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Data Assimilation in Hydrologic Routing: Impact of Model
Error and Sensor Placement on Flood Forecasting

Maurizio Mazzoleni, Ph.D."; Juan Chacon-Hurtado?; Seong Jin Noh, Ph.D., A.M.ASCE?,
Dong-Jun Seo, Ph.D., A.M.ASCE*; Leonardo Alfonso, Ph.D.%; and Dimitri Solomatine, Ph.D.®

Abstract: Diverse hydrologic and hydraulic models of varying complexities have been proposed in the past few decades to accurately predict
the water levels and discharges along rivers. Among them, the hydrologic routing models are widely used because of their simplicity, minimal
data, and computational requirements. Due to their simplified assumptions, however, they are subject to various sources of uncertainty.
To reduce their predictive uncertainty and improve their operational forecast abilities, data assimilation techniques have been proposed to
update the states and/or parameters of the mathematic models by integrating real-time river observations with them. However, the characteri-
zation of the model errors and the location of the sensors used for data assimilation have an important effect on the model performance. The main
objective of this study was to assess the effect of sensor placement and the errors of both the model and the boundary conditions on the
assimilation of flow observations in the distributed hydrologic routing models. A Muskingum-Cunge routing model was applied first to a
synthetic river reach with a rectangular cross section and then to a more complex natural river, the Bacchiglione River in Italy, with varying
geometry of the river cross sections. The Kalman filter was used to assimilate the flow observations. Synthetic and real-world experiments were
carried out. The results showed an improved model performance after the assimilation of the flow observations (e.g., a Nash index higher than
0.9 in the synthetic river and 0.85 in the Bacchiglione River); however, the procedure was sensitive to the model error and the locations of
the sensors. In particular, when the model error was larger than the boundary condition error, it was suggested to place the sensors in the lower
part of the river reach to maximize the model improvement at the river outlet. On average, the model performance was improved by 14% in terms
of the Nash index when the sensor was located in the upstream part of the reaches of the Bacchiglione River instead of in the downstream
part. Sensors placed in the upper part of the reaches enabled the improved skills to persist for additional lead time of up to 6 h for the forecasting
of the water level at the reach outlet. This study presented a method that allowed identifying the optimal locations of the sensors and thus helped

to improve the flood forecasts. DOI: 10.1061/(ASCE)HE.1943-5584.0001656. © 2018 American Society of Civil Engineers.

Author keywords: Data assimilation; Sensor positioning; Hydrologic routing model; Flood forecasting.

Introduction

In the past few decades, the negative impact of floods has
drastically increased worldwide (European Environment Agency
2005; Di Baldassarre et al. 2010; Aerts et al. 2014). Flood
events in Europe, such as the 2013 Elbe floods and the 2013
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United Kingdom floods, were considered national crises and are
estimated to have caused approximately 15 and 6.5 billion Euro
in damages, respectively (European Environmental Agency 2005).
Moreover, due to the combined effects of rapid urbanization, the
growth of the population in the proximity of floodplains, and in-
creasing the flood levels due to climate change and sea-level rise,
this trend is expected to worsen in the coming years (Hinkel et al.
2014; Jongman et al. 2014).

Nonstructural measures such as flood forecasting in early warn-
ing systems are used to provide timely and accurate forecasts in
order to reduce the impact of floods on urbanized areas (Todini
et al. 2005; McLauglin 2002). However, the hydrological and
hydraulic models used in these systems contain uncertainties orig-
inating from errors in the observations, input, model parameters,
and model structure (Pappenberger et al. 2006; Goetzinger and
Bardossy 2008; Alfonso and Tefferi 2015). In order to reduce
such uncertainties, data assimilation approaches have been actively
used in the water system models in the past few decades (WMO
1992; Refsgard 1997) to optimally update the model states, inputs,
or parameters in response to the real-time observations coming
into the model (Robinson et al. 1998; Moradkhani et al. 2005;
McLaughlin 2002; Liu and Gupta 2007; Reichle 2008; Sakov
et al. 2010). A number of authors have used data assimilation ap-
proaches based on correcting model errors by means of data-driven
methods (Babovic and Fuhrman 2002; Vojinovic et al. 2003; Abebe
and Price 2004). A number of studies have been carried out to
test various schemes of updating the states of the hydraulic mod-
els by means of water-depth measurements from remote sensing
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(e.g., Andreadis et al. 2007; Neal et al. 2009; Hostache et al. 2010;
Matgen et al. 2010; Biancamaria et al. 2011; Giustarini et al. 2011;
Mason et al. 2012; Garcia-Pintado et al. 2013; Andreadis and
Schumann 2014; Yan et al. 2015) and in situ sensors (Neal
et al. 2007; Kim et al. 2013; Ricci et al. 2011; Romanowicz
et al. 2006; Neal et al. 2012; Noh et al. 2013; Li et al. 2015;
Wang et al. 2016).

However, only a few studies showed the effect of flow assimi-
lation into the hydrologic routing models. Liu et al. (2008) pre-
sented an application of the maximum likelihood ensemble filter
(MLEF) for a hydrologic channel routing model based on the var-
iable three-parameter Muskingum model. Errors in the inflow and
outflow observations, and uncertainties in the initial conditions
and Muskingum parameters, were considered. Similarly, Lee et al.
(2008) applied a one-dimensional variational assimilation (VAR)
method in order to integrate the real-time streamflow observations
into a three-parameter Muskingum model. Rakovec et al. (2012)
analyzed the assimilation into the routing states (updating the
frequency/network density).

One of the problems in flood forecasting and modeling in gen-
eral is that water managers often face the problem of a limited sam-
pling budget for locating the sensors. To this end, Alfonso et al.
(2010) presented various methodologies to optimally locate the
water-level and discharge sensors according to the informational
content they can produce, while avoiding information overlaps.
In addition, Alfonso and Price (2012) presented an alternative
for the sampling location based on the value of the information,
in which the consequences of decisions were taken into account.
A comprehensive review of sensor location methods was provided
by Mishra and Coulibaly (2009) and Chacén-Hurtado et al. (2017);
the latter included a generic framework guiding the process of sen-
sor placement on the basis of various criteria. However, the knowl-
edge about the effect of sensor locations on data assimilation is
limited. Recently, Mazzoleni et al. (2017b) investigated the effect
of the location of the sensors in a semidistributed hydrological
model in the case of different errors in the observations. However,
the authors did not account for error in the boundary conditions
and the model itself. It is worth noting the previous studies by
the same authors, cited in this paper, on the assimilation of crowd-
sourced observations into hydrological and hydraulic models. The
only common point between the authors’ previous studies and this
study is the use of the same case studies and models.

Along with the issue of the correct sensor locations, the proper
definition of the error of the model and the boundary conditions has
a considerable effect on the data assimilation performance. Input to
a hydraulic model usually comes from a hydrological model that is
subject to various sources of uncertainty, such as the uncertain pre-
cipitation, model structure, and model parameters. However, to the
best of the authors’ knowledge, none of the previous studies have
analyzed how the different model errors and sensor network con-
figurations affect the flood forecasts carried out by a simplified
hydraulic model such as a hydrologic routing model.

The objective of this study was to assess the effect of the sen-
sor location and the errors in the boundary conditions and the
hydrologic routing model on the improvement of flood forecasting,
by assimilating the streamflow observations. Assimilation perfor-
mances are not only affected by the sensor locations but also are
also strictly dependent on the quantification of both the boundary
conditions and the model errors. Sets of distributed sensors along
the river systems were considered to provide the data to feed the
hydrological routing. A single river reach (synthetic river) and a
more complex river network (the Bacchiglione River in Italy) were
used as case studies. Because the real-time flow observations from
the distributed physical sensors were not available, synthetic
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observations were used instead. A Muskingum-Cunge routing
model was applied to both the synthetic and the natural rivers,
and the Kalman filter was used to assimilate the synthetic flow ob-
servations. The focus of the experiment conducted on the synthetic
river was to assess the model improvement when the streamflow
observations were assimilated from the hypothetical gauges in
the case of different errors in the boundary conditions and in
the model. For the Bacchiglione River, only the effect of the differ-
ent gauge locations on the assimilation performance was assessed.

Methodology

The methods used to assimilate the distributed observations, in-
cluding the definition of the hydrologic routing model and its state-
space representation, are described in this section. Also included
are a review of the Kalman filter and the characterization of the
observation error, followed by the objective measures to assess the
model.

Hydrologic Routing Model: Muskingum-Cunge

Over a number of years, various methods for hydrological and
hydraulic routing have been proposed. However, it is always diffi-
cult to objectively assess the performance of one method in com-
parison with another one without a full implementation in a case
study. This study used the Muskingum-Cunge routing (MC) model
(Cunge 1969; Koussis 1983; Ponce and Chaganti 1994; Ponce and
Lugo 2001; Todini 2007) to propagate the river flow along the con-
sidered rivers. Complete solutions (namely, fully one-dimensional
hydrodynamic models) are usually complex in their structure and
expensive in their running time, and they do not necessarily lead to
better modeling results in the data assimilation contexts for short
lead times (Mazzoleni 2017) but yield results comparable with
those of the hydraulic routing models (Viessmann and Lewis
2003). The results of the MC model are also comparable to, for
example, the dynamic and kinematic wave models for steep slopes
(Barati et al. 2013), and they are able to represent fairly well the
dynamics of the flow in canals for high flows over long distances in
nonmeandric rivers (Heatherman 2008). Finally, the MC model is
widely used by practitioners; therefore, this method was deemed
relevant and of interest to a large audience.

The MC model is based on the numerical solution of a kinematic
wave model applied to a prismatic river reach between the up-
stream and downstream sections, as detailed in, for example, Todini
(2007). It assumes a linear relationship between a channel’s stor-
age and its inflow and outflow discharge. The formulation of the
Muskingum-Cunge routing approach can be represented

o/t =c0l+ 0" + 30, (1)
where
c cAt + 2Axe
"7 2Ax(1 —¢) 4 cAt
cAt —2Axe

2 = ANl —2) + cAr
2Ax(1 —¢e) — cAt

= AT T T A (2)
2Ax(1 —¢€) + cAt

t and j = temporal and spatial discretization, respectively; Ax and
Ar = spatial and temporal increments, respectively; ¢ = wave
celerity; and € = coefficient
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T % (1 - cAiSO) G)

where ¢ = unit-width, or specific, discharge; and S, = channel
bottom slope. The wave celerity can be estimated as proposed
by Todini (2007).

In order to apply the data assimilation method for updating the
states, it is necessary to express Eq. (1) in a state-space form, that is,
in an ordinary differential equation in which the flow at time step
t + 1 along the river is obtained as a function of the flow at time
step ¢. For the state-space representation, this work used the ap-
proach proposed by Georgakakos et al. (1990). In this approach,
Eq. (1) was converted into a routing states equation that described
the changes in the system-states vector x that responded to the
input I

X;p1 = Ax, + BL +w, w,~N(0,M,1) (4)

where x; = (Qf, @5, ... Q% ..., Qf) is the ngye, x 1 vector of the
model states (streamflow in m®/s) where ng,.s is the number of
discrete reaches into which the river is divided; I, = (Q%, Q')
is the 2 x 1 input vector in which Q, is the discharge at the
upstream boundary condition; and w, = uncertainty (due, for exam-
ple, to an inadequate model structure) represented by the normal
distribution with zero mean and error covariance M,, at time f.
The state-transition and input-transition matrices A (Rgges X Rgtates)
and B(ngy,e, x 2) are given by Georgakakos et al. (1990)

i Cis 0 ... 0
C2.1 + C2.2C143 C2,3 e O
A- (5)
H?’Zl Cin(Cyy +CynCi3) -+ Cyoy3
|15 Cja(Cot + ConCrs) - o Cys |
Cii Cia
Cy5Cy C2C»
B— (6)

[, CiaCry 1, CiaChn

The associated observation equation, which relates the observa-
tions to the system states

L1 = HzTXt +v v~ N(O’ Rt) (7)

where z, is an n,;,; X 1 matrix representing the flow along the river
channel at time ¢ 4 1; v = uncertainty of the measurements repre-
sented by normal distribution with zero mean and covariance R;
and H = n,,, X ny..s output matrix. Because the positions of
the flow observations change according to the locations of the sen-
sors, the matrix H changes accordingly. The Manning’s equation is
used to estimate the water depth (WD) based on the observed river
Cross sections.

Kalman Filter and the MC Model

Among the data assimilation techniques, the Kalman filter (KF) is
one of the most widely known methods to assimilate, in an efficient
recursive way, potentially noisy observations into dynamic linear
systems (Kalman 1960). Liu et al. (2012) provides a detailed review
of the status, progress, challenges and opportunities in advancing
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DA for operational hydrologic forecasting. Due to the linear nature
of the MC model, the Kalman filter (Kalman 1960) is used to
assimilate the streamflow observations and to assess the improve-
ment in the model predictions. Under the assumption of a linear
stochastic model, Gaussian error, and an unbiased model states es-
timate, the KF incorporates all uncertain observations, resulting in
the best states estimate with minimum variance of the model error.
The KF method consists of two steps: the forecast and the update
(or analysis). In the forecast step, the forecast-states matrix is pre-
scribed by Eq. (5).

The  ngues X Ngares ~Model  error  covariance  matrix
(Georgakakos et al. 1990) is

Py = AP/ AT + BM,B” + M, (8)

where M,, is the 2 x 2 covariance error matrix of the boundary
conditions; superscript—indicates the forecast covariance; and
superscript + indicates the update matrix. When an observation
becomes available at the time step ¢, the prior model states and
model error covariance matrix are updated using the analysis
equations

X =x; + K, (z/ —H/x,) 9)

P:— = (I - Kth)Pt_ (10)
where the (715,405 X 1,5,) Kalman gain is
K, = Pt_HZ(HtPt_HtT + Rt)_l (11)
xt = updated (or analysis) model states matrix; R = diagonal
matrix (n,,, X n,p,) representing the observational error assuming
independence among the sensors used; and z° = new observation.
Because the observations vector z° in the MC model is expressed
in terms of the river flow, the simulated values of WD, assuming
a steady and uniform flow, are converted into discharge using the
Manning equation for the natural river cross section available.
One of the main limitations in the KF implementation is the
subjective determination of model errors, as discussed in Liu et al.
(2012), Sun et al. (2016), and Mazzoleni (2017). Puente and Bras
(1987) claimed that the proper error quantification of the model is
even more important than the selection of the DA methods.

Observational Error

In addition to an accurate identification of the boundary conditions
and model errors, the appropriate estimation of the observations
error is an important issue to address, as it influences the KF
performance. The observational error is assumed to be normally
distributed with zero mean and standard deviation (Weerts and
El Serafy 2006; Clark et al. 2008; Mazzoleni et al. 2015)

O-{ = Qg Q{,obs (12)

where the observation error’s standard deviation is assumed to be
the product between the observed flow Q ,;,, and the coefficient ay,
which includes the measurements and rating curve uncertainties,
and is considered equal to 0.1 (Weerts and El Serafy 2006; Clark
et al. 2008; Mazzoleni et al. 2015).

Performance Measures

In order to assess the model performance in relation to the ob-
served values of WD, several traditional statistical measures
were used.
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One of the most widely used measures in hydrology is the
Nash-Sutcliffe efficiency (NSE) index (Nash and Sutcliffe 1970)
which compares the simulated and observed quantities

NSEi 1— {y:l (WD;"_WD;))Z
- N m W.0o\2
i=1 (WDt - WD! )

(13)

where WD?'" = simulated water depth in the ith time step; WD,° =
observed water depth; WD;? = average observed water depth; and
N = number of pairs of simulated and observed water depths. An
NSE of 1 represents a perfect model simulation, whereas an NSE of
0 indicates that the simulated streamflow is only as skillful as the
mean of the observed water depth.

The Pearson’s correlation coefficient (R) is used to measure the
linear correlation between the two variables, the simulated and ob-
served water depth

_ Cov(WD™,WD?°) (14)
~ a(WD™)a(WD?)
where o(WD™) and o(WD°) = standard deviations of the
simulated and observed water depths, respectively. The values of R
close to 1 indicate a strong positive correlation between the two
variables.

Last, the bias index, or bias, measures the tendency of the
simulated water depth to be higher or lower than the observed water
depth (comparing their means)

i WDp

Bias = =5——
i WDy

(15)

Values greater than 1 indicate the overestimation of the
water depth, and values smaller than 1 represent an overall
underestimation.

Case Studies and Data Sets

Two case studies are considered in this section. First, a synthetic
river with predefined cross sections and hydraulic features is intro-
duced to study the effect of boundary conditions and model errors
in the assimilation of distributed flow observations. Second, the
Bacchiglione River is used to evaluate the results achieved for the
synthetic river and to demonstrate the feasibility of assimilating
real-time observations to improve flood forecasting.

Synthetic River

A synthetic river was used to test the assimilation of flow obser-
vations by means of the Kalman filter into a Muskingum-Cunge
routing model. For this purpose, a rectangular channel was used,
with an increasing width B(m) equal to 50 + S,x, where x was the
distance along the river and Sy the bed slope, a Manning’s coef-
ficient n of 0.035, and a total channel length L equal to 50 km.

The synthetic flow observations along the synthetic river were
generated using the time series of the recorded streamflow values as
the perfect boundary condition for the MC model. To estimate the
simulated flow values, the simulated flow time series calculated
with a conceptual hydrological lumped model of the linear reser-
voir (Szilagyi and Szollosi-Nagi 2010) was used as the boundary
condition. The observed flow value and meteorological forcing
used for the MC model were two flood events that occurred in
the River Brue, United Kingdom (Mazzoleni et al. 2015): flood
event A (from November 8 to 29, 1994) and flood event B (from
October 28 to November 16, 1994). The focus of this study was
the MC routing model rather than the hydrological model. For
more details about the hydrological model, refer to Mazzoleni
et al. (2015).

Bacchiglione River

The second study area was located in the upstream part of the
Bacchiglione River basin in northeastern Italy. The Bacchiglione
River, from the most downstream point up to Vicenza, has an aver-
age width of approximately 40 m, a slope of approximately 0.5%,
and a total length of approximately 50 km. In the considered river
reach, no backwater effects were present. On the basis of the geo-
metric characteristics of the river channel, the cross sections in the
Bacchiglione River could be assumed to have a rectangular shape.
The main urban areas were located in the downstream part of the
study area, in particular, close to the Vicenza city. In the study area,
there were three main tributaries of the Bacchiglione River, up-
stream of Vicenza. On the eastern side was the Timonchio River
and on the western side were the Leogra and the Orolo, shown in
Fig. 1 as reaches 1, 2, and 5, respectively.

Data Sets

In order to evaluate the proposed methodology, the three flood
events that occurred in May 2013 (event 1), November 2014
(event 2), and February 2016 (event 3) were considered. Event 1
was a high-intensity event that resulted in several traffic disrup-
tions. Both the forecasted and the measured precipitation time
series were available for the considered flood events. These time

!

P 2004 (mas.l.)
B 30 mast)
~ River network
N
B Urban area
0153 6 9 12
e e e KT S

(a)

14
Reach 1
— Reach 2
~— Reach3
— Reach 4 ! Ponte Marc(l;e;/[e)
— Reach5
— Reach 6 6 17 ]
Lateral inflow Ponte degli
Angeli (PA)

(b)

Fig. 1. (a) Location of the Bacchiglione basin; (b) river network and structure of the hydraulic model
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series of the precipitation were used to prescribe the boundary
conditions for the MC model. In the synthetic experiments, the ob-
served precipitation was used as input to the hydrological model to
estimate the synthetic observed boundary conditions and to esti-
mate the resulting synthetic observed flow values along the reaches
of the Bacchiglione River. The forecasted precipitation was used to
estimate the simulated flow.

Model Implementation

In the Bacchiglione Basin, an operational flood early warning sys-
tem (FEWS) was developed by the Alto Adriatico Water Authority
(AAWA) to properly forecast flood events (Ferri et al. 2012). The
AAWA uses a forecast horizon of three days for flood forecasting
purposes. In this system, modeling is carried out by a cascade of
hydrologic and hydraulic models (from MIKE11 software) used to
predict the water levels in Vicenza and the adjacent urbanized areas.
MIKEI1 solves the Saint Venant equations in the case of an un-
steady flow, on the basis of an implicit finite difference scheme
proposed by Abbott and Ionescu (1967). This model assumes a
small bottom slope, so that the water depth is less in comparison
with the wave length, and a flow parallel to the bottom; that is, the
vertical acceleration is ignored and the hydrostatic pressure varia-
tion in the vertical direction is assumed (Kamel 2008).

This study used the model chain described in Mazzoleni et al.
(2017a), in which a simplified version of the original hydrological
model of the AAWA was implemented and where MIKE1] was
replaced by MC. As previously discussed, the MC-based hydro-
logic routing was chosen not only for its minimum data and
computational requirements but also for the wide application of
hydrologic routing in real-time forecasting and large-scale model-
ing (Gochis et al. 2013; Rakovec et al. 2016). However, the MC
models do not provide the water level along the river but only the
streamflow. On the other hand, because of the nonlinearity of the
MIKEII model, a nonlinear filter such as the ensemble Kalman
filter (as opposed to the linear Kalman filter) needs to be used to
assimilate the flow observations. Unfortunately, one of the draw-
backs of such a filter is the high computational costs, which may
be prohibitive for the assimilation of the water level from multiple
sensors in real-time flood forecasting.

Fig. 1 shows the domain of the hydrologic routing model imple-
mented for the Bacchiglione basin. The river was divided into dif-
ferent reaches according to the locations of the internal boundary
conditions. The outputs of the conceptual hydrological model
were used as the upstream and internal boundary conditions of
the MC model, at the locations denoted by the orange arrows. More
details about the hydrological model are provided in Mazzoleni
et al. (2017b).

Calibration and Validation

As mentioned previously, the MC model required the estimation of
the Manning coefficient n in order to calculate the WD along the
river reach using the available natural cross sections. The calculated
WD was compared with the observed one to evaluate this study’s
approach. The calibration of the parameter n was performed by
minimizing the error between the observed and the simulated rating
curves at Vicenza, with Ar and Ax equal to 900 s and 1,000 m,
respectively, during the flood event 1. Using this approach, a real-
istic calibrated value of n equal to 0.08 was found. This roughness
value was justified by the physiographic conditions of the channel
within the urban area of Vicenza.

With the parameter n a known value, it was possible to evaluate
the results by comparing the calibrated MC model with the hy-
draulic model already implemented by AAWA (MIKE 11) for the
flood event 1. The hydrographs shown in Fig. 2 indicate a good
fit between the flow Q and the water depth WD at two different
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Fig. 2. Comparison between (a) observed and simulated flow and
(b) water depth values obtained at Ponte degli Angeli and Ponte
Marchese, using MIKE11 and the MC model in the case of the fore-
casted and measured input of flood event 1

locations; the values were obtained using MIKEII and the MC
model, respectively. However, the overprediction of WD is indi-
cated at the Ponte Marchese (PM) in both cases in which measured
and forecasted precipitation were used for the hydrological model.
This may have resulted from the use of a simplified approach
(the Manning equation) to estimate the WD and from the way the
parameter n was calibrated. In fact, the optimal value of n was es-
timated on the basis of the observed rating curve in Vicenza and not
at the PM, which may have introduced some bias into the estima-
tion of n. Fig. 2 also shows the observed WD values recorded at the
gauging stations of the PM and the Ponte degli Angeli (PA).

Experimental Setup

Two groups of experiments were carried out. In the synthetic
experiment, the effects of different sensor placements and diverse
assumptions on errors in the boundary conditions and in the model
were assessed on the synthetic river and the Bacchiglione River.
In the second experiment, DA real-world experiments considering
the observed WD records from two existing sensors were carried
out on the Bacchiglione River.

Synthetic Experiments

The synthetic experiments were carried out in the synthetic river
and the Bacchiglione River. In both cases, the synthetic flow
observations were used because data from physical sensors was
not available at the time of this study. This made this work an
observation system simulation experiment (OSSE). OSSEs are
commonly used, for example, in satellite DA and in meteorol-
ogy to estimate synthetic true states and measurements (Arnold
and Dey 1986; Errico et al. 2013; Errico and Privé 2014;
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Verlaan and Sumihar 2016). The method used to generate these
synthetic observations is described in the following two
subsections.

Synthetic River

The flow simulation and subsequent assimilation of the distributed
observations were carried out for a hypothetical river over a 50-km
reach of rectangular cross sections with varying magnitudes of
model error. The spatial discretization of the MC model was set
equal to 1,000 m, and dt was 0.9dx. Given the observed and simu-
lated time series of the upstream boundary conditions, it was pos-
sible to estimate the covariance error My, for both considered flood
events, A and B. The model error covariance matrix My, was esti-
mated at each time step as a function of the model states at each
cross section

M, = (o, - x,)? (16)

where x; = vector of model states at time ¢ without any model

update; and «,, = parameter used to define the model error.

In the experiment, three different scenarios of model and boundary

condition errors were considered. With the boundary condition

error assumed fixed, the «,, was varied in order to simulate the
conditions described in the following three scenarios:

e Scenario 1: M, &~ My,. The value of «,, was set to 0.35 for both
flood events, A and B;

e Scenario 2: M, > M,;. The MC model was considered to be
the main source of error in flood propagation (v, = 0.8);

e Scenario 3: M,, < M;,. The model error was considered
negligible with respect to the error in the boundary condition
(o, = 0.01).

In these scenarios, data coming from a single location was
assimilated.

Bacchiglione River

The focus of this experiment was to understand how the assimila-
tion of the distributed (synthetic) observations from the hypotheti-
cal static physical sensors might impact the MC model results at
the outlet point at Ponte degli Angeli (PA) in Vicenza during three
different flood events. Various hypothetical placements of the
sensors along the six river reaches of the Bacchiglione River were
considered, in order to study the sensitivity of the model results to
the sensor placement.

Various lead times were used in order to evaluate the predictive
capability of the MC model in assimilating the streamflow obser-
vations at different locations. The updating frequency was equal to
the observation interval.

Fixed boundary and model errors were considered. In particular,
the errors in the boundary conditions My, for reaches 1, 2 and 5 in
the headwater catchments were calculated by comparing the ob-
served and the simulated hydrographs derived using the hydrolog-
ical model. For reaches 3, 4 and 6, M, consisted of the error in the
flow from the upstream reaches and that from the interbasin esti-
mated with the hydrological model. Fig. 3 shows that My, in reach 3
(M, 3) was a function of the error covariance matrix of the flows at
the outlets of reaches 1 and 2 (M, 1 and M, ;) and the flow in
I3, M3. In case of reach 3, it was assumed that the error in the
boundary condition, My, in reaches 1 and 2 was larger than the
model error My, ; and My, ,. Therefore, it could be assumed that
Mgye 1 and Mgy, had the same magnitude as My, ; and My, ,.
At that point, it was possible to estimate My, 3 as the maximum
values among Mgy¢ 1, Moye2, and Myz. The same procedure
was followed for the reaches 4 and 6, as shown in Fig. 3. However,
in the case of the available observed streamflow values at the reach
outlet, M, needed to be estimated as a function among the
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Fig. 3. Representation of the interconnections between model errors
and boundary conditions errors for the different river reaches of the
Bacchiglione River model

observed and simulated values in the same way it was estimated
with reaches 1, 2, and 5.

Real-World Experiment

In the real-world experiment carried out on the Bacchiglione River,
the flow observations were assimilated from the existing physi-
cal locations of the sensors at the PM and PA for the case of
event 1. In this experiment, only flood event 1 was considered, due
to its higher magnitude in comparison with the other two flood
events. This experiment aimed to validate the results of the syn-
thetic experiments in the cases of only two locations of the sensors.
Table 1 provides a summary of the synthetic and real-world experi-
ments previously described.

Results and Discussion

Synthetic Experiments

Synthetic River

Fig. 4 shows the simulated hydrographs with and without DA
against the synthetic observed hydrograph at two particular river
sections. It was assumed that the location of the sensor, or the
assimilation point (AP), was 15 km from the upstream boundary
of the reach of the synthetic river during the two flood events,
A and B. Analysis of the results showed that accurate forecasting
was achieved via the MC and the KF. The DA had its main impact
downstream from the AP, whereas a small update was observed
upstream from the AP. This can be traced to the distributed struc-
ture of the MC model and the KF. However, no indication of the
effect of the model and boundary conditions error was provided at
this step.

Fig. 5 shows the difference between the observed and the simu-
lated WD in time and space (the first row), the Kalman gain K (the
second row), and the model error covariance matrix P (the third
row) during flood event B in scenario 1 for three different APs, at
15, 30, and 45 km from upstream to downstream. These results
clearly show the distributed effect of the KF applied on the MC.
As expected, the maximum value of the Kalman gain K was
achieved at the AP, because the KF updating effects tended to be
propagated both upstream and downstream. However, as previ-
ously demonstrated, the difference between the observed and simu-
lated WD was larger upstream from the AP than downstream,
because the MC model did not account for the backwater effects.
Fig. 5 shows that the symmetric model states covariance matrix P,
obtained at the model time step of 100 h, had its smallest values at
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Table 1. Summary of the Experimental Setup Proposed in This Study

Setup Synthetic experiment Real world experiment
River Synthetic Bacchiglione Bacchiglione
Model Muskingum-Cunge Muskingum-Cunge Muskingum-Cunge

Length 50 km

Cross sections Rectangular

Flood events 2 (event A, event B)

Error scenarios Boundary error ~ model error
Boundary error > model error
Boundary error <« model error

Assimilated Water level at three single
observations sensors locations
Lead time 1h

Approximately 40 km

Natural

3 (event 1, event 2, event 3)
Real boundary and model error

Water levels at different sensors
locations at 6 river reaches
Upto8h

Approximately 40 km

Natural

1 (event 1)

Real boundary and model error

Sensors located at Ponte Marchese (PM)
and Ponte degli Angeli (PA)
Upto8h

Discharge at 10km

Discharge at 40km
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Fig. 4. Flow hydrographs obtained at two river sections (at 10 and 40 km) during (a) event A and (b) event B, assimilating observed water depth at

15 km from the upstream boundary conditions

the APs. However, such points were not the optimal sensor loca-
tions because they did not correspond to the minimum value of P
among all the possible locations of the sensors. In addition, the
optimal location of the sensor could depend on the accuracy re-
quirements of the users along the reach. Although not aimed explic-
itly at optimizing the locations of the sensors, the results of this
study could be used for network design, to complement the recent
studies in the research area (Alfonso and Price 2012; Alfonso et al.
2010; Kollat et al. 2011).

The previous results were obtained in the case of a comparable
model and boundary errors. However, these errors can differ on the
basis of the accuracies of the input information and of the hydraulic
model itself. For that reason, in the next analysis, the opposite val-
ues of the model My, and the boundary Mj, errors are selected to
investigate their effects on the DA performances. Fig. 6 shows the
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NSE of the simulated flow for each section of the river for the APs
at 15, 30, and 45 km. A large error in the boundary conditions
(Scenario 3) provided higher NSE values than a large model error
(Scenario 2). In Scenario 2, a change in the NSE values localized at
the AP could be detected, whereas in Scenario 3, the NSE behavior
was continuous and smooth in space. In both scenarios, down-
stream from the AP, the NSE improved up to an asymptotic value.
The asymptote increased as the AP approached the reach outlet
in the case of Scenario 2. This study demonstrated that when
the model error was smaller than the boundary condition error
(Scenario 3), the sensor should have been located closer to the up-
stream boundary in order to achieve an improvement over the entire
river reach. Moreover, locating the sensor upstream would have
allowed additional response time in predicting the flow and the
WD at the outlet of the river reach, as demonstrated in the next
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Fig. 5. (a) Spatial-temporal difference between observed and simulated (with update) water depth; (b) spatial-temporal value of the Kalman gain
K; (c) model error covariance matrix P(m®/s?) at 100 h; all graphs refer to flood event B in Scenario 1
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Fig. 6. NSE values achieved comparing observed and simulated water depth

along the synthetic river during flood event A and B, assimilating flow

observations at 15, 30, and 45 km; Scenario 2 is represented by continuous line and Scenario 3 by dashed line

section. On the other hand, when the model error was higher than
the boundary condition error (Scenario 2), it was preferable to lo-
cate the sensor far from the upstream boundary condition, because
the model itself was more uncertain.

Fig. 7 shows the discontinuous behavior of the NSE values in
Scenario 2. In Scenario 2 (model error > boundary error), the
model update, expressed in terms of Kalman gain K, was localized
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at the AP with a small improvement at the boundary conditions.
On the other hand, in Scenario 3 (model error < boundary error),
the largest value of K (the maximal gain by the KF) for the AP at
15 km was achieved at the boundary location and the gain was
propagated downstream, generating the spatially continuous update
shown in Fig. 6. Similar results were obtained when the WD ob-
servations were assimilated at 30 and 45 km.
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Fig. 7. Spatial-temporal variation of the Kalman gain for (a) Scenario 2; (b) Scenario 3 for flood event B, assimilating water depth at three locations

(15, 30, and 45 km from upstream) along the synthetic river

Bacchiglione River
The results discussed in the preceding section were valid for a single
river reach. The Bacchiglione River case is an example of a more
complex river network. The boundary condition errors in reaches 1,
2, and 5, referred to as My, 1, My, 2, and My, 5, respectively, were
estimated by comparing the hydrographs calculated using observed
and forecast precipitation. Then, the flow observations from the
hypothetical static physical sensors assumed to be at various loca-
tions were assimilated into the MC model. Fig. 8 shows the sensi-
tivity of the model performances at the PA to the assimilation of the
flow observations in different river reaches for the three considered
flood events. Overall, the assimilation within reaches 1, 2, and 5 did
not provide any additional improvement in comparison with the
model results with no update. On the other hand, accurate forecast-
ing was made by assimilating the flow observations via the KF for
the reaches 3, 4, and 6. This could be related to the fact that these
reaches were located upstream from the reaches 3, 4, and 6, provid-
ing a lower contribution in the overall model improvement at the
PA. Among the remaining reaches, reach 6, located in the down-
stream part of the catchment, was the one that allowed the best
model update. It is noteworthy that the impact of the sensor posi-
tioning was evaluated without assimilating all the observations at
the same time. If all information were considered, the impact of
certain additional measurements might be marginal or redundant.
In the previous analyses, the observations were assimilated at the
middle point of each river reach. Fig. 9 shows the NSE values
achieved by placing the hypothetical sensors at different locations
along reaches 3, 4, and 6. As demonstrated above, the largest im-
provement for each river reach was obtained when the sensor
was located in its upper part, because the boundary conditions
had larger errors than the model. During flood event 1, placing
the sensors toward the outlet of reach 6 significantly reduced the
predictive skill by as much as 12%. For reaches 3 and 4, placing
the sensors 5 km downstream slightly deteriorated the model results
by as much as 1 and 4%, respectively. Table 2 provides the overall
degradation in model performance from the upstream boundary to
the outlet. One of the effects of the higher boundary condition error

© ASCE

04018018-9

was that the assimilation of the observations from the sensors
located at the downstream river reaches did not always lead to a
higher NSE in comparison with the assimilation of observations
from the upstream reaches. For example, the assimilation at 5 km
from the upstream boundary of reach 4 provided a higher model im-
provement than the assimilation in the last section of reach 6 (Fig. 9).
Improvement in the predictive skill as a function of the lead time
varied, depending on the sensor locations. The flow observations
were assimilated up to the time of the forecast, after which the model
ran in forecasting mode, that is, without updating. Fig. 10 shows
the predictive skill expressed in terms of the NSE for all flood events
as a function of the lead time. Various lines indicate the varying
locations within the single river reach in which the observations were
assimilated. For example, the black line in reach 3 indicates that
the observation was assimilated at 2 km from upstream, that is, at
the second cross section of that reach (because Ax is equal to
1,000 m). This figure shows the fast reduction in predictive skill
for reach 6. This is due to the short travel time along reach 6 and
consequently the short memory of the assimilation process. Consid-
ering the average flow velocity of 1 m/s and the 5-km length of the
reach, the MC model loses the effect of assimilation after 1.5 h.
On the other hand, reach 3 provided the longest memory in the
system due to an average travel time of approximately 5.5 h, even
though the improvement was not as large as that for reach 6.
Adding the sensor in reach 3 allowed it to gain as much as 2 and
4 h of lead time in comparison with the assimilation of observations
for reaches 4 and 6, respectively. However, if only reach 3 is con-
sidered, the improvement in lead time due to the addition of a sen-
sor did not change between the locations of 2 and 10 km from
the upstream boundary. The choice of the optimal locations of the
sensors should therefore be made to optimize both the NSE and the
lead time, depending on the limited sampling budget. It is notewor-
thy that the low NSE associated with the MC results without up-
dating was due to the underforecasted precipitation that resulted in
underprediction of the discharge and the WD. Additional analyses
should be carried out to assess the effect of assimilating distributed
observations in the case of overforecasted precipitation.
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Fig. 8. Observed and simulated hydrographs at Ponte degli Angeli in the case of assimilation of water depth from sensors at the first upstream
cross section in the reaches of the Bacchiglione River
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Table 2. NSE Values Obtained Assimilating Flow Observations in the
First (Upstream) and Last (Downstream) Section of Reaches 3, 4, and 6 of
the Bacchiglione River during Flood Events 1, 2, and 3

Real World Experiment

In contrast with the previous experiment, in this experiment the
real-world WD observations from the sensors at the PM and the

Reaches Location Event 1 Event 2 Event 3 PA were assimilated. The observations were first converted to
3 Upstream 0.868 0.858 0.922 flow values and then assimilated into the hydrologic routing
Downstream 0.749 0.748 0.837 model to improve the flood forecasting at the PA. The perfor-
Improvement (%) —0.158 —0.196 —0.102 mances were evaluated by comparing the observed and the simu-
4 Upstream 0.927 0.912 0.947 lateq WD at thf_: Bacchiglic')ne ogtlet (the PA) durjng flood event 1
Downstream 0.809 0.773 0.868 (which had a higher magnitude in comparison with flood events 2
Improvement (%) —0.146 —0.179 —0.091 and 3). Fig. 11 shows that the data assimilation tended to under-
predict the observed WD, and that high correlations (above 0.85)
6 Upstream 0.986 0.946 0.965 were found between the observed and the simulated WD. Fig. 11
I Downstrea;mq 8?22 8?2} 83;2 shows the Taylor diagram that plots the standard deviation, cor-
mprovement (%) e e e relation coefficient R, and root mean squared difference of the
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Fig. 10. NSE values obtained for different lead times, assimilating water depth at different sensor locations from upstream, along reaches 3, 4, and 6
during three flood events
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Fig. 11. (a) Observed and simulated water depth hydrographs; (b) Taylor diagram representing the statistics of the hydrographs obtained in the real-

world experiment along the Bacchiglione River

simulated and updated hydrographs, and hence summarizes these
results. The figure shows that assimilating the observations at the
PM was not as effective as assimilating the observations at the
PA. Assimilating the observations at both the PA and the PM
showed an improvement in the correlation and a reduction in
the root mean square error. Assimilation of the observed flow
at the PM reduced the simulated WD, which in combination with
uncertain internal boundary conditions 16 and 17 (Fig. 1), resulted
in the underestimation at the PA, as reported in the hydrographs
and the Taylor diagram shown in Fig. 11. Finally, Fig. 12 shows
the benefits, in terms of the increased predictive skill and lead
time, of assimilating the observations upstream of the targeted
forecast point (PA). Although assimilation at the PA was useful
in improving the NSE, the R, and the bias for short lead times,
assimilating the observations at the PM helped to maximally

exploit the memory of the system and improve model perfor-
mance for longer lead times up to 4 h (the travel time from the
PM to the PA).

Conclusions and Further Research

The main objective of this study was to assess the effects of the
locations of the sensors and the specifications of both the model
and the boundary conditions error matrices on the assimilation of
distributed flow observations. For this purpose, a Muskingum-
Cunge (MC) routing model was implemented along a synthetic
river reach and the Bacchiglione River. Then, the Kalman filter
was applied to the MC model to assimilate the flow observations.
Synthetic and real-world experiments were conducted.
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Fig. 12. NSE values obtained for different lead times at PA during the real-world experiments along the Bacchiglione River
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This research demonstrated that both the location of sensors
used to generate data for model updating purposes and the charac-
terization of the errors in the boundary conditions and in the model
itself had a significant effect on the model performance, in particu-
lar for different lead time values. The results of this study are not
limited to the intuitive statement that observations far from the
outlet sections contribute to improved skills for a longer lead time,
whereas observations at the outlet lead to higher model improve-
ment but for a shorter lead time.

The results related to the synthetic river showed that data assimi-
lation induced an update along the whole river reach because of the
distributed nature of the Kalman filter, whereas due to the MC
model structure, the updating effect was more significant at the
downstream than at the upstream. It was demonstrated that the
magnitude of a model error affected the assimilation performance.
On the one hand, a large error in the boundary condition (e.g., input
from the hydrological model) tended to better improve the water
profile when the assimilation point was closer to the boundary
location and a smooth update was achieved along the river reach.
On the other hand, for the model errors larger than the boundary
errors, a localized update was obtained at the sensor locations and
the good model performances were achieved if the sensor was lo-
cated close to the reach outlet. That is the reason, in this last case,
that it might be suggested to locate the sensor downstream of the
river reach to maximize the model improvement at the river outlet.

The results obtained for the Bacchiglione River showed that
only the assimilation within the main river channel (reaches 3, 4,
and 6) provided additional improvement to the model results at the
outlet (Ponte degli Angeli) in comparison with the model with no
update. Because the upstream boundary conditions had a higher
error than the routing model itself, high values of the NSE were
obtained from assimilating the flow observations coming from
the upstream part of each river reach, as previously demonstrated.
The reach closer to the downstream outlet (reach 6) provided the
best model performances. However, reach 6 tended to lose the
assimilation effect faster than reaches 3 and 4, due to its shorter
travel time.

For this reason, the choice of the optimal location of the sensors
should be a compromise between the best NSE value and the best
forecasting capability of the model. In addition, the choice of the
optimal location of the sensors should be made considering the
limited sampling budget and the accessibility and safety conditions
of the monitored area. This study does not explicitly aim to opti-
mize the locations of the sensors. However, these results provide an
important insight that can be taken into account as an additional
criterion to improve and complement the existing design and evalu-
ation monitoring network design methodologies. This paper aims
to provide the water managers of the Bacchiglione River all the
required information to rank the potential sampling locations on
the basis of an improved model performance and the required lead
time, without considering the sampling budget and accessibility of
the monitored area.

Despite the encouraging results achieved, there remain some
limitations in the presented methodology; hence there is room for
further improving the flow routing prediction by data assimilation.
First, the effects of the sensor locations on the flood forecasting
capabilities might change, depending on the structure and charac-
teristics of the hydraulic model [as pointed out in Thiboult and
Anctil (2015) and Thiboult et al. (2016)] and the DA method. Both
the Muskingum-Cunge and the Kalman filter are linear methods, so
that the conclusions of this study cannot be generalized to highly
nonlinear models, which, for example, incorporate dynamic waves
and water-quality models (Wang et al. 2016). For this reason, addi-
tional analyses with nonlinear models should be performed in order
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to sort out the general findings that are less affected by the methods
and modeling domains.

Second, an obvious limitation of this study is the small number
of case studies and the small sampling size of the considered flood
events, which makes the results of this research very case-specific.
For this reason, the results of this study should be validated by ap-
plying the same methodology to different rivers that have diverse
characteristics. In fact, because of the practical limitations for sen-
sor location (e.g., sensors are usually located at the bridges where
flow disturbance is minimal), the conclusion that upstream loca-
tions could bring more benefits may not be valid for other rivers.

Third, the synthetic observations were used mainly because of
the lack of distributed flow data in the two case studies. Such syn-
thetic observations may be biased, as highlighted in Viero (2018).
For that reason, additional analyses considering real-time observa-
tions should be carried out to assess the impact of the DA methods
in the real world.

Finally, the temporal and spatial correlation of the model error
was not considered; therefore, additional analysis, for example, the
correlation within the model error matrix using autoregressive mod-
els, can be recommended.
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