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Abstract

In this paper, we present a study to improve us-
ing neural networks for acoustic reflection localiza-
tion. Our study focuses on the reimplementation
of the proposed neural network model by Bologni
et al. and investigates the effect of adding a third
microphone to the microphone array. We reimple-
mented and trained the neural network using the
same framework and hyperparameters as the orig-
inal model, and then evaluated it using the same
metrics. Our results show that the addition of a
third microphone improves the amount of detected
sources from 43% to 58%, it also improved the
front-back ambiguity from 25% to 18%. Conclu-
sively, have demonstrated the potential benefits of
adding a third microphone to the neural network
approach for acoustic reflection localization.

1 Introduction

When it comes to sound, the acoustics of a room can make
all the difference. Imagine being fully immersed in a concert,
with each note resonating perfectly, making the sound come
to life. But unfortunately, bad room acoustics can render au-
dio inaudible and murky[1], robbing us of that immersive ex-
perience.

The acoustics of a room can be divided into the follow-
ing three main parts, depicted in Figure 1, the direct sound,
early reflections, and reverberation (late reflections). The di-
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Figure 1: Acoustic parts: direct sound, early reflections, and rever-
beration (late reflections); from [1]

rect sound is the sound that comes directly from the source,
used by humans to localize sound[2]. Next the early reflec-
tions, which are the first reflected sounds by, for example,
walls as depicted in Figure 2. This can be useful for speaker
manufacturers in order to create phantom channels with a lim-
ited set of real channels[3, 85-86]. However, this become an
issue when the phantom sources appear in places we do not
want them.

Filtering out all the reflections is not always a good idea,
because we want some reverberation to create the feeling of
spaciousness in the room[2]. However too much reverbera-
tion can cause the sound to become murky and speech to be-
come inaudible[4]. This leads to the problem of filtering some
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Figure 2: Reflected phantom source in a room

but not all reflections. One solution is to install diffusion or
absorption panels[5] to filter some of the most problematic,
but the question then becomes where to place these panels.
The first step is to locate the most prevalent reflections in the
room, and this is where the current research comes in.

1.1 Current solutions

One important question when trying to improve the acous-
tics of a room is where to place sound-diffusing or absorbing
panels using an inexpensive way to find locations. A key step
in this process is identifying the areas where reflections are
most prevalent. One approach to find the location of reflec-
tions would be to match reflections received by a receiver, but
unfortunately this can be reduced to a known NP-Hard prob-
lem known as the “maximum independent set” problem[6].

Currently, most of the research has focused on large rooms
like concert halls or idealized rooms. While other research
has been conduct for smaller rooms these are not without
issue, most of these approaches uses custom or expensive
microphones/arrays. For example Tatsuya et al. use a cus-
tom 6-channel microphone to measure the angle of the in-
coming sound[7], or Farina and Tronchin used an expensive
32-channel Eigenmike[8]. While these studies have yielded
positive results, they do not meet the criterion of being cost-
effective for small scale use.

Other research groups use arrays of many separate micro-
phones like Sasaki et al.[9] and Tamai et al.[10] who used 64
and 32 microphones respectively in a spherical array on a mo-
bile robot. These have the problem that they are impractical
to uses in an ordinary room due to the physical size of the
array. Another approach by Riemens et al. is to use multiple
kinds of sensors, they added a system called LIDAR (Laser
Imaging, detection, and ranging[11]) where they use lasers to
detect walls[12].

Another approach for finding reflections use is the utiliza-
tion of neural networks with only two inexpensive subcar-
dioid microphones, like Bologni et al. describes in their
paper[13]. In their paper, they describe a way for someone
to use two inexpensive subcardioid microphones to measure
angles and distance of reflections in a room, and subsequently
estimates the room size. However, there are some limitations
that need to be addressed.

One limitation is the capability of the network to detect re-
flections in real room where noise can interfere. Addition-
ally, there is also the issue of front-back ambiguity which



can cause uncertainty in the output, making it difficult to de-
termine the true direction of the reflections. These issues
are particularly important when trying to locate reflections
in a room, as it can significantly impact the accuracy of the
network. Overall, while the neural network approach is a
promising solution for measuring reflections in a room, there
are still some limitations that need to be addressed.

In this paper, we aim to address these limitations of the
neural network-based approach by answering the following
questions: Can the addition of a third microphone reduce the
front-back ambiguity, and improve accuracy in detecting re-
flections in a room?

2 Methodology

In order to answer the questions asked in the previous sec-
tion, we first describe how we generated the dataset we used
for training and validation. We then outline the steps taken to
reimplement the network, and train and evaluate the model.
The reimplementation serves as a case study for understand-
ing the capabilities and limitations of using the neural net-
works approach for real-world applications, and if a third mi-
crophone can reduce the error.

We begin by describing how we generated the dataset we
used for training, and validation. We generate the data using
the same constraints mentioned in the paper by Bologni et
al.[13], namely:

* The microphone array and source can not be with in 50
cm of each other and must be 50 cm from the walls.

* The microphone array cannot be directly in front or be-
hind the source with a tolerance of +3 degrees.

* Only simulate three image orders.

To generate the dataset we used the python package
pyroomacoustics[14] to generate the synthetic dataset, using
the image source model as the simulation.

The generated dataset consists of 9 rooms with different
sizes ranging from 2 by 2 meter to just below 8 by 8 meter.
For each room we generate a number of location pairs, these
consist of a source and receiver location, using the constraints
mentioned previously. For each receiver position we gener-
ate 150 random rotations of the microphone array and save
each as a 16kHz wav file. We simulate the microphone array
as an array of three subcardioid microphones with an inter
microphone distance of 10 cm, as depicted in Figure 3. We
chose these parameters based on experimentation, these gave
a good balance between training time and results.

We use subcardioid microphones in this study because they
have some directional sensitivity, where they are most sensi-
tive to sounds coming from the front, and least sensitive to
sounds coming from the rear. This makes them well suited
for capturing sounds coming from a specific direction, such
as a sound source in a room. And as a result reduce front-back
ambiguity[13].

Next, we reimplemented the neural network using the same
open-source neural network framework NNabla[15] as the
original paper[13]. We implemented the network as described
in the paper. After validating the two channel version against
the results Bologni et al. found in their paper, we altered
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Figure 3: Subcardioid microphone array (depicted as X ) with source
(blue circle) in a room.

the network by adding a third channel to the feature extractor
block. We will be using the same hyperparameters as given
in the paper.

3 Experimental Setup and Results

In this section we present the results of our reimplementation
and alterations. We will compare our results against the orig-
inal results precented in the paper by Bologni et al.[13]. We
trained two networks: a version with two channels to compare
our implementation against the original, and one with the pro-
posed changes to make it three channels. We have trained all
these versions on the Delft HPC[16] for around 800 epochs,
after which there was no more notable improvement.

For training, we used the implementation and dataset de-
scribed in the previous section. In Table 1 are the results
of the first two trained networks and the results presented
by Bologni et al.[13]. Our implementation of the two chan-
nel version detected 43% of the sources in the test dataset,
this is comparable to the original version. Our version with
three channels did however outperform both with 58% of the
sources detected.

Bologni et al.[13]  two-channel

three-channel

Detected 0 43% 58%
sources
Front-back — 25% 18%

Table 1: Results comparison between Bologni[13] and our proposed
implementation.

In the original paper there was no mention of the front-back
ambiguity metric for rooms with multiple reflected surfaces,
however adding the third channel does improve this metric
too.

In Figure 4 we show a comparison of the angular error of
the two versus three microphone trained networks. The three
microphone version is more concentrated around the centre,
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Figure 4: Angular error comparison between two(a) microphones
and three(b) microphones

with a smaller standard deviation of 44.3 degrees compared
against 51.5 degrees for the two microphone network.

4 Responsible Research

In this paper we have shown that the original paper is repro-
ducible by reimplementing the network and training it. We
have followed the methods and procedures outlined in the
original paper, also used the same performance metrics to
evaluate the performance of our reimplementation, and have
compared our results to the results reported in the original
paper. This allows us to demonstrate that the original results
are reproducible, and that our reimplementation replicates the
performance of the original network.

In addition to demonstrating reproducibility, we have also
made clear what our extension is and what we have changed
for our results. Specifically, we have added another chan-
nel of data to the network, which has improved its perfor-
mance. By providing this information, we are transparent in
our methodology and show how it differs from the original
paper, and we can provide a clear and detailed explanation of
how our results differ from the original results.

5 Discussion

The main objective of this study is to evaluate the effect of
adding a third microphone channel to the neural network ar-
chitecture by Bologni et al.[13]. We want to show that adding
a third microphone can reduce the front-back ambiguity and
that it can improve the accuracy. Our results show that our
implementation of the two-channel version performed com-
parably to the original version, with 43% of the sources de-
tected. When we added a third microphone channel, the per-
formance of the network improved significantly, with 58% of
the sources detected.

These results demonstrate that adding a third microphone
can help improve the accuracy of the localization by increas-
ing the number of detected source by 15% and decreasing the
standard deviation by 6 degrees, which can be beneficial in
real-world scenarios. Furthermore, the improvement in the
front-back ambiguity decreased from 25% to 18% by adding
the third microphone, which shows that it also helps to reduce
the ambiguity.
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Figure 5: Expected(a) and predicted(b) angles of image sources in a
single simulated sample

In Figure 5 we show a single sample comparison between
the expected and the predicted output of the neural network.
It shows that the predicted result could be used to find reflec-
tions in a room, and in turn find place where to place sound
absorption panels. However, it also shows that the error in
the predicted angle quadrant 1 is the wrong angle, it should
be more to the 45 degrees grid line. In a small room this
should not mater as much, but when the size of the room in-
creases the error does too, leading to that the reflected image
being in a wrong place.

In our study we find that with the current network archi-
tecture the network has to train for variables we do not use
such as the distance of the reflection. Since we are only in-
terested in the angle to determine where the reflections are,
we could redesign the network to only output the angle. We
conducted some initial experiments that showed promising
results. However, this requires further research due to the
nature of the network to overfit and the need for additional
adjustments to the network architecture.



6 Conclusions and Future Work

In conclusion, the main goal of paper is to evaluate if adding
a third microphone to the neural network approach for detect-
ing sound reflections by Bologni et al.[13] could reduce the
front-back ambiguity and could it improve accuracy. Our re-
sults show that adding a third microphone can significantly
improve the accuracy by detecting more sources and reduces
the front-back ambiguity. These findings provide insights for
future research and can guide the design of real-world appli-
cations that utilize this method.

One limitation of this study is that we trained and validated
the network using a simulated dataset, which does not capture
the complexity of real-world rooms. In future work, it would
be interesting to evaluate the proposed method on real-world
rooms. Another thing to consider in future work is to test the
network with more complex rooms shapes and acoustic prop-
erties, in order to get a better understanding of its capabilities
and limitations.

Another avenue for future research is to change the neural
network to only output the angles of the reflections, we did
conduct some initial experiments that showed promising re-
sults. However, due to the tendency of the network to overfit
and the need for additional adjustments to the network archi-
tecture this required future research.
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