSP 5 4 -20% Aug 21 Aug 25

6 Integration of SCP 5 2 -60% Jun 10 Jun 12
IAC 6.1 Acceleration model analysis 2 1 -50% Jun 10 Jun 11
IAC 6.2 Sequential guidance policies 3 1 -67% Jun 11 Jun 12
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Figure D.2: Gantt chart illustrating the state of the project at the time of the Midterm.

Long-Term Assessment and Re-planning
Periodic evaluations of the project’s direction and development priorities were conducted with external consultants
to ensure research objectives remained attainable. The Midterm Review on May 13, 2024 was used as a pivot to
evaluate and re-draw the project plan as needed.

Fig. D.2 illustrates the state of the project at the time of the Midterm. The project suffered from considerable
delay. Two major sources of uncertainty had negatively impacted development time estimates: the operational
capabilities of the UARX OSSIE OTV, which were only clarified by UARX Space and Dawn Aerospace mid-way
through the project, definitively settling for impulsive manoeuvres, and the requirements of the SCP solver. The
SCP solver was initially considered capable of generating trajectories without requiring warm-starts. Thus, the
allocated development time for impulsive and low-thrust trajectory design did not consider the need to generate and
verify realistic trajectories. This caused a major underestimation of the development time required for low-thrust
trajectory design, which had cascaded to later development blocks by the time of the Midterm.

Updated Project Plan
The project plan was re-drawn after the Midterm Review with two priorities in mind:

1. Ensuring all tasks required for the 2024 IAC were complete by August the 21st

2. Ensuring all remaining work was completed by October the 3rd, namely all work related to the ADR paper
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Feb Mar Apr May Jun Jul Aug Sep Oct
MILESONE: PROJECT PROPOSAL APPROVAL Feb 15 Feb 15
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1.1 Multiple Hohmann transfers 5 Feb 15 Feb 20
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Figure D.3: Gantt chart of the updated top level plan as of October 2024. Purple: items prioritized to achieve the
IAC 2024 submission deadline. Yellow: items de-prioritized until after the IAC 2024 submission deadline. Vertical
purple line, right: IAC 2024 submission deadline.

and the MSc thesis itself

The final project plan is summarized in Fig. D.3. Each outstanding development block was thoroughly analyzed
and subdivided to the level of weekly objectives. The development time of low-level development blocks was
then estimated. Development uncertainty was considerably lower by this point: this manifested in much more
accurate development time estimates of lower-level blocks. After this analysis had been completed, items which
were vital to achieve the IAC 2024 submission deadline were prioritized. Items which were not were de-prioritized
and scheduled for after the IAC 2024 submission deadline.

Progress under the re-drawn project plan was swift and suffered no major contingencies. All original research
goals and project objectives had been met by the end of the project.

D.3 Work Breakdown Structure
The following is a comprehensive work breakdown structure of the major development blocks of the project, listing
for each: the realized development effort in hours, its dependencies, the expected output of the block, and all
identified sub-items and sub-sub-items. More lower level items were identified and completed. Such items are out
of the scope of this general overview.
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1. Impulsive Trajectory Design

• Time required for completion: 13.5 days
• Requirements to start the block: Project plan approval
• Expected output: Python module capable of estimating and generating realistic multi-revolution im-

pulsive trajectories satisfying spacecraft constraints and considering relevant perturbations

1.1 Multiple Hohmann Transfer

1.1.1 Transfer estimation methods: Analytical transfer estimation methods [1 day]
1.1.2 Transfer generation: Implement transfer generation [3 days]
1.1.3 Verification: Test transfer methods [3 days]

1.2 Impulsive Plane Change Manoeuvres

1.2.1 Transfer estimation methods: Estimation techniques [1 day]
1.2.2 Transfer generation: Implement plane change [1 day]
1.2.3 Verification: Test plane changes [1 day]

2. Low-Thrust Trajectory Design

• Time required for completion: 66 days
• Requirements to start the block: Project plan approval
• Expected output: Python module capable of estimating and generating multi-revolution low-thrust

trajectories

2.1 LTTO Approach Trade-Off: Evaluate LTTO approaches and select an approach for the conceptual
design of ADR missions [10 days]

2.2 Q Law

2.2.1 Guidance law: Implement Q law guidance [15 days]
2.2.2 Trajectory generation: Generate low-thrust trajectories [15 days]
2.2.3 Verification: Test Q law trajectories [15 days]
2.2.4 Integrator selection: Choose numerical integrators [2 days]
2.2.5 Transfer cost estimation: Estimate transfer costs [5 days]

2.3 RQ Law

2.3.1 Guidance law: Implement RQ law guidance [2 days]
2.3.2 Transfer cost estimation: Estimate transfer costs [2 days]

3. Approximate Solutions

• Time required for completion: 4.5 days
• Requirements to start the block: 1, 2
• Expected output: Python module capable of generating high quality approximate solutions for space

VRPs

3.1 RAAN Walk: Implement RAAN walk [0.5 days]
3.2 Dynamic RAAN NN Search: Implement dynamic RAAN nearest neighbor search [3 days]
3.3 Dynamic Beam Search Based on Transfer Cost: Implement beam search based on transfer cost [1 day]
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4. Heuristic Combinatorial Optimization

• Time required for completion: 29 days
• Requirements to start the block: 1, 2, 3
• Expected output: Python implementation of a modular heuristic combinatorial optimization solver for

space VRPs using pygmo

4.1 Dynamic Environment Modelling: Design and implement a modular solution to estimate tour cost
propagating the global state as dictated by a secular perturbation model [2 days]

4.2 Population Sampling

4.2.1 Uniform permutation sampling: Research, implement and trade-off state-of-the-art uniform per-
mutation sampling algorithms [6 days]

4.2.2 Distance-based permutation sampling: Research, implement and trade-off state-of-the-art distance-
based permutation sampling algorithms [10 days]

4.3 Population Encoding: Research and select a permutation encoding scheme [1 day]
4.4 Optimizer Trade-Off: Write an analysis tool to robustly measure the performance of all pygmo opti-

mizers for a given space VRP [10 days]

5. Neural Combinatorial Optimization

• Time required for completion: 32 days
• Requirements to start the block: 1, 2, 3, 4
• Expected output: Python implementation of a Neural Combinatorial Optimization solver for space

VRPs

5.1 NCO Approach Trade-Off: Evaluate NCO approaches from literature and choose a solver architecture
and DL/NCO framework [10 days]

5.2 Conventional TSP: Implement an NCO solver for the conventional TSP [2 days]
5.3 3D TSP: Implement an NCO solver for the 3-dimensional TSP [1 day]
5.4 Static STSP: Implement an NCO solver for the static STSP [5 days]
5.5 Hyperparameter Optimization: Implement a state-of-the-art hyperparameter optimization method

and apply it to tune the NCO solver for specific problem instances [5 days]
5.6 OSSIE Mission Design STSP: Implement an NCO solver the mass-dynamic OSSIE OTV multi-rendezvous

trajectory optimization problem [5 days]
5.7 ADR STSP: Implement an NCO solver for the highly dynamics ADR STSP [5 days]

6. Integration of SCP

• Time required for completion: 5 days
• Requirements to start the block: 1, 2
• Expected output: Integration of SCP methods into the project framework.

6.1 Acceleration Model Analysis: Determine perturbations to account for [2 days]
6.2 Sequential Impulsive and Low-Thrust Policies: Sequential impulsive and low-thrust policies: Im-

plement sequential impulsive and low-thrust guidance policies [3 days]

7. Study of STSP Variants
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• Time required for completion: 33 days
• Requirements to start the block: 1, 2, 3, 4, 5
• Expected output: Analysis of various STSP variants.

7.1 ADR STSP

7.1.1 Generate space debris cloud datasets: Obtain space debris cloud data from Celestrak and generate
up-to-date datasets for the Iridium 33, Cosmos 2251, Fengyun 1C and Cosmos 1408 space debris
clouds [3 days]

7.1.2 Statistical modelling of space debris clouds: Implement a statistical modelling procedure for
space debris clouds and use it to create a realistic statistical model of the Iridium 33 debris cloud
[5 days]

7.1.3 ADR spacecraft modelling: Create a realistic model of a spacecraft for ADR missions in LEO [2
days]

7.1.4 Study NCO performance for dynamic space VRPs: Solve the Iridum 33 ADR problem using NCO
and assess the performance of NCO compared to that of heuristic CO methods [10 days]

7.2 OSSIE Mission Design

7.2.1 Mass-dynamic STSP: Implement an STSP variant accounting for mass changes due the capture
or release of payloads [5 days]

7.2.2 Mission statistical model: Construct a statistical model to generate realistic mission scenarios for
OSSIE, considering varying payload target states, payload masses, and payload bundling [3 days]

7.2.3 Mission viability analysis: perform a cost analysis of all possible mission scenarios for the OSSIE
OTV derived from the nominal payload BOM of the vehicle, and define the mission design envelope
of the OSSIE OTV [5]

8. Writing

• Time required for completion: 55 days
• Requirements to start the block: Concurrent
• Expected output: Final thesis and related publications.

8.1 Paper IAC 2024: Prepare and submit paper to IAC 2024 [15 days]
8.2 Journal paper: Prepare and submit paper to journal [20 days]
8.3 Thesis: Write the thesis document [20 days]
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