<]
TUDelft

Delft University of Technology

MP-DPD: Low-Complexity Mixed-Precision Neural Networks for Energy-Efficient Digital
Predistortion of Wideband Power Amplifiers

Wu, Yizhou; Li, Ang; Beikmirza, Mohammad; Singh, Gagan Deep; de Vreede, Leo C.N.; Alavi, Morteza ;
Gao, Chang; Chen, Qinyu

DOI
10.1109/LMWT.2024.3386330

Publication date
2024

Document Version
Final published version

Published in
IEEE Microwave and Wireless Technology Letters

Citation (APA)

Wu, Y., Li, A., Beikmirza, M., Singh, G. D., de Vreede, L. C. N., Alavi, M., Gao, C., & Chen, Q. (2024). MP-
DPD: Low-Complexity Mixed-Precision Neural Networks for Energy-Efficient Digital Predistortion of
Wideband Power Amplifiers. IEEE Microwave and Wireless Technology Letters, 34(6), 817-820.
https://doi.org/10.1109/LMWT.2024.3386330

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/LMWT.2024.3386330
https://doi.org/10.1109/LMWT.2024.3386330

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, VOL. 34, NO. 6, JUNE 2024 817

MP-DPD: Low-Complexity Mixed-Precision Neural
Networks for Energy-Efficient Digital Predistortion
of Wideband Power Amplifiers

Yizhuo Wu™, Ang Li™, Mohammadreza Beikmirza™, Member, IEEE, Gagan Deep Singh™,
Qinyu Chen™, Member, IEEE, Leo C. N. de Vreede™, Senior Member, IEEE,
Morteza Alavi™, Member, IEEE, and Chang Gao"~, Member, IEEE

Abstract— Digital predistortion (DPD) enhances signal quality
in wideband radio frequency (RF) power amplifiers (PAs). As sig-
nal bandwidths expand in modern radio systems, DPD’s energy
consumption increasingly impacts overall system efficiency. Deep
neural networks (DNNs) offer promising advancements in DPD,
yet their high complexity hinders their practical deployment.
This article introduces open-source mixed-precision (MP) neu-
ral networks that employ quantized low-precision fixed-point
parameters for energy-efficient DPD. This approach reduces
computational complexity and memory footprint, thereby low-
ering power consumption without compromising linearization
efficacy. Applied to a 160-MHz-BW 1024-QAM OFDM signal
from a digital RF PA, MP-DPD gives no performance loss
against 32-bit floating-point precision DPDs, while achieving
—43.75 (L)/—45.27 (R) dBc in the adjacent channel power ratio
(ACPR) and —38.72 dB in error vector magnitude (EVM). A
16-bit fixed-point-precision MP-DPD enables a 2.8 x reduction in
estimated inference power. The DPD code in PyTorch is publicly
available on GitHub.

Index Terms— Deep neural network (DNN), digital predistor-
tion (DPD), digital transmitter (DTX), power amplifier (PA),
quantization.

I. INTRODUCTION

HE rapid evolution of wireless communication technolo-

gies has spurred an increased demand for higher data
rates, improved spectral efficiency, and reduced error rates.
Nonlinear distortions, predominantly caused by wideband
radio frequency (RF) power amplifiers (PAs), significantly
compromise signal integrity, affecting both communication
reliability and energy efficiency. Digital predistortion (DPD)
has emerged as a crucial technique to mitigate these issues,
enhancing signal integrity. In contemporary radio digital front-
ends, the DPD module is a major contributor to power
consumption [1]. This challenge might be further exacer-
bated by the potential integration of machine-learning (ML)
algorithms, such as deep neural networks (DNNs), which,
despite their potential, add to the power demands.
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Recent advancements of ML-based long-term DPD in state-
of-the-art RF system-on-chip (SoC) products are given in [2].
Nevertheless, the substantial computational complexity and
memory requirements of ML-based DPD systems, especially
those using DNNs, pose significant obstacles to their effi-
cient deployment in wideband transmitters, particularly in the
context of future 5.5G/6G base stations or Wi-Fi 7 routers,
where limited power resources constrain real-time DPD model
computation.

Prior approaches to address DPD energy consumption
include reducing the sample rate [3], employing a sub-Nyquist
feedback receiver in the observation path [4], dynamically
adjusting model cross-terms based on input signal character-
istics [5], and devising simpler computational pathways for
DPD algorithms [6]. This work presents a novel approach
by implementing mixed-precision (MP) arithmetic operations
and model parameters in a gated recurrent neural network
(RNN)-based DPD model for wideband PAs. The proposed
method curtails the DPD model inference' power consumption
by substituting most high-precision floating-point operations
with low-precision fixed-point operations through quantizing
neural network weights (W) and activations (A). This strategy
reduces the energy of arithmetic operations and memory
access and facilitates the design of energy-and-area-efficient
DNN computing hardware suitable for DPD deployment in
power-sensitive environments [7]. Additionally, our method is
compatible with existing strategies, allowing for further power
savings when combined.

II. DPD COMPUTING’S ENERGY PROBLEM

To effectively correct the in-band signal and reduce out-
of-band emission, DPD systems typically operate at sample
rates ranging from 1.5x to 5x the baseband signal band-
width [3]. As bandwidths in future radio systems expand, the
energy demands of DPD computation intensify. The energy
consumed per DPD model inference for each input I/Q sample
is approximated by

ENr = EmuL + Eapp + Evem (1)
where EvuL, Eapp, and Eygy denote the energy consumption
of multiplications (MUL), additions (ADD), and memory
(MEM) access per DPD model inference, respectively. Since
each inference processes one 1/Q data point of the input signal,
the estimated dynamic power consumption of the DPD model
inference is given as

PN = ENg - fs )

!Inference of a neural network model is the process of making predictions
based on the learned model parameters. Learning in a model involves training
the model to update the parameters with a dataset to classify patterns
(classification) or to track a time-varying discrete variable (regression).
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Fig. 1. (a) Von Neumann architecture with energy costs. (b) Operation
and 8 KB SRAM access energy in 45 nm [8] and 7 nm [9] versus precision.

where f; represents the DPD input I/Q data sample rate.

Utilizing 32-bit floating-point (FP32) arithmetic, while
beneficial for accuracy, can increase model size, negatively
impacting energy efficiency. Prior studies demonstrate that
DNNs with low-precision, fixed-point calculations effectively
minimize the memory footprint in demanding applications
such as image recognition and large language models. This
reduction is achieved with minimal accuracy loss, decreasing
power consumption in hardware implementations. As shown
in Fig. 1(b), multiply-accumulate (MAC) operations using
8-bit fixed-point integers (INT8) are up to 20x more
energy-efficient than FP32 MAC operations, across both
45-nm [8] and 7-nm [9] technology nodes. Most neural net-
work computations occur on Von Neumann architecture-based
hardware, depicted in Fig. 1(a). This architecture often faces
significant memory bottlenecks, as highlighted in Fig. 1(b).
The energy consumption of on-chip static random access
memory (SRAM) is up to 12.2x higher than that of a MAC
operation. Moreover, the energy costs for off-chip memory
access are roughly three orders of magnitude greater than for
arithmetic operations. Therefore, the memory access demands,
directly linked to the DPD model size, play a crucial role in
determining overall power consumption.

III. MIXED-PRECISION NEURAL NETWORKS DPD

Building on these insights, this section describes how to
quantize weights and activations of gated recurrent neural
networks (RNNs) into low precision for energy reduction.

A. Gated Recurrent Unit-Based DPD

Gated RNNs utilize gates to manage information flow
through their high-dimensional hidden states according to new
input stimuli. This approach effectively addresses the vanish-
ing gradient issue in modeling long sequences and makes them
widely adopted in prior research on long-term DPDs [10], [11].
In this work, the GRU-based DPD is defined as

r, =0 (W, ¢, + b + Wy h,_; +by,) 3)
z, =0 (W@, +biz + Wi ch,_ +by.) 4
n, = tanh(W;, ¢, + by + 1, © (Wyh—y +by)) ()
h=(01-2z)0n+z Oh,_, (6)

where ¢, is the input feature vector extracted from the I/Q
modulated signal X = {x;|x; = Ixt+ jOxt, Ixt, Oxt € R, 1 €
0,...,T—1} at time 7. h, represents the hidden state at time ¢.
The W and b terms are the weight matrices and bias vectors,
respectively. The terms r,, z,, and n, correspond to the reset
gate, update gate, and new candidate state, respectively. o
represents the sigmoid activation. ©® denotes the element-wise
multiplication. The GRU is followed by a fully connected (FC)
layer to generate the DPD output I/Q signal

yi = Wyhz + by )

Sync.
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------- >
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Keysight E3640

Fig. 2. Setup for dataset acquisition and DPD performance measurement.
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where §, € Y = {y/ly, = L+ JQ Iy Q5 € Rt €
0,....T 1.

B. Mixed-Precision DPD

To enhance the energy efficiency of DPD models, we adopt
an MP strategy utilizing low-precision fixed-point integer
arithmetic for inference. This method involves a quantization
scheme that converts the model’s weights and activations,
including other intermediate variables, to lower precision
while retaining full-precision operations for feature extraction
¢ from I/Q signal x, effectively balancing accuracy and
computational complexity.

The quantization process is defined as follows: for a data
point x, a quantization scale s, and a range [Qmin, Omax], the
fixed-point representation g of x is calculated using

X

g=sx Round(Clip(;, Qnivs Qe ) (8)
where Clip bounds the input and Round rounds to the
nearest integer. For n-bit quantization, unsigned data ranges
from Qnin = 0 to Qnax = 2" — 1, and signed data from
Onin = —2" 1 t0 Qnax = 2"~! — 1. During training, each
neural network layer’s quantization scale s is optimized using
gradient descent and adjusted to the nearest power-of-two,
ensuring a fixed-point representation g. For precise fixed-point
computations and enhanced energy efficiency, we use a
quantization-aware training method [12]. This approach main-
tains full-precision variable copies updated during gradient
descent while using quantized values for forward propagation
of the DNN model. The gradient of the Round function is
approximated using the straight-through estimator [13] for
trainability.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

Fig. 2 illustrates the experimental setup. The baseband I/Q
data was processed by a 40-nm CMOS digital PA (DPA) [16]
at a 2.4-GHz carrier frequency.

For the GRU-based MP-DPDs, quantization of activations
and weights is performed at 8, 12, or 16 bits, except during
feature extraction, which utilizes full-precision (FP32) opera-
tions to generate I,, Oy, |x|, |x|® features. We compared the
MP-DPDs’ performance to FP32 models, including general
memory polynomial (GMP) [14], GRU, vector decomposition
LSTM (VDLSTM), and the real-valued time-delay convo-
lution neural network (RVTDCNN). The configurations for
VDLSTM and RVTDCNN followed their optimal settings in
[10] and [15], with adjustments in model size through the
hidden LSTM and FC layer sizes.

The test signal’s peak-to-average power ratio (PAPR)
is 10.38 dB, and the DPA outputs at 13.75 dBm. The
dataset, comprising 491 520 samples of 160-MHz 4-Channel
x 40 MHz OFDM signals sampled at 640 MHz, was split into
a 60% training set for DPD learning, a 20% validation set for
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TABLE I

ACPR AND EVM PERFORMANCE OF DIFFERENT DPD MODELS EVALUATED WITH 160-MHZ 4-CHANNEL x 40-MHz
1024-QAM OFDM SIGNALS SAMPLED AT 640 MHZ ALONGSIDE THEIR ESTIMATED INFERENCE ENERGY
AND DYNAMIC POWER CONSUMPTION IN 7 AND 45 nm [9]

Classes DPD ACPR EVM Number of Energy/Inference (nJ) | Dynamic Power (W) Power
Models? (dBc, L/R) (dB) MUL/ADD/MEM | 45nm | Tnm 45nm_| Tnm Reduction
Without DPD - -31.69/-32.45 | -27.05 - - - - - -
GMP [14] -40.79/-40.86 | -29.27 2190/3668/517 11.44 6.20 7.32 397
FP32-DPDs VDLSTM [10] -43.38/-43.02 | -36.19 538/1528/542 338 332 2.16 2.12
h S RVTDCNN [15] | -44.27/-43.50 | -36.70 500/2690/512 4.28 3.60 2.74 230 -
GRU -43.36/-45.30 | -38.46 502/1417/506 5.66 3.09 3.62 1.98 1x
WI16A16-GRU | -43.75/-45.27 | -38.72 502/1417/506 4.02 1.11 1.93 0.71 2.8%
WI2A16-GRU -43.03/-44.69 | -37.47 502/1417/506 2.29 0.85 1.46 0.54 37X
MP-DPDs" WI2A12-GRU -4236/-43719 | -3745 502/1417/506 2.19 0.82 1.40 0.52 3.8%
(This work) W8A16-GRU -41.64/-42.80 | -36.24 502714177506 1.56 0.74 1.00 0.47 42x
WSAI2-GRU -41.78/-42.90 | -36.17 502/967/506 1.49 0.72 0.95 0.46 4.3x
WS8A8-GRU -35.84/-35.770 | -28.89 502/967/506 1.42 0.69 0.90 0.44 4.5x
# The numbers of parameters are 495 (GMP), 502 (GRU), 538 (VDLSTM), 500 (RVTDCNN).
b Each MP-DPD has 14 and 17 FP32 MULs and ADDs for feature extraction, respectively.
[~ GMP —— VDLSTM ——RVTDCNN — FP32-GRU —— W16A16-GRU | i . o
ACPR (wio DPD) = -31.69/-32.45 dBc || PAPR = 10.38 dB o4

500 parameters 500 parameters

. \\\/

" " . N " " " " . .
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Fig. 3. Parameter scan of DPD models versus (a) ACPR (left), (b) ACPR
(right), (c) EVM, (d) EVM (left Y-axis), and energy per inference (right
Y-axis) versus precision.
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early stopping, and a 20% test set for performance evaluation.
The DPD learning process involves backpropagation through
a pretrained PA model using our OpenDPD [17] with the
collected dataset in an end-to-end approach. All PA models
consist of approximately 500 parameters, except for those used
in parameter scan experiments. For both PA modeling and
DPD learning, the models are trained for 100 epochs using
the ADAM optimizer with a learning rate of 1E-3 and a batch
size of 3200 samples.

B. Results and Discussion

Table I compares the adjacent channel power ratio (ACPR)
and error vector magnitude (EVM) results for different DPD
models, alongside the number of MUL and ADD operations
and 8 KB SRAM accesses’ in feature extraction and model
inference [(3)—(7)]. The amplitude/phase (arctan?2) group,
tanh, and sigmoid functions can be computed using the
COordinate Rotation DIgital Computer (CORDIC) algorithm
over 15 iterations (30 ADDs) despite that state-of-the-art
gated RNN hardware [18] uses look-up tables to approxi-
mate them with less energy and chip area overhead. The
502-parameter W16A16-GRU DPD model demonstrates the
best performance among all tested models, achieving an ACPR
of —43.36/—45.30 dBc and an EVM of —38.72 dB while
consuming 1.13 nJ per inference in 7-nm technology and
0.72-W dynamic power at 640 MHz. Lower power can be
achieved by using a smaller model size or lower precision at
the price of worse accuracy, as shown in Fig. 3.

Fig. 3(a)-(c) shows the correlation between model
size and ACPR/EVM, covering 100-3200 parameters. The

2Each input I/Q sample necessitates 2 input fetches, #parameter fetches,
and 2 output write-backs between the arithmetic units and the 8 KB SRAM
cache. Intermediate results are buffered locally, thus bypassing cache access.

Channel BW = 40 MHz 02

ACPR (W16A16-GRU) = 43.75/-45.27 dBc || Aggregated BW = 160 MHz | °°

EVM,,, (W16A16-GRU) = -3 werage P, = 13.75dBm |2 |
S B e T

s L

08 04 00 o0& 08
ithout DPD

w/o DPD —> 08
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04 00 04
With DPD (W16A16-GRU)

Fig. 4. Measured spectrum and constellation map on the 160-MHz signal.

W16A16-GRU DPD model notably outperforms FP32 models
in many settings due to the regularization effect by training
with quantization noise [12]. Fig. 3(d) presents the energy
efficiency versus performance tradeoffs in MP models. The
WZ8AS8 model achieves a 4.5x power reduction over the FP32
model in 7-nm technology at the expense of linearization per-
formance. The W12A16 and W16A16 configurations present
a balanced compromise, offering 3.7x and 2.8x less power
consumption than the FP32 GRU baseline DPD model while
sustaining competitive EVM. Hence, W12A16 and W16A16
are optimal for power-critical applications demanding high
accuracy.

Fig. 4 displays the measured spectrum and constellation map
with and without DPDs. The spectrum analysis confirms that
the W16A16-GRU model achieves no ACPR performance loss
compared to the FP32-GRU model.

These findings underscore the effectiveness of our MP-DPD
approach in reducing DPD power consumption while
sustaining linearization performance.

C. Power Consumption Comparison to Prior Works

Prior hardware implementations of DPD hardly reported
any power consumption numbers [19], [20]. To our best
knowledge, the only work we found is a subsampling DPD
field-programmable gate array (FPGA) implementation [5],
which consumes 1.875 W to linearize the 100-MHz signal
with a 150-MHz sampling rate and 320 parameters. For a fair
comparison, we normalized it to the sample rate we used in
this article, which is 640 MHz. By adopting our proposed
MP A16W16-GRU DPD with 502 parameters, the power
consumption can be reduced by 3.9x/10.6x to 1.93 W/0.71 W
on a 45/7-nm process, respectively.

V. CONCLUSION
This work proposes the MP-DPD method for wide-
band RF PAs using the OpenDPD framework [17]. This
approach reduces the computational complexity against the
full-precision baseline, thereby contributing to power savings
while preserving superior linearization performance for more
sustainable and energy-efficient wireless communication.
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