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Abstract

Uncertainty can be defined as imperfect or unknown information arising in a stochastic envi-
ronment. Due to the very limited knowledge, it is difficult to propagate and quantify various
uncertainties affecting the system to its next step. As a result, it has been a challenge to con-
sider multiple uncertainties affecting the system in various fields, such as Fault Detection and
Diagnosis. Fault detection has been an essential part of a large industrial and manufacturing
system to take a proper corrective measure into account in a case of unexpected behavior.
However, determining a robust threshold bound for fault detection is a big challenge. Several
uncertainties affect the system (such as parametric uncertainties, experimental uncertainties,
process noise, measurement noise, etc.). Ignoring the effects of various uncertainties (i.e.,
Deterministic Bound) can lead to a false alarm.

Therefore, to design a robust threshold probabilistic-based technique is used where all un-
known parameters are taken into account. However, the major problem lies in propagating
these unknown parameters into the next time step with their limited knowledge. The aim is
to determine a probabilistic-based threshold by taking the effect of various uncertainty affect-
ing into account. A novel algorithm (Message Passage Bilinear Uncertainty Propagation) is
being proposed, which is used to quantify and propagate various uncertainties affecting the
dynamical system into the next time step. Therefore, through this Master of Science Thesis,
primary research is to design and validate the proposed algorithm and to check the algorithm
can be used to determine a probabilistic threshold.

To answer this question, this report discusses firstly various other algorithms used to prop-
agate uncertainty in Fault Detection then followed by the proposed novel algorithm. In the
report, a detailed explanation of the algorithm for a trivial example is presented. The al-
gorithm is then developed and implemented in MATLAB. Next, validation of the output
generated through the algorithm is performed using Monte Carlo simulation. Finally, various
analyses based on the MC simulation are discussed to support the results generated through
the algorithm. An innovative approach is also discussed to extend the polynomial system
algorithm as the proposed algorithm is limited to the bilinear system.

Further, a detailed explanation is given on applying the algorithm on a general state-space
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model in terms of mathematics involved, which is further extended on applying the algorithm
on a real-time application such as the Four Tank System. After successfully implementing the
algorithm on the Four Tank System, the algorithm is used to propagate uncertainty into the
dynamical system to determine the robust threshold. A robust threshold is found considering
the effect of various uncertainty. The threshold found using the proposed algorithm is dynamic
as it evolves based upon the state dynamics and satisfies the required condition. As a result
presented algorithm satisfy all the requirement and can also be used in other applications. The
algorithm was analyzed based upon various criteria to conclude this thesis, and a comparative
study was conducted.
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Preface

Since my childhood, I have always heard about many tragic instances in industries or chem-
ical factories due to negligence of proper fault diagnosis. These incidents always made me
questioned how fault can be detected and how these accidents can be prevented. During my
master’s study in TU Delft in System and Control, I did an elective subject on Fault Diagno-
sis and Fault-Tolerant Control. During the course, I learned about how Fault Detection and
Diagnosis are carried out in industries, and it answered many questions which, I had in the
back of my mind. These all instances drove me towards taking my graduation in the Fault
Detection and Diagnosis domain.

In September 2020, during my discussion with my professor Dr.R.Ferrari, he suggested an
algorithm he proposed three years back but never tested. As I read more in-depth about the
algorithm, it surprised me how uncertainty plays a vital role in a dynamic system and how
drastically it can affect its performance. Another thing that fascinated me most was how
this algorithm is not just limited to be applied for fault detection; instead, it can be used in
various other domains where uncertainty plays a significant role. These factors motivated me
to take this algorithm as my thesis topic.

During my masters, I learned in-depth about various controllers, modeling the dynamical
system, graph theory, probability, and statistics. These all topics helped during various
stages of my thesis. I consider myself lucky to get the opportunity to work under Professor
Dr.R.Ferrari. Without him, the thesis wouldn’t be possible.

I hope this thesis gives the reader a clear understanding of applying the proposed algorithm
(i.e., Message Passing Bilinear Uncertainty Propagation) for uncertainty propagation in the
dynamical system. Also hope that this algorithm is further investigated and applied in the
various domain where uncertainty quantification and propagation is difficult.
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Chapter 1

Introduction

Since the advent of the industrial revolution, there has been an increase in the demand for the
use of sophisticated and complex processes to meet up with the higher system performance,
product quality, and lower service cost [27]. To meet this increasing demand, the degree of
automation in the technical manufacturing process is continuously growing. This calls for the
use of a safer and more reliable based approach [16].

The use of the more and more automatic system has lead to an increase in the probability
of occurrence of the fault. As a result, one of the critical issues in an automated system is
reliability. The traditional way to reduce the fault in any system is to enhance the component’s
quality and robustness or use a hardware redundant-based approach. Even so, a fault-free
system cannot be guaranteed as there will always be a presence of external influence such as
noise or parametric uncertainty. Therefore, from 1970’s fault detection and diagnosis have
become an essential part of any control or automated system. Since then, enormous research
has been going on in developing, theory, and implementing the Model-based fault detection
technique. Today, model-based fault detection has become quite popular in various industrial
and manufacturing sectors due to its easy implementation, higher reliability, accuracy, etc.
[11].

Currently, there are a lot of model-based fault diagnosis techniques used. All these ap-
proaches differ in the type of process model, data set, applied algorithm, etc. Among the
existing schemes, Probability-based techniques are pretty popular because of their efficiency
and reliability for reconstructing the process variable. The main problem in this approach
is taking into account the effect of various uncertainty affecting the system and designing a
threshold for the proper fault detection and diagnosis. Not taking the effect of uncertainty
concerning the system into consideration can lead to False Alarm Rate (FAR). Therefore
there is a proper need to design an algorithm to propagate uncertainty affecting the system.
Thus the main focus of the thesis is on designing and implementing an algorithm to propagate
the uncertainty acting on the system for designing a correct threshold bound.
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2 Introduction

1-1 Motivation

Fault Detection and Diagnosis (FDD) are an essential part of the process control in any indus-
trial system. These schemes reduce the probability of fault occurrence, which can ultimately
lead to complete failure in the system. The unexpected failure can have a significant impact
on the safety, economy, and environment. Throughout our history, various human tragedies
could have been reduced if the proper corrective measures had been taken into account, such
as:

• A Boeing 747-200F lost both of his engines while taking off from the Schiphol Airport,
Amsterdam, ultimately crew lost its control and plane crashed into the building. There
were a significant number of deaths. Maciejowski [30] suggested that this could have
been avoided if there was an alarm to reconfigure the controller.

• A nuclear accident caused at Chernobyl Nuclear Power Plant. The main cause of the
tragedy was the use of outdated instruments and the lack of fault handling instruments
to detect the deviation from the normal operation.

• Bhopal gas tragedy caused due to leakage of water in Methyl Isocyanate tank causing
an unwanted chemical reaction. This tragedy could have been prevented if there had
been a proper diagnostic tool to detect and reduce the water leakage in the tank.

These tragedies in humankind could have been prevented if proper action had been taken into
account correctly. Moreover, It is quite natural for a complex system to become vulnerable
to these faults. Therefore, the FDD tool is necessary to maintain to detect the fault and
minimize the impact of it acting on the system.

As discussed in the previous section, for the past 50 years, there has been much research in
developing various algorithms to detect the faults and take corrective measures. However, the
most widely preferred approach is the Model-Based Approach. In a Model-based approach, an
observer is designed, which replicates the actual process of the system. Then, the comparison
is made between the actual model, and an observer output and difference(i.e., residual ) is
generated. Finally, the residual is used to determine the threshold and fault in the system
[32].

Model-based fault detection can be widely divided into two categories Probabilistic Based
Approach and Deterministic Based Approach, based on how the threshold is defined. In a
deterministic-based approach, the threshold is more or like constant values. These constant
acts as an upper and lower limit. Values under these limits are used to signify a healthy
system. However, the deterministic-based approach is generally not the preferred approach
in industries because the threshold defined in this scheme is quite conservative and tightly
bounded [36]. Besides, the possibility of uncertainty affecting the system is not taken into
account. Uncertainty plays a significant role in any mathematical modeling of the system.
Usually, the system’s parameters have defects present, or a disturbance or noise is acting
on the system due to inaccuracy in the model’s design, sensor error, etc. However, these
quantities are not known precisely. As a result, there is always a mismatch between the
actual measurement and mathematical model even when the system is healthy [8]. This
sometimes causes the system to take some rare values, which are not within the range and
result in a false alarm.
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To compensate for these drawbacks, a probabilistic based approach is used. In this approach,
the threshold bound is more relaxed and flexible. It is defined in terms of a set, and the
probability of a false alarm can be determined using a tunable parameter. It also minimizes
the detection rate [36]. In this approach, parametric uncertainty is also taken into account.
The main problem in this approach is how to propagate uncertainty into the system to
calculate the threshold bound. Uncertainty quantities propagating into the system are not
deterministic but rather stochastic quantities. Uncertainty being a stochastic (i.e., random)
quantity, there is not much information other than its distribution (i.e., mean and covariance).
Without much knowledge about the random variables, it is difficult to propagate it through
the various time steps to calculate the threshold bound in the process. Therefore the main
research area of my thesis lies in how to propagate uncertainties in the system to calculate
the threshold bound in a better and efficient way.

1-2 Research Question

Figure 1.1: Mind Map for Formulating Objective of the thesis.

As discussed in the previous section, uncertainty plays a significant role in fault detection and
can lead to FAR if the threshold bound is not correctly designed. However, propagating the
stochastic uncertainty in a one-time step ahead in a dynamical system is quite challenging.
As it is a random variable, and only mean and covariance is known. To evaluate the overall
effect of the uncertainties, each parameter’s mean and covariance value has to be propagated
in a one-time step considering the other parameters’ uncertainties. Therefore the main area
of my research is to develop an algorithm to quantify the overall effect of uncertainty in any
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dynamical model (i.e., linear and polynomial), perform its validation, and use the developed
algorithm to find a robust threshold. As uncertainty propagation is complex, a graphically
based algorithm is developed to overcome this issue and find the overall effect. The objective
of the research is to study and find the answers to the following questions. Figure 1.1 shows
the memory map, which helped me in formulating my research questions.

Research Question To design and develop an algorithm to automatically propagate para-
metric uncertainty, process noise, and measurement noise through the system and to use an
algorithm to derive the robust threshold for fault detection?

Further, we lay out our research sub-questions as guidelines in answering our final research
question.

Research Sub Questions

1. How to validate our algorithm and the output generated through our algorithm?

2. Can the developed algorithm for the uncertainty propagation be applied to both the
bilinear and polynomial system? If not, what are the modification needed to be carried
out?

3. How can the developed algorithm be applied to the state-space model, and what are
the assumptions to consider?

4. How can the developed algorithm can be used successfully to evaluate a robust thresh-
old?

5. What are constraint and bottleneck of the algorithm which affects its numerical effi-
ciency and speed?

1-3 Research Contribution

As discussed before, from the past 50 years, much research has been carried out to develop
various algorithms for fault detection. However, all the developed algorithm faces a significant
difficulty in propagating the uncertainty present in the system model. As a result, parametric
uncertainty and noise will always be present in the model, resulting in over conservative
threshold bound.

To take the effect of the uncertainty into account, there are not many algorithms developed
focusing on uncertainty propagation. Therefore, a graphical-based algorithm is proposed,
which is used to quantify the effect of various uncertainty affecting the dynamical model. In
the algorithm system’s uncertainty is modeled as a bipartite graph. Uncertainty propagated
at each time step through the algorithm. Besides developing the algorithm, my research also
included applying the algorithm on the state-space model to derive the robust threshold and
perform various algorithm analyses. The proposed algorithm does not find its application
just as a part of probabilistic-based fault detection. However, it can be used in various
other applications such as other fields also such as weather forecast, stock market prediction,
etc.
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1-4 Thesis Outline
The report is organized as follows: Chapter 2 provides a brief introduction to Fault, FDD, the
principle of model-based fault detection, problem-related to probabilistic based approach, the
importance of uncertainty, and the outline of the conducted literature survey of the various
algorithm for uncertainty propagation in Fault detection. Chapter 3 introduces the proposed
algorithm for the uncertainty propagation, a detailed explanation algorithm, and how to apply
the algorithm for the higher degrees of system. Chapter 4 discusses the algorithm’s validation
for bilinear and polynomial systems and further analysis done using the validation experiment.
Chapter 5 outlines how to apply the algorithm on a state-space model. It also discusses how to
apply the algorithm on a real-time application such as a four tank system and, consequently,
find a robust threshold bound for the system. In Chapter 6, various algorithm analysis is
performed in terms of complexity, numerical efficiency, etc. and the MPBUP algorithm with
Probabilistic based approach is also compared with other algorithms used for FDD. Finally,
Chapter 7 concludes with the thesis research and future work that can be done.
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Chapter 2

Background Information

2-1 Fault: Basic Concept

Fault in a dynamical system is defined as a deviation of the system structure or the parameter
from its normal situation [2]. In other words, faults hamper or disturb the regular system
operation, thus causing a deterioration in the system’s performance, leading to failure. The
fault is different from failure as we use fault to denote malfunction rather than a catastrophe.
Furthermore, failure is used to suggest a complete breakdown of the system component or
function. In other words, the fault may lead to failure if no proper action is taken into account
[7].

2-2 Fault Detection and Diagnosis (FDD)

FDD units are designed in any industrial and manufacturing plant. They are used to take
the corrective measurements properly and prevent any catastrophe action from taking place.
The overall concept of FDD can be divided into three main essential tasks such as:-

• Fault Detection: Detect the fault in the functional unit when there is an unexpected
change in the behavior. The output from the Fault Detection unit is usually binary,
i.e., either 1 or 0. Where 1 indicates the presence of a fault and 0 indicates the system
is in a healthy state.

• Fault Isolation: This unit is used to localize or classify the different based upon various
parameters such as sources.

• Fault Analysis or Identification: Determine the type, magnitude, and cause of the fault.

Since 1990′s, there has been ongoing research to design various methods for FDD. All the
different algorithms work on the basic principle to detect the change in the process parameters
and hence can be called a change detection algorithm.
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When a fault is diagnosed in the system, a proper corrective measure is taken into account
to remove the fault in the system. This subsystem is called Fault Tolerant Control (FTC).
Both FDD and FTC are used together in any industrial and manufacturing to take proper
corrective measures against the fault and reduce its chance of occurrence. The Fault diagnosis
and tolerance based algorithms or techniques are divided into the following categories:

• Hardware Redundancy - The main principle in this technique is to use redundant com-
ponents. These redundant components run in parallel with the actual component and
are used to detect the change in the output. Whenever a fault is present in the actual
component, it is replaced by a redundant component through a relay switch. The main
advantage is that this scheme is highly liable for fault isolation, but at the same time,
it is expensive. Figure 2.1 shows the block diagram of the hardware redundant-based
approach. Hardware redundant component is a part of FTC.

Figure 2.1: Schematic Diagram of Hardware Based Redundant Model.

• Software Redundancy - This approach is quite similar to hardware redundancy. The
process model will run parallel to the process in software redundancy rather than re-
dundant components, and the same process input will drive it. In a fault-free situation,
the reconstructed process model will follow the actual process output. In contrast, there
will be a deviation between the estimated model and the real-time process in the case of
fault. This deviation is called residual [11]. The block diagram for software redundancy
is similar to hardware redundancy, except the hardware component block is replaced by
the software component block. Software redundant component can be used as a FDD
and FTC, as it is used to detect the fault and in the presence of a fault replacing with
another healthy software component block.

• Signal Processing Based- It works on the principle that specific signals carry information
in the form of a symptom. Thus, fault can be detected by processing these signals
through various ways such as spectral power density, limit check, etc. This approach
is used for steady-state signal types. Figure 2.2 shows the block diagram of the signal
based model.
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Figure 2.2: Schematic Description of Signal Based Model.

Software or analytical redundancy has been quite popular in the last two decades. The main
advantage of software redundancy is that no additional hardware component is needed. It
can be directly implemented on the digital computer and is comparatively cheaper. Other
than this analytical-based approach uses the deep knowledge of the system to generate the
model and residual. Compared to other methods, there are fewer chances of FAR and Missed
Detection Rate (MDR).

2-3 Model Based Fault Diagnosis

The analytical or software-based approach is gaining more and more popularity for FDD.
Because it is cheaper and more efficient than other approaches, and it can be applied online.
The main principle of the analytical-based approach is that a difference signal is generated
based upon the comparison between actual output and predicted output which is called a
residual or symptom signal. Based upon the residual signal, the presence of fault is detected.
The residual should be zero when the system has a fault-free operation and nonzero when
a fault is present. This property of residual is used to determine if a fault is present in
the system. The two crucial software-based technique used for FDD is Model Based Fault
Diagnosis and Data Based Fault Diagnosis. Model-based fault diagnosis makes use of a
mathematical model of the system to determine the fault [37]. The mathematical model of
the system is based upon the prior measurement, system dynamics, etc. Data-based fault
diagnosis uses a training data set (i.e., healthy data), which is used to train the system and
detect the threshold. Further, this training data set is compared with the actual data to
detect the fault in the system.

Model-based fault diagnosis can be mainly divided into stages such as residual generation and
residual evaluation.

• Residual Generation: It generates a residual signal by comparing the actual process
output with the estimated output from the mathematical model. The residual signal
carries the information of the faults.

• Residual Evaluation: It is used to process the residual signal further for the possible
information of the fault. It is used to extract information about the fault of interest
from the residual signal employing post-processing the output signal [11].
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Figure 2.3: Schematic Description of Model Based Scheme.

The model-based fault diagnosis can be divided into three main categories as (1) Parity
Space Approach, (2) Parameter Identification Approach, and (3) Output Observer-Based
Approach.

Parity Based Approach is a general framework for Fault Detection and Identification (FDI),
which includes both open loops and closed-loop strategies. In this approach, parity space
signifies residual vector. A residual vector is a linear combination of sensor output and input
applied over a finite time window. To detect the fault parity vector is analyzed. If the sensor
output and input combination are trivial, the residual vector is zero, and the system is fault-
free. On the other hand, when the system contains fault or a particular component is faulty,
the subset of the residual vector will be nontrivial, indicating the presence of fault [31].

Parameter Based Approach is used when the process model is not known at all. Therefore,
this method involves finding the model using the input uk and the output yk data through
subspace identification. It is followed by finding the residual. The identification method also
helps in gaining more information about the sources and how they get affected by faulty if
there is a fault present in the system [16].

Observer-based techniques involve designing an observer which replicates the process and
residual is obtained. In the past few decades, the output observer-based approach has been
widely used for FDD. First, it has many advantages such as quick detection, no excitation
input signal is required, and it can be easily implemented online and offline. Secondly, com-
pared to other model-based techniques such as parity space or parameter estimation, it does
not require any assumption or condition regarding the model.

2-4 Observer Based Approach
The observer-based technique is one of the widely applied model-based schemes for detecting
a fault in the system. In the control domain, observers are used for estimating the states
which are not measured, whereas, in the Fault Detection (FD), Output observers are used,
i.e., these observer gives the estimates of the measurement [13].

In an observer, a process/mathematical model is developed, which is used to replicate the
actual model. A residual signal is generated based upon the difference between the actual
model and the estimated model. The residual signal contains a lot of information. If the
residual signal is zero, it indicates that there is no model disturbance or uncertainty. Deviation
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of the residual signal from zero indicates the presence of uncertainty in the model. There will
always be a presence of parametric uncertainty and disturbance in the system model in an
actual scenario. Therefore while designing an observer for FDD main aim is to reduce the
effect of the model disturbance, and it does not affect the normal processing of the system.
As a result, a threshold is designed which takes care of the model uncertainty and various
disturbance present in the model. Threshold selection plays a crucial role in checking whether
the change in the system parameter (i.e., residual) remains within the desired limits.

2-4-1 System Dynamics

The observer used for FD is a type of Luenbenger observer. Observer aims to generate an
error (i.e., residual) signal and minimize the error between actual output and the estimated
output through the state feedback mechanism. In the observer, an error is computed at each
time step as the system propagates through time. So eventually the error in the system
becomes zero (e(t) −→ 0).

The plant dynamics of any system in general can be defined as:

x(k + 1) = (A+ Ã)x(k) + (B + B̃)u(k) + χ(k)
y(k) = (C + C̃)x(k) + ξ(k)

(2.1)

Where, x(k) corresponds to the states in the system, u(k) corresponds to input acting in the
system, A, B and C are the state matrices, Ã, B̃ and C̃ are the uncertainty acting in the
system in the state matrices. χ(k) corresponds to the process noise and ξ(k) corresponds to
the measurement noise.

The observer dynamics can be defined as:

x̂(k + 1) = Ax̂(k) +Bu(k) + L(ŷ(k)− y(k))
ŷ(k) = Cx̂(k)

(2.2)

Therefore, residual can be defined as rx(k) = x(k) - x̂(k)

rx(k + 1) = x(k + 1)− x̂(k + 1)
rx(k + 1) = [(A+ Ã)x(k) + (B + B̃)u(k) + χ(k)]− [Ax̂(k) +Bu(k) + L(ŷ(k)− y(k))]
rx(k + 1) = A(x(k)− x̂(k)) + Ãx(k) + B̃u(k) + χ(k) + L[Cx(k) + ξ(k)− Ĉx(k)]
rx(k + 1) = Arx(k) + Ãx(k) + B̃u(k) + χ(k) + LCrx(k) + Lξ(k)
rx(k + 1) = A0rx(k) + γ(k)

(2.3)

Where, A0 = LC and γ(k) corresponds to the total uncertainty acting in the system and rx.
It can be expressed as:

γ(k) = Arx(k) + Ãx(k) + B̃u(k) + χ(k) + Lξ(k) (2.4)
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ry(k + 1) = y(k)− ŷ(k)
ry(k + 1) = [(C + C̃)x(k) + ξ(k)]− [Cx̂(k)]
ry(k + 1) = C(x(k)− x̂(k)) + ξ(k)
ry(k + 1) = Crx(k) + ξ(k)

(2.5)

Residual in terms of state and output is found in the above equations 2.3 and 2.5 respectively.
In the absence of fault, residual deviates from zero only due to modeling uncertainties, with
the nominal value being around zero under the actual working condition. If the fault occurs,
residual deviate from zero due to a change in the parameter from the fault-free condition. The
role of the decision system is to determine whether the residual remains within the healthy
condition bound [2]. The bound or limit is called a Threshold. There is various way to bound
the system. The most common ways to bound the system are Deterministic and Probabilistic
based schemes.

2-4-2 Deterministic based approach

In a Deterministic based scheme, residual is usually bounded by norm or limit-based approach.
In norm-based approach, a scalar threshold τ is used to bound the residual signal r0, whereas,
in the limit based approach, a vector is found such that each jth component of the threshold
τ(j) bounds the residual |r0

(j)|. In this scheme, residual is bounded under the minimum and
maximum value of r0 in a fault-free condition. Mathematically for signal z, limits can be
expressed as:

z < zmin or z > zmax =⇒ alarm, a fault is detected
zmin ≤ z ≤ zmax =⇒ no alarm, fault-free

(2.6)

The deterministic-based approach is quite simple to design based on the knowledge of the
model under the healthy condition and very simple to check the presence of a fault. However,
the deterministic-based approach also has many setbacks, such as the upper bound on the
uncertainty is relatively static and conservative. As a result, the inability of the traditional
approach to tightly bound the arbitrarily shaped healthy region such as the nonconvex region.
Also, this approach cannot take into account the possibly rare value taken by the uncertainty.
The threshold value found using this approach is static; as a result, the evolution of the system
dynamics is not taken into account. Due to the presence of these setbacks, a probabilistic-
based approach is used [11].

Ideally, it is expected from the model-based approach to be robust concerning the unavoidable
model and uncertainties measurement, thus having lower FAR and at the same time having
reasonable detection rate (i.e., low MDR) [40]. However, in general, it is not possible to
achieve both zero FAR and zero MDR. As a result, there is always a trade-off between FAR
and MDR. To compensate for this trade-off Probabilistic based approach is used. In the
Probabilistic based approach, dynamic bounds are used to bound the threshold.
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2-4-3 Probabilistic based approach
In the probabilistic-based approach primary objective is to enhance the robustness of the
residual generator against model uncertainties and disturbance without significant loss of the
fault sensitivity. In this approach, statistical methods like Multivariate Control Charts (MCC)
are widely used to detect a fault. However, the probability distribution of the observation
is unknown. The algorithm aims to get a decision rule based upon the learning of data
collected under normal operating conditions and a new observation that comes from normal
or fault mode. In this scheme, the learning sample is commonly generated from a Gaussian
distribution with a known mean and variance [41].

The bound in the probabilistic-based approach is dynamic. The residual of the system is
calculated at each time step. Uncertainty, process noise, and measurement noise are assumed
random variables with a known mean and covariance. These random variables are propagated
through time along the nominal dynamics to calculate the threshold bound. Threshold bound
in the probabilistic-based scheme is calculated using Mahalanobis Distance (MD) and Cheby-
shev Inequality. MD is a measure of Euclidean distance between the objects. In order words,
it is a measure of the distance between a point P and distance D. It is a multi-dimensional
generalization of measuring how many standard deviations away P is from the mean of D.
The distance of P is zero at a mean of D, and it grows as P moves away from D along the
principal component axis. MD calculates the Euclidean distance by taking the mean and
covariance of the data into account [24]. Therefore MD is used to find how far is residual
from the threshold.

Chebyshev Inequality is a probabilistic inequality. According to the inequality for any prob-
ability distribution with a mean (µ) and variance (σ2) defined at least (1− 1

λ

2) of the distri-
bution are within the (λ) standard deviation of the mean. In other words, it states that the
probability that an observation will be more than λ standard deviation from the mean is at
most 1

λ2 [43]. Chebyshev inequality can be applied for a variety of distributions. Therefore
using MD and Chebyshev inequality [9], the threshold can be defined as:

Eα ,
{
ry ∈ Rn |

√
(ry − r̄y) Σ−1

ry (ry − r̄y) ≤
n

α

}
, α ∈ (0, 1] (2.7)

Where,ry is the output residual, r̄y and Σry is the mean and covariance of the output residual.
εα is the probabilistic threshold bound. α is a user defined constant, it used to guarantee
against the desired probability of false alarm. In healthy condition following condition hold
according to chebyshev inequality [9].

Prob [ry ∈ Eα] ≥ α (2.8)

The Probabilistic-based approach considers all the setbacks of the deterministic-based ap-
proach, and threshold bound minimizes the probability of the false alarm. Unfortunately,
this scheme also has its setback, that the propagation of uncertainty in the system to com-
pute the threshold bound. As uncertainty is a combination of stochastic quantities, there is
no information available about the distribution. Therefore its propagation in the next time
step is difficult. To overcome the drawback of the model-based approach, various uncertainty
propagation algorithms are designed, such as Belief Propagation, MPBUP algorithm, etc.
These algorithms are used with the probabilistic based approach to evaluate the threshold
and detect the fault in the system [20].
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2-5 Polynomial Chaos
Uncertainty is ubiquitous in a dynamic system or model. Another algorithm dealing with
uncertainty propagation in the dynamical system for the FDD is Polynomial Chaos (PC).
PC is a non-sampling-based method to determine the evolution of the parametric uncertainty
in a system. It is used to quantify forward projection of the uncertainty [29], [22]. It trans-
forms the stochastic-based equation to a deterministic-based equation and projects it into
a higher dimension using orthogonal projection. PC converts the complex stochastic distri-
bution of input variable onto measured variable to calculate the moment analytically and
efficiently.

The PC-based approach has a strong mathematical basis and the ability to produce a func-
tional representation of stochastic quantity. In PC, random input can be represented as a
stochastic model based on which lower-order stochastic moment can be derived easily. PC
replaces an implicit mapping between the variables/parameter and express them using an
explicit parameter. It replaces the standard continuous differential equation describing the
model with a series of orthogonal expansions. PC finds numerous applications in various do-
mains such as sensitivity analysis, fluid dynamics, finite element analysis, and fault diagnosis,
etc. PC is an active fault diagnostic tool. Active fault diagnosis involves designing an input
signal that ensures detection or isolation of fault, but at the same time, the input signal is
less intrusive to the system performance. It is used to separate the healthy model from the
n faulty model based on designing a Probability Density Function (PDF) of the model [26].

2-5-1 PC as a Fault Detection Tool

PC-based active fault diagnosis can be divided into three steps. Firstly, the residual is con-
structed using the polynomial expansion of the variable. Then, stochastic moments of the
system are computed, which is used to construct the PDF of the model having uncertain
parameters. Secondly, the dissimilarity between the model output is found in the presence of
probabilistic uncertainty. The similarity of the two models is directly related to the PDF of
the model. The more similar are the model more is the Bayes error. The error is minimized
to reduce the overlap between the output PDF of the two models. Thirdly, a nonlinear op-
timization is performed to determine an optimal input sequence that minimizes the overlap
between input sequences of various models [39].

PC is used to discriminate the fault based on class type and severity of damage it can cause.
The unknown input fault function g can be described as:

g = ḡi +4gi

Where, ḡi corresponds to the constant mean value and 4gi corresponds to perturbation or
stochastic variation around each mean value.

The threshold value for fault detection is taken constant around the mean value gi. This
constant value for fault detection in PC act like a control limit. The control limit is computed
at each time step based on each operating mode’s mean and variance. The mean and variance
are calculated stochastically using PC-based expansion. Thus, the threshold limit is dynamic
and will keep changing as the process evolves or propagates through time.
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PC-based approach for fault detection can be formulated as a two-level detection problem. In
the Level 1 Algorithm, for each mean value (gi), PDF is calculated using PC expansion. Mean
value remains constant in the neighborhood of the steady-state and acts as an operating mode
in the system. Measurement values are calibrated around the measurement noise. The steady-
state value calculated at a given time instant is compared against the predicted or calculated
value. A steady-state is not effective against the transient changes. In Level 2 Algorithm, the
algorithm is designed to consider transient changes. The algorithm is based on the fitting
criterion of the measured variable over a moving time window. The fitting criteria are based
upon either a Maximum Likelihood Function or Bayesian Inference Estimator. These fitting
criteria are used to maximize the difference between the predicted and the measured value
over the moving time window. It also compares it with the threshold to detect the presence
of a fault in the system [5].

2-5-2 Advantages and Disadvantages

There are some advantages and disadvantages listed below for PC based approach for fault
detection as follows :

Advantages

• The main advantage of using PC is that it reduces numerical complexity required in
finding mean and variance of the system [26].

• Prehistoric data required by PC to model the stochastic distribution is much less com-
pared to data needed by Monte Carlo Simulation.

• It takes into account the nonlinearity of the system by explicitly taking the first principle
model [5].

• In PC based model computational time is comparatively is less. Hence, it can be applied
on higher dimensional system [39].

• It can be used to calculate the multiple stochastic faults at the same time. It is also
used to isolate multiple faults at the same time.

Disadvantages:

• PC is based upon a series of quadrature truncation that induces a numerical bias. These
biases are very detrimental for convergence analysis in high dimensions.

• Calculation of higher moment is computationally complex.

2-6 Bayesian Networks

Bayesian Networks (BN) is a robust probabilistic tool that combines process knowledge with
expert opinion. BN is directed acyclic graphs that embed the cause-effect relationship be-
tween the nodes (i.e., nodes represent various process variables). The framework of BN allows
reasoning under uncertainty (i.e., conditional dependencies is represented via bipartite graph).
A sequential evidence propagation computes the component failure probability through the
conditional probability distribution specified for each node. BN-based approach for fault
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detection method ranks the possible node based on the updated conditional probability dis-
tribution to show the contribution of each variable on the particular fault [6].

2-6-1 Bayesian Network as Fault Detection

BN-based fault detection mainly consists of four to five steps. Firstly, a BN is constructed
using the bond graph, process knowledge data, etc. Then, the initial conditional probability
of each node is taken into account using prior knowledge or by training the healthy data set.
During the system operation, evidence is propagated through the network. External evidence
(i.e., change in some parameters), it is asserted into the network through various nodes. Then,
the effect of this evidence is propagated into the network. Finally, the impact of the evidence
is adjusted into the network through the various nodes. When the value of the particular
node is readjusted into the network, nodes that are connected to the particular node change
their own belief to remain consistent with the network. Evidence propagation is an iterative
process between the parent and child node until saturation is reached. Saturation is obtained
when no other nodes propagate its evidence into effect.

The threshold in BN is a probabilistic limit that depends on the conditional probability of
nodes calculated in healthy conditions. To identify the root cause of the fault in the system,
a dynamic threshold is used. The threshold is calculated at each time. The kernel density
function is used to estimate upper and lower control limits such that samples remain within
the limit [0, 1]. These limits act as critical limits. The number of samples that exceed the
critical limit is counted and normalized. The normalized value is used to determine the
contribution of each variable by calculating the likelihood of the variable. It serves as an
indicator for pointing out the primary cause of the fault [44].

In the BN-based approach, the system’s parameters changes are propagated through the
network using conditional probability. As a result, this approach can consider the various
uncertainty affecting the system, such as parametric uncertainty, process noise, measurement
noise, etc. Thresholds found using this approach will be robust to rare uncertainty values, and
there will be fewer chances of FAR. At the same time, the algorithm also has some drawbacks.
As BN constructs a directed acyclic graph and not all the industrial processes are acyclic. To
model a cyclic process into BN is difficult. Therefore, a dummy or mediating variable is used.
A dummy variable adds an extra node into the system and eventually increases the algorithm
complexity.

2-6-2 Advantages and Disadvantages

Advantages:

• It is a graphical-based approach. It can be used to monitor the plant operation in a
networked fashion so that variable interaction and casual relationships are well captured.

• It can identify the root cause of any process or fault propagation pathway through any
abnormality caused in the system which cannot be identified in routine monitoring [44].

• BN has a good fault handling capacity. This approach is used to rank the multiple
faults in terms of probability, hence giving an operator option to decide which fault
should be given the priority [42].
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Disadvantages:

• For a highly complex process as the number of variable increases, the learning algorithm
become computationally difficult and enormous data is needed [6].

• BN cannot be directly applied on an online industrial process as it requires some time
to update the conditional probability of its variable; hence it may causes a delay in fault
detection [42].

• Message passage between two nodes can take place from multiple paths. As a result,
a message can propagate indefinitely. This problem, in general, is complex and, for a
large network, is computationally difficult [10].

2-7 Belief Propagation
Belief Propagation (BP) is a type of simple linear message propagating algorithm in a
graphical-based structure. It is also called as Loopy Belief Algorithm (where the words loopy
is used to signify graphical model with cycles). BP passes a message between the nodes and
is iterated until convergence is reached or stopped after a finite number of steps. Each node
in the graph has its own belief (i.e., posterior probability). The approach is quite different
from the BN as it is a factor-based method. A factor graph is a tree. The factor graph are
designed in such a way that one node is a root node, and any non-root nodes connected to
other nodes are leaf nodes. In any factor graph, nodes are divided into two subsets, factor
set, and variable set. There is a link connecting factor nodes and variable nodes [35].

BP is commonly used in artificial intelligence and information theory. Its use has been
successfully demonstrated in various applications such as free energy approximation, fault
detection, etc. The working principle of BP can be summarized that it is used to calculate
the approximate factor marginal and variable marginal of the probability distribution of the
factor graph. The calculation is done by message passing on a factor graph. Each node passes
the message to its neighboring nodes. Variable node gives a message to its neighbor (i.e., the
variable node sends a message to the factor node and vice versa). An outgoing message is a
function of the incoming message at each node. This process is iterated until it reaches local
convergence or fixed iteration. BP can be termed as one step extension of BN.

BP in fault detection algorithms is used for uncertainty propagation. The algorithm propa-
gates various parametric uncertainty, measurement noise, process noise, etc., are propagated
through the algorithm as an event between the neighboring nodes in a message-passing man-
ner. As the algorithm propagates through the dynamical system, there is an exchange of
information between the nodes for each time step. As a result, each node updates its own
belief, and this continues until equilibrium is reached. The probabilistic threshold in BP
can be computed using a healthy data set (i.e., fault-free data set), which corresponds to the
mean and variance of the node-set. These moments are used to derive conditional probability.
Conditional probability represents the mutual information shared among the variable. This
information is used to derive the robust threshold. Threshold acts as a limit-based approach.
When the system propagates through the next step, the variable’s change is propagated as
evidence in the network. As a result, the network updates its own belief. Updated belief
is used to compute the moments and residual. Residual is compared with the threshold to
detect the presence of fault [21]
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BP can be seen as an interesting tool to propagate the uncertainty into the model and thus to
derive a probabilistic threshold. At the same time, there are some setbacks in the algorithm,
such as BP deals with undirected acyclic graphs. Moreover, it is difficult to take loops into
account ( as the main assumption on which message passage relies is that the states of the
neighbor are uncorrelated with one another, which is only true if there are no loops present).
As a result, loopy belief propagation is used. The main problem with loopy belief propagation
is convergence, which adds a bias to the output model. There are more advantages and
disadvantages related to the algorithm, which are discussed in the subsequent section.

2-7-1 Advantages and Disadvantages
Advantages

• It provides a causal relationship between the various factor and variables. Thus it is
easy to determine the root cause of the fault.

• This factor-based approach helps in fault isolation because this algorithm works in a
distributed or parallel-based approach.

• It reduces the computational bottleneck and improves the robustness of monitoring and
diagnosis by avoiding a single point of failure.

Disadvantages

• For a dense and irregular graph, the fault signature matrix A is not sparse. It gets
dominated by a lot of nonzero values. BP based approach relies on the graph sparsity
to ensure efficiency and accuracy [21].

• At each step or iteration number of mixture terms required to represent the message
will increase at an exponential rate. To handle this exponential rate, it has to be
approximated by a small mixture [21].

2-8 Conclusion
In the previous sections, various model-based algorithms for FDD were discussed. Many
of those algorithms did take uncertainty propagation in a dynamical model into account to
evaluate a robust threshold for fault detection. However, at the same time, there are also many
setbacks in these algorithms. These setbacks reduce their applicability to apply to various
models. First, such as Polynomial Chaos, which propagates uncertainty in a dynamical model
but due to its strong mathematical base (i.e., orthogonal projection, quadrature truncation),
it is difficult to calculate the moments for highly complex processes. Similarly, both message-
based approach Bayesian and Belief Propagation cannot be applied to a system with the loops.
As a result, it limits their use to be used in any dynamical model. Secondly, due to their use
of the particular type of graphical structure, the complexity increases exponentially.

As a result, there is a need for an algorithm for uncertainty quantification and propagation,
which can be applied to any dynamical model considering loops. Moreover, its numerical
complexity is comparatively less and can take various uncertain parameters into account
simultaneously.
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Chapter 3

Proposed Uncertainty Propagation
Algorithm

The previous chapter discusses many algorithms for FDD in a system. In all, the algorithm
discussed above bounding various types of uncertainty is complicated, which is needed for
developing a robust threshold with a given performance in terms of FAR. Many of the
algorithms discussed above involve various strategies to take the uncertainty of the system into
account, but there is always an increase in the numerical complexity. Therefore considering all
the factors, a novel algorithm Message Passing Bilinear Uncertainty Propagation (MPBUP)
is designed, which can be used to propagate stochastic random variables through the time
step and can be used to propagate uncertainty in the system [12]. MPBUP algorithm is
used in correspondence with the Probabilistic Model-Based Fault Detection to propagate the
uncertainty in the system at each time step to find a robust threshold for the fault detection.
A detailed explanation of the algorithm is given in the subsequent section

3-1 MPBUP Algorithm
MPBUP algorithm is a message-passing algorithm designed to propagate the effect of un-
certainty into the system. This algorithm was inspired by well known BP algorithm by
J.Pearls.

The main idea of the algorithm is to automatically propagate the effects of uncertainty into
an interconnected system at each time step and derive a threshold for fault detection. The
principal working of the MPBUP algorithm is quite similar to the BP algorithm in terms of
message propagation, but still, there are significant differences. In the algorithm, a bipartite
graph is designed, containing two different nodes sets. First, a link connects the nodes in
the node sets. Then, a message (i.e., mean and covariance) is propagated between the nodes
from different node sets. Each node updates it’s own mean and covariance at the end of
each iteration, based upon the received message. This process continues until the message
is propagated through all the nodes in the graph. Finally, the output nodes’ estimates (i.e.,
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20 Proposed Uncertainty Propagation Algorithm

mean and covariance) are used to compute the probabilistic threshold for the fault detection.
A detailed explanation of the algorithm is explained in the subsequent section.

3-1-1 System Dynamics

In the MPBUP algorithm, the Equation 2.4 shows the total uncertainty affecting any system
at a particular time instant. It includes parametric uncertainties due to various parameters in-
volved in the model, measurement noise due to sensor calibration or inaccuracies, and process
noise due to various external disturbances acting on the system. These uncertainties acting in
the system can be quantified and expressed as the following class of bilinear equations:

al =
n∑
i=1

θl,(i)ai +
m∑
i=1

κl,(i)bi +
n∑
i=1

m∑
j=1

ψl,(i,j)aibj +
m∑
i=1

m∑
j=1

ωl,(i,j)bibj ,∀l ∈ {1, ..., n} (3.1)

Where a ∈ Rn are the quantity to be solved for (i.e., output), b ∈ Rm is the vector of random
variable acting as a input to the system. n and m represents the number of input and output
acting on the model. κl, θl ∈ Rm and ψl,ωl ∈ Rm×m are the vectors and matrices of the
known coefficients in the bilinear equation. The goal of MPBUP algorithm is to iteratively
compute the mean and covariance of a (i.e., output) using the knowledge of the mean (b̄) and
covariance (Σbj

) of the input nodes.

In the Equation, 3.1 input nodes (b) is constituted by all the parametric uncertainties, estima-
tion error, process noise, and measurement noise numbered for convenience in lexicographic
order, and output nodes (ai) represents the total uncertainty propagated.

The key point in the MPBUP algorithm is to draw the bipartite graph. To draw the bipartite
graph, nodes are needed to be divided into two sets. Therefore to generate two nodes sets
Equation 3.1 is written in the form of the Sum of Product (SOP) expression. SOP expression
helps in drawing the desired bipartite graph.

al =
nf∑
h=1

ϕ(l,h)fh(a, b),∀l ∈ {1, ..., n} (3.2)

Where fh is called as factors that which is obtained as the product of individual component
of a and b. nf = (m+n)(m+1) are the possible factors, which for the convenience numbered
in the lexicographic order. ϕ ∈ Rn×nf is a coefficient matrix in which coefficient elements
(i.e., κl, θl, ψl,ωl) are taken in right order.

The key part of the MPBUP algorithm is to propagate uncertainty in the parameter through
the directed bipartite graph [G , (D, E)]. Where we introduced the node set [D , C ∪ F ].
With the help of SOP, the node set can be partitioned into variable and factor set as C ,
{a1, ...an, b1, ...bn} and F , {f1, ...fn} respectively. E signifies the edge set. Figure 3.1 shows
a bipartite graph, where a distinction is made between factor and variable node-set in terms
of their representation by using square and circle, respectively.

A vector set d is defined as concatenation of all the elements of D taken in lexicographic
order. Finally two more sets are defined containing visited nodes V(q) and transversed edges
J (q) at the end of each iteration q.
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3-2 MPBUP Algorithm Example 21

In the start, algorithm is initialized as:

d̄(0) , col(0a, b̄, 0f )
Σd(0) , diag(0Σa ,Σb, 0Σf

)
V(0) = {b1, ....bm}
J (0) = ∅

This signifies that the algorithm only has initial knowledge of the central moments of the
input b at the start. Then algorithm alternate by sending message from factor −→ variable
and variable −→ factor, until all node and edges result visited and transversed (i.e., V = D
and T = E). The message passage between the factor-variable and vice-versa are described
in detail as:

Variables −→ Factor: For every untransversed edge e = (j, h) ∈ (¬J ) connecting a visited
variable node (cj) to the unvisited factor node (fh). A message is transmitted to fh containing
c̄j and covariance Cov [cj , di] between cj and all the visited node di ∈ V. Edge e is added
to the transversed set J . fh is only added to the visited node set V if all its incident edges
belong to J .

Factor −→ Variable: For every untransversed edge e = (h, j) ∈ (¬J ) connecting a visited
factor node (fh) to an unvisited variable node (cj). A message is transmitted to cj containing
f̄h and covariance Cov[fh, di] between fh and all the visited node di. Edge e is added to the
transversed set J . fh is only added to the visited node set V if all its incident edges belong
to J . In factor −→ variable, a variable node cj is a linear combination of factors. So we can
update mean and covariance as d̄(q) = Φd̄(q − 1)and Σd(q) = ΦΣd(q − 1)ΦT . Φ matrix can
be defined as Φ ∈ Rnd×nd . Following condition holds such that Φ(i,i) = 1 for every i such that
di ∈ V(q − 1) and Φ(l,h) = ϕ(l, h) for every h that belong to transversed set.

This process continues alternatively until all the nodes in the graph have been travelled .

The total uncertainty term γ can be a combination of various random variable such as Ã, rx,
χ, ξ, etc. To calculate the moments( i.e., mean and variance) of the product of the random
variable Bohrnstedt and Goldberger formula is taken into account [3].

E[ãb̃] = E[ã]E[b̃] + Cov[ãb̃]
Var[ãb̃] = Cov[ã2, b̃2] + (Var[ã] + E[ã]2) + (Var[b̃+ E[b̃]2]− (Cov[ã, b̃] + E[ã]E[b̃])2

Cov[ãb̃, c̃] = E[ã]Cov[b̃, c̃] + E[b̃]Cov[ã, c̃] + E[4ã4 b̃4 c]
(3.3)

The algorithm will iteratively compute mean (d̄) and covariance (Σd), whoes values are iter-
ated q ∈ {0, 1

2 , 1, ...} by exchanging message over the directed edge.

3-2 MPBUP Algorithm Example

To get a clear understanding about the MPBUP algorithm, a simple bipartite network graph
is taken in considered and the proposed algorithm can be illustrated step by step.

Master of Science Thesis Tanay Milind Naik



22 Proposed Uncertainty Propagation Algorithm

Figure 3.1: A Simple Bipartite Graph Network.

For the basic graph in figure 3.1, the algorithm can be initialized as:

Input for the network can be defined as:

b = b1

Output for the network can be defined as:

al =
[
a1 a2

]

Therefore n = 2 and m = 1 based upon the number of input and output respectively, and
nf = (m+ n)(m+ 1) = 6.

On comparing with the standard class of Bilinear Equation in 3.1 the system dynamics for
the network can be expressed as:

a1 = θ1,(1)a1 + θ1,(2)a2 + κ1,(1)b1 + ψ1,(1,1)a1b1 + ψ1,(2,1)a2b1 + ω1,(1,1)b1b1

a2 = θ2,(1)a1 + θ2,(2)a2 + κ2,(1)b1 + ψ2,(1,1)a1b1 + ψ2,(2,1)a2b1 + ω2,(1,1)b1b1

Therefore based upon the network in Figure 3.1, output nodes (a1 and a2) can be defined
as:

a1 = κ1,(1)b1

a2 = ψ2,(1,1)a1b1

Above equation can be expressed in SOP, where the coefficients (κ, ψ, ω and θ) are arranged
in lexicographic order. It can be expressed as:

a1 = ϕ(1,1)f1(a, b)
a2 = ϕ(2,2)f2(a, b)
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Coefficient Matrix/
Function Term Variable

ϕ(1,1) κ1,(1)
ϕ(2,2) ψ2,(1,1)
f1 a1
f2 a1b1

Table 3-2.1: Relation between Coefficient Matrix/Function Term and Variables.

Table 3-2.1 shows the relationship between the coefficient matrix terms, function terms and
various variable. Where ϕi,(i,j) are the elements of the coefficient matrix and fh represents
the relation between the input and output.

Coefficient matrix will be of size ϕ ∈ R2×6. Finally, mean and covariance of vector d, visited
node and transversed edge set at the start of the algorithm can be expressed as:

d̄(0) =
[
0 0 b1 0 0

]
Σd(0) = diag

(
0 0 σ2[b1] 0 0

)
V(0) = b1

T (0) = ∅

V(0) and T (0) indicate at the start of the algorithm that only mean and covariance of the input
b is only known. While describing the detailed working of the algorithm in the subsequent
section, green color is used to indicate that message is passed through this path, whereas red
color is used to indicate no message is passed through this path.

Step 1

Variable −→ Factor (q = 1
2)

Figure 3.2: Bipartite Graph at Step = 1.

Variable Status Factor Status
a1 Waiting f1 Waiting
a2 Waiting f2 Waiting
b1 Sent

Table 3-2.2: Node status of Bipartite Graph Network at Step = 1.
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V(1
2) = [b1, f1]

T (1
2) = [(b1, f1), (b1, f2)]

d(1
2) = [0, 0, b1, b1, 0]

Σd(
1
2) =


0 0 0 0 0
0 0 0 0 0
0 0 σ2[b1] σ2[b1] 0
0 0 σ2[b1] σ2[b1] 0
0 0 0 0 0



Step 2

Factor −→ Variable (q = 1)

Figure 3.3: Bipartite Graph at Step = 2.

Variable Status Factor Status
a1 Waiting f1 Sent
a2 Waiting f2 Waiting
b1 Sent

Table 3-2.3: Node status of Bipartite Graph Network at Step = 2.

V(1) = [b1, f1, a1]
T (1) = [(b1, f1), (b1, f2), (f1, a1)]

In this step only f1 can transmit the message as f2 is waiting to receive incoming message
from its incoming edge (a1, f2). As discussed in previous al is linear combination of function
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fh. Therefore, φ matrix is used. φ matrix can be defined as:

Φ =


0 0 0 ϕ(1,1) 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0



The mean and covariance of d vector can be updated according to d̄(q) = Φd̄(q − 1) and
Σd = ΦΣd(q − 1)ΦT respectively.

d̄(1) = Φd̄q(1
2)

d̄(1) =


0 0 0 ϕ(1,1) 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




0
0
b1
b1
0

 =


ϕ(1,1)]b̄1

0
b1
b1
0


Σd(1) = Φd(1

2)ΦT

=


0 0 0 ϕ(1,1) 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0




0 0 0 0 0
0 0 0 0 0
0 0 σ2[b1] σ2[b1] 0
0 0 σ2[b1] σ2[b1] 0
0 0 0 0 0




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

ϕ(1,1) 0 0 1 0
0 0 0 0 0



=


ϕ2

(1,1)σ
2[b1] 0 ϕ(1,1)σ

2[b1] ϕ(1,1)σ
2[b1] 0

0 0 0 0 0
ϕ(1,1)σ

2[b1] 0 σ2[b1] σ2[b1] 0
ϕ(1,1)σ

2[b1] 0 σ2[b1] σ2[b1] 0
0 0 0 0 0


Σd(1,1), Σd(1,3), Σd(1,4), Σd(2,1), Σd(3,1), Σd(4,1) represents the nonzero terms the covariance
matrix (i.e., Σd)

Step 3

Variable −→ Factor (q = 11
2)

Figure 3.4: Bipartite Graph at Step = 3.
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Variable Status Factor Status
a1 Sent f1 Sent
a2 Waiting f2 Waiting
b1 Sent

Table 3-2.4: Node status of Bipartite Graph Network at Step = 3.

V(11
2) = [b1, f1, a1, f2]

T (11
2) = [(b1, f1), (b1, f2), (f1, a1), (f2, a1)]

f2 = b1a1. Therefore the mean (i.e., E[f2]) and covariance (i.e., σ2[f2, a1], σ2[f2, a2], σ2[f2, f1])
of all the nodes involving f2 are computed using the Bohrnstedt and Goldberger formula
[3].

d̄ =
[
E[a1] 0 b̄1 b̄1 E[f2]

]

Σd(1
1
2) =


ϕ2

(1,1)σ
2[b1] 0 ϕ(1,1)σ

2[b1] ϕ(1,1)σ
2[b1] σ2[f2, a1]

0 0 0 0 0
ϕ(1,1)σ

2[b1] 0 σ2[b1] σ2[b1] σ2[f2, b1]
ϕ(1,1)σ

2[b1] 0 σ2[b1] σ2[b1] σ2[f2, f1]
σ2[f2, a1] 0 σ2[f2, b1] σ2[b1, f1] E[f2]


Step 4

Factor −→ Variable (q = 2)

Figure 3.5: Bipartite Graph at Step = 4.

Variable Status Factor Status
a1 Sent f1 Sent
a2 Waiting f2 Sent
b1 Sent

Table 3-2.5: Node status of Bipartite Graph Network at Step = 4.
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V(2) = [b1, f1, a1, f2, a2]
T (2) = [(b1, f1), (b1, f2), (f1, a1), (f2, a1), (f2, a2)]

In last step mean of node a2 can be updated using ϕ(2,2) times the mean of f2, while covariance
of node a2 can be updated as ϕ2

(2,2) times those of f2.

d̄ =
[
E[a1] E[f2] b̄1 b̄1 E[f2]

]

Σd(2) =



ϕ2
(1,1)σ

2[b1] ϕ2
(2,2)σ

2[f2, a1] ϕ(1,1)σ
2[b1] ϕ(1,1)σ

2[b1] σ2[f2, a1]
ϕ2

(2,2)σ
2[f2, a1] ϕ2

(2,2)E[f2] ϕ2
(2,2)σ

2[f2, b1] ϕ2
(2,2)σ

2[f2, a1] ϕ2
(2,2)E[f2]

ϕ(1,1)σ
2[b1] ϕ2

(2,2)σ
2[f2, b1] σ2[b1] σ2[b1] σ2[f2, b1]

ϕ(1,1)σ
2[b1] ϕ2

(2,2)σ
2[f2, a1] σ2[b1] σ2[b1] σ2[f2, f1]

σ2[f2, a1] ϕ2
(2,2)E[f2] σ2[f2, b1] σ2[b1, f1] E[f2]



Final Outcome

Figure 3.6: Bipartite Graph at Final Outcome.

Variable Status Factor Status
a1 Sent f1 Sent
a2 Waiting f2 Sent
b1 Received

Table 3-2.6: Node status of Bipartite Graph Network at Final Stage.

In this section, a detailed explanation of the MPBUP algorithm was given through a bipartite
graph example. It can see that initially, at the start, we only know about the mean and co-
variance of the input node. When the algorithm is propagated further into the next iteration,
the moments of the input nodes are used to calculate the mean and covariance of the other
node. Finally, moments of the output nodes are generated. This process continues until all
the nodes are traveled, and we know the output nodes.

MPBUP algorithm is a novel algorithm to find the moments of the random variables for which
we have limited knowledge.
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3-3 MPBUP Implementation

MPBUP Algorithm was designed and successfully implemented on MATLAB (9.7, R2020b).
The main aim while designing the algorithm was to keep it as automated as possible so that
it could be applied on any graphical network. The working of the algorithm is divided into
two parts.

An adjacent matrix (i.e., the matrix element indicates that the pairs of vertices are adjacent
or not) is input into the system. Next, a corresponding bipartite directed graph is generated
using the command digraph in MATLAB. In the graph, both variable and factor node-set
are segregated. Then a function is created which operates the standard MPBUP Algorithm.
The function generates the mean and covariance matrix for the output nodes when the corre-
sponding graph, coefficient matrix, number of input and output nodes, and the moments of
the input node are given as input into the function. Thus, the function replicates the process
of the MPBUP algorithm, where the central moments of the input node are propagated to find
the central moments of other nodes present in the graph. The function also takes Bohrnstedt
and Goldberger’s formula into account for calculating the moments of the bilinear nodes. The
implementation of the algorithm and its validation are discussed in detail in the subsequent
chapter.

3-4 MPBUP Algorithm for Polynomial System

MPBUP algorithm is a novel algorithm that has been designed to propagate uncertainty into
the system when uncertainty acting on the system is a stochastic quantity. It uses the mean
and covariance of the input node to propagate uncertainty into the system. The main aim of
the algorithm is to propagate uncertainty through the system in terms of the moments (i.e.,
mean and covariance) to find moments of the various node connected in the network at each
iteration. To calculate the mean and covariance for the combination of a random variable,
Bohrnstedt and Goldberger’s formula in equation 3.3 is taken into account.

The main problem with using these formulas is that they are restricted to bilinear terms (i.e.,
a product of two-term). Therefore, they cannot be applied directly to the polynomial terms
(i.e., a product of two or more terms). This problem can cause a significant setback in the
practical use of the algorithm for uncertainty propagation. Furthermore, as many industrial
processes will not be bilinear, it will not be easy to model polynomial systems to linear
or bilinear systems. Therefore to compensate for this bottleneck in the algorithm, research
was conducted as a part of my thesis, and an optimal solution was found. To understand the
problem and the optimum solution derived, a polynomial example is taken into consideration.
Figure 3.7 is an example of a bipartite graph for a polynomial system.
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Figure 3.7: Bipartite Graph for Polynomial System.

The dynamics of the various node in the graph can be described as:

f1 = b1

f2 = b1

a1 = ϕ(1,1)f1

a2 = ϕ(2,2)f2

f4 = a1a2b1

a3 = ϕ(3,3)f4

(3.4)

It can be seen that f4 is a product of three random variable (i.e., a1, a2 and b1). Mean and
covariance of the node f4 will depend upon mean and covariance of the node a1, a2 and b1.
To compute the mean and covariance of node f4, which is the product of random variable,
Bohrnstedt and Goldberger[3] formula is used. As discussed these formula are limited to
bilinear system. To apply these formula on the polynomial system, Multiplicative Property is
used. In other words polynomial system are converted to bilinear system using Multiplica-
tive Property. Where, two or more random variable are combined to form a single pseudo
node.

f4 = a1a2b1

Let us assume β = a1a2. Node a1 and a2 are multiplied to form a psuedo node α. As a result,
the polynomial term f4 can be converted to bilinear term (f4 = βb1). The Bohrnstedt and
Golderger formula can be modified as:

E(a1a2b1) = E(βb1) = E(β)E(b1) + Cov(βb1)
Var[a1a2b1] = Var[βb1] = Cov[β2

1 , b
2
1] + (Var[β] + E[β̃]2) + (Var[b1] + E[b1]2)− (Cov[β, b1] + E[β]E[b1])2

Cov[a1a2b1, c̃] = Cov[βb1, c̃] = E[β]Cov[b1, c̃] + E[b1]Cov[β, c̃] + E[4β 4 b̃1 4 c]
(3.5)

Therefore, while using the Multiplicative Property, firstly, mean and covariance of the β =
a1a2 is found using the Bohrnstedt and Goldberger’s formula. Then, the central moment
of β found is used in the Equation 3.5; as a result, the polynomial term is converted to
the bilinear terms, and its central moments can now easily be calculated. In this way, the
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central moment of the polynomial term of n degree can be evaluated using Bohrnstedt and
Goldberger’s formula.

Taking the multiplicative property into account, the input (bi) and output (ai) node sets can
be defined as:-

b = b1

a =
[
a1 a2 a3

]
On comparing with the standard class of Bilinear Equation in 3.1. The system dynamics for
the network in Equation 3.4 can be defined as:

a1 = θ1,(1)a1 + θ1,(2)a2 + θ1,(3)a3 + κ1,(1)b1 + ψ1,(1,1)a1b1 + ψ1,(2,1)a2b1 + ψ1,(3,1)a3b1 + ω1,(1,1)b1b1

a2 = θ2,(1)a1 + θ2,(2)a2 + θ2,(3)a3 + κ2,(1)b1 + ψ2,(1,1)a1b1 + ψ2,(2,1)a2b1 + ψ2,(3,1)a3b1 + ω2,(1,1)b1b1

a3 = θ3,(1)a1 + θ3,(2)a2 + θ3,(3)a3 + κ3,(1)b1 + ψ3,(1,1)a1b1 + ψ3,(2,1)a2b1 + ψ3,(3,1)a3b1 + ω3,(1,1)b1b1

Therefore based on the dynamics in Equation 3.4:
a1 = κ1,(1)b1

a2 = κ2,(1)b1

a3 = ψ3,(1,1)a1a2b1 = βb1

(3.6)

Above equation can be expressed in terms of standard SOP as:
a1 = ϕ(1,1)f1(a, b)
a2 = ϕ(2,2)f2(a, b)
a3 = ϕ(3,4)f4(a, b)

(3.7)

Coefficient Matrix/
Function Term Variable

ϕ(1,1) κ1,(1)
ϕ(2,2) κ2,(2)
ϕ(3,4) ψ3,(1,1)
f1 b1
f2 b1
f4 a1a2b1 = βb1

Table 3-4.1: Relation between Coefficient Matrix/Function Term and Variables.

Table 3-4.1 shows the relationship between the coefficient matrix terms, function terms, and
various variables. For example, where ϕ(i,j) are the elements of the coefficient matrix and fh
represents the relationship between input and output.

Finally, a modified Bohrnstedt and Goldberger formula is used to implement the MPBUP
algorithm on the polynomial bipartite graph network for uncertainty propagation. Validation
is performed for the output result in the subsequent chapter.
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Chapter 4

Algorithm Implementation and
Validation

4-1 Monte Carlo Validation
Monte Carlo (MC) Simulation is used to validate the algorithm and output generated by
the algorithm. MC simulation works on the principle of random sampling. It predicts and
compares output values based on the estimated range versus a fixed input value. For example,
to validate the algorithm, a set of randomly generated values following a particular type of
distribution (i.e., Normal, Uniform, Poisson, etc.) are given as an input in the algorithm, and
corresponding output values are generated for the output nodes.

The set of output values generated for the output node is used to compute Empirical Mean.
The empirical mean value is compared against the output generated for the fixed input value
(i.e., Analytical mean) to check whether there is a convergence between analytical mean
and empirical mean to validate the algorithm. According to the Law of Large Numbers
(LLN), the average of the result obtained from a large number of trials should be close to the
predicted value of trials and will tend to become closer to the predicted value as more trials are
performed. LLN guarantee stability for the average of some random events. MC simulation
is conducted for our algorithm to validate the mean and covariance matrix generated for
the output nodes. A detailed explanation of how to perform MC simulation is described in
Appendix A. Empirical Mean for x random samples can be defined as:

E(x) = 1
N

N∑
i=1

(xi) (4.1)

Through MC simulation, various analyses can be drawn for the output generated under the
corresponding random input variable for various sample size such as mean error propagation,
standard deviation and input/output data distribution. These analyses are used to validate
the output values generated in terms of the spread of the distribution, error generated at each
output sample, etc.
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Output generated under the MC simulation is used to check the deviation of the output
generated at each sample of the data set. It is done by computing the error between the
Empirical value (i.e., the value obtained from each testing sample) and Estimated Value (i.e.,
analytical value generated from the algorithm). Error obtained for each sample in a data
set can compute the overall mean error propagated (4). The mean error propagated can be
calculated using the formula:

4̄ = 1
N

N∑
i=1

E(yi)− µy (4.2)

Where, µy is estimated mean value and E(µy) is the empirical value generated for each sample
value.

4-2 Algorithm Implementation for Bilinear Systems

The algorithm is implemented on MATLAB. The figure 4.1 shows the corresponding graph
generated in the MATLAB for the network in the figure 3.1.

Figure 4.1: Bipartite Graph Generated in MATLAB for the Basic Network.

In the figure 4.1 variable and factor nodes are represented in red and blue colour respectively.
Finally now MPBUP algorithm is implemented to propagate moments of the input node (i.e.
b1) to derive the moments of the output node (i.e., a1 and a2) respectively. The coefficient
matrix (i.e., ϕ) is also given as input into the algorithm. The dynamics of various node in
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the Basic Network based on input node (b1) in Figure 4.1 can be described as:

f1 = b1

f2 = a1b1

a1 = ϕ(1,1)f1

a2 = ϕ(2,2)f2

Therefore the algorithm can be initialized as:

For the input node b1, mean and variance can be defined as µ(b1) = 5 and σ(b1) = 0.25
respectively.

The non zero coefficient matrix elements (ie., ϕ(1,1), ϕ(2,2)) can be defined as:

ϕ =
(

0.85 0 0 0 0 0
0 0.65 0 0 0 0

)

At the end of the algorithm , mean (d̄) and covariance matrix (Σd) of the vector (d) can be
defined as:

d̄ =
[
3.2500 13.9506 5.0000 5.0000 16..4125

]

Σd =


0.1056 0.7631 0.1625 0.1625 1.0563
0.7631 1.0567 1.1741 1.1741 1.0567
0.1625 1.1741 0.2500 0.2500 1.6250
0.1625 1.1741 0.2500 0.2500 1.6250
1.0563 1.0567 1.6250 1.6250 1.4625


(4.3)

Mean of the output node a1 and a2 generated through the algorithm can be defined as 3.2500
and 14.0887 respectively, when the mean of 5 is given as an input to the input node b1.

4-3 Validation of the Bilinear System
MC simulation in this section is conducted to validate the output generated for the basic
network in the Figure 3.1.

4-3-1 MC Mean Validation
MC simulation is done to validate the output mean generated for the output node, such as
a1 and a2 for the network in the Figure 3.1, when an input is given to the input node b1. To
validate the algorithm analytical mean value result generated in Equation 4.3 is compared
against the empirical mean value for various sample sizes.

MC simulation is conducted for the various sample size for the Network in figure 3.1. In-
put given to the input node b1 is random numbers. These random numbers are normally
distributed along with the mean µ(b1) of 5 and standard deviation σ(b1) of 0.25 for various
sample sizes. During MC simulation mean error propagated between analytical and empirical
mean value is also calculated using Equation 4.2 .
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Table 4-3.1 shows the comparison between the analytical and empirical mean for various
sample sizes, and it also shows the mean error propagated between the analytical and empirical
value for the output node (a1 and a2) for various sample size. We can also see a convergence
between the analytical and empirical mean as the sample size increases. Around 1000000
samples, both analytical and empirical mean becomes identical, and the mean error becomes
zero. The validation experiment shows the results of prediction based on the fixed input given
into the induced network is comparable to those generated by the MPBUP algorithm under
a variety of uncertain knowledge domains.

Sample Size a1 a2 Error (a1) Error (a2)
Analytical Mean 3.2500 13.9506
Empirical Mean 10 3.4529 14.2557 0.2029 0.3051
Empirical Mean 100 3.2761 13.9633 0.0261 0.0127
Empirical Mean 1000 3.2364 13.9481 -0.0136 -0.0025
Empirical Mean 10000 3.2517 13.9469 0.0017 -0.0037
Empirical Mean 100000 3.2500 13.9503 0.0003 0.0003
Empirical Mean 500000 3.2502 13.9505 0.0002 0.0001
Empirical Mean 1000000 3.2500 13.9506 0.0000 0.0000

Table 4-3.1: The Analytical and Empirical Mean Value of the Output Node a1 and a2.

Figure 4.2 and 4.3 shows the propagation of the mean output value for output nodes a1 and
a2 respectively. Empirical mean value is calculated for each sample iteration of the output
node a1 and a2 during MC simulation.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 4.2: Comparison between Empirical and Analytical Mean Value Propagation for Node
a1 in Basic Network in MC Simulation.
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(a) Comparison of Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 4.3: Comparison between Empirical and Analytical Mean Value Propagation for Node
a2 in Basic Network in MC Simulation.

Figures 4.2 and 4.3 depicts the comparison between the behavior of the empirical mean value
generated for the output node a1 and a2 respectively under a random input sample size of
800000 (shown as blue line), and the predicted analytical mean value (shown as red line).
For empirical mean value propagation, it is generated by evaluating the mean value till ith
samples at every ith instant.

The Figures in the left 4.2a and 4.3a shows the magnified view along the y axis of empirical
mean value propagation compared to the analytical mean value . We can see that around
800000 samples, both analytical and empirical mean values start converging, and error be-
comes negligible by LLN. Figures in the right 4.2b and 4.3b shows the initial distortion
between empirical mean and analytical mean value for a small sample size of 1000 samples.
We can see that there is always a huge error present between the analytical and empirical
mean value for a small size. Figure 4.2 and 4.3 is used for supporting the results obtained in
Table 4-3.1 for the validation of the output means and to see the convergence between the
analytical and empirical mean value.

Figure 4.4 shows the distribution of output sample values generated for node a1 for corre-
sponding 100000 random input samples in MC simulation. Figure 4.4 also shows the mean
value and 99% confidence limits (using red dotted line). We can see output sample values
for node a1 also follow a normal distribution similar to the input. Regarding the optimality
of the algorithm, we can see that output values lies within a confidence interval of 95% (i.e.,
2.6002 and 3.8996). Confidence intervals represent the interval that would contain the actual
mean value when the random sample is drawn many times. Therefore, we can conclude that
under the uncertain or random conditions, there are 95% chances that output generated by
the algorithm will contain the actual value of node a1 with the confidence limit, and the

Master of Science Thesis Tanay Milind Naik



36 Algorithm Implementation and Validation

algorithm will not generate any extreme values under uncertain conditions.

Figure 4.4: Distribution of Output Sample Values Generated for the Output Node a1 using MC
Simulation in Basic Network.

4-3-2 MC Covariance Validation

Similar to mean, MC simulation is also used to validate the covariance matrix generated
for the network in the figure 3.1. To validate the covariance matrix, the analytical result
generated in 4.3 is compared against the empirical values for various sample sizes.

MC Simulation for the validation of the covariance matrix is done under the similar condition
used to validate the output mean value. It can be seen that around 1000000 samples, there
is a convergence between the analytical covariance matrix and empirical covariance matrix.
Therefore, the validation experiment confirms the comparable performance between the out-
put covariance matrix generated based on the prediction of the induced network and under
the variety of uncertain knowledge. The covariance matrix in 4.4 shows empirical covariance
matrix generated at 1000000 samples. On comparing the empirical covariance matrix gener-
ated in Equation 4.4 with analytical covariance matrix generated in Equation 4.3. We can see
a convergence between both the results, and hence, it validates the output covariance matrix
generated under certain fixed input conditions versus under some uncertain conditions.

Σd =


0.1056 0.7631 0.1625 0.1625 1.0563
0.7631 1.0567 1.1741 1.1741 1.0567
0.1625 1.1741 0.2500 0.2500 1.6250
0.1625 1.1741 0.2500 0.2500 1.6250
1.0563 1.0567 1.6250 1.6250 1.4625

 (4.4)
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Therefore, through the MC Simulation Output generated by the MPBUP algorithm is success-
fully validated. The covariance matrix generated under various sample size in MC simulation
can be found in the Appendix C.

4-4 Algorithm Implementation for Polynomial System
In the previous chapter, the bottleneck of the MPBUP algorithm is discussed related to
evaluating the mean and covariance of a polynomial node. To overcome that problem, Mul-
tiplicative Property between two terms is used. It converts the desired higher degree of the
polynomial terms into a lower degree of terms (i.e., Bilinear/Linear). The main reason to use
multiplicative property is that Goldberger and Bohrnstedt’s formula for mean and covariance
for the product of random variable can be used. To validate the research, the MPBUP al-
gorithm is applied on the polynomial system in figure 3.7 using the multiplicative property,
and to successfully validate the result, and MC simulation is performed. Figure 4.5 shows the
corresponding bipartite graph generated in MATLAB.

Figure 4.5: Bipartite Graph Generated in MATLAB for Polynomial System.

Dynamics of the graph is defined in the previous chapter. β = a1a2 is assumed. β act as
pseudo node which is a combination of two random variable node (i.e., in this particular
example). As a result polynomial node (f3) is converted to a bilinear node. Therefore the
number of inputs (bi) and outputs (ai) can be defined as m = 1 and n = 3 respectively.

β is an extra pseudo node used for our reference (i.e., not present). The reason to model an
extra node is to model the system in terms of bilinear system representation by converting
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the polynomial term and to define the coefficient matrix for the algorithm implementation.
In the previous chapter, system dynamics were converted to the standard bilinear equation
representation as in Equation 3.6 and further to standard SOP as in Equation 3.7. Algorithm
is implemented to propagate uncertainty through the network from the input node (i.e., b1)
to the output nodes (i.e. a1, a2, a3). In other words, the moments of the input nodes are
propagated into the network to find the moments of the output node. The size of the coefficient
matrix can be defined as ϕ ∈ Rn×nf . Where n = 3 and nf correspond to (n+m)(m+ 1). In
our case (nf = (3 + 1)(1 + 1) = 8) and ϕ ∈ R3×8.

The mean and variance of the node b1 can be defined as µ(b1) = 5 and σ(b1) = 0.25 respec-
tively and algorithm is initialized.

For Implementation, the coefficient matrix (ϕ) can be defined as, where the nonzero elements
of the coefficient matrix (i.e., ϕ(1,1), ϕ(2,2), ϕ(4,4)) are represented in the table 3-4.1.

ϕ =

0.65 0 0 0 0 0 0 0
0 0.85 0 0 0 0 0 0
0 0 0 0.95 0 0 0 0


Inputs given to the algorithm designed in MATLAB are coefficient matrix (ϕ), mean µ(b1)
and variance σ(b1). At the end of the algorithm, mean (d̄) and covariance matrix (Σd) for
the vector (d) can be defined as:

d̄ =
[
3.2500 4.2500 67.5777 5.0000 5.0000 5.0000 71.3444

]

Σd =



0.1056 0 4.5052 0.1625 0.1625 0 4.9919
0 0.1806 5.8914 0.2125 0 0.2125 6.5278

4.5052 5.8914 0 8.8283 8.8283 8.8283 64.1988
0.1625 0.2125 8.8283 0.2500 0.2500 0.2500 9.7821
0.1625 0 8.8283 0.2500 0.2500 0 9.7821

0 0.2125 8.8283 0.5000 0 0.2500 9.7821
4.9919 6.5278 64.1988 9.7821 9.7821 9.7821 71.1344


(4.5)

Therefore, the mean generated for the output node a1, a2 and a3 through the algorithm can
be defined as 3.2500, 4.2500 and 67.5777 respectively.

4-5 Validation of a Polynomial System
Similar to Bilinear System, a validation test is also performed on the polynomial system in
Figure 4.5 using the MC simulation. MC simulation is performed to validate the results
obtained through the algorithm in equation 4.5. A similar setup compared to a bilinear
system is used. Where Input given to the input node are random numbers of a particular
distribution and the corresponding outputs are generated. Outputs are used to compute the
empirical mean, which is compared with the analytical mean.

4-5-1 MC Mean Validation
MC simulation is conducted to validate the output mean obtained for the output node (a1,
a2 and a3) for the network in the figure 4.5. The analytical mean value is obtained through
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the algorithm in Equation 4.5. The empirical mean is computed by giving input to the input
node b1. Input are random numbers, which are normally distributed with the mean µ(b1) of
5 and standard deviation σ(b1) of 0.25 for various sample sizes.

Sample Size a1 a2 a3 Error (a1) Error (a2) Error (a3)
Analytical Mean 3.2500 4.2500 67.5777
Empirical Mean 10 3.4529 4.5153 71.9255 -0.2029 -0.2653 -4.3478
Empirical Mean 100 3.2761 4.2841 67.7587 0.2239 -0.0350 0.0010
Empirical Mean 1000 3.2364 4.2322 67.5413 0.0136 0.0178 0.0364
Empirical Mean 10000 3.2517 4.2523 67.5248 0.0017 0.0023 0.0529
Empirical Mean 100000 3.2500 4.2500 67.5737 0.0000 0.0000 0.0400
Empirical Mean 500000 3.2502 4.2503 67.5763 -0.0002 -0.0003 0.0014
Empirical Mean 1000000 3.2502 4.2503 67.5809 -0.0002 -0.0003 -0.0032
Empirical Mean 5000000 3.2500 4.2500 67.5777 0.0000 0.0000 0.0000

Table 4-5.1: Analytical and Empirical Mean Value for the Output Nodes a1, a2 and a3.

Table 4-5.1 shows the comparison between the analytical and empirical mean for various
sample sizes. It also shows the mean error propagated between the analytical and empirical
mean value for the output node (a1, a2 and a3) for various sample sizes. We can see that there
is a convergence between the analytical mean and empirical mean around 5000000 random
samples, and the mean error becomes zero for all the output nodes. The validation experiment
also validates the comparable performance of the output means value generated through the
algorithm for the polynomial system.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 4.6: Comparison between Empirical and Analytical Mean Value Propagation for Node
a1 in Polynomial System for MC Simulation.
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(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 4.7: Comparison between Empirical and Analytical Mean Value Propagation for Node
a2 in Polynomial System for MC Simulation.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 4.8: Comparison between Empirical and Analytical Mean Value Propagation for Node
a3 in Polynomial System for MC Simulation.
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Figures 4.6, 4.7 and 4.8 depicts the comparison between the behavior of the empirical mean
value generated for the output node a1, a2 and a3 respectively under a large random input
samples (shown as blue line) which are normally distributed, and the predicted analytical
mean value (shown as red line). For empirical mean value propagation, it is generated by
evaluating the mean value till ith samples at every ith instant.

The Figures in the left 4.6a 4.7a and 4.8a shows the magnified view along y axis of empirical
mean value propagation compared to the analytical mean value. We can see that around
2000000 samples, both analytical and empirical mean values start converging, and error be-
comes negligible for output node a1, a2 and a3 by LLN. Figures in the right 4.6b, 4.7b and
4.8b shows the initial distortion in the empirical mean compared to the analytical mean value
for a small sample size of 1000 samples. We can see that there is always a huge error present
between the analytical and empirical mean value for small sample size. Figure 4.6, 4.7 and
4.8 are used to support the results obtained under the MC for the output mean value in Table
4-5.1 and to validate the output mean generated through the MPBUP algorithm by seeing
the convergence between the analytical and empirical mean value.

Figure 4.9: Distribution of Output Sample Values Generated for the Output Node a2 using MC
Simulation for Polynomial System.

Similar to the analysis done in basic network implementation. Figure 4.9 shows the distribu-
tion of output sample values generated for node a2 under MC simulation for 1000000 random
input samples. Figure 4.9 also shows the mean value (i.e., 4.2500) for the output samples
and 95% confidence limit (using red dotted line). We can see that the output sample value
generated for node a2 also follows a normal distribution similar to the input. Regarding the
optimality of the algorithm, we can see that output values lie within a confidence interval of
95% (i.e., between 3.4001 and 5.0994). Therefore it can be concluded that under the uncer-
tain or random conditions, there are 95% chances that output generated by the algorithm
will contain the actual value of node a2. Additionally, we can also say that algorithm will
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not generate any extreme values under uncertain conditions for all other output nodes (i.e.,
a1 and a3), similar behavior is observed.

4-5-2 MC Covariance Validation
Similar to validating the output mean, MC simulation is also performed to validate the
output covariance matrix. To validate the covariance matrix, the analytical covariance matrix
generated in Equation 4.5 is compared against the empirical values for various sample sizes.
MC simulation is also conducted in a similar condition used for the validation of output mean
value. MC simulation shows the convergence between the analytical covariance matrix and
empirical covariance matrix around 1000000 samples. Therefore, MC simulation confirms the
comparable performance of the output covariance matrix generated through the algorithm.
4.6 shows empirical covariance matrix generated for 1000000 samples.

Σd =



0.1056 0 4.5052 0.1625 0.1625 0 4.9919
0 0.1806 5.8914 0.2125 0 0.2125 6.5278

4.5052 5.8914 0 8.8283 8.8283 8.8283 64.1988
0.1625 0.2125 8.8283 0.2500 0.2500 0.2500 9.7821
0.1625 0 8.8283 0.2500 0.2500 0 9.7821

0 0.2125 8.8283 0.5000 0 0.2500 9.7821
4.9919 6.5278 64.1988 9.7821 9.7821 9.7821 71.1344


(4.6)

The validation test conducted for output mean and covariance generated through the algo-
rithm and various other analyses shows that the MPBUP algorithm can propagate uncertainty
into a polynomial system. However, it also works well, considering different uncertain con-
ditions, and using Goldberger and Bohrnstedt’s formula to calculate mean and covariance
for polynomial nodes. Therefore it can be concluded that with a little modification in the
dynamics of the system (i.e., converting all the polynomial terms present in the dynamics to
bilinear terms), the MPBUP algorithm can be applied to the system. The only thing that
needs to be considered is converting all the polynomial node terms present in the graph to
bilinear terms.
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Chapter 5

MPBUP Algorithm for Threshold
Bounding

In the previous chapter, the MPBUP algorithm is discussed. The main aim of the MPBUP
algorithm is to propagate the random or stochastic quantities (i.e., uncertainty) affecting the
system through time steps. As minimal knowledge about the random variable is available,
it is not easy to propagate it in the next step and find its overall effect. One of the main
applications of the MPBUP algorithm can be formulated to propagate uncertainty into the
system to determine a robust threshold to minimize FAR. Therefore, this chapter gives a
detailed discussion on determining a robust threshold using the MPBUP algorithm.

5-1 MPBUP algorithm on the State Space Model

State Space Model (SSM) is a mathematical model of any physical system, where the set of
input (u), output (y), and state (x) variables are related by a first-order differential equation.
Thus, state variables represent the state of the entire system at any given instant of time.
Input Variables are defined as the input provided in any physical system whereas, and out-
put variables are defined as the output generated from the physical system based upon the
corresponding input.

An State Space Model (SSM) is taken into account to apply the Message Passing Bilinear
Uncertainty Propagation (MPBUP) algorithm to propagate uncertainty into any physical
system for robust threshold detection. State Space Model (SSM) defines the dynamics of the
system, taking uncertainty into account at every time instant. Therefore, to understand the
modeling of the state-space system for the Message Passing Bilinear Uncertainty Propagation
(MPBUP) algorithm, a 2nd order system is considered. The algorithm is implemented on the
2nd order system, and the output generated through the algorithm is validated.

Equation 5.1 shows the 2nd order system. where x1 and x2 represents the states acting on
the system at particular time instant. x1+1 and x2+1 represents the state of the system at
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next time step. u1 and u2 are input acting in the system. Block matrix A and B represent
the state and input matrix, respectively.(

x1+1

x2+1

)
=
(
A11 A12
A21 A22

)(
x1
x2

)
+
(
B11
B21

)(
u1
u2

)
(5.1)

Where, x ∈ R2 and u ∈ R2.

5-1-1 Modelling of State Space Model
On expanding equation in 5.1 can be rewritten as:

x1+1 = A11x1 +A12x2 +B11u1

x2+1 = A21x1 +A22x2 +B21u2 (5.2)

Equation 5.2 represents the 2nd order SSM, where the input u1 and u2 acting in the model
are known and deterministic (i.e., they remain constant through the whole time step). x1 and
x2 are the state of the system at that particular time instant, whose mean and covariance
are known from the previous time step. As a result, they act as an input to find the system’s
state for the next time step. x+1 and x+2 act as the output in the SSM, as x+1 and x+2
values are solved at that particular time step. As x+1 and x+2 values are quantities to be
solved at a particular time instant. To apply MPBUP algorithm, input (b) and output (a)
for the algorithm can be defined as:

a =
[
x1+1 x2+1

]
b =

[
u1 u2 x1 x2

] (5.3)

Therefore, m = 4 (i.e. number of input) and n = 2 (i.e., number of output).

To apply MPBUP algorithm on the SSM, Firstly, the SSM Equation in 5.2 is converted to
a standard bilinear equation model with reference to 3.1. Therefore, the bilinear model for
SSM can be defined as:

a1 = κ1,(1)b1 + κ1,(2)b2 + κ1,(3)b3 + κ1,(4)b4

a2 = κ2,(1)b1 + κ2,(2)b2 + κ2,(3)b3 + κ2,(4)b4
(5.4)

On comparing 5.4 with 5.2, the relationship between the Variable in the SSM and Input/
Output Nodes described using Table 5-1.1

Input Node Variable Output Node Variable
b1 u1 a1 x1+1

b2 u2 a2 x2+!

b3 x1
b4 x2

Table 5-1.1: Relation between Variable and Input-Output Nodes in SSM.
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Similarly the relationship between coefficient elements in Equation 5.4 and SSM block ele-
ments in Equation 5.2 can be defined as:

Coefficient Terms State Space Block Elements
κ1,(1) B11
κ1,(2) 0
κ1,(3) A11
κ1,(4) A12
κ2,(1) 0
κ2,(2) B21
κ2,(3) A21
κ2,(4) A22

Table 5-1.2: Relation between Coefficient and State Space Block Elements in SSM.

Finally the bilinear model is converted to standard SOP with reference to Equation 3.2, to
define factor nodes, the coefficient matrix (ϕ) and consequently to draw bipartite graph. Size
of the coefficient matrix can be defined as ϕ ∈ Rn×nf , where n = 2 and nf corresponds to
(n+m)(m+ 1). In our case (nf = (4 + 2)(4 + 1) = 30) and ϕ ∈ R2×30. The dynamics of the
network in terms of SOP can be described as:

a1 = ϕ(1,1)f1 + ϕ(1,3)f3 + ϕ(1,4)f4

a2 = ϕ(2,2)f2 + ϕ(2,3)f3 + ϕ(2,4)f4
(5.5)

fh are the factor terms which defines the relation between input and output node and ϕ(i,j)
corresponds to the elements of the coefficient matrix. The relationship between the factors
(fh) and variables (a1 · · · an, b1 · · · bm) in Equation 5.5 can be expressed in terms of a bipartite
graph in Figure 5.1.

Coefficient Matrix
Elements/ Function Term Coefficient Terms State Space

Block Elements
ϕ(1,1) κ1,(1) B11
ϕ(1,3) κ1,(3) A11
ϕ(1,4) κ1,(4) A12
ϕ(2,2) κ2,(2) B22
ϕ(2,3) κ2,(3) A21
ϕ(2,4) κ2,(4) A22
f1 b1 u1
f2 b2 u2
f3 b3 x1
f4 b4 x2

Table 5-1.3: Relation between Coefficient Matrix Elements/Function Terms, Coefficient Terms
and State Space Block Elements in SSM.

Table 5-1.3 shows the relation between various variables involved in bilinear Equation 5.4 and
the standard SOP Equation 5.5 with the SSM in Equation 5.1.
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5-1-2 Algorithm Implementation
Based upon the dynamics in equation 5.5, the nodes can be divided into two sets such as:

Variable Node(V) = {a1, a2, b1, b2, b3, b4}
Factor Node(F) = {f1, f2, f3, f4}

Figure 5.1 shows the bipartite graph generated for the 2nd order system in MATLAB. The
factor node set (F) are represented in red in colour where as variable node set (V) are repre-
sented in blue in colour.

Figure 5.1: Bipartite Graph for the 2nd order system.

Therefore, the dynamics of the bipartite graph for the state space model can be defined
as:

f1 = b1

f2 = b2

f3 = b3

f4 = b4

a1 = ϕ(1,1)f1 + ϕ(1,3)f3 + ϕ(1,4)f4

a2 = ϕ(2,2)f2 + ϕ(2,3)f3 + ϕ(2,4)f4

MPBUP algorithm is implemented to propagate moment of the input nodes (i.e., b1, b2, b3
and b4) to derive the corresponding moment of the output nodes (i.e., a1 and a2) respectively.
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For implementation purpose the non zero elements of the coefficient matrix (i.e., ϕ(1,1), ϕ(1,3),
ϕ(1,4), ϕ(2,2), ϕ(2,3), ϕ(2,4)) can be expressed as in the Table 5-1.4

Coefficient Matrix
Element

Assumed
Values

ϕ(1,1) 1
ϕ(1,3) 2
ϕ(1,4) 1
ϕ(2,2) 3
ϕ(2,3) 1
ϕ(2,4) 4

Table 5-1.4: Assumed Values for the Coefficient Matrix Elements in SSM .

Therefore:

ϕ =
(

1 0 1 3 0 0 · · · 0
0 2 1 4 0 0 · · · 0

)

The nonzero elements of the coefficient matrix in Table 5-1.4 represents the elements of the
block matrix A and B in SSM. To get a better understanding on the relationship between
the elements of the block matrix (i.e., A and B), coefficient matrix (i.e., ϕ) and the assumed
values it can be referred to the Table 5-1.3 and 5-1.4 respectively.

Mean (µ) and variance (σ) for the inputs nodes (i.e., b1 · · · b4) in the Figure 5.1 can be assumed
as:

Node Mean (µ) Variance (σ)
b1 5 0.25
b2 5 0.25
b3 3 0.5
b4 3 0.5

Table 5-1.5: Mean and Variance for the Input Node in SSM.

At the end of the algorithm, mean (d̄) and Variance (Σd) of vector (d) can be defined as:
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d̄ =
[
17 25 5 5 3 3 5 5 3 3

]

Σd =



10.75 0 0 0 0 0 0 0 0 0
0 10.75 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



(5.6)

As we are only interested in the mean and covariance of the output node (a1 and a2), therefore
we will extract the mean and covariance of the output node from d̄ and Σd respectively. The
mean and covariance of the output node generated through the algorithm can be defined
as:

Node Mean Variance
a1 17 10.75
a2 25 10.75

Table 5-1.6: Mean and Variance for the Output Node in SSM.

5-2 Validation of a State Space Model

Similar to Bilinear and Polynomial Systems, validation test is also performed for the MPBUP
algorithm implemented on the SSM, to validate the mean and variance generated for the
output node (i.e., a1,and a2) found in table 5-1.6. Compared to the previous experiments
for the validation, a similar setup is used. Random input numbers of particular distribution
are given as input to the network in Figure 5.1 and the corresponding output is generated.
Outputs of various sample sizes are used to obtain the empirical mean.

5-2-1 MC Mean Validation

MC simulation is conducted to validate the output mean obtained for the output node (a1
and a2) for the network in Figure 5.1. Analytical mean is obtained through the algorithm
is shown in Table 5-1.6, which is compared against the empirical mean value obtained for
various sample size in Table 5-2.2

As discussed in previous section input in the state space model are either constant and
deterministic (i.e., u1 and u2) or are known from previous time step (i.e., x1 and x2). Therefore
to conduct the MC simulation the elements of the coefficient matrix (ϕ) are assumed to be
random variable. Random inputs are given into (ϕ(1,1), ϕ(1,3), ϕ(1,4), ϕ(2,2), ϕ(2,3), ϕ(2,4)).
These random inputs are normally distribution with their mean and variance defined as:
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Node Mean Variance
ϕ(1,1) 1 0.25
ϕ(1,3) 2 0.25
ϕ(1,4) 1 0.25
ϕ(2,2) 3 0.25
ϕ(2,3) 1 0.25
ϕ(2,4) 4 0.25

Table 5-2.1: Mean and Variance of the Coefficient Matrix for the Generating Random Normal
Distribution in SSM

Therefore, we can say that for this particular experiment, uncertainty is propagated through
the non-zero elements of the coefficient matrix (ϕ), which signifies the uncertainty in the
block matrix (A and B).

Sample Size a1 a2 Error (a1) Error (a2)
Analytical Mean 17 25
Empirical Mean 10 17.3956 24.9176 -0.3956 0.0824
Empirical Mean 100 17.3196 25.0931 -0.3196 -0.0931
Empirical Mean 1000 17.0210 24.9165 -0.0210 0.0835
Empirical Mean 10000 16.9273 25.0388 0.0727 0.0388
Empirical Mean 100000 16.9944 24.9954 0.0056 0.0446
Empirical Mean 500000 16.9953 24.9938 0.0047 0.0062
Empirical Mean 1000000 17.0033 25.0012 -0.0033 0.0012
Empirical Mean 2500000 17.0000 25.0000 0.0000 0.0000

Table 5-2.2: Analytical and Empirical Mean Value for the Output Node a1 and a2 in SSM

Table 5-2.2 shows the comparison between the analytical and empirical mean values for various
sample sizes and errors obtained between the analytical and empirical mean. It can be seen
that at around 250000 samples, there is a convergence between the analytical and empirical
mean value and, the error becomes zero. The validation experiment shows that the prediction
result based upon the MPBUP algorithm is comparable to the result generated under a variety
of uncertain knowledge.

Figures 5.2 and 5.3 depicts the comparison between the behavior of the empirical mean value
generated for the output node a1 and a2 respectively under a large random input samples
(shown as blue line) which are randomly distributed, and the predicted analytical mean value
(shown as red line). Empirical mean value at each ith sample is generated by evaluating the
mean value till ith samples at every ith instant.

The Figures in the left 5.2a and 5.3a shows magnified view along y axis of the empirical mean
value propagation compared to the analytical mean value We can see that around 2000000
samples, both analytical and empirical mean values almost converges, and error becomes
negligible for output node a1 and a2 by LLN. Figures in the right 4.6b, and 4.7b shows the
initial distortion in the empirical mean compared to the analytical mean value for a small
sample size of 1000 samples. There is always an error between the analytical and empirical
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mean value for a small sample size.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 5.2: Comparison between Empirical and Analytical Mean Value Propagation for Node
a1 in SSM for MC Simulation.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples

Figure 5.3: Comparison between Empirical and Analytical Mean Value Propagation for Node
a2 in SSM for MC Simulation.
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Figures 5.2 and 5.3 are used to support the result obtained in the Table 5-2.2 and to vali-
date the output mean value generated through the algorithm MPBUP by seeing convergence
between analytical and empirical mean value.

Figure 5.4: Distribution of Output Sample Values Generated for the Output Node a2 using MC
Simulation in SSM.

Figure 5.4 shows the distribution of output sample values generated for node a2 underMC
simulation for 500000 random input samples. Figure 5.4 also shows the mean value (i.e.,
24.9998) generated for the output samples and 95% confidence limit (shown as red dotted
line). We can see that the output sample value generated for node a2 also follows a normal
distribution similar to the input. Regarding the optimality of the algorithm, it is seen that
output values lie within a confidence interval of 95% (i.e., between 18.4342 and 31.5533).
Therefore it can be concluded that under the uncertain or random conditions, there are 95%
chances that output generated by the algorithm will contain the actual value of node a2.
Additionally, we can also say that the algorithm will not generate any extreme values under
uncertain conditions. For other output nodes (i.e., a1), similar behavior is observed.

5-2-2 MC Coariance Validation
Similar to mean, MC simulation is also performed to validate the covariance matrix generated
for the output node in network 5.1. To validate the result analytical mean obtained in
Equation 5.6 through the algorithm is compared against the empirical mean for various sample
sizes.

MC validation for the covariance is conducted under a similar setup compared to polynomial
and bilinear validation. It is seen that around 2000000 samples, there is a convergence between
the analytical and empirical covariance matrix generated. As a result validation experiment
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confirm the comparable performance between covariance generated through the prediction
and under a variety of uncertain knowledge. Covariance matrix in equation 5.7 shows the
empirical matrix generated under 2000000 samples. The covariance matrix obtained under
various sample size during MC simulation can be found in the Appendix C.

Σd =



10.75 0 0 0 0 0 0 0 0 0
0 10.75 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5


(5.7)

The validation test conducted for output mean and covariance generated through the algo-
rithm and various other analyses shows that the MPBUP algorithm can be used to propagate
uncertainty into the system. It also works well, considering different uncertain conditions
taken into account. The only thing that is needed to keep in mind is to carefully convert the
SSM (i.e., dynamical model) to the standard SOP model to implement the algorithm.

5-3 Modeling of MPBUP algorithm on Four Tank System
In the previous sections and chapters, a detailed description of the MPBUP algorithm is
explained in terms of modeling a system into a bilinear model, designing a bipartite graph,
algorithm iteration, uncertainty propagation, and calculation of output node moments, and
validation. In this section similar procedure compared to SSM is followed, but only the
MPBUP algorithm is applied on the dynamical system, which is four tank system. It is an
extended version of the SSM.

MPBUP algorithm finds its application in propagating uncertainty into the system to calculate
the threshold bound in FDD. The algorithm is finally implemented on an actual real-time
application (i.e., Four Tank System) to propagate uncertainty into the system at each time
step to calculate robust probabilistic threshold bound. A similar procedure is followed, where
uncertainty affecting the system is modeled into a standard bilinear model and converted into
SOP format. Finally, the bipartite graph is designed, and input uncertainty (i.e., mean and
variance) is propagated through the graph to calculate the mean and variance of the output
node.

5-3-1 Four Tank System.

Four Tank System or quadruple tank is a standard nonlinear process. It is a bench process
in control engineering to study the nonlinear effect as it is difficult to optimize the output. It
consists of four tanks which are usually interconnected with each other with their input and
output. It is a standard Multiple-Input and Multiple-Output (MIMO) process. The system
is controlled by two inputs (i.e., pump speed). These inputs are also used to manipulate to
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control the level of two tanks. Thus, the system shows interacting, multivariate dynamics as
each of the pumps affects the output. The system also consists of adjustable valves to adjust
the level of water in the tank [14]. The systematic diagram of the four tank system is shown
in Figure 5.5.

Figure 5.5: Systematic Diagram of Four Tank System
[15]

Bernoulli law is used for modeling the mathematical model of the four-tank system. Therefore
the dynamical model of four tanks can be expressed in Equation 5.8.

dx1
dt

= −ap1

A1

√
2gx1 + ap3

A1

√
2gx3 + η1ς1

A1
ν1

dx2
dt

= −ap2

A2

√
2gx2 + ap4

A2

√
2gx4 + η2ς2

A2
ν2

dx3
dt

= −ap3

A3

√
2gx3 + (1− η2)ς2

A3
ν2

dx4
dt

= −ap4

A4

√
2gx4 + (1− η2)ς1

A4
ν1

(5.8)

Here, Bernoulli law is used to model the flow out of the tank. xi is the level of water in
the tank i, νi is the manipulated input into the system. Ai is the area of tank i, and api is
the area of the pipe flowing out of the tank i. The ratio of water diverted from one tank to
another tank ηi. ςi is the gain of the respective pump.

Equation 5.8 shows nonlinear mathematical model of four tank system. To apply the MPBUP
algorithm on the system, the model is linearized around the operating point, which is the
height of the tanks (i.e., x1, x2, x3, x4) [19]. Therefore the linearized model of four tank
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system can be defined in the Equation 5.9 as:

dx

dt
=


− 1
T1

0 A3
A1T3

0
0 − 1

T2
0 A4

A2T4
0 0 − 1

T3
0

0 0 0 − 1
T4



x1
x2
x3
x4

+


η1ς1
A1

0
0 η2ς2

A3

0 (1−η2)ς2
A3

(1−η1)ς1
A4

0


(
ν1
ν2

)
(5.9)

Ti = Ai
api

√
2hi(0)
g

System Parameter Value System Parameter Value
ap1 , ap2 2.3 cm2 ς1 5.51 cm3/s(%)
ap3 , ap4 2.3 cm2 ς2 6.58 cm3/s(%)
A1, A2, A3, A4 730 cm2 g 981 cm/s2
ν1(0), ν1(0) 60 % η1 0.3333
T1 53.8 sec η2 0.307
T2 48.0 sec x1(0) 14.1 cm
T3 38.5 sec x2(0) 11.2 cm
T4 31.1 sec x3(0) 7.2 cm

x4(0) 4.7 cm

Table 5-3.1: Model Parameters of Experimental Four Tank System.

Table 5-3.1 shows the values of various model parameters and constants, involved in four tank
system.

Equation 5.9 shows the linearized model of the system. To determine uncertainty propagation
into the system at each time step, the discrete model is considered. Therefore to discretize,
the model Euler Approximation is taken into account. Therefore, Euler Approximation using
forward difference can be described as:

x(k + 1) = x(k) + hẋ

Equation 5.10 shows the discretized model for four tank system. where, h is the sampling
time.
x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1− h

T1
0 A3h

A1T3
0

0 1− h
T2

0 A4h
A2T4

0 0 1− h
T3

0
0 0 0 1− h

T4



x1(k)
x2(k)
x3(k)
x4(k)

+


η1ς1h
A1

0
0 η2ς2

A3h

0 (1−η2)ς2h
A3

(1−η1)ς1h
A4

0


(
ν1(k)
ν2(k)

)

(5.10)
There are various ways to select the sampling time (h) to discretize the model. One of the
commonly used approaches to choose a proper sampling time is by giving a step input to a
continuous system, and the number of samples per rise time should be in the range of 4− 10
(i.e., Nr = Tr

h ≈ 4− 10).
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Figure 5.6: Step Response for Four Tank System.

Figure 5.6 shows the step response of the four tank system for the tank 2, when input (ν2) is
given. It is seen that the rise time for the system is around 105 seconds. As a result sampling
time of 10 is used to discretize the system. The equation shows the discretized model for the
four tank system at a sampling time of 10 seconds.


x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


0.8034 0 0.2081 0

0 0.8118 0 0.2470
0 0 0.7710 0
0 0 0 0.7248



x1(k)
x2(k)
x3(k)
x4(k)

+


0.0229 0.0070
0.0007 0.0250

0 0.0550
0.0430 0


(
ν1(k)
ν2(k)

)

y1(k)
y2(k)
y3(k)
y4(k)

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



x1(k)
x2(k)
x3(k)
x4(k)


(5.11)

Finally, all the prerequisites needed to implement the MPBUP algorithm are being imple-
mented. As discussed in the beginning MPBUP algorithm is used to propagate uncertainty,
and it is a part of the probabilistic-based approach for FDD. Therefore observer-based ap-
proach discussed in section 2-4-1 is used to model the system. Equation 2.4 shows the total
uncertainty propagated through the system, where L is the observer gain such that A− LC
is Hurwitz and the system is stable. Therefore the poles of the observer gain can be defined
as:

p =
[
0.55 0.65 0.7 0.8

]
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Figure 5.7: Comparison of Output Estimation With and Without Observer.

The faster observer is not considered while designing the observer as it acts as a deadbeat
controller and is not numerically stable. Whereas for comparatively slower poles, the re-
sponse is relatively slow. Figure 5.7 shows the comparison between the output estimation
with and without an observer for Tank 1. Finally, the observer is designed using poles
(0.55, 0, 66, 0.7, 0.8), replicates the actual process, and gives the desired response, which can
be observed in the Figure 5.7, where the observer traces the actual dynamics of the water
level for Tank 1. After 20 samples, the output states of both observer and the actual process
become equal, and the error becomes zero.

Therefore observer gain (L) can be defined as:

L =


0.2804 0 0 0

0 0.1618 0 0
0.2081 0 0.0710 0

0 0.2857 0 0.1683

 (5.12)
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5-3-2 Modeling of Four Tank System
Equation 2.4 represents total uncertainty affecting the system, when probabilistic model is
taken into account. Therefore, uncertainty propagation for four tank can be defined as:
γ1(k)
γ2(k)
γ3(k)
γ4(k)

 =


1− h

T1
0 h A3

A1T3
0

0 1− h
T2

0 h A4
A2T4

0 0 1− h
T3

0
0 0 0 1− h

T4



rxx1

(k)
rxx2

(k)
rxx3

(k)
rxx4

(k)

+


Ã11 Ã12 Ã13 Ã14
Ã21 Ã22 Ã23 Ã24
Ã31 Ã32 Ã33 Ã34
Ã41 Ã42 Ã43 Ã44



x1(k)
x2(k)
x3(k)
x4(k)



+


B̃11 B̃12
B̃21 B̃22
B̃31 B̃32
B̃41 B̃42


(
ν1(k)
ν2(k)

)
+


χ(k)
χ(k)
χ(k)
χ(k)

+


L1ξ(k)
L2ξ(k)
L3ξ(k)
L4ξ(k)


where, Aij represents parametric uncertainty affecting states in state matrix A. Bij represents
parametric uncertainty affecting input in input matrix B. χ and ξ corresponds to process
and measurement noise respectively. rxxi

corresponds to residual generated between output
and measurement value (i.e., rx = x− x̂).

On expanding the uncertainty propagation for four tank system can be written as:

γx1(k) = −
(1− h)rxx1

T1
+
A3rxx3

h

A1T3
+ χ+ L1ξ + Ãx1 + Ãx2 + Ãx3 + Ãx4 + B̃ν1 + B̃ν2

γx2(k) = −
(1− h)rxh2

T2
+
A4rxx4

h

A2T4
+ χ+ L2ξ + Ãx1 + Ãx2 + Ãx3 + Ãx4 + B̃ν1 + B̃ν2

γx3(k) = −
(1− h)rxx3

T3
+ χ+ L3ξ + Ãx1 + Ãx2 + Ãx3 + Ãx4 + B̃ν1 + B̃ν2

γx4(k) = −
(1− h)rxx4

T4
+ χ+ L4ξ + Ãx1 + Ãx2 + Ãx3 + Ãx4 + B̃ν1 + B̃ν2

(5.13)
To implement the MPBUP algorithm for uncertainty propagation in the dynamical model
defined in Equation 5.13, it is compared with standard bilinear equation model in Equation
3.1. In comparison the input (bi) and output (ai) for the dynamical model to implement
algorithm can be defined as:

b =
[
Ã B̃ x1 x2 x3 x4 rxh1

rxh2
rxh3

rxh4
v1 v2 χ Lξ1 Lξ2 Lξ3 Lξ4

]
a =

[
γx1 γx2 γx3 γx4

]
Assumption 1: For parametric uncertainty Ã and B̃ to reduce the number of input node
and numerical complexity of the algorithm, Ã and B̃ are assumed as input node rather than
element wise (Aij and Bij) as input node.

Assumption 2: For Ã, B̃, χ, and ξ are stochastic variables whose distribution is unknown, but
the knowledge of their mean and covariance concerning all other components is known.

Among the input nodes, Inputs νi are assumed to be known and deterministic (i.e., constant).
For the state inputs x1, x2, x3, x4 its mean and covariance is known from previous time step.
For the residual rxx1

, rxx2
, rxx3

, rxx4
its mean and covariance generated from the previous
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time step using MPBUP algorithm is taken into account. For parametric uncertainty and
noise (i.e., Ã, B̃, χ and ξ) assumption is taken into account. Size of the coefficient matrix (ϕ)
based upon the number of input (b = 17) and output (a = 4) therefore, it can be defined as
ϕ ∈ R4×378, as [n = 4, m = 17, nf = (n+m)× (m+1) = (17+4)× (17+1) = 378]. Therefore
the dynamics of the model in Equation 5.13 in terms of standard bilinear with reference to
Equation 3.1 model can be defined as:

a1 = κ1,(7)b7 + κ1,(9)b9 + κ1,(13)b13 + κ1,(14)b14 + ω1,(1,3)b1b3 + ω1,(1,4)b1b4 + ω1,(1,5)b1b5

+ ω1,(1,6)b1b6 + ω1,(2,11)b2b11 + ω1,(2,12)b2b12

a2 = κ2,(8)b8 + κ2,(10)b10 + κ2,(13)b13 + κ2,(15)b15 + ω2,(1,3)b1b3 + ω2,(1,4)b1b4 + ω2,(1,5)b1b5

+ ω2,(1,6)b1b6 + ω2,(2,11)b2b11 + ω2,(2,12)b2b12

a3 = κ3,(9)b9 + κ3(13)b13 + κ3,(16)b16 + ω3,(1,3)b1b3 + ω3,(1,4)b1b4 + ω3,(1,5)b1b5 + ω3,(1,6)b1b6

+ ω3,(2,11)b2b11 + ω3,(2,12)b2b12

a4 = κ4,(10)b10 + κ4(13)b13 + κ4,(17)b17 + ω4,(1,3)b1b3 + ω4,(1,4)b1b4 + ω4,(1,5)b1b5 + ω4,(1,6)b1b6

+ ω4,(2,11)b2b11 + ω3,(2,12)b2b12
(5.14)
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Input Node Variable Output Node Variable
b1 Ã a1 γ1
b2 B̃ a2 γ2
b3 x1 a3 γ3
b4 x2 a4 γ4
b5 x3
b6 x4
b7 rxx1
b8 rxx2
b9 rxx3
b10 rxx4
b11 ν1
b12 ν2
b13 χ

b14 L1ξ

b15 L2ξ

b16 L3ξ

b17 L4ξ

Table 5-3.2: Relation between Variables and Input-Output Nodes in Four Tank System.

Coefficients Coefficient Matrix
Elements Constants Coefficients Coefficient Matrix

Elements Constants

κ1,(7) ϕ(1,7)
1−h
T1

κ1,(9) ϕ(1,9)
A3
A1T3

κ1,(13) ϕ(1,13) 1 κ1,(14) ϕ(1,14) 1
κ2(8) ϕ(2,8)

1−h
T2

κ2,(10) ϕ(2,10)
A4
A2T4

κ2,(13) ϕ(2,13) 1 κ2,(15) ϕ(2,15) 1
κ3,(9) ϕ(3,9)

1−h
T3

κ3,(13) ϕ(3,13) 1
κ3,(16) ϕ(3,16) 1 κ4,(10) ϕ(4,10)

1−h
T4

κ4,(13) ϕ(4,13) 1 κ4,(17) ϕ(4,17) 1
ω1,(1,3) ϕ(1,20) 1 ω1,(1,4) ϕ(1,21) 1
ω1,(1,5) ϕ(1,22) 1 ω1,(1,6) ϕ(1,23) 1
ω1,(2,11) ϕ(1,45) 1 ω1,(2,12) ϕ(1,46) 1
ω2,(1,3) ϕ(2,20) 1 ω2,(1,4) ϕ(2,21) 1
ω2,(1,5) ϕ(2,22) 1 ω2,(1,6) ϕ(2,23) 1
ω2,(2,11) ϕ(2,45) 1 ω2,(2,12) ϕ(2,46) 1
ω3,(1,3) ϕ(3,20) 1 ω3,(1,4) ϕ(3,21) 1
ω3,(1,5) ϕ(3,22) 1 ω3,(1,6) ϕ(3,23) 1
ω3,(2,11) ϕ(3,45) 1 ω3,(2,12) ϕ(3,46) 1
ω4,(1,3) ϕ(4,20) 1 ω4,(1,4) ϕ(4,21) 1
ω4,(1,5) ϕ(4,22) 1 ω4,(1,6) ϕ(4,23) 1
ω4,(2,11) ϕ(4,45) 1 ω4,(2,12) ϕ(4,46) 1

Table 5-3.3: Relation between the Coefficient Matrix Terms and Constants in Four Tank
System.
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Table 5-3.2 represents the relation between variables used in Equation 5.14 and,the various
input and output nodes in the dynamical model. Table 5-3.3 represents the relationship
between various Coefficients terms (i.e., κ, ψ, ω, θ), Coefficient matrix (ϕ) elements and
various constant involved in the dynamical model of the four tank system with respect to
input and output acting in the system.

Finally, now system dynamics in the bilinear form are written in terms of standard SOP
format with reference to Equation 3.2. The system dynamics are converted to SOP format
to draw the bipartite graph and implement the algorithm.

a1 = ϕ(1,7)f7 + ϕ(1,9)f9 + ϕ(1,13)f13 + ϕ(1,14)f14 + ϕ(1,20)f20 + ϕ(1,21)f21 + ϕ(1,22)f22 + ϕ(1,23)f23

+ ϕ(1,45)f45 + ϕ(1,46)f46

a2 = ϕ(2,7)f7 + ϕ(2,9)f9 + ϕ(2,13)f13 + ϕ(2,15)f15 + ϕ(2,20)f20 + ϕ(2,21)f21 + ϕ(2,22)f22 + ϕ(2,23)f23

+ ϕ(2,45)f45 + ϕ(2,46)f46

a3 = ϕ(3,7)f7 + ϕ(3,9)f9 + ϕ(3,13)f13 + ϕ(3,16)f16 + ϕ(3,20)f20 + ϕ(3,21)f21 + ϕ(3,22)f22 + ϕ(3,23)f23

+ ϕ(3,45)f45 + ϕ(3,46)f46

a4 = ϕ(4,7)f7 + ϕ(4,9)f9 + ϕ(4,13)f13 + ϕ(4,17)f17 + ϕ(4,20)f20 + ϕ(4,21)f21 + ϕ(4,22)f22 + ϕ(4,23)f23

+ ϕ(4,45)f45 + ϕ(4,46)f46
(5.15)

fi represent the relationship between the input and output node. Table 5-3.4 represents the
relation between the factor used in the Equation 5.15 and, input and output nodes of the
dynamical model.

Function Term Input-Output Term Function Term Input-Output Term
f7 b7 = rxx1

f8 b8 = rxx2
f9 b9 = rxx3

f10 b10 = rxx4
f14 b14 = L1ξ f15 b15 = L2ξ

f16 b16 = L3ξ f17 b17 = L4ξ

f13 b13 = χ f20 b1b3 = Ãx1
f21 b1b4 = Ãx2 f22 b1b3 = Ãx3
f23 b1b3 = Ãx4 f45 b2b11 = B̃ν1
f46 b2b12 = B̃ν2

Table 5-3.4: Relation between Factors and Input-Output Nodes in Four Tank System

Therefore, the procedure to convert any dynamical model to standard SOP to implement the
algorithm is similar to procedure described for the 2nd order SSM.

5-3-3 Algorithm Implementation

Based upon the dynamics in Equation 5.15, node set can be divided into two set such as:

Variable Node(V) = {b1, b2, b3, · · · b17, a1, a2, a3, a4}
Factor Node(F) = {f7, f8, f9, f10, f14, f15, f16, f17, f13, f20, f21, f22, f23, f45, f46}
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5-3 Modeling of MPBUP algorithm on Four Tank System 61

Figure 5.8 shows the bipartite graph generated for the four tank system in MATLAB. The fac-
tor node set (F) and variable node set (V) are shown in red and blue colour respectively.

Figure 5.8: Bipartite Graph for Four Tank System.

Finally, MPBUP is algorithm is implemented on the four tank system to determine total
uncertainty propagated at each time step. Algorithm propagates mean and covariance of
the input node (i.e. b1, b2, b3, · · · b17) to determine the mean and covariance of the output
node (i.e., a1, a2, a3, a4). As discussed coefficient matrix (ϕ ∈ R4×378). Nonzero elements of
coefficient matrix (ϕ) are expressed in Table 5-3.3. Table 5-3.5 shows the mean and covariance
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of the input node given in the algorithm as input.

Input Nodes Mean Covariance
b1 5 0.25
b2 5 0.5
b3 14 0.1
b4 11 0.2
b5 7 0.2
b6 4 0.7
b7 1 0.25
b8 1 0.25
b9 1 0.25
b10 1 0.25
b11 2 0.6
b12 2 0.6
b13 3 0.5
b14 0.3043 0.05
b15 1.6840 0.05
b16 -0.0297 0.05
b17 0.2646 0.05

Table 5-3.5: Assumed Values of Mean and Covariance of the Input Node for Four Tank System.

At the end of the algorithm, output mean (d̄) and covariance matrix (Σd) is generated for
the vector (d). The size of output mean is (d̄ ∈ R(1×17)) and of output covariance matrix
is (Σd ∈ R(17×17)), which are quite complicated to represent. As we are only interested in
knowing mean and covariance matrix for the output node, therefore Equation 5.16 represent
the mean and covariance of the output nodes (i.e.,a1, a2, a3 and a4) for the time instant t = 1,
as output mean and covariance is calculated using the initial condition.

d̄ =
[
204.3428 205.7428 203.7413 203.9498

]

Σd =


152.8332 152.6000 152.6401 152.6000
152.6000 152.8300 152.6000 152.6448
152.6401 152.6000 152.7986 152.6000
152.6000 152.6448 152.6000 152.7813

 (5.16)

Output mean and covariance matrix obtained through the algorithm at the time instant t = 1
is propagated through the next time step using the evolution of the state dynamics.

5-4 Validation of Four Tank System
Similar to previous experiment, validation test is also performed on the implementation of
MPBUP algorithm on four tank system to validate the output mean and covariance generated
for the output nodes (i.e.,a1, a2, a3, a4) found in the equation 5.16. Compared to the previous
experiment, a similar setup is used. Input given in the algorithm is a random number of
particular distributions, and the corresponding output is generated. The output of various
samples is used to obtain the empirical mean.
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5-4-1 MC Mean Validation
MC simulation is conducted to validate the output mean obtained for output node (a1, a2,
a3 and a4) for network in Figure 5.8. Analytical mean is computed through the algorithm
in Equation 5.16 and is compared against the empirical mean obtained under various sample
size. As discussed in the previous section, input for the four tank system (νi) is known and
deterministic (i.e., constant). MC simulation is conducted by giving a random numbers to
various input nodes except (ν1 and ν2). These random numbers are normally distributed with
their mean and variance defined in Table 5-3.5, and the corresponding output is generated
for various sample sizes.

Sample
Size a1 a2 a3 a4

Original Mean 204.3428 205.7428 203.7413 203.9894
Empirical Mean 10 204.0325 205.4325 204.4310 203.6790
Empirical Mean 100 204.3779 205.7779 203.7763 204.0244
Empirical Mean 1000 204.3293 205.7293 203.7278 203.9759
Empirical Mean 10000 204.3392 205.7392 203.7377 203.9858
Empirical Mean 100000 204.3433 205.7433 203.7418 203.9899
Empirical Mean 500000 204.3435 205.7435 203.7420 203.9901
Empirical Mean 1000000 204.3428 205.7428 203.7413 203.9895

Table 5-4.1: Analytical and Empirical Mean Value for the Output Node a1, a2, a3 and a4 in
Four Tank System.

Table 5-4.1 shows the comparison between analytical and empirical mean for various sample
size. It is seen there is a convergence between analytical and empirical mean as sample size
increases. Around 1000000 samples both analytical and empirical mean have become identical.
Therefore validation experiment show convergence between the predicted value through the
algorithm and those generated under a variety of uncertain knowledge.

Sample
Size

Error
(a1)

Error
(a2}

Error
(a3)

Error
(a4)

Original Mean
Empirical Mean 10 0.3103 0.3103 -0.6869 0.3104
Empirical Mean 100 -0.0351 -0.0351 -0.0350 -0.0351
Empirical Mean 1000 0.0135 0.0135 0.0135 0.0135
Empirical Mean 10000 0.0036 0.0036 0.0036 0.0036
Empirical Mean 100000 -0.0005 -0.0005 -0.0005 -0.0005
Empirical Mean 500000 -0.0007 -0.0007 -0.0007 -0.0007
Empirical Mean 1000000 0.0000 0.0000 0.0000 0.0000

Table 5-4.2: Error between Analytical and Empirical Mean Value for Output Node a1, a2, a3
and a4 in Four Tank System.

Table 5-4.2 shows the error between the analytical and empirical mean evaluated under various
sample size for the output node a1, a2, a3 and a4. We can see that around 1000000 samples
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the error becomes zero indicating the convergence between analytical and empirical mean
value.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 5.9: Comparison between Empirical and Analytical Mean Value Propagation for Node
a1 in Four Tank System for MC Simulation.

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 5.10: Comparison between Empirical and Analytical Mean Value Propagation for Node
a3 in Four Tank System for MC Simulation.
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Compared to analyses done for various other dynamical models, similar analyses is conducted
for four tank system. Figures 5.9 and 5.10 depicts the comparison between the behavior of
the empirical mean value generated for the output node a1 and a3 respectively. The empirical
mean values are generated under large random input samples (shown as blue line), which
are normally distributed, and the predicted analytical mean value (shown as red line). The
empirical mean value for ith sample is calculated by evaluating the mean value till ith samples
at every ith instant. In comparison, the analytical mean value is the predicted value generated
by the algorithm.

The Figures in the left 5.9a and 5.10a shows the magnified view along y axis. Its shows
the comparison between empirical and analytical mean value propagation. We can see that
around 1000000 samples, both analytical and empirical mean values converge, and error
becomes negligible for output node a1 and a2 by LLN. Convergence confirms that analytical
and empirical values become equal under various uncertain conditions acting on the system
for a large sample size.

Figures in the right 5.9b, and 5.10b shows the initial distortion in the empirical mean com-
pared to the analytical mean value for a small sample size of 1000 samples. There is always
a considerable error between the analytical and empirical mean value for a small sample size.
To prevent redundant results, a comparison between the analytical and empirical mean value
is only provided for output nodes a1 and a3 respectively. A similar kind of behavior is also
observed for the output nodes a2 and a4. Figures 5.9 and 5.10 are used to support the re-
sult obtained in the Tables 5-4.1 and 5-4.2 and to validate the output mean value generated
through the MPBUP algorithm by seeing the convergence between analytical and empirical
mean value.

Figure 5.11: Distribution of Output Sample Values Generated for the Output Node a3 using
MC Simulation in Four Tank System.

Figure 5.11 shows the distribution of output sample values generated for node a2 under
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MC simulation for 1000000 random input samples. Figure 5.11 also shows the mean value
(i.e., 203.7414) generated for the output samples and 95% confidence limit (using red dotted
line). We can see that the output sample value generated for node a1 also follows a normal
distribution similar to the input. Regarding the optimality of the algorithm, it is seen that
output values lie within a confidence interval of 95% (i.e., between 202.6698 and 205.8129).
Therefore it can be concluded that under the uncertain or random conditions, there are
95% chances that output generated by the algorithm will contain the actual value of node
a2. Additionally, we can also say that the algorithm will not generate any extreme values
under uncertain conditions. For other output node (i.e., a1, a3 and a4) a similar behavior is
observed.

5-4-2 MC Covariance Validation
Similar to mean, MC simulation is also used to validate the covariance matrix generated
for the output nodes in Figure 5.8. A similar setup is used to validate the output covariance
matrix generated through the algorithm. The analytical covariance matrix generated through
the algorithm is compared against the empirical mean generated for various sample sizes under
random input numbers is shown in Equation 5.17.

Σd =


152.8332 152.6000 152.6401 152.6000
152.6000 152.8300 152.6000 152.6448
152.6401 152.6000 152.7986 152.6000
152.6000 152.6448 152.6000 152.7813

 (5.17)

In the validation experiment, it is seen around 1000000 samples of the random number; there
is a convergence between the analytical and empirical output covariance matrix generated
through the algorithm, thus showing a comparable performance of the MPBUP algorithm.
The covariance matrix obtained under various sample size during MC simulation can be found
in the Appendix C.

Through various analyses conducted, it can be concluded that the MPBUP algorithm can
model a complicated dynamical model for the uncertainty quantification at each time step
and can be further used to propagate it to the next time step ahead. Moreover, the algorithm
also works well, considering various uncertain conditions acting on the system.

5-5 Threshold bounding through MPBUP Algorithm
In the previous section, how to implement the MPBUP algorithm on the basic network, four
tank system, etc., is discussed for uncertainty propagation. One of the MPBUP algorithm
applications is to determine robust probabilistic threshold in the FDD sector, where uncer-
tainty propagation is considered. In Section 2-4-1 probabilistic based approach for FDD is
discussed. In a probabilistic-based approach, an estimator is designed that replicates the pro-
cess’s actual dynamics, and a difference between actual and predicted output value is found
called residual. Residual is used to determine the robust threshold taking all the parametric
uncertainty, process noise, and measurement noise into account. With reference to Section
2-4-1, the residual equation can be defined as:

rx(k + 1) = LCrx(k) + γ(k)
ry(k) = C̄rx(k) + ξ(k)

Tanay Milind Naik Master of Science Thesis



5-5 Threshold bounding through MPBUP Algorithm 67

γ corresponds to total uncertainty propagated through the network and ξ corresponds to
process noise. It can be seen ry is a measurable quantity and it can used for the fault
detection. ry can be used to define a robust threshold (εα) as:

Eα ,
{
ry ∈ Rn |

√
(ry − r̄y) Σ−1

ry (ry − r̄y) ≤
n

α

}
, α ∈ (0, 1]

Therefore to compute robust threshold we need to know about the mean (r̄y) and the co-
variance (Σry) of ry. At time instant k = 0 the residual ry is a deterministic quantity and it
can be computed using rx(0) whereas at the future instant ry(k + 1) is a stochastic quantity
as it depends random variable rx(k), γ(k) and ξ(k). A detailed explanation of the residual
computation is explained in the subsequent section.

5-5-1 Probabilistic Threshold Computation

As discussed in previous section ry(k) can be used to compute robust threshold at each time
step in a dynamical system. To compute the threshold we need to know mean (r̄y) and
covariance (Σry) at each time step. At k = 0, ry is deterministic quantity which depends
upon rx(0) ( In order to purse that we assume the knowledge of initial mean and covariance
r̄x(0) , E[rx(0)] and Σrx , Cov[rx(0)] is known respectively), whereas in order to calculate
for next time instant we need to iteratively propagate rx(k + 1) which in turn depend upon
the total uncertainty (γk). This will require the computation of mean (γ̄(k)) and covariance
(Σγ(k)) which in turn depends upon the mean and covariance of the individual uncertainty
sources. Therefore to compute the overall uncertainty propagation in the model at each time
instant MPBUP algorithm can be used.

To analyze the computation of threshold in probabilistic model a detailed explanation is as
follow. For time instant (k = 0) we define a vector ε(0) , col(rx(0), γ(0)). While it is
unknown and not measurable we can compute its mean and covariance as :

ε̄(0) , E[ε(0)] = col(r̄x(0), γ̄(0))
Σε(0) , diag(Σrx(0),Σγ(0))

One advantage of using ε(0) is rx and γ are independent as uncertainty had no chance to
influence the state dynamics yet. A block diagonal matrix Aε , diag(A0, I) is used. Therefore
we can simply write equation for propagation in time as:

ε̄(k + 1) = Aεε̄(k)
Σε(k + 1) = AεΣεA

T
ε

(5.18)

Using equation 5.18 at start index k = 0 it is possible to compute mean and covariance of
rx at time k + 1 = 1 and residual ry(1) can be obtained, which allow to determine set based
threshold εα(k + 1). In order to proceed with next time instant we need to compute γ̄(1)
and Σγ(1) which in turn depend upon the uncertainty propagation and where our MPBUP
algorithm will come handy.
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5-5-2 Threshold Bounding for Four Tank System
In the previous section, a detailed explanation is given on bounding the threshold under
the probabilistic conditions. Then, a similar approach is followed to determine the proba-
bilistic threshold for the four tank system using the MPBUP algorithm under uncertainty
propagation.

For time instant k = 0, vector ε is used to find mean and covariance for residual rx(1), which
is used to determine mean and covariance of residual ry(1) to find the robust threshold. From
next time instant for k = 1, stochastic uncertainty also influences the state dynamics. As a
result, γ also has to be taken into account. To propagate uncertainty into the system MPBUP
algorithm is used to determine the mean and covariance of uncertainty propagation at various
time steps.

To determine the threshold following initial conditions were assumed for the four tank system:-

The initial level of the tanks (x) can be described:

x =
[
14 11 7 4

]
The level of the tanks are described in terms of cm. The input given into the tank can be
described as:

ν =
[
50 50

]

Figure 5.12: Comparison between Threshold and Residual Value Generated for Tank 3.

Figure 5.12 shows the threshold and residual value generated for the Tank 3 in the four tank
system from the time instant k = 1. Uncertainty present in the system is propagated through

Tanay Milind Naik Master of Science Thesis



5-5 Threshold bounding through MPBUP Algorithm 69

the MPBUP algorithm, which is eventually used to find the threshold value at each step.
From Figure 5.12 we can see that the residual value is always lower than the threshold value
as the system is in healthy condition. We can also see that the threshold value found using the
MPBUP algorithm for uncertainty propagation and Mahalabohnis distance has a large gap
compared to the residual initially, but the gap between the residual and threshold decreases
as time progresses. Mahalanobis distance takes output residual, its mean, and covariance
into account. The output residual is calculated based upon the error generated between the
states of the output estimator and the actual process and uncertainty present in the model
at each time step. Initially, at the start, there is a large error present between the states
of the output estimator and the actual process. As the system propagates further, the error
decreases. As a result threshold value starts moving toward residual based upon the dynamics
of the model.

The figure also shows that the threshold value generated through the algorithm is dynamic
(i.e., as the process is propagating through the time step, the threshold value is also getting
updated based upon the evolution of state dynamics and various uncertainty acting on the
system). It is also not conservative and static like the deterministic-based approach leading
to low FAR. The threshold bound found above in Figure 5.12 taking various parametric
uncertainties in the model, process noise, and measurement noise into consideration at each
time. Thus the threshold value founding using the probabilistic based approach and MPBUP
algorithm is able to bound arbitrary shaped residual.

Therefore, the MPBUP algorithm can successfully propagate various uncertainties into the
system, further used to determine the robust threshold. A similar kind of behavior graph
can be seen for the other tanks. (Note: Threshold and residual values calculated are not
exact as many assumptions were considered in model parameters, parametric uncertainties,
etc. The primary purpose of the graph is to show how uncertainty can be propagated using
the MPBUP algorithm to find a robust threshold value at each time instant and showing the
comparison between residual and threshold).
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Chapter 6

MPBUP Algorithm Analysis

In the previous chapters, a detailed discussion is given about the MPBUP algorithm, its
implementation, validation, and how to apply the algorithm on real-time system to find a
robust threshold. Before we conclude the algorithm, a few more aspects are discussed in the
following chapter.

6-1 Analysis of the MPBUP Algorithm
MPBUP algorithm is a novel algorithm that is designed and implemented in Chapter 3. The
algorithm is further analyzed in terms of time taken to reach convergence between output
value generated through the MPBUP algorithm and empirical mean value generated through
MC simulation. Time taken for n number of simulation but at the same time also increasing
the graph complexity in terms of factors and variables, and variety of input data types that
can be implemented into the algorithm for uncertainty propagation.

Analysis 1:

A simulation is carried out to benchmark the time taken for the convergence between the
analytical and empirical mean value (i.e., mean error between analytical and empirical value
becomes zero) for the basic network in (Figure 4.1), 2nd order SSM in (Figure 5.1) and four
tank system (Figure 5.8) under the similar conditions.

No of
Nodes

Basic
Network

2nd order
SSM

Four Tank
System

Factor
Nodes 2 4 15

Variable
Nodes 3 6 21

Total Nodes 5 10 36

Table 6-1.1: Total Number of Nodes in Various graph
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Table 6-1.1 shows the number of factor and variable nodes present in various network graphs.
Table 6-1.2 shows the comparison between the time taken to reach convergence by various
network graphs for n sample size under similar conditions such as input data type, distribution
of the data, etc. In Table 6-1.2 simulation time evaluated under various samples are shown
in Minutes.

No of
Samples

Basic
Network

2nd order
SSM

Four Tank
System

1 0.4437 1.0262 1.1605
10 3.9710 4.0915 8.7187
100 5.5300 6.4565 18.3353
1000 23.4661 29.6416 137.4520
10000 161.6160 269.3302 910.4156
100000 1340.0000 2373.2000 9227.8000
1000000 15575.0000 30008.0000 130140.0000
2000000 - 58040.0000 -

Table 6-1.2: Simulation Time for Comparison for n samples.

We can see through the Table 6-1.2 as the graph complexity increases, the time for the con-
vergence between the analytical and empirical also increases drastically. In the table, we can
see that in around 1000000 samples, the mean error in the basic network and four tank system
become zero, whereas for the SSM the mean error becomes zero around 2000000 samples. An
important aspect that can be analyzed for the large samples is that the increase in the sim-
ulation time is proportional to the total number of nodes. For example, at 1000000 random
input samples normally distributed, the simulation time for the basic network consisting of 5
nodes is 15575 secs. On the other hand, in the SSM simulation time is 30008 secs consisting of
10 nodes, which is twice the number of nodes compared to the basic network, and simulation
time is also twice the time compared to the basic network. Similarly, for the four-tank system,
when compared to the basic network and SSM, a similar trend is observed.

Figures 6.1 and 6.2 shows the comparison between the basic network, 2nd order SSM and the
four tank system based upon the three criteria number of nodes, simulation time, and the
number of random samples. From the bar graph in Figures 6.1 and 6.2 we can conclude that
firstly, simulation time increases linearly with the increases in the number of samples, which
is quite expected behavior. Secondly, we can also conclude in terms of numerical complexity;
we can see that as the number of the nodes increases, the run time for the simulation also
increases at a constant sample range. Therefore we can conclude that the run time increases
linearly based on the number of nodes present in the bipartite graph. In Figures 6.1 and 6.2
number of nodes 5, 10 and 36 indicates total number of nodes present in the basic network,
SSM and four tank system respectively.
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Figure 6.1: Comparison between Number of Nodes, Simulation Time and Number of Samples
in Various Graph Networks.

Figure 6.2: Comparison between Number of Nodes, Simulation Time and Number of Samples
in various Graph Networks.
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Analysis 2 :

In the previous section, the MPBUP algorithm is implemented, and a validation test is per-
formed using random input numbers, which usually are distributed. In this section, a similar
type of validation test is performed using other kinds of distribution data such as Poisson
Distribution and Uniform Distribution to analyze whether the MPBUP works under different
kinds of input distribution data also.

MC validation test is now performed under Poisson Distribution and Uniform Distribution
for the Basic Network in the Figure 4.1. The test is performed to validate the output mean
generated through the MPBUP algorithm. A similar kind of setting is used compared to the
previous validation experiment, where random inputs are given to the input node (i.e., b1 for
the network in Figure 4.1). In this experiment, random inputs are in Poisson Distribution or
Uniformly Distributed.

Table 6-1.3 shows the comparison between the analytical mean and empirical mean generated
for output node (a1 and a2) for various sample size under Poisson distribution. The table
6-1.3 also shows the mean error propagated between analytical and empirical mean value
for the output node (a1 and a2) for various sample sizes. Around 1000000 random sample,
there is a convergence between the analytical and empirical mean. It is also seen that the
mean error between analytical and empirical mean becomes zero at convergence. The val-
idation experiment shows the comparable performance of the algorithm under the Poisson
distribution.

No of Samples a1 a2 Error (a1) Error (a2)
Analytical Mean 3.2500 16.5750
Empirical Mean 10 3.3150 16.8513 0.0650 0.2763
Empirical Mean 100 3.2565 17.0446 0.0065 0.4696
Empirical Mean 1000 3.2513 16.6866 0.0013 0.1116
Empirical Mean 10000 3.2270 16.5424 -0.0230 -0.0326
Empirical Mean 100000 3.2496 16.5861 -0.0004 0.0111
Empirical Mean 500000 3.2502 16.5762 0.0002 0.0012
Empirical Mean 1000000 3.2500 16.5751 0.0000 0.0001

Table 6-1.3: The Analytical and Empirical Mean Generated for Node a1 and a2 under Poisson
Distribution
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(a) Empirical and Analytical Mean Value (b) Empirical and Analytical Mean Value for 1000 Samples

Figure 6.3: Comparison between Empirical and Analytical Mean Value Propagation for Node
a2 in Basic Network for MC Simulation under Poisson Distribution.

Figure 6.3 shows the comparison between the behavior of the empirical mean value generated
for the output node a2 under random input of sample size 1000000 (shown as blue line) and the
predicted analytical mean value (shown as red line). We can see both analytical and empirical
mean values converge, and error becomes negligible. The Figure in the left 6.3a shows the
magnified view along the y axis of the empirical mean value propagation compared to the
analytical mean. We can see that in Figure 6.3a both analytical and empirical values converge
to each other for a large sample size. Figure in the right 6.3b shows the initial distortion
between analytical and empirical value for a small sample size of 1000 samples.

Similar to Poisson distribution, MC validation is also conducted for the MPBUP algorithm
using a uniform distribution. Thus, the inputs given to the input nodes are uniformly dis-
tributed. Even under the uniform distribution, a convergence is seen between analytical mean
and empirical mean generated around 5000000 samples ( To avoid repetitiveness, only error
propagated through Network is shown for Uniform Distribution).

Figure 6.4 shows the comparison between the empirical mean value (shown as blue line) and
analytical mean value (shown as red line). We can see that at 1000000 samples error between
analytical and empirical value becomes significantly less. (To avoid the problem of scaling
in the graph, mean values till 1000000 samples are only shown). The Figure in the left 6.4a
shows the empirical mean value propagation compared to the analytical mean. Figure in
the right 6.4b shows the initial distortion between analytical and empirical value for a small
sample size.

Master of Science Thesis Tanay Milind Naik



76 MPBUP Algorithm Analysis

(a) Empirical and Analytical Mean Value. (b) Empirical and Analytical Mean Value for 1000 Samples.

Figure 6.4: Comparison between Empirical and Analytical Mean Value Propagation for Node
a2 in Basic Network for MC Simulation under Uniform Distribution.

Therefore, through this analysis, it can be concluded that the output generated through the
MPBUP algorithm shows the comparison between the predicted value and empirical values
with other kinds of distribution also. As a result, we can conclude that the performance of the
MPBUP algorithm is not affected irrespective of the distribution of the input nodes.

6-1-1 Advantages and Disadvantages

Based on various experimentation, analysis, and application of the MPBUP algorithm in
threshold detection, the advantages and disadvantages of the algorithm can be summa-
rized.

Advantages:

• MPBUP algorithm helps propagate various stochastic uncertainty affecting the system
into the next step to determine a robust threshold ultimately leading to low FAR.

• Use of bipartite graph in the algorithm avoids the risk of using algebraic loops in the
system.

• Uncertainty in the graph is propagated through stochastic moments, which can easily
be propagated through the algorithm at each time step.

• Calculation of stochastic moment of the various interconnected random variable without
a proper model is difficult to generalize, whereas in uncertainty propagation model where
one component γi is solved at a time by proceeding step by step through the graph.
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• Uncertainty affecting the model is comparatively easy to visualize, hence it can be used
to detect the root cause of the process.

• It is a dynamic and online process. As a result, the corrective measure can be taken
instantly.

• Threshold found using the algorithm is dynamic and changes the bound value with
respect to change in the time. As a result, threshold values take into account the
evolution of the state dynamic and various uncertainties at each time step.

• Algorithm can also be used to propagate complex probability distribution of input
variable into the system. (such as exponential, Poisson, etc.)

• Compared to other algorithms where also mean and covariance is evaluated, it is difficult
to generalize its matrix and vector terms calculation involving mean and covariance.
The use of a bipartite graph solves the mean and covariance propagation problem by
proceeding step by step.

Disadvantages:

• Complete Knowledge of the model is required, including all the parameters in the model,
the relation between various parameters to construct a bipartite graph for the system.

• Complexity of the graph increases as the number of nodes in the graph increases, leading
to the rise in the algorithm’s run time, which can be further analyzed through the Figure
6.1 and 6.2 respectively. Therefore we can conclude that the numerical complexity of
the algorithm is O(n) based upon the number of nodes.

• Initialization of the algorithm is complicated in terms of converting the dynamics of the
system to the class of bilinear equation and further to standard SOP form to implement
the algorithm.

• Using the Multiplicative property to convert the polynomial system to the bilinear
system is tedious and time-consuming. Therefore, an alternative approach should be
explored.
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6-2 Comparison with Other Algorithm
During the literature study, various other algorithms were also studied, which are used to
evaluate the threshold for the FDD [1], [18]. In this section, a comparative study is conducted
among the various algorithms (including the Probabilistic based approach using the MPBUP
algorithm), which can be used to evaluate robust threshold-based. The comparison among
the various algorithm is based upon parameters or aspects which plays an important role
in selecting an FDD algorithm. Table 6-2.1 shows the comparison among various algorithm
based upon various criteria.

Criteria
Traditional
Deterministic
Based

Filters Polynomial
Chaos

Bayesian
Network

Belief
Propagation

Probabilistic
MPBUP Based

Type of Technique Observer Based Observer Based Mathematical
Based

Graphical
Based

Graphical
Based

Observer
and Graphical
Based

Mathematical Model Precise Model
KF: Precise Model.
EKF and UKF:
Approximate Model

Input - Output
Data Set

Input-Output
Data Set

Precise
Model

Precise
Model

Model Parameter Exactly Known Eactly Known Unknown Exactly Known Known Known and
Time Varying

Linear/Non Linear Linear
KF: Linear
EKF and UKF :
Both

Both Both Both Both

Process/
Measurement Noise Gaussian Gaussian

Gaussian,
Exponential,
Polynomial

Gaussian
and Non
Gaussian

Gaussian
and Non
Gaussian

Gaussian
and Non
Gaussian

Threshold Limit Based Limit Based Limit Based Set Based Set Based Set Based
Robustness Not Robust Not Robust Robust Robust Robust Robust
Uncertainty Not Taken Taken Taken Taken Taken Taken
Uncertainty
Propagation
Complexity

- Difficult Numerically
Difficult Easy Easy Easy

Prior Healthy Data
Set Not Needed Needed Not Needed Needed Needed Not Needed

Computational
Complexity High

KF: High
EKF: High
UKF : Low

High Low Low Depends on
Model Size

Offline/Online Both Both Offline Offline Offline Both
Fault Handling
Capacity One Fault Multiple Fault Multiple Fault Multiple Fault Multiple

Faults
Multiple
Fault

Fault Isolation No
KF: No
EKF: No
UKF: Yes

Yes No No Yes but
difficult

Unknown Fault No Yes Yes Yes Yes Yes

Parameter
Necessary

All Variables
defining
system
dynamics

EKF: Jacobian
and Hessian
Matrix.
UKF : Sigma
Points

Collocation
points
and
Histogram
Partition

Training
Data
Set

Initial Prior
Probability
of all varaibles

Exact Input
Output
Relation,
Moments of
Input Variable

Table 6-2.1: Comparison Among Various Fault Detection Algorithms

6-3 Application of Algorithm
MPBUP algorithm is developed to propagate uncertainty into the system at each time step.
During the thesis, the main application where the MPBUP algorithm is applied in a dynamical
model to determine the robust threshold for the fault detection. It is used to quantify the fault
at each step as part of a probabilistic-based approach, but the application of the MPBUP
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algorithm is not just limited to fault detection. The main principle of the algorithm is to
quantify uncertainty, which has been a significant challenge in various fields for the past many
years. As uncertainties can be present in any model or system in terms of noisy experimental
data, uncertainty is present in the model due to uncertain parameters, model error, boundary
conditions, and numerical complexity such as rounding off, discretization, bug error, etc. Due
to the following, there is always a reason need for an algorithm for uncertainty quantification
[38]. Some of the applications where the MPBUP algorithm can be applied in comparison to
other algorithms for uncertainty propagation are:

• It can be used in weather prediction by the meteorological department in terms of
various input parameters evolved in the model such as atmospheric density, the velocity
of the wind, temperature pressure, thermal conductivity, specific heat capacity of the
air, etc. Other than input parameters, there can be errors or bias in the measurement
sensor, etc. In the MPBUP algorithm weather prediction model can be modeled as a
bipartite graph, and various uncertain parameters can be modeled to see their overall
effect [33].

• MPBUP algorithm also finds its application in pharmaceutical industries as testing
various medicine or vaccines are often too dangerous or expensive for human tests or
large scale population. Uncertainty algorithm can be implemented on test subjects
rather than full populations, taking various constraints into account such as age, side
effect, etc. into consideration [25].

• Uncertainty quantification algorithm also finds its application in nuclear engineering
as harsh radioactive, thermal, and chemical environment. As in nuclear reactor, core
limits the measurement performance, nondestructive evaluation, and safety regulation,
and various uncertain conditions cannot be taken into account [4].
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Chapter 7

Conclusion

7-1 Conclusion
Uncertainty propagation and quantification have been a significant challenge in my many fields
of areas. One such challenge is in fault detection and diagnosis, determining a robust threshold
bound taking various uncertainty affecting the dynamical system into account. Unfortunately,
there is limited knowledge available in terms of different stochastic uncertainty affecting the
system, propagate the overall effect of various uncertainty affecting the next time. Many other
algorithms have been developed in the past for the propagation of uncertainty. However, most
developed algorithms either have high numerical complexity or fail to incorporate the loops
in the dynamical system. Therefore, during this study, a new algorithm (Message Passing
Bilinear Uncertainty Propagation) is proposed for the uncertainty propagation.

MPBUP is a graphical-based approach inspired by Belief Propagation. In the algorithm,
various uncertainty affecting a system is modeled as a bipartite graph. The uncertainties are
iteratively propagated from various input nodes in the graph to output nodes to derive their
overall effect at each time step. In the algorithm, uncertainty through each node is propagated
in terms of mean and covariance. Bohrnstedt and Goldberger’s formula were used to find mean
and covariance for the product of the random numbers. During my research, the algorithm
was successfully developed and tested in MATLAB on various types of bipartite graphs to
get a better understanding of the algorithm and also to refine the algorithm. After the
algorithm was developed, a validation test was conducted to evaluate algorithm performance
for output mean and covariance generated using Monte Carlo Simulation. Through MC
simulation, a random input following normal distribution was given as an input into the
system, and corresponding output was generated, which were used to derive an empirical
mean. Comparison between both analytical and empirical means was conducted to validate
the algorithm. Other than that, various other analyses were also conducted in terms of mean
error propagation, output data distribution, etc.

Initially, the MPBUP algorithm was restricted to a bilinear system as Bohrstedt and Gold-
berger’s formula for mean and covariance can only be used for bilinear terms. The use of the
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bipartite graph reduces the problem related to taking the loop into account. Therefore as a
part of my research, I proposed an approach to extend the MPBUP algorithm for the poly-
nomial system using a multiplicative property, where polynomial terms were converted to the
bilinear terms. Then the algorithm can be successfully applied. This approach was success-
fully implemented on the polynomial graph network, and the MC validation was performed
to validate the output mean and covariance matrix generated.

After designing the algorithm, the main challenge is to apply the algorithm to a dynamical
model (i.e., SSM). A systematic approach has been defined as a part of my research. A
detailed procedure is given on converting the SSM into standard SOP expression to define
the coefficient matrix, input, outputs and draw the bipartite graph, which are the main
parts of the algorithm’s initialization. Finally, the MPBUP algorithm is implemented, and a
validation test was performed for the output mean and the covariance matrix. The algorithm
is extended for the actual real-time system (i.e., Four Tank System). A similar procedure was
followed for the state-space model, and output means and covariance matrix were generated.
MC simulation was performed to validate the result. The main challenge is applying the
algorithm and iteratively propagating the algorithm to find a robust threshold bound for the
probabilistic-based approach. The algorithm was implemented as a part of a probabilistic-
based technique to propagate the uncertainty at each time iteratively and a healthy robust
threshold bound is found. Threshold found using MPBUP algorithm into account behaved
as expected. In the healthy condition, it bounded the residual generated for the output
states. Additionally, it is not conservative like deterministic bounds, as the threshold value is
dynamic. It changes based upon the evolution of the states and propagation of uncertainty
at each step.

Finally, the various analysis of the algorithm was carried out in terms of simulation time,
complexity, type of input data that can be applied into the algorithm and comparative study
was conducted with respect to other algorithms. During the whole process, various constraints
or bottlenecks found in the algorithm were also discussed, such as precise mathematical model
is needed, complexity in of terms graph design, etc., are also discussed. In conclusion, I have
summarized answers to the research question formulated in Chapter 1

7-2 Future Work
The current research is focused on designing the framework and validating whether the al-
gorithm can be used to propagate uncertainty and whether a robust threshold bound can be
found using the algorithm. However, the comparison between the various algorithm was only
based on theoretical analysis. Thus, future work could focus on applying the algorithm to
real industrial applications and benchmarking it with other algorithms in terms of numerical
complexity, run time, robust threshold bound, fault detection, etc., to validate the algorithm
further.

Additionally, filters are also used for FDD. Extended Kalman filter (EKF) is used to propagate
uncertainty into the system at each time step. To propagate to uncertainty at each time step
covariance matrix is required, which can be generated using the MPBUP algorithm. Hence
a study can be done on how to integrate EKF with the MPBUP algorithm. Finally, this
study discussed how to apply the MPBUP algorithm to a polynomial system, and a validation
experiment is also performed. Research can be conducted on applying the MPBUP algorithm
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using Multiplicative property on a real-time system and further validating the approach.
Multiplicative property is used for converting the polynomial system to a bilinear system.
However, using this process can bit tedious and time-consuming, so other areas should be
explored on implementing the MPBUP algorithm on the polynomial dynamical model.
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Appendix A

Monte Carlo Simulation

Monte Carlo Simulation is a mathematical technique, which is used to estimate the possible
outcomes of an uncertain event. It involves a computational algorithm which rely on the
random sampling events to obtain the numerical results. The main principle of MC simulation
is use randomness to solve problem that may be deterministic in principle.

MC simulation finds its large application in understanding the impact of risk, uncertainty
in prediction and forecasting the model. MC experimentation are virtually used in variety
of domain such as, In engineering domain it is used to validate an any research output by
performing the same experimentation under the variety of uncertain conditions. It is also used
in finance sector to evaluate the investment in the project in terms of business unit, corporate
levels, etc. It is used to model the project schedules to determine overall outcome of the
model under the various uncertain events including the best and the worst case scenarios. It
is also used for portfolio evaluation, Option Analysis, etc [34].

A-1 Working

Working of the MC simulation can be summarised by building the model of the system.
Model replicates the dynamics of the system. All the possible factors (i.e. input, external
disturbance) which influence the dynamics of the system are inherited by uncertain random
number which follows a possible distribution. It then recalculates the result over and over,
each time using different sets of random values. Process is repeated thousands and thousands
of times to produce a large number of possible outcomes. Following the principle of large
number all the possible outcomes can be approximated by taking the empirical mean (i.e.
Mean value found by summing all the possible outcomes generated using the random number).
The empirical mean generated through the algorithm is compared against the analytical mean
to validate the results [23]. Therefore MC Simulation are used for long term prediction due
to their accuracy. As the number of input sample increases the range of output sample also
grows, allowing to project outcome further in time with more accuracy.
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Other than validation various other analysis can be drawn out such for the MC simulation
such as:

• Based on the distribution of output data from MC simulation through randomly gen-
erated input, various analysis can be made in terms of the spread of the data around
the analytical value in terms of taking best and worst case into consideration [28].

• Mean error and standard deviation of each sample can be calculated, comparing against
the analytical for accessing the robustness of the parametric inference under various
condition. It also helps to investigate the complete range of risk involved with each
risky input variable.

• It can also used to access the statistical distribution of the output data generated to
characterize the output variation.

A-2 Advantages and Disadvantages
The main advantages and disadvantages of using MC Simulation can be summarised as

Advantages

• It is an useful mathematical tool used for analyzing uncertain scenarios and providing
probabilistic analysis under variety of different situation.

• Provides a satisfactory approximate result to computationally expensive mathematical
problem.

• It can be used for both deterministic and stochastic problem.

• It is difficult to model the differ combination of values for different input values to see
the effect of different scenario. MC simulation helps in understanding the which input
have which value together certain outcome [17].

Disadvantages

• It is time consuming to generate a large number of samples to get desired output.

• Results obtained through MC simulation are only approximation of true solution, not
the exact solution.
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Appendix B

Mean and Covariance of Product of
Random Variable

B-1 The Variance of a Product
x and y be jointly distributed random variables with Expectation E[x] and E[y], Variance
V(x) and V(y) and Covariance C(x, y) respectively. Exact variance of the product xy can be
found as:-

By definition of variance for the product xy it can be described as

V(xy) = E[xy − E(xy)]2 (B.1)

Let ∆x = x− E(x) and ∆y = y − E(y)

xy = [∆x+ E(x)][∆y + E(y)]
= (∆x)(∆y) + (∆x) E(y) + (∆y) E(x) + E(x) E(y)

(B.2)

Taking Expectation of equation B.2

E(xy) = E[(∆x)(∆y)] + E(x) E(y)
= C(x, y) + E(x) E(y)

(B.3)

so, subtracting equation B.2 and B.3, we get:

xy − E(xy) = (∆x)(∆y) + (∆x) E(y) + (∆y) E(x)− C(x, y) (B.4)

square and taking expectation, we get:

V(xy) = E2(x) V(y) + E2(y) V(x) + E[(∆x)2(∆y)2] + 2 E(x) E[(∆x)(∆y)2] +2 E(y) E[(∆x)2(∆y)] +
2 E(x) E(y)C(x, y)− C2(x, y)

(B.5)
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where, E(∆y)2 = V(y) and E(∆x)2 = V(x). The main assumption for variance of the product
xy in equation B.5 is E(x) and E(y) are non-zero. This sollution even hold if E(x) = 0 and
E(y) = 0.

If x and y are bivariate normally distributed and third moments vanish and E[(∆x)2(∆y)2] =
V(x) V(y) + 2 C2(x, y), Therefore B.5 can be rewritten as

V(xy) = E2(x) V(y) + E2(y) V(x) + 2 E(x) E(y) C(x, y) + V(x) V(y) + C2(x, y) (B.6)

If x and y are uncorrelated such that C(x, y) = 0, then the equation B.5 can be rewritten
as

V(xy) = E2(x) V(y) + E2(y) V(x) + E
[
(∆x)2(∆y)2

]
+ 2E(x)E

[
(∆x)(∆y)2

]
+ 2E(y)E

[
(∆x)2(∆y)

]
.

(B.7)

B-2 The Covariance of Product
Let x, y, u and v are jointly distributed random variable. The two products xy and uv by
definition their covariance is described as

C(xy, uv) = E[xy − E(xy)][uv − E(uv)] (B.8)

let ∆x = x− E(x), ∆y = y − E(y), ∆u = u− E(u), ∆v = v − E(v). Multiply the expression
in equation B-1by the corresponding expression for uv = E(uv) and take the expectation.
Typical terms in product include (∆x)(∆u) E(y) E(v) whose expectation is C(x, u) E(y) E(v)
and (∆x) E(y) C(u, v), whose expectation is 0.

C(xy, uv) =E(x)E(u)C(y, v) + E(x)E(v)C(y, u) + E(y)E(u)C(x, v) + +E(y)E(v)C(x, u)
+ E[(∆x)(∆y)(∆u)(∆v)] + E(x)E[(∆y)(∆u)(∆v)] + E(y)E[(∆x)(∆u)(∆v)]
+ E(u)E[(∆x)(∆y)(∆v)] + E(v)E[(∆x)(∆y)(∆u)]− C(x, y)C(u, v)

(B.9)
If we get x = u and y = v then equation B.9 reduces to B.5, such that C(xy, xy) =
V(xy).

If we set u = 1 such that E(u) = 1 and ∆u = 0, Therefore equation B.9 can be rewritten
as

C(xy, v) = E(x) C(y, v) + E(y) C(x, v) + E[(∆x)(∆y)(∆v)] (B.10)

Under the multivariate condition all the third moment vanishes, while E[(∆x)(∆y)(∆u)(∆v)] =
C(x, y) C(u, v) + C(x, u) C(y, v) + C(x, v) C(y, u), Therefore equation B.9 reduces to

C(xy, uv) = E(x) E(u) C(y, v) + E(x) E(v) C(y, u) + E(y) E(u) C(x, v) + E(y) E(v) C(x, u)
+ C(x, u) C(y, v) + C(x, v) C(y, u)

(B.11)
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MC Simulation Covariance Validation

MC simulation is conducted to validate the output mean and covariance matrix generated
through the MPBUP algorithm for the various models that were studied and analyzed during
the study. In this section, the empirical mean for covariance matrix is generated under
various sample sizes by the MPBUP algorithm for the different network graphs are discussed.
The setup to conduct the validation experiment for the output covariance matrix is already
discussed in the previous sections.

C-1 Basic Network- MC Covariance validation

With reference to the section 4-3-2. The analytical covariance matrix and the empirical
covariance matrix generated under various sample sizes is discussed.

Analytical Mean:

Σd =


0.1056 0.7631 0.1625 0.1625 1.0563
0.7631 1.0567 1.1741 1.1741 1.0567
0.1625 1.1741 0.2500 0.2500 1.6250
0.1625 1.1741 0.2500 0.2500 1.6250
1.0563 1.0567 1.6250 1.6250 1.4625
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Empirical Mean:

Σd(10) =


0.1056 0.7870 0.1625 0.1625 1.0892
0.7870 1.0567 1.2107 1.2107 1.0567
0.1625 1.2107 0.2500 0.2500 1.6757
0.1625 1.2107 0.2500 0.2500 1.6257
1.0892 1.0567 1.6257 1.6257 1.4625



Σd(100) =


0.1056 0.7662 0.1625 0.1625 1.0605
0.7662 1.0567 1.2107 1.2107 1.0567
0.1625 1.2107 0.2500 0.2500 1.6315
0.1625 1.2107 0.2500 0.2500 1.6315
1.0605 1.0567 1.6315 1.6315 1.4625



Σd(1000) =


0.1056 0.7615 0.1625 0.1625 1.0540
0.7615 1.0567 1.1716 1.1716 1.0567
0.1625 1.1716 0.2500 0.2500 1.6216
0.1625 1.1716 0.2500 0.2500 1.6216
1.0540 1.0567 1.6216 1.6216 1.4625



Σd(10000) =


0.1056 0.7633 0.1625 0.1625 1.0565
0.7633 1.0567 1.1744 1.1744 1.0567
0.1625 1.1744 0.2500 0.2500 1.6254
0.1625 1.1744 0.2500 0.2500 1.6254
1.0565 1.0567 1.6254 1.6254 1.4625



Σd(100000) =


0.1056 0.7631 0.1625 0.1625 1.0563
0.7631 1.0567 1.1741 1.1741 1.0567
0.1625 1.1741 0.2500 0.2500 1.6250
0.1625 1.1741 0.2500 0.2500 1.6250
1.0563 1.0567 1.6216 1.6216 1.4625



Σd(1000000) =


0.1056 0.7631 0.1625 0.1625 1.0563
0.7631 1.0567 1.1741 1.1741 1.0567
0.1625 1.1741 0.2500 0.2500 1.6250
0.1625 1.1741 0.2500 0.2500 1.6250
1.0563 1.0567 1.6250 1.6250 1.4625



Around 1000000 samples convergence is seen between the empirical and analytical covariance
matrix values.

C-2 State Space Network- MC Covariance validation

With reference to the section 5-2-2. The analytical covariance matrix and the empirical
covariance matrix generated under various sample sizes is discussed.
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Analytical Mean:

Σd =



10.75 0 0 0 0 0 0 0 0 0
0 10.75 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Empirical Mean:

Σd(10) =



10.2588 0 0 0 0 0 0 0 0 0
0 5.9438 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Σd(100) =



10.6158 0 0 0 0 0 0 0 0 0
0 10.2223 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Σd(1000) =



10.2957 0 0 0 0 0 0 0 0 0
0 10.2924 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
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Σd(10000) =



10.7833 0 0 0 0 0 0 0 0 0
0 10.6866 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Σd(100000) =



10.7689 0 0 0 0 0 0 0 0 0
0 10.7509 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Σd(1000000) =



10.7423 0 0 0 0 0 0 0 0 0
0 10.7363 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5



Σd(2000000) =



10.7500 0 0 0 0 0 0 0 0 0
0 10.7500 0 0 0 0 0 0 0 0
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5
0 0 0.25 0 0 0 0.25 0 0 0
0 0 0 0.25 0 0 0 0.25 0 0
0 0 0 0 0.5 0 0 0 0.5 0
0 0 0 0 0 0.5 0 0 0 0.5


Around 2000000 samples convergence is seen between the empirical and analytical covariance
matrix values.
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C-3 Four Tank System - MC Covariance Validation
With reference to the section 5-4-2. The analytical covariance matrix and the empirical
covariance matrix generated under various sample sizes is discussed. Analytical:

Σd =


152.8332 152.6000 152.6401 152.6000
152.6000 152.8300 152.6000 152.6448
152.6401 152.6000 152.7986 152.6000
152.6000 152.6448 152.6000 152.7813


Empirical:

Σd(10) =


152.3654 152.1322 152.1723 152.1322
152.1322 152.3622 152.3122 152.1770
152.1723 152.1322 152.3308 152.1322
152.1322 152.1770 152.1322 152.3136



Σd(100) =


152.8702 152.6370 152.6771 152.6370
152.6370 152.8670 152.6320 152.6817
152.6771 152.6370 152.8356 152.6370
152.6370 152.6817 152.6370 152.8183



Σd(1000) =


152.9560 152.7228 152.7629 152.7228
152.7228 152.9528 152.7228 152.7676
152.7629 152.7228 152.9214 152.7228
152.7228 152.7676 152.7228 152.9041



Σd(10000) =


152.7528 152.5196 152.5597 152.5196
152.5196 152.7496 152.5156 152.5643
152.5597 152.5196 152.7182 152.5196
152.5196 152.5643 152.5196 152.7009



Σd(100000) =


152.8778 152.6446 152.6847 152.6446
152.6446 152.8796 152.6446 152.6893
152.6847 152.6446 152.8432 152.6446
152.6446 152.6893 152.6446 152.8259



Σd(1000000) =


152.8332 152.6000 152.6401 152.6000
152.6000 152.8300 152.6000 152.6448
152.6401 152.6000 152.7986 152.6000
152.6000 152.6448 152.6000 152.7813


Around 1000000 samples convergence is seen between the empirical and analytical covariance
matrix values.
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Glossary

List of Acronyms

FAR False Alarm Rate
FDD Fault Detection and Diagnosis
FTC Fault Tolerant Control
MDR Missed Detection Rate
FDI Fault Detection and Identification
FD Fault Detection
MCC Multivariate Control Charts
MD Mahalanobis Distance
PC Polynomial Chaos
PDF Probability Density Function
BN Bayesian Networks
BP Belief Propagation
MPBUP Message Passing Bilinear Uncertainty Propagation
SOP Sum of Product
MC Monte Carlo
LLN Law of Large Numbers
SSM State Space Model
MIMO Multiple-Input and Multiple-Output
EKF Extended Kalman filter

List of Symbols

α User Defined Constant

d̄ Mean Vector of d

r̄y Output Residual Mean

χ(k) Process Noise

ηi Water Diverted from one tank to another

γ(k) Total Uncertainty Acting in the System
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x̂(k) Estimated Value of the State
κl Input Coefficient Vector in MPBUP algorithm
κl Input Coefficient Vector in MPBUP algorithm
J (q) Transversed Edge Set
V(q) Visited Node Set
νi Manipulated Input acting in the System
ωl Input Coefficient Matrix in MPBUP algorithm
ωl Input Coefficient Matrix in MPBUP algorithm
ψl Input-Output Coefficient Matrix in MPBUP algorithm
ψl Input-Output Coefficient Matrix in MPBUP algorithm
Σd Covariance Matrix of d
Σry Output Residual Covariance
θl Output Coefficient Vector in MPBUP algorithm
θl Output Coefficient Vector in MPBUP algorithm
Ã State Matrix Uncertainty
B̃ Input Matrix Uncertainty
C̃ Output Matrix Uncertainty
εα Probabilistic Threshold Bound
ϕ Coefficient Matrix in MPBUP Algorithm
ςi Pump gain in the Four Tank System
ξ(k) Measurement Noise
d Vector containing Concatenation of all the Nodes
fh Factor Nodes in MPBUP Algorithm
rx Residual in States
ry Residual in Output States
xi Level of Water in Each Tank

A State Matrix
a Output acting in the MPBUP algorithm
Ai Area of the tank
api Area of the Pipe
B Input Matrix
b Input acting in the MPBUP algorithm
C Output Matrix
h Sampling Time
L Observer Gain
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