ESTIMATING
REAL-TIME
PREDICTIVE
HYDROLOGICAL
UNCERTAINTY

JAN VERKADE







ESTIMATING REAL-TIME PREDICTIVE
HYDROLOGICAL UNCERTAINTY

JAN SIMON VERKADE






ESTIMATING REAL-TIME PREDICTIVE
HYDROLOGICAL UNCERTAINTY

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. Ch.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op

woensdag 1 april 2015 om 10:00 uur

door Jan Simon VERKADE

Bachelor in Commerciéle Economie
(Haagse Hogeschool, Den Haag)

Master of Arts in International Relations
(Dublin City University, lerland)

civiel ingenieur
(Technische Universiteit Delft)

geboren te Maassluis
op 23 juli 1975



Dit proefschrift is goedgekeurd door de promotoren:
Prof. drs ir. ].K. Vrijling

Prof. dr. ir. PH.A.J.M. van Gelder

Univ.—Prof. P. Reggiani, Ph.D.

Samenstelling van de promotiecommissie:

Rector Magnificus, voorzitter

Prof. drs. ir. ] K. Vrijling, Technische Universiteit Delft, promotor

Prof. dr. ir. PH.A.J.M. van Gelder, Technische Universiteit Delft, promotor
Univ.—Prof. P. Reggiani, Ph.D., University of Siegen, promotor

Onafhankelijke leden:

Prof. dr. ir. H. Bijl, Technische Universiteit Delft

Prof. dr. M.—A. Boucher, Université du Québec a Chicoutimi
Prof. dr. H.L. Cloke, University of Reading

Dr. KJ. Franz, Iowa State University

Dr. ir. A.H. Weerts en dr. ir. H. van der Klis hebben als begeleider in belangrijke
mate aan de totstandkoming van het proefschrift bijgedragen.

Keywords: hydrology, forecasting, predictive uncertainty
(©2015 Jan Verkade, Delft, The Netherlands, JANVERKADE.WORDPRESS.COM

Reuse of the knowledge and information in this publication is welcomed on the
understanding that due credit is given to the source.

Published by Jan Verkade. Typeset using IATEX and /André Miede’s classicthesis
template. Printed by Gildeprint Drukkerijen, Enschede, the Netherlands. Cover de-
sign by Ilse van den Broek (WWW.ILSEVDBROEK.NL).

ISBN 978-94-6186-446-8
DOI 10.4233/uuid:a7e8ac36-4bdb-4231-a11e-d46778b2aega


http://janverkade.wordpress.com/
http://www.miede.de
http://www.gildeprint.nl
http://www.ilsevdbroek.nl/
http://dx.doi.org/10.4233/uuid:a7e8ac36-4bdb-4231-a11e-d46778b2ae4a

SUMMARY

Flood early warning systems provide a potentially highly effective
flood risk reduction measure. The effectiveness of early warning, how-
ever, is affected by forecasting uncertainty: the impossibility of know-
ing, in advance, the exact future state of hydrological systems. Early
warning systems benefit from estimation of predictive uncertainties, i.e.
by providing probabilistic forecasts. The present dissertation describes
research in estimating the value of probabilistic forecasts as well as in
skill improvement of estimates of predictive uncertainty.

A framework for estimating the value of flood forecasts, expressed
in flood risk, is proposed in Chapter |2| The framework includes the
benefits of damage reduction through early warning as well as the
costs associated with forecasting uncertainty. The latter manifests it-
self through instances of missed floods and false alarms. Application
of the framework to a case study to the White Cart basin — a small
river in Scotland — shows that probabilistic forecasts have higher value
than deterministic forecasts. It also allows for deciding on an optimal
warning lead time, where the combined benefits of damage reduction
(which increase with increasing lead time) and costs of forecasting un-
certainty (that also increase with increasing lead time) are most benefi-
cial.

Three post-processing approaches are investigated. The first approach
(Chapter [3) comprises the statistical post-processing of meteorological
forecasts and subsequent use thereof in hydrological forecasting. The
analysis shows that while the quality of meteorological forecasts can
be improved, the improvements do not proportionally propagate to the
quality of the hydrological streamflow forecasts. It is believed that this
is due to the inability of post-processing techniques to fully maintain
the spatio-temporal correlations.

The second approach comprises an exploration of potential improve-
ments to the application of Quantile Regression as described by |Weerts
et al.[2011] These include the application of an explicit requirement for
non-crossing quantiles, the exploration of the benefit of deriving the
statistical models in Gaussian space and the derivation of multiple sta-
tistical models on several sub-domains of the predictor. The results
indicate that the non-crossing quantiles comprise an improvement and
that the other two potential improvements do not actually result in ob-
servable increase in forecast skill, hence that the post-processor may be
simplified for use in operation practice without losing skill.

The third approach explores the benefits — in terms of forecast skill
— of a lumped post-processing approach versus separately addressing



meteorological and hydrological uncertainties. The latter approach was
found to yield sharper forecasts, but at the expense of reliability. Com-
bined, this resulted in very similar skill scores with the source-specific
approach offering more scope for improvement.

The combined findings indicate that probabilistic forecasts have value
and that there is scope for additional increase thereof. This is elabo-
rated on in the Synthesis in Chapter [6} Also, recommendations for ad-
ditional research are given. This includes research pertaining to value
and skill of hydrological forecasts as well as to the use of forecasts in
forecast, decision and response systems.

Vi



SAMENVATTING

Hoogwaterwaarschuwingssystemen vormen een potentieel bijzonder
effectieve manier om hoogwaterrisico te reduceren. De effectiviteit van
waarschuwingen wordt echter mede bepaald door de mate van on-
zekerheid in de hydrologische verwachtingen: het is onmogelijk om
vooraf de exacte toekomstige staat van hydrologische systemen te ken-
nen. Hoogwaterwaarschuwingssystemen zijn gebaat bij onzekerheids-
schattingen, oftewel bij het maken van kansverwachtingen. Het voor-
liggende proefschrift beschrijft onderzoek naar het schatten van de
waarde alsmede naar het verhogen van de kwaliteit van kansverwach-
tingen.

Hoofdstuk 2|beschrijft een raamwerk voor het schatten van de waarde
van hoogwaterwaarschuwingen; die waarde is uitgedrukt in risicore-
ductie. Het raamwerk beschouwt schadereductie als gevolg van tijdige
waarschuwingen alsmede de kosten die samenhangen met de onzeker-
heid in verwachtingen. Die onzekerheid toont zichzelf doordat som-
mige hoogwaters niet worden voorafgegaan door waarschuwingen of
doordat sommige waarschuwingen niet worden gevolgd door hoogwa-
ters. Het raamwerk wordt getoetst middels een toepassing op een ca-
sus: White Cart, een kleine rivier in Schotland. De casus laat zien dat
kansverwachtingen een hogere waarde hebben dan deterministische
verwachtingen, die geen expliciete schatting van onzekerheid bevatten.
Kansverwachtingen maken het ook mogelijk dat er een optimale zicht-
tijd bepaald wordt. Hier is de combinatie van baten (door schadereduc-
tie; deze nemen toe met toenemende zichttijd) en kosten (geassocieerd
met onzekerheid; deze nemen ook toe met toenemende zichttijd) het
gunstigst.

Het proefschrift beschrijft verder drie aanpakken voor het verhogen
van de kwaliteit van verwachtingen middels statistisch nabewerken
van meteorologische en hydrologische verwachtingen. De eerste aan-
pak (Hoofdstuk [3)) behelst het statistisch nabewerken van neerslag-
en temperatuurverwachtingen, en het successievelijke gebruik daar-
van voor het maken van hydrologische verwachtingen. De analyse laat
zien dat het inderdaad mogelijk is om de kwaliteit van de meteorolo-
gische verwachtingen te vergroten. Echter, deze toename in kwaliteit
vertaalt zich niet in een evenredige toename in kwaliteit van de hydro-
logische afvoerverwachtingen. Een mogelijke reden daarvoor is dat de
gebruikte statistische technieken geen rekening houden met de tem-
porele en ruimtelijke correlaties in de oorspronkelijke meteorologische
verwachtingen.
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De tweede aanpak (Hoofdstuk [4) behelst een verkenning van de
potentiéle verbeteringen die gemaakt kunnen worden op de toepas-
sing van Kwantielregressie, zoals beschreven door Weerts et al.|2011|
Deze verbeteringen behelsen de toepassing van een expliciete eis dat
kwantiellijnen niet mogen kruisen, het verkennen van de mogelijkhe-
den van het toepassen van de statistische modellen in de Gaussische
of Normale ruimte, en het afleiden van meerdere statistische model-
len op sub-domeinen van de onafhankelijke variabele. De resultaten
laten zien dat de niet-kruisende kwantiellijnen inderdaad een verbete-
ring tot gevolg hebben, en dat de andere twee technieken niet leiden tot
een daadwerkelijke verbetering van de kwaliteit van de gemaakte kans-
verwachtingen. Dit betekent dat de op dit moment in gebruik zijnde
statistische techniek vereenvoudigd kan worden zonder dat dat leidt
tot een vermindering in kwaliteit van de gemaakte verwachtingen.

De derde aanpak, beschreven in Hoofdstuk |5} verkent twee metho-
den om de kwaliteit van kansverwachtingen van toekomstige rivier-
afvoeren te vergroten. Bij de eerste methode worden meteorologische
onzekerheden en hydrologische onzekerheden in gezamenlijkheid be-
schouwd middels het statistisch nabewerken van deterministische ver-
wachtingen. Bij de tweede methode worden de twee bronnen van on-
zekerheid onafhankelijk van elkaar beschouwd door schattingen van
hydrologische onzekerheid te combineren met meteorologische ensem-
bleverwachtingen. De tweede methode resulteerde in scherpere ver-
wachtingen (smallere betrouwbaarheidsintervallen) waarbij de kansen
echter minder goed overeenkwamen met waargenomen relatieve fre-
quenties dan bij de eerste methode. De kwaliteit van de gemaakte ver-
wachtingen, uitgedrukt in een aantal veelgebruikte indicatoren, is bij
beide methodes min of meer gelijk. De tweede methode echter biedt
meer ruimte voor toekomstige verbeteringen.

Alle resultaten samen suggereren dat kansverwachtingen ‘waarde’
hebben en dat er potentie is om die waarde verder te vergroten. Hier
wordt in de afsluitende Synthese (Hoofdstuk[6) op ingegaan. Hier wor-
den ook aanbevelingen voor aanvullend onderzoek gegeven. Dit be-
helst onderzoek naar de waarde en de kwaliteit van verwachtingen,
alsmede onderzoek naar het gebruik van kansverwachtingen in opera-
tioneel waterbeheer.
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“All those whose duty it is to issue regular daily forecasts know that
there are times when they feel very confident and other times when
they are doubtful as to the coming weather. It seems to me that the
condition of confidence or otherwise forms a very important part of
the prediction, and ought to find expression.”

W. Ernest Cooke
Government Astronomer
Perth, Western Australia (1906))






INTRODUCTION

1.1 SETTING THE SCENE

Human settlements have always been sited on floodplains, for nearby
rivers offer social, economic and environmental benefits. These benefits
arose mainly from the transport opportunities afforded by a nearby
river and from the fertile land that is often found in floodplains. At
present, rivers also contribute to the ‘tourism offer” of towns and cities
(Fleming et al., 2001).

Siting settlements near rivers, however, exposes their communities
to a periodic risk of flooding. Floods have the potential to adversely
impact a community by causing casualties, by inflicting damage to
physical property, by temporarily interrupting social and economic ac-
tivities and by forcing a community to take emergency measures. In-
deed, floods are natural disasters with a very high impact in terms of
number of people affected, number of casualties and amount of dam-
age (IFRC, 2013). A study of flood damage in the United States shows
that this impact has increased over time as a result of both climate fac-
tors and societal factors: increased damage is associated with increased
precipitation and with increasing population and wealth (Pielke Jr and
Downton), |2000). Recorded history shows numerous floods including
floods with a high impact in terms of economic and human losses
(e.g. | O’Connor and Costa [2004). Recent high impact fluvial flood dis-
asters include the 2007 summer floods in England and Wales, the 2009
Queensland floods in Australia, the 2010 and 2011 monsoon floods in
Pakistan and Thailand, respectively, the 2013 Elbe floods in Germany
and the 2014 Danube floods in Central Europe.

Because of the potential for major adverse consequences for society,
humans have always tried to manage floods and their impacts. Tra-
ditionally, flood management plans were focused on the reduction of
flood hazards: the magnitude, extent and probability of flooding. More
recently, water managers shifted focus towards the management of
flood risk, which is defined as the combination of the probability of
flooding and its consequences, the latter consisting of a combination
of exposure and vulnerability (Kron| |2002; Gouldby and Samuels| |2005;
De Moel, 2012). Flood risk management thus addresses three factors:
hazard, exposure and vulnerability. Exposure is a measure of the extent
of communities and their assets that are potentially affected by a flood
hazard and vulnerability refers to the potential of floods to afflict harm
to those communities (Gouldby and Samuels, |2005).
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Figure 1: Various uses of hydrological forecasts, with typical time scales and
a relative measure of forecasting uncertainty. Adapted from [Seo and
Demargne| (2008).

Flood hazards are managed and mitigated by structural measures
such as installing flood control reservoirs, raising levees and deepening
and widening of the river bed. Exposure and vulnerability, however,
are managed by non-structural measures. These include flood aware-
ness raising, flood resistant construction, land use change and flood
emergency management. The latter involves taking ad-hoc damage
mitigating measures if and when a flood occurs to reduce exposure,
vulnerability or both. For example, an at risk community can be tem-
porarily evacuated or temporary barriers can be installed. Generally
speaking, structural measures are considerably more expensive than
non-structural measures (e.g. |[Jha et al., 2012).

Non-structural ad-hoc measures require advance notice of an up-
coming flood. These advance notices are typically provided by hydro-
logical forecasting systems. Such systems comprise the hardware, soft-
ware and human forecasters required to produce an estimate of future
streamflow and water level conditions on a river. The lead time pro-
vided depends on the hydrological properties of the basin considered
but is typically in the range of hours to days, sometimes stretching to
one or two weeks (Figure [1). Meteorological and hydrological observa-
tions usually originate from ground based measurement stations that
are connected to the forecasting system by telemetry; some have their
origin in remote sensing equipment. Meteorological forecasts are often
provided by meteorological agencies in the form of Numerical Weather
Predictions (NWP; see Inness and Dorling) |2013| for additional details
on operational weather forecasting). Based on the available observa-
tions and forecasts, hydrological models produce estimates of future
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Figure 2: Forecast — decision — response system.

states of the hydrological system. These models consist of computer-
based simplifications of streamflow generation and streamflow prop-
agation processes. The models are ‘tuned’ by model parameters. The
model output is assessed by a hydrological forecaster who, based on
her expertise and experience, is likely to adjust the outputs to thus
produce a hydrological forecast.

The combination of hydrological forecasting systems and non-struc-
tural ad-hoc measures is often referred to as early warning systems or
forecast-decision-response systems (Figure [2). These systems are char-
acterised by various timelines (Carsell et al) [2004). Lead time is the
length of time between the production of a forecast and the onset of
a flood event. The time that remains after decision-making and warn-
ing, i.e. between the onset of flood warning response and the arrival of
the flood, is referred to as mitigation time. This is the time that can be
used for actual damage mitigation. Assuming that the time required
for decision making and notification remains unchanged, the potential
for damage mitigation increases with increasing mitigation time. It is
therefore beneficial to maximize lead time afforded by a forecasting
system.

Early warning systems thus comprise a relatively inexpensive flood
risk management measure. There is a catch, however: the future is
uncertain. While this uncertainty is reduced by forecasting, it cannot
be eliminated. Residual uncertainty remains and the forecast value is
unlikely to be exactly equal to the observation that follows. This un-
certainty originates in all of the elements of a forecasting system: in
observations and measurements, in the model and its parameters, in
initial conditions and in model inputs (also often referred to as model
drivers or model forcings). In many cases, these model inputs — me-
teorological observations and forecasts — comprise a major source of
uncertainty. Generally speaking, nonetheless, any of these sources con-
tribute to overall uncertainty only insofar as the information they pro-
vide contributes to the forecasted variable at the location of interest
at the required lead time. For example, uncertainty originating in a
weather forecast is only relevant if the streamflow at the lead time of
interest is affected by future precipitation and temperature. Conversely,
if the lead time of interest is shorter than the time of concentration of a
basin, future weather will have less of an impact on the uncertainty in
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that specific forecast. The significance of individual sources of uncer-
tainty thus varies with basin characteristics and required lead time.

Despite the presence of uncertainty, forecasting systems have tradi-
tionally produced deterministic forecasts which comprise a single es-
timate of future conditions only. While these forecasts reduce uncer-
tainty, residual uncertainty remains. This uncertainty can be managed
in a number of ways. First, decision makers and users can simply ac-
cept that the uncertainty is there and that this may result in a “‘wrong’
decision every so often. This may be acceptable if the forecasts are im-
perfect (they always are) yet skilful: the quality of the forecast is higher
than that of an alternative forecast.

Secondly, attempts can be made to eliminate uncertainty as much as
possible. Here, the distinction between epistemic and aleatory uncer-
tainties is useful. Epistemic uncertainties can be reduced by improved
understanding of physical meteorological and hydrological processes
and increased ability to mathematically describe these. Increasing the
number and quality of observations will contribute to this, too. There
will be a random element to most of the processes that are modeled;
these aleatory uncertainties are deemed irreducible, although the dis-
tinction between epistemic and aleatory uncertainties is, to some ex-
tent, arbitrary.

The third approach to managing uncertainty comprises estimation
thereof. Short-term uncertainties that arise from reasonably well un-
derstood processes can be addressed by a probabilistic approach, thus
yielding a probabilistic forecast: a probability distribution of the fu-
ture value of a hydrological variable such as water level or streamflow
rate. These estimates of predictive uncertainty can take many forms, in-
cluding discretised and continuous probability density functions and
cumulative probability distributions as well as probabilities of event
occurrence. These events can be defined as the exceedence or non-ex-
ceedence of thresholds, or both, indicating the probability that a future
value will be in a certain domain between a lower and an upper bound.
Some examples of visualizations of hydrological probability forecasts
are shown in Figure

There is a strong theoretical rationale for probabilistic forecasting,
comprising multiple arguments why estimates of predictive uncertainty
are important for forecast sensitive decision making. Some of these ar-
guments were put forward by Krzysztofowicz| (2001), Montanari and
Brath| (2004) and [Todini| (2004). First, as there are always uncertainties
about the future, any forecast that makes these explicit are more hon-
est than forecasts that do not. If anything, this will cause the forecasts
to better fit the beliefs of the expert forecaster who knows about the
presence of uncertainty, and thus make for a better forecast (Murphy,
1993). This argument was put forward by the Australian “government
astronomer” W. Ernest Cooke as early as 1906 (Cooke, [1906). Secondly,
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(a) Cumulative probability distribution of maximum (b) Probability of precipitation over the contiguous
river stage at Red River at Oslo in February United States exceeding 25mm. Source: NOAA
through April 2012. Source:|US National Weather Earth System Research Laboratory
Service, North Central River Forecast Centre

(c) Discretized probability density forecast of (d) Ensemble forecast of streamflow, Rhine at Lo-
streamflow at Elbe at Dresden (left) and ex- bith. Source: Rijkswaterstaat’s river forecast sys-
ceedence probabilities of two thresholds MQ tem RWsOS Rivers.
and MHQ. Source: European Flood Awareness
System

Figure 3: Selected examples of probabilistic hydrologic forecasts.

deterministic forecasts may initially ignore the possibility of an ex-
treme event that may then only be predicted close to its occurrence.
This prevents early preparation for mitigation of casualties and dam-
age. Probabilistic forecasts could have acknowledged the possibility of
such an event much earlier, even though it may have initially been
assigned a small probability of occurrence. Thirdly, expressing the un-
certainty in terms of probability allows for risk-based decision making
by weighting event consequences with their probability of occurrence.
Finally, probabilistic forecasts allow for clear separation of responsibil-
ities between forecasters and decision makers. To wit, in the absence
of uncertainty estimates, a deterministic, single valued forecast would
often implicitly or automatically result in a decision. A probabilistic
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CHAPTER [1]

forecast, on the other hand, enables a decision maker to set her own
level of certainty required to initiate a response.

Developments in science and technology increasingly allow for prob-
abilistic forecasts to be produced. Uncertainty estimation is typically
done using a combination of numerical meteorological or hydrological
models and statistical techniques. These techniques comprise Monte
Carlo analysis and statistical post-processing. Monte Carlo analysis is
at the heart of ensemble techniques, where multiple plausible, equiprob-
able initial conditions or model parameters are used as inputs to multi-
ple model runs. These initial conditions are sampled from a probability
distribution; this is necessary as it is impossible to know the true state
of the atmosphere. Statistical post-processing aims to characterise the
relation between forecasts and observations and, assuming that this re-
lation is valid in the future also, applies this relation to future forecasts.

These techniques aim to produce probabilistic forecasts that are re-
liable and as sharp as possible. Reliability pertains to the probabilistic
nature of the forecasts: predicted probabilities have to be matched by
observed relative frequencies. Sharpness pertains to the width — or
rather, narrowness — of the predictive intervals. Ideally, these are as
narrow as possible, with the ultimate but unattainable goal of having
zero width.

Even though evidence suggests that humans are well able to intu-
itively manage uncertainty and risks, effectively using probabilistic
forecasts in operational practice is not trivial. Probabilistic reasoning
may be problematic for experts as well as non-experts (Murphy et al.,
1980; [Slovic, 1987} (Gigerenzer et al., 2005; |Spiegelhalter et al.| [2011) and
it is more difficult to assess the quality of probabilistic forecasts and to
communicate and understand this forecast quality (Werner et al., 2015).
The ‘extra’ dimension (probability or likelihood) to an already highly
dimensional forecast (space, time, event) complicates visualisation. It
also poses additional requirements to the language used in communi-
cating (about) forecasts. Decision criteria have to specifically take into
account probabilities of event occurrence rather than certain event oc-
currence. This will need to be laid down in process descriptions and
procedures and all stakeholders will need to be trained on the use of
probabilistic forecasts. Addressing these issues requires expertise on
forecasting, cognitive processing, decision science and communication.

This additional complexity may seem cumbersome, but may prove
very worthwhile. One of the characteristics of a ‘good” forecast is that it
has value: an incremental economic and/or other benefit realized by a
decision maker through the use of the forecast (Murphyy |1993). Studies
into the value to society of forecasts confirm that probabilistic forecasts
have higher value than deterministic forecasts (see, for example, |[US{
ACE|/1994; Katz and Murphy|/1997; [Zhu et al.|2002; (Carsell et al.|2004;
Roulin!|2007; [Buizzal 2008; |Boucher et al.|[2012). The reason for this is
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that the former allow for a decision maker to choose her own optimal
decision threshold against which to initiate mitigation. For example,
mitigation measures with relatively low costs may be initiated at low
probability of event occurrence; should the event not occur then the (in
hindsight!) unnecessary investment was only low. On the contrary, if
a mitigation measure is very costly — compared to its benefit — then
she would require a high degree of certainty of event occurrence as a
false alarm would be a relatively costly affair.

1.2 DEFINITIONS AND FOCUS

The main theme of the present dissertation is the estimation of pre-
dictive hydrological uncertainty: a probability distribution of the future
value of hydrologic variables such as water level and streamflow rate.
Predictive hydrological uncertainty is synonymous with stochastic pre-
dictions, probabilistic forecasts or probability forecasts. It is also often
referred to as simply predictive uncertainty. These terms are used in-
terchangeably throughout the text of this dissertation.

Probabilistic forecasts are also closely related to statistics and hence
sometimes referred to as statistical forecasts. Statistics and probability
are closely related mathematical disciplines. Statistics studies the cause
and frequency of events, based on which a probabilistic estimate of
future frequency can be made. In layman’s terms: statistics answers
questions about what did happen and probability answers questions
about what will happen (e.g. StackExchange) [2010).

Deterministic forecasts are single estimates of future conditions, hence
sometimes also referred to as single valued forecasts or, somewhat cyn-
ically, ‘best guesses’. Implicitly, they hold the assumption or promise
that this is the only possible future condition — thus obscuring the
presence of uncertainty about the future.

The meaning of the words forecast and prediction is more or less the
same (Oxford University Press| |2014) and they are used as synonyms
in the present dissertation.

The approaches, results and conclusions are limited to fluvial fore-
casting applications on the short to medium range. On these timescales,
forecasts are affected by both initial conditions at issue time of a fore-
cast and by future weather rather than by future climate. Specifically,
the research does not address uncertainties related to system behaviour
in far-away futures (often referred to as foresight studies, |Van Asselt
2000) that have to take into account uncertainties in the future climate
and the socio-economic system (Haasnoot, 2013).

The research is geared towards application in flood forecasting, even
though some of it may apply to other flow regimes such as low flow
forecasts. Some of the research may even be applicable to disciplines
other than hydrology; this will be revisited in the closing chapter.
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Figure 4: Schematised example of a probabilistic forecasts showing issue time
and valid time. In this example, the predictive distribution is sym-
metric. In reality, this is seldom the case.

Real-time hydrological forecasting is the production of estimates of fu-
ture states of hydrological variables, conditional on current states at
issue time of the forecast. The latter is often referred to as ‘t-zero’ (t0),
with the time in the future being referred to as ‘valid time’ (Figure [4).
This type of forecasting is sometimes referred to as operational forecast-
ing (Pagano et al., [2014), referring to its application in operational fore-
casting centres. Hindcasting or reforecasting (Hamill et al} |2006) is the
process of forecasting for a time that is now in the past — but with-
out the benefit of hindsight. Thus, issue times are still prior to valid
times, no observations dating after the issue time are used and the
uncertainties are identical to those in real-time forecasting. Backcasting
is the process of forecasting in reverse time (Hyndman)| [2014), where
valid times are prior to issue times. To the best of the author’s knowl-
edge, backcasting is not used in hydrological applications. Nowcasting
comprises the detailed description of the current weather along with
forecasts obtained by extrapolation for a period of o to 6 hours ahead
(World Meteorological Organization, 2014).

A forecast production system comprises the hardware and software
that allows for the data storage and data flow that are required to
feed and run forecasting models and disseminate the results. A no-
table example is the Delft-FEWS system (Werner et al} [2013) which
has been used for most of the research described in the present disser-
tation. Forecasting techniques are the theories underlying the forecast
runs. These comprise data assimilation techniques, numerical mod-
elling techniques and statistical techniques.
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Ensemble forecasting and post-processing are statistical techniques that
are used to estimate predictive uncertainty and/or to correct biases in
probabilistic forecasts. Ensemble forecasting is a form of Monte Carlo
simulation, where multiple plausible initial states, boundary condi-
tions and/or model parameterizations are used to create an ensemble
of multiple model outcomes (see Figure [3| for an example). As such,
ensemble techniques constitute statistics that are applied prior to the
forecast runs, contrary to statistical post-processing which is applied
posterior to a forecast run. Statistical post-processing attempts to char-
acterise the joint forecast, observation distribution with the aim to bias-
correct future forecasts or to estimate predictive uncertainty. Based on
an extensive record of past forecasts and observations, their relation is
statistically described and subsequently applied to future forecasts —
on the assumption that the past relation applies in the future, too.

There are multiple synonymous terms for statistical post-processing.
Within the context of hydrological forecasting, statistical post-process-
ing of meteorological forecasts is sometimes referred to as statistical
pre-processing, to indicate that the post-processing takes place prior to
a run of the hydrological forecast models. Within the meteorological
sciences, post-processing is often referred to as calibration, which has a
different meaning in the hydrological sciences, namely that of finding
optimal values of model parameters. Sometimes the term bias-correction
is used instead of post-processing. The latter comprises the estimation
of uncertainties as well as correcting for biases in existing forecasts and
is hence wider in scope.

Verification is the quantitative assessment of the relation between
forecasts and their verifying observations (Stanski et al) [1989). Many
aspects of this relationship can be described; these are referred to as
forecast quality aspects (Murphy},[1993). When these quality metrics are
expressed on a scale relative to another forecast (the reference, or base-
line), they are referred to as forecast skill. Verification also comprises
the assessment of forecast value: the economic benefit accomplished
by using the forecast (Murphy, [1993). In the commercial sector, this is
sometimes referred to as forecast value added (FVA; |Gilleland|]2013).

1.3 RESEARCH OBJECTIVE AND RESEARCH QUESTIONS

The objective of this research project is to contribute — in two distinct
ways — to the use of probabilistic hydrologic forecasts in flood early
warning systems: (i) by providing a valuing technique for estimating
the value of probabilistic flood forecasts in terms of flood risk so that
the value of flood early warning systems can be compared to the value
of other risk reduction measures; and (ii) by the development of vari-
ous post-processing approaches for improving the skill of probabilistic
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hydrological forecasts. In order to reach this objective, the following
research questions are addressed:

1. How can the value of probabilistic forecasts be expressed in terms of flood
risk?

Flood risk management requires investments in risk mitigation mea-
sures. In order to efficiently allocate scarce resources, the costs and ben-
efits of various available measures need to be estimated. This would
allow, for example, to decide between raising a levee and implement-
ing a flood forecasting, warning and response system. Estimates of the
value of forecasting systems require that the (adverse) effect of forecast-
ing uncertainty — that manifests itself through missed events and false
alarms — are included in the analysis, in addition to the reduction in
flood damage that can be effected by appropriate warnings (i.e., hits or
true positives).

2. Can statistical post-processing further improve the skill of estimates of prob-
abilistic forecasts?

Most probabilistic forecasts are skilful yet not perfect. Forecasts may
be biased in mean, spread or both. Some of the biases may be removed
through statistical post-processing, where past forecast performance is
used to make a probabilistic estimate of future performance. Many dif-
ferent post-processing approaches are possible; here, three approaches
are taken. These address the following research questions:

2a. Can the skill of ensemble streamflow forecasts be improved by post-process-
ing ensemble NWP temperature and precipitation forecasts?

Hydrologic models are often forced by output from ensemble NWP
models. The latter are often biased in mean, spread or higher moments.
These biases propagate to ensemble streamflow predictions. Relatively
little is known about the effects of post-processing NWP for hydrologic
applications. Hence the inputs to the hydrological model will be post-
processed in order to improve quality of resulting streamflow forecasts.

2b. Can estimates of predictive hydrological uncertainty be improved by chang-
ing the configuration of a post-processor?

Post-processing is a popular technique for estimating predictive hy-
drological uncertainty based on one or more predictors. Earlier work
reported on using Quantile Regression to estimate predictive uncer-
tainty based on single valued forecast as predictor. This was a rela-
tively straightforward implementation, using a Gaussian transform to
manage nonlinearities in the joint forecast — observation distribution.
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However, alternative approaches were not reported and these will have
to be explored to ensure that the best possible results are obtained.

2c. Can the skill of raw ensemble streamflow forecasts be improved by ‘dress-
ing’ the ensemble members with distributions that describe the hydrologic
uncertainties?

Hydrologic Ensemble Prediction Systems often route ensemble NWP
products through a hydrologic model to arrive at an ensemble stream-
flow forecast. However, the spread of this ensemble is indicative of un-
certainty in meteorological forcings only, and not of all relevant uncer-
tainties. Recently, ensemble dressing techniques have been proposed,
where members are dressed with distributions that describe hydro-
logical uncertainties. This raises question of how well the technique
performs against post-processing of deterministic forecasts — that is
currently often used to estimate the ‘total uncertainty’” hence in many
ways the technique to beat.

1.4 RESEARCH CONTEXT

The research described in this dissertation was carried out as part of the
Deltares R&D programmes on real-time forecasting for flood risk man-
agement and water resources management (for details, see [Deltares)
2013). While their scope is wider, these programmes also address mis-
sion critical research needs for Rijkswaterstaat, the national water man-
agement authority in the Netherlands. The research was done in part-
time, in addition to the author’s work as a hydrologist at Deltares,
hence some of the cases were necessarily chosen for pragmatic reasons
also, i.e. coincided with other studies carried out by Deltares. The re-
search is also linked to the author’s work as a forecaster in Rijkswater-
staat’s River Forecasting Service. Finally, the author, the co-authors of
the journal papers based on this dissertation and some members of the
supervisory committee maintain strong links with the HEPEX commu-
nity for researchers and practitioners in hydro-meteorology (Schaake
et al.} [2007; [HEPEX community) |2013). The community has provided
inspiration, valuable suggestions, co-authors and peer reviewers.

1.5 APPROACH AND OUTLINE

The research questions are addressed by two parallel, linked approaches
(Figure [5). The one approach focuses on forecast value whereas the
other focuses on forecast skill. Ultimately, an increase in forecast skill
will result in an increase in forecast value — or at least in theoretical
value.

11
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Introduction
(chapter 1)

Y Y

Pre-processing of
atmospheric ensemble
forecasts
(chapter 3)

Alternative configurations
of a statistical post-
processor
(chapter 4)

Estimating the benefits | |
(chapter 2)

Post-processing of
deterministic and of
ensemble streamflow
forecasts (chapter 5)

value skill

Y Y

Synthesis
(chapter 6)

Figure 5: Outline of the research presented in this dissertation.

The main part of this thesis consists of five chapters that have been
published as papers or have been submitted to a peer reviewed, scien-
tific journal. As a result there is some overlap in the content between
the chapters (papers). This mainly concerns sections that are part of
the appendices of the papers; these have been moved to the appendix
in the present dissertation as to remove some of this overlap.

Each chapter (paper) addresses one of the research questions or sub-
questions (see Figure [5). Chapter [2| reflects on the question of how to
estimate the value — expressed in flood risk — of both deterministic
and probabilistic flood forecasts, taking into account forecasting uncer-
tainty and its adverse consequences. Chapters [3] through 5| address the
question of how to produce skilful probabilistic forecasts. Each of these
three chapters explores a different technique for doing so: post-process-
ing of atmospheric forecasts (Chapter 3), varying the configuration of a
statistical post-processor for streamflow forecasts (Chapter |4) and the
‘dressing’ (post-processing) of deterministic and ensemble streamflow
forecasts (Chapter [5). Finally, Chapter [f revisits the research questions
and reflects on the research by discussing the contributions to the value
and skill of real-time probabilistic forecasting in hydrology.

Case studies are an important element in each of the chapters
through |5| The collection of study basins is relatively diverse. The
White Cart basin was used for the ‘estimating the value’ chapter: it
is relatively flood prone and consequences of flooding are reasonably
well known, hence it was possible to estimate potential flood damage
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and reduction thereof through flood warning response. For the “pre-
processing’ study, there was a need for both a relatively long record
of meteorological forecasts and observations at spatial and temporal
resolutions befitting the choice of study basin - this made the Rhine
a suitable case study. The ‘alternative configurations” study was essen-
tially a continuation from an earlier study (Weerts et al.| [2011) hence
it was decided to reuse the Severn as a study basin. The ‘dressing’
study, similar to the ‘pre-processing’ study, required a basin that be-
fitted meteorological observations and forecasts. For that reason, the
Rhine basin was used again, and to make the results more robust to
the choice of NWP product, the Meuse basin - which is an order of
magnitude smaller than the Rhine basin - was included in the study
also.
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ESTIMATING THE BENEFITS OF SINGLE VALUE
AND PROBABILITY FORECASTING FOR FLOOD
WARNING

ABSTRACT

Flood risk can be reduced by means of flood forecasting, warning and
response systems (FFWRS). These systems include a forecasting sub-
system which is imperfect, meaning that inherent uncertainties in hy-
drological forecasts may result in false alarms and missed events. This
forecasting uncertainty decreases the potential reduction of flood risk,
but is seldom accounted for in estimates of the benefits of FFWRSs.
In the present chapter, a method to estimate the benefits of (imper-
fect) FFWRSs in reducing flood risk is presented. The method is based
on a hydro-economic model of expected annual damage (EAD) due to
flooding, combined with the concept of Relative Economic Value (REV).
The estimated benefits include not only the reduction of flood losses
due to a warning response, but also consider the costs of the warning
response itself, as well as the costs associated with forecasting uncer-
tainty. The method allows for estimation of the benefits of FFWRSs that
use either deterministic or probabilistic forecasts. Through application
to a case study, it is shown that FFWRSs using a probabilistic forecast
have the potential to realise higher benefits at all lead-times. However,
it is also shown that provision of warning at increasing lead-time does
not necessarily lead to an increasing reduction of flood risk, but rather
that an optimal lead-time at which warnings are provided can be es-
tablished as a function of forecast uncertainty and the cost-loss ratio of
the user receiving and responding to the warning.

This chapter has been published as Verkade, J. S. and Werner, M. G. E, 2011. Estimating
the benefits of single value and probability forecasting for flood warning, Hydrology
and Earth System Sciences, 15(12), 3751-3765, DOL: 10.5194/HESS-15-3751-2011
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2.1 INTRODUCTION

Floods are an act of God but flood damage is an act of Man (White,
1942). For long though, flood management has primarily focused on
managing flood hazards, e.g. on reducing the frequency of flooding,
flood extent, depth and duration and flow velocities. Recent years have
seen an increased emphasis on the management of flood risk, where
risk is defined as the combination of the probability of occurrence of a
flood event, and its consequences in terms of casualties and economic
damage (Merz et al., [2010). This shift from flood hazard management
to flood risk management has led to an increased emphasis on non-
structural measures including, for example, spatial planning, raising
flood awareness, flood proofing and the use of flood forecasting, warn-
ing and response systems (FFWRSs).

Of these flood risk management measures, flood warning is regarded
as being one of the most effective (UNISDR, |2004). Considerable atten-
tion has been given to the effectiveness of these systems. These studies
generally focus on estimating flood losses, the potential reduction of
these losses through warning response and the relationship between
flood warning lead-time and loss reduction (e.g. |Parker} [1991} Carsell
et al.| |2004; |[Parker et al., 2008 Molinari and Handmer) |2011).

Flood forecasts, which form an essential element in the flood fore-
casting, warning and response process are, unfortunately, affected by
inherent uncertainties. These pertain to the forecasting model structure,
parameter values and initial conditions, to meteorological forcing (es-
pecially when this forcing is forecast rather than observed), and to mea-
surements and interpolations of these measurements as for example in
deriving catchment average rainfall. This forecasting uncertainty can
be explicitly accounted for if the forecasting sub-system of a FFWRS
produces an estimate of predictive uncertainty as in the case of proba-
bilistic forecasting.

Irrespective of the nature of the forecasting system, this forecasting
uncertainty can lead to “wrong” decisions: floods that occur may not
have been predicted in time, or floods that are predicted may not occur.
The costs associated with this forecasting uncertainty can be consider-
able. An analysis of the role of benefits of FFWRSs should therefore
also include these costs, consisting of an opportunity cost in the case
of a flood that was not predicted, and the cost of unnecessary warning
response in the case of a false alarm.

Flood risk can be defined as the expected value of flood related dam-
age and costs. Floods are random events and therefore flood damage
is a random event. Although the exact amount of damage in any given
year cannot be predicted, the expected annual value of flood damage
can be determined if the probability distribution of flood damage, or
damage-frequency curve is known. This expected annual damage is a
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measure of flood risk. Flood risk may be estimated using a hydro-eco-
nomic Expected Annual Damage (EAD) model (USACE, |1994; Dingman,
2002; Loucks et al., 2005), which uses three basic relationships to estab-
lish the probability distribution of flood damage: the flood frequency
curve, the rating curve and the stage-damage curve.

To evaluate the benefit of measures taken to reduce flood risk, the
cost of these measures should be taken into account. In the case of
flood warning systems, such an analysis should include the expected
reduction of flood losses due to the provision of warning and subse-
quent response, as well as the costs of operating such systems and
the costs associated with uncertainty. Whilst the first two of these can
be readily incorporated in analysing the benefit of flood warning, the
latter is less straightforward.

In meteorological applications, Relative Economic Value (e.g. Murphy,
1985;|Zhu et al., 2002) is often used to establish the value of forecasting
systems relative to two benchmark situations. These are the situations
in which no warning system is present, and the situation in which a
perfect warning system is present. In the latter, forecasting uncertainty
is absent and hence no “wrong” decisions are ever made.

To the best of our knowledge, no flood risk analyses have been pub-
lished that include the damage mitigating effects of flood warning, the
costs of the warning system, and the costs associated with forecasting
uncertainty. In the present chapter, a method is proposed that can be
used to estimate flood risk in the presence of an imperfect FFWRS.
The method consists of combining the hydro-economic EAD model
with the theory of Relative Economic Value. This combines expected
annual damage, loss reduction, cost of warning response and the costs
associated with forecasting uncertainty into an estimate of the benefit
of flood forecasting and warning in reducing flood risk.

This method allows for the comparison of the effect of flood risk
management measures of different nature. For example, the flood risk
reduction attained by the implementation of a flood warning system
can be compared with that attained by the raising of levees, installa-
tion of flood retention areas or increasing flow conveyance. Addition-
ally, the method allows for an intercomparison of FFWRSs. For exam-
ple, the benefit of systems based on deterministic forecasting can be
compared with those that are based on probabilistic forecasting. This
allows explicitly estimating the benefit of probabilistic forecasting in
terms of flood risk reduction, which so far has only been described in
terms of their potential for improved decision making in flood event
management (e.g., Krzysztofowicz, 2001; |Todini, |2004).

In the next section, the proposed method is explained in detail. In
Sect. results of a case study are presented where the method is
demonstrated by application to a small basin. The results are discussed
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in Sect. Finally, a summary and brief conclusions are presented in

Sect.

2.2 MATERIALS AND METHODS
2.2.1  Flood forecasting, warning and response systems

A properly working flood forecasting, warning and response system
(FFWRS) gives property owners, floodplain residents and responsible
authorities time to respond to a flood threat before flooding occurs.
FFWRSs usually consist of a number of sub-systems (Fig. [6). The fore-
casting sub-system produces forecasts of hydrological variables such
as water levels or flow rates, either as a deterministic single value fore-
cast or as a probability distribution. Based on these forecasts, a decision
is taken whether or not to initiate warning response. The warning-
response sub-system then consists of warning procedures and subse-
quent mitigation action that can be taken to reduce flood losses.

Although in actual operational forecasting the decision to warn will
be taken by the forecaster using guidance from the forecasting sub-
system, in the present chapter it is assumed that decisions are based on
forecasts only. Depending on the nature of the forecasting sub-system,
the decision sub-system is deterministic or probabilistic. In the case of
deterministic forecasts, it is assumed that forecast water levels that are
higher than the flooding threshold will automatically initiate a warn-
ing response. Essentially, this decision is then taken implicitly by the
forecaster. If the forecasting system provides explicit estimates of pre-
dictive uncertainty, the decision will have to be based on a probabilistic
decision rule. If the probability of forecast water levels exceeding the
flooding threshold is higher than a probability threshold, a warning re-
sponse will be initiated. This allows users to choose an optimal thresh-
old (in terms of probability threshold) at which mitigating action is
initated (Krzysztofowicz, 2001), but it is again assumed here that fore-
cast probabilities higher than the selected probability threshold will
automatically initiate a response.

The warning-response sub-system pertains to the damage-mitigating
actions that can be taken after a flood warning has been issued. Dur-
ing the time between a flood warning and the arrival of flood waters —
the mitigation time — floodplain residents can move themselves and/or
their property out of reach of the pending flood. Increasing the avail-
able mitigation time intuitively allows for increased loss reduction, and
therefore this mitigation time should be maximised (but note that with
increasing mitigation time, response costs may increase as well). Fore-
casting lead-time and mitigation time are different due to the time
needed to produce and disseminate a forecast and to take a decision
whether or not to initiate a warning response (Fig. [6) (Carsell et al,
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Figure 6: Flood forecasting, warning and response system (FFWRS) sub-
systems. Adapted from |Parker and Fordham|(1996) and |Carsell et al.
(2004).

2004). However, in the context of the present chapter the time taken
in the decision sub-system is negligible and lead-time and mitigation
time are used synonymously.

Maximum potential reduction of flood damage by flood warning re-
sponse is rarely attained as it is unlikely that all floodplain residents
will be notified in time, nor that all residents will heed the warnings
and act effectively. To account for this, Parker| (1991) and |Green and
Herschy| (1994) defined the actual flood damage avoided L, [GBP]
as a product of the maximum potential flood damage avoided with
a fully effective system (L, [GBP]), the probability that a forecast is
made in time (R [—]), the fraction of residents available to respond
to a warning (P, [—]), the fraction of residents who will respond to
a warning (Pr [—]) and the fraction of households who respond ef-
fectively (Pe [—]). Together, these probabilities and dimensionless fac-
tors, each ranging from O to 1, represent the effectiveness of the re-
sponse: Ly =L, x R x Py X P X Pe. In the UK, the Department for Envi-
ronment, Food and Rural Affairs (DEFRA) indicated the values for the
factors and probabilities (R, Pa, Pr, Pe) the Environment Agency seeks
to achieve (DEFRA), |2004). These would result in L; = 0.5 x Ly, which
is the value used in the present chapter.

2.2.2  Expected annual flood damage

Flooding is a random process and therefore flood damage is a random
process. The expected value of annual direct, tangible flood damage
can be estimated from the probability distribution of flood damage:

1
EAD = J D(P) dP (1)

0
where P is the annual probability of exceedence of a certain flood
level and D(P) is the direct, tangible flood damage caused by that flood
event (e.g.|Van Dantzig and Kriens) [1960; USACE, 1994; (Carsell et al.,
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2004; |De Bruijn, [2005; [Loucks et al., |2005). To determine the probabil-
ity distribution of flood damage, the hydro-economic EAD model (US¢
ACE, |1994; Davis et al., |2008; |Dingman), [2002; |Loucks et al.} 2005)) links
the flood frequency distribution through flood stages to flood dam-
age. The model can best be explained graphically (Fig.[7). The starting
point of the analysis is the probability distribution of flow rates (or
flood frequency curve, bottom left). A rating curve (top left) links flow
rates to flood stages. Stages higher than the flooding threshold will
cause damage, described by the stage — damage curve shown in the
top right quadrant. By linking the probability of each flood discharge
to the stage in the river to the damage occurring, the probability dis-
tribution of flood damage D(P) can be established (bottom right). The
expected annual flood damage can then be easily established as the
area enveloped by the probability-damage curve (Eq. [1).

The effect of flood risk management measures can easily be shown
in the graphical model. Measures that reduce flood frequencies push
the flood frequency curve (bottom left) towards the origin. Measures
aimed at a reduction of flood stage, e.g. by river bed deepening or
widening, change the rating curve (top left). The reduction of flood
damage, either by structural or by non-structural measures, reduce
damage associated with flood stages (top right). Ultimately, measures
that are effective in reducing flood risk will move the probability —
damage curve towards the origin (Dingman| [2002), thus reducing the
expected annual damage.

Figure [7] shows an example of the effect of a flood risk manage-
ment measure. Here, a measure was implemented that reduces flood
damage. Such a measure could be, for example, flood-proofing pri-
vate properties. The measure does not affect either the probability of
flooding or the rating curve, but does change the stage — damage re-
lationship, with a reduced damage expected at the same stage. This
results in a probability — damage relationship that lies closer to the
origin, with the expected annual damage being reduced.

2.2.3  Cost of flood warning response and cost-loss ratio

Flood forecasting, warning and response systems come at a cost, con-
sisting of initial costs for setting up the system, fixed costs for operation
and maintenance, and variable event costs for flood warning response;
the latter are incurred every time a warning is issued. The fixed costs
can be included in the EAD analysis by adding these to flood dam-
age, and shifting the stage-damage curve to the right. Strictly speak-
ing, the term “damage” is then incorrect as it also includes the cost
of measures. In this chapter, it is assumed for simplicity that the fixed
costs are included in the event costs. Additionally, the event costs are
considered independent of the height of the flood stage (contrary to
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Figure 7: Schematic representation of the hydro-economic EAD-model. The
bottom left quadrant shows the probability distribution of flow rates.
The stage-discharge relationship is shown in the top left quadrant,
and flood damage curve in the top-right quadrant. These three re-
lationships yield the damage-probability curve (bottom right). The
figure shows how a flood risk management measure affects flood
risk, with the ex-ante situation as a solid, and the ex-post as a dotted
line.

event damage which is explicitly correlated with stage). This is consid-
ered reasonable as the cost of response is incurred based on a forecast
(probability) threshold being exceeded, and therefore independent of
the actual height with which the threshold is exceeded. The cost-loss
ratio T in Eq. (2) can be used to express the costs of warning response
C as a fraction of the avoidable losses L,. It is clear that where r > 1
there is no benefit in flood warning response, whilst for a very low C
the ratio r approaches 0,

- LE (2)

high
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Table 1: Contingency table. The consequences of the items listed are in brackets.
Event observed Event NOT observed >
Warning issued hits h (C+ L) false alarms f (C) w
Warning NOT issued — misses m (Lq + Ly,) quiets g (—) w'
> e e N

2.2.4 Costs associated with forecasting uncertainty

2.2.4.1 Relative economic value

If a decision to initiate warning and response procedures is solely
based on an imperfect forecast, forecasting uncertainty may lead to
false alarms and missed events. Both false alarms and missed events
are instances of imperfect system performance and adversely impact
the potential reduction in flood risk. Combining the hydro-economic
EAD model with the theory of Relative Economic Value (e.g. Murphy,
1985; [Zhu et al,, [2002) offers a convenient way of incorporating the
costs associated with forecasting uncertainty in estimates of expected
annual damage.

Using the hydro-economic EAD model, flood risk can be estimated
for the No Warning and for the Perfect Warning cases. |Zhu et al| (2002)
define the Relative Economic Value (REV) as a dimensionless factor to
scale between these estimates. The maximum value of 1 is assigned
to the Perfect Warning case, while a warning system that has the same
skill as the climatology (here meaning the long-term average frequency
of flooding) is assigned 0. Given the low climatological frequency of
flood threshold exceedance, this can be considered equivalent to the
case with No Warning being present. The REV can be calculated based
on the skill of the FFWRS.

The performance of a FFWRS can be captured in a two-by-two con-
tingency table that shows forecast/observation pairs for dichotomous
events (Wilks| 2011). In this case, the table shows in how many cases a
flood warning was followed by a flood event (Table[1). A contingency
table is based on a record of forecasts and events and should be made
for every decision rule that is used.

In the absence of a FFWRS, a user’s flood losses will be determined
by the climatological frequency of flooding and consist of unmitigated
losses, which is the sum of the losses avoided through warning re-
sponse L,, and the losses that cannot be avoided L, for every flood
event e:

EADnowarn = € (La + Ly ). (3)
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If a FFWRS is based on perfect forecasts, a flood event is always
preceded by a warning and flood damage can always be reduced by
mitigating action. False alarms and missed events do not occur. The
expected damage then consists of the sum of cost for warning response
and unavoidable losses for every flood event:

EADperfect =e (C+ Lu)- (4)

The performance of a FFWRS based on imperfect forecasts can be
assessed using a contingency table. Missed events result in unmiti-
gated flood losses, which equal the sum of avoidable and unavoidable
losses L, + L. Loss mitigation through warning response can only be
achieved at a cost C. In case of false warnings, these are the only costs
incurred by a user. A user’s expected costs and losses consist of those
associated with hits, misses and false alarms:

EADgpwrs = h (C + Ly) + fC + m (Ly + Ly)
= ely+ (h+ ) C+mL. (5)

The Relative Economic Value (V [—]) of an imperfect warning system
is defined as the value relative to the benchmark cases of No Warning
(V = 0) and Perfect Forecasts (V = 1):

EADnowarn - EADFFWRS

= :
EADnowarn - EADperfect

(6)

Note that REV can be less than 0 if the cost of false alarms is higher
than the benefits attained by the warning system.

Substituting Eqs. (3), (4) and (5) in (), subsequent division by L, and
substitution of C/L, by r (Eq.[2) yields:

vV = ela —(h+f)C—mlL,

ely —eC
_e—(h+flr—m
N e —er
_e—(h+flr—m
= e (0 =71 . 7)

This derivation of relative economic value slightly differs from that
of, for example, Zhu et al| (2002). The difference is in the expected
expense in the absence of a warning system. Zhu et al.|include an ad-
ditional decision where, based on a minimisation of cost, a user may
decide either to never, or to always take action. In the latter case, a single
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warning-response action is assumed to have an impact that is unlim-
ited in time, leading to an expected expense of C + eL,. Including this
EADnowarn =min [e (L + Ly), C+ eLy] in the analysis would yield rela-
tive economic value as a function of min (e, r) which is discontinuous
at v = e. In the present application, the climatological frequency of
flooding e approaches 0 and most if not all users’ cost-loss ratio v is
greater than e. For that reason, the present derivation may be simpli-
fied. It may be noted that flood risk in the “always take action” option
may be estimated by using the hydro-economic EAD-model.

2.2.4.2 Optimal warning rule

It is assumed that a decision to issue a warning will only be taken if
the expected value of the warning response is less than the expected
value of not issuing a warning. This yields the optimal warning rule:

C+PxLy < Px(La+Ly)

C
[
La
P > (8)

with P the predicted probability of flooding. Only if a user applies
the optimal warning rule to flood event decision making, will the ben-
efits of probability forecasting be fully realised.

2.2.4.3 Combining expected annual damage with relative economic value

Flood risk in the No Warning and Perfect Forecasts cases can be calcu-
lated using the hydro-economic EAD-model. This equally yields
EADpowarn and EADperfeCt respectively. To calculate EADgrwrs, REV is
subsequently used to scale between the flood risk of benchmark cases

using Eq. (6):

EADgrwrs = EADnowarn — V (EADnowarn - EADperfect) . (9)

In words: the flood risk in case of a warning system being present
equals the flood risk in the absence of such a system minus the avoid-
able risk, which is scaled by the warning system performance. A per-
fect system (where V = 1) brings the full benefits of a warning sys-
tem (EADppwrs = EADperect). A system that performs as well as act-
ing on climatological information (V = 0) does not bring any addi-
tional benefits, and is equivalent to no warning system being present:
EADgprwrs = EADnowarn. A system that brings benefits compared to
the absence of a warning system (0 < V < 1) will result in an expected
annual damage between that of the benchmark cases: EADpowarn >
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EADgpwrs > EADperfect- If the warning system performance is worse
than that in the No Warning case (V < 0), flood risk will increase to lev-
els higher than that in the No Warning case: EADgrwrs > EADnowarn.
In that case, there is no economic rationale for flood warning.

As the potential for loss mitigation increases with increasing lead-
time provided by the warning system, flood risk in the presence of a
FFWRS is different for different lead-times: EADggwrs =f (n) (where n
is lead-time). Additionally, Eq. (7) shows that relative economic value is
expressed as a function of the users’ cost-loss ratios: V =f (r). Explicitly
including these dependencies in Eq. (g) gives:

EADgrwrs (n, 1) = EADnowarn — V (1) (EADnowarn - EADperfect (T\.)) .
(10)

The assumption that was made here is that flood forecasting perfor-
mance, as expressed by V, does not depend on the height of the flood
wave. This is considered a reasonable assumption because the warning
system performance is based on the exceedence of a flooding threshold
only, and not on the prediction of the height of the flood wave.

2.2.5 Case study: White Cart Water

The combination of hydro-economic EAD model with relative economic
value is used to estimate flood risk in a small basin in Scotland. The
White Cart Water is a river located in the greater Glasgow area and a
tributary of the river Clyde. This case study focuses on Overlee gaug-
ing station, which is where the White Cart Water enters the city of
Glasgow, and the nearby flood warning locations at which flood dam-
age to residential properties has been known to occur. The White Cart
Water at Overlee has an upstream area of 106km?, with an average
flow in the order of 3.5m3s~!. The upper parts of the catchment are
mainly rural catchment, while the lower catchment is predominantly
urban. The White Cart is a very fast responding catchment, with a
time of concentration of approximately 3 h. Flooding frequently occurs
in the reaches downstream of Overlee, where the river flows through
dense residential areas of southern Glasgow. The data record used in
this study contains a dozen or so events, even though this number is
obscured somewhat in relation to the number of forecasts in the same
period (e.g., Table [3).

To mitigate the adverse consequences of flooding, a flood warning
scheme is in place. The forecasting and warning system (Cranston
et al} [2007; Werner et al., |2009) is operated by the Scottish Environ-
mental Protection Agency (SEPA). It is a statutory requirement to SEPA
to issue flood warnings no less than three hours in advance (Werner
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and Cranston| |2009). The operational forecasting system includes one
source of forecast precipitation only (radar now/forecasts) which has
a maximum lead time of six hours. While this does not allow the at
risk community to take extensive mitigating action, some actions can
(and indeed are) taken. Empirical evidence suggests that the initial four
hour warning period is associated with the greatest savings (Parker,
1991; NHRC, |2002; |Carsell et al., 2004).

Flood risk is estimated for four cases. The two benchmark cases — No
Warning and Perfect Forecasts — are investigated first. Subsequently,
two imperfect FFWRSs are investigated: one in which deterministic
forecasts are used and one in which probabilistic forecasts are used.

Re-forecasting analyses were carried out using an off-line version of
an existing forecast production system: FEWS Scotland, which is based
on the Delft-FEWS shell (Werner et al 2013). Deterministic hydrologi-
cal forecasts for White Cart at Overlee are produced using a sequence
of a PDM rainfall runoff model (Moore| |1985), a kinematic wave rout-
ing model and an ARMA error correction model (Moore et al.,|1990).

Predictive hydrological uncertainty was estimated using Quantile
Regression (QR) (Koenker and Bassett Jr, [1978; [Koenker and Hallock,
2001} |[Koenker, 2005; |Weerts et al., 2011). QR is a post-processing
method that can be used to characterise the relationship between wa-
ter level forecasts and water level observations in terms of quantiles, or
probabilities of exceedence or non-exceedence. See Appendix[A|for de-
tails. The use of a post-processor in near real-time forecasting systems
is attractive as the computation time required is limited; in this case,
the post-processor takes less than ten seconds to estimate the predic-
tive distribution.

For the White Cart case study, QR was calibrated using a five year
period (1 April 1991 through 31 March 1996), and subsequently vali-
dated on a period covering nearly eleven years (1 April 1996 through
20 February 2007). For both calibration and validation periods, records
of deterministic water level re-forecasts were constructed using FEWS
Scotland. The hydrological model was forced using observed precipi-
tation. While using so-called perfect forcing significantly reduces un-
certainty compared to a situation in which precipitation forecasts are
used (Werner and Cranston) 2009), this equally affects both probability
forecasts and deterministic forecasts. It does therefore not affect the
demonstration of the method presented in this chapter.

Deterministic water level forecasts from the calibration period were
paired with observations and from these two time series, the quan-
tile regression relationship h.=f(s) was determined for all quan-
tiles T (.01,.02, ...,,.99). For the validation period, a probabilistic re-
forecast was established through application of the quantile regres-
sion relationship to each deterministic forecast to derive water levels
corresponding to the 99 quantiles T € (.01,.02, ...,.99). From this discre-
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Figure 8: Sample probability forecast as produced by the research version
of the forecast production system FEWS Scotland. Two graphs are
shown: a discretised predictive probability distribution of water lev-
els at quantiles T € (.01,.05,.10,.25,.50,.75,.90,.95,.99) (top) and the
probability of exceedence of the flooding threshold (bottom). In both
graphs, the vertical red line indicates the forecast issue time (ty). In
this case, it was forecast that there was a 20 % probability of threshold
exceedence at to + 6 h. The posterior water level observation (dotted
blue line) showed that the threshold was exceeded at this time.

tised predictive probability distribution, the probability of exceedence
of the flooding threshold (local datum + 1.5 m) was determined (Fig. [§).
This threshold coincides with the water level at which flood damage
starts to occur.

2.3 CASE STUDY RESULTS
2.3.1  Case 1: no warning

For Overlee gauging station, an 18-year record of 15-minute water level
observations and a rating curve were available. Observed water levels
were rated and from this record the flood duration curve was estab-
lished. A stage-damage relation was not available and was established.
First, the number of properties affected as a function of flood stage at

11-02-1998
11:00:00
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Overlee was estimated. For simplicity it was assumed that inundation
depth is linearly correlated with river stage at Overlee, i.e. that an in-
crease in river stage at Overlee leads to a similar increase in river stage
at these properties. The damage to individual properties as a func-
tion of inundation depth was determined from Penning-Rowsell et al.
(2005). Combining the number of properties affected as a result of a
level at the Overlee gauging station and the flood damage per individ-
ual property yields the flood damage as a function of stage at Overlee.
Using the hydro-economic EAD-model, the depth-damage probability
distribution was established (black line in Fig [g). From this distribu-
tion, the expected annual flood damage can be calculated. In this case,
this expected damage (EADpowarn) amounts to 394 695 GBPa~!.

2.3.2  Case 2: perfect forecasts

One of the primary aims of a FFWRS is to reduce flood losses. Flood
damage for individual properties can be considered as the sum of
damage to building fabric and damage to household inventory. It is
assumed that in the White Cart basin, given the relatively short time
available for mitigating action, damage to building fabric cannot be
avoided and constitutes an unavoidable loss. (Carsell et al.| (2004) inves-
tigated which categories of household items may be saved given a cer-
tain length of mitigation time. This information was combined with the
stage-damage relationships from [Penning-Rowsell et al.| (2005)), which
is conveniently broken down into similar categories. This allows for
estimating new stage-damage curves for single residential properties,
conditional on the length of mitigation time available. These can be
used to determine new stage-damage curves for the White Cart basin,
which are subsequently used to plot the probability — damage curves
for the Perfect Forecasts case (Fig.[g). Calculating the area below these
curves yields the expected annual flood damage, conditional on the
presence of a perfect warning system and given a certain mitigation
time. These amounts are listed in Table[2l The AEAD column shows the
flood risk reduction (losses avoided) achieved by the (perfect) warning
system. The table shows that losses avoided increase with lead-time as
expected, although the relationship is not smooth due to increments in
the categories of items being potentially saved at increasing lead-times.

Loss reduction comes at a cost, namely that of flood warning re-
sponse. In the hydro-economic EAD model, costs can be added to
flood damage in the stage — damage relationship (top right quadrant of
Fig[7). This leads to a changed probability — damage relationship, thus
yielding new estimates of flood risk which now includes the cost of
warning response. Assuming that the response cost may be expressed
as a fraction of avoidable losses (Eq. [2), resulting flood risk (original
flood risk minus loss reduction plus response costs) may be plotted
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Figure 9: Hydro-economic EAD model for the No Warning (black) and Perfect
Forecasts (grey) cases. Reduced damage as a result of flood warn-
ing response results in reduced expected damage; from right to left,
grey lines show damage curves as a function of increasing mitigation
times from 1 to 6 hours. Resulting flood risk is listed in Table

as a function of r (Fig. [10). This shows that for users whose costs are
negligible (which means that v ~0), the maximum loss reduction is at-
tained (i.e. that of the Perfect Forecasts case), with an increase of losses
avoided as lead-time increases (Eq. [2). Flood risk increases with cost-
loss ratio; if the cost of warning response approaches the amount of
potential loss reduction (r — 1), flood risk approaches original, No
Warning levels. For values of v > 1, where the cost of response is larger
than the losses avoided, the total flood risk would increase when com-
pared to the case of No Warning. This is not considered here as it
would then clearly not be rational to employ a flood warning service.
Note that lines for 5- and 6-h lead-times coincide as the potential losses
avoided are equal.

2.3.3 Case 3: deterministic forecasts

In reality, the forecasting component of a FFWRS is unlikely to be per-
fect and predictive uncertainty will result in both missed events and
false alarms occurring. For White Cart, the frequency of these was
determined using the re-forecasting analysis. The available record of
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Table 2: Loss reduction in terms of expected annual damage (response costs
not included).

Case mitigation EAD AEAD AEAD
time [h] [GBP] [GBP] [%]

No Warning 394 695

Perfect forecasts 1 386 871 — 7824 —2%
Perfect forecasts 2 384 640 —10055 —3%
Perfect forecasts 3 384 129 —10566 —3%
Perfect forecasts 4 359473 —35221 —9%
Perfect forecasts 5 349913 —44782 —11%
Perfect forecasts 6 349913 —44 782 —11%

precipitation observations (April 1996-January 2007) was used to force
the hydrological forecasting model for White Cart. Forecasts were pro-
duced four times daily with a maximum forecast horizon of 6h and
paired with their corresponding observations.

This information was subsequently used to create contingency ta-
bles (one for every lead-time, Table . This table shows the number
of occurrences of hits h, missed events m, false alarms f and quiets
q respectively, adding up to the total number of decisions made N.
This is a high number as the re-forecasting analysis covered almost
11 years with a re-forecast being produced four times daily. While this
re-forecasting frequency seems high, it still causes some sampling is-
sues, as shown by the performance of the 3-h lead-time re-forecasts
versus that of the 5-h lead-time re-forecasts: the latter has a better ratio
of hits to false alarms than the former.

The information from the contingency tables was used to determine
REV as a function of cost-loss ratio and lead-time (Fig. [11). The figure
shows that REV for the 1-h forecasts is unaffected by false alarms as
none were observed in the re-forecasting period at this short lead-time.
This results in the REV being independent of the cost-loss ratio. As
there were misses at these short lead-times, the REV is lower than that
of the perfect forecast. Longer lead-times all show declining REV with
increasing cost-loss ratios. This is due to false alarms which become
increasingly expensive with increasing values of r. It can now be seen
that the REV for forecasts at 5- and 6-h lead-time no longer coincide —
as the uncertainty increases with lead-time, resulting in an increasing
number of false alarms and misses.

Flood risk in the present case can be calculated by scaling the flood
risk estimates from benchmark cases No Warning and Perfect Fore-
casts with REV, using Eq. (10). This gives EADgpwrs as a function of
lead-time and of cost-loss ratio. Flood risks for the Deterministic Fore-
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Figure 10: Flood risk in the Perfect Forecasts case, as a function of cost-loss ra-
tio and lead-times. This flood risk includes unavoidable flood dam-
age and the cost of flood warning response.

casting case for all lead-times and all users are shown in Fig. 12| The
figure also shows the original flood risk (i.e. from the No Warning
case). It can be seen that for users with a cost-loss ratio 0 < r < .8, is-
suing warnings with 5-h lead-time leads to the lowest flood risk. Users
with higher cost-loss ratios benefit most from warnings based on a 1-
h lead-time. For these users, false alarms are costly and minimising
forecasting uncertainty yields more benefits than a longer mitigation
time.

For all lead-times larger than 1 h, the resulting flood risk increases be-
yond that of the case using No Warning for the higher values of r. This
is again attributed to the increasing expense of false warning-response.
At 6-h lead-times a much higher residual flood risk is found than at
the 5-h lead-times, meaning that considering 6-h lead-time forecasts in
making a decision to initiate a warning response is detrimental for val-
ues of T > 0.75. Clearly this is a result of the lack of additional potential
of avoiding losses at this increased lead-time (Table [2), combined with
the occurrence of fewer hits and more misses and false alarms.
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Table 3: Performance of the FFWRS based on deterministic forecasts, expressed
in the elements of a contingency table.

lead-time [h] h[-] m[-] f[-] q[-] N[

1 10 2 0 15860 15872
2 10 4 2 15856 15872
3 6 9 2 15855 15872
4 7 7 2 15856 15872
5 8 6 2 15856 15872
6 6 9 3 15854 15872

2.3.4 Case 4: probabilistic forecasts

For the forecasting sub-system based on probabilistic forecasts, users
may choose their own decision rule. This means that they may either
raise or lower the probability threshold at which a decision whether or
not to initiate a warning response is taken. While probabilistic forecast-
ing and associated decision rules do not affect flood losses that can be
avoided at different lead-times, it does affect probabilities of detection
and false alarm rates and therefore allows the user to optimise residual
flood risk by tuning the costs associated with forecasting uncertainty.

In this case, a hindcast was made using the hydrological model
and the QR post-processor. The same hindcasting period and fore-
casting frequencies as in the Deterministic Forecasts case (Sect.
were used. For every forecast, the probability of exceeding the flood-
ing threshold was determined, and these were paired with the ob-
served threshold exceedences. From these pairs of forecasts and obser-
vations, for every decision rule, the number of resulting hits, misses,
false alarms and quiets was determined. Table 4 shows these num-
bers for forecasts with a 3-h leadtime. For the decision rule ‘warn if
forecasted event probability is equal to or higher than o per cent’ (i.e.
always issue a warning) the number of hits is equal to the number
of observed events (h = e = 15) with the number of false alarms be-
ing equal to the number of forecasts made, minus the number of hits
(f = N—h = 15857). At the other extreme, the decision rule ‘warn
if forecasted event probability equals 100 per cent’ results in zero hits,
zero false alarms and all events missed.

These in turn were used to determine REV as a function of cost-loss
ratio and lead-time. Figure [13[ shows the REV for forecast with a lead-
time of 3 h. Note that the figure shows multiple REV-curves; one for ev-
ery decision rule, where probability of flooding exceeds o, .1, .2, ..., .9,
and 1. The upper enveloping curve is printed in black, showing the op-
timal decision rule as a function of the cost-loss ratio r. It is assumed
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Figure 11: Relative economic value as a function of cost-loss ratio and lead-
time in the Deterministic Forecasts case.

that every user will optimises the REV by choosing the decision rule
coinciding with their own cost-loss ratio. The procedure to calculate
flood risk is identical to that used in the previous case. Figure[14|shows
the resulting flood risk. For higher values of 1, the increasing cost of re-
sponse to false alarms reduce the benefit of flood warning, ultimately
resulting in a higher residual flood risk than in the No Warning case.
The increasing number of false alarms for decision rules with decreas-
ing thresholds compounds this effect. The decision rule with a proba-
bility threshold of 1 converges to the same residual risk as for the No
Warning case for all r, with the added cost of operating the (useless)
FFWRS.

2.3.5 Summary of results

The flood risk estimates for different scenarios are summarised in
Fig. The figure contains six plots, one for each lead-time consid-
ered. All plots show results from the four cases investigated. The No
Warning case results in flood risk values that are independent of ei-
ther lead-time or forecasting uncertainty and therefore constant for
all users. In case of a perfect FFWRS, increased lead-time results in
increased loss mitigation and decreasing flood risk. Maximum loss
mitigation, i.e. minimum flood risk, is attained for those users whose
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Figure 12: Flood risk as a function of cost-loss ratio and lead-time in the Deter-
ministic Forecasts case.

actions come at little or no cost (r~0). For all other users, the costs
of mitigating action increases flood risk. If the cost of flood response
equals the mitigated losses (r — 1), flood risk is equal to that in the No
Warning situation.

Results of the imperfect FFWRS cases show that there is a trade-off
between the benefits of loss mitigation and the costs associated with
forecasting uncertainty. Both increase with lead-time, while that bene-
fit decreases with increasing cost-loss ratio. In all cases, the envelope
curve of the probabilistic forecasts results in a lower residual risk than
for the deterministic forecast, irrespective of the lead-time and cost-loss
ratio of the user. As the cost-loss ratio approaches zero, the probabilis-
tic forecast converges to the perfect forecast system. This is in a sense
meaningless, as the low cost of response results in probability thresh-
olds being set to zero so that the response decision is positive for every
forecast made. This artefact disappears with increasing response costs.
For users with high cost-loss ratios, the costs associated with forecast-
ing uncertainty can be so high that the resulting flood risk is higher
than it would be if no system were in place. It is interesting to note
that the cost-loss ratio at which this occurs is very similar for both the
probabilistic and deterministic forecasting sub-system.
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Table 4: Performance of a warning system based on probabilistic forecasts, ex-
pressed in the elements of a contingency table. This table pertains to
decisions based on forecasts with a 3-h lead-time.

threshold [-] h[-] m[-] f[-] ql-] NI[]

0 15 0 15857 0 15872
0.1 15 0 17 15840 15872
0.2 13 2 7 15850 15872
0.3 13 2 6 15851 15872
0.4 11 4 5 15852 15872
0.5 11 4 5 15852 15872
0.6 8 7 2 15855 15872
0.7 6 9 2 15855 15872
0.8 3 12 1 15856 15872
0.9 3 12 1 15856 15872
1 0 15 o 15857 15872

2.4 DISCUSSION
2.4.1 Probabilistic versus deterministic forecasting

The method presented allows for estimating the costs of forecasting
uncertainty given different decision rules. Thus, deterministic forecasts
and associated decision rules can be compared with probabilistic fore-
casts and decisions. The analysis shows that when optimising on long-
term flood risk, probabilistic forecasts yield higher flood risk reduc-
tions than deterministic forecasts. This is due to the fact that a user can
choose a probabilistic decision rule that is befitting of the user’s cost-
loss ratio, thus optimising on expected costs and benefits. In the case of
deterministic forecast, this is not possible due to the absence of uncer-
tainty information and therefore a lack of information for risk-based
decision-making.

In the application of the method to the White Cart, observed precipi-
tation was used in the forecast re-analysis period. Forecast uncertainty
was estimated through Quantile Regression, with the regressions de-
rived based on the deterministic model performance using these data.
There is interdependency between the two types of forecasts: the un-
certainties in the deterministic forecasts are made explicit in the prob-
abilistic forecast. The main difference, of course, is that these uncer-
tainties remain “hidden” in the case of single value forecasting, thus
preventing risk-based decision making.
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Figure 13: Relative economic value as a function of cost-loss ratio for deci-
sions based on probabilistic forecasts with a 3-h lead-time. The grey
lines correspond to the values of V for each of the decision rules
P>0,01,02, ..., 1 (from top to bottom). The black line is the
envelope of these curves.

If the technique for producing probability forecasts would depend
on the use of different forcing data than that used for producing de-
terministic forecasts, this interdependency could well be different. It
is not uncommon, for example, for flood forecasting agencies to use a
high-resolution deterministic meteorological forecast for a determinis-
tic forecast, and a meteorological ensemble product of lesser resolution
for a probability forecast. In that case, the uncertainties could be dif-
ferent and the relative performance of the two cases could be different
also.

2.4.2 Limitations and assumptions

The hydro-economic EAD model and the theory of Relative Economic
Value are tools that value systems in terms of direct, tangible damage
only. Indirect and/or intangible flood damage is not included in the
flood risk estimates, nor in the estimates of cost-loss ratios. Notably,
there may be a wish to estimate the number of flood casualties and the
reduction thereof by flood risk management measures (e.g. [Molinari,
2011). Possibly, the model can be adapted to include casualties and
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Figure 14: Flood risk as a function of cost-loss ratio for decisions based on
probabilistic forecasts with a 3-h lead-time. The grey lines corre-
spond to the values of flood risk for each of the decision rules
P >0, 01 02, ..., 1 (from bottom upwards). The black line is
the envelope of these curves.

other types of flood damage but in the present chapter, no attempt to
do that has been made as it was deemed to be outside of its scope.

Another limitation to the hydro-economic EAD model is the assump-
tion that direct, tangible flood damage can be estimated as a function
of flood depth only. This omits other important determinants such as
flow velocity, flood duration and flood water quality. Merz et al.| (2010)
suggest that flood depth is the most important indicator of flood dam-
age, as is considered here. Penning-Rowsell et al.| (cited in [Messner
et al., [2007) propose a simple method to include additional parame-
ters such as duration of flooding by increasing the damage at a given
depth. Other factors can equally be incorporated to create a “com-
pound” depth-damage curve.

In this chapter, it was assumed that decisions are based on forecasts
only. In reality, forecasters will add an important element to the fore-
cast model output: expert judgement. Very likely, this expert judge-
ment will introduce a probabilistic element to deterministic model out-
puts. Forecasters will only issue a warning if they think there is a high
probability of flooding. In that sense, the deterministic system that is
assessed in this chapter is a stereotype that may not be easily found in
reality.
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Figure 15: Flood risk as a function of cost-loss ratio, for all lead-times and all
cases.

Flood warning systems introduce costs, including initial costs for
designing and implementing a system, recurring costs for operation
and maintenance, and variable per-event costs. The approach that is
presented in this chapter assumes that these costs can all be included in
the per-event costs. Alternative attributions of costs may exist though.
Possibly, these alternative methods can be included in the method. For
example, recurring costs may be included in flood risk estimates by
shifting the stage — damage curve to the right. Initial costs can then be
included in annually recurring costs. This is in line with best practices
on depreciation of assets, where the investment in the warning system
is allocated to its expected useful life.

In calculating the benefits of the provision of warning, it would seem
that the reduction of losses in this case are modest. These have been de-
rived using only a rough estimate of damage to inundation in the flood
warning area downstream of Overlee, and a more complete flood risk
assessment would be required to provide more reliable figures. When
considering the possible benefits of flood warning, it is important to
consider the economy of scale. Operational costs for forecasting are in-
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curred in FEWS Scotland at the national level (Werner et al. 2009),
which provides warnings across Scotland. Whilst the costs of mod-
elling increase with every warning scheme considered, it is clear that
many costs are shared — thus increasing the relative benefit of flood
warning.

2.4.3 Possible implications for policymakers

The present study shows that FFWRS that are based on probabilistic
forecasting bring higher benefits than FFWRS that are based on deter-
ministic forecasting. These benefits can only be realised, of course, if
forecasting authorities include probability forecasting in their standard
operating procedures. In England and Wales, such a move was recently
suggested by Pitt| (2008). However, the Pitt Review also suggested that
“...the Met Office and the Environment Agency should produce an assessment
of the options for issuing warnings against a lower threshold of probability” .
The present study, however, shows that this may not be a good option
for all forecast users.

Probabilistic forecasting allows for a decision maker to choose a de-
cision rule in terms of the required minimum probability of threshold
exceedence. This assumes that the user is capable of optimal decision
making in the presence of uncertainty, but also that the cost-loss ratio
is known. Especially the latter is not trivial and may be subject to con-
siderable uncertainties. Also, a user’s cost loss ratio may change over
time and may depend on flood stage and lead-time.

The benefits of FFWRSs depend to a high degree on system effi-
ciency, which consists of a number of factors pertaining to other el-
ements of a FFWRS than its forecasting component. Here, it was as-
sumed that damage mitigation is half of the potential damage mitiga-
tion (L =.5Lp). Note that this affects all ‘with warning’ cases equally.
Increasing system efficiency is outside of the scope of the present chap-
ter but currently the topic of scientific research (e.g. Parker et al., |2008;
Molinari and Handmer, |2011)).

The benefits of probabilistic forecasting can only be attained if fore-
cast users apply optimal decision rules, i.e. if they are able to manage
predictive hydrological uncertainty. This may pose substantial require-
ments to decision makers. Possibly, they will have to be trained in de-
cision making. Also, it is likely that a shift to probabilistic forecasting
will require forecasting procedures to be adjusted.

The approach that was presented may help a decision maker in pri-
oritising available flood risk management measures. The present chap-
ter shows that these may include measures aimed at reducing either
the cost of warning response, at increasing the potential loss reduc-
tion, or both. For example, increasing the potential loss reduction may
be achieved by increasing the efficiency of flood warning (Sect.
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through awareness raising or flood response exercises. The flood risk
analysis now allows for these non-structural measures to be compared
with structural engineering measures.

2.4.4 Open questions and future research

Probabilistic forecasts used in the present study have not been evalu-
ated in terms of reliability or sharpness. Whereas here, the envelope
of multiple probabilistic forecasting risk curves was used, it was not
checked whether these coincide with optimal decision rules. Should
the probability forecasts show poor calibration, this may not be the
case. Additionally, while it is known that the value of a FFWRS does
not always increase with forecasting accuracy (Murphy and Ehrendor;
fer| 1987), it is assumed that the value will increase with increasing
sharpness. It would be worthwhile to have a clearer idea of what qual-
ities of a forecast need to be improved for maximisation of value.

The benefits of probability forecasting stem from the possibility of
tuning a decision rule so that an optimal balance between forecasting
lead-time and forecasting uncertainty is attained. This is assumed not
be the case in deterministic forecasting as only a single decision rule
is deemed possible. Theoretically however, this assumption may be re-
laxed and warnings may be issued against a single value threshold
different from the flood level. This calibration of deterministic warn-
ings may bring identical benefits.

In reality, FFWRS rarely use a single threshold only. Often, a phased
warning and response approach is used. These phases may range from
an increase in forecasting frequency to evacuation of floodplain resi-
dents. In principle, a phased approach will also benefit from a move to
probabilistic forecasting.

2.5 SUMMARY AND CONCLUSIONS

A method for estimating the benefits of flood forecasting and warning,
and comparing this against the benefit of other flood risk reduction
measures is presented. The method is based on the established hy-
dro-economic expected annual damage (EAD) model. This model is
extended with the concept of Relative Economic Value (REV), which is
a metric for verifying probability forecasts in terms of economic bene-
fits relative to scenarios where a forecasting system is either absent, or
perfect. This allows the cost of predictive uncertainty in estimating the
benefit of an uncertain (or imperfect) flood warning to be considered.
The method allows for comparing the benefits of warning systems rely-
ing on deterministic, single value forecasts with those using probability
forecasts. In addition, the method may be used to estimate flood risk
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reduction through improving flood forecasts, e.g. by using more reliable
forcings, better models, improved model parametrisation and/or data
assimilation.

In the probabilistic case, the probability threshold at which a re-
sponse is initiated can additionally be optimally chosen as a function of
the cost-loss ratio of the forecast user. As uncertainty can be expected
to increase with lead time, the method allows an optimal forecast lead-
time to be determined, based on the minimisation of long-term flood
risk

The method is applied in a case study to the White Cart Water, a
small catchment on the outskirts of Glasgow, Scotland. In this case
study it is shown that:

— Using probability forecasts (in combination with the optimal warn-
ing rule) results in lower values of residual flood risk when com-
pared to using deterministic, single value forecasts. This is noted
throughout different lead times and cost-loss ratios of the user of
the forecast.

— The optimal lead-time for warning is not necessarily equal to the
longest lead-time that can be provided by the forecasting system, but
that it is a function of the cost-loss ratio of the user of the forecast,
as well as the uncertainty of the forecast.
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POST-PROCESSING ECMWF PRECIPITATION AND
TEMPERATURE ENSEMBLE REFORECASTS FOR
OPERATIONAL HYDROLOGIC FORECASTING AT
VARIOUS SPATIAL SCALES

ABSTRACT

The ECMWEF temperature and precipitation ensemble reforecasts are
evaluated for biases in the mean, spread and forecast probabilities,
and how these biases propagate to streamflow ensemble forecasts. The
forcing ensembles are subsequently post-processed to reduce bias and
increase skill, and to investigate whether this leads to improved stream-
flow ensemble forecasts. Multiple post-processing techniques are used:
quantile-to-quantile transform, linear regression with an assumption
of bivariate normality and logistic regression. Both the raw and post-
processed ensembles are run through a hydrologic model of the river
Rhine to create streamflow ensembles. The results are compared using
multiple verification metrics and skill scores: relative mean error, Brier
skill score and its decompositions, mean continuous ranked probabil-
ity skill score and its decomposition, and the ROC score. Verification
of the streamflow ensembles is performed at multiple spatial scales:
relatively small headwater basins, large tributaries and the Rhine out-
let at Lobith. The streamflow ensembles are verified against simulated
streamflow, in order to isolate the effects of biases in the forcing en-
sembles and any improvements therein. The results indicate that the
forcing ensembles contain significant biases, and that these cascade to
the streamflow ensembles. Some of the bias in the forcing ensembles
is unconditional in nature; this was resolved by a simple quantile-to-
quantile transform. Improvements in conditional bias and skill of the
forcing ensembles vary with forecast lead time, amount, and spatial
scale, but are generally moderate. The translation to streamflow fore-
cast skill is further muted, and several explanations are considered,
including limitations in the modelling of the space-time covariability
of the forcing ensembles and the presence of storages.

This chapter has been published as Verkade, ]J.S., ].D. Brown, P. Reggiani, and A.H.
Weerts. Post-processing ECMWEF Precipitation and Temperature Ensemble Reforecasts
for Operational Hydrologic Forecasting at Various Spatial Scales. Journal of Hydrol-
ogy 501 (September 2013): 73-91. DOI: [10.1016/J.JHYDROL.2013.07.039, Supplemental
information related to this chapter is available at an online data repository via |http
//dx.doi.org/10.4121/uuid:56637037-8197-472b-b143-2f87adf49abc
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3.1 INTRODUCTION

Hydrologic forecasts are inherently uncertain. Uncertainties originate
from the forcing data and from the initial conditions, the model struc-
ture and its parameters. Estimating the uncertainties in hydrologic fore-
casts yields probabilistic forecasts that form one input to risk-based de-
cision making. While “best practice” for using these probabilistic fore-
casts attracts ongoing debate, there is good evidence to suggest that
probabilistic forecasts could improve decision-making if used appro-
priately (e.g. Krzysztofowicz| [2001} |[Raiffa and Schlaifer} [1961; |Ramos
et al.| |2012; |Todini, |2004; Verkade and Werner) |2011).

Hydrologic models are often forced with the output from numerical
weather prediction (NWP) models. As hydrologic models are sensitive
to the forcing inputs, and meteorological forecasts often contain signifi-
cant biases and uncertainties, the forcing data is typically an important
source of bias and uncertainty in streamflow forecasting. Meteorologi-
cal ensemble prediction systems (EPS) are increasingly used in hydro-
logic prediction (see, for example, Cloke and Pappenberger||2009| for
an overview of ensemble use in flood forecasting). Examples of mete-
orological EPS include the National Centers for Environmental Predic-
tion’s Global Ensemble Forecast System (GEFS; |Hamill and Whitaker
2006)), the UK Met Office’s Global and Regional Ensemble Prediction
System (MOGREPS; [Bowler et al.2008; |[Schellekens et al|2011) and
the European Centre for Medium-Range Weather Forecasts” Ensemble
Prediction System (ECMWEF-EPS; Buizza et al.|2007).

Due to limitations of the models and associated data, forecasts from
meteorological EPS generally contain biases in the mean, spread and
higher moments of their forecast distributions. These biases are man-
ifest at temporal and spatial scales that are relevant to hydrologic
prediction. The information content in the raw forcing may contain
valuable information for post-processing. A variety of techniques may
be used for this, including techniques that use single-valued predic-
tors, such as the ensemble mean of the forcing forecast (e.g. Kelly and
Krzysztofowicz, |2000; [Reggiani and Weerts, 2008b; |Zhao et al.} |2011),
and techniques that use additional moments or all ensemble members,
as well as auxiliary variables.

Biases in forcing ensembles propagate through the hydro-meteoro-
logical system and may, therefore, introduce biases into the stream-
flow predictions. Biases in streamflow forecasts are often removed
through statistical post-processing® where, based on the historical per-

! In this chapter, the term post-processing is used to indicate reduction of biases and/or
estimation of uncertainties using statistical techniques that are applied subsequently to
a model run. As such, post-processing is synonymous with bias-correction, forecast cali-
bration, statistically correcting, and preprocessing. In hydrology, the term preprocessing
is sometimes used to indicate the post-processing of meteorological forcings prior to
being used in a hydrologic model.
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formance of the forecasting system, operational streamflow forecasts
are statistically corrected in real-time (e.g. [Bogner and Pappenberger,
2011} Brown and Seo| [2013} Krzysztofowicz, 1999; Reggiani and Weerts),
2008a; (Todini, |2008; Weerts et al |2011). This correction may lump to-
gether the hydrologic and meteorological uncertainties or factor them
separately (Brown and Seo| |2013). The two sources of uncertainty are
lumped together by calibrating the streamflow post-processor on ob-
served streamflow. The hydrologic uncertainties are factored out by
calibrating the streamflow post-processor on simulated streamflow, i.e.
on streamflow predictions with observed forcing (Seo et al.,|2006;Zhao
et al, |2011). In both cases, the streamflow forecasts may benefit from
post-processing of the forcing forecasts. However, in separately ac-
counting for the hydrologic uncertainties (the first case), it is assumed
that the meteorological uncertainties and biases have been adequately
addressed. In contrast, corrections to the streamflow should indirectly
account for the meteorological biases and uncertainties if the forcing
and hydrologic uncertainties are lumped together into a streamflow
postprocessor.

Important questions remain about the combined benefits of forcing
and streamflow post-processing in this context. For example, lumping
together the forcing and streamflow uncertainties may lead to strongly
heterogeneous behaviours that are difficult to model statistically. How-
ever, post-processing of forcing forecasts is generally complex and re-
source intensive, requiring statistical models of temporal, spatial and
cross-variable relationships to which streamflow is often sensitive and
for which sample sizes may be limited; in short, forcing bias correction
may leave substantial residual biases and invoke imperfect models of
space-time covariability.

Indeed, initial attempts to address this issue have been reported in
the scientific literature. [Kang et al. (2010) focused on the reduction
of uncertainties by applying post-processing to predicted forcings, to
predicted streamflow and both. In their study, post-processed ensem-
ble members were re-ordered using the Schaake Shuffle prior to being
used in the hydrologic and hydrodynamic models. The Schaake Shuf-
fle aims to capture spatio-temporal patterns in the observed meteoro-
logical forcings that are lost following post-processing of the marginal
distributions. The authors found that the forecasts were most skillful
when combining post-processing of the forcings with post-processing
of the streamflow forecasts. However, they also note that post-proc-
essing of the streamflow forecasts more effectively reduced the total
uncertainty than post-processing the forcings alone. Clearly, this will
depend on the relative importance of the forcing and hydrologic uncer-
tainties in any given basin.

Zalachori et al.|(2012) compared the skill of, and biases, in ensemble
streamflow forecasts that were produced using different combinations
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of forcing and streamflow post-processing. Post-processing of meteo-
rological forcings was performed by dressing the ensemble members
with 50 analog scenarios that naturally included appropriate space-
time relationships. They found that, while post-processing the forcings
increased the skill of the forcing ensembles, there was little improve-
ment in the skill of the streamflow ensembles. Also, those improve-
ments were obscured by the effect of streamflow post-processing.

Similarly)Yuan and Wood| (2012) explored the benefits of post-proc-
essing of forcing ensembles versus post-processing of streamflow en-
sembles, but in a different context, namely that of seasonal forecasting.
They found that both post-processing of forcings and post-processing
of streamflow adds skill, and when techniques are combined, skill is
highest.

Several techniques have been proposed for reducing bias in forcing
forecasts (Hamill, [2012). These techniques use past forecasts and ob-
servations (and possibly auxiliary variables) to estimate the parame-
ters of a statistical model that is subsequently applied in real-time to
estimate the “true” (unbiased) probability distribution of the forecast
variable, conditionally upon the raw forecast (and any other predic-
tors). Techniques include linear regression with an assumption of joint
normality (e.g.|Gneiting et al} [2005; |[Hagedorn et al., 2008;|Wilks| |2011),
logistic regression (Hamill et al., 2008} |Wilks) 2011), quantile regression
(Bremnes) 2004) and indicator co-Kriging (Brown and Seo| 2010, |2013),
among others. Unsurprisingly, Wilks and Hamill (2007) conclude that
no single post-processing technique is optimal for all applications.

Statistical correction of numerical weather forecasts requires a long
historical record of forecasts and observations, from which the joint dis-
tribution can be estimated with reasonably small sampling uncertainty
and bias. Unless explicitly accounting for non-stationarity with addi-
tional model parameters, the joint distribution should be relatively ho-
mogeneous in time. Forecasting systems, however, generally improve
over time, rendering archived operational forecasts inhomogeneous. In
contrast, weather forecasts that are retrospectively generated with a
fixed numerical model (“reforecasts” or “hindcasts”), provide a rea-
sonable platform for statistically correcting weather forecasts (Hamill
et al.| [2006). Available reforecast datasets include the ECMWE-EPS
(Hagedorn, 2008), GFS (Hagedorn et al., [2008; [Hamill and Whitaker,
2006; Hamill et al |2008), and the more recent GEFS, for which hind-
casts were recently completed (Hamill et al., 2013) and TIGGE (Hamill,
2012).

The extent to which the skill of, and biases in, streamflow forecasts
can be improved through post-processing of the forcing ensembles,
separately or together with streamflow post-processing, is an ongo-
ing question and the focus of this chapter. For example, these issues
must be explored in basins with different hydrologic characteristics
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and for which the total uncertainties comprise different contributions
from the meteorologic and hydrologic uncertainties, including a mix-
ture of headwater and downstream basins. First, we evaluate the bi-
ases in the forcing ensembles at the scales used to force the hydrologic
models, and how these biases translate into the streamflow ensemble
forecasts. Secondly, a number of bias-correction techniques are applied
to the temperature and precipitation ensembles. The post-processed
forcing ensembles are used to drive the hydrologic models, which are
then evaluated for any reduction in bias and increase in skill associated
with the forcing post-processing. These post-processing techniques in-
clude the unconditional quantile-to-quantile transform (a correction to
the forecast climatology) as well as conditional techniques such as lin-
ear regression in the bivariate normal framework and logistic regres-
sion. The streamflow ensembles are evaluated at multiple spatial scales
and, crucially, by verifying against simulated streamflows (predictions
made with observed forcings), in order to isolate the contribution of
the forcing biases and uncertainties to the streamflow forecasts.

The structure of this chapter is as follows. The Materials and Meth-
ods section describes (i) the techniques that have been used for post-
processing of forcing ensembles, (ii) the study basin, (iii) the models
and data that are used and (iv) a detailed setup of the different ex-
periments. The results are presented in Section [3.3| and subsequently
discussed in Section Finally, some conclusions are drawn together
with suggestions for future studies (Section [3.5).

3.2 MATERIALS AND METHODS
3.2.1 Post-processing techniques

Several techniques were used to post-process the temperature and pre-
cipitation ensembles. Temperature ensemble forecasts were post-pro-
cessed using the quantile-to-quantile transform and, separately, using
linear regression. For precipitation, the quantile-to-quantile transform
was used, as well as logistic regression. A brief description of each tech-
nique is provided below; more details can be found in Appendix

The quantile-to-quantile transform (QQT, sometimes also called
Quantile Mapping or cdf-matching, e.g.|Brown and Seo||2013; |Hashino
et al|[2007;|Madadgar et al|[2012;|Wood et al.|2002) is an unconditional
technique insofar as the unconditional climatology of the forecasts is
re-mapped to the unconditional climatology of the observations. QQT
is not expected to provide post-processed ensembles that are equally
skilful as those resulting from a conditional correction. However, the
skill of a conditional correction may largely stem from an improve-
ment in forecast climatology and an unconditional correction provides
a valuable baseline for a more complex, conditional correction.
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The conditional post-processing techniques are often applied in sim-
ilar ways. For each of the forcing variables, the post-processor is con-
figured for each lead time and each location (basin-averaged quantity)
separately. A distribution of the predictand Y (observed temperature
or precipitation) is sought, conditional upon a vector of predictors
X = Xj,...,Xm. In this case, the predictors comprise the five (possi-
bly biased) ensemble members of the raw forecast.

Flylx1,...,xm) =PrlY <ylX; =x1,...,. Xm =xm] Wy (11)

For post-processing temperature ensemble predictions, the observed
and forecast temperatures are frequently assumed joint normally dis-
tributed. Linear regression is then used to estimate the mean and
spread (and hence full probability distribution) of the observed vari-
able conditionally upon the predictors (Gneiting et al., 2005; Hagedorn
et al., [2008; Wilks, 2011)).

Predictive distributions of precipitation are non-Gaussian (e.g.
Hamill et al} 2008), and threshold-based or “non-parametric” tech-
niques are often applied, although a meta-Gaussian approach is also
possible (Wu et al., 2011)). Precipitation forecasts are often biased condi-
tionally upon observed precipitation amount (a so-called Type-II condi-
tional bias), with overestimation of smaller observed precipitation and
underestimation of larger observed precipitation. These amounts are
typically important for practical applications of hydrologic forecasts
(e.g. for drought and flood forecasting; see Brown and Seo|2013). Lo-
gistic regression is a common approach for post-processing of precip-
itation forecasts and is known to perform reasonably well in a variety
of contexts (e.g. Hamill et al| |2008} [Schmeits and Kok, 2010} |Wilks|,
2011)). The technique involves estimating the probability of not-exceed-
ing several discrete thresholds, for which the parameters of the logistic
regression may be estimated separately at each threshold (standard
logistic regression) or fixed across all thresholds (Wilks), |2009). In es-
timating the parameters separately at each threshold, the cumulative
probabilities are not guaranteed to be valid in combination, and some
post-correction smoothing is typically required.

A potential problem with statistically post-processing temperature
and precipitation forecasts separately at each of multiple forecast lead
times and locations is that space-time covariability is not adequately
captured. For hydrologic applications, the space-time covariability of
the forcing is important as the hydrologic model integrates the forcing
both in time and in space (Clark et al., |2004]).

In order to introduce appropriate space-time covariability into the
post-processed forcing ensembles, the so-called “Schaake shuffle” was
used here (Clark et al., 2004). For each ensemble trace, a corresponding
observed time-series was obtained from the same start date in a ran-
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Figure 16: Location of the Rhine basin in continental Europe.

domly chosen historical year. The ensemble members at each forecast
lead time were then assigned the same rank positions as the observa-
tions from the corresponding (relative) times in their associated histor-
ical years. The Schaake shuffle introduces (observed) rank correlations
to the forecast ensemble members on the basis that spatial and tem-
poral covariability will lead to ensemble members at nearby locations
and proximate times having similar ranks within their own probabil-
ity distributions. The Schaake shuffle does not, however, capture this
space-time covariability conditionally upon the state of the atmosphere
at the forecast issue time. Rather, it introduces space-time covariability
conditionally upon forecast issue date alone (as formulated in |Clark
et al.|2004). Clearly, other implementations are possible, such as preser-
vation of the rank order-relations in the raw forecasts.
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Figure 17: Distribution of daily averaged temperature, daily total precipitation
and daily averaged streamflow in Rhine basins and stations. Three
spatial scales are shown: 43 headwater basins, four large tributaries
and the Rhine outlet at Lobith. For scales containing multiple loca-
tions, the median location is shown as a thick line and the 10th and
goth percentiles bound a shaded area.

3.2.2  Study basin: Rhine

The river Rhine runs from the Swiss Alps along the French-German
border, through Germany and enters the Netherlands near Lobith,
which is often considered the outflow. At Lobith, the basin area equals
approx. 160,000 km?. Snow and snowmelt have a large effect on the
river Rhine’s temporal streamflow patterns. During spring and early
summer, more than half of the river’s flow at the outlet originates from
snowmelt in the Swiss Alps. Figure [16|shows the basin location, eleva-
tions and the gauged outlets of tributaries that were used in this study;
the three different symbols used for the gauging stations coincide with
the three spatial scales used in the analysis.

Clearly, the quality of the streamflow predictions at downstream lo-
cations is affected by the quality of the streamflow predictions at up-
stream locations. Ensemble streamflow predictions are therefore ana-
lysed at three spatial scales: (i) 43 outlets of basins that each have a
contributing area of less than 2500 km?; in the remainder of this chap-
ter, these are referred to as headwater basins (ii) four outlets of rel-
atively large Rhine tributaries: the Main, Moselle, Neckar and Swiss
Rhine, and (iii) the outlet of the river Rhine, at Lobith. Some summary
statistics of the magnitudes of the contributing areas of these outlets
are shown in Table [5]
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Table 5: Contributing areas of the spatial scales that are analysed.

Contributing area [km?]

Spatial Scale 10" perc median go™ perc mean  sum

43 headwaters 370 929 2,008 1,142 49,125
4 tributaries 17,972 27,767 34,035 26,507 106,029
Rhine basin 159,559

Figure [17| shows the non-exceedence climatological probabilities of
observed daily mean temperature, daily total precipitation and daily
averaged streamflow for the three spatial scales used in the analysis.
Both the “tributaries” and the “headwater” scales comprise of multi-
ple outlets (four and 43 respectively). For these scales, the thick line
designates the median location, and the thin lines designate the 10t
and 9o percentiles. In the case of the four main tributaries, determin-
ing the quantiles required linear interpolation between four available
data points.

Determination of temperature and precipitation at larger spatial
scales has a modulating effect on extreme values of temperature and
precipitation. The relatively fat tail of precipitation over the four tribu-
taries originates from relatively high precipitation levels over the Swiss
Rhine. As none of the headwater basins considered are located in that
tributary basin, this fat tail is not observed in the curve for the smaller,
headwater basins.

3.2.3 Models and data

For the temporal and areal aggregation of ensemble forcing fore-
casts and corresponding observations, and for retrospective generation
of streamflow predictions, a Delft-FEWS forecast production system
(Werner et al., 2013) was used. The system is an adapted version of
the forecast production system FEWS Rivers, which is used by the Wa-
ter Management Centre of the Netherlands for real-time forecasting of
streamflow and water levels in the Rhine and Meuse rivers.

The system contains an implementation of the HBV rainfall-runoff
model (Bergstrom and Singh, |1995). This is a semi-lumped, concep-
tual hydrologic model, which includes a routing procedure of the
Muskingum type. The model schematisation consists of 134 sub-basins
jointly covering the entire Rhine basin. The model runs at a daily time
step. Inputs to the model consist of temperature and precipitation forc-
ings; actual evaporation is estimated from a fixed annual profile that is
corrected using temperature forecasts.
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The forecasting system runs in two operating modes: historical and
forecast mode. In historical mode, the hydrologic models are forced
with meteorological observations for a period leading up to the forecast
issue time. This ensures that the internal model states reflect the actual
initial conditions of the basin as closely as possible. In forecast mode,
these model states are the starting point for the model run, where the
models are now forced by numerical weather predictions.

For observations of precipitation, the CHRo8 dataset was used. This
dataset covers the period 1961 through 2007. The CHRo08 dataset was
prepared specifically for the HBV model used here (Photiadou et al.}
2011). The spatial scale of these CHRo08 observations coincides with the
134 sub-basins used in the HBV model schematisation for the Rhine
basin. Temperature observations originate from version 5.0 of the E-
OBS data set; these were available from 1951 through mid 2011 (Hayy
lock et al., |2008). Both precipitation and temperature data were avail-
able at a daily time step.

The ECMWEF reforecast dataset, comprising medium-range EPS fore-
casts with 5 ensemble members (Hagedorn, 2008), was used for ret-
rospective predictions of temperature and precipitation. At ECMWE,
a retrospective forecast is produced every week for the same date in
the 18 years preceding the current year, using the current operational
model. To illustrate, on March 13, 2009, reforecasts were produced with
initial conditions of March 13, 1991, March 13, 1992, and so forth un-
til March 13, 2008. The reforecasts are produced using the operational
model (currently Cy38r1 with a T639 horizontal resolution, i.e. 0.25
degrees in either direction). The set of reforecasts was thus produced
using an operational model which, since the inception of the reforecast-
ing scheme, has changed only slightly. This has little or no effect on the
hydrologic model outcomes though, as was shown by [Pappenberger
et al|(2011). By July 2011, over 3,100 retrospective forecasts were avail-
able for use in the present study. While the forecast horizon extends to
30 days at a six hour time step, for the present study only the first 10
days were available. Forecasts were temporally aggregated to a daily
time step to match the time step used by the hydrologic model. The
gridded forecasts were spatially averaged to the HBV sub basin scale.

Hourly streamflow observations for hydrologic stations within the
Rhine basin were obtained from the Water Management Centre of the
Netherlands. These observations were temporally aggregated to daily
averages.

3.2.4 Experiment

Streamflow forecasts were produced with raw and post-processed forc-
ings and verified against simulated streamflow, in order to establish the
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Table 6: Overview of cases.

Temperature correction  Precipitation correction

Baseline case none (RAW) none (RAW)
Case 1 quantile-to-quantile quantile-to-quantile
transform (QQT) transform (QQT)
Case 2 linear regression (LIN) logistic regression
(LOG)

contribution of the forcing post-processing to the streamflow forecasts
independently of any biases in the hydrologic model.

The baseline scenario comprised no post-processing of the forcing
ensembles. Raw ensemble predictions of precipitation and temperature
were used to generate streamflow ensemble predictions. In subsequent
cases, temperature and precipitation ensemble predictions were statis-
tically corrected using the techniques described in Section These
post-processed forcing ensemble predictions were then used to gener-
ate streamflow ensemble predictions. Thus, three cases were consid-
ered (Table @: a baseline case, a case where an unconditional quantile-
to-quantile transform (QQT) was applied to each variable (Case 1), and
a case in which the forcing ensemble predictions were corrected using
conditional techniques (Case 2). In terms of the latter, temperature en-
semble predictions were statistically corrected using linear regression
in the bivariate normal framework (LIN) and precipitation ensemble
predictions were corrected using logistic regression (LOG). Variants of
these two techniques were also considered, but not adopted. Specifi-
cally, for temperature, the assumption of homogeneous spread of the
post-processed ensembles was relaxed to allow for a linear dependence
on the raw ensemble spread (Gneiting et al., 2005), but without dis-
cernible benefits. For precipitation, a variant of LOG involving homo-
geneous parameters across all thresholds (Wilks, |2009) was evaluated,
but this incurred an appreciable loss of skill.

3.2.5 Post-processing strategy

The parameters of any post-processor must be estimated with sample
data. Both ensemble predictions and verifying observations were avail-
able for the period 1991-2007. This amounted to roughly 2,920 pairs of
forecasts and observations at each forecast lead time. These pairs were
not evenly distributed over the period of record due to the reforecast-
ing procedure adopted by ECMWE.

The forcing ensembles were post-processed using the approaches
described in Section and Appendix [A] Post-processing was per-
formed separately for each of the 10 forecast lead times and 134
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Figure 18: Sample plot showing how the skill score plots are defined. For event
skills, the value of P constitutes the threshold for discrete events.

subbasins. Spatio-temporal covariability was then introduced via the
Schaake Shuffle (Section [3.2.1). The post-processing was conducted
within a cross-validation framework whereby separate periods of
record were used to estimate the model parameters and independently
verify the post-processed forecasts. Specifically, a leave-one-year-out
cross-validation approach was adopted. This led to 17 separate calibra-
tions of each post-processor, each comprising 16 years of calibration
data and one year of independent prediction. The 17 years of inde-
pendent predictions were then collated, verified, and used to force the
streamflow models.

3.2.6 Verification strategy

The verification strategy focused on identifying the skill and biases in
the forcing ensembles, as well as in the streamflow ensembles gener-
ated using these forcings. Skill and bias were identified with five well-
known verification metrics. The correlation coefficient and the Relative
Mean Error (RME) are measures of, respectively, the linear association
of the forecast ensemble mean and observations and the relative bias of
the ensemble mean. The (half) Brier Score (BS), the mean Continuous
Ranked Probability Score (CRPS) and the area under the Relative Op-
erating Characteristic (ROC) curve measure different attributes of the
probabilistic quality of the forecasts. A short description of the latter
scores is provided below, with accompanying equations given in Ap-
pendix B Verification was performed with the Ensemble Verification
System (Brown et al., 2010). The data that constituted input for verifi-
cation, is posted to an online data repository (Verkade et al., |2013a).
The Brier Score (Brier, |1950; Murphy, [1973; |Wilks| [2001) measures
the average square error of a probabilistic forecast of a discrete event.
The mean CRPS (Hersbach) |2000; Stanski et al.,[1989) is an integral mea-
sure of (square) probabilistic error in the forecasts across all possible
discrete events. Both the BS and CRPS may be decomposed into further
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attributes of forecast quality by conditioning on the forecast variable
(the calibration-refinement factorization). In addition, the BS may be
decomposed by conditioning on the verifying observation (the likeli-
hood-base-rate factorization). The area under the ROC curve (AUC) is
a measure of event discrimination; that is, the ability of the forecasts to
adequately discriminate between the exceedence and non-exceedence
of a discrete threshold, such as the flood threshold.

Skill scores provide a convenient method for summarizing an im-
provement (or reduction) in forecast quality over a wide range of basins
and conditions, as they are normalized measures. Here, both the BS
and CRPS are formulated as skill scores with sample climatology as
the baseline. These scores are denoted by the Brier Skill Score (BSS)
and the Continuous Ranked Probability Skill Score (CRPSS), respec-
tively. Rather than using the raw ensembles as the reference forecast,
the scores are shown for the raw and post-processed ensembles with
a consistent baseline, namely sample climatology. Likewise, the ROC
Score (ROCS) comprises the AUC of the main forecasting system nor-
malized by the AUC of the climatological forecast, i.e. 0.5 (Appendix|B).
This allows for the relative improvement of the forcing and streamflow
forecasts to be identified in the context of background skill. However,
some care is needed with interpretation, as sample climatology is un-
conditional and, therefore, increasingly (conditionally) biased towards
the tails.

For continuous measures such as the CRPSS, conditional quality and
skill was determined by calculating verification metrics for increasing
levels of the non-exceedence climatological probability P, ranging from
0 to 1. Essentially, P = 0 constitutes an unconditional verification, as all
available data pairs are considered (Bradley and Schwartz, 2011). Con-
versely, at P = 0.99, only the data pairs with observations falling in the
top 1% of sample climatology are considered; this amounts to approx.
30 pairs here. For BSS and ROCS — which are event skills — the veri-
fication metrics are calculated for increasingly high events which are
defined as the exceedence of the value of P. For example, at P = 0.9 the
event is the occurrence of an observation falling in the top 10% of the
climatological distribution. For these discrete measures, 0 < P < 1 as
event skills are unknown for thresholds corresponding to the extremes
of the observed data sample, nominally denoted by P =0 and P = 1.
See Figure [18| for a graphical description of this procedure.

While the sampling uncertainties of the verification metrics were not
explicitly evaluated here (see Brown and Seo, 2013), the results were
not interpreted for thresholds larger than the 0.99 climatological prob-
ability or «~ 30 pairs.
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Figure 19: RME, CRPSS, BSS and ROCS for ensemble temperature forecasts
at 24-hour, 120-hour and 240-hour ahead forecasts. For CRPSS, BSS
and ROCS, the baseline is formed by sample climatology. The results
pertain to 134 basins: solid lines show the median value; dashed
lines show the 0.10 and 0.90 quantiles.

3.3 RESULTS

The results are presented in three subsections, each coinciding with one
of the variables considered: temperature, precipitation and streamflow.
Within those subsections, a discussion of the baseline case is followed
by a discussion of the post-processed cases 1 (QQT) and 2 (conditional
corrections LIN and LOG).

Correlation coefficients are very similar across cases and are men-
tioned in the text but not shown in tables or plots. Verification re-
sults are plotted in a series of multi-panel figures, showing RME, BSS,
CRPSS and ROCS for the forecasts with lead times of 24-hours, 120-
hours and 240-hours. The metrics are plotted as a function of the value
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of the verifying observation, expressed as a climatological probability
of non-exceedence P, to allow for comparison across different locations.
Most figures show results for multiple locations: thick lines indicate
median values and thin lines denote the 10% and 90% quantiles of
metrics over those multiple locations. Metrics pertaining to streamflow
ensemble forecasts are shown across several plots, each corresponding
to a spatial scale defined in Section Note that, for ease of inter-
pretation, all skill scores and associated decompositions are oriented
to show the “best” scores at the top of the range axis and the “worst”
at the bottom (Figure [18).

3.3.1 Ensemble temperature forecasts

Verification metrics for the ensemble temperature forecasts are shown
in Figure 19} The metrics indicate that forecast quality decreases with
increasing lead time, that it is conditional on the magnitude of the ver-
ifying observation and that this conditionality is more pronounced at
longer lead times. This is true for both raw and post-processed temper-
ature ensembles.

3.3.1.1 Raw temperature ensembles

Raw temperature ensembles show reasonably good correlation with
observations. Values for the unconditional sample (at P = 0) range
from 0.99 at the 24-hour lead time to 0.90 at the 240-hour lead time.
At P = 0.95, these values are 0.87 and 0.18 respectively. Relative Mean
Error plots indicate that for most basins, the ensemble mean under-
estimates the observation; this under-forecasting increases with higher
values of the verifying observation. The CRPSS is largely constant, with
a small dip in CRPSS values near to the median observed value. The
BSS and ROCS show similar patterns, different from the CRPSS; both
scores are consistently lowest at the extreme ends of the distribution.
These patterns reflect the different formulations of the verification
scores and the choice of reference forecast. The BSS and ROCS measure
the quality of discrete predictions, with contributions to the score being
dominated by the corollary (i.e. non-occurrence) at extreme (low and
high) thresholds. At longer lead times, the residual skill of the temper-
ature forecasts is concentrated towards the median temperature, where
the forecasts have least conditional bias and greatest correlation (and
the occurrences and non-occurrences, by definition, contribute equally).
In contrast, the CRPS is a smooth, continuous measure that factors skill
across all possible thresholds for each paired sample. Since the sam-
ple climatology is unconditional by construction, the baseline forecasts
will be least reliable in the tails of the climatological distribution, with
large conditional biases contributing to poorer quality of the reference
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Figure 20: RME, CRPSS, BSS and ROCS for ensemble precipitation forecasts
at 24-hour, 120-hour and 240-hour ahead forecasts. For CRPSS, BSS
and ROCS, the baseline is formed by sample climatology. The results
pertain to 134 basins: solid lines show the median value; dashed

lines show the 0.10 and 0.90 quantiles.

forecast in the tails (and hence greater relative quality of the ECMWF

forecasts, whether post-processed or not).

3.3.1.2  Post-processed temperature ensembles

After post-processing, the correlation of the temperature ensembles
with the verifying observations was virtually unchanged from the raw
case. In terms of RME, BSS, CRPSS and ROCS, LIN almost always out-
performed QQT (noting that QQT is a non-linear transform and may
not preserve correlation), which in turn outperformed the raw ensem-
bles. For the latter three metrics, the differences in quality are most
pronounced at large values of the verifying observation.
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Figure 21: Forecast error versus observations for uncorrected (left), QQT-
corrected (middle) and LOG-corrected precipitation ensembles for

a single location (basin I-RN-ooo1, which is located in the Neckar
sub-basin) at 120-hour lead time.

3.3.2 Ensemble precipitation forecasts

Verification metrics for the ensemble precipitation forecasts are shown
in Figure Subsequent figures show the calibration-refinement de-
composition of the CRPSS (Figure [22) and the BSS (Figure [23) as well
as the likelihood-base rate decomposition of the BSS (Figure [24). Sim-
ilar to the temperature figures, verification metrics are plotted as a
function of observed amount, expressed as a climatological probability
of non-exceedence, P. In the case of precipitation, however, the domain
axis range is [0.4,1.0]. As the probability of precipitation (PoP) is ap-
prox. 60% for all basins, smaller probabilities all correspond to the PoP
threshold of zero preciptiation and produce identical scores. As in the
case of temperature ensembles, forecast quality is seen to decrease with
increasing lead time, and to be strongly conditional on the amount of
precipitation.

3.3.2.1  Raw ensemble precipitation forecasts

Correlation between the mean of the raw precipitation ensembles and
observations is largely positive, but distinctly lower than that of the
temperature ensembles. Correlation deteriorates with forecast lead
time and with increasing value of the observation. At P = 0, corre-
lation ranges from o.71 to 0.13 for lead times of 24-hour and 240-hours
respectively. At P = 0.95, these values are 0.36 and 0.04 respectively.
The RME shows that the ensemble mean overestimates zero and
small precipitation amounts. For increasing values of the observation,
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Figure 22: CRPSS calibration-refinement decomposition for ensemble precipi-
tation forecasts at 24-hour, 120-hour and 240-hour ahead forecasts.
The baseline is formed by sample climatology. The results pertain
to 134 basins: solid lines show the median value; dashed lines show
the 0.10 and 0.90 quantiles.

the ensemble mean increasingly underestimates precipitation. For ex-
ample, at a lead time of 120 hours, the RME equals 0.07, —0.18 and
—0.59 at P =0, P = 0.5 and P = 0.9 respectively.

These conditional biases stem from the inability of the raw predictors
used in the post-processor to correctly predict when large events occur
(large relative to other events in the climatological distribution). This
leads to a real-time adjustment that reflects the assumed, but wrong,
conditions. Also, statistical post-processors are calibrated for good per-
formance under a range of conditions (i.e. for unconditional skill and
unbiasedness), which inevitably leads to some conditional biases. In
short, some conditional bias is a “natural” consequence of post-proc-
essing with imperfect predictors and with a focus on global optimal-
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Figure 23: BSS calibration-refinement (Type I) decomposition for ensemble pre-
cipitation forecasts at 24-hour, 120-hour and 240-hour ahead fore-
casts. The baseline is formed by sample climatology. The results per-
tain to 134 basins: solid lines show the median value; dashed lines
show the 0.10 and 0.90 quantiles.

ity. However, it is also a practically significant feature of these and
other post-processed ensemble forecasts. While the precise description
of these conditional biases will depend on the choice of measure (e.g.
the RME is sensitive to skewness), the conditional biases are present,
regardless of the choice of measure. Figure [21]shows the 120-hour lead
time forecast error as a function of the verifying observation for a sin-
gle basin. Clearly, at higher values of the observation, the ensembles
consistently, and increasingly, underestimate the observed value, with
insufficient spread to offset this conditional bias.

The CRPSS declines with both lead time and increasing amount of
observed precipitation. The BSS and ROCS plots show similar patterns;
both metrics are lowest at the tails, indicating that it is relatively dif-
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Figure 24: BSS likelihood-base rate (Type II) decomposition for ensemble pre-
cipitation forecasts at 24-hour, 120-hour and 240-hour ahead fore-
casts. The baseline is formed by sample climatology. The results per-
tain to 134 basins: solid lines show the median value; dashed lines

show the 0.10 and 0.90 quantiles.

ficult to distinguish between zero and non-zero precipitation and to
correctly predict the occurrence of large precipitation amounts.

3.3.2.2  Post-processed precipitation ensembles

When moving from raw to post-processed precipitation ensembles,
the correlation between the ensemble forecast and the observation
is largely conserved. Only in the case of LOG does correlation drop

slightly, and only at higher precipitation amounts.

Both the QQT and LOG techniques produce ensemble forecasts that
are unconditionally unbiased. However, in all cases, there is an increas-
ingly large conditional negative bias at higher precipitation amounts.
At longer lead times, the RME across all cases is very similar. The raw
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Figure 25: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for
the headwater basins at 24-hour, 120-hour and 240-hour lead times.
For CRPSS, BSS and ROCS, the baseline is formed by sample cli-
matology. The results pertain to 43 locations: solid lines show the
median value; dashed lines show the 0.10 and 0.90 quantiles.

ensembles initially show a small positive RME, which at some value of
P becomes negative and then continues to drop. For non-zero precip-
itation, LOG shows the highest negative RME at all lead times. From
Figure |21} it is clear that the post-processing methods were unable to
correct for the Type-II conditional biases at high observed precipitation
amounts.

For both techniques, the gain in CRPSS following post-processing is
only modest or marginal at all lead times and precipitation amounts. In
terms of unconditional CRPSS (P = 0), LOG shows the highest increase
in skill at all lead times. At higher observed precipitation amounts,
LOG does markedly worse than the raw and QQT ensembles due to
a large, negative, conditional bias in the ensemble mean. The CRPSS
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Figure 26: CRPSS calibration-refinement decomposition for ensemble stream-
flow forecasts for the headwater basins at 24-hour, 120-hour and 240-
hour lead times. The baseline is formed by sample climatology. The
results pertain to 43 locations: solid lines show the median value;
dashed lines show the 0.10 and 0.90 quantiles.

of the QQT corrected ensembles are largely similar to that of the raw
ensembles. The CRPSS decomposition (Figure [22) and the BSS decom-
position (Figure show that none of the post-processing techniques
was able to consistently improve both the reliability and resolution of
the precipitation ensembles. Rather, there is a trade-off whereby the
post-processing generally results in improved reliability at the expense
of some loss in resolution. This is different from the post-processed
temperature ensembles, which showed improved reliability while con-
sistently maintaining or improving resolution (results not shown). For
precipitation, the combination of lower quality of the raw forecasts and
a larger number of parameters to estimate for LOG leads to greater
sampling uncertainty and weaker performance overall.
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Figure 27: BSS calibration-refinement (Type I) decomposition for ensemble
streamflow forecasts for the headwater basins at 24-hour, 120-hour
and 240-hour lead times. The baseline is formed by sample climatol-
ogy. The results pertain to 43 locations: solid lines show the median
value; dashed lines show the 0.10 and 0.90 quantiles.

In terms of BSS, LOG consistently outperforms the raw and QQT-
post-processed precipitation ensembles. As indicated in Figure [24} this
is largely explained by an increase in the reliability (or reduction in
Type-I conditional bias) of the precipitation ensembles following LOG.
However, the RME and the likelihood-base-rate decomposition of the
BSS (Figure [25) show a greater tendency of the LOG ensembles to un-
der-forecast high observed precipitation amounts, i.e. they display a
larger Type-II conditional bias.
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Figure 28: BSS likelihood-base rate (Type II) decomposition for ensemble
streamflow forecasts for the headwater basins at 24-hour, 120-hour
and 240-hour lead times. The baseline is formed by sample climatol-
ogy. The results pertain to 43 locations: solid lines show the median
value; dashed lines show the 0.10 and 0.90 quantiles.

3.3.3 Streamflow ensemble forecasts

Verification results for the streamflow ensembles are presented for mul-
tiple spatial scales. For the 43 headwater basins, Figure 25/shows RME,
CRPSS, BSS and ROCS values. Figures 26| and [27] show calibration-re-
finement decompositions of the CRPSS and BSS respectively; Figure
shows the likelihood-base-rate decomposition of the BSS. The RME,
CRPSS, BSS and ROCS values for the Main, Neckar, Moselle and Swiss
Rhine tributaries and for the Rhine outlet at Lobith are shown in Fig-

ures [2g| and [30] respectively.



POST-PROCESSING ECMWEF REFORECASTS 67

24 hrs

0.0

02

= -0.41 = raw-raw (median)
—— raw-raw (q10-g90)
= qqt-qqt (median)
_0.64 ~ ~ datqaqt(q10-q90)
=== lin-log (median)
——lin-log (q10-q90)

1.0prm—m—cx

-0.2

0 01 05 09 099 0 01 05 09 099 0 01 05 09 099
Simulated value (Logite axis labelled with climatological nonexceedence probability)

Figure 29: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for the four
main tributaries at 24-hour, 120-hour and 240-hour lead times. For CRPSS,
BSS and ROCS, the baseline is formed by sample climatology. The results per-
tain to 4 locations: solid lines show the (interpolated) median value; dashed
lines show the (interpolated) 0.10 and 0.90 quantiles.

3.3.3.1 Streamflow ensemble forecasts based on raw forcings

The ensemble mean of the streamflow forecasts is highly correlated
with the simulated streamflow at short lead times. For example, the
correlation exceeds 0.98 at P = 0 and, at P = 0.95, ranges from 0.90 to
0.98 to 0.99 for the smallest to largest spatial scales, respectively. Gen-
erally, correlation reduces with decreasing spatial scale: it is lowest for
the collection of headwater basins and highest at the outlet, where the
aggregate response has a modulating effect on the errors from indi-
vidual basins. Correlation declines with increasing lead time and with
increasing value of the streamflow simulation.

At all spatial scales, the unconditional RME is negligible at the ear-
liest lead times, but increases with increasing lead time. For stream-
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Figure 30: RME, CRPSS, BSS and ROCS for ensemble streamflow forecasts for
the outlet at Lobith at 24-hour, 120-hour and 240-hour lead times.
For CRPSS, BSS and ROCS, the baseline is formed by sample clima-
tology.

flows larger than the median climatological flow, the forecast ensem-
ble mean increasingly underestimates the simulated streamflow. For
example, the RME for the headwater basins (Figure at a lead time
of 120 hours shows a median RME of —0.07, —0.20 and —0.27 at P = 0.5,
P = 0.9 and P = 0.95 respectively. At the outlet at Lobith (Figure
the corresponding values are —0.001, —0.02 and —0.03 respectively.
The patterns in BSS, CRPSS and ROCS are similar to one another
and across all spatial scales and lead times. The skill is greatest for
the unconditional flows at the shortest lead times and declines with
increasing value of the verifying simulation, particularly above the me-
dian climatological streamflow where the conditional bias increases.
The skill also increases with increasing spatial scale. For example, the
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median CRPSS values at P = 0.90 at a lead time of 120-hours are 0.54,
0.73 and o0.90 for headwaters, tributaries and outlet respectively.

3.3.3.2 Streamflow ensembles based on post-processed forcings

Correlations between the simulated streamflow and the forecast en-
semble means are hardly affected by post-processing of the forcings. A
slight reduction is observed at longer lead times and at higher quan-
tiles of the simulation for the LIN-LOG case. At P = 0.90 and a 240-
hour lead time, correlation drops from 0.34 for the raw case to 0.31 for
the LIN-LOG case.

Unconditionally, the combinations of QQT-QQT and LIN-LOG re-
sult in RME values that are closer to o than those of the RAW-RAW
case. However, there is a tendency for all techniques to under-forecast
the higher simulated streamflows, with the greatest conditional bias for
the LIN-LOG case. For example, in the LIN-LOG case at a lead time
of 120 hours, the median RME for the four main tributaries increases
(negatively) from —0.04 at P = 0.50 to —0.15 at P = 0.90 and —0.19 at
P = 0.95 (Figure [29).

In terms of the BSS, CRPSS and ROCS, the streamflow ensembles de-
rived from quantile-to-quantile transformed forcings generally show
higher skill than those derived from raw forcings. However, the dif-
ferences are small. The QQT-QQT ensembles show similar skill at low
and moderate values of the verifying simulation only, since QQT is
unable to correct for conditional biases, whether Type-I or Type-II in
nature.

Generally, post-processing of the forcing variables using conditional
techniques (LIN-LOG) does not result in increased skill in terms of
CRPSS and BSS. Below the median climatological streamflow, skills
are largely similar to those of streamflow ensembles derived from raw
forcings. At higher quantiles, there is actually a small decrease of skill.
An increase of skill is observed in terms of the reliability component of
the BSS and in terms of the ROCS; that is, in the ability of the forecasts
to discriminate between the occurrence and non-occurrence of discrete
events.

3.4 DISCUSSION

Several questions were posed in this case study: are the raw ECMWE-
EPS temperature and precipitation ensembles biased and if so, how?
Do these biases translate into streamflow biases and reduced skill?
Does post-processing of the temperature and precipitation ensembles
improve the quality of the forcing ensembles, and is this improvement
noticeable in the streamflow ensembles?
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The raw temperature and precipitation ensemble forecasts are biased
in both the mean and spread. However, they are more skilful than sam-
ple climatology for shorter lead times and moderate thresholds, with
reduced skill at longer lead times and for larger amounts (and for zero
precipitation). The temperature ensemble forecasts are less biased and
more skilful than the precipitation ensemble forecasts. The effects of
these biases on the streamflow ensemble forecasts depend on the con-
centration time of the basins considered with a more rapid deteriora-
tion with leadtime in skill for headwaters than for downstream basins.
This is largely due to the absence of hydrologic biases and uncertain-
ties in the verification results, of which those in the initial conditions
are an important part (i.e. verification was conducted against simu-
lated streamflow). Thus, the skill of streamflow predictions is strongly
affected by the initial conditions; this effect lasts longer in larger basins.

Overall, the improvements in the ensemble forcing predictions were
modest; this was especially the case for the precipitation ensembles.
However, this does not imply that the forcing ensembles are nearly
perfect. Rather, it suggests that no additional signal can be found in
the forecast-observed residuals to improve forecast quality with the sta-
tistical techniques considered. In some cases, post-processing reduces
skill; it attempts to use a signal that, in hindsight, turns out to be noise
with no predictive information for future forecasts.

Post-processing of the temperature ensembles resulted in greater im-
provements than post-processing of the precipitation ensembles. This
is not surprising, because temperatures are relatively more predictable
than precipitation and the gain in skill from post-processing (with a
conditional technique) partly depends on the strength of association be-
tween the forecasts and observations. Much of the improvement in the
precipitation ensemble forecasts is unconditional in nature. Possibly,
the improvements from conditional post-processing would be greater
when calibrating on a larger dataset, as there were only «~ 2,900 pairs
available in this study, when using a more parsimonious statistical tech-
nique (e.g. Wu et al} [2011) or when supplementing the training data
set at a particular location with data from other locations with similar
climatologies (Hamill et al., 2008).

Application of the forcing post-processors generally results in a re-
duction in bias and an improvement in skill of the forcing ensembles,
although the precise effects depend on forecast lead time, threshold,
spatial scale and the types of bias considered. For example, while LOG
generally improves the reliability of the precipitation ensembles, the
ensemble mean is negatively biased with increasing observed precipi-
tation amount, i.e. a Type-II conditional bias. Post-processing does not
improve on all qualities at all lead times and at all levels of the verify-
ing observation. Generally, but not always, post-processing improves
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the reliability of the forecasts, but this is sometimes accompanied by a
loss of resolution or an increase in the Type-II conditional biases.

Changes in the biases and skill of the forcing ensembles cascade to
the ensemble streamflow forecasts. No combination of techniques im-
proves all forecast qualities considered at all lead times and all levels
of the verifying simulation. A reduction in the unconditional bias and
in the reliability of the ensemble precipitation forecasts is followed by
improvements in the reliability of the streamflow ensemble forecasts.
However, the trade-off between reliability and resolution is also ob-
served in the streamflow predictions.

The improvements in precipitation and temperature do not trans-
late proportionally into the streamflow forecasts. This may be partly
explained by the strong non-linearity of the Rhine basin (due to sub-
stantial storage of water in the subsurface, in extensive snowpacks and,
to a lesser degree, in reservoirs) and, accordingly, the hydrologic model.
Possibly, the effects of post-processing would be stronger in basins
where streamflow has a more linear response to forcing variables, e.g.
in basins with less storage ,or when leadtimes are sufficiently long
to allow for the stored water to reach the streamflow network. This
may explain why [Yuan and Wood| (2012) found that in their seasonal
forecasting case, post-processing of forcings leads to a more noticeable
improvement of streamflow forecast skill than was found in the case
described in the present chapter.

Another potential cause of muted signal resulting from the forcing
bias-correction may also be explained by inadequate modelling of the
space-time covariability of the forcing forecasts. Forcing verification
(as presented here, but more generally) is sensitive to the joint distribu-
tion of the forecasts and observations at specific times, locations and
for specific variables. In contrast, hydrologic models are sensitive to
the space-time covariability of the forcing forecasts. In this context, the
use of the Schaake shuffle to recover some of this space-time covari-
ability may be limiting. The Schaake shuffle introduces rank associa-
tion only, and it introduces this only insofar as these patterns appear
historically on the same or nearby dates. For example, it cannot ac-
count for more complex statistical dependencies, novel structures, or
structures that are conditional upon the state of the atmosphere at the
forecast issue time. These weaknesses are likely exaggerated when the
forecasts have greater spread because the Schaake shuffle has greater
scope to affect the space-time patterns of the ensemble traces. In order
to account for more complex structures, post-processors with explicit
models of space-time covariability are needed, such as geostatistical
models (Kleiber et all 2011), together with parsimonious verification
techniques that are sensitive to these space-time and cross-variable re-
lationships.

71



72

CHAPTER E]

Verification against simulated streamflows allows for the hydrologic
biases to be factored out of the streamflow skill associated with forcing
post-processing. However, it also magnifies the resulting streamflow
ensemble skill. When verifying against observations, the overall biases
and uncertainty will be larger due to inclusion of the hydrologic biases
and uncertainties, including those in the streamflow observations. Rel-
atively speaking, the change in skill due to the post-processed forcings
will be more difficult to detect.

The research questions posed in the introduction were addressed by
looking at a selection of verification metrics. While reasonably broad,
the results may be sensitive to the choice of metric. In addition, the
parameters of each post-processing techniques are estimated with a
particular objective function. If these objective functions are similar to
the verification metrics used, it should not be surprising that a particu-
lar technique scores well in terms of that metric.

The available reforecast dataset allowed for testing our hypothesis
using a reasonable number of retrospective forecasts (just over 3,100).
Conditional verification however, especially of extreme events, quickly
reduces the size of the subsample. In this study, the cut-off of the cli-
matological nonexceedence probability was chosen at P = 0.99, which
is where 1% of the available data is used for verification. This coincides
with approx. 30 data pairs. If the present study would be repeated and
extended by stratifications, for example on a two season basis, then the
P = 0.99 quantile would equate to approx. 15 verification pairs, which
is deemed too small for verification purposes. Conversely, if, in case
of stratification, the minimum number of pairs would be kept fixed
at 30, this would mean that less extreme events can be analysed only.
Ideally, longer sets of reforecasts (hindcasts) would be available. Note
that by the time the present chapter was submitted for publication, the
ECMWEF reforecast set had been extended considerably. Even so, the
authors support the call for reforecast datasets, eloquently voiced by
Hamill et al.| (2006).

In the current study, the improvements to streamflow accrued by
post-processing of the forcing predictions were modest. Moreover,
these effects may be negligible when verifying against streamflow ob-
servations. Since forcing post-processing is both labour intensive and
inherently difficult for precipitation, particularly in accounting for ap-
propriate space-time covariability, it is worth considering other meth-
ods to improve the skill of the forcing and streamflow ensembles, such
as multi-model combinations, data assimilation (to improve the hydro-
logic initial conditions), and streamflow post-processing. For example,
under conditions where forcing post-processing contributes significant
skill to streamflow, it needs to be established whether that skill remains
after streamflow post-processing or whether statistical post-processing
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can adequately remove the forcing biases via the streamflow, despite
the aggregation of multiple sources of bias and uncertainty.

3.5 SUMMARY AND CONCLUSIONS

Ensemble forecasts of temperature and precipitation were tested for bi-
ases and an attempt was made to reduce these biases through statistical
post-processing. This resulted in modest improvements in the quality
of the forcing ensembles. The effects on streamflow were explored by
factoring out the effects of bias in the hydrologic model; that is, by
verifying against simulated streamflow. In general, the improvements
in streamflow quality were muted at all spatial scales considered, with
explanations including a limited model of the space-time covariability
of the forcing ensembles.
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ALTERNATIVE CONFIGURATIONS OF QUANTILE
REGRESSION FOR ESTIMATING PREDICTIVE
UNCERTAINTY IN WATER LEVEL FORECASTS FOR
THE UPPER SEVERN RIVER: A COMPARISON.

ABSTRACT

The present chapter reports an inter-comparison study of different con-
figurations of a statistical post-processor that is used to estimate pre-
dictive hydrological uncertainty. It builds on earlier work by Weerts,
Winsemius and Verkade (2011} herinafter referred to as wwv2o11), who
used the Quantile Regression technique to estimate predictive hydro-
logical uncertainty using a deterministic water level forecast as a pre-
dictor. The various configurations are designed to address two issues
with the wwv2o11 implementation: (i) quantile crossing, which causes
non-strictly rising cumulative predictive distributions, and (ii) the use
of linear quantile models to describe joint distributions that may not be
strictly linear. Thus, four configurations were built: (i) ‘classical” Quan-
tile Regression, (ii) a configuration that implements a non-crossing
quantile technique, (iii) a configuration where quantile models are built
in Normal space after application of the Normal Quantile Transform
(similar to the implementation used by wwv2o11), and (iv) a configu-
ration that builds quantile model separately on separate domains of
the predictor. Using each, four re-forecasting series of water levels at
fourteen stations in the Upper Severn river were established. The qual-
ity of these four series was inter-compared using a set of graphical
and numerical verification metrics. Intercomparison showed that reli-
ability and sharpness vary across configurations, but in none of the
configurations do these two forecast quality aspects improve simulta-
neously. Further analysis shows that skills in terms of Brier Skill Score,
mean Continuous Ranked Probability Skill Score and Relative Operat-
ing Characteristic Score is very similar across the four configurations.

This chapter has been published as Lépez Lopez, P., Verkade, J.S., Weerts, A.H., Solo-
matine, D.P,, 2014. Alternative configurations of Quantile Regression for estimating pre-
dictive uncertainty in water level forecasts for the Upper Severn River: a comparison.
Hydrology and Earth System Sciences 18, 3411—-3428. DOI: 10.5194/HESS-18-3411-2014
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4.1 INTRODUCTION

Forecasting may reduce but can never fully eliminate uncertainty about
the future. Hydrological forecasts will always be subject to many sour-
ces of uncertainty, including those originating in the meteorological
forecasts used as inputs to hydrological models (e.g. precipitation and
temperature), and in the hydrological models themselves (e.g. model
structure, model parameters and human influences). Informed deci-
sion making may benefit from estimating the remaining uncertainties.
A number of research studies suggest that enclosing predictive uncer-
tainty estimates indeed leads to benefits to end users (Krzysztofowicz,
2001} [Collier et al.| 2005 [Verkade and Werner, |2011; Ramos et al.} 2012}
Dale et al., |2014).

In the literature, various approaches to estimate predictive uncer-
tainty have been presented. One of those is the use of meteorologi-
cal ensemble forecasts, where initial atmospheric conditions are per-
turbed to yield an ensemble of atmospheric forecasts. These can be
routed through a hydrological model, thus yielding an ensemble of
hydrologic model forecasts which provides insight into the sensitiv-
ity of hydrological model results to various possible weather scenarios.
Increasingly, hydrologic forecasting systems are including these ensem-
ble predictions in the forecasting routines to capture the meteorological
uncertainty. An overview of applications and best practices was given
by [Cloke and Pappenberger| (2009). More recent applications include
the Environment Agency’s National Flood Forecasting System — NFFS
— (Schellekens et all |2011) and the US National Weather Service’s Hy-
drologic Ensemble Forecast Service HEFS (Demargne et al., 2013). Note
that HEFS also includes a statistical post-processor developed by (Seo
et al., [2006).

A second approach is statistical post-processing. Estimating predic-
tive uncertainty through statistical post-processing techniques com-
prises an analysis of past, ‘observed’ predictive uncertainty to build
a model of future predictive uncertainties. It can be used as either an
alternative or additional step to hydrological ensemble forecasting. In
many hydrological forecasting applications, postprocessing is used in
combination with deterministic forecasts (but it can also be applied to
ensemble hydrologic forecasts if available; see, for example, Reggiani
et al.||2009 and |Verkade et al|2013b). A historical record of past fore-
casts and their verifying observations is then used to build a model
of forecast error. (Note that other configurations are possible, but this
one is the most straightforward and common one.) On the assumption
that this error will be similar in future cases, the error model is then
applied to newly produced deterministic forecasts, thus producing an
estimate of predictive hydrological uncertainty. This estimate then in-
cludes uncertainties originating in both the atmospheric forecasts as
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well as those in the numerical simulation of streamflow generation
and routing processes. Post-processing assumes a stationary relation
between the predictors and the predictors. It follows that both the fore-
casts and the observations used for calibration have to be stationary.
Also, ideally the calibration record is sufficiently long as to include
events that are (relatively) extreme. The reason for this is that the rela-
tionship between forecast and observations at extreme events may be
different from the relationship in non-extreme hydrological regimes.
If the assumption of stationarity cannot be met or if the calibration
record is short, the quality of the post-processed forecasts is likely to
be reduced. Several hydrologic post-processors have been described in
the scientific literature, including the Hydrological Uncertainty Proces-
sor (HUP - Krzysztofowicz and Kelly|2000), Bayesian Model Averaging
(BMA - Raftery et al|[2005), the Model Conditional Processor (MCP -
Todini|[2008), UNcertainty Estimation based on local Errors and Clus-
tering (UNEEC -Solomatine and Shresthal2009), the Hydrologic Model
Output Statistics (HMOS - |[Regonda et al||2013) and Quantile Regres-
sion (QR -|Weerts et al.[2011). The present chapter focuses on the latter
technique.

Quantile Regression (QR, Koenker and Bassett J1|1978; Koenker and
Hallock!|2001; [Koenker|[2005) aims to describe a full probability distri-
bution of the variable of interest (the predictand), conditional on one or
more predictors. Contrary to some of the other post-processors (such
as HUP or BMA), OR requires few prior assumptions about the char-
acterization of the model error. While it was originally developed for
applications in the economic sciences, it has since been introduced into
environmental modelling and climate change impact assessment (e.g.
Bremnes, 2004 Nielsen et al., |2006). The technique has been applied
in various research studies as a post-processing technique to estimate
predictive hydrological uncertainty, including those described by [Solo+
matine and Shresthal (2009), |Weerts et al.| (2011), |Verkade and Werner
(2011), and [Roscoe et al.| (2012). In each of these applications, the quan-
tiles of distribution of the model error are estimated using single val-
ued water level or discharge forecasts as predictors.

Weerts et al| (2011; hereinafter referred to as wwv2o11) describe
an implementation of QR for the Environment Agency in the United
Kingdom. The “Historic Forecast Performance Tool” (HFPT; Sene et al.
2009) makes use of QR to estimate a predictive distribution of future
water levels using the deterministic water level forecast as a predic-
tor. The wwv2o11 configuration of QR includes a transformation into
Gaussian space using the Normal Quantile Transform (Krzysztofowicz
and Kelly} 2000; [Montanari and Brath) 2004; [Bogner and Pappenberger,
2011). In QR, the quantiles are estimated one at a time. Potentially,
these quantiles cross, thus yielding implausible predictive distribu-
tions. The quantile crossing problem was addressed by omitting the
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domain of the predictor where the crossing occurred from the QR pro-
cedure and instead, in that domain, imposing a prior assumed distri-
bution of the predictand. The present chapter’s study basin was used
as a study basin in wwv2o11 also.

The results of the wwv2o11 analysis were verified for reliability and
showed to be satisfactory. However, this verification was unconditional
in the sense that only the full available sample of paired (probabilistic)
forecasts and observation was assessed for reliability. When the HFPT
was further tested (Vaughan), 2012), it was noticed that the probabilistic
forecasts did not perform equally well in high flow conditions. One
of the contributions of the present chapter consists of a conditional
analysis of forecast skill. Forecast skill is assessed for progressively
higher flood levels, in terms of commonly used verification metrics and
skill scores. These include Brier’s probability Score, the Continuous
Ranked Probability Score and corresponding skill scores as well as the
Relative Operating Characteristic Score.

The configuration of QR in wwv2o11 included two elements that, in
the present chapter, are explored in additional detail. These steps are
(i) the technique for avoiding crossing quantiles and (ii) the derivation
of regression quantiles in Normal space using the Normal Quantile
Transform (NQT).

In wwv2011, crossing quantiles were avoided by manually imposing
a distribution of the predictand in the domain of the predictor where
crossing occurred. Since designing and implementing that particular
configuration, an alternative technique for estimating non - crossing
quantile regression curves has emerged (Bondell et al., |2010b). As the
latter technique requires less manual interference by the modelers, the
present chapter investigates whether implementation thereof yields es-
timates of predictive uncertainty that are of equal or higher quality.

In wwv2o11, QR was applied using first degree polynomials, i.e.
describing the distribution of the predictand as a linear function of
the predictor. This, of course, assumes that the joint distribution of
predictor and predictand can be described in linear fashion. To facili-
tate this, both marginal distributions (of forecasts and of observations)
were transformed into Normal or Gaussian domain using the NQT.
The joint distribution was subsequently described in Normal space us-
ing linear regression quantiles, and then back-transformed into origi-
nal space. The resulting regression quantiles are then no longer linear.
While this procedure yielded satisfactory results, there is no require-
ment on the part of QR of either the marginal or joint distributions to
be marginally or jointly Normal distributed. Also, the transformation
and especially the back-transformation impose additional assumptions
on the marginal distributions and can thus be problematic. Hence a
justified question is whether this transformation to and from Normal
space actually yields better results. In the present chapter, this is tested
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by comparing multiple configurations of QR: derivation of regression
quantiles in original space and in Normal space. As an additional step,
a piecewise linear configuration is tested, where the domain of the pre-
dictor is split into several, mutually exclusive and collectively exhaus-
tive domains, on each of which the regression quantiles are calibrated.

The objective of this work is to thoroughly verify uncertainty esti-
mates using the implementation of QR that was used by wwv2o1i,
and to inter-compare forecast quality and skill in various, differing
configurations of QR. The configurations are (i) ‘classical” QR, (ii) QR
constrained by a requirement that quantiles do not cross, (iii) QR de-
rived on time series that have been transformed into the Normal do-
main (similar to wwv2o11 QR configurations, with the exception of
how the quantile crossing problem is addressed), and (iv) a piecewise
linear derivation of QR models. A priori, it is expected that imposing
a non-crossing requirement yields results that are at least as good as
those of the ‘classical’ implementation of QR, and that derivation in
Normal space and piecewise linear derivation each constitute a further
improvement in quality and skill compared to derivation in original
space.

The novel aspects and new contributions of this work include the
thorough verification of an earlier implementation of QR, the appli-
cation of the non-crossing QR to this particular case study and the
exploration of techniques for ensuring that joint distributions can be
described using linear QR models.

This chapter first describes the approach, materials and methods,
including the study basin, the hindcasting process, the analysed QR
configurations and the verification process. Subsequently, results and
analysis are presented. The chapter ends with conclusions and discus-
sion.

4.2 APPROACH, MATERIALS AND METHODS

The present study consists of an experiment in which verification re-
sults of four differently configured post-processors (each based on the
Quantile Regression technique) are inter-compared. By the varying
configurations, two potential issues are addressed: quantile crossing
and possible non-linearity of the joint distribution of predictor and
predictand.

4.2.1  Study basin: Upper Severn River

The Upper Severn basin (Figure serves as the study basin for the
present study; it was also one of the study basins in wwvz2o11. Its pre-
dominantly hilly catchment extends from the Welsh Hills at Plynlimon
to the gauge at Welshbridge in Shrewsbury and is approximately 2,284
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Figure 31: The Upper Severn basin including the 14 forecasting locations
used in the present study. Note that the smallest river streams are
not shown in the stream network. (The digital elevation model is
made available by the European Environment Agency on a Creative
Commons Attribution License; http://www.eea.europa.eu/data-
and-maps/data/digital-elevation-model-of-europe)

km? large. Lake Vyrnwy (Vyrnwy River) and Llyn Clywedog (Clywe-
dog River) are two reservoirs located in the headwaters of the catch-
ment. The Upper Severn includes rock formations classified as non-
aquifers as well as loamy soils characterised by their high water reten-
tion capacity. Annual precipitation varies with topography from 700 to
2,500 mm (EA, 2009). Flooding occurs relatively frequently, with ma-
jor floods occurring in autumn 2000, February 2002, February 2004,
summer 2007, fall 2012 as well as at the time of writing this chapter,
early 2014. To manage flood risk, the UK Environment Agency devel-
oped the River Severn Catchment Flood Management Plan in 2009.
Flood risk management is supported by the Midlands Flood Forecast-
ing System (MFFS), which is based on the Delft-FEWS forecast pro-
duction system (Werner et al} 2013). The Upper Severn configuration
in MFFS consists of a sequence of numerical models for modeling of
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Table 7: Hydrometeorological and topographical information of analysed
catchments at Upper Severn River (adapted from [EA|2013|and Marshi
and Hannaford|[2008).

Station name River Basin area Elevation Mean Mean flow Highest Basin lag time

annual river level

rainfall recorded

[km?|  mAOD] [mm]  [m3/s] [m) [h]

Caersws Severn 205 119 - - 3.69 8- 10
Abermule Severn 580 83 1291 14.58 5.26 13- 17
Buttington Severn 653 62 - - 5.5 8-10
Montford Severn 1784 52 1184 43.3 6.96 10 - 15
Welshbridge Severn 2025 47 - - 5.25 15 - 20
Vyrnwy Weir Vyrnwy 94 226.34 1951 4.24 1.8 2-5
Pont Robert ~ Vyrnwy 417 100 - - 3.07 5-9
Meifod Vyrnwy 675 81 - - 3.67 7 - 10
Llanymynech Vyrnwy 778 62 1358 21.08 5.19 3-6
Bryntail Clywedog 49 212.05 2026 2.4 1.61 2-4
Rhos Y Pentref Dulas 53 178.49 1313 1.45 2.42 1-3
Llanerfyl Banwy 124 151 - - 3.5 3-5
Llanyblodwel Tanat 229 77.28 1267 6.58 2.68 7 - 10
Yeaton Perry 109 61.18 767 1.6 1.13 15 - 20

rainfall-runoff (MCRM; Bailey and Dobson|1981), hydrological routing
(DODO; [Wallingford|1994) and hydrodynamical routing (ISIS;|(Walling+
ford|1997) processes as well as an internal MCRM error correction pro-
cedure based on the Autoregressive Moving Average (ARMA) tech-
nique. The input data for MFFS consists of Real Time Spatial (RTS)
data (observed water level data, rain gauge data, air temperature and
catchment average rainfall data), Radar Actuals, Radar Forecast, and
Numerical Weather Prediction data. This input data is provided by the
UK Meteorological Office.

The uncertainty models are used to estimate predictive uncertainty
at fourteen hydrological stations on the Upper Severn River, each hav-
ing different catchments characteristics. Figure [31| shows a map with
the forecasting locations and their basins. Table [7] summarizes some
key hydrological data.
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4.2.2 Hindcasting process

The uncertainty models (Section[4.2.3) are derived using a joint histori-
cal record of observations and forecasts. The latter is acquired through
the process of reforecasting or hindcasting. For this, a standalone ver-
sion of the forecast production system MFFS is used. Prior to every
forecast, the models are run in historical mode over the previous period
to produce an estimate of internal states (groundwater level, soil mois-
ture deficit, snow water equivalent, snow density, etc). In this historical
mode, models are forced with observed precipitation, evapotranspira-
tion and temperature. The system is subsequently run in forecast mode
twice daily, with forecast issue times of 08:00 and 20:00 UTC, with a
maximum lead time of 48 hours. The selected reforecasting period is
from January 1st, 2006 through March 7th, 2013. Of this period, the
period up to March 6th, 2007 is used to ‘spin up’ the models. The re-
maining six years are used for the calibration and validation of the
uncertainty models.

4.2.3  Uncertainty models

In the present study, predictive uncertainty is modelled using Quantile
Regression (QR). The basic configuration is simple, and identical across
all cases: the predictive distribution of future observed water levels is
modeled as a series of quantiles, each estimated as a linear function of
a single predictor which is the deterministic water level forecast. Four
different configurations are inter-compared. Configuration Zero (QRo)
constitutes the most straightforward case, where QR is applied ‘as is’,
i.e. in its most basic form, in which no attempt is made to avoid cross-
ing quantiles and no transformation or piecewise derivation is applied.
Configuration One (QR1) addresses the problem of the crossing quan-
tiles using the technique proposed by |Bondell et al.| (2010b). If quantile
crossing problem does not occur, this technique provides the same es-
timates as in the base scenario. Because of this, it is also applied to
the remaining configurations. In some cases, the joint distribution of
forecasts and observations is not best modelled using linear quantile
regression models across the full domain of the predictor. However, by
applying a transformation or by modelling sub-domains of the predic-
tor, linear models may be used nonetheless. This is what is done in
Configurations Two (QR2) and Three (QR3) respectively. The configu-
rations are each described in detail in the following four subsections;
for reference, they are also listed in Table |8l As the non-crossing quan-
tiles are applied to QR1, QR2 and QR3, the comparison in the present
chapter is effectively between these three latter configurations.

The joint distribution of forecasts and their verifying observations
is based on the UK Environment Agency archives of water level ob-
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Table 8: QR Configurations used in the present study

Identifier Description

QRo Classical Quantile Regression - Base scenario
QR1 Quantile Regression constrained by a non—crossing quan-
tiles restriction

QR2 Quantile Regression, constrained by a non—crossing quan-
tiles restriction, on the transformed data into Normal do-
main through Normal Quantile Transformation (NQT)

QR3 Piecewise linear derivation of Quantile Regression, con-
strained by a non—crossing quantiles restriction

servations and on the forecasts from the hindcasting procedure. The
available record is cross-validated through a leave-one-year-out cross-
validation analysis. From the six years’ worth of forecasts that are
available for calibration and validation, five are used for model cal-
ibration and the single remaining year is used for model validation.
Subsequently, another year is chosen for validation and the calibration
period then comprises the remaining five years. This is repeated until
all six years have been used for validation.

Uncertainty models are developed for each combination of lead time
and location separately. While the forecasts have a maximum lead
time of 48 hours with one-hour intervals, the QR models are derived
on a limited number of lead times, namely for 1 hour lead time and
then 3 through 48 hours lead time with 3-hour increments. The leave-
one-year-out cross validation procedure yields approximately 3,760
observation-forecast pairs for every combination of lead time and lo-
cation.

4.2.3.1  QRo: Quantile Regression

Quantile Regression (QR; [Koenker and Bassett Jr, [1978; Koenker and
Hallock, [2001; [Koenker), |2005). QR is a regression technique for esti-
mating the conditional quantiles of a multivariate distribution. The
technique is described in detail in Appendix [A] Figures and
give a graphical overview of the resulting quantiles. These plots are
discussed in the Results and Analysis section.

4.2.3.2  QR1: Non-Crossing Quantile Regression

A potential problem with using QR for derivation of multiple condi-
tional quantiles is that quantiles may cross, yielding predictive distribu-
tions that are not, as a function of increasing quantiles, monotonously
increasing. wwv2011 have addressed this issue by assuming a fixed
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Figure 32: Quantile Regression models for Llanyblodwel. Rows show the four
different configurations; columns show different lead times.

error model in the domain of the predictor where there is the dan-
ger of quantiles crossing. In the present research study, the technique
proposed by (Bondell et al., 2010b) is used. This technique imposes a
non-crossing restriction on the solution of Equation [A.7] Without this
restriction, the solution to the proposed optimization problem is iden-
tical to that of classical quantile regression, i.e. to the models derived
using QRo. For a more detailed description of the non-crossing quan-
tiles technique, the reader is referred to (Bondell et al., |2010b). The
technique is freely available online (Bondell et al} 2010a) and is coded
in the statistical computing language R (R Core Team, |2013).
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Figure 33: Quantile Regression models for Pont Robert. Rows show the four
different configurations; columns show different lead times.

4.2.3.3  QR2: Quantile Regression in Normal space

In this configuration, timeseries of water level observations and wa-
ter level forecasts are first transformed into the Normal domain. This
results in timeseries that are marginally Normal distributed. Subse-
quently, Quantile Regression models are calibrated using the non-
crossing quantiles technique. Posterior to the derivation of QR mod-
els, the variables are back-transformed into original space. The ratio-
nale for using the transformation is that the joint distribution of trans-
formed timeseries appears to be more linear, and can thus be better
described by linear conditional quantiles.

The Normal Quantile Transformation (NQT) is a quantile mapping
or cdf-matching technique that matches the (empirical or modeled) cdf
of the marginal distributions with a standard normal cdf. Here, the
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Figure 34: Quantile Regression models for Welshbridge. Rows show the four
different configurations; columns show different lead times.

empirical cdf of the marginal distributions is used. Thus, the variables
are mapped to a standard normal distribution,

Yngt =Q ' (F(Y)) (12)
ant,n = Q_] (F(Xn))

where F (-) is the Weibull plotting position of the data point consid-
ered. The equivalent of Equation [A.6] then becomes

ant,n,’t = an,Tant,n + bn,’f (13)
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Figure 35: Quantile Regression models for Llanyblodwel, Pont Robert and

Welshbridge in Normal space (QR2). Rows show the three different
locations; columns show different lead times.

which is solved by minimising the sum of residuals,

J
min Z Pn,t (ynqt,n,j - (aTL,Tant,TL,j + bTL,T)) (14)
=1

Posterior to the analysis in normal space, the variables are back-
transformed to original space using a reversed procedure,

Y= Q(F(ant)) (15)
Xn = Q(F(ant,n))

Back-transformation is problematic if the quantiles of interest lie out-
side of the range of the empirical distribution of the untransformed
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variable in original space. In those cases, assumptions will have to be
made on the shape of the tails of the distribution (see [Bogner et al.
2012/ for a more elaborate discussion). Some authors have chosen to
parameterize the distribution of the untransformed variable and use
those statistical models for the back-transformation (see, for example,
Krzysztofowicz and Kelly||2000). In the present study, this matter is
treated through a linear extrapolation on a number of points in the
tails of the distribution which was the solution chosen by |Montanari
(2005) and by wwv2o11.

4.2.3.4 QR3: Piecewise Linear Quantile Regression

In an effort to try and use linear quantile models to describe a joint
distribution that may be slightly nonlinear in nature, Van Steenbergen
et al.| (2012)) applied linear models to partial domains of the predictor.
They found the resulting distributions to be both more reliable and
sharper than those attained by application of a single linear model
to the full domain of the predictor. Multiple, mutually exclusive and
collectively exhaustive domains were identified based on a visual in-
spection of the data and taking into account the requirement that each
sub group will have to contain a sufficiently sized data sample. As this
selection more or less coincided with two splits at the 20! and 8o
percentile, thus three sub-domains were defined, comprising 20%, 60%
and 20% of the data respectively.

4.2.4 Verification strategy

To understand and inter-compare the performance of different QR con-
figurations, an extensive verification of forecast quality was carried out.
The post-processing procedure separated calibration from validation
hence the verification can be considered to be independent. The old(-
ish) adage has it that probabilistic forecasts should strive for sharpness
subject to reliability (Gneiting et al., |2005): an improvement in sharp-
ness at the expense of reliability is not desirable. In addition, decision
makers may be interested in event discrimination skill for specific flood
thresholds, for example. Forecasts were therefore assessed for reliabil-
ity, sharpness and event discrimination, and a number of metrics were
calculated.

These verification metrics include the Brier Score (BS), the mean Con-
tinuous Ranked Probability Score (CRPS) and area beneath the Relative
Operating Characteristic (ROCA). Reliability was assessed using relia-
bility diagrams, that plot the relative frequency of occurrence of an
event versus the predicted probability of event occurrence. Proximity
to the 1:1 diagonal, where observed frequency equals predicted proba-
bility, indicates higher reliability. Sharpness was explored by determin-
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ing the width of the centred 80% interval of the predictive distributions;
the full sample of these widths is shown by means of an empirical cu-
mulative distribution function (ecdf). The Brier Score (Brier, [1950) is
defined as the mean squared error of a probabilistic forecast of a binary
event. The mean CRPS (Brown, [1974; Matheson and Winkler, [1976) is
a measure of the squared probabilistic error in the forecasts across all
possible discrete events. The area beneath the Relative Operating Char-
acteristic is a measure of the forecasts’ ability to discriminate between
the exceedence and non-exceedence of a threshold, for example a flood
threshold. A detailed description of these measures with their mathe-
matical formulation can be found in Appendix

To allow for comparison across different locations, BS, CRPS and
ROCA are expressed as skill, thus becoming Brier Skill Score (BSS),
Continuous Ranked Probability Skill Score (CRPSS) and the Relative
Operating Characteristic Score (ROCS),

. SCore — score
skill = ref

(16)
SCOT€perfect — SCOT€ref

where score is the score of the system considered, score, is the score
of a reference system and scoreperfect is the highest possible score. Skill
scores range from —oo to 1. The highest possible value is 1. If skill =0,
the system’s score is as good as that of the reference system. If skill < 0
then the system’s score is less than that of the reference system. In
the case of BSS and CRPSS, the reference score comprises that of the
sample unconditional climatology; in case of the ROCS, the reference
score is the ROCA associated with an unskilled forecast which states
that the probability of event occurrence is equal to the probability of
non-event occurrence.

As the post-processor is intended to be used in flood forecasting,
forecast skill is not only assessed for the full available sample of fore-
cast, observation pairs, but also for subsets of high and extreme events.
These subsets are defined by the climatological probability of non-
exceedence P of the observation. For example, P = .95 denotes the
sub—sample of forecast, observation pairs where the observation falls
in the top 5% of observations. Increasing the value of P from o (i.e.
the full available sample) to a value close to 1 thus gives an indication
of forecast performance for high events. Note that for event metrics
such as BS and ROC and associated skill scores, the value of P denotes
the threshold that defines the event. This procedure is identical to the
procedure outlined in Section

By construction, sample size for the computation of every ver-
ification metric varies with the climatological probability of non-
exceedance P considered (Figure [36). Increasing the value of P means
lower sample size. Sampling uncertainties of the verification metrics
were explored by bootstrapping. The stationary block bootstrapping
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Figure 36: Sample size as a function of the climatological probability of non-
exceedence P.

techniques was applied. This method constructs resample blocks of ob-
servations to form a pseudo time series, so that the statistic of interest
may be recalculated based on the resampled data set (Politis and Rot
mano) 1994). The minimum sample size was set to 50 and the number
of bootstrap samples to use in computing the confidence intervals was
set to 1000. The applied resampling method estimates the sampling dis-
tribution of each verification score. Here, the 5" and 95" percentiles of
those distributions are shown. These thus constitute the centred 90%
confidence intervals.

Verification metrics were calculated using the Ensemble Verification
System (Brown et al. 2010).

4.3 RESULTS AND ANALYSIS

Results were produced for each of the fourteen locations listed in Ta-
ble [7 and all of the lead times were considered. For practical reasons,
the present section includes results for a limited number of lead times
and locations only: 24-hour, 36-hour and 48-hour lead times at Llany-
blodwel, Pont Robert and Welshbridge. This combination thus com-
prises forecasting locations with varying sizes of contributing area.
Pont Robert is located upstream, Llanyblodwel somewhere in the mid-
dle, and Welshbridge at the very outlet of the Upper Severn basin.

4.3.1  Uncertainty models

Uncertainty models for the three locations are shown in Figures
and All scatter plots show observed water levels on the vertical
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axis versus water level forecasts on the horizontal axis. Each of the
figures consists of a matrix of multiple panels, with rows showing
the four configurations considered and columns showing various lead
times. Note that across configurations, the scattered pairs are iden-
tical. On the scatter plots, a summary of the estimated uncertainty
models is superimposed, consisting of a selection of quantiles only:
T € {0.01,0.05,0.1,0.25,0.5,0.75,0.9,0.95,0.99}. Note that these quan-
tiles were derived for plotting purposes only, and do not necessarily
coincide with the quantiles derived for verification. In the analysis, a
more elaborate set of quantile is used. The latter quantiles are derived
using a leave-one-year-out procedure (see Section for details),
whereas this was not the case for the example quantiles in Figures
through[35] However, the derived models do not differ markedly. In the
plots, the QR-estimated quantiles are shown in grey with the exception
of the median quantile which is shown in blue.

From Figures an a few general observations can be made.
All scatter plots show that there is an obvious correlation of forecasted
and observed water levels, although in none of the combinations of lo-
cation and lead time, all forecasts are equal to the observations. Spread
of the forecast, observation pairs increases with increasing lead time.
At zero lead time, the error correction technique ensures that modeled
(i.e. simulated or forecasted) water levels are equal to the water level
observation, hence at issue time there is no forecasting uncertainty.
With increasing lead time, this uncertainty increases. The location with
largest lag time (Welshbridge) shows spread that is more concentrated
around the 1:1 diagonal than the other locations that have smaller con-
tributing areas and shorter lag times. The location and slope of the
quantiles show that in most cases, spread is modeled to be very small
at low predicted values of the forecast, and increases with increasing
value of the forecast.

The figures show how the uncertainty models, each based on a dif-
ferent configuration of Quantile Regression, differ from one another.
Configurations o and 1 appear to be very similar. They differ only in
those instances where the former configuration would lead to quan-
tile crossing but are identical otherwise, which was indeed anticipated.
Configurations 2 (derived using NQT transform) and 3 (piecewise lin-
ear approach) are quite different from the first two configuration, but
not dissimilar to one another. In these configurations, the quantiles are
not a linear function of the water level forecast, that is, not along the
full domain. Note that this non-linearity constituted the very reason
why these configurations were included in the analysis. Both models
often - but not always - show a very small spread at lowest water level
forecasts, followed by an increasing spread. At high water level fore-
casts however, spread no longer increases and sometimes decreases.
This means that sharpness of the resulting probability forecasts then

91



w M OO B N W N~ O
(I T S T T E T R

= N
| h

N
|

Water level [m]
oo

o B N W DM OO P N W
[ T T T T T T -

92

CHAPTERLZJ

24 36 48

T uoneinbyuod 4O 0 uoneinByuod ¥O

€ uoneinfyuod YO  z uoneinbyuod ¥O

15/1‘2/11 01/0‘1/1215/0‘1/12 01/0‘2/12 15/1‘2/11 01/0‘1/1215/0‘1/12 01/62/12 15/1‘2/11 01/0‘1/1215/0‘1/12 01/0‘2/12

Time [day/month/year]
I 50% CI Il 80% CI B 90% CI Obs water level — Fcst water level — Median

Figure 37: Hydrographs of late 2011 and early 2012 events at Welshbridge.

no longer reduces with increasing values of the water level prediction;
sometimes it even increases.

Figure [35| gives some additional background to the QR2 scenario
and shows the estimated quantiles in Normal space, i.e. prior to back-
transformation to original space. Similar to the other configurations,
the estimated quantiles are linear. The strong non-linearity that is
shown in Figures 2 through 4 is a result of the back-transformation
from Normal to original space.

From the pairs and the models, we can see that at both Llanyblod-
wel and Pont Robert, the deterministic forecast has a tendency towards
underforecasting, i.e. to underestimate future water levels. This under-
forecasting is corrected for by the uncertainty models, that thus include
a bias correction by resulting in a median forecast that is higher than
the deterministic forecast. The joint forecast, observation distribution
for Welshbridge shows that there is much less obvious underforecast-
ing, or overforecasting for that matter.
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4.3.2  Hydrographs

Hydrographs are shown in Figure [37]at Welshbridge for a flood event
that took place late 2011 and early 2012. The multiplot panel is com-
posed by three columns representing three different lead times; 24-
hour, 36-hour and 48-hour, and four rows for each of the four QR
configurations. Each of these plots shows time in the horizontal axis,
approximately 3 months and water level in the vertical axis. Determin-
istic forecast water level (green line), observations (blue dots), median
quantile (light blue) and centered 50 %, 80 % and 9o % confidence
intervals are included (in shades of grey). Across the configurations
for a particular lead time, water level observations and deterministic
forecasts are identical.

From the plots, a number of observations can be made, each consis-
tent with what was to be expected based on the QR models. Uncer-
tainty increases with lead time, as is shown by the widest intervals at
highest lead times, and vice versa. The deterministic forecast tends to
underestimate water level observations. With increasing lead time, un-
derforecasting increases. At 48-hour lead time for high water levels the
deterministic forecast provides a higher underestimation than for low
and medium water levels, which is consistent with QR models shown
in Figure

The probabilistic forecasts resulting from configurations o and 1 are
quite similar to one another. They both show highest uncertainty at
higher deterministic water level forecasts. Configuration 2 does not
show this behaviour; at higher deterministic forecasts, probabilistic
forecasts are sharper. Again, this is consistent with the QR model plots
in Figure Configuration 3 results in forecasts whose width in the
top 20 % of forecasts varies only slightly (at 24-hour lead time) or al-
most not at all (at 36-hour and 48-hour lead times) with the value of
the predictor.

From a visual inspection, it appears that the median quantile ob-
tained with the four QR Configurations improves the deterministic
forecast. QR Configurations o and 1 provide a median quantile with
a minor improvement. Differences between the median quantile of QR
Configuration 2 and the deterministic forecast are the lowest ones. QR
Configuration 3 median quantile reproduces with the highest accuracy
water level observations, including high, medium and low values.

4.3.3 Verification

4.3.3.1  Reliability and sharpness

Figures [38| and [39| show reliability diagrams for the full data sample
and for the forecasts whose verifying observation falls in the top 10% of
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Figure 38: Full sample reliability plots.

observations (P = 0.90), respectively. When looking at the full available
sample, the diagrams show reasonably high reliability: most plotting
points are very near, or on the 1:1 diagonal. At 24-hour leadtime, there
is some underforecasting but this is no longer the case at the longer
leadtimes shown.

At P = 0.90, forecasts are considerably less reliable. At all locations
and at all leadtimes, there is considerable underforecasting at all but
the tails of the predictive distributions. This underforecasting is more
pronounced for the smaller basins, and vice versa. Forecasts from QRo
and QR1 are equally (un-)reliable. When comparing these to forecasts
from QR2 and QRj3, there is no configuration that yields more, or
less, reliable forecasts across all cases. QR3 forecasts are nearly always
among the least unreliable forecasts, although in many cases this is a
shared position with varying other configurations.

Figures [40| and [41] show the distribution of width of the centred 90%
predictive intervals for the full available sample (P = 0) and the top
10% of observations only (P = 0.90), respectively. The figures show that
sharpness reduces with increasing lead-time as well as with increasing
basin lag time. Inter-comparison of sharpness between the different
cases shows that for the full sample (Figure |40) there is little if any dif-
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Figure 39: Reliability plots for the forecasts associated with the top 10% obser-
vations (P = 0.90).

ference between the four configurations, and virtually none between
QRo and QR1. Forecasts for events that are more extreme (P = 0.90)
show larger differences. Again, QRo and QR1 yield forecasts of more or
less equal width, but there are some differences between these config-
urations and QR2 and QR3. These differences increase with increasing
lead time and increasing basin lag time. At Welshbridge, QR2 yields
sharpest forecasts, followed by QR3.

Unconditionally, both sharpness and reliability are more or less sim-
ilar across four configurations. At P = 0.90 however, some forecasts are
sharper than others but at the expense of reliability. On balance, useful-
ness of these forecasts may be equal. The trade-off between probability
of detection and probability of false detection can be seen as a measure
of this; the derived ROCS is analysed in the next section.

4.3.3.2  Skill scores

Figures and [44] present the skill scores computed for probabilis-
tic forecast verification. These plots show BSS, CRPSS and ROCS (verti-
cal axes; each score on a new row) versus the magnitude of the verify-
ing observation, as a function of the observation which is expressed by
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Figure 40: Empirical cumulative distribution function of the centred 80% con-
fidence interval of the predictive distributions.

its climatological probability of non-exceedance P (horizontal axes) for
various lead times (columns). In each of the plots, results are shown
for four QR configurations considered. To give an indication of the un-
certainty in the estimation of metrics, median as well as 10% and 90%
estimates are shown.

From the figures, some general observations can be made. First of all,
skills are mostly positive, with the exception of BSS and ROCS at the
tails of P. Furthermore, skills deteriorate with increasing lead time, in-
crease with increasing basin size and vary with the observation. Many
of the plotted results are very similar in that the distribution of veri-
fication metrics is very similar - both in terms of the median as well
as the confidence bounds shown - across all leadtimes (columns) and
values of P (horizontal axes). As the distributions are approximations
— the verification pairs used are not strictly independent — a formal
statistical hypothesis testing procedure cannot be used. Hence the in-
terpretation is necessarily largely subjective.

The Brier Skill Score (BSS) as a function of P has a concave, inverse
U shape curve. BSS is lowest — sometimes even negative — at the
tails of P and highest near median P. This is because BSS is calculated
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Figure 41: Empirical cumulative distribution function of the centred 80% confi-
dence interval of the predictive distributions associated with the top
10% observations.

using event probabilities; and extreme events, whether low or high, are
more difficult to correctly predict than non-extreme events. In terms of
difference across the configurations: these are very limited. Only at the
low tail do these become apparent, but often the differences are not
significant.

Contrary to BSS and ROCS, CRPSS is a smooth, continuous measure
that factors skill across all possible thresholds for each paired sample.
This different formulation is reflected in its behaviour with increasing
value of the observation. For short lead times, CRPSS is approximately
constant. With increasing lead time, a small dip in CRPSS values is
detected close to the median P. At nearly all lead times, the four QR
configurations show very similar skill. The only exception is the high-
est lead times (48 hours), in which QR Configuration 3 outperforms
the remaining cases.

ROCS is a binary event skill with a similar formulation to BSS. How-
ever, ROCS values do not show the same pattern than BSS. ROCS is
largely constant for the whole climatological distribution of the obser-
vations, as it can be seen at Welshbridge in Figure Pont Robert
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Figure 42: Verification results for water level forecasts at Pont Robert station
(5 — 9 h lag time). In the rows, three different metrics are shown;
from top to bottom these are the Brier Skill Score (BSS), the mean
Continuous Ranked Probability Skill Score (CRPSS) and the Rela-
tive Operative Characteristic Score (ROCS). Columns show various
leadtimes: 24, 36 and 48 h.

(Figure and Llanyblodwel (Figure present lower skill for the
top half of the observations. Forecast quality decreases with increasing
lead time, as it happens with BSS and CRPSS. No significant differ-
ences can be pointed out among the analysed QR Configurations.

4.4 SUMMARY, CONCLUSIONS AND DISCUSSION

The research described in this chapter had two objectives: (i) to ex-
tensively verify the estimates of predictive uncertainty for Upper Sev-
ern basins that were produced using the Quantile Regression post-
processing technique as described by wwv2o11; (ii) to address two
issues with the ‘as is” implementation of linear models of QR: (a) in-
valid predictive distributions due to the crossing quantile problem; (b)
the description of slightly non-linear joint distributions by a linear QR
model.
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Figure 43: Verification results for water level forecasts at Llanyblodwel station
(7 — 10 h lag time). In the rows, three different metrics are shown;
from top to bottom these are the Brier Skill Score (BSS), the mean
Continuous Ranked Probability Skill Score (CRPSS) and the Rela-
tive Operative Characteristic Score (ROCS). Columns show various
leadtimes: 24, 36 and 48 h.

The verification of forecast quality builds on the verification that
was carried out in wwv2o11. In the present chapter, multiple metrics
and skill scores are presented. Also, a ‘conditional verification” was
carried out, i.e. verification was done for a large number of sub-sets of
available data, each representative for increasingly higher events. Veri-
fication showed that, unconditinally, in terms of all skills and metrics,
forecast quality is positive. However, the analysis also shows that fore-
cast quality and skill decreases with increasing value of the event.

The two issues described above were addressed by implementing
several techniques, thus arriving at four configurations of Quantile Re-
gression. The problem of crossing quantiles was addressed by adopt-
ing the non-crossing quantiles technique that was proposed by [Bon;
dell et al|(2010Db)). This resulted in near-identical sharpness, reliability
and skill. From a forecaster’s point of view, the technique constitutes a
methodological improvement as the post-processor will no longer pro-
duce invalid predictive distributions as a result of crossing quantiles,
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Figure 44: Verification results for water level forecasts at Welshbridge station
(5 — 9 h lag time). In the rows, three different metrics are shown;
from top to bottom these are the Brier Skill Score (BSS), the mean
Continuous Ranked Probability Skill Score (CRPSS) and the Rela-
tive Operative Characteristic Score (ROCS). Columns show various
leadtimes: 24, 36 and 48 h.

at no noticeable extra computational expense. The problem of linearly
describing joint distributions of forecasts and observations that may
not be linear in nature was addressed by two different approaches.
The transformation to the Normal space attempted to produce a joint
distribution that is ‘more linear’. The piecewise linear derivation ap-
proach constitutes dividing the data into sub-samples on which the
joint distribution is linear.

The intercomparison shows that none of the four Quantile Regres-
sion configurations consistently outperforms the others. Sharpness and
reliability may vary across configurations, but none results in a more
favourable combination of the two. In terms of BSS, CRPSS and ROCS,
the four configurations yield comparable forecast quality.

Addressing the problem of the non-linearity of the joint distribu-
tions by the solutions proposed in the present chapter has not resulted
in higher skill. Either the data was sufficiently linear for the techniques
not to be required, or the techniques have not performed to expecta-
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tion. In any case, a skill improvement does not provide a rationale for
derivation of Quantile Regression models in Normal space as was done
by wwv2o11.

While none of the configurations has a proven higher skill, there
may be alternative reasons for choosing one over the other. If the post-
processors are used in operational forecasting systems, the forecasters
will have to be able to explain to an end user how predictive uncer-
tainty was estimated. Hence more complicated configurations will be
less likely to be used. Also, forecasts have to be consistent with fore-
casters’ beliefs (Murphy), 1993), hence the post-processor will have to
fit with the forecasters’ perceptual model of forecasting error.

Like all post-processing techniques, QR requires a long calibration
and validation data set containing several extreme events. If the mag-
nitude of the forecasted water level is outside of the calibration sample
range, then any estimate of hydrological predictive uncertainty is not
supported by data in that range. In an operational setting, it is im-
portant for the forecaster to be aware that this issue may surface. A
suggestion to overcome this issue may be to "flag" the uncertainty es-
timate if it is based on extrapolation outside of the calibration range.
Possibly, in those cases the uncertainty estimate can be replaced by an
assumed estimate that the forecasters are comfortable with.

What would be a promising route to try and improve the skill of
the estimates of predictive uncertainty that are produced by Quantile
Regression? There are multiple possible answers here. First of all, there
may be merit in adding predictors, i.e. by further conditioning forecast
error on additional available variables. These could, for example, in-
clude the internal state variables of a model (dry or wet) and/or avail-
able observations at upstream locations. This route was taken by Solo{
matine and Shresthal (2009) in their UNEEC approach, and by [Dogulu
et al.| (2014). Both compare a more complex UNEEC approach to QR
and found improvement in skill. Stratification of the post-processing
depending on different seasons or water level ranges could represent
another alternative configuration. Both the addition of predictors as
well as stratification, however, introduce additional data requirements
that may not be met, and in the absence of which the quality of post-
processed forecasts may be reduced. Alternative techniques may be
considered, a recent article by [Van Andel et al.|(2013)) discusses various
techniques in the context of the HEPEX intercomparison experiment.
Another option would be to fully investigate additional configurations
of the piecewise linear approach. For example, c-means or K-means
clustering would allow for partitioning data to be used to build sev-
eral regression models.

All the configurations inter-compared in the present work are
parametric Quantile Regression estimations. Non-parametric or semi-
parametric Quantile Regression approaches, based on local smoothing
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could also be considered in future studies. For example, a compar-
ison between here presented parametric QR configurations and the
non-parametric estimation of the water level or discharge conditional
distribution with copulas proposed by Smith et al.|(2014), would be of
interest.
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ESTIMATING PREDICTIVE HYDROLOGICAL
UNCERTAINTY BY DRESSING DETERMINISTIC AND
ENSEMBLE FORECASTS; A COMPARISON, WITH
APPLICATION TO MEUSE AND RHINE

ABSTRACT

Two techniques for estimation of predictive hydrological uncertainty
are compared: post-processing of deterministic forecasts and ‘dressing’
of ensemble streamflow forecasts by adding estimates of hydrological
uncertainties to individual streamflow ensemble members. Both tech-
niques aim to produce an estimate of the ‘total uncertainty” that cap-
tures both the meteorological and hydrological uncertainties. They dif-
fer in the degree to which they make use of statistical post-processing
techniques. In the ‘lumped approach’, both sources of uncertainty are
lumped by post-processing deterministic forecasts using their verify-
ing observations. In the ‘source-specific’ approach, the meteorological
uncertainties are estimated by an ensemble of weather forecasts. These
ensemble members are routed through a hydrological model and a re-
alization of the probability distribution of hydrological uncertainties
(only) is then added to each ensemble member to arrive at an estimate
of the total uncertainty. The techniques are applied to one location in
the Meuse basin and three locations in the Rhine basin. Resulting fore-
casts are assessed for their reliability and sharpness, as well as com-
pared in terms of multiple verification scores including the relative
mean error, Brier Skill Score, Mean Continuous Ranked Probability
Skill Score, Relative Operating Characteristic Score and Relative Eco-
nomic Value. The dressed deterministic forecasts are generally more
reliable than the dressed ensemble forecasts, but the latter are sharper.
On balance, however, they show similar quality across a range of veri-
fication metrics, with the dressed ensembles coming out slightly better.
Some additional analyses are suggested. Notably, these include statisti-
cal post-processing of the meteorological forecasts in order to increase
their reliability, thus increasing the reliability of the streamflow fore-
casts produced with ensemble meteorological forcings.

This chapter has been submitted for publication in Journal of Hydrology as Verkade,
J.S., J.D. Brown, E. Davids, P. Reggiani, and A.H. Weerts. Estimating predictive hydrolog-
ical uncertainty by dressing deterministic and ensemble forecasts; a comparison, with
application to River Meuse
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5.1 INTRODUCTION

The future value of hydrological variables is inherently uncertain. Fore-
casting may reduce, but cannot eliminate this uncertainty. Informed,
forecast—sensitive decision making is aided by adequate estimation of
the remaining uncertainties (see, for example, Verkade and Werner
2011| and the references therein). Omission of relevant uncertainties
would result in overconfident forecasts, hence all relevant uncertain-
ties must be addressed in the estimation procedure. These include un-
certainties related to the modeling of the streamflow generation and
routing processes (jointly referred to as “hydrological uncertainties”)
and uncertainties related to future atmospheric forcing (“meteorolog-
ical uncertainties”). Generally speaking, the total uncertainty can be
estimated by separately modelling the meteorological and hydrologi-
cal uncertainties or by lumping all uncertainties together (cf. Regonda
et al[2013).

The source-specific approach identifies the relevant sources of uncer-
tainty and models these individually before integrating them into an
estimate of the total uncertainty. In this context, the hydrologic uncer-
tainties may be treated separately (independently) from the meteoro-
logical uncertainties, because they depend only on the quality of the
hydrologic modelling. This approach has been followed by, among oth-
ers, [Kelly and Krzysztofowicz (2000); Krzysztofowicz| (2002); Krzysztot
fowicz and Kelly]| (2000), |Seo et al.| (2006) and [Demargne et al.| (2013).
The approach has a number of attractive characteristics. The individ-
ual sources of uncertainty may each have a different structure, which
can be specifically addressed by separate techniques. Also, some of the
uncertainties vary in time, while others are time invariant. A disadvan-
tage of source-based modelling is that developing uncertainty models
for each source separately may be expensive, both in terms of the devel-
opment itself as well as in terms of computational cost. Also, whether
modelling the total uncertainty as a lumped contribution or separately
accounting for the meteorological and hydrological uncertainties, hy-
drological forecasts will inevitably contain residual biases in the mean,
spread and higher moments of the forecast probability distributions,
for which statistical post-processing is important.

In the lumped approach, a statistical technique is used to estimate
the future uncertainty of streamflow conditionally upon one or more
predictors, which may include a deterministic forecast. Underlying this
approach is an assumption that the errors associated with historical
predictors and predictions are representative of those in future. This
approach is widely used in atmospheric forecasting, where it is com-
monly known as Model Output Statistics (MOS) (Glahn and Lowry,
1972). Several reports of applications of the lumped approach in hy-
drology can be found in the literature. These include the Reggiani and
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Weerts (2008a) implementation of the Hydrologic Uncertainty Proces-
sor (Kelly and Krzysztofowicz, 2000), the Model Conditional Processor
(Todinil |2008; |Coccia and Todini| 2011), Quantile Regression (Weerts
et al., 2011} [Verkade and Werner| |2011; [Lopez Lopez et al, [2014), UN-
EEC (Solomatine and Shrestha) [2009) and HMOS (Regonda et al., 2013).
For a complete overview that is periodically updated, see [Ramos et al.
(2013). These techniques each estimate the total uncertainty in future
streamflow conditionally upon one or more predictors, including the
deterministic forecast. Of course, they vary in their precise formula-
tion and choice of predictors. The lumped approach is attractive for
its simplicity, both in terms of development and computational costs.
The main disadvantage of the approach is that both meteorological
and hydrological uncertainties are modeled together via the stream-
flow forecast, which assumes an aggregate structure for the modeled
uncertainties (although the calibration may be different for particular
ranges of streamflow). Also, in order to produce ensemble traces, these
techniques must explicitly account for the temporal autocorrelations in
future streamflow, which may not follow a simple (e.g. autoregressive)
form.

In the text above, the source-specific and the lumped approach
were presented as separate strategies. However, as the source-based
approach may not fully account for all sources of uncertainty, statis-
tical post-processing is frequently used to correct for residual biases
in ensemble forecasts. In the present work, an intermediate approach
is described, namely the ‘dressing’ of streamflow ensemble forecasts.
Here, the meteorological uncertainties are estimated by an ensemble
of weather forecasts. The remaining, hydrological uncertainties are
lumped and described statistically. Subsequently, the streamflow en-
semble members are, cf. Pagano et al|[2013 ‘dressed” with the hy-
drological uncertainties. This approach has previously been taken by,
among others, Reggiani et al.| (2009); Bogner and Pappenberger| (2011)
and [Pagano et al.| (2013) and, in meteorological forecasting, by [Fortin
et al.| (2006); Roulston and Smith| (2003) and [Unger et al.| (2009). Most
of these studies report skill of the dressed ensembles versus that of cli-
matology; |[Pagano et al|(2013) explored the gain in skill when moving
from raw to dressed ensembles and found this gain to be significant.
In contrast, the present study compared dressed ensemble forecassts
to post-processed single-valued streamflow forecasts.

The kernel dressing approach is akin to kernel density smoothing,
whereby missing sources of uncertainty (i.e. dispersion) are introduced
by dressing the individual ensemble members with probability distri-
butions and averaging these distributions (cf.|Brocker and Smith/|[2008).
As ensemble dressing aims to account for additional sources of disper-
sion, not already represented in the ensemble forecasts, a “best mem-
ber” interpretation is often invoked (Roulston and Smith) |2003). Here,
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the width of the dressing kernel is determined by the historical er-
rors of the best ensemble member. The resulting distribution is then
applied to each ensemble member of an operational forecast and the
final predictive distribution given by the average of the individual dis-
tributions. In this context, ensemble dressing has some similarities to
Bayesian Model Averaging (BMA; see [Raftery et al.||2005| for a discus-
sion).

In the ensemble dressing approach, one highly relevant source of
uncertainty, namely the weather forecasts, is described using an en-
semble Numerical Weather Prediction model. This NWP model takes
into account current initial conditions of the atmosphere and exploits
the knowledge of physical processes of the atmosphere embedded in
the NWP model, as well as any meteorological observations that are as-
similated to improve estimates of the predicted states. The hydrologic
uncertainties, which may originate from the hydrologic model param-
eters and structure (among other things) are then lumped, modelled
statistically, and integrated with the meteorological contribution to the
streamflow.

The objective of this work is to compare the quality and skill of
the forecasts created through dressing of deterministic streamflow fore-
casts and through dressing of ensemble streamflow forecasts. A priori,
the dressed ensemble forecasts are expected to have higher skill than
the dressed deterministic forecasts. Both account for the effects of all
relevant sources of uncertainty on the streamflow forecasts. However,
in the ensemble case, the estimate of atmospheric uncertainties is based
on knowledge of the physical system and its state at issue time of a
forecast, whereas this knowledge is unused in the lumped approach.
Nevertheless, the lumped approach accounts for any residual meteoro-
logical biases via the streamflow.

The context for this study is an operational river forecasting system
used by the Dutch river forecasting service. This system models the
total uncertainty in the future streamflow using a lumped approach,
whereby a deterministic streamflow forecast is post-processed through
quantile regression (following a procedure similar to that in Weerts
et al.| |2011). While this module performs reasonably well, there is a
desire among operational forecasters to explore the benefits of (and ac-
count for) information in ensemble weather predictions, including in-
formation beyond the ensemble mean. This resulted in the operational
implementation of the ensemble dressing approach using the same
statistical technique (quantile regression). Thus, estimates of the me-
teorological uncertainties, which were previously modeled indirectly
(i.e. lumped into the total uncertainty), are now disaggregated and in-
cluded separately in the streamflow forecasts. This raises the question
of whether the ‘new” approach indeed increases forecast skill.
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The novel aspects and new contributions of this work include (i)
a direct comparison between the quality of the dressed deterministic
forecasts and the dressed ensemble forecasts; (ii) the application of
quantile regression to account for the hydrologic uncertainties, and
(iii) the application of the dressing technique to dynamic ensemble
streamflow forecasts.

This chapter is organised as follows. In the next section, the study
approach is detailed, followed by a description of the study basins in
section In section [5.4] the results of the experiments are presented
and analysed. In section [5.5 conclusions are drawn and discussed.

5.2 APPROACH
5.2.1 Scenarios

The present study consists of an experiment in which verification re-
sults in two scenarios are inter-compared: dressed deterministic fore-
casts and dressed ensemble forecasts. These are tested in multiple cases,
that is, combinations of forecasting locations and lead times.

5.2.2  ‘Dressing’ of streamflow forecasts

The dressing technique is similar across the lumped and the source-
specific approaches in that the forecasts are dressed with predictive
distributions of uncertainties that are not already explicitly addressed
in the raw forecasts. Thus, deterministic hydrological forecasts are
dressed with a predictive distribution that comprises both meteoro-
logical and hydrological uncertainties, and hydrological ensemble fore-
casts are dressed with a predictive distribution that comprises hydro-
logical uncertainties only. In both approaches, the total uncertainty
is computed by averaging over the number of ensemble members E
(which E =1 in the case of deterministic forecasts),

E
1
D (Ynlxn, 1, %n,2, - XnE) =T O bn (Ynlne), (17)
=1

T E
where @ is the aggregated distribution of observed streamflow y at
lead time n, conditional on the raw streamflow forecast x that consists
of ensemble members e € {1,...,E}, each of which are dressed with
distribution ¢.

In the ensemble dressing scenario, this means that each of the ensem-
ble members is dressed with a predictive distribution of hydrological
uncertainty, and that these multiple distributions are averaged to ob-
tain a single distribution of predictive uncertainty. Note that here, we
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Figure 45: Schematic representation of the dressing procedures for the deter-
ministic (top) and ensemble forecasts (bottom), respectively. The ver-
tical red line denotes the issue time of the forecast, with the obser-
vations (black dots) in the past and the raw forecasts (blue lines) in
the future.

assume that the ensemble members are equiprobable (which generally
applies to atmospheric ensembles generated from a single model, but
not necessarily to multi-model ensembles, for example). If the mem-
bers are not equiprobable then a weighting can easily be introduced.

Here, the distribution, ®, aims to capture the historical residuals be-
tween the observed and simulated streamflows (i.e. streamflows pro-
duced with observed forcing). A “best member” interpretation does
not apply here, because the dressing kernel is aiming to capture a new
source of uncertainty (the hydrologic uncertainty) and not to account
for under-dispersion in the (hydrologic effects of) the meteorological
uncertainties. In short, we assume that the meteorological ensembles
are unbiased and correctly dispersed. However, in principle, our ap-
proach could be extended to account for under-dispersion of the me-
teorological ensemble via the streamflow. In this context, any under-
dispersion would be reflected in the residual of the best forcing ensem-
ble member after propagation through the streamflow model and the
simulated streamflow. This would benefit from the mediating effects of
basin hydrology on precipitation when compared to directly modelling
the under-dispersion of the precipitation ensemble forecasts. Finally, an
ARMA error-correction procedure was used to correct for biases in the
raw streamflow forecasts and hence any residual biases contributed by
the forcing (see below).

By construction, the raw deterministic forecasts are dressed with a
single distribution only, which aims to account for the total uncertainty
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of the future streamflow, not the residual uncertainty of a best ensem-
ble member,

R (Unb‘n,]) = bn (yn‘xnj) . (18)

The dressing procedures are schematically visualised in Figure

5.2.3 Uncertainty models

As mentioned above, the source-specific and lumped approaches dif-
fer in the predictive distributions that the raw forecasts are dressed
with. In the lumped approach, the deterministic forecasts are dressed
with predictive distributions that comprise both hydrological and me-
teorological uncertainties. In the ensemble case, each of the ensemble
members is dressed with a predictive distribution that comprises the
hydrological uncertainties only.

In the lumped approach, the deterministic forecast is dressed by a
distribution of both hydrological and atmospheric uncertainties, con-
ditional on the value of the deterministic forecast itself. The “errors”
in the deterministic forecast are thus a measure of uncertainties orig-
inating in both the meteorological forcing as well as the hydrological
modeling.

Ensemble streamflow forecasts are dressed using a predictive distri-
bution of hydrological uncertainty only. This is achieved by fitting a
probability distribution to the historical residuals between the hydro-
logical model simulations and observations. The latter are derived by
forcing a hydrological model with observed precipitation and temper-
ature. As such, the simulations are independent of lead time. This ap-
proach is quite widely reported in the literature, for example by Mon
tanari and Brath! (2004); [Seo et al| (2006)); (Chen and Yul (2007); [Hantush
and Kalin| (2008)); Montanari and Grossi| (2008); [Iodini| (2008)); Bogner
and Pappenberger| (2011);|Zhao et al.| (2011) and [Brown and Seo| (2013).

Time invariant estimates of hydrological uncertainty using these hy-
drological simulations, however, do not take into account any error cor-
rection or data assimilation procedures that, in a real-time setting, re-
duce predictive uncertainty. In the Meuse case, such an error correction
method is an integral component of the forecasting system. Hence, in
the Meuse case, hydrological uncertainty is not based on observations
and simulations, but on observations and “perfect forcing hindcasts”.
Similar to the forecasts produced by the operational system, these hind-
casts benefit from the ARMA error correction procedure that is applied
to streamflow forecasts at St Pieter at the onset of every hindcast. How-
ever, the hindcasts are forced with observed precipitation and stream-
flow. Hence the hindcasting record is similar to a simulation record, but
with the added benefit of an ARMA error correction. This introduces

109



110

CHAPTER E]

a lead time dependency in the skill of the hindcast. At zero lead time,
the hindcast has perfect skill; with increasing lead time, forecast errors
increase in magnitude and skill deteriorates. These resulting forecast
errors are largely due to hydrological uncertainties. When the effect of
the ARMA procedure has worn out, forecast skill reduces to that of
the hydrological simulations. The procedure is similar to that followed
by [Bogner and Pappenberger| (2011); an alternative approach to this
would be to use use the latest available observation as a predictor in
the uncertainty model; this approach was taken by, among others, Seo
et al.| (2006)).

5.2.4 Quantile Regression

In the present chapter, in both scenarios, uncertainty is estimated us-
ing Quantile Regression (QR; [Koenker and Bassett Jr, |1978; Koenker
and Hallock} 2001} [Koenker) 2005). QR is a regression technique for
estimating the quantiles of a conditional distribution. The technique
is described in detail in Appendix [Al Figure [49| and Figure [50] show
the joint distributions of forecast-observation pairs as well as a selec-
tion of estimated quantiles; these plots are discussed in the

section.

5.2.5 Verification strategy

Forecast quality in the two scenarios is assessed using visual explo-
ration of forecast hydrographs, examination of graphical measures of
reliability and sharpness as well as a selection of metrics (presented as
skill scores) for both probabilistic forecasts and single valued deriva-
tives thereof. The metrics and skill scores are described in detail in
Appendix

Reliability is the degree to which predicted probabilities coincide
with the observed relative frequencies, given those forecast probabili-
ties. Here, we consider reliability for subsets of verification pairs that
exceed a quantile of the predictive distribution, as well as the over-
all paired samples. Reliability is measured in terms of the dispersion
of the observations within the forecast distribution (see Appendix [B),
which is akin to the Probability Integral Transform. Proximity to the 1:1
diagonal, where observed frequency equals predicted probability, indi-
cates higher reliability. Sharpness plots show the empirical cumulative
distribution of the width of the 10!'—goth quantiles of the probability
forecasts. In this context, sharpness measures the degree of confidence
(narrowness of spread) afforded by the forecasts.

Metrics that describe the quality of single valued forecasts include
the correlation coefficient, relative mean error (RME), mean absolute
error (MAE) and the root mean squared error (RMSE). The correlation
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Figure 46: Sample and subsample size as a function of the climatological prob-
ability P of non-exceedence of observation.

coefficient describes the degree of linear dependence between the ob-
servation and the forecast. The RME or fractional bias measures the
average difference between the forecast and the observation, relative
to the mean of the observations. MAE measures the mean absolute
difference between a set of forecasts and corresponding observations.
RMSE provides the square root of the average mean square error of the
forecasts. It has the same unit as the forecasts and the observations. In
each of these four metrics the forecast mean is used as a single valued
forecast.

In terms of the probabilistic characteristics of forecasts, the overall
accuracy is measured with the Brier Score (BS) and the mean Contin-
uous Ranked Probability Score (CRPS). The BS comprises the mean
square error of a probability forecast for a discrete event, where the
observation is an indicator variable. The CRPS measures the integral
square error of a probability forecast across all possible event thresh-
olds, again assuming that the observation is deterministic.
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In the present chapter, both BS and CRPS of the forecasts under con-
sideration are presented as a skill relative to the BS and CRPS of the
climatological forecast, that is, the climatology of streamflow observa-
tions as derived from the sample of verification pairs.

For discrimination, the trade-off between correctly predicted events
(true positives, or hits) and false alarms (false positives) is considered.
Hit rate is plotted versus false alarm rate in the ROC curves. The area
under the curve (AUC) is a measure of discrimination; this is expressed
as the Relative Operating Characteristic score (ROCS), which factors
out the climatological AUC of 0.5, i.e. 2AUC — 1. Forecast value is mea-
sured using the Relative Economic Value (REV; Murphy||1985;/Zhu et al.
2002). REV (V[-]) is calculated by matching the occurrences of hits,
misses, false alarms and correct negatives (‘quiets’) with their conse-
quences (Table [1). It is expressed on a scale from negative infinity to
1, where V = 0 is the situation in which there is no forecasting and
warning system present and V = 1 is the situation in which there is a
perfect forecasting and warning system present. Negative values imply
that the warning system introduces more costs than benefits. The REV
is expressed as a function of the users cost-loss rate .

Verification was performed at the same timestep as the post-proc-
essing; results are shown for a selection of lead times only. For veri-
fication, the open source Ensemble Verification System (Brown et al.,
2010) is used. EVS takes ensemble forecasts as input. Here, predictive
uncertainty is expressed by quantiles rather than ensemble members,
but the 50 quantiles are equally spaced, and ensemble members may
be interpreted as quantiles of the underlying probability distribution
from which they are sampled (e.g. Brocker and Smith) 2008).

Conditional quality and skill is determined by calculating verifica-
tion metrics for increasing levels of the non-exceedence climatological
probability, P, ranging from o to 1. This procedure is identical to that
in Chapters[3]and[4] Essentially, P = 0 constitutes an unconditional ver-
ification for continuous measures, such as the CRPSS, as all available
data pairs are considered (Bradley and Schwartz, 2011). Conversely,
at P = 0.95, only the data pairs with observations falling in the top
5% of sample climatology are considered; this amounts to approx. 6o
pairs here for the Meuse case and approx. 150 pairs for the Rhine case
(Figure [46).

The BSS, ROCS and REV measure forecast skill for discrete events.
The BSS, ROCS and REV are, therefore, unknown for thresholds cor-
responding to the extremes of the observed data sample, nominally
denoted by P =0 and P =1).

Sampling uncertainties were quantified with the stationary block
bootstrap (Politis and Romano, [1994). Here, blocks of adjacent pairs
are sampled randomly, with replacement, from the | available pairs in
each basin. Overlapping blocks are allowed, and the average length of
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each block is determined by the autocorrelation of the sample data. In
both cases, an average block length of 10 days was found to capture
most of the autocorrelation (some interseasonal dependence remained).
The resampling was repeated 1,000 times, and the verification metrics
were computed from each sample. Confidence intervals were derived
from the bootstrap sample with a nominal coverage probability of 0.9,
i.e. [0.05,0.95]. The intervals should be treated as indicative and do not
necessarily provide unbiased estimates of coverage probabilities, par-
ticularly for rare events (Lahiri, 2003). Also, observational uncertainties
were not considered.

These sampling uncertainty intervals provide information as to the
‘true value’ of the metric or skill considered. Unfortunately, the inter-
vals cannot be used for a formal statistical analysis as the verification
samples are not strictly independent. Hence in the present chapter, the
comparison between scenarios is (necessarily) based on a qualitative
description of the uncertainty intervals.

5.3 STUDY BASINS AND DATA USED

To enhance the robustness of the findings presented in this chapter,
the experiment was carried out on two separate case studies. These
comprise forecasting locations in two basins with different characteris-
tics, where hydrological models are forced with different atmospheric
ensemble forcing products.

5.3.1  Meuse

The river Meuse (Figure|47) runs from the Northeast of France through
Belgium and enters the Netherlands just south of Maastricht. It contin-
ues to flow North and then West towards Dordrecht, where it meets
the Rhine before discharging into the North Sea near Rotterdam. Ge-
ology and topography vary considerably across the basin. The French
Meuse basin is relatively flat and has thick soil layers. The mountain-
ous Ardennes are relatively high and steep and the area’s impermeable
bedrock is covered by thin soils. Average annual basin precipitation
varies around goomm. The Meuse is a typically rain-fed river; long
lasting, extensive snowpacks do not occur. Figure 48| shows the dis-
tribution of streamflow at the forecasting locations considered in this
study. Near Maastricht, average runoff equals approx. 200 m3 /s. Tem-
poral variability can be large as, during summer, streamflow can be less
than 10 m3/s, while the design flood, associated with an average re-
turn period of 1,250 years, has been established at approx. 3,000 m3/s.

This study explicitly looks at St Pieter, which is near where the
river enters The Netherlands. Water levels in the Belgian stretch of
the Meuse, just upstream of the Dutch-Belgian border, are heavily reg-
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Figure 47: Map of the Meuse and Rhine basins and the forecasting locations
that are considered in this chapter.

ulated by large weirs. These, together with the locks that have been
constructed to allow ships to navigate the large water level differences,
cause relatively high fluctuations in discharge. The manual operations
that lead to these fluctuations are not communicated with the forecast-
ing agency across the border in The Netherlands, which introduces
additional uncertainties with respect to future streamflow conditions.
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Figure 48: Distribution of streamflow observations at the forecasting locations
considered in this study.

Hindcasts for the river Meuse are produced using an offline version
of the Delft-FEWS (Werner et al., 2013) based forecast production sys-
tem “RWsOS Rivers” that is used by the Water Management Centre
of The Netherlands for real-time, operational hydrological forecasting.
The forecasting system contains an implementation of the HBV rainfall-
runoff model (Bergstrom and Singh), 1995). This is a semi-lumped, con-
ceptual hydrological model, which includes a routing procedure of the
Muskingum type. The model schematisation consists of 15 sub-basins
jointly covering the Meuse basin upstream of the Belgian-Dutch border,
which is very near the St Pieter forecasting location. The model runs at
a one-hour time step. Inputs to the model consist of temperature and
precipitation forcings; actual evaporation is estimated from a fixed an-
nual profile that is corrected using temperature forecasts. The model
simulates both streamflow generation and streamflow routing in nat-
ural flow conditions only. Thus, it does not include models of human
interference that occurs at weirs and sluices. This interference occurs
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mainly at low flows; at high flows, weirs are drawn. Hence, at low
flows, considerable uncertainty is associated with model outcomes.

Hindcasting is a two-step process: first, the hydrological model is
forced with observed temperature and precipitation for a period up to
the forecast initialisation time. Thus, the internal model state reflects
the basin’s actual initial conditions as closely as possible. The initial
state is used as the starting point for forecast runs, where the model
is forced with COSMO-LEPS precipitation and temperature ensemble
forecasts.

COSMO-LEPS (Marsigli et al.||2005) is the ensemble implementation
of the COSMO model, a non-hydrostatic, limited-area atmospheric pre-
diction model. Its 16 members are nested on selected members of the
ECMWE-EPS forecasts. COSMO-LEPS runs twice daily on a 1okm grid
spacing and 40 vertical layers. It covers large parts of continental Eu-
rope including the Meuse basin. For the present experiment, approx.
1,400 historical COSMO-LEPS forecasts were available (Figure [46): one
every day between mid 2007 and early 2011. The forecasts have a 1-h
time step and have a maximum lead time of 132-h, i.e. 5.5 days. Within
the operational forecasting system, the lead time is artificially extended
to 7 days through assuming zero precipitation and 8° C temperature
for the lead times ranging from 132-h through 168-h. The 36-h lead
time gain more or less coincides with the time required for a flood
wave to cover the distance from Chooz (near the French-Belgian bor-
der) to St Pieter. As a general rule, about half of the flood volume
originates from the basin upstream from Chooz hence the ‘naive’ fore-
cast is expected to be skillful. From the 16 members, a single member
was isolated to serve as the deterministic forecast. Note that while the
results for a single deterministic forecast are presented here, the dress-
ing was in fact done 16 times, using each of the available 16 members
as a single deterministic forecasts. Each of these 16 dressed determinis-
tic forecasts behaves similarly with respect to the ‘competing” scenario
— hence only one of these is presented in this chapter.

In the hindcasting procedure, an ARMA error correction procedure
(Broersen and Weerts, [2005) was used. Error correction is applied to
the streamflow forecast at St Pieter but not for water level forecasts
or streamflow forecasts for other forecasting locations. The effect of
error correction will therefore diminish with increasing lead time as
well as with increasing distance from St Pieter. Hourly streamflow ob-
servations for hydrological stations along the stream network as well
as temperature and precipitation observations within the Meuse basin
were obtained from the Water Management Centre of The Netherlands.
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5.3.2 Rhine

The river Rhine runs from the Swiss Alps along the French-German
border, through Germany and enters The Netherlands near Lobith,
which is situated upstream of the Rhine-Meuse delt, and is often con-
sidered the outflow of the Rhine. At Lobith, the basin area equals ap-
prox. 160,000 km?. During spring and early summer, a considerable
fraction of flow at the outlet originates from snowmelt in the Swiss
Alps. Figure |47/ shows the basin location, elevations and the forecast-
ing locations that were used in this work. These are Metz, Cochem and
Lobith. Metz is located in the headwaters of the river Moselle, of which
Cochem is the outlet.

The forecast production system that was used to create simulations
and hindcasts for the Rhine is a derivative of the operational system
that was mentioned above. The system contains an implementation of
the HBV rainfall runoff model (Bergstrom and Singh) |1995). The Rhine
model schematisation consists of 134 sub-basins jointly covering the
entire basin. The models run at a daily time step. Inputs to the model
consist of temperature and precipitation forcings; actual evaporation is
estimated from a fixed annual profile that is corrected using tempera-
ture forecasts.

For observations of precipitation, the CHRo8 dataset (Photiadou
et al| 2011) was used. This dataset was prepared specifically for the
HBV model used here and covers the period 1961 through 2007. The
spatial scale of the observations coincides with the 134 HBV sub-basins.
Temperature observations originate from version 5.0 of the E-OBS data
set (Haylock et al.,|2008)), and are available from 1951 through mid 2011.
These forcings were available at a time step of one day. The observa-
tions are used to force the hydrological model in historical mode to
estimate the initial conditions at the onset of a hydrological forecast, as
well as in simulation mode.

Predicted forcings consisted of the ECMWF reforecast dataset, com-
prising medium-range EPS forecasts with 5 ensemble members (Hage{
dorn) 2008). These reforecasts were produced using the current oper-
ational model (Cy38r1 with a 0.25 degrees horizontal resolution). The
forecasts were temporally aggregated to a one day time step, which
coincided with that of the hydrological model used, and go out to a
maximum lead time of 240-h, i.e. 10 days. The gridded forecasts were
spatially averaged to the HBV sub-basin scale. For this work, approx.
2,900 reforecasts were available (Figure [46), covering the period 1990—
2008.

Similar to the Meuse case, the deterministic forecasts used in this
study consist of a randomly chosen ensemble member from each of the
available ensemble forecasts. Each of the members was used to create
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Figure 49: Quantile Regression plots for St Pieter for both deterministic (top
row) and perfect forcing (bottom row) forecasts with 24-h, 72-h and
168-h forecasts (columns).

a deterministic forecast which was subsequently dressed and analysed.
However, results for one of these forecasts is presented only.

5.4 RESULTS AND ANALYSIS
5.4.1 Post-processing of single valued forecasts

Scatter plots of single—valued forecasts and observations are shown in
Figures |49| and [50| for St Pieter and Rhine locations, respectively. Two
datasets are shown: (i) the forecasts with perfect forcings (simulations
in the Rhine case) and (ii) the deterministic forecasts. In all plot panels,
the horizontal axes are identical to the vertical axes and the 1:1 di-
agonal is emphasised. The forecast—observation pairs are plotted in a
transparent colour; areas that show up darker comprise multiple pairs
plotted on top of one another. A selection of estimated quantiles is su-
perimposed on the scatter plots, with the median in red and the 5th,
10, 251, 75th 9ot and g5t percentiles in blue.

The pairs and the estimated quantiles in the St Pieter figure (Fig-
ure [49) show that the perfect forcing pairs (bottom row) are closer to
the diagonal than the deterministic forecast pairs (top row). This is
because the residuals between the perfect forcings forecast and the ob-
servations comprise the hydrological uncertainties only. The plots also



DRESSING DETERMINISTIC AND ENSEMBLE FORECASTS

Figure 50: Quantile Regression plots for Metz (top), Cochem (middle) and Lo-
bith (bottom) for both simulations (leftmost column) and determin-
istic forecasts with 24-h, 72-h and 168-h forecasts (rightmost three
columns).

show that the median quantile of the pairs comprising the determin-
istic forecasts has a shallower slope than the diagonal. This indicates
an overforecasting bias: the majority of pairs is located below, or to the
right of the diagonal. The median of the pairs comprising the perfect
forcing forecasts shows a slope almost equal to, or higher than that
of the 1:1 diagonal. The latter indicates underforecasting: most of the
pairs are located above, or to the left of the 1:1 diagonal. Both sets of
pairs show that the spread increases with increasing forecast lead time
and that higher values of flow have higher spread in real units.

In the Rhine case (Figure [50), the simulations are independent of
forecast lead time. The difference between the spread of pairs based
on the simulations and that of the deterministic forecasts is less obvi-
ous, especially when the shorter lead times are considered. Without
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Figure 51: Sample forecasts of the scenarios: deterministic and ensemble based
forecasts in top and bottom row, respectively. Observed values are
indicated by blue dots. Note that the (blue) lines for the raw fore-
casts represent one or multiple traces, whereas the (black) lines for
the dressed forecasts represent quantiles. The red vertical line de-
notes the issue time of the forecast.

exception, the median forecast is located below the diagonal which
indicates an overforecasting bias.

5.4.2  Forecast hydrographs

Sample forecasts or predictive distributions for both scenarios are
shown in Figure The rows show the cases that use deterministic
(top) and ensemble (bottom) forecasts, with the raw forecasts indicated
by thick blue lines and the dressed forecasts by thin grey lines. Note
that the raw cases show one or multiple traces, whereas for the dressed
cases, quantiles are shown (which should not be confused with ensem-
ble traces).

By construction, ensemble dressing corrects for under-dispersion
and, therefore, increases the ensemble spread. In this example, the
spread of the dressed single-valued forecasts is larger than the spread
of the dressed ensemble forecasts. It is also noticeable that the raw
ensemble forecast fails to capture many observations, whereas the
dressed forecasts capture all.
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Figure 52: Relative Mean Error (RME) as a function of lead time for several
subsamples of the verification pairs (columns) and several locations
(rows). Note that the vertical scales used in the various columns

differ.

The example forecasts also show an artefact associated with statis-
tical post-processing, namely that the most extreme quantiles are rel-
atively noisy This originates from the increased sampling uncertainty
associated with estimating extreme quantiles.

5.4.3 Single-valued forecast verification

Generally speaking, COR, RME and RMSE follow similar patterns.
Each worsens with increasing lead time and with increasing value of
the verifying observation as indicated by P. In this chapter, only the
RME is shown (Figure [52).

The correlations (plot not shown) are highest for Lobith, followed
by Cochem, Metz and St Pieter. While the correlations are generally
positive, they approach zero at St Pieter for higher P at longer forecast
lead times. Both the patterns and values of the correlation coefficient
(as function of lead time and P) are similar across the two scenarios.
Only at the longer forecast lead times and at St Pieter do they differ. In
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Figure 53: Reliability plots for various lead times (columns) for several locations (rows). The plot
is unconditional, i.e. for the full data sample, (i.e. P = 0).

those cases, the dressed ensembles outperform the dressed determinis-
tic forecasts.

The RME plots (Figure|52) show that, at P = 0, the dressed determin-
istic forecasts have near-perfect RME, that is, RME ~ 0, at all forecast
lead times. The dressed ensemble forecasts show a larger fractional
bias, with St Pieter and Metz showing positive values and Cochem and
Lobith showing negative values. For higher values of P and at longer
forecast lead times, RME becomes increasingly negative. Consequently,
at higher values of P and at longer forecast lead times, the dressed en-
sembles at St Pieter and Metz show smaller fractional bias than the
dressed deterministic forecasts. The converse is true for Cochem and
Lobith, where the dressed deterministic forecasts have smaller RME.
The difference in RME between scenarios increases with increasing
forecast lead time.

The RMSE worsens (i.e., increases) with increasing forecast lead time,
increasing threshold amount, and with declining basin size. The RMSE
is lower for the dressed ensemble forecasts than the dressed single-
valued forecasts at most values of P. Only at Cochem and Lobith and
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Figure 54: Reliability plots for various lead times (columns) for several locations (rows). The plot
is conditional on the observations exceeding the got! percentile of the climatological
exceedence probability (i.e., P = 0.90).

for some values of P is the RMSE higher for the dressed ensemble
forecasts.

Overall, in terms of the single valued verification measures, neither
the dressed ensemble forecasts nor the dressed deterministic forecasts
perform consistently better. At St Pieter and Metz, the mean of the
dressed ensembles has higher quality in terms of COR, RME and
RMSE, whereas at Cochem and Lobith, the reverse is true in terms
of RME and, at small ranges of P, for RMSE.

5.4.4 Reliability and sharpness

Reliability plots for the unconditional sample at P = 0 (Figure|53)) show
that the dressed deterministic forecasts are extremely reliable at all
forecast lead times. In contrast, the dressed ensemble forecasts are not
consistently reliable. In the Rhine basins, the dressed ensemble fore-
casts are reliable at the shortest forecast lead time but less reliable at
longer forecast lead times. At St Pieter, the dressed ensembles are much
less reliable. Here, the dressed ensemble forecasts overestimate the ob-
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Figure 55: Sharpness plots for various lead times (columns) for several loca-
tions (rows). The plot is unconditional, i.e. for the full data sample
(ie,P=0).

served probability of exceeding a given threshold, i.e. they show a wet
bias (cf. Wilks|[2011)).

For the P = 0.90 subsample (Figure show that most forecasts
are a lot less reliable compared to the unconditional sample. The only
exception is St Pieter, where the dressed ensembles show higher reli-
ability at P = 0.90 than at P = 0. At St Pieter and Metz, the dressed
ensembles are more reliable than the dressed deterministic forecasts;
the converse is true for Cochem and Lobith.

Sharpness (Figures |55/ and reduces with increasing lead time,
with increasing basin size and with increasing value of P. At lead times
longer than 24-h, the differences in sharpness between scenarios be-
comes noticeable. In all cases, the dressed ensembles result in sharper
predictive distributions than the dressed deterministic forecasts. These
differences are more pronounced at higher values of P. However, sharp-
ness is only valuable in a decision making context if the forecasts are
also reliable, i.e. if the spread is sufficient to make reliable predictions.
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Figure 56: Sharpness plots for various lead times (columns) for several loca-
tions (rows). The plot is conditional on the observations exceeding
the 90th percentile of the climatological exceedence probability (i.e.,
P = 0.90).

5.4.5 Probabilistic Skill Scores

For the skill scores (Figure [57), the patterns are more important than
the absolute values, as the baseline is unconditional climatology. The
patterns of the Brier Skill Score are similar to those observed for other
metrics: skill is highest for the largest basins and reduces with increas-
ing forecast lead time. The BSS is generally very similar for both scenar-
ios. Only in the case of St Pieter is there a consistent difference between
the scenarios, with the dressed ensemble forecasts outperforming the
dressed deterministic forecasts, but not beyond the range of sampling
uncertainty.

The patterns of the mean CRPSS (Figure |58) are similar to those of
the BSS. The difference is that the CRPSS improves with increasing P.
This is understandable because sample climatology is much less skilful
at higher thresholds

Often, the CRPSS is similar across the two scenarios. Again, any dif-
ferences are more pronounced at longer forecast lead times and higher
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Figure 57: Brier Skill Score (BSS) as a function of lead time for several events
(columns) and several locations (rows).

values of P, where the dressed ensemble forecasts are somewhat more
skilful, particularly at St Pieter and Metz (but again, not beyond the
range of sampling uncertainty).

5.4.6 Forecast value

Relative Operating Characteristic plots for the event defined by the
exceedence of the go! percentile of the observational record are shown
in Figure[59| The plots show that, in all cases, the ROC curves for both
scenarios are well above the diagonal, indicating that these forecasts
improve upon climatology.

At the shortest lead time shown, the curves for the two scenarios are
very similar. Differences, if any, increase with increasing forecast lead
time. At longer forecast lead times, the dressed ensemble forecasts are
slightly more discriminatory than the dressed deterministic forecasts.

The associated ROC scores (Figure are very similar at most lo-
cations and forecast lead times and generally decline with increasing
forecast lead time and increase with threshold amount.
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Figure 58: Mean Continuous Ranked Probability Skill Score (CRPSS) as a func-
tion of lead time for several subsamples of the verification pairs
(columns) and several locations (rows).

The Relative Economic Value also relies on the ability of a forecasting
system to discriminate between events and non-events, but assigns a
cost-loss model to weight the consequences of particular actions (or
inaction). In most cases, the REV of the dressed ensemble forecasts is
similar to, or slightly higher than, the dressed deterministic forecasts
for different values of the cost-loss ratio. Again, these differences are
more pronounced at longer forecast lead times, higher thresholds, and
larger values of the cost-loss ratio.

5.4.7 Analysis

The results show that, at P = 0, the dressed deterministic forecasts
improve on the dressed ensemble forecasts in terms of reliability and
RME. However, the dressed ensemble forecasts are sharper. On balance,
the dressed ensemble forecasts have better RMSE and CRPSS scores.
The dressed ensemble forecasts are only slightly less reliable than
the dressed deterministic forecasts at the three Rhine locations Metz,
Cochem and Lobith. The differences are larger at St Pieter, where the
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Figure 59: ROC plots for various lead times (columns) for several locations
(rows). The plot is for the event that the posterior water level exceeds
the 90th percentile of the climatological exceedence probability (i.e.,
P = 0.90).

dressed ensemble forecasts show a substantial wet bias. In this context,
the dressed deterministic forecasts account for both the atmospheric
and hydrologic uncertainties and correct for biases via the quantile
regression, whereas this dressed ensemble forecasts do not account for
under-dispersion of the meteorological forecasts.

At P = 0, the fractional bias of the dressed deterministic forecasts is
small at all forecast lead times. This is understandable, because post-
processing techniques, such as quantile regression, are generally good
at correcting for unconditional biases and biases conditional upon fore-
cast value/probability (i.e. lack of reliability).

The dressed ensemble forecasts are sharper than the dressed deter-
ministic forecasts. However, sharpness is only meaningful when the
forecasts are also reliable.

At higher values of P, both sets of forecasts are consistently less re-
liable. The dressed deterministic forecasts show a ‘dry bias” where the
observed relative frequency (or quantile exceedence) is higher than the
predicted probability. However, at St Pieter, this conditional dry bias
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Figure 60: Relative Operating Characteristic Score (ROCS) as a function of lead
time for several subsamples of the verification pairs (columns) and
several locations (rows).

is offset by an unconditional wet bias, leading to reasonably reliable
forecasts at higher thresholds and early forecast lead times.

In general, the fractional negative bias (RME) increases with increas-
ing threshold. This is consistent with the RME of the precipitation fore-
casts, which systematically underestimate the largest observed precipi-
tation amounts (Verkade et al| 2013b). At higher thresholds, the differ-
ences in RME between the two scenarios are similar in pattern to those
in the unconditional sample. In other words, at St Pieter and Metz, the
fractional bias of the dressed ensemble forecasts is smaller, while at
Cochem and Lobith, the dressed deterministic forecasts show smaller
fractional bias. Again, this is due to the RME in the precipitation fore-
casts.

The BSS, ROCS and REV, which assess the quality of the forecasts
at predicting discrete events, are very similar between the two scenar-
ios at all forecast lead times and all values of P. One exception is St
Pieter, where the dressed ensemble forecasts improve somewhat on
the dressed deterministic forecasts in terms of ROCS and REV, but not
at the highest thresholds. At St Pieter and at these higher values of P,
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Figure 61: Value plots for various lead times (columns) for several locations
(rows). The plot is conditional on the observations exceeding the
50&‘ percentile of the climatological exceedence probability (i.e., P =
0.50).

the dressed ensembles were both sharper and more reliable than the
dressed deterministic forecasts.

5.5 CONCLUSIONS

Estimates of the predictive uncertainty in hydrological forecasts should
capture all major sources of uncertainty. This can be achieved with
a source-based approach or a lumped approach. We compare these
two approaches in terms of various aspects of forecast quality, skill
and value. The analysis shows that the dressed ensemble forecasts are
sharper, but slightly less reliable than the dressed deterministic fore-
casts. On balance, this results in skill and value that is very similar
across the two scenarios, with the dressed ensemble forecasts improv-
ing slightly on the dressed deterministic forecasts at St Pieter and Metz
and the reverse being true at Cochem and Lobith.

While the analysis revealed quite similar results between the scenar-
ios, further studies or different approaches to quantifying the various
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Figure 62: Value plots for various lead times (columns) for several locations
(rows). The plot is conditional on the observations exceeding the
9ot percentile of the climatological exceedence probability (i.e., P =
0.90).

sources of uncertainty could reveal larger differences. For example, a
larger hindcast dataset would help to reduce the sampling uncertain-
ties and identify any marginal differences in forecast quality, as well as
supporting an analysis of higher thresholds. The quantile regression
technique could be configured in alternative ways (some configura-
tions were tested by [Lopez Lopez et al.2014), or could be replaced by
an alternative technique altogether. Alternative basins can be used for
the experiment, and/or alternative ensemble NWP products. Also, the
meteorological biases could be addressed through meteorological post-
processing or by accounting for the effects of under-dispersion on the
streamflow forecasts. For example, the spread contributed by the resid-
uals between the best streamflow ensemble member (before accounting
for any hydrological uncertainties) and the simulated streamflow could
be included in the ensemble dressing technique.

In terms of choosing an approach, the results presented here are
quite similar for both techniques. However, there are additional con-
siderations, including the relative simplicity of dressing a deterministic
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forecast, data availability, and the expected additional information con-
tributed by an ensemble of weather forecasts (versus a single forecast
or the ensemble mean) in different contexts. As indicated by [Pagano
et al| (2014), combining ensemble and other forecasting technologies
with the subjective experience of operational forecasters is an ongoing
challenge in river forecasting.

Essentially, statistical modelling relies on the stationarity of the
model errors or the ability to account for any non-stationarity with
a reasonably simple model. In practice, however, basin hydrology
changes over time with changes in climate and land-use, among other
things. The lumped approach cannot easily account for this, while the
source-based approach may, using information about the individual
sources of uncertainty, better isolate (and model) the causes of non-
stationarity.

Also, by definition, extreme events are not well represented in the
observational record and frequently change basin hydrology. Thus, for
extreme events in particular, basing estimates of predictive uncertainty
on the observational record is fraught with difficulty. In this context, en-
semble approaches to propagating the forcing and other uncertainties
through hydrological models should (assuming the models are physi-
cally reasonable) capture elements of the basin hydrology that are dif-
ficult to capture through purely statistical approaches.
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SYNTHESIS

The objective of this research project was defined in Section as to
contribute — in two distinct ways — to the use of probabilistic hydrologic fore-
casts in flood early warning systems: (i) by providing a valuing technique for
estimating the value of probabilistic flood forecasts in terms of flood risk so that
the value of flood early warning systems can be compared to the value of other
risk reduction measures; and (ii) by the development of various post-process-
ing approaches for improving the skill of probabilistic hydrological forecasts.

The objective was addressed by means of research (sub-)questions
that are addressed in the chapters [2| through |5} In the present chapter,
these are revisited and conclusions are presented. Subsequently, the
implications for forecasting system managers as well as decision mak-
ers are presented and remaining challenges for both researchers and
practitioners are described. In the final section, some final thoughts on
the topic of estimating and using predictive hydrological uncertainty
are presented.

6.1 CONCLUSIONS

6.1.1 How can the value of probabilistic forecasts be expressed in terms of
flood risk?

A theoretical framework is developed to express the value of forecasts
in terms of the reduction of flood risk through flood early warning.
This framework comprises several steps. First, a technique for estimat-
ing flood risk is presented, with flood risk comprising the expected (in
a statistical sense) annual flood damage. Expected annual flood dam-
age is estimated using the "hydro-economic EAD model’. This model
allows for inter-comparing flood risk management strategies regard-
less of whether these are structural or non-structural in nature. Thus,
it also allows for estimating flood risk in a scenario where an early
warning system is present, and a scenario in which such a system is
absent. Then, the costs of the adverse effects of forecasting uncertainty
are estimated. This is achieved by combining the estimated EAD with
the "relative economic value’ (REV) of a forecasting system. This REV is
essentially a function of the elements of a contingency table that, for a
given decision threshold, tallies the number of hits, misses, false alarms
and correct negatives. REV is used to scale the difference between ex-
pected annual damage in two scenarios. The first scenario comprises
the presence of a forecasting system that is "perfect’, i.e. not adversely
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affected by forecasting uncertainty. In the second scenario, there is no
forecasting system present hence flood damage remains unmitigated.

The technique is used to estimate the value of flood early warning
systems in a flood prone area in the headwaters of the Scottish White
Cart basin. This analysis reveals that probabilistic forecasts have more
value than their deterministic equivalents. The reason is that the for-
mer allow for balancing the level of certainty about the future with
the required investment of a flood damage mitigation measure. The
technique also allows for choosing an optimal lead time at which flood
mitigating action should be taken. At this optimal lead time, the com-
bined cost of mitigating action and both mitigated and unmitigated
flood damage is lower than at other lead times. It is shown that the op-
timal lead time is not necessarily the longest available lead time. While
increasing the lead time of a forecast can result in longer mitigation
time and thus for more damage mitigation, the increased lead time
also results in increased predictive uncertainty and the costs of that
may be higher than the benefit — the reduction in flood damage.

6.1.2 Can the skill of ensemble streamflow forecasts be improved by post-
processing ensemble NWP temperature and precipitation forecasts?

Precipitation and temperature ensemble forecasts are often biased, for
example in mean, spread or both. In Chapter |3} the ECMWE-EPS pre-
cipitation and temperature reforecast ensembles (Hagedorn, 2008) are
analysed for biases and subsequently post-processed in various ways
in order to try and minimize these biases as much as possible. Post-
processing techniques include the unconditional quantile-to-quantile
transform, Gaussian regression (for temperature forecasts) and logis-
tic regression (for precipitation forecasts). Subsequently, the Schaake
Shuffle (Clark et al., 2004) is applied in order to restore spatial and
temporal correlation structures as much as possible. Both raw and post-
processed ensembles are then used to force a hydrological model of the
Rhine basin, resulting in ensemble streamflow ensembles. The raw and
post-processed forcing ensembles as well as the streamflow ensembles
are subsequently verified and the metrics and skills are used to inter-
compare forecast quality.

The raw temperature and precipitation ensemble forecasts are found
to be biased in both mean and spread, possibly as a result of the rel-
atively low number of members in the ensemble. However, they are
skilful with respect to sample climatology. Post-processing results in a
modest increase in skill — more so for the temperature ensembles than
for the precipitation ensembles. However, this skill increase does not
proportionally translate to the skill of the streamflow ensembles.

The implication of these findings is that commonly used techniques
for post-processing of temperature and precipitation forecasts are not
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necessarily suitable for hydrological applications. Possibly, more elab-
orate implementations may result in larger improvements in skill of
the ensemble NWP predictions. These include, for example, using ad-
ditional predictors or a stratification: separately post-processing mul-
tiple sub-samples defined by certain conditions. However, the use of
additional predictors may lead to overfitting and the introduction of a
stratification further reduces sample size.

Physically plausible spatio-temporal relations in temperature and
precipitation ensemble forecasts are important for hydrological appli-
cations. However, these are not necessarily preserved posterior to the
application of a statistical post-processing technique, even when the
Schaake Shulffle is applied. This reduces the quality of the resulting
streamflow forecasts. Larger improvements of skill in streamflow pre-
dictions may be attained by post-processing techniques that specifically
take into account spatio-temporal relations (Wilks| 2014).

Statistical post-processing requires long, consistent timeseries of fore-
casts and observations. While, often, reasonably long observational
records are available, the same is not true for forecasts. Forecasting
models improve continuously and there is a tendency of meteorolog-
ical forecasting centres to include these improvements in their opera-
tionally used models. While the ‘new’ forecasts are likely better than
before, the scope for post-processing will be reduced as the forecast
record is no longer of consistent quality. Hence there is merit in ‘freez-
ing’ versions of forecasting models and thus create long, consistent
forecast records. for the purpose of post-processing. Similarly, there
is merit in the production of reforecasts - retrospectively forecasting
using a current version of a forecast model.

In the absence of possibilities of creating long, consistent timeseries,
post-processing may have to be replaced by ensemble techniques. This,
however, requires that any source of uncertainty can be described by
a probability distribution from which multiple plausible values can
be drawn. These are then routed through the models and thus form
ensemble members. Currently, not all sources of uncertainty can be
described in this way.

6.1.3 Can the estimates of predictive hydrological uncertainty be improved
by changing the configuration of a post-processor?

Weerts et al.| (2011, wwv2011) describe a statistical post-processor based
on the Quantile Regression technique. The post-processor is applied to
water level forecasts in the Upper Severn basin. The wwvzo11 appli-
cation is relatively straightforward: a posterior predictive distribution
of water levels was derived using deterministic water levels as predic-
tors, i.e. inputs to the statistical prediction model. This analysis was
performed in Gaussian space to ensure that the joint distribution of
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forecasts and observations could be described linearly. The problem of
quantile crossing — resulting in non strictly rising cumulative distribu-
tions —is addressed in a very pragmatic manner, namely by manually
imposing predictive distributions where crossing occurs.

Since the wwv2011 analysis was carried out, a new technique for
avoiding crossing quantiles has been published. The non-crossing
quantile technique can be applied for linear quantile regression only.
In Chapter [4} this technique is applied to the very same study basin
and data that was used for the wwv2o11 analysis. At the same time,
the necessity of using the Normal Quantile Transform — for transform-
ing timeseries into Gaussian space — is questioned by testing additional
configurations. These comprise an application in the original space and
by an application on multiple domains of the predictor, each of which
is chosen as to contain a more or less linear joint distribution of fore-
casts and observations. The four configurations are verified against ob-
servations and verification results are intercompared.

In the Severn case study, the simplest possible configuration of Quan-
tile Regression yields forecasts of similar quality to those attained by
more complex configurations. When trying to further improve forecast
quality and skill, alternative routes may be tried. These include the
use of a post-processor with alternative or multiple predictors, or both.
Additional alternative implementations include the use of non-linear
quantile regression models or the use of other smoothing techniques.

The uncertainty models that are derived in the four scenarios are
sometimes visually quite different, yet — as reviewer Paul Smith
pointed out — this is not reflected in the resulting metrics and skill
scores (Smith) 2014). One reason is that the most striking visual dif-
ferences are in the extreme quantiles, i.e. those that have very small or
very high exceedence probabilities. While these may be highly relevant
in early identification (or ruling out) of possible events, these quantiles
have a very limited effect on the resulting metrics.

6.1.4 Can the skill of raw ensemble streamflow forecasts be improved by
‘dressing’ the ensemble members with distributions that describe the
hydrologic uncertainties?

In Chapter |5} two approaches for estimating the ‘total predictive uncer-
tainty” are intercompared. This total uncertainty comprises uncertainty
originating in both the modelling of the future state of the atmosphere
as well as in the modelling of the rainfall to runoff and the streamflow
propagation processes. In the ‘lumped approach’, the joint distribution
of deterministic forecasts and their verifying observations is charac-
terised and subsequently used to estimate predictive uncertainty about
future forecasts. In the “source specific approach’, the joint distribu-
tion of hydrological simulations or perfect forecasts and their verifying
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observations is used to characterise the hydrologic uncertainties. The
resulting distributions are subsequently used to ‘dress’ raw ensemble
streamflow predictions that are indicative of uncertainties in the atmo-
spheric forecasts only. The forecasts from both approaches are verified
against observations and forecast quality and skill are intercompared.

The combined Meuse and Rhine case study shows that the “source-
specific approach” yields forecasts that are at least as good as those
from the “lumped approach”. The former, however, has more scope
for further improvement through post-processing of the raw meteoro-
logical ensembles. Possibly, skill can be further increased if additional
sources of uncertainty are isolated and described using ensemble tech-
niques.

The goal of probabilistic forecasting is to maximize sharpness, given
reliability (Gneiting and Katzfuss, 2014). The two scenarios that are
analysed show that to some degree, there can be a trade-off between
these two properties, depending on which metric is used to express
quality or skill. Quality metrics that are highly sensitive to reliability
— or lack thereof — will show reduced quality. Metrics that take both
reliability and sharpness into account, however, may not show such a
reduction. The latter is true for Relative Economic Value, for example.

Analyses described in the literature show that the skill of the dressed
ensembles is significantly larger than that of the raw ensembles (e.g.
Pagano et al.[2013). While these particular results are not shown, this is
confirmed by the analysis. This leads to the conclusion that the hydro-
logic uncertainties matter and should not be ignored which is the case
in many operational ensemble streamflow forecasting systems (Pap{
penberger, |2013).

6.1.5 Can statistical post-processing further improve the skill of probabilistic
forecasts?

This is the overall research question that comprises sub-questions 2a —
2c. Table [g| summarizes the approaches taken.

Of the three approaches taken here, none resulted in significant
changes in the skill of hydrologic probabilistic forecasts. Does that
mean that forecast skill cannot be improved through statistical post-
processing? Not necessarily. While the range of approaches taken here
is reasonably wide, there are still ample additional approaches that
may be tried and tested. Some of the results obtained here may guide
those developments. For example, the post-processing of temperature
and precipitation forecasts did not result in significant skill improve-
ments, mainly — or so we believe — because of the change in spatio-
temporal relations due to the post-processing techniques used. Ap-
plication of a technique that is better able to preserve those spatio-
temporal relations may well result in skill improvements. In addition,
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Table 9: Summary conclusions of the three chapters comprising post-processing experiments

Chapter 3 4 5

Study basin Rhine Severn Rhine and Meuse
Post-processed vari- | Temperature and Precipitation River stage Streamflow

ables

Baseline for verifica- | Temperature and precipitation: ob- Observations Observations

tion

Techniques

Conclusions

servations
Streamflow: simulations

Temperature: Quantile-to—quantile
transform and linear regression;
Precipitation: Quantile-to—quantile
transform and logistic regression

Forcing forecasts increase in skill
following  post-processing. This
increase does not proportionally
propagate to streamflow forecasts.

Various configurations of Quantile
Regression in combination with de-
terministic forecasts

Raw QR forecasts are skilful; alter-
native configurations do not further
add skill.

Quantile regression in combination
with

(i) deterministic forecasts and

(ii) ensemble forecasts

Dressed ensemble forecasts are at

least as skilful as the dressed deter-
ministic forecasts.
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the approaches taken to post-process meteorological forecasts and hy-
drological forecasts in Chapters[3|and |5| made use of one single predic-
tor: a single valued forecast. The use of additional predictors was not
tested. In the case of the meteorological forecasts, the use of additional
variables such as atmospheric pressure may well carry an additional
signal that can be used to improve on the estimates of future precipi-
tation, for example. The same is true for hydrological forecasts: the hy-
drologic behavior of a basin likely depends on that basin’s initial condi-
tions, hence conditioning a post-processor on that additional predictor
could possible improve skill of the resulting forecast. One question —
implicitly addressed to some degree in Chapter 5| that is still open is
when to use lumped and when to use source-specific approaches. The
results show that the skill of a combination of these two approaches is
similar to that of lumping - even when there are obvious ways to try
and improve the reliability of the forecasts that are combined.

These examples show that there are still promising routes for im-
proving forecast skill using post-processors. However, in all cases one
needs to keep in mind the assumptions underlying the use of post-
processing techniques. These mainly include the assumption of sta-
tionarity. Joint distributions of predictors and predictands that are ob-
served in the past are deemed to be similar in the future also. Addi-
tional points of attention include the homogeneity of the joint sample,
that is: do all observations in the relevant domain adhere to the math-
ematical description? Often, this is not the case of extreme values.

6.2 IMPLICATIONS

The conclusions presented in this dissertation have a number of poten-
tial implications for forecasting system managers and decision makers.

The analysis of potential value shows that probabilistic forecasts
have higher value than their deterministic equivalents. Essentially, the
probabilities comprise additional information that has value. The prob-
abilistic forecasts themselves are not any less certain, but the degree of
certainty is shown rather than obscured. Using the probabilities then
constitutes, cf [Pielke| (2011, a choice for decision making under uncer-
tainty over decision making under ignorance.

The value analysis also shows that the most optimal lead time
for decision-making is not necessarily the longest lead time available.
While longer lead times go hand in hand with longer mitigation times
and thus allows for more damage mitigating actions, longer lead times
also mean that the forecasts are more uncertain. An analysis of the
cost of uncertainty versus the benefits of longer mitigation time can
help decision makers in choosing an optimal balance.

The review of flood management practices following the 2007 sum-
mer floods in England and Wales suggested that flood warnings
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should be issued against lower thresholds of probability (Pitt, |2008).
This may indeed benefit some users but certainly not all. Any decision
maker should be aware of her own particular situation in terms of costs
and benefits of initiating flood damage mitigation. It is reasonable to
assume that many decision makers are not aware of their own cost-to-
loss ratio, or of how to incorporate predictive uncertainty in decision
making for that matter. Some guidance by the scientific community
may be required in this respect.

Increasingly often, forecasting systems constitute Hydrological En-
semble Prediction Systems (HEPSs), where ensemble NWP models are
propagated through hydrological models to arrive at a streamflow en-
semble. While this constitutes an improvement with respect to the pro-
duction of deterministic forecasts only, the raw NWP ensembles are
likely to be biased in mean, spread or both, and these biases will propa-
gate to the streamflow ensembles. If anything, decision makers should
be (made) aware of the presence of these biases. Better even, an at-
tempt should be made to remove or reduce them — even though, as
was shown in Chapter 3, this may prove to be difficult.

While, almost by construction, HEPSs take into account uncertainty
originating in the predicted forcings (i.e. in the weather forecast), many
do not account for hydrological uncertainties, i.e. those originating in
the modelling of rainfall to runoff processes as well as in streamflow
propagation. These hydrological uncertainties are not negligible and
should be incorporated in the estimate of total uncertainty to attain
more reliable forecasts. In the absence thereof, decision makers should
be (made) aware of this lack of reliability due to the incomplete mod-
elling of uncertainties.

In operational practice, many estimates of predictive uncertainty are
— at least in part — based on statistical post-processing techniques. While
it has been shown that using these techniques can result in skilful fore-
casts, there are some underlying assumptions that should be taken
into account when using the forecasts in operational practice. One ma-
jor assumption is that past forecast performance is assumed to remain
unchanged in the future. This is especially important when this past
performance is identified on the basis of relatively few data points.
That is almost always the case for extreme events — that by definition
do not feature often in the available records — but also for very high or
very low (non-)exceedence probabilities. In these domains, care should
be made when interpreting the forecasts.

Given these cautions, there may be merit in moving towards ensem-
ble techniques, thus phasing out the use of post-processing techniques
for uncertainty estimation. In principle, ensemble techniques should
be better able to estimate predictive uncertainty in extreme situations
— assuming that the underlying process models capture the behaviour
of the physical system in extreme situations reasonably well. Also, the
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output from ensemble models constitute ‘plausible traces’ in that it
its temporal and spatial correlation is physically plausible. This is not
necessarily so in the case of post-processsing techniques.

The analysis of alternating configurations of Quantile Regression
suggested that the simplest possible configuration yielded forecasts
with similar quality to those produced by more complicated configura-
tions. Given the requirement that forecasts have to be consistent with
the beliefs of the forecaster, the implication of this may be that the sim-
plest configurations are not only as good as other configurations, but
better. More complicated configurations may be less well understood
by a forecaster, hence it is unlikely that the outcomes will be consistent
with her beliefs.

63 REMAINING CHALLENGES

Addressing the research questions has resulted in some worthwhile
insights. Obviously — and thankfully — additional challenges remain,
both for scientists and practitioners. Some of these are described in the
present section.

6.3.1 Remaining challenges pertaining to value estimation

The benefits of flood forecasting are estimated using a framework that
comprises a flood risk estimation technique and the cost-to-loss frame-
work. The flood risk estimation model is deterministic in nature and
could benefit from an analysis of the uncertainties contained therein.
Also, the estimated flood damage comprises direct, tangible damage
also, whereas indirect and intangible damage may be considerable.
Finally, flood damage was modelled to be a function of inundation
depth only, whereas in reality other flood hazard characteristics — such
as flow velocity, sediment content and rate of rise — are likely to con-
tribute to flood damage also. Hence the remaining challenge comprises
extension of the framework to include additional damage types as well
as damage estimates resulting from additional hazard characteristics.
The risk-based cost-to-loss decision framework is conceptually very
simple yet its use in operational practice is not trivial. It requires that
decision makers are familiar with the framework and know how to use
it. The framework rests on the assumption of rational decision making,
which is known to be problematic. We know, for example, that humans
can be risk averse or risk seeking depending on how consequences
of actions are presented (Kahneman and Tversky, [1979). It is also un-
known if decision makers would be willing to apply rational decision
theory to decisions that they know will have to be taken very infre-
quently — which is the case in extreme events. Indeed, the principle
of risk-based decision making is that some optimum will be obtained

141



142

CHAPTER [6]

over a high number of decisions only. Finally, the framework can only
be applied if both costs and damage reduction are known, whereas
in reality these are likely to be unknown or in any case highly uncer-
tain. The implication of this is twofold: (i) incorporation of uncertain-
ties in the estimation of costs and benefits requires additional research;
and (ii) possibly statistical decision making will have to make way for
decision frameworks that address different types of uncertainties alto-
gether. These could be borrowed from approaches used for long-term
planning such as robust and flexible decision making (see |Haasnoot,
2013, for examples). Both implications require additional research.

6.3.2 Remaining challenges pertaining to uncertainty estimation

Chapters 3, 4 and 5 discuss techniques for statistically post-processing
forecasts. These techniques assume that past forecast behaviour — with
respect to their verifying observations — is representative of future be-
haviour. This assumption may be violated in a two ways:

First, the joint distribution of forecasts and observations is unlikely
to be stationary if any of the marginal distributions change. While wa-
ter management practice is largely built on the assumption of station-
arity — meaning that the marginal distribution of observations is time
invariant — it is becoming increasingly clear that this assumption is
invalid (Milly et al |2008). Rivers and flood risk are affected by both
human interference and shifting climates, in ways that are not always
clear. In addition, climate change may affect the hydrological response
to changing forcings. It is unlikely that the forecasting models will keep
up and ensure an unaltered joint distribution. Milly’s (2008) proposi-
tion that “Stationarity is dead” is now widely accepted, yet the use of
statistical post-processing techniques has yet to find a way to manage
this paradigm shift.

A second issue in the use of statistical post-processing is the small
number of extreme events that are present in the observational record.
This makes it difficult to extrapolate the observed behaviour (of a fore-
casting system) to the future with a high degree of certainty. This may
potentially be resolved by artificially extending records of observation,
for example by pooling data from additional, similar forecasting loca-
tions.

Chapter 3 showed that the inability to preserve spatio-temporal fore-
cast correlations may render post-processed forcing forecasts less use-
ful for hydrological applications. The Schaake Shuffle (Clark et al.,
2004) goes some way towards restoring these correlations. However,
there may be merit in the development of a post-processing technique
that maintains the correlations, thus obviating the necessity to try and
restore these after the fact.
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Statistical post-processing for uncertainty estimation does not pro-
duce plausible traces, i.e. forecast hydrographs that show temporal
dynamics consistent with physical behaviour. This prevents these tech-
niques from being used if the outcomes have to be re-used in ‘down-
stream’ models. Some authors have proposed techniques for this (see,
for example, [Regonda et al|2013) and testing the validity of these ap-
proaches on basins with varying characteristics constitutes a worth-
while challenge.

The application of Monte Carlo (ensemble) techniques for uncer-
tainty estimation does preserve plausible traces. However, describing
all sources of uncertainty this way requires that every source of uncer-
tainty can be described with a probability distribution from which sam-
ples can be drawn. This is reasonably well possible for uncertainties
originating in future atmospheric forcings (Cloke and Pappenberger,
2009) and sometimes also for uncertainties originating in the estima-
tion of model parameter values (De Wit and Buishand) [2007). For other
sources of uncertainty, however, the suitability of Monte Carlo is less
obvious. How, for instance, can the entire space of possible models be
described? Or the human behaviour that affects streamflow patterns
in the presence of weirs and dams? And even if this were possible,
the “curse of dimensionality” would make the computational burden
possibly too big to be resolved in an operational setting.

In hydrological forecasting, predictive uncertainty may be estimated
by lumped and by source-specific approaches. These are essentially the
ends of a scale; in-between approaches may exist, such as the ‘ensemble
dressing’ technique that was used in chapter 4. The question of when
lumped approaches and when source-specific approaches are justified
is not fully addressed.

Scientists have thought of many ways to address the estimation of
predictive hydrological uncertainty. Some of these are relatively simple,
others can be very complex. If any of these approaches are to be used
operationally, the forecasters must fully understand the techniques to
take ownership of it. This move from science to operations constitutes
a challenge in itself.

6.4 CLOSURE

Decisions pertaining to the future benefit from an estimate of what
that future will hold. The future, however, is inherently uncertain. Fore-
casts contribute to reducing that uncertainty. Consequently, there is a
large demand for forecasts in fields ranging from military planning to
business planning to earth sciences such as meteorology and hydrol-
ogy. In these earth sciences disciplines, this demand has been met by
enormous progress in the science of forecasting as well as by the de-
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velopment of the computational resources that are required to produce
forecasts in real-time.

For many years, forecasts have been deterministic in nature: for any
location and point in time, a single estimate of future conditions was
given. Possibly, forecasters had a high degree in confidence in the sci-
ence underlying the forecasts. Equally likely is that ‘determinism’ was
fueled by many forecast users’ requests (not to say demands) for cer-
tainty. The reason may also have been purely pragmatic in nature as
computational resources only allowed for a single forecast run.

Whatever the reason, the forecasting communities may have
promised too much by issuing deterministic forecasts only. The im-
plicit promise of certainty has been widely challenged since Lorenz
(1969) and Epstein (1969) recognized that that the atmosphere consti-
tutes a chaotic system. Forecasting the atmosphere is essentially an
initial value problem (Inness and Dorling) 2013) that is very sensitive
to the initial conditions used in the forecast run. As it is impossible
to accurately determine the initial conditions of the global atmosphere
at any point in time, meteorological forecasts cannot be completely ac-
curate. By construction, neither can the hydrologic forecasts for which
the meteorological forecasts constitute inputs. Also by construction, the
models used in earth sciences are simplifications of reality and will
therefore be able to eliminate uncertainty altogether even if forcings
were certain. Hence the notion that forecasts should be accompanied
by a measure of the remaining uncertainty — already voiced by the
Australian “government astronomer” W. Ernest Cooke as early as|1906
— has become increasingly accepted in communities of scientists and
practitioners alike.

Since the seminal works of Lorenz and Epstein, ample resources
have been devoted to the development of uncertainty estimation
through a mixture of ensemble prediction systems and statistical post-
processing techniques. Especially the former have been made possible
through the massive advances in computational speed. Currently, most
of the ensemble prediction systems that are in use around the globe are
skilful (Buizza, 2014). Much of the techniques developed in the atmo-
spheric sciences have found their way to the hydrologic sciences and
there has been a significant move towards the use of hydrologic ensem-
ble predictions systems (Cloke and Pappenberger, 2009).
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There is still ample room for improvement of forecast skill. However,
the time may have come to start thinking about how to transform this
skill into value, that is, a benefit for the forecast user.

“THERE IS VALUE IN IMPROVING THE QUALITY OF PROBABILITY
FORECASTS, BUT THE VALUE OF IMPROVING THE ACTUAL USAGE
THEREOF IS AN ORDER OF MAGNITUDE HIGHER.”

Robert Hartman, Hydrologist-in-Charge, US NWS
California-Nevada River Forecast Centre, October 2012

Value is realised in the response to a forecasted hydrological hazard,
i.e. at the very end of the forecast — decision — response chain. As the
chain is only as strong as its weakest link, each of the elements of that
chain will have to be prepared for using probabilistic forecasts.

“ ADDITIONAL EFFORT IS REQUIRED IN THE COMMUNICATION,
VISUALIZATION, AND EVALUATION OF PROBABILISTIC FORECASTS
... TO AVOID THE RISK OF PERFECTING ENSEMBLE METHODOLO-
GIES WITHOUT A CLEAR AIM.”

Gneiting and Raftery| (2005)

This requires expertise from a diverse range of disciplines includ-
ing — but probably not limited to — communication and visualization,
cognitive processing, decision-making and behavioural sciences. Such
an effort is most likely to be successful if expert communities commit
themselves to it. Indeed, the HEPEX community is gearing up towards
that next step. Once that step has been taken, the full value of proba-
bilistic forecasts will be showcased and this will further strengthen the
role of uncertainty estimation within operational systems around the
world.

Hence it seems appropriate to end this dissertation with a slightly
adapted quote from a recent presentation (Buizza) 2014) by one of the
lead model developers at ECMWE,

“PROBABILISTIC FORECASTS ARE HERE TO STAY”.
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POST-PROCESSING TECHNIQUES

QUANTILE-TO-QUANTILE TRANSFORM

The quantile-to-quantile transform, also known as quantile mapping
or cdf matching, is given by

Xqate = Fy ' (Fx, (xc)), (A.1)

where Fy denotes the sample climatology of the predictand Y, or the
empirical distribution of observations, Fx_, denotes the sample clima-
tology of the predictor X. and xqqt,c represents the quantile-to-quantile
transformed prediction for the c¢" member of the C-member forcing
ensemble. Thus, the transform is applied to each of the C members
and their C separate, but practically identical, climatologies. In gen-
eral, xqqt,c will not map linearly to x., because the curvatures of Fy
and Fx_ are different.

LINEAR REGRESSION

Given a training data set, a simple linear regression relation is assumed
to exist between observed temperature and the mean of the ensemble
prediction (Wilks, [2011),

Y=B0+PB1X+¢, (A.2)

where 3¢ and (37 are regression parameters to estimate and ¢ is a
stochastic residual. This relation is sought for each location and lead
time separately but subscripts denoting these are omitted from Equa-
tion The regression coefficients are found by minimising the ex-
pected square difference between the temperatures predicted by the
model and observed. The regression constants are determined for each
lead time and location separately.

The residuals are assumed to be Normally distributed with zero
mean, [,

e=N(u=0,0), (A.3)

and o given by the sample standard deviation of errors.

From this regression equation, probabilistic temperature forecasts
are produced for a given value of the raw ensemble mean, X, by sam-
pling from N (o + 1%, 0).
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APPENDIX A

LOGISTIC REGRESSION

The conditional probability that the future amount of precipitation, Y,
does not exceed a discrete threshold, y, given the raw ensemble mean,
X, is

_ 1.0
<y ) 1.0+ exp (PotB1x1/3)

(A-4)

where 3¢ and 31 are the parameters of the linear model to estimate
through maximum likelihood. The power transformation has the ef-
fect of allowing the precipitation forecast data to be more normally
distributed (Hamill et al., |2008). Similar to the experiment described
in Sloughter et al.| (2007), a one-third power transformation is used. In
Chapter 3} 200 thresholds are considered. The thresholds are then inter-
polated using a spline constrained to be a valid cumulative distribution
function using the method described by |He and Ngj (1999).

QUANTILE REGRESSION

Quantile Regression (QR; Koenker and Bassett Jr} |1978; [Koenker and
Hallock, |2001; [Koenker, |2005) is a regression technique for estimating
the quantiles of a conditional distribution. As the sought relations are
conditional quantiles rather than conditional means, quantile regres-
sion is robust with regards to outliers. Quantile Regression does not
make any prior assumptions regarding the shape of the distribution;
in that sense, it is a non-parametric technique. It is, however, highly
parametric in the sense that, for every quantile of interest, parameters
need to be estimated. QR was developed within the economic sciences,
and is increasingly used in the environmental sciences (see, for exam-
ple, Bremnes||2004; Nielsen et al.|2006). Specific applications in the hy-
drological sciences include Weerts et al.|(2011), Roscoe et al.|(2012) and
Lopez Lopez et al.| (2014).

In the present dissertation, Quantile Regression is used to estimate
lead time n specific conditional distributions of either streamflow or
water level; in any case the dependent variable is indicated by Y,

d)Tl = {Yﬂ.,T1 7 YTL,TZ/ LR rYTL,TT} (A5)

where T is the number of quantiles T (t € [0,1]) considered. If T is
sufficiently large and the quantiles T cover the domain [0, 1] sufficiently
well, we consider ¢, to be a continuous distribution.

We assume that, cf. |Weerts et al.| (2011), separately for every lead
time n considered and for every quantile 7, there is a linear relationship



POST-PROCESSING TECHNIQUES

between the (independent) hydrologic forecast X and its (dependent)
verifying observation Y,

Yt = anXn +bnr< (A.6)

where anr and by ¢, are the slope and intercept from the linear
regression. Quantile Regression allows for finding the parameters an -
and by, ¢ of this linear regression by minimising the sum of residuals,

J
min Z Pn,t (Un,j - (aT'L,TXTL,j + bT‘L,T)) (Ap)
j=1

where py, ¢ is the quantile regression weight for the T quantile, Yn,j
and x,, ; are the i paired samples from a total of ] samples, and an
and by, r the regression parameters from the linear regression between
hydrological forecast and observation. By varying the value of T, the
technique allows for describing the entire conditional distribution.

In the research described in the present dissertation, solving equa-
tion @] was done using the quantreg package (Koenker) 2013) in the
R software environment (R Core Team| 2013).
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VERIFICATION METRICS

For ease of reference, the probabilistic verification metrics used in this
dissertation are briefly explained; this description is based on Brown
and Seo| (2013). Additional details can be found in the documentation
of the Ensemble Verification System (Brown et al. [2010) as well as
in reference works on forecast verification by [Jolliffe and Stephenson
(2012) and [Wilks| (2011).

RELATIVE MEAN ERROR

The Relative Mean Error (RME, sometimes called relative bias) measures
the average difference between a set of ] forecasts and corresponding
observations, relative to the mean of the latter,

] X: — Y
RME = M, (B.1)

Zi]:1 Yi

where Y is the observation and X is the mean of the ensemble forecast.
The RME thus provides a measure of relative, first-order bias in the
forecasts. RME may be positive, zero, or negative. Insofar as the mean
of the ensemble forecast should match the observed value, a positive
RME denotes overforecasting and a negative RME denotes underfore-
casting. Zero RME denotes the absence of relative bias in the mean of
the ensemble forecast.

BRIER SCORE AND BRIER SKILL SCORE
For a given binary event, such as the exceedence of a flood threshold,

the (half) Brier score (BS, Brier|1950) measures the mean square error
of ] predicted probabilities that X exceeds a threshold x,

]
BS = % > {Fx, () —Fy, (0}, (B.2)
i=1

1 iin>X,'

where Fx, (x) = Pr[X; > x] and Fy, (x) = .
0 otherwise
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Brier Skill Score

The Brier Skill Score (BSS) is a scaled representation of forecast quality
that relates the quality of a particular system BS to that of a perfect
system BSperfect (Which is equal to 0) and to a reference system BS,f,

BS — BS,¢
BSS = ——————— (B-3)
BSperfect — BSyes 3
BS —BS,e;  BSyef — BS
0 — BSpes BSyef
BS

BSref

= ]—

BSS ranges from —oo to 1. The highest possible value is 1. If BSS =0,
the BS is as good as that of the reference system. If BSS < 0 then the
system’s Brier score is less than that of the reference system.

Decomposition

By conditioning on the predicted probability, and partitioning over K
discrete categories, the BS is decomposed into the calibration-refine-
ment (CR) measures of Type-I conditional bias or reliability (REL), res-
olution (RES) and uncertainty (UNC),

Ni{Fx, (x) = Fy, ()}

|||\/]7<

REL

K
7 X NudFy, (0= Fy (07
k=1

RES

+ G% (x). (B.4g)
~——
UNC

Here, Fy (x) represents the average relative frequency (ARF) with
which the observation exceeds the threshold x. The term Fy, (x) repre-
sents the conditional observed AREF, given that the predicted probabil-
ity falls within the k™ of K probability categories, which happens Ny
times. Normalizing by the climatological variance UNC, 6% (x), leads
to the Brier Skill Score (BSS),

BS RES REL
BSS=1-{ONC ~ UNC ~ UNC (B:5)




VERIFICATION METRICS

By conditioning on the O = 2 two possible observed outcomes, {0, 1},
the BS is decomposed into the likelihood-base-rate (LBR) measures
of Type-II conditional bias (TP2), discrimination (DIS), and sharpness
(SHA),

= *ZN {Fx, () —Fy, (0)}”

TP2

O
—} S No{Fx, ()~ Fx (x)}2
o=1

DIS

+ O'i (x). (B.6)
~——
SHA

Here, Fx_ (x) represents the average probability with which X is pre-
dicted to exceed x, given that Y exceeds x (o = 1) or does not exceed
x (o = 2), where N, is the conditional sample size for each case. The
BSS is then given by

BS
BSS = 1——>
55 UNC
,_ TPz DIS SHA 5
UNC ' UNC _ UNC’ 7

MEAN CONTINUOUS RANKED PROBABILITY SCORE AND SKILL
SCORE

The mean Continuous Ranked Probability Score (CRPS) measures the
integral square difference between the cumulative distribution function
(cdf) of the forecast Fx (q), and the corresponding cdf of the observed
variable Fy (q), averaged across ] pairs of forecasts and observations,

(o)

CRPS = }j {Fx (q) — Fy (a)}dq. (B.3)

—0oQ0

The mean Continuous Ranked Probability Skill Score (CRPSS) is a
scaled representation of forecast quality that relates the quality of a
particular system CRPS to that of a perfect system @perfect (which
is equal to 0) and to a reference system CRPS,f,
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CRPsS — _ CRPS—CRPSw (B.9)
CRPSperfect — CRPSyef

CRPS—CRPS,;  CRPS,; — CRPS
~ 0—CRPS,s  CRPS,y
CRPS

~ CRPS,¢

RELATIVE ECONOMIC VALUE

In the absence of a flood warning system (FWS), a user’s flood losses
will be determined by the climatological frequency of flooding and
consist of unmitigated losses, which is the sum of the losses avoided
through warning response L ,, and the losses that cannot be avoided
Ly for every flood event e,

Vhorws = € (]—a + Lu ). (B.lO)

If the FWS generates perfect forecasts, a flood event is always pre-
ceded by a warning and flood damage can always be reduced by mit-
igating action. False alarms and missed events do not occur. The ex-
pected damage then consists of the sum of cost for warning response
and unavoidable losses for every flood event:

Vperfect = e (C+ Ly). (B.Il)

The FWS performance based on imperfect forecasts can be as-
sessed using a contingency table. Missed events result in unmiti-
gated flood losses, which equal the sum of avoidable and unavoidable
losses L, + Ly. Loss mitigation through warning response can only be
achieved at a cost C. In case of false warnings, these are the only costs
incurred by a user. A user’s expected costs and losses consist of those
associated with hits, misses and false alarms:

Vews = h(C + Ly) + fC + m (Ly + Ly)
= ely +(h+f) C+ mlL,. (B.12)
The Relative Economic Value (V' [—]) of an imperfect warning system

is defined as the value relative to the benchmark cases of No Warning
(V = 0) and Perfect Forecasts (V = 1):

Vv — _VnoFws — VFws (B.13)
VhoFws — vperfect
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Note that REV can be less than 0 if the cost of false alarms is higher
than the benefits attained by the warning system.

Substituting Eqs. (B.10), (B.11) and (B.12) in (B.13), subsequent divi-
sion by L, and substitution of C/L, by the cost-loss ratio r yields:

ela — (h+f) C—mlL,

Vo= el, —eC
e~ (h+f)r—m
B e —erv
_e—(h+f)r—m
N e (1 —1) ’ (B.14)

which allows for expressing V as a function of r.

RELATIVE OPERATING CHARACTERISTIC SCORE

The relative operating characteristic (ROC;/Green and Swets|1966) plots
the hit rate versus the false alarm rate. These are calculated using the
elements of a contingency table (for example, Table [1), which is valid
for a single probabilistic decision rule, and are defined as follows

# hits h
hit rate = = — B.
1t rate # observed events e (B-15)

# false alarms f

false alarm rate =

# events not observed  e’’

The ROC score measures the area under the ROC curve (AUC) after
adjusting for randomness, i.e.

ROCS = 2 x (AUC —0.5). (B.16)
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