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Abstract. The trends of autonomous transportation and mobility on
demand in line with large numbers of requests increasingly call for decen-
tralized vehicle routing optimization. Multi-agent systems (MASs) allow
to model fully autonomous decentralized decision making, but are rarely
considered in current decision support approaches. We propose a multi-
agent approach in which autonomous vehicles are modeled as indepen-
dent decision makers that locally interact with auctioneers for trans-
portation orders. The developed MAS finds solutions for a realistic rout-
ing problem in which multiple pickup and delivery alternatives are possi-
ble per order. Although information sharing is significantly restricted, the
MAS results in better solutions than a centralized Adaptive Large Neigh-
borhood Search with full information sharing on large problem instances
where computation time is limited.

Keywords: Autonomous vehicle routing + Pickup and delivery
problem - Alternative locations - Preferences - Multi-agent system -
Auctions

1 Introduction

The overarching trends towards automation and service orientation in trans-
portation (Speranza 2018) go along with a rising need for decentralized decision
support of individuals and autonomous vehicles. Autonomous transportation
services may no longer depend on (human-controlled) centralized routing, but
may autonomously optimize routes on the level of a single vehicle and may there-
fore even act as independent vehicular entrepreneurs. As Mobility as a Service
(MaaS) solutions, such services rely on a digital platform (mobile app or web
page) through which the end-users can access all the necessary resources for
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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their trips (Jittrapirom et al. 2017). The big players in the automobile indus-
try anticipate this development: while Toyota sees itself in the transition from
a car manufacturer to a mobility service provider (Buckland and Sano 2018),
Volkswagen even envisions a mobility platform on which vehicles would act as
autonomous entrepreneurs (Munford 2018).

When vehicles act as independent intelligent agents, their coordination and
cooperation becomes increasingly significant (Qu et al. 2008), particularly for
cooperative routing and traffic management (Zhou et al. 2017). While many
cooperative transportation models assume a centralized planning approach with
full information sharing (Guajardo and Rénnqvist 2015), there are other applica-
tions where competition seriously limits information sharing (Feng et al. 2017).
While mobility platforms enable horizontal collaboration with multiple advan-
tages, they also can easily turn into a problem of “coopetition”, describing a
situation in which logistics service providers are competitors in one market and
cooperate in another market (Cruijssen et al. 2007). This raises a need for decen-
tralized control: fully centralized planning requires a full exchange of informa-
tion, which is not in the partners’ interest when they are competitors in other
markets (Cleophas et al. 2019). Moreover, assuming that such platforms may
become dominant design in future mobility (Atasoy et al. 2020), there might
easily be 100.000 vehicles or more and a respective number of requests—posing
a tremendous computational challenge for centralized approaches based on NP-
hard problems. Embedding agent-based routing models in multi-agent systems
(MASSs) is one way to explicitly model decentralized optimization with limited
information sharing (Los et al. 2020b). This approach differs from combinatorial
auctions, as reviewed by Gansterer and Hartl (2018), among others in the fact
that each request is evaluated by agents locally and no centrally defined bundles
are auctioned. Thus, agents are given a larger degree of freedom.

In this work, we develop a multi-agent approach for solving a decentral-
ized Generalized Pickup and Delivery Problem with Preferences (GPDPP) (Los
et al. 2018), where customers or operators can specify multiple alternative time-
location combinations for pickup or delivery. Autonomous vehicle agents solve
their individual decentralized subproblems based on the requests they receive.
Moreover, order agents are responsible for the individual transport orders, that
is, they try to find an assignment of the order to a vehicle, which can be under-
stood as an intelligent (algorithmic) contract. We compare the decentralized
MAS approach with a centralized single-agent system (SAS) approach assuming
full information availability (see Fig. 1). Despite the limited information sharing,
the MAS solutions outperform the solutions of the single-agent approach under
certain conditions. The results demonstrate that the MAS is particularly useful
when computation time is limited and the problem size is large.

We introduce the problem in Sect.2. In Sect. 3, we describe the developed
MAS in detail. Then, in Sect. 4, we introduce the centralized SAS to compare
the different approaches in Sect. 5. Finally, in Sect. 6, we summarize our findings
and give proposals for future research.
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2 Decentralized Generalized Pickup and Delivery
Problem with Preferences

In this section, we describe the GPDPP this paper deals with. First, we give a
general motivational introduction. Next, we describe the problem from the local
vehicles’ and orders’ perspective, and finally, we consider the problem from the
global perspective. An extensive formal description is given by Los et al. (2018).

Fig. 1. Different computational approaches. In (a), a decentralized multi-agent app-
roach is shown, where all orders and vehicles are represented by order agents and vehicle
agents, respectively, that interact locally with each other, without communicating with
a central manager. In (b), a centralized single-agent approach is shown, for which all
vehicle and order information is sent to a central manager, and there is no direct local
communication. OA: order agent; VA: vehicle agent; CA: central agent. The dotted
box represents the computational system, outside is the physical system. Information
flow is represented by arrows.

2.1 Problem Motivation

Our problem differs in two aspects from classical Pickup and Delivery Problems
(PDPs) (Cordeau et al. 2008) or Dial-a-Ride Problems (Molenbruch et al. 2017).
First, we consider the problem to be inherently decentralized, that is, vehicles
are independent, can attach to or detach from the system at any moment, and
might not be willing or able to share all information. Transport requests also
might continuously appear, disappear, or change, and require immediate actions.
Computing a central solution might be no longer possible in such situations.
Second, we consider a realistic problem with alternative locations and prefer-
ences. Instead of a single pickup location and a single delivery location per order,
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as is the case in the classical PDP, we allow for multiple alternative pickup and/or
delivery locations per order, with their individual time windows. Furthermore,
different preference values can be assigned to each location. One of the possible
pickup locations and one of the possible delivery locations is chosen and attended
by a vehicle (Los et al. 2018). A motivation for this generalization of the PDP is
the high absence rate of customers in regular home delivery processes. Next to
the (still preferred) option of home delivery between 10:00 and 12:00, for exam-
ple, a (less appreciated but still acceptable) delivery at the locker box station
two streets away might be allowed, with the advantage of a larger time window.
Also, different pickup or delivery time windows can be assigned to the same
physical location. In this scenario with multiple alternatives, a higher delivery
success rate can be achieved, and the transport operator has more flexibility in
designing efficient routes.

2.2 Local Problem Definitions

A problem instance consists of a set C' of transport orders and a set V' of vehi-
cles. In the next sections, we consider the problem from the perspective of the
individual orders and vehicles.

Order Problem. Each order ¢ € C has a load quantity Q., a set of possible
pickup alternatives P,., and a set of possible delivery alternatives D.. A pickup
or delivery alternative ¢ is defined by a tuple (n;,e;,l;,d;, p;), where n; is the
location where the order can be picked up or delivered, the earliest service start
time e; and the latest service start time [; determine the time window in which
the service can start, the service duration d; determines the time that is needed
for loading or unloading at n;, and the preference value p; € (0, 1] describes the
relative satisfaction for the alternative. We assume that each order has at least
one pickup alternative ¢ and one delivery alternative j with p; = p; = 1, meaning
that there are no other alternatives preferred over these.

An order ¢ € C needs to be served by a vehicle k € V', that is, it needs to be
picked up by k as described by one pickup alternative i € P, and delivered by k
as described by one delivery alternative j € D, while Mg+ 8((1—p;)+ (1 —p;))
should be minimized. Here, M} are the marginal routing costs for vehicle & to
include order ¢ into its route, and [ is a positive parameter representing the
weight of dissatisfaction relative to travel cost.

Vehicle Problem. Each vehicle k£ € V has a capacity By, a start location ay
and an end location wy. For each pair of nodes (i, j), we denote the travel time
and travel costs from location n; to location n; by ¢;; and ¢;;, respectively.

A feasible route for a vehicle £ € V is a sequence of locations that meets the
following requirements:

— the vehicle starts its route at aj and stops at wy;

— all time constraints are respected, that is, if the vehicle serves an alternative
i, it arrives at m; between e; and [;, it leaves n; not before d; after arrival
time, and traveling from n; to n; takes a time of at least t;;;



248 J. Los et al.

— all precedence constraints are respected, that is, if the vehicle serves a pickup
alternative ¢ and a delivery alternative j belonging to the same order, the
arrival at n; takes place before the arrival at n;;

— all capacity constraints are respected, that is, the load of the vehicle may never
exceed its capacity By throughout its route, but is increased or decreased with
the order load quantity at a pickup or delivery location, respectively.

A vehicle kK € V can transport orders if it keeps a feasible route, and the
vehicle agent should minimize the travel costs. Thus, the vehicle agent tries to
find combinations of a pickup alternative and a delivery alternative of the new
order that can most efficiently be incorporated into its current route, such that
the previously agreed on alternatives from already included orders still can be
served. Hence, the vehicle agent locally solves multiple instances of a standard
single-vehicle PDP (see, e.g., Parragh et al. 2008).

2.3 Local and Global Perspective

From a local perspective, order agents need transportation by a vehicle that
realizes a preferred pickup and delivery, but is not too bad in terms of vehicle
route costs. Vehicle agents must obtain routes with minimal travel costs.

These local objectives contribute to the objective from the global perspective:
to find a minimal cost solution. A global solution consists of a set of feasible
routes (one for each vehicle k € V'), such that each order ¢ € C is served by one
vehicle. Global cost is defined as the sum of travel costs and dissatisfaction costs,
where the sum of ¢;; values for ¢ and j such that the edge from n; to n; is part of
a vehicle’s route constitutes the travel costs, and all non-preferred alternatives
i that are served by a vehicle contribute a term 3(1 — p;) to the dissatisfaction
costs.

3 Multi-Agent System

We propose a MAS approach to solve the GPDPP in a decentralized manner,
in accordance with the assumption that vehicles and orders can independently
attach to a platform. We introduce two types of agents that represent the main
stakeholders of the problem: order agents, each responsible for getting one of
the orders transported, and vehicle agents, each representing one vehicle. For
finding an assignment of orders to vehicles, the order agents and vehicle agents
communicate with each other in a multi-agent auction (Wooldridge 2009). Order
agents act as auctioneers that offer a transportation task. Vehicle agents act as
bidders. Hence, there is no central auctioneer, and no central authority that is
aware of the global routing plan, but information is exchanged locally (see Fig. 2).
Although the solution quality might be suboptimal from a global perspective,
this approach resembles a transportation demand and supply market that allows
for a fast response to dynamic events. Our auction mechanism is based on the
systems described by Mahr (2011), Gath (2016), and Los et al. (2020a; 2022;
2020b).
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3.1

General Approach

Order agents try to make a contract with a vehicle agent for a pickup and
delivery with high preference values, but are cooperative in the sense that they
take vehicle routing costs into account and accept lower preference values if this
decreases the routing costs enough. Vehicle agents are responsible for making
contracts with order agents, but have the local goal of minimizing the sum of
travel costs while keeping a feasible route.
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Fig. 2. Information input and output, as well as local information flows, for an order
agent (a) and a vehicle agent (b).
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When they enter the system, order agents send a request for transportation
to a well-selected set of vehicle agents. These compute the routing costs for
inserting the order into their current route (by solving multiple single-vehicle
subproblems, each with a different combination of an alternative pickup and
delivery location of the new order, together with the orders already included
in their route) and propose different bids. Order agents evaluate the bids from
different vehicles and choose the one that is best, based on the routing costs
of the bid and their own preferences for the alternative locations. If no changes
have occurred meanwhile in the route of the chosen vehicle agent, the order will
be inserted into its route. Orders auction themselves again after some time to
check if there are better options due to the high dynamics within vehicle routes.

In line with Los et al. (2020b), order agents interact only with a well-chosen
subset of the vehicles (instead of with all vehicles) to limit the communicational
and computational load. Although we might lack some good bids from other
vehicles, we expect a better result due to a gain in time. In contrast to other
MAS approaches, we introduce two properties that are specific for the GPDPP.
First, preference costs are locally considered by the order agent. Second, it is
possible for vehicle agents to send multiple bids to an order agent, resulting
from different combinations of pickup and delivery alternatives.

An example of the general auction procedure is shown in Figs. 3 and 4, and
detailed agent algorithm descriptions are given in the next sections.

3.2 Order Agent

An order agent keeps track of the contract of the order, consisting of a transport-
ing vehicle, one pickup and one delivery alternative that are agreed on, as well
as the costs for transportation. Initially, there is no contract; the order agent
organizes auctions for obtaining and improving a contract.

An order agent starts its first auction in the system immediately after its release
time. First, it selects a set of vehicle agents to send a request for transportation. As
in other approaches, the set of all vehicles in the system can be used, but this can
result in an overload of messages and subsequent vehicle computations, although
not all of them have a high potential of being useful. For example, consider an order
that needs to be picked up and delivered in the northern part of a city, and a vehicle
that has only pickups and deliveries in the southern part of the city in its current
plan. A match is not likely in this case. Different selection heuristics are possible,
based on, e.g., the current vehicle locations, the planned routes, and the occupancy
rate of the vehicles. In this paper, we select the vehicles based on the spatiotem-
poral distance of the different pickup and delivery alternatives of the order to the
planned routes of the vehicles. The order agent opens the auction by sending all its
possible pickup and delivery locations, the corresponding time windows and ser-
vice durations, the load quantity, and the time at which the auction will end to all
selected vehicles.

If an order agent receives a bid (consisting of a pickup alternative i, a delivery
alternative j, and the marginal travel costs) from a vehicle agent, it adds its
dissatisfaction costs 5(2 — p; — p;) (see Sect.2) for the specific alternatives to
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Fig. 3. Schematic overview of an auction round in the MAS, with an order agent
having one pickup option and two delivery alternatives, and two vehicles with current
routes a;—1—2-w; and as—3—4—w2. The order agent sends a request with its pickup
option 5 and delivery alternatives 6 and 7 to both vehicle agents. The vehicle agents
each consider the two options, one with delivery alternative 6 and one with delivery
alternative 7. They insert the new locations into their current routes and compare the
costs (as defined by the graph of Fig.4) of the different new routes to the cost of their
current routes. A bid with the least increase in costs is sent back. Note that insertion
of delivery alternative 6 is not feasible for vehicle agent 2; hence, only one bid is sent
back. The order agent selects the best bid (consisting of delivery alternative 6 with a
cost of 2), and notifies vehicle agent 1 of its acceptance. (The example abstracts from
time windows and preferences.)
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Fig. 4. Graph with initial vehicle routes and an order with two possible delivery loca-
tions corresponding to the auction process overview of Fig. 3. Edges represent the travel
costs between locations.

the travel costs to obtain the total costs for the bid. Subsequently, it stores the
bid in a sorted list with increasing bid costs. When the auction time has ended,
the order agent selects the first bid of its list, compares the costs of that bid to
the costs of its current contract, if possible, and acts appropriately:

— If the costs of the selected bid are lower than that of the current contract,
or there is no current contract, the order agents asks the vehicle agent that
proposed the bid to insert the order into its route. If a positive response
follows, the order agent updates its current contract, cleans up its bid list and
schedules to start a new auction after some time. Furthermore, a message is
sent to the vehicle agent of the previous contract (if applicable) to inform
this agent that the order can be removed from its route. In case of a negative
response of the vehicle agent, the bid has become outdated. In this case, the
order agent possibly includes a new bid of the vehicle agent into its bid list,
selects the next bid of its bid list and repeats the procedure.

— If the costs of the selected bid are not lower than the costs of the current
contract, the current contract is still the best option. The agent cleans up its
bid list and schedules to start a new auction after some time.

— If there is no bid selected (i.e., the bid list was empty) and there is no current
contract, the order agent immediately starts a new auction. If vehicle routes
have been changed in the meantime, probably it will obtain some bid from
the new auction. This is urgent since there is no contract yet.
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3.3 Vehicle Agent

A vehicle agent keeps track of the planned route of the vehicle, along with
earliest and latest possible times for each location, and the used vehicle capacity
at each trajectory. Initially, the route only consists of the vehicle’s start and end
locations.

When a vehicle agent receives a request from an order agent, it checks whether
the auction has not yet ended. If there is still time, it computes the marginal
travel costs for inserting each combination of alternatives into its current route,
that is, it solves the single-vehicle PDP multiple times: once for each possible
combination of a pickup and a delivery alternative of the new order. If an inser-
tion is possible, a bid consisting of the marginal travel costs (the costs of the
new route minus the costs of the current route), the pickup alternative and the
delivery alternative is sent to the order agent. Hence, a vehicle agent can return
multiple bids based on one request.

For quick vehicle computations, we use a fast greedy insertion heuristic
instead of solving the local vehicle problem in an exact way. The current sequence
of the route will be kept, and feasibility (of time windows and capacities) will
be checked for insertion of the new pickup and delivery at all possible positions
(see Fig.5).

If a vehicle agent receives the acceptance of a bid from an order agent, it
checks whether including the corresponding pickup and delivery alternatives
into its route is still possible for the same (or less) costs. If this can be done, the
vehicle agent updates its route accordingly and confirms this to the order agent.
Otherwise, it sends a negative response to the order agent, together with a new
bid for the same pickup and delivery alternatives, if possible. The rationale is
that the vehicle still might have a better offer than other vehicles, although the
costs might be higher than in the initial bid.

Each time a vehicle agent changes its route plans (after insertion or removal of
an order), it informs all order agents that are affected by the changes about their
new routing costs: for all order agents that have a pickup or delivery directly
before or after an inserted or deleted location in the route, the vehicle agent
computes what it would gain by removing the pickup and delivery of that order.
These actual routing costs will be sent to the corresponding order agents; they
update the costs of their contracts, which is useful when they compare bids to
their contract in a new auction.
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Fig. 5. Different insertion possibilities for a new pickup (p3) and delivery (ds) into a
vehicle’s route consisting of two orders. The greedy heuristic keeps the sequence of the
current route ((p1,p2,dz,d1)). The number of possible routes to check is quadratic in

the number of pickups and deliveries.
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4 Single-Agent System

To measure the performance of our MAS, we compare with a solution that is
computed in a centralized way. For such a SAS, it is assumed that all order and
vehicle information is available at one central place. We use an Adaptive Large
Neighborhood Search (ALNS) algorithm (Ropke and Pisinger 2006), adapted to
the situation with multiple locations and preferences, as SAS. First, an initial
solution is computed by a greedy heuristic. Then, ALNS iteratively looks for
improvements of the current solution by changing parts of it. In each iteration,
some orders are removed from the current solution, and reinserted again into
the remaining routing plan. Different heuristics for removal and reinsertion can
be used; they are selected based on their performance in previous iterations. For
details, see Algorithm 1 and Ropke and Pisinger (2006). An indication of the
quality of ALNS applied to the GPDPP is given by Los et al. (2018).

Algorithm 1: Adaptive Large Neighborhood Search

Input: feasible solution x
Initialize best solution z¥ «— x
Initialize weights w
while stop criterion not met do
Select destroy and repair heuristics d and r based on w
zt — r(d(z))
if accept(x,z") then

‘ z — zt
end
if costs(z') <costs(x®) then

2 e gt

end
Update w

end
return z°

5 Computational Study

To gain insight into the performance of the MAS, we compare the MAS results
for different auction sizes with the SAS results on instances of moderate size.

5.1 Problem Instances

We generated a problem set with instances of 500 to 2000 orders. All orders have a
random load between 0 and 100, 2 pickup alternatives, and 4 delivery alternatives
on a 100 x 100 area. Travel times and travel costs correspond to euclidean distances
between the locations. Time windows are randomly generated with length at least
30, whereas the time horizon was set to 960. For each instance, 8 = 20. The number
of vehicles equals 20% of the number of orders, and vehicles have capacity 250 or
500.
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5.2 MAS vs. SAS

To compare the performance of the MAS and the SAS and the influence of the
number of vehicles in an auction, we consider the following methods:

— Baseline: The centralized reference baseline first computes an initial solu-
tion with a greedy heuristic and thereafter gets the full computation time
to improve this solution by applying ALNS. Hence, it can be seen as a SAS
where an initial solution is already given.

- MAS-25%, MAS-50%, MAS-100%: The three MAS methods differ in
vehicle interaction percentage: order agents send in each auction a request to
the most promising 25%, 50% or 100% of the available vehicles, respectively,
as described in Sect. 3.2.

— SAS: The SAS, as described in Sect. 4, starts from scratch and uses the avail-
able computation time to both build an initial greedy solution and improve
this solution by applying ALNS.

We implemented the different methods in Go and ran them 5 times on 5
problem instances of 500, 1000, and 2000 orders. Since solutions need to be
provided quickly in highly dynamic real-world cases, we limited the computation
time of our experiments to 5 and 10 min on an i5-4590 CPU at 3.30 GHz with
8 GB of RAM.

Table 1 shows the normalized costs relative to the baseline result, along with
averages per group. Some experiments did not result in feasible solutions since
some orders were not assigned to a vehicle at all, due to limited time. In general,
it can be seen that for smaller computation times, lower vehicle interaction
percentages, and larger problem instances, the MAS solutions get closer to the
baseline solutions. Although the SAS produces better results than the MAS for
the smaller instances, there is an opposite result for the larger instances: for
1000 order instances and a time limitation of 10min, the MAS-25% method
outperforms the SAS, and for the 5 min case, both the MAS-25% and the MAS-
50% methods outperform the SAS. Furthermore, for the 2000 order instances,
the MAS-25% method is still able to find a solution in 10min while the SAS
is not. In addition, the MAS-25% method is even highly competitive with the
baseline for 1000 orders in 5 min and for 2000 orders in 10 min. Note that there
are two problem instances (no. 5 of the 1000 order series and no. 2 of the 2000
order series) for which the mean MAS-25% result even outperforms the baseline
result.
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Table 1. Normalized costs for the different methods relative to the baseline solution
(mean =+ standard deviation of 5 runs per instance).
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1.15 + 0.03
1.20 + 0.03
1.20 £ 0.02

1.18 £ 0.02
1.12 £ 0.03
1.22 + 0.04
1.25 £ 0.03
1.23 £ 0.01

0.97 £ 0.01
0.95 £ 0.02
0.98 £ 0.02
1.06 + 0.04
1.09 &+ 0.06

>

vg.

1.00 + 0.04

1.15 + 0.01

1.17 + 0.02

1.20 £ 0.03

1.01 £ 0.03

10

Ot = W N =

1.00 + 0.03
1.00 £ 0.06
1.00 £ 0.03
1.00 + 0.02
1.00 £ 0.05

1.19 £ 0.02
1.17 £ 0.00
1.25 £ 0.02
1.26 + 0.02
1.22 £+ 0.02

1.21 £ 0.02
1.19 £+ 0.02
1.24 £ 0.02
1.26 + 0.02
1.25 £+ 0.02

1.23 £ 0.04
1.20 £ 0.02
1.30 £ 0.02
1.29 + 0.03
1.26 £+ 0.02

0.96 £ 0.03
0.95 £ 0.01
1.02 £ 0.02
1.04 + 0.04
1.02 £ 0.02

>

vg.

1.00 £ 0.04

1.22 £ 0.02

1.23 £ 0.02

1.25 £ 0.02

1.00 £ 0.02

1000 5

1.00 + 0.03
1.00 £ 0.03
1.00 & 0.02
1.00 + 0.02
1.00 + 0.03

1.00 + 0.03
1.03 £ 0.02
1.05 + 0.03
1.06 + 0.04
0.98 £ 0.02

1.07 £+ 0.04
1.12 £+ 0.02
1.17 + 0.01
1.17 £ 0.02
1.06 + 0.02

®

® ] &

®
1.14 £ 0.01
@
®
®

Avg.

1.00 & 0.03

1.02 + 0.03

1.12 £ 0.02

&

1.14 £ 0.01

10

1.00 + 0.02
1.00 + 0.02
1.00 £ 0.04
1.00 £ 0.02
1.00 + 0.03

1.09 + 0.04
1.14 £+ 0.04
1.10 £ 0.02
1.07 £ 0.03
1.07 £ 0.03

1.14 £ 0.02
1.16 £+ 0.02
1.15 £ 0.02
1.14 + 0.02
1.13 £ 0.01

1.27 £ 0.01
1.31 £ 0.02
1.28 £ 0.02
1.28 + 0.02
1.24 £ 0.01

1.10 +£ 0.05
1.11 £ 0.01
1.16 £ 0.04
1.11 + 0.04
1.05 + 0.03

Avg.

1.00 £ 0.02

1.09 + 0.03

1.14 £+ 0.02

1.28 £ 0.02

1.10 = 0.03

2000 5

1.00 + 0.03
1.00 + 0.04
1.00 & 0.02
1.00 £ 0.03
1.00 £ 0.01

&

/@ ® ] ®

®

®

®

Avg.

1.00 + 0.03

&

10

1.00 £ 0.01
1.00 + 0.03
1.00 £+ 0.04
1.00 £ 0.02
1.00 + 0.02

1.02 + 0.14
0.95 £ 0.04
1.04 £ 0.13
1.10 £ 0.16
1.08 + 0.10

RV QIR QR ®

RV VIV QK ®

ROV QIR QW ®

Avg.

1.00 + 0.02

1.04 £ 0.11

®

®

®

O: Number of orders per instance; T: Computational time in minutes; I: Instance
number; ®: No solution found within the given time.
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5.3 Discussion

From our study, we obtain several insights for the use of MASs to model
autonomous transportation:

1. Adopting a multi-agent approach for routing problems models real-world
requirements by limiting information sharing, but has still good results com-
pared with a centralized approach. Hence, the method can compete with cur-
rent approaches, but shows advantages when information sharing is limited,
e.g., due to a lack of trust or fierce competition. Moreover, the approach is
robust in the sense that it obtains solutions when information is missing. This
is a very relevant property in a multitude of future autonomous transporta-
tion systems in which cooperation is essential, but full information sharing
cannot not be taken for granted.

2. Decentralized approaches result in good quality solutions for large problems
when computation time is limited. Limiting the number of vehicles that take
part in an auction can improve the results. Especially for the scenarios with
1000 orders and 5min of computation time as well as for 2000 orders and
10 min of computation time, the MAS outperforms a centralized solution. For
some problem instances, we demonstrate that the results of the decentralized
approach even outperform a baseline centralized solution. Along with the
aforementioned properties, this makes the developed MAS a suitable approach
for large-scale and dynamic routing problems.

6 Conclusions and Future Research

Several studies have addressed cooperative vehicle routing problems and decen-
tralized transportation problems. However, up to now, cooperation is commonly
modeled under the sometimes biased assumption of complete information shar-
ing. In this work, we modeled autonomous vehicles acting as independent deci-
sion makers that solve a realistic pickup and delivery problem where multiple
alternative locations per order are possible within a MAS with auctions.

We find that modeling limited information sharing does not significantly
worsen solutions. Moreover, the performance of the distributed MAS approach
improves for large-scale, time-limited instances in comparison to a centralized
approach. In this way, our results also contribute to modeling and solving large-
scale dynamic cooperative vehicle routing problems appropriately. The described
MAS approach allows to model the behaviour of autonomous vehicles as indepen-
dent physical decision makers, which is considered an important feature of future
autonomous vehicle routing. Modeling limited information sharing, this work
also considers scenarios of limited trust or coopetition. Both, autonomous dis-
tributed decision making and limited information sharing, are considered impor-
tant characteristics of autonomous transportation systems that will gain more
importance in the next stages of vehicular automation.

Nonetheless, the numerical experiments of this work are still limited and
future work could especially focus on the interaction of solution methods applied
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by vehicle and order agents. In this respect, the quality vs. time performance of
different strategies for the local vehicle problems could be investigated. Further-
more, the approach could be extended by, e.g., allowing transfers of orders to
other vehicles when they are already en route, or considering different policies
regarding switching to a different pickup or delivery alternative when a contract
already has been made.
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agement (P14-18 — project 3)” (project 14894) of the Netherlands Organization for
Scientific Research (NWO), domain Applied and Engineering Sciences (TTW).
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