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Abstract:

This paper presents the first d ecentralized m ethod to e nable r eal-world 6-DoF
manipulation of a cable-suspended load using a team of Micro-Aerial Vehicles
(MAVs). Our method leverages multi-agent reinforcement learning (MARL) to
train an outer-loop control policy for each MAV. Unlike state-of-the-art controllers
that utilize a centralized scheme, our policy does not require global states, inter-
MAV communications, nor neighboring MAV information. Instead, agents com-
municate implicitly through load pose observations alone, which enables high
scalability and flexibility. It also significantly re duces co mputing co sts during
inference time, enabling onboard deployment of the policy. In addition, we
introduce a new action space design for the MAVs using linear acceleration
and body rates. This choice, combined with a robust low-level controller, en-
ables reliable sim-to-real transfer despite significant uncertainties caused by ca-
ble tension during dynamic 3D motion. We validate our method in various real-
world experiments, including full-pose control under load model uncertainties,
showing setpoint tracking performance comparable to the state-of-the-art central-
ized method. We also demonstrate cooperation amongst agents with heteroge-
neous control policies, and robustness to the complete in-flight loss of one MAV.

Videos of experiments: https://autonomousrobots.nl/paper_websites/
aerial-manipulation-marl

Keywords: Aerial Manipulation, Multi-Agent Reinforcement Learning, Micro
Aerial Vehicles

1 Introduction

Autonomous Micro Aerial Vehicles (MAVs) excel in agility, speed, and mobility, offering significant
capabilities for transporting loads to hazardous or remote locations. This makes them well-suited to
assist humans with tasks such as construction [1], delivery [2], and inspection [3]. Beyond trans-
portation, UAVs are also increasingly explored for object manipulation, enabling tasks such as aerial
grasping [4], and contact-based inspection [5]. Unlike traditional robotic arms, aerial manipulation
must account for underactuation, external disturbances, and dynamic stability, making control and
planning particularly challenging. These capabilities open up new possibilities in areas like disas-
ter response, infrastructure maintenance, and industrial automation, where UAVs can interact with
objects in environments that are otherwise inaccessible.

Different mechanisms can be used to achieve manipulation [6], such as actuated robotic arms [7], as
well as passive mechanisms such as spherical joints [8, 9] and cables [10, 11]. Actuated mechanisms
require more power and are also heavier, resulting in a more costly design of the UAV. Passive
mechanisms, while lighter and less costly, add more degrees of underactuation to the system, making
the system more difficult to control. In configurations where the load is directly attached to the UAVs
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Figure 1: Multi-MAV lifting system performing full-pose control of a cable-suspended load. Left:
simulation environment used to train the decentralized outer-loop control policy. Right: policy
transferred to the real system.

(e.g. through spherical joints), the agility of the system is limited due to the extra inertia induced
by the load. The cable-suspended load solution is a simple and effective strategy that allows agile
transport of the load, but the non-linear coupling dynamics between the load and the UAV and the
swing of the load affect the flight dynamics of the UAV.

While a single low-cost MAV has limited payload capacity, collaborative teams of MAVs can trans-
port significantly heavier loads. In addition, by connecting at least 3 MAVs with the load at different
points using tethers, the full pose of the load can be controlled by changing the position of the
MAVs [12], yielding a cooperative cable-suspended manipulation solution, which shows great po-
tential for aerial-based construction, inspection, and resecuring [13, 14, 15, 16, 17].

To coordinate and control MAV fleets, the state-of-the-art method [17] employs a centralized frame-
work that accurately captures the strong dynamical coupling between the MAVs and the suspended
load. This ensures safety and stability while addressing the significant underactuation inherent to
cable-suspended systems, preventing actuator saturations and reciprocal collisions. However, us-
ing centralized control strategies for such systems suffers from critical drawbacks: computational
complexity tends to scale exponentially with the number of agents for many approaches, render-
ing real-time control infeasible for larger teams with a centralized scheme [17, 18]. In addition,
dependence on global state information and centralized communication is often impractical due to
limits on sensors and communication bandwidth. A plausible solution, decentralization, remains an
open challenge to effectively coordinate MAV fleets due to partial observability, limited commu-
nication bandwidth, and decision-making under strong dynamical coupling between agents while
co-manipulating an object.

In this work, we present the first decentralized algorithm to achieve a real-world demonstrated full-
pose manipulation of a cable-suspended payload using a team of MAVs. Our method leverages
multi-agent reinforcement learning (MARL) and does not require any inter-agent communica-
tion. Instead, each agent only takes their own state and identity, the load pose, and the target load
pose as observations. We train the policy through MARL in a centralized training with decentralized
execution (CTDE) paradigm using multi-agent proximal policy optimization (MAPPO) [19]. Each
MAV learns to communicate implicitly through the load pose information. To fill the sim-to-real
gap in this highly dynamic cooperative task, we design the action space of the RL policy as refer-
ence linear accelerations and body rates of the MAV and combine the RL policy with a low-level
controller based on incremental nonlinear dynamic inversion (INDI) [20, 21, 22]. The low-level



controller follows the linear acceleration command with the body rate reference as the feedforward
commands, ensuring agile and smooth control maneuvers during the cooperative manipulation.

Our method enables zero-shot transfer of the policy from simulation to real-world deployment to
achieve full-pose control accuracy comparable to the state-of-the-art centralized controller [17], and
is deployed fully onboard. In addition, experiments with real MAVs demonstrate that our method
remains robust under load model uncertainties, operates effectively in heterogeneous agent settings
where one MAV uses a different controller, and remains functional even when one of the MAVs
completely fails. We also show setpoint tracking with 4 MAVs, and evaluate its trajectory tracking
capabilities.

Our core contributions are as follows:

* The first method to achieve fully decentralized and onboard-deployed cooperative aerial
manipulation in experiments with real MAVs, without any inter-agent communication be-
tween agents.

* A novel action space design for MAV's manipulating a cable-suspended load, together with
a robust low-level controller, enabling successful zero-shot sim-to-real transfer.

* First demonstration of robust full-pose control of the cable-suspended load under hetero-
geneous conditions and even under complete in-flight failure of an MAV.

2 Related works

Cooperative aerial manipulation of a cable-suspended load typically embraces a centralized
paradigm to consider the cable-load-MAVSs system as a whole and requires global state observations
to ensure safety and performance. Early research on multi-MAV cable-suspended load problems
often relied on model simplifications, such as assuming a quasi-static regime to ignore dynamic
coupling effects [12, 23, 24, 25], which cannot address force-related constraints and perform dy-
namic motions. Another class of methods leverages system flatness [26] and dynamic equations to
account for dynamic coupling effects. An example is the cascaded scheme, which employs an outer-
loop geometric controller to generate the commanded wrench for the load, distributes it as desired
cable tensions, and executes it through inner-loop controllers of MAVs [14, 27, 28, 29]. The outer-
loop controller can be replaced by various approaches, such as inverse dynamics control [30], linear
quadratic regulator [15], and nonlinear model predictive control (NMPC) [16]. Recent work [17]
leverages whole-body dynamics and NMPC to generate reference trajectories followed by an adap-
tive low-level controller, showing high agility and accuracy.

However, these centralized methods require exponentially higher computational budgets and com-
munication burdens with the number of agents involved. Therefore, decentralized controllers, such
as distributed MPC [31, 32] have been proposed and tested in simulation to address the problem with
the computational issues. But these methods still require reliable inter-agent data transfer to obtain
real-time states from other agents, which does not fundamentally solve the problems with limited
communication bandwidth.

Multi-agent reinforcement learning has been extensively studied for complex multi-agent systems,
including cooperative scenarios [33, 34, 35]. Beyond achieving expert-level performance in video
games [36, 37], MARL has been successfully applied to robotics, enabling decentralized control
of multiple agents. For instance, researchers have leveraged MARL to develop cooperative strate-
gies in robot football [38, 39], as well as multi-robot object manipulation with quadrupedal robots,
including pushing [40] and cable-based towing [41]. Unlike our approach, these manipulation meth-
ods [40, 41] rely on neighboring agent information through communication or onboard perception.
In many cases, MARL is employed to optimize high-level task objectives while relying on mid- and
low-level controllers for motor and sub-task execution, capitalizing on RL’s ability to optimize a
long-horizon task-level objective [42].



Recent work by [43] demonstrates MARL’s potential for cooperative object manipulation using sim-
ulated humanoids, relying solely on object bounding box information without explicit inter-agent
communication. However, their approach depends on handcrafted reward functions that guide the
humanoids toward predefined grasping points and walking behaviors. In MAV applications, MARL
has been explored for tasks like swarming [44], but challenges remain due to the platform’s agility,
instability, and reliance on high-frequency, low-latency control [45]. Recently, MARL has shown
potential for training multi-MAV lifting systems using global state observations [46]. However, a
significant challenge remains to address the sim-to-real gap and partial observability, especially for
the multi-MAV lifting system, where dynamic uncertainties are substantial due to complex aerody-
namic disturbances and unknown cable tensions.

Our method effectively bridges this gap by leveraging multi-agent reinforcement learning (MARL)
to achieve the first real-world demonstration of decentralized aerial manipulation, operating with-
out global state observations or inter-agent communication. Furthermore, the method is deployed
entirely onboard, enabled by its computational efficiency.

3 Preliminaries

3.1 Single-agent reinforcement learning

Reinforcement Learning (RL) is a framework for sequential decision-making in which an agent
learns to act in an environment in order to maximize cumulative reward over time. The agent inter-
acts with the environment by observing its state, taking actions, and receiving feedback in the form
of rewards. Through repeated interactions, the agent learns a policy that maximizes the expected
cumulative reward based on this feedback.

The RL problem is typically modeled as a Markov Decision Process (MDP), defined by the tuple:

M = (S,A,P,R,"}’)
where:

» S: The set of possible states the agent can occupy.
» A: The set of actions available to the agent.

* P(s' | s,a): The transition probability function, which defines the probability of moving
to state s’ given the current state s and action a.

* R(s,a): The reward function, giving the expected immediate reward for taking action a
in state s.

* v € [0,1]: The discount factor, which balances the importance of immediate and future
rewards.

The agent’s objective is to learn a policy 7(a | s), which defines a probability distribution over
actions given a state, such that it maximizes the expected return, defined as the sum of discounted
future rewards:

o
k
Gy = Z Y Tt4k41
k=0

A central concept in reinforcement learning is the value function, which estimates the expected
return associated with states or state-action pairs under a given policy. These functions help the
agent evaluate how favorable it is to be in a given state, or to take a particular action in that state.



* The state-value function V™ (s) is the expected return when starting in state s and follow-
ing policy 7 thereafter:
St = S‘|

* The action-value function Q™ (s, a) is the expected return when starting in state s, taking
action a, and then following policy 7:

Vﬂ(8> = ]Eﬂ— lz ’Yk’l"t+k+1
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These value functions form the basis of many RL algorithms. For instance, value-based methods
such as Q-learning [47] aim to estimate the optimal action-value function Q*(s, a), from which an
optimal policy can be derived. In contrast, policy-based methods [48] optimize the policy directly,
often using gradients of the expected return with respect to the policy parameters.

3.2 Actor-Critic methods

Actor-critic methods [49] combine the strengths of both value-based and policy-based approaches.
These methods maintain two separate models: an actor, which represents the policy 7y (a | s) and is
responsible for selecting actions, and a critic, which estimates the value function (typically V™ (s)
or Q™ (s, a)) and provides feedback to improve the actor’s policy. The value function can be used as
a baseline [48] and helps reduce the variance of the policy gradient estimates, leading to more stable
and efficient learning.

A notable strength of actor-critic methods is their ability to operate in continuous action spaces,
where the actor typically learns a parameterized distribution (e.g., Gaussian) over real-valued ac-
tions. This makes them particularly well-suited for robotics and control problems, where both ac-
tions and value estimates are continuous.

3.3 Multi-agent reinforcement learning

While traditional reinforcement learning considers a single agent interacting with a stationary envi-
ronment, many real-world problems involve multiple agents that must learn and act simultaneously.
MARL extends the RL framework to such settings, where each agent interacts with both the envi-
ronment and other agents, either cooperatively, competitively, or in a mixed manner.

In the MARL setting, the environment is typically modeled as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) [50], where each agent ¢ observes local information oi,
selects an action a, and receives an individual or shared reward. The joint actions of all agents
influence the global state transitions and reward structure, causing the optimal policies to adapt in
response to the learning of other agents, which results in a non-stationary learning environment from
each agent’s perspective.

A key challenge in MARL is the increased complexity due to the joint action space and the non-
stationarity introduced by concurrently learning agents. To address this, various approaches have
been proposed, such as:

* Centralized training with decentralized execution (CTDE) [51], where agents are
trained with access to global information but act using only local observations at test time.

¢ Value decomposition methods [52], which learn a centralized value function that factorizes
across agents (e.g., VDN [52], QMIX [53]).

¢ Communication and coordination strategies that allow agents to share information or
plan jointly.



Parameter Sharing is a common technique in MARL where multiple agents share and update the
same policy network parameters during training. Instead of learning separate policies for each agent,
a single shared policy is trained and used by all agents. This approach reduces the number of pa-
rameters to learn, improves sample efficiency, and promotes coordination by encouraging agents to
learn common behaviors [54]. Parameter sharing is especially effective when agents are homoge-
neous and operate in similar environments or roles. However, it may be less suitable when agents
have distinct capabilities or objectives.

In this work, we assume the agents are homogeneous and implement parameter sharing. The policies
are trained using MAPPO [19], a multi-agent actor-critic algorithm, in CTDE fashion.

3.4 MAYV dynamic model

To model the MAV in the simulation and make use of the robust low-level controller, we use a
rigid-body model of a quadrotor [22] to model the MAV dynamics.

Using 6-DoF rigid body kinematic and dynamic equations, we can describe the translational dynam-
ics by:

s Tzp + 1,

& +g (D

m

Where £ is the position of the quadrotor center of mass (CoM), T is the collective thrust, m is the
total mass of the quadrotor, g € R? is the gravitational vector, and f, are the external aerodynamic
drag forces during high-speed flights.

The rotational kinematics and dynamics of the system are given by
.1 0
Q% =1,af = -QF x 1,08 + 7 +d, 3)

where ® represents quaternion multiplication. The vector €2 denotes the angular velocity of the
body frame Fp relative to the inertial world frame F7, and its time derivative, c, corresponds to
the angular acceleration. In our formulation, we work with QB = g, Qy, QZ]T, which is the
representation of angular velocity in the body frame and can be directly obtained from the IMU. The
matrix I, defines the inertia matrix of the quadrotor. The term T captures the net torque produced
by the propellers, while d, models the uncertainties on the body torques caused by high-order
aerodynamic effects, center of mass bias, or distinction among rotors.

The combined thrust and rotor-induced torques can be expressed as functions of the rotor speeds:

T .
{T} = Giu+ Gow + G3(Q)w “)
where
u = qw (5)
represents the individual thrust produced by each rotor, with o denoting the Hadamard power op-

eration. Here, ¢, is the thrust coefficient and w represents the vector of angular velocities for each
propeller. The matrices G to G3 are defined as:

1 1 1 1
G, - Ilsinf  —=lsinf —Ilsinf Isinf ©)
L= |—lcosp —lcosfB lcosB lcosf

cq/ct —cq/ct cqfct  —cq/ct
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In these equations, c, stands for the torque coefficient, while 5 is the angle between the forward
direction and the propeller, and [ is the arm length from the quadrotor base to the propeller. The
term [, denotes the rotor’s moment of inertia about the zp axis.

The terms Gow and G3(9)w correspond to torques arising from rotor angular acceleration and
gyroscopic effects, respectively. These terms are often omitted in controller design. In our work, we
incorporate the inertial torque term Gow at test time using the INDI controller, but neglect it during
training. G3(Q)w is omitted because of the symmetry of quadrotors, where the gyroscopic effects
of the rotors (approximately) cancel each other out.

4 Methods

4.1 Problem formulation
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Figure 2: Overview of our method. Dotted lines indicate components only for training; dashed lines
indicate those only for real-system deployment; solid lines for both. The training process involves
the centralized critic (which observes the privileged global state), direct access to MAV states, and
the actuator model that maps rotor speeds to thrust forces. Shared actors make decisions based on
local observations, without access to other agents’ states. The output actions, namely acceleration
and body rates, are tracked by a robust model-based low-level controller based on INDI.

An overview of the full approach is shown in Figure 2. Our method utilizes MARL to train an
outer-loop control policy, which generates reference accelerations and body rates for the low-level
controller in real-time based on local observations of the ego-MAV state, payload- and goal pose.
The low-level controller, including an INDI attitude controller, tracks these references based on the



MAYV model and accelerometer measurements. The privileged full state is observed by the cen-
tralized critic during training, which is discarded at execution time. Collected experience is shared
across actors to update the parameters of a shared policy. This enables training to be centralized
while execution remains decentralized, allowing each agent to run the policy independently onboard
after zero-shot transfer from simulation to the real world.

We model the cooperative aerial manipulation as a decentralized partially observable Markov de-
cision process (Dec-POMDP) [50] with a shared reward function. A Dec-POMDP is defined by
(Z,S8,A,0,P,R,~), where T denotes the set of agents with the total number of agents being equal
to N, S is the environment state, A ={a;}}¥, is the joint action space of all agents, O ={0;} ¥ ;
represents each agent’s partial observation of the environment, P : S X A — § is the transition
model, R : S x A xS — R is the shared reward function and -y is the discount factor. At each
timestep ¢, the current state s; € S transitions to a new state s; 1 based on the joint action a; € A
and the transition function P. Each agent ¢ then receives the shared reward as feedback from the
environment.

Our approach employs the CTDE paradigm [51], utilizing privileged global state information during
training for the asymmetric centralized critic while relying solely on local observations for policy
execution. Each agent i has a policy 7; : w;(0;) — a; that maps its local observation, processed
through its observation function w;, to an action a;. We implement parameter sharing across agents
(i.e., m; = m; Vi, j), thus reducing 7; to a homogeneous policy 7. The set of observation functions
for all agents can be denoted as = {w; } ;. The final decentralized partially observable problem
is thus defined by the tuple (Z, S, A4, 0,Q, P, R,~)

4.2 Observations and rewards

The state of each MAV is given by ; = {pM,i, Ryri, v, .QML} , Where P € R3 denotes the

MAV’s position, Ry ; € R? is the vector composed of elements of its rotation matrix, v s; € R3
and 2,7, € R3 denote its linear and angular velocities. We use the subscript ¢ to denote the ¢-th

MAV. The state of the load is given by z; = { pr, Rp,vp, 12 L} where p; € R3 denotes the

load’s position, Ry, € R? is the vector composed of elements of its rotation matrix, vy € R? and
£2; € R3 denote its linear and angular velocities. The state of the goal relative to the payload is

denoted by ¢ = [dg, Rg} where dg € R3 and R € R represent the goal position relative

to the current load position and the vector composed of elements of its relative rotation matrix from
the current load orientation to the goal orientation respectively. All quantities are described in the
inertial world frame 7. The global state that is observable to the centralized critic during training
is then denoted as:

s = |:mLa TG, TM,1, M2, " y LTM,N (9)

where N is the total number of MAVs. The local policies have an observation space that only
includes the load pose, relative goal terms, their own respective MAV state, and a one-hot vector
e; indicating their identity to enable role differentiation among homogeneous agents, as the policy
network parameters are shared across all MAVs. The observation space for the -th MAV is described
as:

0; = [pL, Ry, xq, T, ei] (10

As the problem is partially observable, we use a history of observations by stacking the current and
last 2 observations of the policy [55].

We train the policies using MAPPO, a model-free MARL algorithm that extends PPO [56] with
CTDE. The reward at time ¢, denoted as 7, is defined as:

ry = 7,.115308 4 r?rl + 7,,)(siovvn + T,?ct + T,lar + T,zhrust7 (11)

ori

where 7}°° and 79*! are rewards to track the goal position and orientation for the load, 7{°*" encour-
ages the MAVs to aim their (proxy) downwash away from the load for stability against aerodynamic



disturbances, r2°* and rP* penalize action changes from the last time step and large body-rate outputs
respectively for smoother flight, "t penalizes outputting large thrusts which encourages energy
efficiency.

The reward function components are formulated as:

pos

'rt = )\1 exp (—AZ HpG _pL||)7
o™ = Az exp (—\f(qa, qL)),

r?own = X5 (1 — exp (7/\6 : Hll,in | fint (Paris ti) — pLH)) )
1 = A7 exp (_ I(a: — at,1)/N||2> ’

= sexp (—[|QF/N])
Ttthrust = Ao exp (7 maX(’I;e/Tmax)) )

(12)

The amount of MAVs is denoted by N, and a represents the control command, and 27 the body
rate part of the control command. T € R*V is the vector containing the rotor thrusts from each
MAYV, which is then normalized by the maximum thrust output Ti,ax. A1, A2 - - - Ag are different
positive hyperparameters. All components are normalized by the simulation frequency. The chosen
hyperparameters can be found in Table 2.

Here p¢ and py, denote the goal and load positions respectively. 0(qq, gr.) denotes the quaternion
error magnitude function which is calculated using the quaternion representation of the goal orien-
tation g, and the load orientation gr,. The error is calculated by taking the norm of the axis-angle
representation of the quaternion difference gg ® gy, where gy, is the conjugate of qr,.

0(ac,ar) = [[¢ (qe,L)|l (13)
* T
Qe, L. = dG & qp, = [qe,L,wy Qe ,L,x>Y9e,L,y> qe7L,z] (14)
v Qe,L,x
Qe,r) = gy Where v = |de,ry (15)
6 Ge,L,z

When 0 = 0, the bottom fraction in Equation 15 will be undefined. Therefore, as § — 0, we use the

. . sin(6/2) __ 1 0>
Taylor approximation —;~~ ~ 5 — .

The function fin (pas,i, t;) computes the intersection point between two elements: the line defined
by the i-th MAV’s position pj ; and its thrust direction £;, and the plane containing the payload.
This payload plane is characterized by its normal vector n = £, x £,, where £, and £, represent
arbitrary vectors spanning the load’s local x-y plane. From all such intersection points computed
for each MAV, the operator min selects the closest one to the payload position, corresponding to the
most significant downwash effect.

The intersection calculation expands to:

(16)

d_n'pM,i>
— |t

fint(Pari, ti) = Doy + (

where d = n - pr, defines the payload plane’s offset from the origin through the payload position
pL.

4.3 Action space and low-level controller

To balance reliable sim-to-real transfer with sufficient control authority, the choice of action space
is critical. Prior work in single MAV control demonstrates that high-level outputs (e.g., position or



velocity) enhance robustness to disturbances and sim-to-real gaps but limit performance, whereas
low-level outputs (e.g. snap) improve tracking precision at the cost of larger transfer discrepan-
cies [57, 58]. To address this trade-off, we propose a mid-level action space in desired accelerations
and body rates (ACCBR). This approach preserves adequate control capability while also being
robust against uncertain disturbances and model mismatches from the cable-suspended load.

The low-level controller converts the acceleration reference a; ror from the outer-loop policy to the
thrust direction command through the following acceleration controller:

Zi,des = Hai,ref —g—- fi7extH7 fi,ext = M; @; filtered — fi,ﬁltered (17)

where g is the gravity vector, external forces fo.y, primarily due to the cable tensions, are estimated
using the MAV mass m;, and filtered unbiased accelerometer measurements a; fitered and collective
thrust f; fitered are computed from a classical quadratic thrust model and filtered rotor speed feed-
backs [22]. In the training stage, the acceleration and collective thrust measurements are directly
taken from the true simulation states, without any noise or filtering. Given a reference yaw angle
1, which is always zero in our case for all MAVs, we get an intermediate axis ¢, ¢ from which
the desired attitude command can be obtained through the following equations:

X, d = [COS Yy, sinh,, O]T (18)
; X X,
YVid = Zi des XC;,d (19)
1Zi,des X X,
Xid = Yi,d X Zi,des (20)
R(qi,a) = [Xi,d: Yi,d> Zi,des) 21

where q; 4 is the desired attitude quaternion for the i-th MAV.

Since controlling the heading of a quadcopter is more likely to cause motor saturation, because its
control effectiveness is less effective than pitch and roll control [22], we use tilt-prioritized attitude
control [59] to handle yaw error G ; yaw separately from the pitch and roll (reduced-attitude) errors
e,i rea for the i-th MAV:

T _

[Geiyws Qeyiyzs Qeyivys Geviz] = qia®q; 1 22)

~ 1 Qe i,wle,i,x — Ge,i,y9e,i,z
Qe ired = ﬁ Qe,i,wle,i,y T eyixle,i,z (23)

1 0
de,i,yaw = ﬁ 0 (24)
W Qe i,z

Olz,d q,redqe, i red + q,yaw Sgn(qﬁhw)qeﬁz,yaw + Q( B ! ) ( )

where kg req and kg yaw are positive gains for the reduced-attitude and yaw control errors, respec-
tively. K¢ is a positive gain for the angular velocity error from the policy output body rates Qfd.
The gains kg req, kq,yaw and Kq are identical for all MAVs and are specified in Table 4.

The equations above do not capture all MAV dynamics, such as certain unmodeled rotational effects
(d; in Equation 3). These terms are often difficult to model accurately in real-world systems. To
handle this, we use INDI, a robust controller that combines direct sensor measurements with a
dynamic model to improve robustness against model uncertainties and external disturbances. Its
effectiveness has been demonstrated in prior work [20, 21, 22].

10



Given the angular acceleration afd and linear acceleration commands a; ,f, the desired collective
thrust 75 4 is retrieved by:

Ti.a = || Zi,des|| M (26)

Then, from INDI, the desired body torque is retrieved by:

Tia=Tis+ 1, (afd - fof) @7)

So, the unmodeled rotational effects are captured by €2; r and filtered body torque 7; ¢, where:

i = Ghwi p + At Go(wi p — wi k1) (28)

is calculated from rotor speed measurements. The body rates fo and rotor speeds w; ¢ are pro-
cessed through identical low-pass Butterworth filters (second-order, 12 Hz cutoff), which allows
them to be synchronized. Here, the subscript £ — 1 denotes the previous time step value, while At
is the sampling interval. The matrices G, and G, are constructed using the final three rows of their
respective complete matrices.

From the following equation, the rotor speed command can be solved:
Tidl — Gra? e+ At Ga(wie — Wi 1) (29)
Tial = 1W; Ct 2(Wi ¢ i,c,k—1)Ct,

where w; . represents the sole unknown quantity that can be determined through numerical methods.

4.3.1 Training time simplifications

It should be noted that the low-pass filters are not required during training time, since there is no
noise present in the simulation. In this case, all MAV states are retrieved directly from the simula-
tion data buffers. Moreover, since angular rotor dynamics and complex aerodynamic torques (G2
and G3 terms in Equation 4) are not simulated in the training phase, the yaw torque command is
directly retrieved by taking the last element of the desired body torques in simulation 7; 45 [60] from
Equation 30, which neglects uncertainties on the body torque.

Tias = Toopy + QF x I,QP (30)

With the simplified rotor dynamics, we can drop the G5 term from Equation 29 and retrieve the
commanded rotor speed commands in the simulation during the training phase w; , through:

-1 |1
wi’s = Gl 1 |:7-Z);l:| /Ct (31)

The implementation of the low-level controller is modified from [61]. We refer readers to [20, 21,
22, 62] for derivations and further details on INDI.

To simulate the effect of motor inertia, we implement a first-order low-pass filter that acts as an
actuator model. Given the commanded rotor speeds w; s € R*, the final rotor speed command
wi sa € R is calculated as:

Wi sa = (]- - 5)“"1',5 + Bwi,sa,kfl (32)

where k£ — 1 indicates the previous timestep, and
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—At

B = exp( ) (33)

T

where ¢, is the motor time constant. The rotor speeds are then converted into forces F; , € R*
and yaw torques M; , € R, and applied to the MAV rotor bodies and MAV base respectively in the
simulation through:

F,, = qw; (34)

1,5a

Mi,s = cqw2 -d (35)

i,5a

Where d € R* is the vector indicating the direction of each rotor (clockwise or counter-clockwise).

4.4 Training setup

We train our method completely in simulation and achieve zero-shot transfer to real-world experi-
ments. The simulation environment is built using NVIDIA’s Isaac Lab [63], and the MARL algo-
rithms are modified from [64]. Training was conducted on a consumer-grade RTX 3090 GPU and
completed in 17 hours. The network architecture is a 4-layer MLP of size [1024, 512, 256, 128] for
both the shared policies and the centralized critic. The inputs to the network are normalized stacked
observation histories with history size H = 3. We also implement a form of advantage filtering [65]
where 50% of the samples with the lowest advantage magnitude are dropped. This approach prior-
itizes learning from the most informative state transitions—specifically the underexplored extremes
of the data distribution where actions have a clearly better or worse outcome—thereby improving
data efficiency during training. For a complete overview of the network and agent parameters, we
refer the readers to Table 3.

The MAVs with the cable-suspended load spawn uniformly in a random location between —1 and
1 in the xy-plane, between 0.5 and 1.5 along the z-axis, with a random heading orientation. The
goal position is uniformly sampled from the same set, but also allows for pitch and roll angles of
445 degrees. Despite sampling of the goal is limited to the predefined sets, the policy is still able to
generalize and reach goal poses outside of it during execution. For setups with more than 3 MAVs,
the mass of the load is sampled from a uniform distribution between 1.0 and 1.8 kg (the mass of the
real payload is 1.4 kg). For the 3-MAV setup, the cables are modeled as rigid rods of 1 meter in
length, connected to both the payload and the MAVs via ball joints. When using more than 3 MAVs,
the system becomes overconstrained, which can lead to cable slack [12]. To address this, the cables
are instead modeled as three rigid segments linked by ball joints.

The episodes have a duration of 20 seconds, where a single goal pose is given to encourage sta-
ble hovering of the payload. The episode times out after 20 seconds, in which case the return is
bootstrapped using the value function estimate, or it terminates earlier if:

* any MAV or the payload is too close to the ground,

* the angle between the payload and the cable exceeds a certain threshold,
* the angle between the cable and the MAV exceeds a certain threshold,

¢ cables collide with each other,

* MAVs collide with each other,

* any rigid body is outside a specified bounding box,

* any of the cable tensions are below a specified threshold. (> 3 MAVs)

12
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Figure 3: Time series of pose tracking results comparing our method and a centralized NMPC
method [17]. Our method also includes a setup with 4 MAVs.

5 Experiments and Results

Real-world evaluation setup We evaluate our method in real-world experiments. All our experi-
ments include 3 MAVs, unless stated otherwise, built based on the Agilicious [61] flight stack. Each
MAV is connected to a basket-shaped payload with 1-meter cables at three distinct locations. The
MAVs weigh 0.6 kg, and the payload weighs 1.4 kg. We conduct the experiment in an indoor flight
space with motion capture systems. We attach motion capture markers to the MAVs and the payload
to measure their positions and orientations and distribute them to each MAV through ROS at 100
Hz. The MAV state estimate is obtained by fusing the MAV pose and IMU measurements into an
extended Kalman filter (EKF). The trained policy and low-level controllers are deployed onboard
each MAV. The policy is inferred at 100 Hz to send acceleration and body-rate commands. The
low-level controller is executed at 300 Hz to generate rotor speed commands.

Gazebo simulation environment For safety reasons, the ablation studies and comparisons of par-
tially observable and fully observable policies in the failure and heterogeneous scenarios were done
in simulation. We ran the Agilicious flight stack together with the Gazebo simulator [66] with
quadrotor and sensor plugins provided by the RotorS [67] library, which introduces sensor noise,
aerodynamic disturbances, and potential system latencies in a ROS environment. Note that all ex-
periments were evaluated in the real world unless explicitly stated otherwise.

5.1 Real-world experiments

Setpoint tracking Our real-world experiments demonstrate agile pose control of three MAVs with
a cable-suspended load, tracking a 2 m displacement with (30°, -20°, -90°) attitude commands.
We compare our decentralized method with the state-of-the-art centralized NMPC approach [17] in
Figure 3. Despite being fully decentralized, our method achieves comparable tracking performance
with positional and attitude RMSEs of 0.52 m (vs 0.45 m) and 22.93 degrees (vs 16.24 degrees),
respectively. Note that RMSE comparisons favor NMPC as it tracks a reference trajectory while we
only track target poses, resulting in a larger RMSE in the transient area of the step command. We
also show successful pose control with 4 MAVs (without cable slack), resulting in tracking RMSEs
of 0.92 m and 42.67 degrees. The increased error, compared to the 3 MAV case, may be due to
the system becoming overconstrained, which introduces more complex coordination and (cable)
dynamics [28]. We emphasize that the main advantage of larger teams lies in increased payload
capacity rather than improved tracking accuracy. In terms of computational efficiency, we run the
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NMPC and our method onboard a Raspberry Pi 5 (2.4 GHz quad-core ARM Cortex-A76). Our
method inferences in 6 ms at 100 Hz, versus NMPC’s 78 ms at 10 Hz. Crucially, while NMPC’s
computation time grows exponentially with agent count, e.g. 174 ms and 267 ms for 5 and 6 agents
respectively, our agent-independent approach maintains constant computation time regardless of
team size.

Robustness against load model mismatch To evaluate robustness, we introduce five additional
objects (0.216 kg, 15.4% of load mass), including four freely movable items that dynamically per-
turb both mass distribution and center of mass. Despite no inertia randomization during training,
the system maintains strong tracking performance (0.63 m vs 0.60 m position RMSE; 26.93 de-
grees vs 26.49 degrees attitude error). The low-level feedback controller automatically compensates
for these disturbances, demonstrating inherent robustness to model uncertainties. A snapshot and
experimental results are shown in Figure 4.

2.00 .
'é — With model
Eurs mismatch
“ 1.50 n
o === Nominal
o 1.25
w
c 1.00
O o075
b=
v 0.50
[o)
Q. 0.25
0.001 ==
0 2 4 6 8 10
100
i
E 80
—
o 60
=
C . w
: l.l‘ L o Y
W ¢::x=. Additional 3
> loads = .\
2 0 L TS N —
0 2 4 6 8 10
Time (s)

Figure 4: Snapshot of the test where additional load is added to the original load, and the pose error
with and without such model mismatch.

Heterogeneous agents Although our policy is trained under the assumption of homogeneous agents,
it remains effective when deployed with heterogeneous agents. In this experiment, we let the load
hover at a fixed point. Then we hacked one of the MAVs by replacing its RL policy with a model-
based controller [22], and provided it with different setpoints to observe the behavior of the other
two MAVs controlled by the RL policy. Specifically, we commanded the hacked MAV to move
outwards on the y-axis by 0.7 m to pull the load away from the reference; we then commanded the
hacked MAV to move inwards by 0.3 m to push it closer to the other two MAVs. Figure 5 provides
a snapshot of the experiments.

Since the policy is conditioned solely on the load pose and not on the states of the other agents, the
two remaining MAVs utilizing the policy are able to compensate for load pose deviations from the
reference. Figure 6 compares the performance of partially observable and fully observable policies
(in simulation) in the heterogeneous agents scenario where the hacked MAV first pushes in, and
then pulls out. The partially observable policy, being independent of other agents’ states, allows the
unaffected MAVs to compensate for the hacked agent, maintaining system stability. In contrast, the
fully observable policy—which relies on neighboring agents’ states—performs worse, exhibiting
larger tracking errors (0.42 m vs. 0.28 m in position, 30.08 degrees vs. 8.88 degrees in attitude) and
large oscillations during the inward push.

In-flight failure of one MAV The effectiveness of our method with a heterogeneous agent setup
and robustness against load model uncertainties also offers strong fault tolerance in the case of
agent failure. In this experiment, we deliberately turned off the hacked MAV (one of the two on
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Figure 5: Snapshot of the test with heterogeneous agents in which one MAV is manually controlled
(hacked) to pull out and push in, and the other two MAVs counteract the interference of the hacked
MAV.
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Figure 6: Time series of the load pose in the heterogeneous agents scenario, comparing the perfor-
mance of the partially observable policy and the fully observable policy. The time points at which
control commands are issued to push the load inward by 0.3 m relative to the desired policy position,
or to pull it outward by 0.7 m, are indicated in green (push-in) and orange (pull-out), respectively.

the same side). As a result, the load was controlled by the remaining two MAVs. Note that with
only two MAVs, the load orientation around the line joining the remaining two attachment points
becomes unactuated. Even worse, the failed MAV hangs underneath the load, leading to additional
disturbances to the post-failure system. Despite that, our method allows the other two MAVs to
effectively control the remaining 5 DoFs of the load. We show that the system is still able to yaw by
-180 degrees and is also able to maintain position control by flying 0.5 meters down along the z-axis
and maneuvering along the y-axis by 1 meter. The snapshots of the setup and tracking results after
the failure are seen in Figure 7 and Figure 8 respectively. As in the heterogeneous agent case, the
remaining agents can compensate for the missing MAV since the policy operates independently of
other agents’ states, thereby avoiding unstable behavior in out-of-distribution scenarios. In contrast,
the fully observable policy fails under these conditions due to its reliance on the states of all agents.

Figures 9 and 10 show the tracking performance of the partially observable and fully observable
policies (in simulation) following an in-flight failure of one MAV. Figure 9 corresponds to the sce-
nario in which no additional command inputs are issued, whereas Figure 10 corresponds to the
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Figure 7: Snapshots of the case where one MAV fails in flight and the remaining two MAVs manage
to control the load.
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Figure 8: Time series of the case where one MAV fails in flight and the remaining two MAVs manage
to control the load. The thick purple line indicates the moment the MAV fails.

scenario in which new attitude and position commands are introduced at ¢ = 15 s and ¢t = 25 s.
In both scenarios, the partially observable policy successfully compensates for the MAV failure.
In contrast, the fully observable policy exhibits strong oscillatory behavior, causing the suspended
MAV to repeatedly crash to the ground. When new pose commands are sent, the fully observable
policy fails to track them accurately, whereas the partially observable policy is still able to track 5
DoF. This results in larger tracking errors for the fully observable policy, which incurs position and
attitude RMSESs of 1.50 m and 73.37 degrees, respectively, compared to 0.67 m and 50.31 degrees
for the partially observable policy. The robustness of the partially observable policy is attributed to
its independence from the states of neighboring agents, which helps prevent cascading failures.

Trajectory tracking Although our method is not trained for trajectory tracking, we evaluate its tra-
jectory tracking capabilities against that of the centralized NMPC [17] in Figure 11. The reference
trajectory is a figure-eight trajectory with a maximum velocity of 1 m/s and a maximum acceleration
of 0.5 m/s2. It is worth noting that our method only considers the reference pose information, while
the NMPC also takes velocity information from the reference trajectory into account. For future spe-
cialized trajectory tasks, incorporating higher-order information such as velocity, as well as future
reference points [68] into the observations would significantly improve tracking performance and
make for a fairer comparison. Nonetheless, our method is able to successfully track the figure-eight
trajectory, albeit with a high tracking error. Our method achieves positional and attitude RMSEs of
0.82 m (vs 0.10 m), and 18.22 degrees (vs 4.80 degrees).
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Figure 9: Time series of load pose in the in-flight failure of one MAV case without sending any

commands, comparing a partially observable policy vs a fully observable policy. The thick purple
line indicates the moment the MAV fails.
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Figure 10: Time series of load pose in the in-flight failure of one MAV case, comparing a partially

observable policy vs a fully observable policy. An attitude command is sent after 10 seconds and a
positional command after 20 seconds. The thick purple line indicates the moment the MAV fails.
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Figure 11: Comparison of our method, which is not trained for trajectory tracking, against the
centralized NMPC in [17]. Left: top view of the flight path of the center of mass of the load while
tracking a figure-eight trajectory with a maximum velocity of 1 m/s and maximum acceleration of
0.5 m/s?. Right: position (top) and attitude (bottom) tracking errors time series.
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5.2 Ablation studies

All comparisons are performed in the Gazebo simulation environment for safety reasons.

5.2.1 Comparison among different action and observation spaces

We compare our selected observation and action space with other alternatives. All policies are
trained on a limited budget of 1 billion environment steps (10 hours of training), and are evaluated
10 times in the Gazebo environment.
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Figure 12: Training plots comparing different Figure 13: Training curves of fully observable,
action spaces. partial augmented, and partially observable ob-
servation spaces.

Action space We compare the ACCBR action space with three alternatives: velocity (VEL), linear
acceleration (ACC), and collective thrust with body rates (CTBR). The ACCBR, VEL, and ACC
outputs all utilize the same low-level controllers, which compensate for disturbances such as aero-
dynamic forces and cable tension. In contrast, CTBR outputs feed directly into the INDI attitude
controller without additional disturbance compensation. The training curves are shown in Figure 12.

The RMSE results in Table 1 demonstrate that the VEL action space achieves the best performance,
followed by ACCBR, while ACC fails to track the load orientation accurately. Notably, the widely
used CTBR approach [69, 42] fails to learn effectively. Since CTBR directly commands collective
thrust without leveraging the proposed low-level controller’s disturbance compensation, we hypothe-
size that the unpredictable cable forces exerted on each MAV make the learning process prohibitively
difficult, as there are no cable force sensors mounted for both training and evaluations.
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Figure 14: Positional and attitude errors com- Table 1: Pose tracking RMSEs of different
paring different action spaces at test time in the action spaces at test time in the Gazebo en-
Gazebo environment. vironment.

However, while VEL yields superior RMSE, Figure 14 reveals that it induces hazardous oscilla-

tions during execution. In contrast, ACCBR exhibits more stable hovering despite higher initial
errors. For real-world tasks like inspection or delivery—where stability is critical—we argue that
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ACCBR is the safer and preferred choice. Contrary to the aforementioned belief in Section 4 that
higher-level action spaces reduce the sim-to-real gap for single MAV cases, the VEL action space
has a larger sim-to-real gap than ACCBR. We speculate that in this multi-MAV lifting system, where
uncertainties and disturbances are significantly larger than in the single MAV case, the VEL action
space may not have enough control authority to reject uncertain high-frequency disturbances.

Observation space To benchmark the decentralized policy’s performance, we compare three ob-
servation space cases: (1) the fully observable case with global state s = [z, x¢, €1, T2, T3], (2)
an augmented partial observability case where each MAV i also receives the load twist and other
MAVs’ positions ("Partial augmented") o, = [z, Zq, Pji, Pj,, Li, €] With p;,, p;, representing
the neighboring agents’ positions, and (3) the partially observable case. For partially observable
cases, we include observation histories (H = 3) to improve state estimation and decision-making
under uncertainty [55]. Figure 13 reveals comparable convergence across all configurations, indi-
cating that load pose alone serves as a sufficient statistic for implicit MAV coordination, while the
full global state contains redundant elements.

5.2.2 Performance without centralized critic

To assess the impact of using a centralized critic
with access to privileged global state informa-
tion, we compare its performance against a pol-
icy trained with a shared local critic. The lo-
cal critic has access only to local observations,
which are the same as those available to the ac-
tor. The training curves in Figure 15 show that
the setup with the local critic fails to converge
to the same performance as with the centralized
critic, and even collapses at the end. Specif- 50

ically, the policy with the local critic fails to — primid e
learn the position and orientation rewards ef- 000 260 660 800 1000 1300 1400 1600
fectively. We hypothesize that access to global Environment steps (M)

state information allows the centralized critic to
produce more accurate value estimates, which
can indirectly support more effective credit as-
signment during learning [54], thereby improv-
ing task performance.

Training curves centralized vs local critic

200

Mean rewards

Figure 15: Training curves using a centralized
critic vs using a local critic.

5.2.3 Performance with different history lengths

Despite that adding history of observations in partially observable settings is a common practice in
literature [55], we compare the performance of the partially observable policy with different history
lengths in the observation space. H = 1 means that the history only contains the observations of the
current timestep (no previous observations). All policies are trained on a limited budget of 2 billion
environment steps and are evaluated in the Gazebo environment.

Figures 16 and 17 show that including historical observations has little impact on performance.
We hypothesize that the load’s pose—even without historical data—contains enough information
to estimate the other agents’ states, enabling implicit communication among the MAVs. Further
investigation into the role of history in more complex scenarios, such as those with higher noise or
additional MAV3, is left for future work.
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Training curves for different history lengths
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Figure 16: Training curves comparing different Figure 17: Mean reward of policies with differ-
history lengths for the partially observable policy. ent history lengths over 10 runs at test time in the
Gazebo environment.

6 Conclusion

We introduced a decentralized method using MARL that allows for full-pose control of a cable-
suspended load using three MAVs without any inter-MAV communication or neighboring MAV
information. The policy is computationally tractable and executes entirely onboard. We proposed a
novel action space of accelerations and body rates (ACCBR) along with a robust low-level controller
and showcase zero-shot transfer from simulation to real-world deployment. Extensive testing with
real MAVs shows that the setpoint tracking performance of our method is comparable to that of the
state-of-the-art centralized NMPC [17], despite being fully decentralized and having significantly
lower computation time. Our method demonstrates robustness against unknown disturbances, het-
erogeneous agents, and even the complete in-flight failure of one MAV. We attribute this resilience to
two key factors: 1) closed-loop reference tracking by the low-level controller, which maintains sta-
bility despite perturbations, 2) decentralized policy independence, where local agents operate with-
out dependence on neighboring states, preventing cascading failures. Our work shows promising
results to enable scalable and robust cooperative aerial manipulation with minimal onboard sensing
and no internal communications required.

7 Limitations

Our method requires pose measurement of the load, which is not often practical beyond lab en-
vironments. In our experiment, we require an external motion capture system to provide high-
frequency load pose measurement. For future real-world outdoor deployment, onboard sensing
(e.g., a downward-facing camera for load pose estimation and SLAM for MAV localization) would
be necessary. This would introduce new challenges, such as different reference frames for the load
and MAVs—requiring additional transformation and synchronization—, observation delays, imper-
fect state estimates, and sensor noise. Additionally, our current framework does not address obstacle
avoidance, as we assume collision-free paths to the goal—an unrealistic assumption in unstructured
environments. Future work will focus on integrating a robust perception stack and obstacle avoid-
ance capabilities.
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A Supplementary Materials

A.1 Training configuration

Reward function weights The reward function weights shown in Table 2 are based on iterative

tuning in simulation and real-world experiments.

Reward weight | Value
A1 1.5
A2 1.5
A3 1.5
A4 1.5
As 0.5
A6 3.0
A7 0.5
Ag 0.5
Ag 0.5

Table 2: Reward function weights

Hyperparameters of MAPPO The hyperparameters of MAPPO are shown in table 3. The names

of the parameters are based on the SKRL [64] learning library.

Hyperparameter Value
number of envs 4096
rollouts 128
learing epochs 5
mini batches 4
discount factor 0.99
gae lambda 0.95
learning rate actor Se-4
learning rate critic le-4

state preprocessor

shared state preprocessor

value preprocessor
grad norm clip
ratio clip
value clip
entropy loss scale
value loss scale
kl threshold

RunningStandardScaler
RunningStandardScaler
RunningStandardScaler

1.0

0.1

0.1

0.001
1.0
0.0

Table 3: MAPPO hyperparameters based on SKRL [64] learning library

A.2 Low-level controller parameters

Parameter Value
Kg red 150.0
kq yaw 5.0
Kq diag(25.0, 25.0, 8.0)

Table 4: Low-level controller gains
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