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Summary

As a first step, a thorough literature study was executed to identify the parameters which govern panel flutter
with shock impingement. Considering the structural parameters, the nondimensional dynamic pressure, the
plate thickness, the shock impingement location and its distance from the impingement point of the first PME
fan expansion wave are clearly the most dominant. From an aerodynamic point of view the Mach number,
impinging shock strength, cavity pressure and Reynolds number have the most influence on the shock-panel
interaction. The ST-15 mainly limits the nondimensional dynamic pressure through a limited total pressure
range linked to the chosen Mach number, while strong limitations are also put on shock-generator dimen-
sions and plate geometry. Lastly, the turbulent boundary layer characteristics are fixed for the chosen Mach
number and total conditions in the settling chamber, and are well known from earlier experiments.

Next, an analytical study was conducted which implemented the Type III model by Ye and Ye [2018] for flutter
of simply supported panels subject to an impinging shock. It was observed that implementing the shock by
simply introducing a dynamic pressure jump and ignoring the steady pressure differences over the plate was
a strong oversimplification. A shift of the flutter boundary towards lower dynamic pressures with increas-
ing shocks strength was obtained, which was also observed by Visbal [2012, 2014], who coupled the Euler
equations to a von Kármán plate. This effects was strongly underestimated though, while the initial stiffening
effect predicted by Visbal was not obtained.

An attempt was made to improve the model by incorporating the transverse steady pressure difference
over the plate. This led to a correct prediction of the initial damping of all panel motion, but this effect was
found to not cease for higher shock strengths. This was attributed to the flowfield being too nonlinear to
justify linear stability analysis. Based on preliminary analytical calculations it was found that nonlinearity is
mainly linked to the impinging shock strength passively adapting to the panel slope at the shock impinge-
ment point and the significant Mach number variation along the panel chord, limiting the applicability of
classic linear piston theory. Due to the same reason, flutter behaviour with varying shock impingement loca-
tion was not predicted correctly either.

Since the unmodified analytical model seemed to yield an upper limit for the flutter dynamic pressure for
shock strengths exceeding p3/p1 = 1.4, it was used as a means to estimate values for the governing structural
and aerodynamic parameters for further inviscid analysis by CFD. Aluminium 7075-T6 was chosen for its high
flexibility and relatively high yield strength, while the Mach number was set to 2.0. The cavity pressure was set
to the average of the theoretical upper surface pressure to minimise panel stiffening, which should be attain-
able in the ST-15 by leaving the spanwise panel edges free and allowing pressure equalisation between the
test section and the cavity. Assuming shock impingement at the panel midpoint and introducing a correction
factor for clamped panels, it became clear that a panel thickness smaller than 0.4mm and a total pressure of
3.5 bars should be sufficient to ensure panel unsteadiness. Lastly, it was observed that shock strength should
be maximised, leading to a proposed shock-system static pressure ratio of 3.0, close to the maximum attain-
able with a regular reflection.

As a next step, the Euler equations were loosely coupled to a FEM model of a clamped 2D panel, which were
solved using INCA and CalculiX respectively. The panel response was found to be highly sensitive to shock
impingement location. Two distinct unsteady regions were proven to exist, which yielded limit-cycle oscil-
lations: close to the leading edge (0.05 ≤ k ≤ 0.20) and around the panel midpoint (0.45 ≤ k ≤ 0.50). Both
regions showed a different sensitivity of the response amplitude and frequency with respect to k, with the
upstream region displaying a reduction in amplitude and increase in frequency with increasing k, while the
midpoint region shows an increase in amplitude and reduction in frequency with downstream movement of
the shock. The sudden increase in frequency observed by Visbal [2014] for shock impingement close to the
leading edge was not obtained, but a significantly different response for k = 0.05 was seen. While all other
shock locations induced a response involving mainly second and third mode content, the most upstream
shock location induced a coupling of a high frequency second mode oscillation and a low frequency first
mode response (one harmonic lower). Considering pressure fluctuations, unsteadiness was mainly observed
near the panel trailing edge, which can be attributed to an alternating expansion-compression wave system.
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vi 0. Summary

These expansion and compression waves were found to originate at the panel leading edge and travel down-
stream towards the trailing edge at constant speed, where they were either amplified or damped depending
on the panel slope at the trailing edge. The reflected shock showed a significant flapping motion, especially
for k = 0.50 which could be linked back to it being very sensitive to the local panel slope, as postulated during
the analytical computations.

Considering parametric effects, increasing the panel thickness beyond h/a = 3.0×10−3 was found to elim-
inate all panel motion. The effect of increasing the total pressure and thus the dynamic pressure in the tunnel
was not as homogeneous, with oscillation amplitudes increasing with increasing pt ,0 for k = 0.15, but all mo-
tion being damped for pt ,0 ≥ 4.0 bar for k = 0.50. This was attributed to the mean deflection becoming too
large, inducing enough stiffness to eliminate panel unsteadiness. This unexpected dependency of the flutter
boundary on total pressure, and thus nondimensional dynamic pressure, led to a questioning of the latter
as a valid parameter to characterise shock-induced panel flutter. Indeed, it was found that different combi-
nations of dimensional quantities yielding the same λ can produce both damped and undamped oscillatory
behaviour of the panel. It can thus be concluded that the nondimensional dynamic pressure is not a valid
parameter to predict flutter, although it was observed that indeed no flutter occurred for λ values lower than
the analytical flutter boundaries.

Based on the inviscid and analytical results, and with literature on SWBLI in mind, values for the governing
parameters for future analysis by LES could finally be selected. By averaging the viscous pressure distribution
obtained by Matheis and Hickel [2015], it was determined that the theoretical estimate for the averaged cav-
ity pressure was only 5% off, justifying its use. Overlaying the 10 cm long panel with the interaction obtained
by Matheis and Hickel [2015] at similar Mach number and shock strength, an inviscid impingement point
halfway the panel was selected to position the expected separation shock foot in the unsteady region near the
leading edge. To ensure a similar interaction extent, an experimental set-up was designed which yields the
same distance between the inviscid shock impingement point and the impingement point of the first PME fan
expansion wave. Careful selection of the wedge dimensions resulted in a set-up which should allow tunnel
start-up and a quasi-2D interaction at the panel midplane. Based on previous results obtained in the ST-15,
a boundary layer thickness Reynolds number Reδ,r e f and a friction Reynolds number Reτ of 238× 103 and
3,552 respectively should be obtained. By selecting the grid distribution based on the well-resolved SWTBLI
results by Pasquariello et al. [2017] and the grid extent based on inviscid results, a total amount of 438 million
cells was estimated for the LES. Examining the inviscid transients obtained for k = 0.15 and k = 0.50, a mini-
mum integration-time of 205 flow-through times was estimated in order to resolve at least 10 low-frequency
separation shock oscillations.

In short, it can be concluded that based on analytical and inviscid computations, a numerical set-up was
obtained which should be feasible both from a computational and experimental point of view. Thus, the goal
of the thesis was achieved with success.
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1
Introduction

In this master thesis, I give an overview of the work performed during my last year at the aerodynamics
department of the Delft University of Technology. Most of the work was performed in the field of inviscid
shock-panel interactions, using both analytical and numerical approaches. All these computations served
as a means to identify a final test case for high fidelity coupled Large Eddy Simulation of a turbulent Shock-
Wave/Boundary-Layer Interaction over a compliant panel and corresponding experiments in the ST-15 su-
personic windtunnel.

In this chapter, an introduction to the problem at hand and motivation for the research is first given in Sec-
tion 1.1. Next, the research questions, aims and objectives are introduced in Section 1.2, after which the
experimental set-up is illustrated in Section 1.3.

The rest of the report is structured as follows. First, the equations governing the fluid and the structure are
given in Chapter 2. Secondly, a concise literature review on inviscid and viscous shock-panel interactions, as
well as an overview of the governing parameters, are presented in Chapter 3. Next, the validity of analytical
models to predict shock-induced flutter is investigated in Chapter 4, which is followed by Chapter 5 outlining
the numerical approach for the high-fidelity computations. Furthermore, the inviscid results are presented
in Chapter 6, after which the chosen test case for further analysis by LES and experiments is introduced in
Chapter 7. Lastly, conclusions and recommendations for future work are given in Chapter 8 respectively.

1.1. Motivation
Ever since the illusion of the sound barrier was broken by the German V2 missiles in the 1940s, supersonic
flows have been of strong technological interest. In recent years, the space economy has boomed, sitting at a
current global size of around 340 billion USD according to the FAA. Supersonic transport has also seen a re-
cent growing interest, but issues remain with supersonic propulsion [Candel, 2004]. Indeed, the occurrence,
and the lack of understanding, of so-called Shock-Wave/Boundary-Layer Interactions (SWBLI) in supersonic
air intakes still poses significant challenges in the efficient design of such devices. SWBLI also occurs during
the start-up of typical rocket engines. Since the nozzle is designed for maximum efficiency at high altitudes,
highly-overexpanded conditions occur at sea level. For typical thrust-optimized parabolic (TOP) nozzles, this
implies the occurrence of a shock in the nozzle during start-up and consequent internal flow separation. This
is illustrated in Fig. 1.1(a), where the separation shock foot in the Space Shuttle Main Engine (SSME) during
start-up can be clearly seen. Strong SWBLI can be observed during this transient process, as shown by a
sketch of typical TOP nozzle Free Shock Separation (FSS) in Fig. 1.1(b), which continues until the nozzle flow
is fully developed [Pasquariello, 2018]. This can lead to strong asymmetric side-loads in the nozzle, which are
known to be very unsteady [Östlund and Muhammad-Klingmann, 2005]. Similar interactions can be found
in turbomachinery cascades [Flaszynski et al., 2015] and around hypersonic vehicles, helicopter blades, mis-
siles [Délery and Dussauge, 2009; Pasquariello et al., 2015] or in (sc)ramjet shocktrains [Idris et al., 2014].

SWBLI is well understood from a mean-flow point of view, both in the case of a weak and strong interaction.
The latter indicates that mean flow separation occurs due to the adverse pressure gradient imposed by the
shock. In this case, complex unsteady interactions involving the separated shear layer, the incident shock and

1



2 1. Introduction

(a)
(b)

Figure 1.1: Unsteady separation line during SSME start-up (left) and schematic of a TOP nozzle Free Shock Separation (right)
[Pasquariello, 2018]

the separation bubble take place. The unsteadiness associated to these interactions still puzzles researchers
up to today [Clemens and Narayanaswamy, 2014]. It is well known that the interaction between the impinging
shock and a turbulent boundary layer induces low-frequency separation shock motions, which can couple
with the eigenmodes of the structure. This can lead to fatigue, and an in-depth understanding of the problem
is thus required to ensure safe future designs of high-speed machinery.

The problem in the understanding of SWBLI and its coupling with compliant structures lies in the fact
that usually turbulent flows at high Reynolds numbers are involved. Next to that, long integration times are
required to capture the entire frequency-spectrum associated to the interaction, leading to extremely high
computational cost. Up to today, only one well-resolved Large-Eddy Simulation (LES) of coupled SWTBLI
has been performed by Pasquariello et al. [2015], which features a shock being introduced by a moving wedge.
The panel response is illustrated in Fig. 1.2, where it can be observed that a damped panel motion is obtained
in the corresponding experiment by Daub et al. [2015b], while an oscillatory motion is obtained numerically.
This was attributed to 1) the compressed air in the cavity acting as an aerodynamic spring and consequently
dampening the panel motion and 2) the cavity not being perfectly sealed from the test-section by the installed
layer of soft-rubber foam, which resulted in cavity pressure fluctuations and unknown structural damping
due to the foam. Thirdly, additional uncertainty was introduced by post-rotation vibrations of the shock-
generator, the frequency of which was very close to the unsteady motion of the shock foot. A strong need thus
arises for a high-fidelity computational set-up which can be validated in experimental facilities. Since this
thesis is conducted at Delft University of Technology, it would be desirable to design the simulation in such a
way that it can be replicated in the local ST-15 supersonic blowdown windtunnel. Therefore, the focus of this
thesis will be the identification of a test case which will yield strong unsteady motion in a future coupled LES,
while also being reproducible in the ST-15.

Figure 1.2: Experimental panel response [Daub et al., 2015b] (blue) versus computed panel response [Pasquariello et al., 2015] (black)
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1.2. Research Question, Aims, and Objectives
In order to guide the research conducted for the thesis, research questions and corresponding research objec-
tives have to be defined. These were identified based on an earlier executed research study, which is partially
summarised in Chapter 3.

Research Question 1:Which structural and aerodynamic parameters will ensure shock-induced supersonic
panel flutter with amplitudes on the order of the panel thickness in conditions attainable in the ST-15 wind-
tunnel?

• Sub-question 1:What are the structural and aerodynamic parameters governing supersonic panel flutter
with shock impingement?

• Sub-question 2:Based on analytical computations, which aerodynamic and structural parameters will
yield unsteady behaviour of the panel?

• Sub-question 3:Based on 2D Euler computations, which aerodynamic and structural parameters will
yield the largest unsteady deformation of the panel, and should therefore be selected for the final LES
set-up?

Research Question 2:Can the designed numerical experiment be replicated in the ST-15 windtunnel, allowing
validation of the numerical method?

• Sub-question 1:Can the numerical boundary conditions be replicated in the ST-15 windtunnel?
– Subsub-question 1:Are the panel leading and trailing sufficiently clamped to replicate perfectly

clamped boundary conditions?
– Subsub-question 2:Are the windtunnel cavity pressure fluctuations small enough to justify pre-

scribing a steady numerical cavity pressure?
– Subsub-question 3:Does the windtunnel cavity pressure equal the time-average of the static pres-

sure on the upper panel surface?
– Subsub-question 4:Does the wedge trailing edge expansion fan affect the impinging shock?

• Sub-question 2:Does the initial condition of the windtunnel, i.e. the normal shock generated during
wind-tunnel start-up, affect the converged statistically stationary panel response?

• Sub-question 3:Do the chosen aerodynamic and structural parameters yield an experimental set-up
which allows comparison with an LES with assumed homogeneity in the spanwise direction?

The objective of the research project is to design a numerical experiment which will allow validation of the
coupled implicit large-eddy simulation approach first employed by Pasquariello et al. [2015] to resolve cou-
pled shock-wave/turbulent boundary-layer Interaction by being reproducible in the ST-15 supersonic wind-
tunnel at Delft University of Technology. Significant Fluid-Structure Interaction (FSI) can be ensured by first
identifying the structural and aerodynamic parameters which induce panel flutter in feasible tunnel condi-
tions by employing the analytical model by Ye and Ye [2018] and extending the work by Visbal [2012, 2014] on
2D inviscid shock-panel interactions.

• Sub-objective 0: Identify the structural and aerodynamic parameters which govern panel flutter with
shock impingement.

• Sub-objective 1: Identify the bounds imposed by the ST-15 on these parameters.
• Sub-objective 2: Implement the analytical model by Ye and Ye [2018] and attempt to replicate the invis-

cid shock-panel interaction results by Visbal Visbal [2012, 2014] to verify the model.
• Sub-objective 3: Use the analytical model to identify which feasible structural and aerodynamic param-

eters will yield unsteady behaviour of the panel.
• Sub-objective 4: Use the flow solver INCA coupled with the structural solver CalculiX to solve the Euler

equations and determine the test case with the largest unsteady behaviour, based on the analytical results
and the ST-15 limitations.

• Sub-objective 5: Compare the inviscid results to the analytical predictions to verify the applicability of
the analytical model.

• Sub-objective 6: Investigate the effect of different initial conditions on the long-time integration panel
response using the 2D inviscid set-up.

• Sub-objective 7: Determine the key differences between the current inviscid and future viscous results,
and how these will affect the LES result.

• Sub-objective 8: Based on literature and the inviscid results, determine the final LES test case which is
feasible from a computational point of view, while also being reproducible in the ST-15.

For the analytical computations, a sufficiently powerful workstation is made available to the author. For the
consequent 2D inviscid computations, a significant increase in computational cost is expected due to the
long integration times, which is alleviated by using the high performance cluster of the aerodynamics group
at Delft University of Technology.



4 1. Introduction

1.3. Experimental Set-up
As discusses in the previous sections, the goal of this thesis is to identify a numerical experiment which is
reproducible in the ST-15. Therefore, the experimental set-up has to be designed with tunnel limitations in
mind. The ST-15 supersonic windtunnel is a blow-down type tunnel and is located at the Faculty of Aerospace
Engineering at Delft University of Technology. It was the first supersonic tunnel to be put in use at the faculty,
but thanks to the possibility of long running times it is still frequently operated. Its configuration is illustrated
in Fig. 1.3.

Figure 1.3: Schematic of the ST-15 supersonic windtunnel [Sun, 2014]

Test section Mach numbers of 1.5, 2, 2.5 and 3 can be obtained by installing the appropriate set of liners. Next
to that, each Mach number M requires a minimum total pressure in the settling chamber for the tunnel to
start. This is necessary to overcome the backpressure of one bar to guarantee the start-up normal shock is
swallowed. Another requirement for tunnel start-up is no choked flow in the test section. Choking of the flow
can occur when the shock generator creates a nozzle with an area ratio larger than the critical area ratio at the
Mach number behind the start-up normal shock. This will be elaborated on in Section 7.1.2. An overview of
the tunnel total pressure range is given in Table 1.1. The test section cross section measures 150 by 150 mm,
while panels are more limited in size due to room being required for the panel edge clamps. This effectively
limits the length and width of the compliant plate to approximately 100 mm.

M1[−] Mimimum pt ,0[bar] Maximum pt ,0[bar]

1.5 2.4 4.8

2.0 2.4 4.8

2.5 4 8

3.0 6 12

Table 1.1: Total pressure ranges for different Mach numbers in the ST-15 windtunnel

A 2D cross-section of a possible set-up is shown in Fig. 1.4, as employed by Daub et al. [2015b] and replicated
numerically by Pasquariello et al. [2015]. Depending on the total pressure pt ,0 and temperature Tt ,0 in the
settling chamber, and the chosen set of liners, a certain static pressure p1, temperature T1, density ρ1 and
freestream Mach number M1 will be obtained in the test section. Note that settling chamber conditions are
indicated by the subscript 0, while test section conditions are indicated by the subscript 1. The computed
flowfield will depend on the chosen numerical method, since for the inviscid cases no (turbulent) boundary
layer will be simulated. An impinging oblique shock can be generated by a wedge, which spans nearly the
entire test section [Kallarbail, 2016]. The shock generated by the flow turning angle ϑw of the wedge will have
a certain angleσ1 with respect to the freestream, and, in the inviscid case, will impinge on the flexible panel at
the theoretical inviscid impingement point xi mp . After impingement, the shock will reflect, creating the post
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shock-system state p3. Note that the wedge expansion fan might or might not interact with the shock-system,
depending on the relative position of the wedge and the panel. In the viscous case, the shock will interact with
the boundary layer, leading to spreading of the pressure jump and complex SWTBLI, as will elaborated on in
Section 3.2. The thickness of the TBL at the test section inlet, 2.5cm upstream of the panel leading edge, is
defined by δr e f , and depends on the flow conditions. Typical freestream and boundary layer properties for
Mach 2 experiments in the ST-15 are given in Table 1.2. Note that the boundary layer naturally develops to a
turbulent state before the test section is reached.

pt ,0[bar] Tt ,0[K] U1[m/s] δr e f [mm] Hi n[−] uτ[m/s] C f [−] Re[1/m]

Sun et al. [2012] 3.20 290 534 6.0 1.20 19.0 2.6E-3 35.0E6

Giepman et al. [2014] 3.20 290 524 5.2 1.23 20.8 1.9E-3 42.2E6

Kallarbail [2016] 3.20 278 492 5.2 1.30 19.6 1.9E-3 43.5E6

Nayak et al. [2017] 3.20 278 492 5.2 1.30 19.5 1.9E-3 43.5E6

Tambe et al. [2017] 3.15 267 487 6.0 1.26 19.5 1.9E-3 46.2E6

Table 1.2: Typical boundary layer properties for Mach 2.0 experiments in the ST-15

Concerning the panel, it is assumed the leading and trailing edges are perfectly clamped. The panel has a
certain length a, width b and thickness h, and is free at the spanwise edges, promoting 2D motion of the
plate and leading to pressure equalisation between the cavity and the testsection. The pressure acting on the
lower side of the panel is called the cavity pressure pc , analogous to the cavity existing in the windtunnel.
Lastly, the panel will be manufactured of a certain metal, with as material properties a Young’s modulus Es , a
Poisson ratio νs , a yield stress σy and a density ρs .

pc

xi mp

p1 p3

ϑw
σ1

δr e f

a

M1

Figure 1.4: 2D view of a possible experimental set-up, adapted from Pasquariello et al. [2015]





2
Governing Equations

Since the interaction between air and a metallic panel is considered, the computational domain Ω must be
divided in non-overlapping fluid and structural sub-domains, which yields Ω=Ω f ∪Ωs . These domains are
separated by a boundary Γ. The general equations governing the physics in the fluid and structural sub-
domain are introduced in Section 2.1 and Section 2.2 respectively. Note that, if required, the subscript f will
be used to indicate a fluid quantity, while the subscript s will be employed to indicate structural quantities.

2.1. Fluid
The fluid considered in the domain Ω f is air, which is assumed to behave as a perfect gas with a specific-
heat ratio γ of 1.4 and a specific gas constant R of 287.05 J/(kg K). It is governed by the three-dimensional
Navier-Stokes equations, presented here in conservative form:

∂w

∂t
+∇·K (w) = 0, (2.1)

where the state vector w = [
ρ f ,ρ f u1,ρ f u2,ρ f u3,E

]T contains the conserved variables and thus implies the
conservation of density ρ f , momentum ρ f u and total energy E . The components of the flux tensor K(w) =[
K(1),K(2),K(3)

]
are given by

K(i )(w) = F(i )(w)+D(i )(w) =


ρ f ui

ρ f u1ui +δi 1p
ρ f u2ui +δi 2p
ρ f u3ui +δi 3p

ui
(
E +p

)

−


0
τi 1

τi 2

τi 3

ukτi k −qi

 , (2.2)

where F = [
F(1),F(2),F(3)

]T
and D = [

D(1),D(2),D(3)
]T

are the inviscid and viscous contributions respectively.
If viscosity is deemed negligible and therefore an inviscid fluid is assumed, the viscous flux tensor D can be
omitted. For a Newtonian fluid, the viscous stress tensor τi j is given by

τi j =µ f

(
∂ui

∂x j
+ ∂u j

∂xi

)
+λ f

∂uk

∂xk
δi j . (2.3)

Following Stoke’s hypothesis, the bulk viscosity is assumed to equal zero, which allows Lamé’s first parameter
λ f to be written in function of the dynamic viscosity:

λ f =−2

3
µ f . (2.4)

The heat flux qi due to conduction can be obtained through Fourier’s law, where it is assumed qi is propor-
tional to the temperature gradient by the coefficient of thermal conductivity κ:

qi =−κ f
∂T

∂xi
. (2.5)

7



8 2. Governing Equations

The state variables pressure p and temperature T can be obtained from the density ρ f through the ideal-gas
equation of state

p = ρ f RT , (2.6)

and the definition of total energy

E = p

γ−1
+ 1

2
ρ f ui ui . (2.7)

The temperature dependence of the dynamic viscosity µ f and the thermal conductivity κ f is given by Suther-
land’s law and by assuming a constant Prandtl number Pr = 0.72.

µ f =µ f ,r e f
Tr e f +C

T +C

(
T

Tr e f

)3/2

(2.8)

κ f =
γR

(γ−1)Pr
µ f (2.9)

The reference states are Tr e f = 293.15K and µr e f = 18.21×10−6 Pas, while the constant C equals 122 K.

2.2. Structure
The structural sub-domainΩs is governed by the local form of the balance of linear momentum, given by:

ρs;0
∂2d

∂t 2 =∇0 · (G ·S)+ b̂0, (2.10)

which describes an equilibrium between the work done by the inertial forces and the internal and external
forces expressed in terms of the undeformed configuration Ωs . In Eq. (2.10), d represents the vector of un-
known displacements, ρs;0 is the density of the structural material, ∇0 · (·) denotes the material divergence
operator, and b̂0 is the vector containing the external material body forces. The unknown internal forces can
be computed from the first Piola-Kirchoff stress tensor P = G ·S, where G and S are the deformation gradient
tensor and the second Piola-Kirchoff stress tensor respectively. The latter equals

S = ∂Ψ

∂E
. (2.11)

By assuming a hyperelastic Saint Venant-Kirchoff material model, a constitutive equation for the unknown
stresses is obtained. The associated strain energy density functionΨ is given by

Ψ(E) = λs

2
[tr(E)]2 +µs tr

(
E2) , (2.12)

where λs and µs denote Lamé’s first and second parameter. E represents the Green-Lagrange strain tensor,
which is given by

E = 1

2

(
GT ·G− I

)
. (2.13)

For later use in Section 2.3, the Cauchy stress tensor, or so-called true stress tensor, is defined as

σs = 1

J
P ·GT , (2.14)

where J represents the Jacobian. In order to solve the governing structural equation, boundary conditions
have to be specified on ∂Ωs = ΓS,D ∪ΓS,N ∪Γ. Displacements d are imposed on the Dirichlet boundary ΓS,D ,
while tractions t̂0 = P ·n0 are prescribed on the Neumann segment ΓS,N . For the computation of the trac-
tion, n0 denotes the unit normal vector in material configuration. Furthermore, initial displacements and
velocities have to be specified:

d0 = d(t = 0) on Ωs , (2.15)

ḋ0 = ḋ(t = 0) on Ωs . (2.16)
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2.3. Fluid-Structure Interface Conditions
Since an interface exists between the fluid and solid subdomains, coupling conditions have to be specified
on Γ. In order to ensure dynamic equilibrium, the tractions imposed by the flow and the structure have to be
equal:

σΓf ·nΓ =σΓs ·nΓ, (2.17)

where σs is the Cauchy stress tensor given by Eq. (2.14) and σ f is the fluid stress tensor. The latter features
both a normal inviscid component and a tangential viscous part, i.e. σ f = −pI+τ. Secondly, the kinematic
no-slip boundary condition is formulated as follows:

∂dΓ

∂t
= uΓ. (2.18)

For an inviscid flow, the kinematic boundary condition reduces to matching normal velocities at the interface

∂dΓ

∂t
·nΓ = uΓ ·nΓ. (2.19)

Concerning the thermal loads on the structure, the fluid-structure interface is modelled as an adiabatic wall.
No heat transfer thus occurs from the fluid to the structure, and the latter can therefore be assumed to be
isothermal.





3
Shock-Panel Interactions

Shock-Wave/Turbulent Boundary-Layer Interaction over a compliant structure is a complex problem. SWT-
BLI involves the fields of shock reflection/interaction, boundary layer theory and fluid-structure interaction.
Inviscid shock reflection is not elaborated on here, as it is well understood for (quasi-)steady flows. For more
information on this topic, which includes theory on regular and irregular interactions, and criteria for tran-
sition from one to the other, the reader is referred to the work by Ben-Dor [2007] and Shapiro and Shapiro
[1987].

To reduce the complexity of the problem, inviscid oblique shock-panel interactions are first introduced in
Section 3.1. Next, the state-of-the-art regarding viscous interactions, or shock-wave/boundary-layer Interac-
tions, is elaborated on in Section 3.2.

3.1. Inviscid Flow
The interaction between an impinging oblique shock and a flexible panel has been mainly investigated by
coupling a nonlinear von Kármán plate to the Euler equations [Boyer et al., 2016, 2018; Visbal, 2012, 2014].
The latter are given by Eq. (2.2) if the viscous part is omitted. A derivation of the von Kármán equations can
be found in e.g. Fung [1965], and entails the following assumptions: a thin plate with deflections on the order
of the panel thickness, a small panel curvature everywhere, negligible tangential displacements, and small
strains which vary linearly with the plate thickness. In all publications, the pressure acting on the lower side
of the panel, usually called the cavity pressure pc analogous to the cavity present in wind tunnels, is set to the
theoretical average of the oblique shock reflection on the flow-side. This boils down to setting

pc = k ·p1 + (1−k) ·p3, (3.1)

where p1 and p3 are the static pressure up-and downstream of the shock system respectively, and k is the
nondimensional shock impingement point xi mp /a. Note that a is the length of the panel. Prescribing this
cavity pressure yields a zero net steady pressure difference, and thus a minimal stiffening of the plate. As
a result, Visbal [2012, 2014] observed interesting simply-supported panel dynamics with increasing shock
strength, which were similar for Mach 2.0 and 2.5. For a theoretical shock-system pressure ratio of p3/p1 =
1.2, a steady deformed solution was obtained, which was attributed to the corresponding stiffening of the
plate. When the shock strength was increased to p3/p1 = 1.4, increased flutter amplitudes and frequency
were obtained at the same flutter dynamic pressure as the no-shock case, but only if a flat plate initial con-
dition was prescribed. This is illustrated in Fig. 3.1. Note that in literature on flutter the dynamic pressure
q = 0.5ρU 2 is usually nondimensionalised as shown by Eq. (3.4), yielding λ. Initiating the simulation with a
previously obtained deformed panel resulted in an elimination of all unsteadiness. This subcritical bifurca-
tion was found to shift to a supercritical instability for higher shock strengths (p3/p1 ≥ 1.8), yielding a strong
reduction in flutter dynamic pressure. Visbal [2014] also investigated the effect of shock impingement points
forward of the panel midpoint. Moving from k = 0.5 towards the leading edge, more specifically to k values of
0.43 and 0.18, a monotonic increase in flutter frequency was observed. At k = 0.25 and 0.38 though, the LCO
disappeared and a steady deflected solution was obtained.

11
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Figure 3.1: Flutter amplitude (left) and frequency (right) versus dynamic pressure for different shock strengths and Mach numbers for
simply supported panels (2D: M = 1.8 [Gordnier and Visbal, 2002] M = 2.0 [Visbal, 2012] M = 2.5 [Visbal, 2014], 3D:

M = 2.0 [Boyer et al., 2018])

In three dimensions, behaviour similar to 2D panels was observed for pinned-pinned rectangular panels by
Boyer et al. [2018], although the subcritical bifurcation was found to persist up to the highest considered
shock strength p3/p1 = 1.8. This was attributed to the additional stiffness introduced by the spanwise con-
straints, and it is therefore argued by the authors that supercritical bifurcations will also emerge for stronger
shocks. It must be noted that a dominant 3D mode was introduced into the flutter motion, and that signifi-
cant spanwise bending of the shock was obtained.

In short, it can be concluded that the mean panel deformation induced by shock impingement will yield a
completely new aeroelastic instability, which differs strongly from classical panel flutter. The flutter dynamic
pressure, amplitudes and frequencies for the latter can be excellently predicted for M ≥ 2.0 by coupling Linear
Piston Theory, given by Eq. (3.2), to nonlinear structural models, for example a von Kárman plate.

p(x, t ) = p∞+ 2q∞
M∞

(
∂w

∂x
+ 1

U∞
∂w

∂t

)
(3.2)

Classical work by author’s such as Dowell and Voss [1965] and Dowell [1966, 1967] is still accurate and com-
putationally cheap, and excellent overviews on the topic are given by Dowell [1970] and Mei et al. [1999]. A
similar method was employed by Ye et al. [2018] and Ye and Ye [2018] to analyse the linear stability of a flat
plate subject to an impinging shock. The shock was included by simply imposing a dynamic pressure jump
at the shock impingement point k. Transverse loads were thus completely ignored. The methodology behind
this low fidelity model and the ability of the method to predict shock-panel interactions are elaborated on in
Chapter 4.

3.2. Viscous Flow
If the viscosity of the fluid is not neglected, boundary layer theory comes into play. The fluid is then governed
by the full Navier-Stokes equations, given by Eq. (2.2). The interaction between an impinging shock and a
(turbulent) boundary layer is known as a shock-wave/(turbulent) boundary-layer interaction. The mean-
flow structure of Shock-Wave/Boundary Layer Interactions has been extensively researched in the past, and
is therefore well understood. An excellent review on the general flow phenomena associated with SWBLI
is given by Délery and Dussauge [2009]. Both laminar and turbulent interactions are considered, but since
nearly all real-life occurrences of SWBLI involve turbulent boundary layers [Alder, 2015], focus will be put
on the latter. The phenomenon differs depending on whether a weak or a strong interaction is considered.
A strong interaction entails that the adverse pressure gradient imposed by the shock is sufficiently strong to
induce mean flow separation, in contrast to the incipient separation induced by weak shocks. This sepa-
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ration is known to create complex interactions involving the separated shear layer, the incident shock and
the separation bubble, which can lead to a low-frequency motion of the separation shock [Clemens and
Narayanaswamy, 2014]. This unsteadiness is elaborated on in Section 3.2.1.

As shown in the schematic of a typical strong SWTBLI presented in Fig. 3.2, the adverse pressure gradient
imposed by a strong shock will lead to separation upstream of the inviscid shock impingement point. This
is known as the upstream influence paradox [Steinrück, 2011; Stewartson and Williams, 1969], and can be
attributed to pressure waves being transmitted upstream through the subsonic part of the boundary layer,
which in turn leads to a thickening of the TBL. This thickened part of the boundary layer acts as a compres-
sion ramp, inducing the formation of compression waves. These coalesce into the separation shock, which
consequently interacts with the impinging shock. Thus, in the case of a strong interaction, the field of shock-
shock interference adds additional complexity to the problem of SWTBLI. For more information on this topic,
the reader is again referred to the book by Ben-Dor [2007]. It has been shown that the strength of the sepa-
ration shock and the separation-bubble pressure plateau depend only on the upstream conditions, and not
on the downstream flow nor the downstream geometry. This "free-interaction" theory was first proposed by
Chapman et al. [1957], and has been proven experimentally [Pasquariello, 2018]. Regarding the separated
shear layer, it is first inclined upwards at the separation point, after which it is again deflected towards the
wall by the action of the expansion fan. The latter originates at the impingement point of the incident shock
on the sonic line. The consequent reattachment of the shear layer again induces the formation of compres-
sion waves, which can coalesce into a reattachment shock. The results of this entire viscous interaction is a
spreading of the shock-system static pressure-jump, as illustrated in Fig. 3.2.
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Figure 3.2: Sketch of a typical strong Shock/Wave-Turbulent Boundary-Layer Interaction (left, [Pasquariello et al., 2015]) and the
accompanying mean wall pressure distribution (right, adapted from [Délery and Dussauge, 2009])

3.2.1. Low Frequency Unsteadiness
From an unsteady point of view, SWTBLI’s are much more complex. As stated earlier, SWTBLI with mean
separation inherently shows significant low-frequency movement of the separation shock. The dominant
frequency of this unsteady motion is typically two or more orders of magnitude lower than the characteristic
frequency of the energetic eddies in the incoming boundary layer, Ur e f /δr e f . Over the last decades, a mul-
titude of different explanations for this phenomenon has been postulated. Typically, the shock is seen as a
boundary between upstream and downstream conditions, thus the shock motion can be attributed to either
downstream or upstream mechanisms. The current consensus seems to move towards an intrinsic mecha-
nism though, driven by a certain forcing originating upstream. A short overview will be given here, while the
reader is referred to the work by Clemens and Narayanaswamy [2014] for a more in depth study.

First, intrinsic mechanisms are considered. Touber and Sandham [2011] derived an ODE for reflected shock
motion, based on the Navier-Stokes momentum equation and SWTBLI LES results. Mathematically speaking,
the results had the characteristics of a low-pass filter, which is similar to what was postulated by Plotkin [1975]
and later by Grilli et al. [2012]. The authors argued that shock motion should not necessarily be attributed
to up-or downstream mechanism, but that it is in fact an intrinsic property of the coupled system. Note that
the model by Touber and Sandham [2011] was recently modified by Brouwer et al. [2017] to include the effect
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of surface deformation. Based on unprecedented well-resolved long-integration time LES data, Pasquariello
et al. [2017] found strong support for the intrinsic behaviour of the interaction. It is argued that the mecha-
nism might not be self-sustaining, requiring a certain forcing originating upstream or in the interaction zone
itself. A possible continuous coherent forcing could be the observed unsteady Görtler-like vortices, which
were linked to streamwise-elongated regions of low and high momentum. A similar explanation was postu-
lated independently by Priebe et al. [2016], increasing the confidence in this result.

An actual upstream mechanism was first proposed by Andreopoulos and Muck [1987], who determined the
mean shock-crossing time period from wall-pressure measurements under a Mach 3 compression ramp.
According to Dolling and Brusniak [1989] though, the measurements executed by Andreopoulos and Muck
[1987] were susceptible to a misinterpretation of turbulent motions as a crossing of the shock. A similar re-
lation between upstream pressure fluctuations and shock-foot motion was observed by Erengil and Dolling
[1993]. However, they observed correlations between the pressure under the separated flow region and the
intermittent region over which the separation shock translates, which led to the belief that the low-frequency
shock motion was caused by breathing of the separation bubble. Another possible explanation is the oc-
currence of long low-velocity superstructures in the turbulent boundary layer. Ganapathisubramani et al.
[2009] observed a strong correlation between structures of up to 40 δr e f length and the instantaneous po-
sition of a separation line surrogate. This correlation was not observed by Wu and Martín [2008] though,
who used the true separation point instead of a surrogate model. Délery and Dussauge [2009] also argued
that the frequency of such long structures is too low to explain the typical unsteadiness of oblique shock
reflections, which was confirmed by Touber and Sandham [2009]. Even more, the LES results obtained by
Pasquariello et al. [2017] did not show any evidence for coherent structures of sufficient length. The effect of
these superstructures was also investigated in Delft by Humble et al. [2009], who found them to be the cause
of high-frequency small-amplitude spanwise wrinkling of the shock.

Although many plausible upstream mechanisms exist, several authors have observed more prominent down-
stream mechanisms. These usually link the motion of the separation shock to the behaviour of the down-
stream separation bubble. Dolling and Erengil [1991], Thomas et al. [1994] and Dupont et al. [2006] all showed
that the wall-pressure fluctuations close to the reflected shock foot and near the reattachment point are cor-
related at low frequencies. A phase shift is observed, which indicates a breathing motion of the separation
bubble, i.e. a periodic expansion and contraction. Piponniau et al. [2009] and Wu and Martín [2008] proposed
a simple model based on shear layer entrainment of the low-momentum fluid in the separation bubble. It
was argued that the reduction in bubble mass due to this entrainment process (breathing) could be compen-
sated by large-scale transverse motions (flapping) of the shear layer near the reattachment point. For strong
shocks, the consensus seems to be that shock motion will be caused by this flapping motion at the reattach-
ment point. Pirozzoli and Grasso [2006] simulated a Mach 2.25 SWTBLI with DNS, which was too short to
capture the low-frequency unsteadiness. However, they observed evidence for an acoustic feedback mecha-
nism between the incident shock and the upstream separation point, which would act at higher frequencies
than the typical low-frequency motion. Using LES, it was shown by Touber and Sandham [2009] that acoustic
waves can indeed travel upstream within the separation bubble.

3.2.2. Interaction Length
Based on literature, three different parameters were found to affect the extent of the separated region ob-
served for strong SWBLI. The correlation between the relative positioning of the wedge trailing edge w.r.t.
the shock impingement point and the interaction length is first discussed, after which the effect of Reynolds
number is touched upon. Lastly, the effect of panel unsteadiness on the interaction length is elaborated on.

Effect of the Wedge Trailing Edge Expansion Fan

An important aspect which should be taken into account when considering the generation of an oblique im-
pinging shock in an experimental facility, is the Prandtl Meyer Expansion (PME) fan inevitably originating
at the trailing edge of the shock generator. Depending on the wedge geometry, the expansion fan can inter-
act with the impinging/reflected shock system and affect the SWBLI accordingly. For M1 = 2.0 and ϑ1 = 10◦
(p3/p1 ≈ 2.8), Threadgill and Bruce [2017] experimentally observed an interaction length of 6 δr e f , compared
to about 10 δr e f computed by Matheis and Hickel [2015] (Reδ,r e f = 48.3 · 103). This can most likely be at-
tributed to the different positions of the trailing edge expansion relative to the interaction. Indeed, Grossman
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and Bruce [2018] found experimentally that moving the impingement point of the first expansion wave closer
to the interaction will reduce the separation extend by moving the separation point downstream, while the
reattachment point remains more or less constant. This can be attributed to a stronger pressure rise being
required at the reattachment point, thus necessitating a longer separation bubble to provide the required mo-
mentum exchange between the freestream and the separated shear layer to ensure reattachment [Délery and
Dussauge, 2009]. The distance between the inviscid shock impingement point and the impingement point of
the first expansion fan wave L, illustrated in Fig. 7.2, can thus be identified as a key parameter affecting the
interaction length of a SWBLI. The general structure of the interaction was found to be independent of the
PME fan distance though. For the most downstream location of the wedge trailing edge, a separation length
of about 12δr e f was observed for a flow deflection angle of 12◦. Similar results were obtained in the experi-
ments conducted by Rabey and Bruce [2019] (M1 = 2.0, ϑ = 12◦), where the interaction length was found to
increase from 7.2 δr e f to 13.5 δr e f by moving the expansion fan more downstream. An alternative parame-
ter to characterise the distance between shock and expansion fan is the channel height to wedge width ratio
g+ = g /w , as employed for example by Matheis and Hickel [2015].

Figure 3.3: Correlation between expansion fan impingement separation L and separation extent Lsep [Grossman and Bruce, 2018]

Considering the correlation between expansion fan - impinging shock distance and the interaction length,
Grossman and Bruce [2018] found that a nearly linear correlation exists up to their maximal attainable ex-
pansion fan-SWBLI distance, as shown in Fig. 3.3. A further increase in distance was not possible due to the
sudden appearance of a normal shock at the wedge tip, causing a tunnel unstart. According to Li and Ben-
Dor [1997], this can occur when a Mach reflection is theoretically possible, but cannot be established due to
the reflected incident shock impinging on the wedge, upstream of the expansion fan origin. This can be at-
tributed to the shock reflecting from the wedge onto the subsonic slipstream caused by the Mach reflection,
rendering it unstable and thus inducing an upstream push of the Mach stem. Indeed, Matheis and Hickel
[2015] observed a pocket of subsonic flow behind the interaction at the given flow deflection angle, indicat-
ing the onset of an irregular SWBLI (ISWBLI). The author argues that for a regular SWBLI, thus at a smaller
flow deflection angle than approx. 12 degrees, this choking of the tunnel will not occur when the reflected
impinging shock does not interact directly with the expansion fan.

Thus, the pressure rise at reattachment and the extent of the separated region strongly depend on the location
of the PME fan originating at the shock-generator trailing edge, and care must therefore be taken to ensure
simulation and experiment do not differ in this respect.

Effect of Reynolds Number

The effect of the Reynolds number Reδ = U1δ/ν1 is twofold. For laminar interactions and turbulent inter-
actions at low Reynolds number (Reδ < 105), an increase in Reynolds number will lead to a growth of the
interaction length [Babinsky, 2011]. This can be attributed to the decrease in skin friction, which is illustrated
for laminar and turbulent boundary layers in Fig. 3.4(a) and Fig. 3.4(b) respectively. This leads to a reduc-
tion of the separation pressure jump predicted by the free-interaction theory [Chapman et al., 1957] and as
a result, a stronger pressure rise is required at reattachment. Thus, as discussed earlier, the separation point
has to move upstream to accommodate a longer separated shear layer which ensures enough momentum
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can be transferred from the freestream to the boundary layer. For high Reynolds number turbulent interac-
tions (Reδ ≥ 105), the increased boundary layer momentum will outweigh the reduction in C f , leading to a
reduction in separation extent.

(a) Laminar [Cousteix, 1988] (b) Turbulent [Cousteix, 1989]

Figure 3.4: Skin friction coefficient versus Rex for different Mach numbers for a laminar and a turbulent flat-plate boundary layer

Effect of Panel Unsteadiness

Panel unsteadiness can significantly affect the extent of the separation bubble. Visbal [2014] investigated
the interaction between a simply supported panel and a laminar SWBLI with unsteady RANS and observed
a streamwise shrinking of the mean separation bubble by 31%, as illustrated in Fig. 3.5. Pasquariello et al.
[2015] also observed a reduction in the separation extent of about 15% compared to the SWTBLI over a rigid
flat plate, but no conclusion could be drawn from this result since a weaker shock was considered for the
coupled interaction. Brouwer et al. [2017] investigated the effect of surface curvature and unsteady deforma-
tion on SWTBLI using a RANS approach. It was found that the behaviour of the separation bubble depends
strongly on the plate curvature at the separated region, yielding a minimal reduction in the separation ex-
tent for midpoint shock impingement on plates undergoing a second mode deformation (or any other even
mode). Indeed, for such motion, the separation bubble is located at an inflexion point, yielding negligible
surface curvature underneath the separated region. It must be noted that the separation bubble considered
by Brouwer et al. [2017] only spanned about 20% of the panel length in the rigid case.

(a) Steady (b) Unsteady

Figure 3.5: Mean streamwise velocity contours for a laminar interaction over a rigid (a) and flexible (b) panel (M1 = 2.0, p3/p1 = 1.8,
k = 0.50, Rea = 120,000).
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3.2.3. Numerical Simulation of SWBLI
The main difficulty in the investigation of coupled SWTBLI lies in the computational cost. In most applica-
tions, turbulent flows at high Reynolds number are involved. Since the ratio of smallest to largest scales in
3D problems increases with Re9/4, resolving all scales in high Reynolds number flows becomes an infeasible
task. Two main alternatives exist: Reynolds-Averaged Navier Stokes (RANS) simulations, which model all tur-
bulent scales, or Large-Eddy Simulations (LES), which resolve the most energetic turbulent eddies and model
the remaining subgrid scales. It has been clear for many years that LES approaches are required to resolve
SWTBLI [Knight and Degrez, 1998]. This requirement stems mainly from the fact that only LES can capture
the inherent low-frequency unsteadiness. Indeed, it was found by Knight et al. [2003] that LES produces im-
proved results for both two-and three-dimensional interactions. Morgan et al. [2013] investigated modelling
errors of eddy-viscosity and Reynolds-stress-transport RANS approaches. By comparing the RANS results for
SWBLI at different shock strengths and Reynolds numbers with an LES-based surrogate model, they observed
a strong overestimation of the separation length. A similar error was found by Pirozzoli et al. [2009], which
was attributed to the inability of RANS models to predict turbulent transport within the detached shear layer.
Next to that, the RANS approaches failed to predict the anisotropic behaviour of turbulence close to the sep-
aration point, missing a dominant near-wall one-component turbulence state which in the LES case lifts up
the shear layer.

Weak interactions have been thoroughly investigated with DNS [Pirozzoli and Grasso, 2006; Priebe et al.,
2009] and LES [Agostini et al., 2012; Aubard et al., 2013; Hadjadj, 2012; Nichols et al., 2016; Pasquariello et al.,
2014; Pirozzoli et al., 2010; Touber and Sandham, 2009], but only low Reynolds numbers (Reδ0 ≤ 60 ·103) and
short integration times were considered. Since it has been shown that the transition to strong interactions can
already happen at low shock strength, and that increasing the shock strengths will lead to more intense low-
frequency content at increased time-scales [Morgan et al., 2013], it is clear that high Reynolds LES approaches
of strong interactions over long integration times are required.

The first well-resolved LES at high Reynolds number (Reδ,r e f = 205 ·103) was conducted by Pasquariello
et al. [2015]. The interaction between a turbulent boundary layer and an oblique shock generated by a wedge
creating a flow deflection angle ϑ of 20◦ was simulated over a timespan of 1900δr e f /U∞. This is the numeri-
cal counterpart of the experiment conducted by Daub et al. [2015b], and excellent agreement between both
set-ups was obtained. The evolution of the mean wall-pressure was reproduced nicely, while the pressure
plateau under the separation bubble also showed excellent agreement with the experiment. Significant un-
steady motion of the shock foot was obtained in the LES, but it was not possible to validate this due to the
absence of a pressure sensor at the mean separation point in the experiment. The same experimental set-up
was again reproduced numerically by Pasquariello et al. [2017] two years later, but the integration time of the
LES was doubled to 3805δr e f /U∞. This allowed for a more accurate study of the low-frequency unsteadiness.
An in-depth analysis of the filtered 3D flowfield showed the development of counter-rotating Görtler-like vor-
tices downstream of the bubble apex, which were found to not be restricted to a certain spanwise location.
Instead, a slow meandering motion of the vortices was observed, in contrast to the results by Loginov et al.
[2006], which was found to be coupled to separation bubble breathing. Two dominant modes were identi-
fied by using sparsity-promoting dynamic mode decomposition. First of all, the typical low-frequency mode
(St = 0.04) corresponding to a breathing motion of the separation bubble and the accompanying shock-foot
motion was observed. Secondly, a medium-frequency mode (St = 0.5) was also identified, which was related
to a downstream convection of shear-layer vortices, which also induced the formation of Mach waves. This
led to a corrugation (wavelike motion) of both the reflected and reattachment shock. Lastly, the Görtler-like
vortices were found to cause a large-scale flapping of the reattachment line, in addition to the breathing mo-
tion of the separated flow region.

3.2.4. Coupled SWBLI over a Compliant Panel
SWBLI over a flexible panel has been mainly investigated with RANS approaches, which fail in predicting
the inherent low-frequency content of the interaction. Nevertheless, these results can give an insight in the
qualitative mean-flow behaviour. Miller et al. [2012] first investigated the response of a 2D flexible panel to
a Mach 3.0 SWTBLI (Rea = 7.4 · 105) using RANS, and a dependency of the panel motion on back pressure
and dynamic movement of the impingement point was found. Visbal [2014] and Boyer et al. [2016] also used
RANS approaches to investigate the coupling between a Mach 2.0 laminar SWBLI (Rea = 1.2·105, p3/p1 = 1.8)
and a 2D compliant panel (thickness-to-length ratio h/a = 0.002). Note that the shock was strong enough
to induce mean boundary layer separation. Compared to the inviscid results, significantly more complex
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response was observed, which involved a long LCO-like transient, followed by chaotic high-mode motion. A
strong variety in active modes with varying shock strength was found, which could be attributed to Tollmien-
Schlichting waves coupling with high structural modes for low shock strengths (p3/p1 = 1.4). No monotonic
behaviour with increasing nondimensional dynamic pressure λ∗ was obtained either, where the latter is a
typical nondimensional parameter employed to characterise flutter and is given by Eq. (3.4). A pressure ratio
of p3/p1 = 1.8 resulted in increasing transient durations with increasing λ∗, and a complete elimination of
all unsteadiness for λ∗ exceeding 1,250. Considering the mean deformation, a second mode deformation
was observed, which was similar in shape to the inviscid case but one order of magnitude smaller. The mean
flow was also altered: a reduction in separation extent was obtained, which could be attributed to the forcing
of the flow by the unsteady panel motion, as was proven recently by Brouwer et al. [2017]. This was already
elaborated on in Section 3.2.2.

Gogulapati et al. [2015] developed a FSI tool to analyse the coupled flow-structural response of thin pan-
els. The steady surface pressure was obtained with a surrogate RANS model, while pressure fluctuations were
estimated with local piston theory. A similar low-cost LPT prediction of the unsteady loads was utilised by-
Brouwer et al. [2015] for inviscid shock-flexible panel interactions, which yielded flutter boundaries which
were close to those obtained by Visbal [2014]. Gogulapati et al. [2015] estimated turbulent boundary layer
loads with a semi-empirical model. The fluid model was coupled explicitly to a FEM-based structural solver,
and results were compared with experimental Mach 2.0 results obtained in the AFRL RC-19 facility for panels
clamped at all edges [Beberniss et al., 2011, 2012; Spottswood et al., 2012, 2013]. Significant discrepancies
were observed in the dynamic response, which were later found to be attributable to the thermal bound-
ary conditions and shock unsteadiness [Gogulapati et al., 2015]. The mean displacement and dominant fre-
quency observed in the experiment by Spottswood et al. [2012, 2013] were also obtained by the Delayed De-
tached Eddy Simulation (DDES) of Gan and Zha [2016].

The only well-resolved LES of coupled SWTBLI is the simulation carried out by Pasquariello et al. [2015], who
loosely coupled implicit LES (iLES) to a FEM discretisation of a hyperelastic Saint Venant-Kirchoff material
model. A Mach 3.0 interaction of a sweeping shock with a TBL at a high Reynolds number of Reδ = 205 ·103

over a compliant Spring steel CK-75 panel was investigated. The shock was generated by wedge rotating from
〈ϑ〉 = 0◦ to 〈ϑ〉 = 17◦, which is similar to (a part of) the experiment conducted by Daub et al. [2015b]. The final
shock impingement location was k = 0.36, and the cavity pressure was set to the freestream static pressure.
This makes it impossible to compare the results to the the work by Visbal [2012, 2014] and Boyer et al. [2016,
2018], who employ a cavity pressure given by Eq. (3.1). Secondly, a damped LCO-like motion was observed in
the windtunnel, which was not obtained in the experiment. The reasons for this discrepancy were elaborated
on in Chapter 1. Next to the mismatch between experiment and simulation regarding unsteady motion, it
must be noted that the mean panel deformation was in excellent agreement with the experiment, although
overall deflections were small due to the high stiffness of the plate material. It can thus be concluded that the
coupling algorithm is robust, but that too much uncertainty was introduced by the boundary conditions.

Recently, the interaction between a compliant panel and a Mach 1.4 normal shock was investigated ex-
perimentally by Jinks et al. [2016]. The panel side-edges were free, ensuring unrestricted spanwise movement
of the structure. A cavity pressure equal to more or less the average upper surface pressure was obtained, but
strong fluctuations related to shock motion were observed. It must be noted that the steady deflection of the
panel was large (on the order of 10 times the panel thickness), therefore the author argues that in the case of
an oblique shock, static deflections and therefore pressure fluctuations will be much smaller.

3.3. Governing Parameters
The interaction between a plate and a supersonic flow is complex and is governed by a multitude of param-
eters. In order to identify a testcase with strong unsteady behaviour, it is crucial to first determine which
parameters should be considered. In this section, based on a thorough literature study, the nondimensional
parameters that govern the flutter behaviour will be introduced. Note that the majority has been defined
in the context of classical panel flutter, i.e. without shock impingement, since it is a much more mature
field. First, the governing structural parameters are listed in Section 3.3.1. Next, the dominant flow parame-
ters are summarised in Section 3.3.2, after which the effect of boundary conditions and initial conditions is
touched upon in Section 3.3.3. Lastly, additional factors affecting the flutter behaviour are elaborated on in
Section 3.3.4.
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3.3.1. Structural Parameters
Dynamic pressure λ: The nondimensional dynamic pressure is a dominant structural parameter for classi-
cal panel flutter, and has thus been adapted as such in recent shock-panel interaction investigations [Boyer
et al., 2016, 2018; Visbal, 2012, 2014]. It is given by Eq. (3.4), where D is the flexural rigidity of the plate, and
removes the dependency of classical panel flutter on the panel thickness to length ratio h/a and the mate-
rial properties Es and νs . Multiple definitions of the nondimensional dynamic pressure exist, depending on
which form of linear aerodynamic theory (piston theory) lies at the basis. For clarity, λ is used if f (M) = β

[Hedgepeth, 1957], while the notation λ∗ is employed if f (M) = 1 [Visbal, 2012, 2014]. Another option is
f (M) = M [Lighthill, 1953], but this is not frequently employed in recent work.
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The nondimensional dynamic pressure determines first of all whether the plate is stable or not. Secondly,
once the point of instability has been passed, the amplitude of the oscillation usually increases with increas-
ing λ. It is safe to assume this will always occur for inviscid interactions, while for viscous panel flutter with
shock impingement more care must be taken. As mentioned earlier, Visbal [2014] and Boyer et al. [2016]
both observed an increase in flutter amplitude and a reduction in size of the separation bubble with increas-
ing λ, up to the point that a steady solution suddenly emerged at λ ≥ 1,250. Note that this only occurred
for relatively strong shocks (p3/p1 ≥ 1.8). It is assumed this can be attributed to the increased mean panel
deformation with increasing dynamic pressure, which introduces additional stiffness to the system. To the
author’s knowledge, for a turbulent SWBLI, no parametric study of flutter behaviour with increasing λ has
been performed yet.

Note that in the case of an impinging shock, the author argues that λ does not completely include the
effect of h/a. Large deflections are involved, which depend strongly on the panel thickness. Since the panel
steady and unsteady deformations will nonlinearly alter the flowfield, it is very possible that for different h/a,
different nondimensional dynamic flutter pressures will be obtained.

Length-to-width ratio a/b: The panel length-to-width ratio determines the three-dimensionality of the prob-
lem. If a/b = 0, an infinitely wide panel or 2D problem is obtained, which has been investigated extensively
for classical inviscid panel flutter. It is therefore well understood for both transonic and high supersonic Mach
numbers. If a/b is increased for panels constrained at all edges (simply supported or clamped), an increase
in flutter dynamic pressure is observed [Dowell, 1966, 1967; Laurenson and McPherson, 1977]. This can be
attributed to an increased spanwise constrainment resulting in an increased panel stiffness. Prediction of
eigenfrequencies for panels constrained in the streamwise direction but unconstrained in spanwise direc-
tion is rather complicated, and for more information the reader is referred to Leissa [1969]. It can be expected
though that assuming the streamwise edges are free will result in a reduced stiffness compared to the fully
clamped/pinned case. Considering the 3D flutter behaviour of panels constrained at all edges, results can be
expected to be qualitatively similar to the 2D case for a/b up to 2.0 [Dowell, 1966; Visbal, 2014].

Increasing the panel slenderness will not only affect the geometrical stiffness of the structure though.
If a shock impinges on the panel, constrained edge conditions will induce spanwise bending of the shock,
significantly changing the aerodynamic loading and introducing a dominant spanwise mode into the flutter
motion [Boyer et al., 2018]. Secondly, the supercritical instability observed for high shock strengths and 2D
panels by Visbal [2014] is not observed for a 3D panel in the same flow conditions. Boyer et al. [2018] argues
the increased stiffness of the panel postpones this phenomenon to higher shock strengths, although this still
has to be confirmed.

Considering 3D viscous panel flutter with and without shock impingement, very few publications are
available. To the author’s knowledge, no publications on high supersonic Mach number classical viscous
flutter exist, but it is argued that the difference with 2D results will be small if there are no spanwise panel
constraints. Daub et al. [2015b] and Pasquariello et al. [2015] obtained semi-2D results for a clamped-free
panel subject to a fast-sweeping impinging shock. It is argued that for a viscous-inviscid interaction, panels
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constrained at all edges will lead to a significant increase in complexity [Boyer et al., 2016].

The air/plate mass ratio M , which is usually defined as M = (ρ1a)/(ρs h), is a typical governing parameter.
Since higher values increase the relative importance of aerodynamic forces, a higher flutter dynamic pres-
sure is expected. Flutter behaviour is in general only weakly dependent on its value though. It was shown by
Dowell [1967] that increasing M from 0.01 to 0.1 has no significant effect on the flutter behaviour of low a/b
plates at high supersonic M . Only if frequencies are high or if single-mode flutter is considered, M might sig-
nificantly affect the results [Dowell, 1970]. For typical aerospace applications, M = 0.1 is generally employed
[Boyer et al., 2016, 2018; Dowell, 1967, 1970; Gordnier and Visbal, 2002; Visbal, 2012, 2014].

Plate thickness h/a: As mentioned in the discussion of the nondimensional dynamic pressure, the thickness
to length ratio of the plate could nonlinearly affect the flutter behaviour in the case of shock impingement,
making it an extra nondimensional governing parameter. This has never been verified though, and could be
interesting for further analysis. The introduction of h/a as an extra parameter becomes clear when examining
the equations of motion of a plate subject to a static loading difference, as will be elaborated on in Chapter 4.

Shock impingement location k: The impingement point on the panel has a significant and quite complex
effect on panel dynamics. Note that the impingement point can only be accurately defined in the inviscid
rigid case, since 1) panel deflection will induce compression/expansion waves which can bend the incident
shock, 2) strong panel deformation can induce a leading edge shock which will lead to shock-shock interfer-
ence, 3) the viscous boundary layer will tend to spread the pressure jump and induce complex shock-shock
interaction and unsteady movement of the shock (see also Section 3.2) and 4) vertical movement of the panel
can slightly alter the impingement location.

In most publications involving inviscid fluid models, the shock is assumed to impinge on the panel mid-
point [Boyer et al., 2016, 2018; Visbal, 2012, 2014]. On the other hand, high fidelity analyses [Gogulapati et al.,
2014, 2015; Pasquariello et al., 2015] with the goal of replicating wind tunnel experiment [Daub et al., 2015b;
Spottswood et al., 2013] involve more upstream shock impingement, since it was observed experimentally
that it triggers an increased instability of the panel. Indeed, a reduction in flutter dynamic pressure was ob-
served by Visbal [2014] and Ye and Ye [2018] for k < 0.5. On the other hand, Visbal [2014] observed ceasing
of the dynamic instability for k = 0.38, which is close to the impingement point for which Pasquariello et al.
[2015] observed a LCO.

As will be discussed in Chapter 4, forward movement of the impingement point will result in a forward
movement and reduction of the upward mean deflection, and a strong increase in post-shock downward de-
flection. This can be attributed to the behaviour of the prescribed average cavity pressure, since it increases
with upstream movement of the shock foot.

For viscous interactions, the distance between shock and expansion fan impingement L strongly affects the
extent of the separated region in strong SWBLI. This was elaborated on in Section 3.2.2. For inviscid shock-
panel interactions, the shock-generator PME fan affects the shock system in a much more direct way, i.e. by
bending the reflected and/or impinging shock, depending on the relative positioning of the wedge trailing
edge.

3.3.2. Aerodynamic Parameters
Mach number M: The Mach number strongly affects the flutter behaviour. Without shock impingement,
single-mode flutter will occur for Mach numbers in the transonic regime, while coupled-mode flutter oc-
curs for high supersonic M . The Mach number thus first of all determines the aerodynamic model that can
be applied. For inviscid flow, it can be concluded that if M ≥ 1.7, single-mode flutter will not be possible.
Fully linear aerodynamic theory can therefore be safely applied to determine the classical flutter boundary,
yielding the same flutter boundaries as nonlinear aerodynamic models. Considering higher fidelity inviscid
calculations, the Euler equations will yield an increased flutter dynamic pressure compared to quasi steady
models due to the inclusion of flow memory [Mei et al., 2014]. Next to that, the semi-empirical inviscid panel
design method presented by Laurenson and McPherson [1977] provides flutter boundaries that are in excel-
lent agreement with Euler results for M ≥ 2. Secondly, increasing the Mach number will increase the flutter
dynamic pressure and reduce flutter amplitude and frequency [Dowell and Voss, 1965; Gordnier and Visbal,
2002]. This effect also persists when a shock impinges on the panel [Boyer et al., 2018; Visbal, 2014]. When
viscous flow is considered, the Mach number influence becomes more complex. In the transonic regime, the



3.3. Governing Parameters 21

boundary layer has a stabilising effect, i.e. the flutter boundary shifts to a higher dynamic pressure and the
flutter amplitude is decreased [Gordnier and Visbal, 2002; Muhlstein et al., 1968]. This effect peaks around
M = 1.2 and decreases significantly up to M = 1.4. For higher Mach numbers, the boundary layer becomes
destabilising. This effect persists up to M = 1.6 according to Alder [2015], and up to M = 1.8 according to
Hashimoto et al. [2009]. Around M = 2, the difference between the viscous and inviscid flutter boundaries is
negligible, while increasing the Mach number even further will once again lead to a stabilising effect of the
boundary layer [Hashimoto et al., 2009].

With inviscid shock impingement, the effect of increasing the Mach number boils down to an increase in
LCO frequency, a reduction in LCO amplitude and a shift of the flutter boundary to higher nondimensional
dynamic pressures [Visbal, 2014].

Shock strength p3/p1: The strength of the shock, for a given Mach number M , can be represented by the
theoretical pressure jump over the inviscid regular reflection. It can also be given by the shock angle σ or the
flow deflection angle ϑ. As will be addressed in Chapter 4, the shock strength strongly affects the nature of
the panel instability in the inviscid case. This is also strongly coupled to the cavity pressure and the dimen-
sionality of the problem. For a cavity pressure equalling the average of the pre-and post-shock system static
pressures, sub or supercritical bifurcation behaviour can be observed depending on the shock strength, as
elaborated on in Section 3.1. If the cavity pressure is not set to the average inviscid reflection pressure, Vis-
bal [2014] observed steady deflection solutions for a shock strength of p3/p1 = 1.4. Unstable behaviour of
clamped panels with different cavity pressures was observed experimentally by Spottswood et al. [2013] and
Daub et al. [2015b] though, but (much) higher shock strengths of 2.3 and 8.36 were imposed. Next to that,
inviscid shock impingement locations were close to the 1/3rd panel chord point, while it is also not clear
if Spottswood et al. [2013] obtained undamped flutter behaviour. Lastly, it can be stated that in the case of
pc = 0.5(p1 + p3), increasing the shock strength will increase the asymmetry of the problem, which will in-
crease the importance of asymmetric modes in the flutter motion [Boyer et al., 2018].

Considering viscous flutter, a strong dependence on shock strength was found by Boyer et al. [2016] for
the interaction between a laminar boundary layer and a compliant panel subject to an impinging shock, as
discussed in Section 3.2.4. Moreover, as discussed in Section 3.2.2, an increase in impinging shock strength
will require the pressure jump at reattachment to increase, thus necessitating a longer separated shear layer
to transfer the required momentum from the freestream. This leads to an upstream movement of the separa-
tion point.

Cavity pressure pc/p1: The pressure on the lower side of the panel strongly affects the static panel deforma-
tion, while it can also be hard to control experimentally. It is usually nondimensionalised with the freestream
static pressure p1. In the case of classical panel flutter, steady pressure differences are usually small, but if
present, they can strongly increase the stiffness of the panel [Dowell, 1966]. In the case of a flat panel, pre-
scribing the freestream pressure on the bottom of the panel allows an excellent quantification of the dynamic
behaviour of the panel [Gordnier and Visbal, 2002].

The cavity pressure becomes a much more dominant parameter when a shock impinges on the panel,
since this always creates different steady pressure ratio’s over the pre-and post-shock sections of the plate.
Completely neglecting these transverse loads and the consequent mean plate deformation, as attempted an-
alytically by Ye et al. [2018] and Ye and Ye [2018], results in flutter behaviour which differs strongly from the
more physical uniform cavity pressure. The shortcomings of such linear models are extensively elaborated
on in Chapter 4. A "minimal" influence of the static pressure is obtained when the average of the theoretical
pressure jump over the inviscid regular reflection is prescribed in the cavity, as given by Eq. (3.1) [Boyer et al.,
2016, 2018; Visbal, 2012, 2014]. This results in steady second mode deformations. This boundary condition
is not often obtained in windtunnel testing, since usually pressure equalisation between the cavity and up-
stream [Daub et al., 2015b; Pasquariello et al., 2015] or downstream [Gogulapati et al., 2014; Spottswood et al.,
2013] conditions is ensured. Cavity pressures lower or higher than the theoretical average pressure over the
flowside were investigated by Visbal [2014], and were found to yield steady deformed solutions for a shock
strength of p3/p1 = 1.4 and λ∗ = 875. Pasquariello et al. [2015] and Spottswood et al. [2013] did observe flut-
ter for the given cavity pressures, but the discrepancy can perhaps be attributed to the following reasons.
The first case involved a fast and very strong shock sweep, which could incite the observed (non LCO-like)
panel motion, while for the latter is is unclear what the actual cavity pressure was. In both cases, a shock
impingement point closer to the leading edge was selected (k = 0.33 [Pasquariello et al., 2015] and k = 0.36
[Gogulapati et al., 2014]), which leads to more unstable panel behaviour.
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Considering obtaining the average theoretical upper surface pressure in the cavity, three options arise. First
of all, clamping of the plate at all edges would allow pressurisation of the test section. Three-dimensional
flutter of a 3D edge-restrained panel subject to an impinging shock produces strong spanwise flow variation
though, and introduces a dominant spanwise mode into the unsteady motion of the plate [Boyer et al., 2018]
(see previous section). A second option to approach an averaged pressure on the bottom of the plate would
be to allow flow between the panel edges and the cavity, as done for example by Jinks et al. [2016]. This most
likely results in the lowest net static pressure difference over the plate, but pc was found to be significantly
unsteady and dependent on shock location. The experiment by Jinks et al. [2016] considered a normal shock
and a shallow cavity though, which leads to a very strong pressure jump and the compressed air in the cavity
acting as an aerodynamic spring [Dowell and Voss, 1965]. Considering the cavity depth of the ST-15, pressure
fluctuations are expected to be much smaller. Another benefit of leaving the spanwise edges unrestrained, is
that semi 2D behaviour of the panel and the flow can be expected. The third and last option entails sealing
of the cavity by adding a thick layer of soft foam rubber to the underside of the panel, as attempted by Daub
et al. [2015b]. This could add significant damping to the system though, and it is not clear how this can be
modelled numerically [Pasquariello et al., 2015]. Leaving spanwise gaps between the compliant plate and
the test section thus seems to be the best option for obtaining an averaged cavity pressure through pressure
equalisation.

Reynolds number Re: In literature on viscous panel flutter, different Reynolds numbers are employed. For
laminar flows, the panel Reynolds number Rea , based on the panel length a, is often used, while turbulent
boundary layers are characterised by Reδ, based on the boundary layer thickness. To the authors knowledge,
a sensitivity study of the interaction of an impinging shock with a compliant panel with respect to Reynolds
number has only been done for a laminar boundary layer [Visbal, 2014]. A doubling in Reynolds number
from Rea = 1.2 ·105 to Rea = 2.4 ·105 resulted in increased pressure fluctuations and a halving of the extent of
the separation region. This might be attributed to the increased forcing of the boundary layer. As discussed in
Section 3.2.2, the Reynolds number indeed has a strong influence on the interaction length, which is twofold
for turbulent SWBLI depending on whether Reδ exceeds 1×105 or not.

Boundary layer thickness δ/a: For classical panel flutter, an increase in the boundary layer thickness results
in a linear increase of the flutter dynamic pressure, as well as a reduction in growth of both the amplitude and
frequency of the flutter response, as long as δ/a < 0.1 [Alder, 2015; Dowell, 1971, 1973; Gordnier and Visbal,
2002]. For a Mach number of 2, negligible discrepancies were found between inviscid and turbulent panel
flutter [Alder, 2015; Hashimoto et al., 2009].

Laminar VS turbulent: To the author’s knowledge, an explicit comparison between laminar and turbulent
panel flutter has only been made by Hashimoto et al. [2007]. For low supersonic Mach numbers, a laminar
boundary layer was found to have a more stabilising effect compared to a turbulent one. For SWBLI, the result
will most likely be much more complex and Reynolds number dependent.

3.3.3. Initial Conditions and Boundary Conditions
Initial Conditions: In the case of regular panel flutter, small perturbations are required to incite flutter. If
a shock impinges on the panel, a steady pressure difference will automatically develop between the upper
surface and the cavity. This is sufficient to excite instabilities, although it was found that strong dependence
of the flutter behaviour on the initial shape of the plate exists. This was elaborated on in the previous section,
but is quickly outlined here again. For average shock strengths (p3/p1 = 1.4) for 2D panels and average to
strong shocks (p3/p1 = 1.4−1.8) for 3D panels, subcritical bifurcations are observed. If the initial shape of the
plate equals the rigid flat plat solution, flutter occurs. If the initial condition is a deformed solution obtained
previously at a lower dynamic pressure, a steady deformation arises. For stronger shock strength, supercrit-
ical behaviour is again observed for 2D plates, indicating that the dependency on the initial conditions is
eliminated.

Regarding matching the experimental initial conditions with the computational ones, it becomes clear
that this is simply not possible. If the spanwise edges are left free and the cavity pressure is obtained through
pressure equalisation with the test section, the cavity pressure will strongly vary during windtunnel start-up.
It would be extremely expensive to model the passing of the normal shock and the consequent cavity re-
sponse, thus this is not an option. Instead, it should be shown using inviscid computations that large initial
disturbances do not affect the statistically stationary panel response, i.e. the converged LCO does not depend
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on the initial conditions.

Plate Boundary Conditions: In the vast majority of literature, the leading and trailing edges of the panel are
either clamped or simply supported (pinned). The general outcome is clear: a simply supported boundary
condition will be less constraining on the panel motion, and thus yield a panel with lower stiffness compared
to a clamped boundary condition [Alder, 2015]. As touched upon in the discussion of a/b, 3D clamped-
clamped or pinned-pinned plates will not yield different flutter behaviour (without shock impingement)
compared to the 2D case for a/b < 2.

In the case of an impinging shock, the answer might not be so simple. To the author’s knowledge, no
research has been conducted that isolates the effect of the boundary conditions. The streamwise (leading and
trailing edge) constraints will most likely affect the large mean deformations induced by the pressure jump
over the shock, which in turn will nonlinearly affect the flowfield. Considering the spanwise constraints, it was
also proven by Boyer et al. [2018] that the interaction of a shock and a 3D simply supported panel yields strong
spanwise variation of the flow, as well as a dominant spanwise mode. It can therefore be argued that the effect
of the boundary conditions is not solely a geometrical stiffening of the panel, but also a strong altering of the
flow. Anyhow, as discussed in the section on pc , leaving the spanwise edges free is most likely the best option
to obtain an averaged cavity pressure. Thus, the plate is expected to behave two-dimensionally, and no extra
geometrical stiffening is expected.

3.3.4. Other Parameters
Thermal loads can significantly affect panel flutter behaviour. Elevated material temperatures, due to for
example aerodynamic heating during sustained supersonic flight, can induce a reduction in strength, while
thermal stresses induced by temperature gradients can alter the material stiffness. In general, the aerother-
mal and aeroelastic aspects of the problem are considered separately, since the coupling between them is
usually negligible [Houbolt, 1958]. While discussing the aeroelastic aspect in this chapter, it was always as-
sumed no heat transfer occurs from the fluid to the structure. If the flow is inviscid, the boundary layer and
the corresponding viscous dissipation is removed. In that case, the adiabatic wall temperature corresponds
to the freestream temperature, since no kinetic energy is dissipated. As a result, no aerodynamic heating of
the structure will occur. On the other hand, if the boundary layer is taken into account, the adiabatic wall
temperatures can reach several multiples of the freestream temperature for high supersonic Mach numbers.
It can be questioned if the assumption of zero heat transfer at the structure is then physical. The validity of
an adiabatic boundary depends strongly on the scenario under consideration. If sustained supersonic flight
is considered, timescales are sufficiently long for the structure to heat up, as for example the Concorde (Mach
2) and the Quiet Supersonic Platform (Mach 2.4) experienced skin panel temperatures of 108°C and 189°C
respectively [Guo and Mei, 2006]. Ignoring the elevated material temperature in such an environment would
not yield accurate results. In rocket nozzles, flow conditions are much more extreme. The hot gasses flowing
through the nozzle usually exceed 3,000K, which can lead to nozzle temperatures of 2,000K after long burn
times [Guobiao et al., 2007]. The high temperatues of the gas induce chemical reactions and severe heat-
transfer [Hadjadj et al., 2015]. It must be noted though that in the context of SWBLI, only the initial start-up
of the rocket engine is under consideration. This means time-scales are short, especially when considering
the characteristic time-scales of the fluid and the structure. The thermal response time is usually an order
of magnitude larger [Culler and McNamara, 2011], reducing the importance of considering the heat flux to
the structure. Secondly, nearly all current studies involving high-fidelity computations of SWBLI induced
flutter or asymmetric nozzle loads assume adiabatic wall conditions and low (100-300K) flow temperatures
to allow comparison with wind-tunnel experiments or other literature [Baars et al., 2015; Boyer et al., 2016;
Miller et al., 2012; Pasquariello et al., 2015; Visbal, 2014; Zauner, 2015]. Chaudhuri and Hadjadj [2012] did
investigate high temperature (2,500K) 2D transient nozzle flow during engine start-up, but they also assumed
adiabatic conditions. Thirdly, regenerative cooling and/or film cooling is often used to protect the nozzle
from the extreme flow temperatures, as employed for example in the SSME and Vulcain-1 [Shine and Nidhi,
2018]. This again reduces structural temperatures, but it must be noted that the inclusion of film cooling can
greatly affect side-loads [Boccaletto et al., 2007; Wang and Guidos, 2009]. Regarding the complexity of the
phenomena at work and the subject of the thesis, the author is convinced adiabatic and wind-tunnel tem-
perature conditions should be used in the current study, to focus on the pure aeroelastic phenomena and to
compare with recent work on Shock Wave Turbulent Boundary Layer Interaction.

One-or two-sided flow: In some high speed applications, such as scramjets or nozzles, high speed flow can
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occur at two sides of the panel. This was studied by Zhou et al. [2012] using von Kármán large deflection
theory and first order piston theory. It was found that a panel becomes more prone to instability when both
surfaces are subject to aerodynamic loading. A similar result was obtained by Ye et al. [2018] for one side of
the panel subject to an impinging shock.

Since mainly the conditions in a rocket nozzle at start-up are under consideration here, it is assumed the
dynamic pressure on the outside is negligible. Next to that, to the author’s knowledge, no high fidelity work
on a panel with flow on both sides is currently available. One-sided flow is therefore assumed considering the
scenario under consideration and to facilitate comparison with other work.



4
Analytical Model for Shock-Panel

Interaction

In this chapter the sensitivity of the flutter boundary of 2D simply supported plates with respect to the pa-
rameters discussed in Chapter 3 is investigated analytically. To the author’s knowledge, only two publications
exist on the analytical investigation of the flutter behaviour of flexible panels subject to an impinging shock.
First of all, Ye et al. [2018] employ a typical Type III method, i.e. a linear aerodynamic model coupled to a
nonlinear structure as categorised by Dowell [1970], to analyse the response of a 2D simply supported panel
to an oblique shock impinging on the plate midpoint. Next to that, the effect of thermal stress due to an in-
creased panel temperature, as well as the possibility to account for flow on both sides of the panel, is included.
Routh-Hurwitz stability analysis is employed in order to obtain an explicit closed-form solution of the stabil-
ity boundaries of the plate. The Routh-Hurwitz stability criterion boils down to arranging the coefficients
of the characteristic polynomial of the linear system into a square Hurwitz matrix, after which stability of
the polynomial can be determined based on the properties of the determinants of the principal submatrices
[Hurwitz, 1895; Routh, 1877].

The method was extended by Ye and Ye [2018] to also include the effect of a different shock impingement
location. It was decided to implement this version, since including the varying shock location does not pose
a significant increase in complexity. Note that the thermal effect and the two-sided flow are also incorporated
for the sake of completeness, although it was decided in Chapter 3 that they are not relevant for the current
analysis. Following the steps outlined by Ye and Ye [2018] though, implementing these should be trivial and it
might prove useful for future research. As a possible model improvement, the capability of including a steady
pressure difference was added to the method. Lastly, for verification purposes, the semi-empirical method by
Laurenson and McPherson [1977] to predict classic panel flutter is implemented as well. The latter features
an empirical correction for three-dimensionality of the panel, which is also examined to perhaps predict un-
steady behaviour of 3D panels subject to impinging shocks.

First, the methodology is introduced in Section 4.1. Secondly, the validity of the analytical approach is verified
and validated in Section 4.2. Lastly, the results of the sensitivity study and important keypoints to keep in
mind during further CFD analysis are presented in Section 4.3.

4.1. Methodology
In this section the methodology behind the the implemented models is outlined. First, the analytical/semi-
empirical model for classic panel flutter by Laurenson and McPherson [1977] is introduced in Section 4.1.1.
Next, the analytical model for panel flutter with shock impingement by Ye and Ye [2018] is elaborated on in
Section 4.1.2. Lastly, the addition of a steady pressure term is explained in Section 4.1.3.

4.1.1. Classic Panel Flutter
The design procedure for flutter-free surface panels by Laurenson and McPherson [1977] is mainly based
on curve-fitting of well converged modal solutions. The effects of in-plane loading, flow angularity, plate
pressure differential and edge boundary condition are incorporated using empirical corrections. Due to the
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method being partially based on experimental data, a nominal structural damping is already included, which
corresponds more or less to a damping coefficient g of 0.01. This is a widely used value for linear models.
Based on the governing parameters selected in Section 3.3, the following effects are implemented here: static
pressure differential over the plate, Mach number, plate length-to-width ratio, and panel boundary condi-
tions.

The flutter boundary is expressed as a flutter parameter F P . It is a function of a geometry parameter GP and
the panel edge rotational restraint EC :

F P = EC

5+2(GP )2 +0.018(GP )3 (4.1)

For an isotropic panel with no inplane load, the geometry parameter simply equals the length-to-width ratio
of the panel. The edge rotational restraint depends both on the type of boundary condition (simply support-
ed/clamped) and the value of GP , as shown in Eq. (4.3).

GP = a

b
(4.2)

EC =


0.016 Clamped,GP ≥ 0.1

0.0157 Clamped,GP < 0.1

0.027 Simply supported,GP ≥ 0.1

0.0292 Simply supported,GP < 0.1

(4.3)

Since the flutter parameter is also defined as

F P = D f (M)

qa3 (4.4)

and the nondimensional dynamic pressure is given by

λ= 2qa3

D f (M)
, (4.5)

both the dimensional and nondimensional flutter dynamic pressures can be calculated as a function of F P :

q = D f (M)

F Pa3 , (4.6)

λ= 2 f (M)

F P
. (4.7)

In this case, f (M) is defined as the Prandtl-Glauert factor for M ≥ 2, since results are partially based on piston
theory. For M < 2, empirical correction factors are provided, but it is decided to only focus on high supersonic
Mach numbers to steer away from any single-mode flutter occurrences. Finally, the effect of a static pressure
differential over the plate can be taken into account as follows. For an isotropic panel, a nondimensional
pressure parameter can be defined as:

p f =
∆pa4

Dh
, (4.8)

where ∆p is the out-of-plane pressure jump over the plate. Based on experimental data, Laurenson and
McPherson provide a relation between the pressure correction factor Qp and p f for three different length-to-
width ratio’s. The curves for a/b = 0.46 and a/b = 2.18 were implemented in Python, after which 6th degree
polynomials were least-squares fitted to the data points. For a certain length-to-width ratio and pressure
parameter, the closest implemented a/b value is selected and the corresponding Qp is returned. The dynamic
pressure is then corrected by multiplying it with the obtained pressure correction factor.
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4.1.2. Flutter of a Flat Plate Subject to an Impinging Shock
As stated earlier, the method implemented by both Ye et al. [2018] and Ye and Ye [2018] is based on a type III
analysis. This entails first of all that the structural model is nonlinear. In this case, the equation of motion for
a 2D plate under cylindrical bending is derived using Hamilton’s principle, resulting in

D
∂4w

∂x4 − (
Nx −N T

x

) ∂2w

∂x2 +ρh
∂2w

∂t 2 +p(x, t ) = 0. (4.9)

Assuming the von Kármán formulation for the strain leads to the following stabilising force due to stretching
of the plate:

Nx = Es h

2a(1−ν2
s )

∫ a

0

(
∂w

∂x

)2

dx (4.10)

The von Kármán plate thus clearly yields a nonlinear governing equation for the structure. The thermal stress
is included by assuming a uniform temperature distribution over the entire panel, resulting in the following
expression for N T

x :

N T
x = Es hαs (T −T0), (4.11)

whereα is the coefficient of thermal expansion. Considering the determination of the aerodynamic pressure,
first-order local piston theory is used, which is also typical for a Type III method. Ye and Ye [2018] utilise a
modified version, which allows to include the pressure jump over the incident-reflected shock system. The
incident shock, reflected shock and panel divide the flow in different regions, each with different Mach num-
bers, static pressures and densities. This is illustrated in Fig. 4.1, which is adapted from Ye and Ye [2018].
Note that the nomenclature of Ye and Ye [2018] is used here for the sake of reproducibility, in contrast to the
conventions employed elsewhere in the report.
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Figure 4.1: Schematic of the flow and structure considered by Ye and Ye [2018]

The total aerodynamic pressure on the upper left, upper right and lower side of the panel can be written
respectively as:

pu,l = ps(u,l ) +
2qu,l

Mu,l

[
∂w

∂x
+ 1

Uu,l

∂w

∂t

]
(4.12)

pu,r = ps(u,r ) +
2qu,r

Mu,r

[
∂w

∂x
+ 1

Uu,r

∂w

∂t

]
(4.13)

pd = ps(d) +
2qd

Md

[
∂w

∂x
+ 1

Ud

∂w

∂t

]
, (4.14)

where ps is the steady, static pressure. To focus on unsteady effects, it is assumed the steady pressure on
the top side (ps(u,l ) or ps(u,r )) always equals the steady pressure on the bottom (ps(d)) for all locations on the
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plate. This ensures the steady pressure drops out when the pressure difference over the plate is considered.
The governing equation, i.e. Eq. (4.9), is put in nondimensional form as follows:

∂2W

∂τ2 − (
Rx −RT

x

) ∂2W

∂ξ2 + ∂4W

∂ξ4 + P̄ = 0, (4.15)

where the parameters are nondimensionalised as given below. Note that in this case the nondimensional
dynamic pressure λ is normalised with the Prandtl-Glauert correction factor β, in contrast to λ∗ which is
typically used to nondimensionalise high fidelity results, as outlined in Section 3.3.

ξ= x

a
, τ= t

√
D

ρha4 , λu,l (r ) =
2qu,l (r )a3

DMu,l (r )
, λd = 2qd a3

DMd
, W = w

h

µu,l (r ) =
ρu,l (r )a

ρh
, µd = ρd a

ρh
RT

x = N T
x a2

D
, Rx = Nx a2

D
= 6

∫ 1

0

(
∂W

∂ξ

)2

dξ

RMu,l (r ) =
Mu,l (r )

Mu,l (r )
, RMd = Md

Md
, p̄ = a4

Dh
p

Eq. (4.15) is then solved using a Galerkin method. A Fourier expansion of the deflection can be obtained by
expanding it in terms of sinusoidal basis functions:

W (ξ,τ) =
∞∑

i=1
qi (τ)sin(iπξ). (4.16)

Note that the time-dependent amplitudes qi are not related to the dynamic pressure q . Executing the Galerkin
method by multiplying with the basis function and integrating over the domain, i.e. the panel length, the gov-
erning PDE can be rewritten to a system of nonlinear ODE’s. Note that the pressure term has to be split in a
pre- and post-shock part: ∫ 1

0
p̄ =

∫ k

0

(
pu,l −pd

)+∫ 1

k

(
pu,r −pd

)
, (4.17)

where k = xi /a is the nondimensional shock impingement location. In short, the resulting nonlinear ODE’s
can be written as:

q̈ j (τ)+ [
( jπ)4 −RT

x ( jπ)2]q j (τ)+3( jπ)2q j (τ)
N∑

i=1
(iπ)2q2

i (τ)−q∗ = 0, (4.18)

where q∗ equals q1 +q2 +q3 +q4 +q5, which are given by a slightly modified version of the expressions em-
ployed by Ye and Ye [2018], since it was observed a shorter notation was possible:

q1 =λu,l

(
q j (τ)

[
1

2
cos

(
2 jπk

)− 1

2

]
+

∞∑
i 6= j

qi (τ)i

[
cos

(
jπk + iπk

)
j + i

+ cos
(

jπk − iπk
)

j − i
− 1

j + i
− 1

j − i

])

q2 =λu,r

(
q j (τ)

[
1

2
cos

(
2 jπ

)− 1

2
cos

(
2 jπk

)]+ ∞∑
i 6= j

qi (τ)i

[
cos

(
jπ+ iπ

)
j + i

+ cos
(

jπ− iπ
)

j − i
− cos

(
jπk + iπk

)
j + i

− cos
(

jπk − iπk
)

j − i

])

q3 =λd

(
q j (τ)

[
1

2
cos

(
2 jπ

)− 1

2

]
+

∞∑
i 6= j

qi (τ)i

[
cos

(
jπ+ iπ

)−1

j + i
+ cos

(
jπ− iπ

)−1

j − i

])
−

√
RMdλd q̇ j (τ)

q4 =
√

RMu,lλu,l

(
q̇ j (τ)

[
−k + sin

(
2 jπk

)
2 jπ

]
+

∞∑
i 6= j

q̇i (τ)

[
−sin

(
jπk − iπk

)
jπ− iπ

+ sin
(

jπk + iπk
)

jπ+ iπ

])

q5 =
√

RMu,rλu,r

(
q̇ j (τ)

[
−1+k − sin

(
2 jπk

)
2 jπ

]
+

∞∑
i 6= j

q̇i (τ)

[
sin

(
jπk − iπk

)
jπ− iπ

− sin
(

jπk + iπk
)

jπ+ iπ

])
.

(4.19)
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These are once again not to be confused with the dynamic pressure q or with the modal coefficients qi (τ).
In the paper by Ye and Ye [2018], only a two-mode Routh-Hurwitz solution of the flutter boundary is derived.
Some results for four and six modes are presented as well, but no derivation is provided. Four to six modes
are required for fully converged results though, as stated by Dowell [1966]. From the results by Ye and Ye
[2018] it is clear that six modes only provide a small increase in accuracy compared to four, and mainly only
for significantly aft shock impingement locations. Therefore, an attempt is made to implement a four mode
Routh-Hurwitz stability analysis of Eq. (4.15). Selecting four modes, i.e. 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4, results in eight
unknowns:



x1 = q1

x2 = q2

x3 = q3

x4 = q4

x5 = q̇1

x6 = q̇2

x7 = q̇3

x8 = q̇4

(4.20)

Note that assuming two modes results in four unknowns, as shown by Ye and Ye [2018]. Writing out Eq. (4.15)
and Eq. (4.19), an equation for each q̈ j (τ) can be obtained in function of the other q j (τ) and q̇ j (τ). The
stability of the system can be investigated by linearising the governing equations and evaluating them at the
plate equilibrium solution. With no steady pressure difference over the plate, it can be easily shown that
the equilibrium solution equals the flat plate shape (q1, q2, q3 and q4 = 0). Conveniently, this ensures the
nonlinear term in Eq. (4.18) drops out. Therefore, the governing equations can be written in the form ẋ = Ax,
where A is the Jacobi matrix evaluated at the flat plate position:

ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a51 a52 a53 a54 a55 a56 a57 a58

a61 a62 a63 a64 a65 a66 a67 a68

a71 a72 a73 a74 a75 a76 a77 a78

a81 a82 a83 a84 a85 a86 a87 a88


·



x1

x2

x3

x4

x5

x6

x7

x8


(4.21)

The entries of A can all be written in function of λu,l by substituting

n =λu,r /λu,l , (4.22)

m =λd /λu,l . (4.23)

Note that the dynamic pressure ratio n can be obtained for an impinging shock with angle σ by assuming a
regular reflection and employing the oblique shock relations [Shapiro and Shapiro, 1987]. The entries of the
Jacobian matrix at the flat plate equilibrium are given in Appendix A. First, the characteristic equation of the
linear adjoint system is calculated:

|A−ΩI | = 0, (4.24)

where Ω =ΩR ± iΩI . For the system to become unstable, the real part of Ω has to move to the positive axis,
i.e. ΩR > 0. For the four-mode case, the characteristic equation was calculated using Maple, which yielded
the following 8th order polynomial:

|A−ΩI | =Ω8 + A7Ω
7 + A6Ω

6 + A5Ω
5 + A4Ω

4 + A3Ω
3 + A2Ω

2 + A1Ω+ A0, (4.25)

where
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A0 = A04λ
4
u,l + A03λ

3
u,l + A02λ

2
u,l + A01λu,l + A00

A1 = A14λ
7/2
u,l + A13λ

5/2
u,l + A12λ

3/2
u,l + A11λ

1/2
u,l

A2 = A23λ
3
u,l + A22λ

2
u,l + A21λu,l + A20

A3 = A33λ
5/2
u,l + A32λ

3/2
u,l + A31λ

1/2
u,l

A4 = A42λ
2
u,l + A41λu,l + A40

A5 = A52λ
3/2
u,l + A51λ

1/2
u,l

A6 = A61λu,l + A60

A7 = A71λ
1/2
u,l .

(4.26)

The coefficients in Eq. (4.26) (A04,A03, ...,A71) are all functions of the entries of the Jacobian matrix. Since
they are already quite extensive and implemented in the Python code, they are not shown here. Finally, to
determine the stability of the system, the Routh-Hurwitz criterion is applied to Eq. (4.25). This was done
numerically in Maple, which yielded multiple (8) inequalities. These have to be satisfied to guarantee the
plate is stable. Flutter is not the only instability though, as divergence can also occur. Many of the obtained
inequalities can be proven to be satisfied for physical values of the mass ratio’s and dynamic pressures [Ye
and Ye, 2018]. Since only the flutter boundary is of interest here, the corresponding Routh-Hurwitz criterion
was identified after some trial and error:

t1 − t2

t3 − t4
t5

> 0. (4.27)

The unknowns t1..5, are extensive functions of the coefficients of the characteristic equations, as shown in
Appendix B. Eq. (B.1) to Eq. (B.5) can be rewritten as polynomials in λu,l to reduce their size and aid Maple in
computing the result of Eq. (4.27). This gives:

t1 =
(
t1c1λ

7
u,l + t1c2λ

6
u,l + t1c3λ

5
u,l + t1c4λ

4
u,l + t1c5λ

3
u,l + t1c6λ

2
u,l + t1c7λu,l + t1c0 + t1c8

)√
λu,l

t1c9λ
4
u,l + t1c10λ

3
u,l + t1c11λ

2
u,l + t1c12λu,l + t1c13

t2 =
(
t2c2λ

6
u,l + t2c3λ

5
u,l + t2c4λ

4
u,l + t2c5λ

3
u,l + t2c6λ

2
u,l + t2c7λu,l + t2c1 + t2c8

)
·
(

A04λ
4
u,l + A03λ

3
u,l + A02λ

2
u,l + A01λu,l + A00

)√
λu,l

t2c9λ
4
u,l + t2c10λ

3
u,l + t2c11λ

2
u,l + t2c12λu,l + t2c13

t3 =−
t3c1λ

5
u,l + t3c2λ

4
u,l + t3c3λ

3
u,l + t3c4λ

2
u,l + t3c5λu,l + t3c6

t3c7λ
2
u,l + t3c8λu,l + t3c9

t4 =
(
t4c1λ

7
u,l + t4c2λ

6
u,l + t4c3λ

5
u,l + t4c4λ

4
u,l + t4c5λ

3
u,l + t4c6λ

2
u,l + t4c7λu,l + t4c8

)√
λu,l

t4c9λ
2
u,l + t4c10λu,l + t4c11

t5 =−
(
t5c2λ

6
u,l + t5c3λ

5
u,l + t5c4λ

4
u,l + t5c5λ

3
u,l + t5c6λ
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.

The coefficients t1c1,t1c2, ...,t5c13 are very extensive functions of A04,A03, ...,A71, and are therefore not shown in
the report. Instead, the reader is referred to the "Ye_4_mode.py" Python file, where all coefficients are readily
available. As a final step, the simplified t-coefficients were fed into Eq. (4.27), resulting in an expression with
in the numerator a 24th order Polynomial multiplied by

√
λu,l . Note that the arithmetic was once again

performed in Maple, yielding:

C24λ
24
u,l +C23λ

23
u,l +C22λ

22
u,l +C21λ

21
u,l +C20λ

20
u,l +C19λ

19
u,l +C18λ

18
u,l +C17λ

17
u,l +C16λ

16
u,l

+C15λ
15
u,l +C14λ

14
u,l +C13λ

13
u,l +C12λ

12
u,l +C11λ

11
u,l +C10λ

10
u,l +C9λ

9
u,l +C8λ

8
u,l +C7λ

7
u,l

+C6λ
6
u,l +C5λ

5
u,l +C4λ

4
u,l +C3λ

3
u,l +C2λ

2
u,l +C1λu,l +C0 > 0.

(4.28)
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Coefficients C0,C1, ...,C24 are also available in the Python file (once again, very extensive), where they are im-
plemented in function of the t-coefficients. Finding the roots of Eq. (4.28) is trivial in e.g. Python or Matlab,
and one of the 24 roots yields the flutter dynamic pressure.

The stability of the system can also be analysed without the Routh-Hurwitz criterion. The eigenvalues of the
A-matrix can be obtained by calculating the roots of the characteristic equation, after which the dynamic
pressure can be increased until one of the eigenvalues becomes unstable (ΩR > 0). The dynamic pressure at
which this occurs will equal the flutter dynamic pressure, as long as the shock strength is not too high. When
the shock strength is increased above a certain critical value, the lower stability boundary will suddenly shift
downwards from a flutter instability to a buckling instability. This is indicated by the most unstable eigen-
value becoming real instead of complex, and this will be elaborated on in Section 4.2. Using this approach
is slower and less accurate than employing the Routh-Hurwitz criterion, since the eigenvalues have to be
recomputed several times before the flutter boundary is found. On the other hand, implementing the Routh-
Hurwitz criterion is not straightforward for N exceeding four, while the eigenvalue analysis can be executed
for an arbitrary number of modes.

4.1.3. Flutter of a Statically Deformed Panel Subject to an Impinging Shock
Assuming a flat plate equilibrium solution is only valid if there is no net steady pressure difference over the
plate. In reality, this will never be the case if a shock impinges on the panel. Instead, the presence of steady
pressure forces will induce a static deformation of the plate, such as observed by Visbal [2012, 2014]. There-
fore, the linearised stability of the plate around this new equilibrium solution is investigated here as well.
Several simplifications are made. First of all, it is assumed the change in shock impingement location due to
plate deformation is negligible. Secondly, the change in slope at the impingement point is assumed to not
alter the strength of the reflected shock significantly. Therefore, k and n are not changed according to the
steady plate deformation. Whether this yields reasonable results will be discussed in Section 4.2.4.

It is assumed the steady pressure on the bottom of the plate equals the average of the steady pressure on
the upper surface, similar to the boundary conditions defined by Visbal [2012, 2014]. For a variable shock
impingement point this gives:

ps(d) = kps(u,l ) + (1−k)ps(u,r ), (4.29)

which is equal to Eq. (3.1) with a different notation. Assuming a perfect gas, the steady pressure upstream
of the impinging shock can be written in function of the nondimensional dynamic pressure and the Mach
number:

ps(u,l ) =
λu,l D

γa3Mu,l
. (4.30)

Employing the same nondimensionalisation as for the unsteady pressure results in the introduction of only
one extra nondimensional parameter, i.e. the thickness to length ratio h/a:

p s(u,l ) =
a

h

λu,l

γMu,l
. (4.31)

Similarly, the nondimensional pressure downstream of the incident-reflected shock system can be written as

p s(u,r ) =
a

h

n

η

λu,l

γMu,l
, (4.32)

where η is the Mach number ratio Mu,r /Mu,l . The latter can be obtained from the oblique shock relations.
Going back to Eq. (4.29), the nondimensional steady pressure on the bottom equals

p s(d) =
a

h

λu,l

γMu,l

(
k + (1−k)

n

η

)
. (4.33)

Carrying out the integration introduced by the Galerkin decomposition as shown in Eq. (4.17) results in the
following steady pressure term which has to be added to the governing equation:

p s, j =
a

h

λu,l

γMu,l

1

jπ

(
1− n

η

)[
1−cos

(
jπk

)−k(1−cos
(

jπ
)
)
]

. (4.34)
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The equilibrium amplitudes qeq,i can be obtained by setting all time derivatives in Eq. (4.18) equal to zero.
The only unknowns in the N resulting nonlinear steady equations are the N qeq,i , and they can therefore be
readily obtained for a given set of input parameters. The steady governing equation is now given by

[
( jπ)4 −RT

x ( jπ)2]qeq, j (τ)+3( jπ)2qeq, j (τ)
N∑

i=1
(iπ)2q2

eq,i (τ)−q∗+p s, j = 0, (4.35)

where the q∗ term now equals q1+q2+q3, as shown in Eq. (4.19), due to the time dependent terms dropping
out. Note that the

√
λd term in q3 also reduces to zero. Once the equilibrium amplitudes are known, the

linear stability of the system around the new static equilibrium can be investigated. Note that due to the
addition of the steady pressure term, the governing equation is now non-homogenous and of the form ẋ =
Ax + b. The stability of the system can be assessed by considering the stability of the homogenous form
though. The procedure boils down to calculating the equilibrium amplitudes, evaluating the Jacobian matrix
at those amplitudes and lastly determining the most unstable eigenvalue of the system. Note that an explicit
calculation of the flutter boundary using the Routh-Hurwitz criterion is not attempted here. In contrast to
the flat plate solution, the nonlinear term f j in the Jacobian matrix does not drop out and must therefore be
linearised as follows.

f j = 3( jπ)2q j (τ)
N∑

i=1
(iπ)2q2

i (τ) (4.36)

∂ f j

∂x
=

N∑
p=1

∂ f j

∂qp (τ)
(4.37)

The nonlinear term can therefore be approximated by the following Taylor expansion:

f̃ j = x
∂ f j

∂x

∣∣∣∣
x=xeq

=
N∑

p=1
qp (τ)

∂ f j
∣∣

x=xeq

∂qp,eq
(4.38)

Thus, the following governing dynamic linear ODE’s are obtained:

q̈ j (τ)+ [
( jπ)4 −RT

x ( jπ)2]q j (τ)+3( jπ)2
N∑

p=1

[
qp (τ)

∂

∂qp,eq

(
q j ,eq (τ)

N∑
i=1

(iπ)2q2
i ,eq (τ)

)]
−q∗ = 0. (4.39)

4.2. Verification and Validation
In this section, it is verified if the method Ye and Ye [2018] is implemented correctly, and whether or not it
results in the expected flutter behaviour. Note that unless mentioned otherwise, the mass ratio’s µ are set to
0.1, identical to the values used by Visbal [2012, 2014].

4.2.1. Python Script Outline
First of all, a quick outline of the written Python script is appropriate. The eigenvalue analysis is employed
here instead of the Routh-Hurwitz criterion, since this allows the inclusion of at least six modes. As a first
step, the software checks if the entries of the Jacobian matrix, Eq. (4.21), are available in symbolic form. If
not, command-line Maple is started and both the A-matrix entries and characteristic coefficients are com-
puted for the desired mode number. Next, these are fed into python and evaluated for the user-specified
inputs M , k, n, m, air density ρ∞, plate density ρ, mass ratio’s RMu,l , RMu,r and RMd , and a thermal stretch-
ing force RT

x . If a steady deformed solution is required, also the plate length a and thickness h are to be
specified. Considering n and the mass ratio’s, different possibilities are included, indicated by the variable
’INPUTMODE’:

• HARDCODED: The dynamic pressure ratio n and the mass ratio’s are prescribed by the user. The Mach
number ratio η for the deformed equilibrium solution is computed.

• PHYSICAL: The dynamic pressure ratio n and the Mach number ratio η are computed from what is
specified by ’SHOCK STRENGTH’ using the oblique shock relations. This shock strength can be defined
in multiple ways, for which the variable ’SHOCK TYPE’ is employed:
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– SIG: The incident shock angle is specified.

– PHI: The flow deflection angle over the incident shock is specified.

– PRAT: The pressure ratio over the entire shock system is specified.

Secondly, the mass ratio’s are computed from the given panel length, panel density, panel thickness
and freestream density.

• MIX: A mix from the first two options. The post-shock states are calculated from the oblique shock rela-
tions, while the mass ratio’s are prescribed. This option is used most often for the verification process,
since the mass ratio’s are always prescribed in literature.

The software can calculate RT
x based on an absolute temperature difference or a critical temperature ratio,

depending on whether ’ABS’ or ’RAT’ is selected for the ’T TYPE’ parameter. Considering the relation be-
tween n, p3/p1 and σ, a slight discrepancy was found with the values presented by Ye and Ye [2018]. This is
illustrated in Table 4.1, where values for ϑ and η are presented as well for completeness. No explanation for
the difference was found, and no mistake in the oblique shock calculations was discovered either. Next to
that, the values for shock angle, post-shock Mach number and flow deflection angle associated to a certain
pressure ratio presented by Boyer et al. [2018] were replicated exactly. Therefore, it is assumed the computa-
tions by the author are correct, and the values by Ye and Ye [2018] will only be used for verification with the
results of the paper itself.

σ[deg] ϑ[◦] p3/p1[-] p3/p1[-] [Ye and Ye, 2018] n[-] n[-] [Ye and Ye, 2018] η[-]

18 2.064 1.4269 1.4862 1.3260 1.3802 0.9293

20 4.7663 2.1991 2.0758 1.8557 1.8050 0.8439

22 7.254 3.1669 3.2955 2.440 2.5969 0.7704

24 9.5716 4.3298 4.1695 3.0530 3.1095 0.7051

27 12.797 6.4241 6.3622 3.9670 4.2560 0.6175

29 14.812 8.0381 8.2788 4.5340 5.1492 0.5641

Table 4.1: Relation between post-and pre-shock states for M = 3.5 as computed with the author’s Python code versus the values given by
Ye and Ye [2018]

Returning to the Python script, once the inputs are computed, the Jacobian entries and consequently the
coefficients of the characteristic equation can be evaluated using the Python library Sympy. If a deformed
steady solution is desired, the equilibrium modal amplitudes are first calculated (also from a maple-python
coupling). This process yields a very compact characteristic equation, with as only unknown λ. As a result,
the flutter dynamic pressure can be calculated rapidly using eigenvalue analysis, i.e. ramping up the dynamic
pressure until flutter is observed. If desired, the steady solution and/or the eigenvalues can also be calculated
for a given dynamic pressure.

4.2.2. Standard Panel Flutter
Moving on to the verification and validation process, the impinging shock is first left out, yielding a dynamic
pressure ratio n of 1. The flutter behaviour with Mach number for a 2D flat plate without shock as obtained by
the methods by Laurenson and McPherson [1977] and Ye and Ye [2018] is compared to results from literature.
The accuracy of the Routh-Hurwitz approach is investigated as well. The flutter boundaries are shown in
Fig. 4.2. A couple of things can be observed. First of all, it is clear that the difference between the two mode
and four mode solution is significant, while the six mode solution ensures a converged result. Secondly,
the flutter boundary obtained with the eigenvalue (EV) analysis of the method by Ye and Ye [2018] yields
identical results to the Routh-Hurwitz (RH) approach. The two-and four mode LiPT results by Dowell [1966]
agree nicely with the results by Ye and Ye [2018], since the small discrepancy can be attributed to the different
mass ratio’s (RMu = 0.01 and RMu = 0.1/M respectively). Also the LiPT flutter dynamic pressure obtained by
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Mei et al. [2014] shows only a tiny deviation, again attributable to a different mass ratio (RMu = 0.02). Finally,
both implemented methods by Ye and Ye [2018] and Laurenson and McPherson [1977] are in good agreement
as well. The latter predicts a slightly lower flutter dynamic pressure, which might be again due to a different
mass ratio. This cannot be verified though, since it is not mentioned which value is assumed.

It can be concluded that the mass ratio does not strongly affect the result, as stated earlier [Dowell, 1967,
1970]. Secondly, looking at the result obtained by Dowell [1967], who employed potential flow in combination
with a nonlinear structural model (Type 4), linear piston theory and potential flow theory methods yield
nearly identical flutter boundaries for M > 2.

Considering the Euler results, excellent agreement with the lower fidelity methods is observed for the re-
sults obtained by Visbal [2014]. Especially the six mode solutions seem to agree very well, as expected. Mei
et al. [2014] and Davis and Bendiksen [1993] observed a slight increase in flutter dynamic pressure with re-
spect to piston theory, while Visbal [2014] did not. Since the flutter dynamic pressures obtained by Visbal
[2014] were verified by Alder [2015], and the results are clearly in better agreement with LiPT, potential flow
theories and the semi-empirical result of Laurenson and McPherson [1977], it is assumed the Visbal and Alder
results are correct.

The effect of panel three-dimensionality is examined in Fig. 4.3 for simply supported and clamped panels.
Note that it is assumed the edge constraint applies to all edges, including the spanwise ones. Since the
method by Ye and Ye [2018] does not include 3D effects, only the semi-empirical method by Laurenson and
McPherson [1977] can be validated. Concerning pinned panels, the model agrees quite well with the ana-
lytical results of Dowell [1966] for panel length-to-width ratio’s of 0 and 1, while a deviation of about 10% is
observed for a/b = 2.0. High fidelity verification data is scarce, as only the von Kármán - Euler results by Boyer
et al. [2018] were available at the time of writing. Good agreement exists between the three methods though,
verifying that the implemented method is able to predict the stiffening effect of plates with moderate length-
to-width ratio’s for classic supersonic panel flutter. For clamped panels, results are similar: for low a/b, good
agreement is obtained with the Type I results, i.e. a linear structure coupled to a linear aerodynamic model, of
Dowell and Voss [1965] and the Euler results of Hashimoto et al. [2009]. For more slender panels though, the
results by Dowell start to deviate significantly from the semi-empirical method. It could be the case though,
that the flutter boundary obtained with the method by Laurenson and McPherson [1977] is actually more ac-
curate, since comparison with experiments proved that the Type I method significantly underestimated the
flutter dynamic pressure at Mach 2 [Dowell and Voss, 1965]. Sadly, no high fidelity inviscid data was found by
the author to confirm this.

4.2.3. Panel Flutter with Shock Impingement
Considering verification of the method by Ye and Ye [2018] with an impinging shock, it is first checked if the
eigenvalue approach captures all panel instabilities. Therefore, the instability boundary is plotted versus in-
creasing shock strength in Fig. 4.4. It becomes clear that care must be taken when employing eigenvalue
analysis for strong shocks. It can be observed that a static buckling instability occurs at lower dynamic pres-
sures than the flutter instability for strong enough shocks, which can also be captured by the Routh-Hurwitz
analysis if the corresponding stability criterion is derived. The first unstable eigenvalue is now real, since it
represents a static instability. If the flutter boundary is desired, the dynamic pressure has to be increased
more till the first unstable complex eigenvalue is obtained.

Secondly, it can be seen that the four and six mode solutions predict a much later transition from dynamic
to static instability compared to the two mode solution. Next to that, it can be observed that the six mode
solution starts to diverge from the four mode one for high shock strengths. It is therefore shown once again
that six modes are crucial for a converged flutter boundary.

It must be noted that for the given Mach number of 3.5, the maximum attainable dynamic pressure ratio
over an oblique I-R system is about 5.8. Indeed, a regular reflection at M = 3.5 will only be possible up to a
flow deflection angle ϑi of about 23 degrees, since for steady inviscid flow the detachment criterion for weak
reflections holds [Ben-Dor, 2007]. This flow deflection corresponds to an incident shock angle of 38.1 de-
grees, or a dynamic pressure ratio of 5.8. Therefore, examining again Fig. 4.4, the six and four mode solutions
predict that this static instability will never occur for a physical oblique shock reflection.

The flutter dynamic pressure versus shock strength can be validated with the results of Visbal [2014]. Flutter
boundaries for Mach numbers 2.0 and 2.5 are plotted in Fig. 4.5. Note that only the unstable branch of the
subcritical Hopf bifurcations are plotted here. Results for shock pressure ratio’s of 1 and 1.4 match rather well,
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Figure 4.2: Flutter dynamic pressure versus Mach number
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Figure 4.4: Flutter dynamic pressure versus dynamic pressure ratio

but a large discrepancy can be observed for a pressure ratio of 1.2. As explained in Section 3.1, this can be
attributed to a stiffening of the plate due to the steady pressure difference between the upper side and the
cavity. Naturally, this is not taken into account by the Type III method by Ye and Ye [2018], since a linearised
solution around the flat plate equilibrium position is examined.

When the shock strength is increased beyond 1.4, the panel becomes severely more unstable. This be-
haviour is not captured by the LiPT method either, strongly over-predicting the flutter dynamic pressure. It is
argued that inclusion of the panel steady deformation could improve the results, which is therefore attempted
next.

It would be desirable to have an analytical method to estimate the flutter dynamic pressure of 3D clamped
panels, since this boundary condition is the easiest to replicate experimentally [Dowell and Voss, 1965]. This
will be elaborated on in Section 4.3. Sadly, to the authors knowledge, only one study exists on 3D inviscid
panel flutter with shock impingement, and only simply square supported panels are considered. The results
obtained by Boyer et al. [2018] were already discussed in Section 3.1, and are presented here in a different
format. Looking at Fig. 4.6, it can be seen that increasing a/b from 0 to 1 for different shock strengths does
not result in monotonous behaviour. It is clear the semi-empirical method by Laurenson and McPherson
[1977] can only predict the geometrical stiffening of the plate without shock impingement. For p3/p1 = 1.4,
lambda for the 2D panel more or less equals the flutter dynamic pressure for the shockless panel, which
can be attributed to the subcritical behaviour of the 2D panel at that shock strength (flutter amplitude and
frequency are increased as shown in Fig. 3.1). Increasing the panel length-to-width ratio to 1 results in a
strong increase in λ∗, which would be severely underpredicted by the semi-empirical method. A different
story unfolds for the stronger shock (p3/p1 = 1.8), where the 2D flutter dynamic pressure is only 1/3th of the
one obtained without shock, while in the 3D case an increase in λ is still obtained. This can be attributed
to the 2D panel experiencing a supercritical instability, while the 3D panel is still subcritically unstable. As
discussed by Boyer et al. [2018], it is expected that the 3D panel will follow the same behaviour as the 2D
panel, but higher shock strengths are required to incite the supercritical instability.

A different view is presented in Fig. 4.7. The transition from sub to supercritical instability for the 2D plate
entails a drop in λ∗ of about 67%. Therefore, the author argues that for high enough shock strengths, the 3D
panel flutter boundary will dip under the 2D boundary predicted by Ye and Ye [2018]. That way, the analytical
boundary could serve as an upper boundary for the 3D flutter point, as it does for the 2D panel for shock
strengths above p3/p1 = 1.4. This has never been confirmed before though [Boyer et al., 2018].
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Figure 4.5: Flutter dynamic pressure versus shock strength for different Mach numbers ( Unsteady Euler - von Kármán [Visbal,
2014] LiPT - von Kármán (6 modes) [Ye and Ye, 2018])

The behaviour of the flutter dynamic pressure with varying shock impingement location is also investigated.
Looking at Fig. 4.8, it becomes clear that six modes predict in general a slight increase in flutter dynamic pres-
sure compared to the four mode solution, especially for shock locations close to the leading and trailing edge.
This discrepancy does not seem to depend on shock strength. The implemented results match those of Ye
and Ye [2018] and are therefore deemed verified. No validation is possible though, since no flutter bound-
aries for different shock positions are available in literature. The general trend observed by Visbal [2014]
differs strongly from the one observed here, as discussed in Section 3.3.

4.2.4. Panel Flutter with Deformed Equilibrium
First of all, it is checked if the deformed equilibrium solution is obtained correctly. Note that unless men-
tioned otherwise, a thickness to length ratio h/a of 0.002 is employed, similar to Visbal [2012, 2014]. In Fig. 4.9,
the steady deformed equilibrium deflection of a panel subject to a shock impinging at the midpoint is shown
for an increasing amount of modes. It is clear that six modes yield a converged solution, with eight or ten
modes not yielding a visible increase in accuracy. Secondly, it can be seen that the typical steady deformed
shape for a panel subject to a shock impinging at the midpoint is obtained: an asymmetric mainly second
mode shape with the strongest deformation near the leading edge.

Next, the steady solution is verified with the results by Visbal [2014] for different shock locations in Fig. 4.10
and for different dynamic pressures and shock strengths in Fig. 4.11. First of all, looking at Fig. 4.11, it be-
comes clear that for a weak reflected shock system with pressure ratio p3/p1 = 1.2, the steady deflections
obtained with piston theory match the mean deflections by Visbal quite nicely. The corresponding pressure
distributions are given in Fig. 4.12 and Fig. 4.13. For the linear piston theory model, these were obtained ex-
actly by writing the pressure terms Eq. (4.12) and Eq. (4.13) in nondimensional form and by substituting the
freestream steady pressure as given by Eq. (4.30). This yields:

pu

p s,(ul )
=

1+ h
a γMu,l

∂W
∂ξ ξ< k

p s,(ur )
p s,(ul )

+ h
a γnMu,l

∂W
∂ξ ξ≥ k

(4.40)
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where the slope of the deformed solution is readily obtainable in function of the modal amplitudes:

∂W

∂ξ
=

N∑
i

qi ,eq iπcos(iπξ). (4.41)

Thus, the pressure distribution over the plate can be easily obtained once the equilibrium amplitudes have
been computed. Returning to Fig. 4.12, it can be seen that the pressure jump due to the leading edge shock is
nicely predicted by the LiPT. Also the consequent expansion of the flow is predicted rather well, although in-
creasing the dynamic pressure seems to yield a larger error. A significant discrepancy can be observed around
the shock location, where the Euler results yield a more smeared-out shock. Compression start around ξ≈ 0.4
and continues in a rather steep fashion up to ξ≈ 0.65. This yields a higher pressure right in front of the shock
and a lower pressure just after of the shock. Next to that, a stronger compression can be observed downstream
of the shock (around 0.6 ≤ ξ≤ 0.8), which the author argues could be contributed to the Euler equations pre-
dicting a stronger compression in the convex part of the plate. Both methods converge again towards the
trailing edge.

For a stronger shock, the discrepancies between the two methods increase. LiPT predicts a significantly
larger deflection, which can be observed for all shock locations. Surprisingly, this yields a reduced expansion
in front of the shock and a reduced compression downstream of the shock, as shown in Fig. 4.13. The author
argues this can be attributed to flow nonlinearities not being taken into account, underestimating the flow
expansion and compression due to the plate curvature. Most likely, better results would be obtained with the
inclusion of higher order piston theory terms. On the other hand, velocity gradients seem to be large enough
to argue that the locality of piston theory is not valid anymore, i.e. the Mach number at each piston location
now depends on the Mach number of the previous station. Thus, using linear piston theory with β based
on the freestream Mach number everywhere could introduce a significant error. Looking at Fig. 4.10, similar
errors can be observed for varying shock locations: the deflection obtained with LiPT is a vertically stretched
version of the Euler results.

Looking at Fig. 4.11, it can be observed that the x-location of the upward peak seems to move towards the
leading edge with increasing shock strength. Looking again at Fig. 4.10, this seems to correspond to the shock
impingement point moving towards the leading edge. To verify if this is the case, some preliminary shock-
shock interaction calculations are done. This boils down to solving an Edney Type 1 shock-shock interference
[Ben-Dor, 2007]. It is decided to have a closer look at the p3/p1 = 1.8 case, as a significant discrepancy is
obtained there. The resulting shock system is illustrated in Fig. 4.14, where the dashed lines indicate the
shocks without any interference effects. Note that the deflection of the plate has been scaled by a factor 10
to make the drawing more clear and that p3 no longer represents the post shock system state, but rather the
post incident shock state. Key values associated to Fig. 4.14 are summarised in Table 4.2, where the values
for a shock system pressure ratio of 1.2 are added as well. These have been obtained as follows. The strength
p1/p∞ and angleσ1 of the leading edge shock are determined from the panel slope at the leading edge, while
the incident shock characteristics correspond to the shock that would generate the desired pressure ratio in
a perfect regular reflection shock system. The angles σ4 and σ3 of the refracted leading edge and incident
shocks respectively can be obtained by noting that the flow angles and static pressures in states 3 and 4 must
match. These requirements can be written as:

ϑ1 +ϑ3 =ϑ2 +ϑ4, (4.42)

p1

p∞
p3

p1
= p2

p∞
p4

p2
. (4.43)

Therefore the correct refracted shock angles can be obtained by iterating over the unknown flow deflection
angle ϑ3, which dictates ϑ4, until the pressure ratio’s match. Since the flow velocities in 3 and 4 are not
identical, a slip line exists (dotted line). Note that all interactions of shocks with the slip line have been ignored
here.

First of all, it can be observed that due to a compression in region 1, the impingement shock is refracted
towards the leading edge of the panel, moving the impingement point from k = 0.5 to k = 0.475, a change of
5%. The pressure ratio over the incident shock is not altered significantly though, increasing by about 0.6%.
Secondly, if the actual intersection point with the deformed plate is calculated, instead of the flat plate rep-
resentation, an extra forward shift of 0.6 percent is observed. This is most likely negligible, but since it is
very easy to implement in the Python code, it is retained for extra accuracy. Thirdly, it can be seen that the
incident shock impinges on a region of the plate where the deflection is significantly downwards. In fact,
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the impingement point nearly coincides with the point of maximum negative slope. This alleviates the com-
pression required over the reflected shock, reducing its pressure ratio and angle. To evaluate the significance
of this effect, three different levels of detail are considered: reflection assuming no interference effects (’o’),
refraction of the incident shock and assuming the shock is reflected on a flat plate (’f’), and lastly refraction
of the incident shock and shock reflection on the deformed plate (’d’). It becomes clear that only including
the refracted incident shock already yields a reduction in pressure increase over the reflected shock of 9%
(p5/p3| f = 1.209 VS p5/p3|o = 1.330), while including the deflected state of the panel yields a 16 percent re-
duction in relative pressure increase. Therefore, the static pressure jump over the entire system is reduced
from 1.8 to 1.5. This is not negligible. It must be noted though that in reality the Mach number right in front
of the shock reflection will be higher due to the flow being expanded over the concave part of the plate, which
will slightly increase the strength of the reflected shock again.

A couple of things can be concluded. First of all, shock movement due to shock-shock interference is negligi-
ble considering it’s effect on the impinging shock. The reflected shock strength does respond strongly to this
small difference, significantly lowering the pressure jump over the reflected shock. It must be noted though
that in reality the shift in xi mp will be smaller due to expansion waves curving the leading edge shock down,
lowering the location of the shock-shock interference point. Secondly, the pressure jump at the predicted
shock impingement location was found to depend strongly on local plate deflection, with as a result a strong
reduction in discrete pressure jump at the impingement point. All these effects tend to change the pressure
distribution over the panel, and therefore also the local pressure difference (since the bottom pressure is dic-
tated by the theoretical pressure jump over the IR system).

p3
p1

[−] p5
p3

[−] k[−] p5
p1

[−]

’o’ ’d’ ’o’ ’f’ ’d’ ’o’ ’f’ ’d’ ’f’ ’d’(
p5
p1

)
o
= 1.8 1.353 1.345 1.330 1.209 1.114 0.500 0.475 0.472 1.626 1.500(

p5
p1

)
o
= 1.2 1.096 1.095 1.094 1.029 1.019 0.500 0.483 0.479 1.127 1.116

Table 4.2: Pressure ratio’s and shock impingement locations obtained with different simplifications of the shock system (λ∗ = 875). ’o’:
shock reflection without shock-shock interference, ’f’: only leading edge plate deflection taken into account, ’d’: full deformed plate

taken into account

Since it is now clear how the steady deformation and its resulting pressure distribution behaves, the be-
haviour of the flutter boundary can be verified and explained. Looking at Fig. 4.15, it becomes clear that
linearising around the steady deformed solution yields a rapid increase in flutter dynamic pressure with in-
creasing shock strength. For very small shock strengths up to about p3/p1 = 1.05, a smooth but fast increase
in λ f lut is observed. If the pressure ratio over the shock system is increased, a more linear behaviour of the
flutter boundary is obtained. The author believes this sudden shift in trend can be attributed to the deformed
shape shifting from a first mode deformation to a deformation with more second mode participation. This
is illustrated in Fig. 4.16, where each line corresponds to a flutter point, indicated by the dots in Fig. 4.15.
Indeed, from the fifth point on, the deflection close to the trailing edge starts to decrease instead of increase,
which could explain the different flutter behaviour.

Interestingly, the mean solution at the flutter point differs significantly from the one obtained by Visbal
for flutter around those pressure ratio’s, as shown for example in Fig. 4.11. This can be attributed to LiPT
predicting flutter at much higher dynamic pressures. Since λ is significantly higher and the shock strength is
identical, the mean deflections obtained with LiPT contain much more first mode content. This behaviour
increases with dynamic pressure. It can thus be concluded that the effect of a higher shock strength is to
increase steady second mode participation, while a higher dynamic pressure will result in more first mode
content.

Considering the earlier observed behaviour of the plate steady deformation, it comes as no surprise that
the linear stability of the deformed mean state yields an erroneous flutter dynamic pressure. The author
argues that due to the nonlinear behaviour of the flow and the large amplitudes associated with flutter, the
linear method cannot possibly predict the flutter point. As a result, the mean upward peak keeps growing
with increased dynamic pressure, continuously increasing the stiffness of the system. This yields an ever
increasing flutter dynamic pressure with increasing shock strength, proving that the sudden drop of the flutter
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different shock strengths (k = 0.5, M = 2.0)

boundary is an inherently nonlinear effect.

On the other hand, the current LiPT method of starting from the flat plate solution, increasing the dy-
namic pressure with a certain step, calculating the steady deformed solution, calculation the stability of the
deformed shape, and repeating this till flutter is observed, corresponds to one of the two initial conditions
employed by Visbal, i.e. increasing lambda from a previous steady-deflected solution. For this initial con-
dition, Visbal also did not obtain a dynamic instability for p3/p1 = 1.4. Flutter was only observed by start-
ing from the rigid plate initial condition. This initial condition cannot be implemented correctly using LiPT
though, since consequent steady deformations will not be resolved. Thus, it is impossible to replicate the
subcriticial instability observed by Visbal [2014]. A supercritical instability at p3/p1 = 1.8 was proven to exist
by Visbal though, and this behaviour was also not captured by the linear piston theory. This indicates that the
method lacks accuracy, and that the error cannot (solely) be attributed to the initial conditions.

4.2.5. Discussion
Looking at the results presented in the previous sections, a couple of things can be concluded. First of all,
the critical dynamic pressure for classical panel flutter can be predicted excellently with both implemented
methods, showing good agreement with inviscid CFD results. Stiffening effects introduced by 3D simply-
supported and clamped panels can also be estimated accurately with the semi-empirical method of Lauren-
son and McPherson [1977]. Secondly, the method by Ye and Ye [2018] yields a good prediction of the flutter
dynamic pressure for a shock-system pressure ratio of 1.4. For lower shock strengths, the method fails to pre-
dict panel stiffening due to a mean, mainly first mode deformation. For higher shock strengths, the sudden
supercritical drop in flutter dynamic pressure is completely missed as well. Both errors can be attributed
to the mean deformation of the plate not being taken into account, which appears to be the critical differ-
ence with classical panel flutter. Looking at the stability of the flat plate with a simple pressure jump at the
impingement point is thus not accurate, although it does provide a trend in the correct direction. Since it cur-
rently provides the best estimate of the flutter dynamic pressure at low computational cost, the method by
Ye and Ye [2018] will be used in the next section to investigate flow parameters for further high fidelity analysis.

Secondly, it is clear that shock impingement leads to mean panel deformations which are too large to justify
the use of linear models. Steady deflections on the order of multiple panel thicknesses are observed, which
lead to the following nonlinear effects. First of all, a permanent leading edge shock interacts with the imping-
ing shock, causing upstream movement of the shock foot which increases with increased panel deflection.
Secondly, the shock impinges on the plate around the point of maximum downward slope, strongly reducing
the strength of the reflected shock. This effect seems to be the most significant. Thirdly, for strong shocks, the
Mach number variation along the plate is too large to justify the locality of linear piston theory. Therefore,
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using only a pre- and post-shock section with constant Mach number results in inaccurate flow compression
and expansion. This strong sensitivity of the flowfield on panel deflection means that linear stability analysis
based on the eigenvalues of the coupled system is not justified, since the flowfield changes in a nonlinear
fashion when deviating from the equilibrium point. Thus, time integration of the governing equation could
perhaps provide more insight.

4.3. Design of Experiment
As discussed earlier, the goal of this thesis is to provide a validatable set-up for SWTBLI over a flexible plate.
Thus, the parameters for the CFD simulation should be chosen such that the case is reproducible in the ST-15
supersonic windtunnel of the TU Delft faculty of Aerospace Engineering. An introduction to the windtunnel
characteristics was already given in Section 1.3. Based on those specifications and analytical results, prelimi-
nary insights considering the choice of flow and structural parameters are given here.

Looking at Section 1.3, it becomes clear that a large range of total pressure can be handled in the ST-15 wind-
tunnel. It must be noted though that the maximum total pressure for PIV measurements is 4.0 bar, since
higher pressures in combination with oil-based bubbles could be dangerous. Since for classical panel flutter
it is known that the flutter behaviour becomes more complex when M < 2.0, it is decided to go for a Mach
number of 2.0. This will steer away from single mode flutter and ensures an acceptable P0 for PIV. Next to
that, as can be clearly seen in Fig. 3.1, higher Mach numbers will lead to higher flutter dynamic pressures,
smaller flutter amplitudes and reduced flutter frequencies. An increased flutter dynamic pressure is undesir-
able, since the dynamic pressure in the test section is limited by the total pressure in the settling chamber.
Secondly, the reduction in flutter amplitude could pose problems for wind tunnel measurements. Another
reason for this choice of Mach number is the possibility to compare computations with the results of Visbal
[2012], Visbal [2014] and Boyer et al. [2018].

As discussed in Section 3.3, the spanwise panel edges should be left free to ensure semi-2D behaviour of the
panel and pressure equalisation with the test section. Thus, the cavity pressure is set to the spatial average
of the theoretical oblique shock reflection on the upper surface, i.e Eq. (3.1). Since it was shown that the ana-
lytical model cannot predict the sudden damping of all panel motion for certain shock positions upstream of
the panel midpoint, k = 0.50 is assumed for now.

The dominant structural parameter λ, which is the output of the analytical model, can be transformed back
to the dimensional dynamic pressure q by assuming several parameters, as shown by Eq. (3.4). It becomes
clear that two material parameters define the dimensional dynamic pressure: Young’s modulus Es and the
Poisson ratio νs . Both are determined by selecting a certain material. The author argues that Aluminium
Al7075-T6 is a good choice, since it provides a relatively flexible plate at a high yield stress of 503×106 Pa. This
should provide larger deflections and a lower flutter dynamic pressure compared to stiffer materials used in
previous similar wind tunnel tests and high fidelity computations, e.g. CK 75 spring steel [Daub et al., 2015b;
Pasquariello et al., 2015] or ANSI 4130 Alloy Steel [Gan and Zha, 2016; Gogulapati et al., 2014; Spottswood
et al., 2013].

Using the implemented analytical model, a strong dependency of the dimensional flutter dynamic pres-
sure was found on panel thickness-to-length ratio, as shown in Fig. 4.17 for varying shock strength and along
with the estimated available dynamic pressure in the tunnel for different total pressures in the settling cham-
ber. The original Euler results by Visbal [2014] have been included as well, indicated by the blue circular
markers. The Euler results have first of all been scaled to a higher h/a as well, indicated by the green line. As
discussed before, some error might be introduced here since it is argued the effect of h/a is not completely
encapsulated in the nondimensional dynamic pressure anymore. Secondly, The high-fidelity flutter bound-
aries have also been scaled to account for clamped B.C. (dashed lines), based on the results by Laurenson
and McPherson [1977]. They observed a 77% increase in flutter dynamic pressure for all a/b. Whether this is
extrapolatable to the case with an impinging shock remains unclear, but it was argued earlier in this chapter
that nonlinear flow effects will most likely introduce more complex behaviour than predicted in the classical
case. Lastly, analytical flutter boundary predictions are indicated by the solid black lines.

After discussions with a fellow thesis student and investigation of earlier experiments conducted in the
ST-15, a feasible range of panel thicknesses was established: 0.2mm ≤ h ≤ 0.5mm. Smaller thickness will be
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difficult to manufacture if clamped conditions are desired, since the flexible platen has to be CNC’ed out of a
solid block of metal. Next to that, thinner panels could yield during tunnel start-up, due to the passing of the
normal shock, or during shut-down, due to the strong temperature drop. Thickness’s larger than 0.5 mm will
most likely damp all panel motion.

In short, it can be concluded that, if pc equals the average of the upper surface pressure, flutter can be ex-
pected in the ST-15 tunnel for clamped panels with a thickness of 0.25mm (resembling the conditions inves-
tigated by Visbal [2014]). It is argued that if the thickness is increased to 0.4 mm, the 2D clamped high fidelity
flutter boundary will also remain under the 3.0 bar line. Both the analytical model and the Euler results in-
dicate the same trends: shock strength should be maximised and panel thickness should be minimised to
ensure unstable behaviour. Lastly, it is clear that the total pressure should be kept as high as possible, prefer-
ably at 3.5 bars.





5
Numerical Approach

In order to solve the governing equations introduced in Chapter 2, they have to be discretised. The numerical
approaches to achieve this goal are highlighted for the fluid and the structure in Section 5.1 and Section 5.2
respectively. Furthermore, the approach to turbulence modelling is touched upon in Section 5.4. Lastly, the
coupling algorithm is elaborated on in Section 5.3.

5.1. Fluid Discretisation
In order to compute the flow, the flow solver INCA is employed. This is a general-purpose multi-physics
CFD solver for high-fidelity DNS and LES, developed at the Technical University of Munich (TUM) and the
Technical University of Delft (TUD). It operates on Cartesian grids and discretises the compressible Navier-
Stokes equations with a finite volume method. In order to account for the fluid-structure interaction when
the fluid is represented on an undeformable cartesian grid, the cut-element Immersed Boundary Method
(IBM) of Örley et al. [2015] and Pasquariello et al. [2016] is used. IBM circumvents the typical large structural
deformation problems associated with classical Arbitrary Lagrangian Eulerian (ALE) methods and strongly
simplifies the CFD mesh generation. To accurately capture shocks, the method by Örley et al. [2015] ensures
conservation by reshaping the cut FV cells such that sub-cell resolution of the wetted surface is obtained. This
will be elaborated on later in this section. A drawback of IBM is the possible occurrence of arbitrarily small
cut-cells, which can lead to numerical instabilities with explicit time integration schemes or to excessively
small timesteps. This problem is omitted by employing a stabilisation method based on a conservative mixing
procedure [Hu et al., 2006; Meyer et al., 2010; Örley et al., 2015].

In Fig. 5.1, a 2D sketch of a typical cut-cell Ωi , j ,k is shown. Considering Eq. (2.1) and applying the Gauss
theorem, the integral form of the governing equation for the flow through such a cut-cell can be written for a
single time step ∆t = t n+1 − t n as

∫ t n+1

t n

∫
Ωi , j ,k∩Ω f

∂w

∂t
dV dt +

∫ t n+1

t n

∫
∂(Ωi , j ,k∩Ω f )

K(w) ·ndS dt = 0. (5.1)

Figure 5.1: Two-dimensional sketch of a typical cut-cell [Pasquariello et al., 2016]
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Since the integral is taken over Ωi , j ,k ∩Ω f , only the part of cut-cell Ωi , j ,k belonging to the fluid sub-domain
is considered. Therefore, ∂(Ωi , j ,k ∩Ω f ) indicates the wetted surface of Ωi , j ,k . 0 ≤ αi , j ,k indicates the fluid
volume fraction, while the effective fluid wetted cell face apertures are indicated by Ai , j ,k− 1

2
≤ 1. These values

are computed by first triangulating each structural interface element Γ(e)
s as shown in Fig. 5.2 for a quadratic

hexahedral element. The resulting individual structural surface elements Γtr i are used as an input for the
IBM algorithm, yielding the fluid-solid interfaces Γel e = Γtr i ∩Ωi , j ,k . Since several surfaces can intersect a
certain fluid cell, the complete interface is given by Γi , j ,k = ∑

el e Γel e . The volume average of the conserved
variables for a single cut-cell is given by:

wi , j ,k = 1

αi , j ,kVi , j ,k

∫
Ωi , j ,k∩Ω f

wdx dy dz, (5.2)

which indicates a forward Euler time integration scheme yields the following discrete form of Eq. (5.1). Note
that this corresponds to one sub-step of the employed explicit third-order Runge-Kutta scheme [Gottlieb and
Shu, 1998].

αn+1
i , j ,k wn+1

i , j ,k =αn
i , j ,k wn

i , j ,k +
∆t

∆xi

[
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]
+ ∆t

∆y j

[
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]
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∆zk

[
An

i , j ,k−1/2k(3)
i , j ,k−1/2 − An
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i , j ,k+1/2

]
+ ∆t

Vi , j ,k
χi , j ,k

(5.3)

Vi , j ,k indicates the total volume of cell Ωi , j ,k . Considering the fluxes, k(1), k(2) and k(3) indicate the face-
averaged numerical fluxes across the regular cell faces in x, y and z direction respectively, while in cut-cells
the flux over the fluid-structure interface Γi , j ,k is accounted for by an interface exchange term χi , j ,k . The
latter includes the fluid stresses and the resulting work due to pressure, viscous effects and heat transfer
effects, denoted χp , χv and χht respectively. Accounting for multiple cut-elements, the exchange term can
be written as

χi , j ,k =∑
el e

(
χ

p
el e +χv

el e +χht
el e

)
. (5.4)

For a more in-depth description of the cut-element IBM method and the exchange term contributions, the
reader is referred to the work by Örley et al. [2015] and Pasquariello et al. [2016].

In order to avoid modifying the interpolation stencils in the FV reconstruction scheme, uncut fluid cells in
the solid subdomain near the FSI interface contain ghost fluid states. These are employed to impose bound-
ary conditions at the interface. The ghost-cell methodology for stationary and moving boundary compress-
ible cut-cell methods by Pasquariello et al. [2013, 2016] is used, which is an extended version of the incom-
pressible method by Mittal et al. [2008].

The spatial fluxes are computed using either the Adaptive Locals Deconvolution Method (ALDM) or a 3r d -
order Weighted Essentially Non-Oscillatory (WENO) scheme based on the HLLC Riemann solver. The former
is outlined in Section 5.3 and is employed to solve the full Navier-Stokes equations, while the latter is used for
the 2D inviscid computations.

5.2. Structure Discretisation
The free three-dimensional structural Finite Element program Calculix is selected to solve Eq. (2.10) with the
Finite Element Method (FEM). The governing equation is cast in its weak form using the principle of virtual
work. Assuming virtual displacements δd, integrating over the solid and employing Gauss’s theorem yields:∫

Ωs

(
ρs;0d̈ ·δd+ tr(S ·δE)− b̂0 ·δd

)
dV0 −

∫
Γs;N

t̂0 ·δddA0 −∂W Γ
s = 0. (5.5)
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Figure 5.2: Sketch of the triangulation procedure of a structural interface elements Γ(e)
s and the consequent use of the interface triangles

Γtr i by the cut-algorithm [Thari et al., 2017]

In Eq. (5.5), dA0 and dV0 represent infinitesimal volume and surface elements respectively, while ∂W Γ
s de-

notes the virtual work at the fluid-solid interface. δE can be obtained from the Green-Lagrange strain tensor,
given by Eq. (2.13), resulting in

δE = 1

2

[
(∇0δd)T ·G+GT ·∇0δd

]
. (5.6)

The FEM is employed to discretise Eq. (5.5) in space. The structural sub-domain is decomposed into ne solid
elementsΩ(e)

s , each with associated constant shape functions to allow an approximation of the displacement
field. Assembling the contributions of all elementsΩ(e)

s yields the following semi-discrete form of Eq. (5.5):

Md̈+ fs;i nt (d)− fs;ext (d)− fΓs = 0, (5.7)

where M is the mass matrix and d̈ and d are the discrete acceleration and displacement vectors respectively.
The forces acting on the structure are split into internal forces, external forces and interface forces resulting
from the fluid, denoted by fs;i nt , fs;ext and fΓs accordingly. To integrate Eq. (5.7) in time, it is discretised with
the Hilbert-Hughes-Taylor α-method [Hilber et al., 1977]. A coupled set of non-linear equations is obtained,
which is solved iteratively using the Newton-Raphson method.

Adaptive Reduced Order Model
In order to reduce the computational cost of solving the structural balance equations, the Adapative Reduced
Order Model (AROM) by Thari et al. [2017] can be employed. It features a repeated linearisation of the gov-
erning equations with respect to a full FEM solution, which, based on Eq. (5.7), can be written as

Mδd̈+K(dr e f )δd = fs;ext + fΓs − fs;i nt (dr e f ). (5.8)

In Eq. (5.8), δd = d−dr e f is the deflection with respect to the reference state dr e f , obtained with the FEM.
The Jacobian of the internal forces K is given by

K(dr e f ) = ∂fs;i nt (dr e f )

∂d
. (5.9)

In order to further increase computational efficiency, the order of the model is reduced by shrinking the sys-
tem of equations based on the mode superposition method [Dowell and Hall, 2001]. To achieve this, Eq. (5.8)
is transformed from physical to modal space using

δd =Φδq, (5.10)

where δq indicate the vector of perturbations expressed in modal amplitudes and Φ denotes the vector of
orthonormalized eigenvectors obtained by solving

K(dr e f )Φ= MΦΩ2. (5.11)

For more information on how to solve the resulting equations, the reader is referred to the work by Thari et al.
[2017]. Note that in this work, 10 eigenmodes are always used to ensure convergence. The Modal Truncation
Augmentation (MTA) method [Dickens et al., 1997] is also employed to improve the representation of the spa-
tial load vector in the modal domain. This is achieved by adding pseudo eigenvectors to the original modal
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basisΦ in order to minimize the projection error from the physical to the modal domain.

Since a linearised model is used, the structural properties computed by the FEM are only valid for small de-
flections. In order to account for large nonlinear deformations, the reference FEM solution has to be updated
accordingly. Thari et al. [2017] proposed a threshold value ε, based on a certain maximum absolute deflec-
tion |δdmax | with respect to the most recent reference frame, after which a new FEM discretisation has to be
computed. It is given by

ε= |δdmax |
a

. (5.12)

Thus, if a re-computation of the reference state is desired after x panel thicknesses, the non-dimensional
parameter can be written as

ε= x
h

a
. (5.13)

5.3. Coupling
The fluid and structure are loosely coupled using a conventional serial staggered algorithm, as shown in
Fig. 5.3. It follows the classical Dirichlet-Neumann partitioning, where in this case the fluid imposes trac-
tions on the FSI interface Γ as a Neumann boundary condition, while the solid takes the Dirichlet part by
enforcing kinematic constraints. Loosely coupled approaches are often employed in the field of compress-
ible aeroelasticity [Cirak et al., 2007; Farhat and Lesoinne, 2000; Farhat et al., 2006; Karagiozis et al., 2011],
since the added mass effect is negligible due to the small mass ratio M [Causin et al., 2005]. The steps taken
to advance the system from time t n to t n+ can be summarised as follows:

Figure 5.3: Schematic of the staggered coupling algorithm with optional fluid subcycling [Pasquariello, 2018]

1. First, the structural displacements dΓ;n and velocities ḋΓ;n at timestep t n are transferred to INCA as a
Dirichlet boundary condition. The cut-cell geometry is updated accordingly, yielding new triangulated
surface elements Γtr i . These are used as an input for the IBM-algorithm.

2. The flowsolver advances the fluid, i.e. Eq. (5.3), to the next timestep t n+1, with optional subcycling. The
given structural velocities ḋΓ;n at the previous timestep t n are used by the interface exchange terms
χi , j ,k and the ghost-cell method. Since these velocities are required at the face centroids of the cut-
elements, interpolation is necessary.

3. The fluid interface tractionsσΓ;n+1
f ·nΓ;n computed in step 2 are transferred to CalculiX. Again, interpo-

lation is required.

4. The structural solver advances the structural system, Eq. (5.7), in time. The fluid tractions projected in
step 3 are imposed on the solid as additional Neumann boundary conditions.

5. Repeat steps 1-4 for the next timestep.

Since the staggered algorithm introduces a one timestep lag between the structural and fluid subdomains,
the coupling algorithm is first-order accurate in time [Farhat et al., 1995]. As mentioned in steps 2 and 3, the
cut-cell IBM inevitably leads to non-matching grids at the FSI interface, thus requiring interpolation methods
for the load transfer between the structure and the fluid. The simple but efficient projection-based method
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by Farhat et al. [1998] is employed, which uses the FE shape functions to interpolate the fluid loads on the
nearest structural nodes. The transfer of the solid motion to the fluid is implicitly accounted for by the cut-
cell IBM, thus eliminating the need for explicit interpolation in that step. It has been proven recently by Thari
et al. [2017] that accurate results can be obtained with this projection-based approach when applied to the
FSI test-cases presented by Pasquariello et al. [2016], including classic panel flutter.

5.4. Turbulence Modelling
As discussed in Chapter 1, LES entails a spatial filtering of the velocity field. Large energetic eddies are fully
resolved, while small turbulent structures are modelled. The latter can be justified by noting that small scales
depend less on the geometry, and thus tend more towards isotropic, universal behaviour. When the Navier-
Stokes equations are solved numerically, scale separation is inherently introduced by a finite computational
grid and the discretisation of continuous operators. The latter introduces a numerical discretisation error,
which can interfere with the represented non-resolved scales [Garnier et al., 2009]. From a mathematical
point of view, separating the scales boils down to convoluting the governing equations with a filter kernel
[Leonard, 1975]. A filtering of the nonlinear terms of the Navier-Stokes equations yields unclosed subgrid
scale tensors, which thus have to be modelled.

The introduction of unclosed terms leads to two possible SGS models. In explicit LES, explicit model terms
are added to the underlying conservation law to account for the effect of the subgrid scales on the resolved
flow, after which the equations are discretised. A major assumption made here is that artificial numerical dis-
sipation does not interfere with the turbulence model. Often, this does not hold, as Vreman et al. [1995] and
Kravchenko and Moin [1997] have proven that even the truncation error of high-order centred discretisations
can be on the order of magnitude of the subgrid terms. This problem can be circumvented by employing
implicit LES (ILES), which solves the unmodified governing equations in such a way that the numerical dis-
sipation introduced by the truncation error acts as an explicit SGS model.

A general systematic framework for ILES is the Adaptive Local Deconvolution Method (ALDM), developed
for incompressible [Adams et al., 2004; Hickel et al., 2006] and compressible turbulence [Hickel et al., 2014].
ALDM is a nonlinear finite-volume scheme which replicates the the essential elements of explicit LES, i.e.
filtering and convolution, by employing a numerical flux function and a solution-adaptive deconvolution
operator. The latter is nonlinear, in contrast to other explicit deconvolution-type SGS models [Domaradzki
and Adams, 2002; Geurts, 1997; Kuerten et al., 1999; Stolz and Adams, 1999]. The numerical flux function
accounts for compressibility effects and ensures good shock-capturing properties. The model parameters
of ALDM, i.e. deconvolution parameters and flux regularization parameters, are selected in such a way that
the discretisation error behaves as a physically motivated explicit SGS model. Based on the hypothesis that
the main task of a SGS model is to yield the correct dissipation and diffusion spectra of the resolved scales
by interaction with the modelled SGS stresses, a posteriori analysis of freely decaying Homogenous Isotropic
Turbulence (HIT) has been employed to calibrate the deconvolution parameters [Hickel and Larsson, 2008;
Hickel et al., 2006, 2007].





6
Two-Dimensional Inviscid Analysis

Since well-resolved long time-integration viscous simulations of shock-panel interactions are extremely ex-
pensive [Pasquariello et al., 2015, 2017], two-dimensional inviscid interactions are first examined. This al-
lows to identify the aerodynamic and structural paremeters at which flutter in the ST-15 windtunnel can be
expected. Indeed, it has been shown that in the case of a laminar boundary layer, flutter will occur if it does
in the inviscid sense, albeit with a reduced mean deflection [Boyer et al., 2016; Visbal, 2014]. No correlation
between inviscid interactions and coupled SWTBLI is available in literature, but it was found that the shock-
wave/turbulent boundary-layer interaction adapts passively to the panel motion [Pasquariello et al., 2015]. It
is therefore argued that flutter will also occur when a turbulent boundary layer is present, if it has been shown
that the plate is unstable when subject to an inviscid flow at identical conditions.

First, the computational set-up is illustrated in Section 6.1, after which the postprocessing methodology is
introduced in Section 6.2. Next, the results for the inviscid shock-panel interactions are presented in Sec-
tion 6.3, after which values for the governing parameters described in Chapter 3 are selected for further high
fidelity analysis by LES in Section 7.1.

6.1. Numerical Set-up, Boundary Conditions and Grid Distribution
The setup employed for the 2D inviscid simulations is shown schematically in Fig. 6.1. Note that the extent
of the computational domain is indicated by the dashed lines. A flexible plate of thickness h and length a
is constrained at both the leading and trailing edge, and is subject to an inviscid flow entering the domain
at a Mach number M1 of 2.0. Note that a = 0.5m is selected here, corresponding to the set-up employed by
Thari et al. [2017]. This does not correspond to the ST-15 maximum panel length of 10×10−2 m, but since
nondimensional results will be presented, this does not matter for the inviscid results. The test section vari-
ables specified at the inlet depend on the chosen settling chamber conditions, which again depend on the
limits of the ST-15 windtunnel, as introduced in Section 1.3. The test section static pressure p1 and density
ρ1 are given in Table 6.1 for different feasible settling chamber total pressures pt ,0. Note that a settling cham-
ber total temperature Tt ,0 of 288.15K is assumed, yielding a test section static temperature T1 of 160.08K.
Secondly, it must be noted that a total pressure above 4.0 bar is undesirable, since future PIV measurements
could become dangerous when combining such high pressures with oil-based bubbles. Considering the plate
material, Aluminium 7075-T6 is selected for a high yield strength of σy = 503×106 Pa in combination with a
relatively low Young’s modulus of Es = 71.7×109 Pa. Furthermore, the panel has a Poisson’s ratio of νs = 0.33
and a density of ρs = 2.800kgm−3.

The aerodynamic boundary conditions are specified as follows. Since supersonic flow is expected in the en-
tire fluid domain (oblique shocks only), inflow conditions only have to be specified at the inlet and at upper
boundary where the impinging shock and wedge trailing edge expansion fan are generated. The shock and
expansion fan are imposed at the boundary as if generated by a wedge with a chosen wedge angle ϑw and a
length Lw at a given test section Mach number M1. The wedge trailing edge is placed specifically above the
panel trailing edge in order to prevent any interaction with the impinging shock and the flowfield above the
flexible panel in general. Thus, the wedge length can be defined in order to ensure the shock impinges at the

53



54 6. Two-Dimensional Inviscid Analysis

pt ,0[bar] p1[Pa] ρ1[kg/m3]

3.5 45,324 0.9863

4.0 51,799 1.1272

4.5 58,274 1.2681

Table 6.1: Test section static conditions for different settling chamber total pressures (T0 = 288.15K, M1 = 2.0)

desired nondimensional impingement point k. This is illustrated in Fig. 6.1. The shock is imposed by pre-
scribing the appropriate Rankine-Hugoniot conditions, while Prandtl-Meyer expansion theory is employed
to create the expansion fan. In this work, the flow deflection over the incident shock is set to ϑ1 ≈ 10.66◦ in or-
der to obtain an inviscid shock-system static pressure jump of 3.0 and a shock angleσ1 of 40.04◦. This is close
to the maximum incident shock angle which still yields a regular reflection for M = 2.0, as Matheis and Hickel
[2015] already obtained a pocket of subsonic air downstream of the interaction for a flow deflection angle of
ϑ = 12◦. At the outflow patch, linear extrapolation is used. As stated earlier, Riemann Invariant boundary
conditions are specified at the upper boundary, while symmetry boundary conditions are employed for the
spanwise domain boundaries. Finally, adiabatic slip-wall boundary conditions are prescribed on the remain-
ing boundaries. Loads on the upper side of the panel are obtained from the fluid, while on the bottom side
a cavity pressure pc is prescribed. The latter is set to the average of the theoretical pressure distribution on
the panel upper surface, as given by Eq. (3.1). Considering the boundary conditions of the structure, clamped
leading and trailing edges are obtained by constraining both translation and rotation of the boundaries in all
dimensions.

Regarding the initial conditions of the structure, two different options are explored. In both cases, an initially
flat plate is considered and the appropriate cavity pressure is prescribed on the lower surface of the compliant
panel. According to Visbal [2012, 2014], this should always yield the most unstable response. Option one
entails immediately releasing the panel while the impinging shock still has to develop from the pressure jump
imposed at the upper boundary of the domain. Since the static pressure at the top of the plate will initially
equal p1, this leads to a relatively long transient involving strong upward deflections of the panel. The second
option attempts to reduce the duration of the transient by constraining the flexible panel in all dimensions
until the shock system has fully developed. This limits the magnitude of the initial panel deflections, possibly
reducing the transient period.

p1

p2
p3

pc

ϑw

σ1

M1

h

a

Lw

xi mp

Figure 6.1: Sketch of the 2D inviscid set-up
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The fluid and structural subdomains are discretised as illustrated in Fig. 6.2. A uniform spacing in x-direction
consisting of 352 elements, of which 180 above the compliant panel, is employed, yielding∆x = 2.84×10−3 m.
Close to the panel, a fine uniform spacing with cell size ∆y = 4.81×10−4 m is selected. Further away from the
plate surface, a hyperbolic spacing is prescribed up to the upper domain boundary. Note that the fine mesh
below the plate is extended up to y = −0.05m to account for the panel motion in the IBM framework. The
structure is discretised with 196 quadratic hexahedral elements in the x-direction and two elements in y-
direction. Due to the two-dimensionality of the problem, only one cell in z-direction is employed for both
the structure and fluid meshes.
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Figure 6.2: Sketch of the fluid mesh - grid lines only to illustrate spacing. Figure adapted from Thari et al. [2017]

6.2. Postprocessing Methodology
In order to visualise the results in a concise way and to analyse them, different postprocessing techniques are
employed. First of all, the Prony method [Prony, 1795] is employed to analyse the frequency content of the
quarter-chord point panel motion. The aim of the method is to represent the temporal signal as a linear sum
of damped sines, each with their own initial amplitude Ak , damping factor αk , frequency fk and phase θk .
The Prony method attempts to approximate a discrete signal x based on N = 2p uniform samples, where in
this work N is always set to the maximum amount of samples available in order to resolve as much frequency
content as possible. Note that due to the CFL number affecting the fluid timestep, linear interpolation of the
data is performed in order to obtain uniform samples. Numerically, the signal is reconstructed as follows:

x[n] =
p∑

k=1
Ak e jθk ·e(αk+ j 2π fk )Ts (n−1), (6.1)

where n = 1, ..., N and Ts is the sampling period. The classical Prony method entails solving a linear system
of equations based on an autoregressive model of order p to obtain the Prony polynomial φ(z). The roots of
the characteristic polynomial then yield the damping factors αk and frequencies fk . Based on the obtained
values, the original linear equations can then be solved to obtain the amplitudes Ak and phase angles θk .
Note that the Prony method only yields accurate results if the sampled signal has converged statistically,
thus the transient is always skipped. For an excellent step-by-step guide, the reader is referred to Rodríguez
et al. [2018]. Another helpful tool to analyse the panel response is modal analysis. To obtain the relative
modal content of the panel deflection in the temporal domain, the eigenmodes of a clamped-clamped Euler-
Bernouilli beam are projected on the deflected shape using a least-squares fit. The free-vibration modes are
given by [Nilsson and Liu, 2015]:

ϕ(x) = 1p
2

[
coshκn x −cosκn x − cosκnL−coshκnL

sinκnL− sinhκnL
(sinhκn x − sinκn x)

]
, (6.2)

where the κnL can be obtained from

cosκnL− 1

coshκnL
= 0. (6.3)
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6.3. Results
In this section the results obtained with the set-up presented in Section 6.1 are elaborated on. First, the effect
of shock impingement location is shown in Section 6.3.1, after which a sensitivity analysis of the response
with respect to panel thickness and windtunnel total pressure is executed in Section 6.3.2. Next, the effect
of the initial condition on the panel response and suitable settings for the adaptive reduced order model are
investigated in Section 6.3.3 and Section 6.3.4 respectively. Lastly, the validity of the nondimensional dynamic
pressure as a parameter to characterise the flutter behaviour is discussed in Section 6.3.5.

6.3.1. Effect of Shock Impingement Location
In order to investigate the effect of the inviscid impingement point on the panel response, it is varied from
k = 0.05 to k = 0.95 in steps of ∆k = 0.05. All other aerodynamic and structural parameters are kept constant
at the values given in Section 6.1. The resulting flutter amplitudes and frequencies are given in Fig. 6.3; i.e. the
amplitudes and frequencies of the dominant sinusoidal function originating from the Prony decomposition.
Note that the panel response at the three-quarter chord point is shown here, analogous to classic panel flutter.
In the remainder of the report, this will always be the case unless mentioned otherwise. It becomes clear that
two unsteady regions can be identified: close to the panel leading edge, i.e. from k = 0.05 till k = 0.20, and
at and slightly upstream of the panel midpoint, i.e. at k = 0.45 and k = 0.50. Moving the shock more aft or
in between both regions results in damping of all unsteady motion, which was also observed by Visbal [2014]
for simply supported panels. In the region close to the leading edge, it can be observed that a more upstream
shock impingement point will induce a significant increase in flutter amplitude and a reduction in oscillation
frequency. Close to the panel midpoint, the opposite holds: moving the shock closer to the panel leading
edge reduces the amplitude of the motion and increases its frequency.
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Figure 6.3: Flutter amplitude (left) and frequency (right) versus nondimensional shock impingement location.

Naturally, and by observing the flutter amplitudes and frequencies in Fig. 6.3, it is expected that shock im-
pingement near the leading edge will produce inherently different flutter behaviour compared to the mid-
point impingement case. This was the case in the results by Visbal [2014], who observed a strong increase in
LCO frequency for shock impingement close to the front of the panel. The opposite can be observed here,
yielding a strong significant increase in response amplitude for shock impingement at k = 0.05. Therefore,
the temporal response for three different chordwise impingement points, k = 0.05, k = 0.15 and k = 0.50,
is shown in Fig. 6.4. The significant difference in flutter frequencies and amplitudes becomes immediately
clear. While the k = 0.15 and k = 0.50 responses look qualitatively similar, the k = 0.05 case shows a distinctly
different, less sinusoidal response. As a first step to identify the cause of this discrepancy, the frequency con-
tent obtained with the Prony method for the three responses is shown in Fig. 6.5. It can be observed that the
spectra for k = 0.15 and k = 0.50 both show one distinct peak at the frequencies shown in Fig. 6.3, except for
the static deflection given by the amplitude value at Sta = 0, while panel impingement very near the leading
edge introduces a second, low frequency oscillation. The latter occurs at Sta = 0.125, half of the frequency
of the other peak (Sta = 0.250). Smaller peaks in the spectrum can be observed at other harmonics of the
fundamental frequency of the first peak, a phenomenon which also occurs for the other impingement points.

To get a feeling for the nature of the panel motion, the mean deflection and deflection bounds for k = 0.05, k =
0.15 and k = 0.50 are shown in Fig. 6.6. As expected, shock impingement very near the leading edge produces
a rather flat mean deflection, due to the small steady pressure difference existing over the plate. Significant
movement of the panel can be observed over its entire length though. Moving the shock more aft to k =
0.15 strongly increases the mean panel deflection, with a dominant downward peak located at the quarter
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Figure 6.4: Panel responses for different shock impingement
locations.
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Figure 6.5: Frequency content for the panel responses for different
shock impingement locations.

chord point. Panel unsteadiness now seems to be more confined towards the region downstream of the panel
midpoint. Finally, shock impingement at the k = 0.50 point yields a typical second mode deformation, with
the first upward peak being about 50% higher than the second downward one. Panel motion looks more or
less point symmetric around the panel midpoint, although significantly more deviation from the mean panel
shape can be seen downstream of the shock impingement point.
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Figure 6.6: Deflection ranges for three different shock impingement points.( ) Deflection bounds, ( ) Mean deflection

Another tool which can help understanding the flutter characteristics is modal analysis. Fig. 6.7 shows the
progression of the panel deflection’s modal content in time for each shock impingement point. Although
quantitatively significantly different, the responses for k = 0.15 and k = 0.50 show a qualitatively similar re-
sponse, as also indicated by Fig. 6.5. A coupling between the second and third mode with a 180 degree phase
shift can be observed, with the first mode content mainly indicating the mean downward deflection. The
latter is more visible in the k = 0.15 case, as already implied by Fig. 6.6. Shock impingement at the panel
midpoint also induces more second mode activity, which can be attributed to the strong asymmetry being
introduced into the pressure field by the shock. The response for k = 0.05 on the other hand looks signif-
icantly different. A dominant low frequency first mode response can now be observed, which explains the
first peak in Fig. 6.5. Its frequency is exactly half of the high frequency second mode oscillation. This domi-
nant first mode content is attributed to the shock impinging almost upstream of the panel, introducing only
a slight asymmetry into the steady pressure difference over the panel.

To clarify why significantly different flutter responses occur for different shock impingement locations, RMS
pressure contour plots and instantaneous wall-pressure fluctuations in time are shown in Fig. 6.8. RMS val-
ues have been obtained by taking the square root of the squared pressure-fluctuation field, averaged over 100
non-dimensional timesteps t∗ = tU /a. Looking at the RMS contour plots for the different shock impinge-
ment points, multiple key areas can be identified. Concerning the source of unsteadiness, the reflected shock
separates the upstream flowfield from the more unsteady downstream section of the panel. This can also be
clearly seen in the temporal evolution of the wall-pressure fluctuations (Figs. 6.8(b), 6.8(d) and 6.8(f)) and
was already predicted earlier after examination of the deflection bounds given by Fig. 6.4. Another interest-
ing observation is the fact that the reflected shock shows a significant flapping motion, especially for shock
impingement at the panel midpoint. This can be attributed to the local change in panel slope at the shock
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Figure 6.7: Modal decomposition of the panel response for three different shock impingement points.

impingement point, the effect of which was already estimated to be non-negligible based on analytical results
in Section 4.2.4. It must be noted that unsteadiness of the impinging shock due to interaction with the shock
formed at the panel leading edge is marginal, leading to motion of the shock foot which is only noticeable in
the k = 0.50 case. This implies that this interaction does not lie at the source of the panel flutter. Thirdly, the
panel trailing edge can be identified as another major source of pressure fluctuations. This can be attributed
to most of the unsteady panel motion taking place near the end of the panel, as well as the unsteadiness of
the trailing edge expansion fan. This can be clearly seen in Fig. 6.4 as well. Looking at Figs. 6.8(b), 6.8(d)
and 6.8(f), it can be observed that for all shock impingement locations, an alternation of compression and
expansion waves can be found to originate at the panel leading edge. These seem to propagate downstream
at more or less constant speed due to coupling with the panel motion, where they travel through the shock
foot and are amplified accordingly. These strong waves continue moving towards the panel trailing edge, after
which they are convected downstream. This travelling wave phenomenon is strongly coupled to panel mo-
tion, as a distinct difference can be observed between the k = 0.05 case and the two other shock impingement
locations. The strongest discrepancy can be observed near the trailing edge, where in the k = 0.15 and k = 0.50
case a constant alternation from recompression to expansion occurs. Due to the mean panel motion being
significantly downward, the pressure field near the panel trailing edge is dominated by strong expansion of
the flow, especially for k = 0.15. For the most upstream shock impingement location, much stronger pressure
fluctuations occur, on the order of three times the freestream static pressure p1. The flowfield downstream
of the shockfoot is now dominated by a very strong recompression at the trailing edge, which alternates with
weaker compression and expansion. It can be stated that the wall pressure temporal evolution in general
looks more complex than other two cases, which can most likely be attributed to the increased modal activ-
ity, as shown by Fig. 6.7. It can be argued that the strong first mode activity is made possible by the upstream
shock position, yielding a mean deflection which resembles the first structural modeshape.
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Figure 6.8: RMS-pressure contours and wall-pressure fluctuations in the x-t plane for k = 0.05 (top), k = 0.15 (mid) and k = 0.50
(bottom).

6.3.2. Parametric Effects
In this section the effect of changing the panel thickness and settling chamber total pressure is investigated
for two shock positions: k = 0.15 and k = 0.50. Looking at Eq. (3.4) it becomes clear that increasing h/a, i.e.
increasing the panel thickness, will reduce the nondimensional dynamic pressure, most likely reducing panel
unsteadiness. On the other hand, increasing pt ,0 and thus the test section dynamic pressure q1 will increase
λ and is therefore expected to increase panel motion. In the following results, h/a = 0.002 and pt ,0 = 3.5 bar
unless mentioned otherwise.
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Looking at Fig. 6.9, it can be seen that increasing the total pressure indeed slightly increases panel ampli-
tude and flutter frequency for k = 0.15, but for k = 0.5 the effect is not so straightforward. For total pressures
exceeding 4 bars, all panel motion is damped. The author argues this can be attributed to the steady panel de-
formation becoming too large due to the increased dynamic pressure in the tunnel, inducing a large amount
of stiffness. This can be observed in Fig. 6.10, where it becomes clear that midpoint shock impingement
yields a significantly increased mean panel deflection compared to the k = 0.15 case. It can thus be postu-
lated that a flexible thin panel could be employed to induce large deflections at certain dynamic pressures,
and consequently damp panel unsteadiness.
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Figure 6.9: Flutter amplitude (left) and frequency (right) versus settling chamber total pressure. ( ) k = 0.15, ( ) k = 0.50
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Figure 6.10: Mean panel deflection for different shock locations and settling chamber total pressures pt ,0. pt ,0 = 3.5 bar( ), 4.0 bar
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The effect of panel thickness is shown in Fig. 6.11. As expected, increasing h/a significantly reduces the
amplitude of the LCO, while also slightly reducing its frequency. The rate of decrease seems to be nearly
identical for both shock impingement points, absolute value-wise. For thickness-to-length ratio’s exceeding
3.0 ·10−3, all panel motion is damped out.
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Figure 6.11: Flutter amplitude (left) and frequency (right) versus panel thickness-to-length ratio. ( ) k = 0.15, ( ) k = 0.50
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6.3.3. Effect of Initial Condition
In order to rule out any dependency of the statistically converged panel response on the initial conditions of
the simulation, two different initial conditions are investigated here. As a first option, the panel is released
immediately, i.e. simultaneously with the start of the impinging shock development. Due to the distance
between the upper boundary of the domain and the panel, it takes some time for the shock to actually im-
pinge on the panel. As a result, the panel first experiences the freestream static pressure on the upper surface,
while the theoretical, significantly higher, cavity pressure is already imposed. This yields strong initial panel
deflections, as indicated by the ’undeveloped IC’ case in Fig. 6.12. Note that this initial condition is always
employed for the 2D simulations presented in this chapter.

The second initial condition entails freezing all structural nodes until the inviscid shock system has com-
pletely developed. The result, labelled ’developed IC’, clearly yields a reduction in transient deflections and
converges to the exact same LCO, naturally showing a phase-shift compared to the first IC. It must be noted
though that no significant computational benefit was obtained, as both initial conditions converged to the
LCO after more or less equal integration times.
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Figure 6.12: Panel response for different initial conditions.

In short, it can be concluded that the initial condition has no lasting effect on the obtained flutter motion. It
can thus be argued that other transient effects, such as the normal shock occurring during tunnel start-up,
will not affect the statistically converged panel response.

6.3.4. Adaptive Reduced Order Model
As discussed in Section 5.2, the Adaptive Reduced Order Model by Thari et al. [2017] is employed to reduce the
computational overhead introduced by solving the governing structural equations. The effect of increasing
the FEM update threshold on flutter amplitude and frequency can be seen in Fig. 6.13. It becomes clear that
for ε values up to 0.125 panel thicknesses, the error with the FEM solution (ε= 0) remains negligible. Looking
at the computational cost presented in Fig. 6.14 though, more than double the amount of iterations can be
performed per second walltime for such a small threshold value.

6.3.5. Validity of λ as a Parameter to Characterise Flutter
As proven in the previous sections, the response of the panel to a change in panel thickness and tunnel to-
tal pressure is far from linear. Since both these parameters affect the nondimensional dynamic pressure λ∗,
it can be questioned whether λ∗ as given by Eq. (3.4) is still a valid parameter to characterise the flutter re-
sponse, as is the case for classic panel flutter. To investigate this, the results from the parametric thickness
and total pressure study are plotted versus their corresponding nondimensional dynamic pressures and com-
pared with the analytical flutter boundaries. This is shown in Fig. 6.15. It can be seen that in general, based
on the visible trends, the analytical model seems to provide a reasonable "worst-case" flutter boundary, i.e.
flutter never occurs beneath the critical λ∗ value computed with the analytical model. On the other hand, the
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Figure 6.13: Flutter amplitude (left) and frequency (right) versus AROM update threshold in terms of panel thicknesses.
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Figure 6.14: Computational efficiency ηcomp versus AROM update threshold in terms of panel thicknesses. Computational efficiency is
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opposite is not true: when pt ,0 is increased for k = 0.50, a sudden damping of the panel motion is observed,
as already discussed in Section 6.3.2. Flutter is thus not guaranteed to occur when λ∗ exceeds the critical
value predicted by the analytical model. Furthermore, reducing the total pressure yields two different flutter
amplitudes for an identical nondimensional dynamic pressure!
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Figure 6.15: Response amplitudes versus nondimensional dynamic pressure for k = 0.15 and k = 0.50. Analytical flutter boundaries are
indicated by ( ). h/a is decreased from 4.0 ·10−3 to 2.0 ·10−3 ( ) and pt is increased as indicated in Fig. 6.9 ( ).

To further delve into this peculiar result, two different cases with identical nondimensional dynamic pres-
sures but different panel Young’s moduli and different total pressures are simulated. Case one features a total
pressure of 3.5 bar and an E-modulus of 62.7 GPa, while for the second case pt ,0 and E are set to 4.0 bars and
71.7 GPa respectively. Note that the Young’s modulus of 62.7 GPa is not related to an actual material, but is
rather a theoretical value chosen to achieve λ∗ = 5,408, identical to case two.
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Looking at Fig. 6.16, it becomes clear that indeed the nondimensional dynamic pressure cannot be used to
characterise the response of the panel. Case one yields a rapid dampening of the flutter motion, while case
two results in a clear LCO. Thus, care must be taken when reporting results in terms of λ∗, since these will not
be reproducible if different combinations of the dimensional parameters are taken. This confirms the doubts
about λ being an accurate flutter parameter stated in Section 3.3.1.
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Figure 6.16: Panel responses for identical nondymensional dynamic pressures λ∗ of 5,408 obtained at different Young’s moduli and
total pressures





7
Selection of a Set-Up for Future Analysis by

LES and Experiment

Based on the inviscid results and literature on shock-wave/boundary-layer interactions, the most promising
case can now be selected for future high fidelity analysis by LES and experiment. First, values for the aero-
dynamic and structural governing parameters and suitable initial conditions and boundary conditions are
selected in Section 7.1. Next, a feasible numerical set-up is identified in Section 7.2, after which the numeri-
cal boundary conditions and a possible grid distribution are elaborated on in Section 7.3. Lastly, preliminary
experimental results are shown in Section 7.4.

7.1. Selection of Values for the Governing Parameters
In this section, based on the governing parameters identified in Section 3.3, values for the aerodynamic pa-
rameters are first chosen in Section 7.1.1, after which the structural parameters are selected in Section 7.1.2.

7.1.1. Aerodynamic Parameters
• Mach number M1: A Mach number of 2.0 is selected, which is in line with the inviscid and analytical

results. This allows first of all to operate the tunnel at a total pressure which allows later PIV measure-
ments, as discussed in Section 1.3. At higher Mach numbers, higher total pressures are required to start
the windtunnel and the amplitudes of the panel motion will reduce, decreasing the interaction between
fluid and structure. Secondly, selecting a Mach number lower than 2, thus 1.5 in the ST-15, could sig-
nificantly increase the complexity of the flutter behaviour and the interaction with the boundary layer,
as elaborated on in Section 3.3.

• Shock strength p3/p1: As discussed in Section 6.1, a shock pressure ratio of 3.0 is selected to avoid
transition to an ISWBLI, while still maximising the pressure jump and thus the unsteadiness of the
panel. This requires a flow deflection angle over the incident shock of ϑ1 ≈ 10.66◦ and a corresponding
shock angle σ1 of 40.04◦.

• Boundary layer thickness δr e f /a: Based on the results from different M = 2.0 windtunnel tests per-
formed in the ST-15 [Giepman et al., 2014; Kallarbail, 2016; Nayak et al., 2017], as summarised in Ta-
ble 1.2, the boundary layer thickness at the test section inlet can be assumed to equal 5.2×10−3 m. This
yields a boundary layer thickness to plate length ratio of 19.2.

• Cavity pressure pc: As mentioned in Section 3.3, setting the cavity pressure such that the steady pres-
sure difference over the panel is minimised will yield the most unsteady behaviour. Neglecting the
change in the mean pressure field due to the mean curvature of the panel, this boiled down to setting pc

equal to the theoretical pressure over the upper surface of the rigid flat plate for the inviscid computa-
tions. In the viscous case a spreading and reduction of the shock static pressure jump will occur though,
due to the SWBLI and the interaction with the wedge expansion fan respectively (see Section 3.2). This
will significantly affect the mean average pressure acting on the upper side of the panel. Assuming the
spanwise edges of the panel are free, pressure equalisation between the test section and the cavity will

65
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occur during the actual wind tunnel experiment, which means this significantly altered pressure dis-
tribution will affect the cavity pressure. To estimate if an LES of the interaction over a rigid flat plate
is required to obtain a close approximation of the cavity pressure, the interaction obtained by Matheis
and Hickel [2015] is scaled to the expected boundary layer thickness of 5.2mm and positioned over the
panel, assuming the shock theoretically impinges at the panel midpoint. This is illustrated in Fig. 7.1.
Integrating the wall-pressure over the panel and averaging yields an approximate cavity pressure of 2.08
p1, differing only 4.3% from the theoretical inviscid cavity pressure (pc = 2.0p1). Thus, with a similar
interaction length and expansion fan impingement location, pc = 0.5(p1+p3) should yield a reasonably
accurate estimate of the cavity pressure. The choice of the interaction by Matheis and Hickel [2015] as
a reference SWTBLI will be elaborated on further in this section.

• Settling chamber conditions pt ,0,Tt ,0: Since the total pressure and total temperature in the settling
chamber determine the static conditions obtained in the test section, they are included in this list
of governing parameters. The total temperature is assumed to equal the ambient static pressure of
288.15K. Looking at Fig. 6.9, 3.5 bars total pressure seems to be the maximum value where inviscid
flutter with shock impingement at the panel midpoint still occurs. To maximise the oscillation ampli-
tude and ensure unsteady panel movement, a total pressure of 3.5 bar is thus selected. For Mach 2.0
this yields the following static conditions in the test section: p1 = 45.324Pa and ρ1 = 0.986kgm−3.

• Reynolds number Re: Given the total temperature of 288.15K and the test section Mach number of
2.0, a test section "freestream" velocity of 507.3ms−1 will be obtained. Assuming the temperature de-
pendence of the dynamic viscosity µ f is given by Eq. (2.8), this yields a unit Reynolds number Re of
45.8×106 m−1 and a boundary layer thickness Reynolds number Reδ,r e f of 238×103. The former is
close to what is usually obtained in the ST-15, while the latter is nearly identical to the Reynolds num-
ber investigated by Pasquariello et al. [2015, 2017]. In the remainder of this chapter, the interaction
obtained by Matheis and Hickel [2015] for a Mach 2 SWTBLI over a rigid flat surface (p3/p1 ≈ 3.0 at
ϑ = 11◦) is taken as a baseline case to predict the viscous interaction extent. It must be noted though,
that the Reynolds number considered by Matheis and Hickel [2015] is about a factor of five lower
(Reδ,i mp = 48.3×103) than the Reδ,r e f considered here. As elaborated on in Section 3.2.2, a growth
in the interaction length will occur up to Reδ = 1×105, while a contraction will take place for Reynolds
numbers exceeding that value. It is thus hard to predict what the actual position of the separation and
reattachment shocks will be, but since the Mach number and impinging shock angle match (almost)
perfectly, the interaction length of 9.7δr e f is accepted as a first estimate. Note that the effect of panel
unsteadiness on the separation extent is also ignored for now, since making an accurate prediction is
hard, if not impossible. The selection of this baseline case will be elaborated on in the next section.

7.1.2. Structural Parameters
• Plate thickness h/a: As shown by Fig. 6.11, the maximum thickness-to-length ratio at which flutter can

still be expected is 3.0 ·10−3. For a panel length of 10×10−2 m, this yields a maximum panel thickness
of 0.3 mm. For that thickness, flutter amplitudes are strongly reduced though, which is undesirable. At
the time of writing of this thesis, a fellow thesis student conducted experiments of classic panel flutter
in the ST-15 at similar flow conditions as described in Section 7.1.1. For a panel thickness of 0.2 mm,
the panel failed structurally during windtunnel shut-down after several runs. Thus, to keep oscillation
amplitudes as large as possible and to avoid breaking the panel, a plate thickness of 0.25 mm is selected
(h/a = 2.5 ·10−3).

• Length-to-width ratio a/b: Since a quasi-2D interaction is desired at the spanwise midplane, the panel
length-to-width ratio should be made as small as possible. Since the panel thickness-to-length ratio
cannot exceed 2.5 · 10−3, the panel cannot be made shorter than 10 cm, as this would lead to an un-
acceptably thin panel. Therefore, a/b can only be reduced by increasing the panel width b. The latter
is limited by the test section width, and a certain spacing should be kept between the tunnel sidewalls
and the flexible panel to avoid interaction with the sidewall boundary layer. Thus, a maximum width
of 10 cm is selected, yielding a square panel (a/b = 1.0).

• Dynamic pressure λ: As stated earlier, Eq. (3.4) yields a nondimensionalisation of the dynamic pres-
sure q with respect to the material properties and the plate thickness-to-length ratio. Even though it
was shown in Section 6.3.5 that λ is not a valid parameter to predict the flutter behaviour, it was se-
lected in Section 3.3.1 as a governing structural parameter and is therefore also considered here. Since
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it was decided earlier on to manufacture the flexible plate out of aerospace grade aluminium Al7075-T6
(see Section 6.1 for the material properties), the nondimensional dynamic pressure can be computed.
Taking the freestream velocity and density as stated in Section 7.1.1, and the selected h/a of 2.5 ·10−3,
a dynamic pressure q1 of 127 kPa and a nondimensional variant λ∗ of 2,423 are obtained.

• Air/plate mass ratio M : Given the static test section conditions obtained at M = 2.0 and the selected
total conditions, and the structural and material properties of the plate, µs equals 0.141. This is close to
the value usually employed for panel flutter calculations, as stated in Section 7.1.2. Anyhow, changes in
M on the order of magnitude considered here are bound to only marginally affect the flutter response
[Dowell, 1967].

• Shock impingement location k: Considering the shock impingement point, choosing a value for the
governing parameter is not so straightforward. Examining Fig. 6.3, it is clear that in the inviscid case
two options ensure significant unsteady motion of the panel: placing the shockfoot within 0.2 panel
lengths away from the leading edge, or moving the shock impingement point into the region spanned
by 0.45 ≤ x/a ≤ 0.50. In the viscous case, this cannot simply be replicated, since a spreading of the
shock pressure jump will occur as discussed in Section 3.2. Indeed, looking at the LES results obtained
by Matheis and Hickel [2015], the chosen impinging shock strength will lead to a strong interaction and
consequently a mean separation bubble. As a result, two wall pressure jumps will occur instead of one,
more specifically one centred around the separation point and one located around the point where the
shear layer reattaches to the plate, with a more or less constant pressure plateau underneath the sepa-
ration bubble. The author argues that these pressure jumps should be located in the unsteady regions
identified by the inviscid computations in order to maximise the odds of unsteadiness in the viscous
case. To examine whether or not the pressure jumps correspond to these regions, an illustration of
the interaction observed by Matheis and Hickel [2015] is aligned with the corresponding wall pressure
distribution and the inviscid regions of unsteadiness indicated by their respective flutter amplitudes.
This is possible by converting the interaction length in terms of δr e f to x/a by assuming the boundary
layer thickness will equal 5.2mm, as discussed in Section 7.1.1. A clear pressure rise up to the sepa-
ration plateau can be observed, while the second pressure rise at reattachment is reduced due to the
wedge trailing edge PME fan interacting with the reflected shock system. Looking at Fig. 7.1, it becomes
clear that an inviscid shock impingement location at the panel midpoint (k = 0.5) will ensure the sepa-
ration pressure jump falls completely within the unsteady region at the leading edge (xs ≈ k = 0.08).
The second jump at the reattachment point is located aft of the midplane unsteady region though
(xr ≈ k = 0.56). This is slightly undesirable, but it is clear that the wedge PME fan strongly limits the
second pressure jump. Thus, positioning the separation shock foot in the leading edge unsteady region
is the main goal, which is achieved for k = 0.5.

• Distance between shock and expansion fan impingement L: In order to get a similar cavity pressure
and interaction length as Matheis and Hickel [2015], it is crucial that the first expansion wave of the
PME fan is located at a similar distance L away from the inviscid shock impingement point. The strong
sensitivity of the extent of the separated region on this parameter was already elaborated on in Sec-
tion 3.2.2. According to inviscid computations, L should therefore equal 6.4δr e f .

In the selection of the aerodynamic and structural parameters, the Mach 2.0 interaction by Matheis and
Hickel [2015] was selected as a reference SWTBLI to qualitatively estimate the effect of the turbulent bound-
ary layer on the interaction extent. At the time of writing, another high fidelity LES result was available: the
Mach 3.0 interaction by Pasquariello et al. [2017]. The key parameters are listed in Table 7.1, and the interac-
tion extents are illustrated in Fig. 7.1. It becomes clear that the chosen experimental set-up matches the Mach
number M1, shock strength p3/p1 and expansion fan distance L of Matheis and Hickel [2015], but a strong
difference in Reynolds number Reδ is obtained. The opposite is true for the interaction by Pasquariello et al.
[2017], which features a nearly matching Reynolds number of 203×103, but a higher Mach number, a much
stronger shock pressure jump and a strongly reduced distance between the shock impingement point and
expansion fan. The latter is even negative, which indicates the PME fan directly affects the impinging shock.
All this results in a longer interaction length compared to the one obtained by Matheis and Hickel [2015], as
can be seen in Fig. 7.1. This can most likely be attributed to the stronger shock. Next to that, shock angles
are significantly reduced due to the higher Mach number. The author argues the combined effect of a much
higher shock strength (increased interaction length) and a reduced L will yield more uncertainty regarding
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the interaction length at the chosen experimental conditions compared to only a different Reynolds number.
Therefore, the interaction by Matheis and Hickel [2015] is selected as a qualitative baseline.

M1[−] p3/p1[−] ϑ1[◦] Reδ,r e f [−] L[δref]

Thesis 2.0 3.0 10.66 238×103 6.43

Matheis and Hickel [2015] 2.0 3.0 10.77 48.3×103 6.43

Pasquariello et al. [2017] 3.0 10.3 19.60 203×103 −3.64

Table 7.1: Parameters used to select a reference SWTBLI

7.1.3. Initial Conditions and Boundary Conditions
• Initial condition: The most straightforward initial condition to implement entails immediately apply-

ing the theoretical cavity pressure to the bottom of the flexible plate, while the impinging shock is still
developing. As discussed in Section 6.3.3, this leads to a transient with large (non-physical) deflections.
It was proven that no significant computational benefit could be obtained by first letting the shock sys-
tem develop, but it does reduce the magnitude of the initial panel deformations. It must be noted that
a major portion of the computational overhead can be attributed to the the mesh located in the cavity
to account for panel motion. Thus, it is desirable to keep the number of cells in the cavity as low as
possible, and therefore the second initial condition is selected.

• Plate boundary condition: Clamped leading and trailing edge boundary conditions were prescribed
for the inviscid computations. Therefore, keeping also the reproducibility of the experiment in the ST-
15 in mind, clamped boundary conditions are the obvious choice for the LES. To promote 2D behaviour
at the spanwise midplane and pressure equalisation with the cavity, the spanwise edges are left free.

7.2. Numerical Set-Up
The key aerodynamic and structural parameters were selected based on 2D inviscid results and literature
in Section 7.1. The resulting numerical set-up is described here. A Mach 2.0 spatially developing turbulent
boundary layer enters the computational domain with a local boundary layer thickness δr e f of 5.2 mm. The
total pressure and total temperature are defined in the settling chamber and equal 3.5 bar and 288.15K re-
spectively. The unit Reynolds number Re = U1/ν1 based on the static test section conditions presented in
Table 7.3 equals 45.8×105, while the Reynolds number based on the inlet boundary layer thickness Reδ,r e f =
U1δr e f /ν1 is 238×103. These values are summarised in Table 7.2.

A wedge-shaped shock-generator with a length of 81.8 mm is positioned such that the trailing edge is lo-
cated g = 96 mm above the panel leading edge. This leads to the shock impinging halfway the 10 cm long
flexible panel (k = 0.50), and the first expansion wave of the PME fan impinging 6.43 δr e f downstream of
xi mp . This implies a nondimensional channel height to wedge width ratio g+ = g /w of 1.15. The wedge ge-
ometries are illustrated in Fig. 7.2 and summarised in Table 7.4. The 0.25 mm thick compliant panel is man-
ufactured out of a 7075-T6 aluminium alloy, which has a Young’s modulus of Es = 71.7×109 Pa, a Poisson’s
ratio of νs = 0.33 and a density of ρs = 2800kgm−3. The panel is square with a side of 10 cm and is clamped
at the leading and trailing edges. The spanwise edges are left free to induce two-dimensional behaviour of
the panel and pressure equalisation between the test section and the cavity. This leads to a theoretical cavity
pressure of pc = k ·p1 + (k −1) ·p3, or 90.7 kPa.

M1[−] p3/p1[−] ϑ1[◦] pc [Pa] pt ,0[bar] Tt ,0[K] δr e f [mm] Re[1/m] Reδ,r e f [−]

2.0 3.0 10.66 90,649 3.5 288.15 5.2 45.8×106 238×103

Table 7.2: Aerodynamic parameters

Apart from the relative positioning of the expansion fan with respect to the shock impingement point, two
other geometric parameters are affected by the wedge placement and dimensions. These are not necessarily
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Figure 7.2: Sketch of the LES set-up

p1[Pa] ρ1[kg/m3] T1[K] U1[m/s]

45,324 0.986314 160.0833 507.2849

Table 7.3: Static test section conditions

restrictive from a computational point of view, but should be kept in mind when a reproduction of the exper-
iment is desired in an actual experimental facility. First of all, the ratio of the wedge inlet area to the wedge
throat area A/At should be large enough to ensure the windtunnel can start. More specifically, this area ratio
should not exceed the area ratio which yields choked flow during start-up of the tunnel, i.e. A/A∗. Whether
this is the case or not can be investigated as follows. As shown in Fig. 7.3, a normal shock-wave moves from the
settling chamber into the test section during tunnel start-up. First of all, the flow downstream of the normal
shock experiences a drop in total pressure, which should not be too strong in order to ensure a large enough
pressure difference with the back pressure. This was discussed earlier in Section 1.3. Secondly, the flow moves
into the test section at a certain Mach number M1, which can be computed from the Mach number upstream
of the start-up shock M0 as follows:

M1 =
√√√√ (γ−1)M 2

0 +2

2γM 2
0 − (γ−1)

. (7.1)

Next, the area ratio to achieve sonic conditions at the throat can be obtained from the conservation of mass
and can be shown to depend only on the Mach number M1 at the inlet area A:

A

A∗ =
(
γ+1

2

) γ+1
2(γ−1)

(
1+ γ−1

2 M 2
1

) γ+1
2(γ−1)

M1
. (7.2)

Assuming the wedge spans the entire test section width, the area ratio equals the ratio of channel inlet height
hw to throat height g , neglecting the reduction in massflow due to the wedge and wall boundary layers. Note
that in previous SWBLI experiments conducted in the ST-15, the shock generator had a width of 120 mm and
indeed nearly spanned the entire test section [Kallarbail, 2016]. As long as hw /g does not exceed the sonic
area ratio given by Eq. (7.2), the start-up shock will be able to pass through the nozzle created by the wedge. If
ht becomes too small, the flow will choke and unstarting of the tunnel will occur. Given the wedge properties
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ϑw [◦] Lw [mm|δref] hw [mm|δref] g [mm|δref] xe [mm] g+[−] L[mm|δref]

10.66 81.8 | 15.73 111.5 | 21.53 96.0 | 18.6 0.0 1.149 33.43 | 6.43

Table 7.4: Wedge properties

outlined in Table 7.4, the ratio of channel inlet height to throat height equals 1.16, more than 5% smaller than
the maximum critical value of 1.22. The ST-15 should therefore start without any foreseeable problems.

Us

hw
g

M0
pt ,0

M1
pt ,1

Figure 7.3: Sketch of the test section during tunnel start-up

Secondly, the ratio of channel width to throat height, i.e. the effective aspect ratio W /g of the channel formed
between compliant panel and the wedge, is a good indicator of the three-dimensionality of the interaction.
Wang et al. [2015] found that an aspect ratio larger than 2 should provide a two-dimensional interaction at the
panel midplane. The source of this three-dimensionality is the interaction of the impinging shock with the
tunnel sidewall boundary layers, which creates additional swept SWBLI’s on the spanwise walls, along with
corresponding separated flow regions. The latter are known to be conical in nature, appearing to originate
from a virtual origin located upstream of the shock generator apex [Lu, 1993]. Due to this conical behaviour,
the shock foot only penetrates the sidewall boundary layer up to a certain penetration Mach number Mp .
Next to that, the sidewall shock interacts with the main impinging shock, curving it. For the case under
consideration, a channel aspect ratio of 1.6 is obtained, which should be sufficiently large to yield quasi-2D
behaviour at the panel midplane.

7.3. Boundary Conditions and Grid Distribution
The computational domain is indicated by the dashed lines in Fig. 7.2 and spans a rectangular box of dimen-
sions Lx = 210 mm, Ly = 96 mm and Lz = 24mm, with the upstream boundary placed at x = −90 mm. This
yields an upper boundary which coincides exactly with the wedge trailing edge. In terms of boundary layer
thicknesses, the domain is given by Lx ≈ 40.4δr e f , Ly ≈ 18.5δr e f and Lz = 4.6δr e f . This is close to the do-
main size of Lx ×Ly ×Lz = 50δr e f × 20δr e f × 4.5δr e f determined by Pasquariello et al. [2017], which yields
a sufficiently wide domain to obtain a converged separation bubble size and converged skin friction recov-
ery downstream of the interaction. Since the IBM framework is employed to simulate motion of the flexible
panel, a numerical cavity of certain depth is required to account for panel motion. Inviscid simulations at the
flow conditions given in Table 7.2 and h/a = 2.5·10−3 have been conducted for k = 0.15 and k = 0.50. Looking
at Fig. 6.6, these shock impingement points should give a good estimate of the deflection range for any shock
location, also for more upstream shock impingement points (k = 0.05). Since the separation shock-foot is ex-
pected to be located around that region, the author is confident the predicted deflection range is close to the
viscous results. Looking at the maximum downward deflections during both the transient panel motion and
the converged LCO shown in Fig. 7.4, it can be concluded that a cavity depth of 1 mm should be more than
sufficient to account for the panel LCO, while a 2 mm cavity will be required to incorporate the transient.
By first letting the shock system develop over a rigid plate, and subsequently releasing the plate, transient
motion can be limited though. This was described in Section 6.3.3, and it was shown that deflections during
the transient never exceeded the LCO amplitude. Using a developed flow IC will thus allow to limit the cavity
depth to only 1 mm. The approach of selecting the extent of the cavity based on inviscid results has been
employed successfully for SWTBLI by Pasquariello et al. [2015].
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Figure 7.4: Maximum downward deflections for h/a = 2.5 ·10−3 during transient ( ) and converged oscillatory panel motion ( )

At the inflow patch, a digital filter (DF) based boundary condition is prescribed to generate turbulent inflow
conditions. The method by Klein et al. [2003] is employed, which artificially reproduces the first and second
order one point statistics of a precursor zero pressure gradient TBL simulation. The latter has been allowed
to developed temporally until the desired boundary layer thickness of δr e f = 5.2mm was obtained. Since
artificial turbulence is generated, a spatial transient downstream of the inlet is unavoidable. Pasquariello
et al. [2017] determined a required transient length of 12δr e f based on mean and RMS velocity profiles, while
Grilli et al. [2013] obtained a transient length of 8δr e f . With the inclusion of sidewall effects, Wang et al.
[2015] report a transient length of 12δr e f . Thus, the streamwise extent of the domain size is limited by two
factors: the spatial transient introduced by the DF and the generation of the shock at the upper boundary.
Based on the wedge properties, the incident shock enters the domain at x = −0.064 or 12.3 boundary layer
thickness’s upstream of the panel leading edge. Thus, placing the domain inlet at x = −90mm ensures the
impinging shock can be generated at the desired location while also providing a sufficient spacing of 17.3δr e f

between the expected start of the SWBLI and the inlet (including some spacing to mitigate Reynolds number
and unsteadiness related interaction length uncertainty) to accommodate the DF transient.

Similarly to the inviscid computations, as introduced in Section 6.1, the impinging shock and expansion
fan are introduced at the upper domain boundary as Riemann Invariants. The impinging shock is gener-
ated at the appropriate streamwise location by prescribing the Rankine-Hugoniot conditions corresponding
to an oblique shock with angle σ1 = 40.0◦, while the flow conditions in the wedge trailing edge expansion
fan are determined by employing Prandtl-Meyer expansion theory. Note that the development of the bound-
ary layer on the shock-generator wall is neglected. At the outflow, linear extrapolation of all flow variables is
used, and symmetric boundary conditions are imposed at the spanwise domain faces. The latter implies a
two-dimensional interaction, which can indeed be expected given the considered set-up [Wang et al., 2015].
Considering the fluid-structure interaction, the upper surface of the compliant panel is modelled as an adia-
batic wall.

The grid is discretised based on the viscous lengthscale l+, which can be computed as follows. Based on
several boundary layer measurements conducted during experiments in the ST-15, a skin friction coefficient
C f of 1.9×10−3 can be expected at the domain inlet [Giepman et al., 2014; Kallarbail, 2016; Nayak et al., 2017;
Tambe et al., 2017]. Thus, the wall shear stress τw =µw (∂u/∂y)|w can be computed using

τw = 1

2
C f ρ1U 2

1 . (7.3)

This yields a wall shear stress of 241Nm−2. Next, the friction velocity uτ can be determined as follows.

uτ =
√
τw

ρw
(7.4)

Thus, the density at the wall is required to obtain uτ. This can be computed by assuming the static temper-
ature in the boundary layer follows the well-known Crocco-Busemann relation, which yields Eq. (7.5) for the
adiabatic wall temperature.
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Tw = T1

(
1+ r

γ−1

2
M 2

1

)
(7.5)

A recovery factor r of 0.89 is assumed, which corresponds to a Prandtl number of 0.72, a value often employed
for turbulent boundary layers. Assuming the fluid behaves as an ideal gas and noting that the boundary
layer static pressure is constant in y , ρw can be determined. This yields a skin friction velocity of 20.5ms−1.
Assuming the viscosity at the wall follows Eq. (2.8), the viscous lengthscale l+ = νw /uτ can be computed.
For the given flow conditions, this yields lw = 1.46µm and consequently a friction Reynolds number Reτ =
δr e f /l+ of 3,552. The main boundary layer parameters are summarised in Table 7.5.

ρw [kg/m3] Tw [K] µw [Ns/m2] τw [N/m2] uτ[m/s] l+[µm] Reτ[−]

0.576 274 1.73×10−5 241 20.5 1.46 3,552

Table 7.5: Boundary layer characteristics

Based on the viscous lengthscale, an estimate of the mesh size can be made. Near the wall, Nx = 2,128 and
Nz = 608 are taken, yielding ∆x+ = 68 and ∆z+ = 27. The amount of cells in both x and z direction is system-
atically reduced with increasing y , as shown in Fig. 7.5.
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Figure 7.5: Grid distribution for the LES mesh. Only blocks are shown, with each block containing
Nx,b ×Ny,b ×Nz,b = 38×20×36 = 27,360 cells.

Concerning the mesh distribution in the wall-normal direction, a hyperbolic grid stretching is applied which
follows

y j =
Ly · tanh

(
βy (y−1)

Ny−1

)
tanh

(
βy

) , (7.6)

where βy is the stretching factor, which was set to 3.55. By discretising the y-dimension with Ny = 320 cells,
the first cell reaches up to y+ ≈ 2. This effectively places the first cell center at y+

mi n = 1, wall-resolving the
boundary layer. The 1 mm deep cavity mesh is discretised by assuming the y+ value of the first cell as a
constant spacing. In combination with the discretisation of the test section mesh, this yields a total amount
of 438 million cells. The structural discretisation is kept the same as for the inviscid computations, featuring
196 quadratic hexahedral elements in the x-direction, two elements in the wall-normal direction and one
element in the spanwise direction. The latter is justified because quasi two-dimensional flow behaviour is
expected at the panel midplane.

Considering the required time integration, an initial estimate can be made as follows. Given the current
streamwise domain extent, a flow-through time (FTT) of 40.4δr e f /U1 can be expected. Looking at the in-
viscid panel responses shown in Fig. 7.6, a transient period of about 0.06 seconds should be taken before
the response starts to resemble an LCO. Note that an undeveloped IC was used for these computations, but
it was proven in Section 6.3.3 that the duration of the transient is not significantly affected by the chosen
initial condition. This implies a transient duration of 5,850δr e f /U1 ≈ 150 FTT. Next, it would be desirable
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to simulate at least 10 low frequency oscillations of the separation shock. Based on well-resolved long time-
integration results by Pasquariello et al. [2017], these oscillations should occur at a separation length Strouhal
number of StL,sep = 0.04. Assuming a separation extent of 9.7δr e f as predicted by Matheis and Hickel [2015],
the timescale of the separation bubble breathing should equal tLF = 242.5δr e f /U1. Thus, to resolve 10 oscilla-
tions an extra 2,425δr e f /U1 or 60 FTT should be added, yielding a total simulation time of 8,275δr e f /U1 ≈ 205
FTT.
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Figure 7.6: Panel responses including transient for k = 0.15 and k = 0.50

7.4. Preliminary Experimental Results
At the time of writing, a fellow thesis student † was conducting Mach 2.0 windtunnel experiments of classic
panel flutter in the ST-15. He was so kind to conduct a preliminary experiment of a 0.2 mm thick Al 7075-T6
clamped panel subject to an impinging shock. The spanwise edges were left free, resulting in the same plate
boundary conditions as selected for the LES and experiment. A wedge of a previously conducted experiment
was used, and as a result, the generated shock was rather weak. The wedge featured a flow turning angle
ϑ1 of only 5 degrees, and had a length w of 147 mm. At the tested position, a very low channel height to
wedge width ratio g+ of 0.46 was obtained. This resulted in a strongly aft position of the wedge TE PME fan,
as can be clearly seen in the Schlieren image presented in Fig. 7.7. The distance between the first expansion
wave and the shock impingement point at k = 0.37 is estimated to have equalled 22δr e f , much more than the
6.43δr e f envisioned for the experiment. Given the total settling chamber pressure and temperature of 2.5 bar
and 288K respectively, a boundary layer thickness Reynolds number Reδ,r e f of 170×103 was obtained.

Looking at the Schlieren snapshot in Fig. 7.7, it becomes clear that a very small interaction is obtained, which
seems to feature a small separation bubble. This can most likely be attributed to the very weak shock, in-
ducing an estimated inviscid shock system pressure jump of only 1.7. Even though the shock impingement
point, the shock strength and the dynamic pressure are all less favourable for flutter compared to the condi-
tions chosen for the future experiment, the panel was found to oscillate at about 450 Hz, or Sta = 0.088, and
the typical low-frequency shock motion was observed. This strongly increases the confidence in the chosen
set-up, but only time will tell if it also induces flutter.

†Corresponding author: L. Mathijssen
E-mail: lucas.mathijssen@gmail.com
Tel:+31(0)65 357 4397
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Figure 7.7: Schlieren image of the preliminary experiment. The flexible panel is indicated by the red line, while the wedge is filled with a
black diagonal line pattern.





8
Conclusion

In this chapter, conclusions are drawn based on the results presented in Chapter 4, Chapter 6 and Chapter 7.
Next to that, recommendations for future work are given in Section 8.2.

8.1. Conclusions
First of all, it can be concluded that panel flutter is governed by a multitude of parameters. In the case of shock
impingement, the shock strength and cavity pressure are dominant aerodynamic parameters, while from a
structural point of view the plate thickness, the nondimensional dynamic pressure, the shock impingement
location and the relative positioning of the shock-generator PME fan all have a significant effect on the flutter
behaviour.

Considering the analytical model, it can be concluded that the state-of-the-art model by Ye and Ye [2018]
lacks accuracy to correctly predict panel flutter with shock impingement. This was mainly attributed to the
transverse steady pressure difference being ignored, which erroneously resulted in a flat plate reference state
for the eigenvalue analysis. In an attempt to improve the model, the steady pressure difference and subse-
quent mean panel deformation were incorporated. This led to a successful prediction of the initial stiffening
of the panel for weak shocks, as observed by Visbal [2012, 2014], but a reversal of the trend for higher shock
strengths was not obtained. This proved that, due to nonlinear effects of the mean flowfield, linear stabil-
ity analysis cannot be employed to predict flutter behaviour of panels subject to an impinging shock. Based
on preliminary analytical calculations, it was found that the nonlinearity is mainly linked to the impinging
shock passively adapting to the local change in panel slope at the shock impingement point and the signifi-
cant Mach number variation along the panel. Both these effects limit the applicability of the employed linear
piston theory. Looking at the obtained inviscid results, it can be stated that the analytical flutter boundaries
do provide an upper bound on the flutter-free region, and can thus be used to design flutter-free structures.

Regarding the inviscid computations, the sensitivity of the flutter behaviour of clamped panels with respect
to shock impingement point, panel thickness and dynamic pressure was investigated, effectively extending
the research by Visbal [2012, 2014]. First of all, it can be concluded that a strong dependency on the shock
impingement location exists. Two unsteady regions were identified: one close to the panel leading edge, and
one around the panel midpoint. The modal content of the response was found to be more or less consistent
for all shock locations, except for shock impingement close to the leading edge (k = 0.05). For the former,
mainly second and third mode content was observed, while for the latter a coupling between a low frequency
first mode and higher frequency second mode oscillation was obtained.

The effect of an increased panel thickness was found to be a damping of the LCO, while a more non-
homogeneous behaviour with increasing dynamic pressure was observed. The latter was found to either am-
plify or damp panel motion, depending on shock impingement location. This behaviour indicated that the
nondimensional dynamic pressure is not a valid parameter to characterise panel flutter with shock impinge-
ment, which was confirmed by investigating two cases with identical nondimensional dynamic pressure, but
different Young’s moduli and total pressures. Flutter was observed in one case, while a steady solution was
obtained for the other.

77



78 8. Conclusion

Next, a set-up for future analysis by LES and experiments had to be selected, a process during which it be-
came clear that inviscid computations only provide limited insight in the viscous result. Especially the in-
teraction length of the SWTBLI is subject to a significant amount of uncertainty, which is attributable to the
Reynolds number, the shock strength, the relative positioning of the expansion fan, panel unsteadiness and
low frequency motion of the separation shock. Since no results of a SWTBLI over a rigid plate at the cho-
sen conditions is available in literature, it is hard to predict the mean location of the separated shock foot.
The interaction by Matheis and Hickel [2015] was found to differ from the chosen set-up only in Reynolds
number though, and was thus selected as a baseline SWTBLI case. By letting the shock impinge at the panel
midpoint and overlaying the viscous interaction with the flexible panel, it was found that the expected inter-
action length should place the separation shock foot in the unsteady region close to the leading edge. Total
pressure and panel thickness were selected based on the inviscid results, while wedge dimensions were care-
fully selected with the interaction length and windtunnel limitations in mind. Confidence in the set-up is
increased by examining a recent ST-15 windtunnel experiment conducted by a fellow thesis student at less
favourable conditions for flutter, which was found to induce an LCO.

In short, it can be concluded that the chosen set-up minimises uncertainty regarding the interaction
length as much as possible, and maximises the probability of an interaction with strong panel unsteadiness.
The set-up avoids the problems encountered by Daub et al. [2015b] and Pasquariello et al. [2015] by 1) let-
ting the spanwise panel edges free and not sealing them with soft foam, 2) employing a rigid non-rotating
shock-generator, and 3) ensuring a deep cavity. Next to that, inviscid computations with different initial con-
ditions were conducted and it became apparent that these do not affect the converged statistically stationary
response. Lastly, an initial estimation of the LES grid distribution and required integration time have shown
that the numerical experiment should be feasible from a computational point of view. It can thus be con-
cluded that an experiment has been designed which is both achievable numerically and in the windtunnel.

8.2. Recommendations
Concerning the analytical model, integrating the governing equation in time instead of employing linear sta-
bility analysis might yield interesting results. Furthermore, it could be insightful to incorporate a passively
adapting reflected shock strength. Secondly, since it was proven the nondimensional dynamic pressure is
not a reliable parameter to characterise flutter, an empirical model could be constructed based on inviscid
computations. It should include all dimensional parameters making up the classic nondimensional dynamic
pressure and ideally also the shock impingement point. Concerning the latter, it is still unclear why certain
shock locations induce flutter while others do not. This could be interesting topic for future research, and
perhaps a link can be found with the structural eigenfrequencies and/or their alteration due to mean panel
deformation.

A logical follow-up on the thesis is actually conducting the coupled large-eddy simulation. With the numer-
ical set-up already designed, this should be rather straightforward. As a next step, the experiment should be
conducted in the ST-15, which should also be feasible. Indeed, in this thesis strong emphasis was placed on
the reproducibility of the numerical experiment in actual experimental conditions attainable in the ST-15.
Thus, if all goes well, validation of numerical tools for coupled SWTBLI should be possible in the near future.

Other effects which will occur in real-life applications involving SWTBLI are heat transfer to the panel and
double sided flow. Therefore, it would be very interesting to use the validated numerical tools to conduct
numerical simulations of shock-wave/boundary-layer interaction coupled to a non-adiabatic flexible plate
and/or a flexible plate subject to a supersonic flow at both sides.



A
Four Mode Jacobian Entries at the Flat

Plate Equilibrium Solution

a51 =
[

(n −1)

(
1

2
− 1

2
cos(2πk)

)]
λu,l −π4 +RT

x π
2 = a0

51λu,l +aε51

a52 =
[

4

3
(1+n +2m)+ (n −1)

(
−2

3
cos(3πk)+2cos(πk)

)]
λu,l = a0

52λu,l

a53 =
[

(n −1)

(
−3

4
− 3

4
cos(4πk)+ 3

2
cos(2πk)

)]
λu,l = a0

53λu,l

a54 =
[

8

15
(1+n +2m)+ (n −1)

(
−4

5
cos(5πk)+ 4

3
cos(3πk)

)]
λu,l = a0

54λu,l

a55 =
[
−

(√
RMu,r n +

√
RMd m

)
+

(√
RMu,r n −

√
RMu,l

)(
k − sin(2πk)

2π

)]√
λu,l = a0

55

√
λu,l

a56 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(3πk)

3π

)]√
λu,l = a0

56

√
λu,l

a57 =
[(√

RMu,r n −
√

RMu,l

)(
sin(2πk)

2π
− sin(4πk)

4π

)]√
λu,l = a0

57

√
λu,l

a58 =
[(√

RMu,r n −
√

RMu,l

)(
sin(3πk)

3π
− sin(5πk)

5π

)]√
λu,l = a0

58

√
λu,l

(A.1)

a61 =
[
−4

3
(1+n +2m)+ (n −1)

(
−1

3
cos(3πk)−cos(πk)

)]
λu,l = a0

61λu,l

a62 =
[

(n −1)

(
1

2
− 1

2
cos(4πk)

)]
λu,l −16π4 +RT

x 4π2 = a0
62λu,l +aε62

a63 =
[

12

5
(1+n +2m)+ (n −1)

(
−3

5
cos(5πk)+3cos(πk)

)]
λu,l = a0

63λu,l

a64 =
[

(n −1)

(
−4

3
− 2

3
cos(6πk)+2cos(2πk)

)]
λu,l = a0

64λu,l

a65 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(3πk)

3π

)]√
λu,l = a0

65

√
λu,l

a66 =
[
−

(√
RMu,r n +

√
RMd m

)
+

(√
RMu,r n −

√
RMu,l

)(
k − sin(4πk)

4π

)]√
λu,l = a0

66

√
λu,l

a67 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(5πk)

5π

)]√
λu,l = a0

67

√
λu,l

a68 =
[(√

RMu,r n −
√

RMu,l

)(
sin(2πk)

2π
− sin(6πk)

6π

)]√
λu,l = a0

68

√
λu,l

(A.2)

79



80 A. Four Mode Jacobian Entries at the Flat Plate Equilibrium Solution

a71 =
[

(n −1)

(
3

4
− 1

4
cos(4πk)− 1

2
cos(2πk)

)]
λu,l = a0

71λu,l

a72 =
[
−12

5
(1+n +2m)+ (n −1)

(
−2

5
cos(5πk)−2cos(πk)

)]
λu,l = a0

72λu,l

a73 =
[

(n −1)

(
1

2
− 1

2
cos(6πk)

)]
λu,l −81π4 +RT

x 9π2 = a0
73λu,l +aε73

a74 =
[

24

7
(1+n +2m)+ (n −1)

(
−4

7
cos(7πk)+4cos(πk)

)]
λu,l = a0

74λu,l

a75 =
[(√

RMu,r n −
√

RMu,l

)(
sin(2πk)

2π
− sin(4πk)

4π

)]√
λu,l = a0

75

√
λu,l

a76 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(5πk)

5π

)]√
λu,l = a0

76

√
λu,l

a77 =
[
−

(√
RMu,r n +

√
RMd m

)
+

(√
RMu,r n −

√
RMu,l

)(
k − sin(6πk)

6π

)]√
λu,l = a0

77

√
λu,l

a78 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(7πk)

7π

)]√
λu,l = a0

78

√
λu,l

(A.3)

a81 =
[
− 8

15
(1+n +2m)+ (n −1)

(
−1

5
cos(5πk)− 1

3
cos(3πk)

)]
λu,l = a0

81λu,l

a82 =
[

(n −1)

(
4

3
− 1

3
cos(6πk)−cos(2πk)

)]
λu,l = a0

82λu,l

a83 =
[
−24

7
(1+n +2m)+ (n −1)

(
−3

7
cos(7πk)−3cos(πk)

)]
λu,l = a0

83λu,l

a84 =
[

(n −1)

(
1

2
− 1

2
cos(8πk)

)]
λu,l −256π4 +RT

x 16π2 = a0
84λu,l +aε84

a85 =
[(√

RMu,r n −
√

RMu,l

)(
sin(3πk)

3π
− sin(5πk)

5π

)]√
λu,l = a0

85

√
λu,l

a86 =
[(√

RMu,r n −
√

RMu,l

)(
sin(2πk)

2π
− sin(6πk)

6π

)]√
λu,l = a0

86

√
λu,l

a87 =
[(√

RMu,r n −
√

RMu,l

)(
sin(πk)

π
− sin(7πk)

7π

)]√
λu,l = a0

87

√
λu,l

a88 =
[
−

(√
RMu,r n +

√
RMd m

)
+

(√
RMu,r n −

√
RMu,l

)(
k − sin(8πk)

8π

)]√
λu,l = a0

88

√
λu,l

(A.4)



B
Entries for the Four Mode Routh-Hurwitz

Criterion

t1 = A1 − A7 A0

A6 − A5
A7

−

(
A5 −

A7

(
A4− A3

A7

)
A6− A5

A7

)
A0

A4 − A3
A7

−

(
A6− A5

A7

)A3−
A7

(
A2−

A1
A7

)
A6−

A5
A7


A5−

A7

(
A4−

A3
A4

)
A6−

A5
A7

(B.1)

t2 = A3 −
A7

(
A2 − A1

A7

)
A6 − A5

A7

−

(
A5 −

A7

(
A4− A3

A7

)
A6− A5

A7

)A2 − A1
A7

−

(
A6− A5

A7

)A1− A7 A0

A6−
A5
A7


A5−

A7

(
A4−

A3
A7

)
A6−

A5
A7



A4 − A3
A7

−

(
A6− A5

A7

)A3−
A7

(
A2−

A1
A7

)
A6−

A5
A7


A5−

A7

(
A4−

A3
A7

)
A6−

A5
A7

(B.2)

t3 = A2 − A1

A7
−

(
A6 − A5

A7

)(
A1 − A7 A0

A6− A5
A7

)

A5 −
A7

(
A4− A3

A7

)
A6− A5

A7

(B.3)

81



82 B. Entries for the Four Mode Routh-Hurwitz Criterion

t4 =

A4 − A3

A7
−

(
A6 − A5

A7

)(
A3 −

A7

(
A2− A1

A7

)
A6− A5

A7

)

A5 −
A7

(
A4− A3

A7

)
A6− A5

A7




A1 − A7 A0

A6 − A5
A7

−

(
A5 −

A7

(
A4− A3

A7

)
A6− A5

A7

)
A0

A4 − A3
A7

−

(
A6− A5

A7

)A3−
A7

(
A2−

A1
A7

)
A6−

A5
A7


A5−

A7

(
A4−

A3
A7

)
A6−

A5
A7


(B.4)

t5 = A3 −
A7

(
A2 − A1

A7

)
A6 − A5

A7

−

(
A5 −

A7

(
A4− A3

A7

)
A6− A5

A7

)A2 − A1
A7

−

(
A6− A5

A7

)A1− A7 A0

A6−
A5
A7


A5−

A7

(
A4−

A3
A7

)
A6−

A5
A7



A4 − A3
A7

−

(
A6− A5

A7

)A3−
A7

(
A2−

A1
A7

)
A6−

A5
A7


A5−

A7

(
A4−

A3
A7

)
A6−

A5
A7

(B.5)



Bibliography

Adams, N.A. , Hickel, S. , and Franz, S. . Implicit Subgrid-Scale Modeling by Adaptive Deconvolution. Journal
of Computational Physics, 200(2):412 – 431, 2004. ISSN 0021-9991. doi: 10.1016/j.jcp.2004.04.010.

Agostini, L. , Larchevêque, L. , Dupont, P. , Debiève, J.-F. , and J.P., Dussauge . Zones of Influence
and Shock Motion in a Shock/Boundary-Layer Interaction. AIAA Journal, 50(6):1377–1387, 2012. doi:
10.2514/1.J051516.

Alder, M. . Development and Validation of a Fluid–Structure Solver for Transonic Panel Flutter. AIAA Journal,
53(12):3509–3521, 2015. doi: 10.2514/1.J054013.

Andreopoulos, J. and Muck, K. C. . Some New Aspects of the Shock-Wave/Boundary-Layer In-
teraction in Compression-Ramp Flows. Journal of Fluid Mechanics, 180:405–428, 1987. doi:
10.1017/S0022112087001873.

Aubard, G. , Gloerfelt, X. , and Robinet, J.-C. . Large-Eddy Simulation of Broadband Unsteadiness in a
Shock/Boundary-Layer Interaction. AIAA Journal, 51(10):2395–2409, 2013. doi: 10.2514/1.J052249.

Baars, W.J. , Ruf, J.H. , and Tinney, C.E. . Non-Stationary Shock Motion Unsteadiness in an Axisymmetric
Geometry with Pressure Gradient. Experiments in Fluids, 56(5):56–92, 2015. doi: 10.1007/s00348-015-
1958-y.

Babinsky, H. . Shock Wave-Boundary-Layer Interactions. Cambridge Aerospace Series. Cambridge University
Press, 2011. doi: 10.1017/CBO9780511842757.

Beberniss, T. , Spottswood, S.M. , and Eason, T.G. . High-Speed Digital Image Correlation Measurements of
Random Nonlinear Dynamic Response. In Experimental and Applied Mechanics, Volume 6, pages 171–186,
New York, NY, 2011. Springer New York. ISBN 978-1-4614-0222-0. doi: 10.1007/978-1-4614-0222-0_22.

Beberniss, T. , Eason, T.G. , and Spottswood, S.M. . High-Speed 3D Digital Image Correlation Measurements
of Long Duration Random Vibration; Recent Advancements and Noted Limitations. In Proceedings of the
ISMA-2012, Leuven, Belgium, 2012.

Ben-Dor, G. . Shock Wave Reflection Phenomena. Springer-Verlag Berlin Heidelberg, 2007. ISBN 978-3-642-
09052-3. doi: 10.1007/978-3-540-71382-1.

Boccaletto, L. , Reijasse, P. , and Dussauge, J.P. . Dynamic Behaviour of a Separation Oblique Shock During
Film Cooling Transient Injection. In 37th AIAA Fluid Dynamics Conference and Exhibit. AIAA 2007-4003,
2007. doi: 10.2514/6.2007-4003.

Boyer, N.R. , McNamara, J.J. , and Gaitonde, D.V. . Study on Shock-Induced Panel Flutter in 2-D Laminar
Flow. In 15th Dynamics Specialists Conference, San Diego, California, U.S.A., 2016. American Institute of
Aeronautics and Astronautics. doi: 10.2514/6.2016-1091.

Boyer, N.R. , McNamara, J.J. , Gaitonde, D.V. , Barnes, C.J. , and Visbal, R.M. . Features of Shock-Induced Panel
Flutter in Three-Dimensional Inviscid Flow. Journal of Fluids and Structures, 83:490–506, 11 2018. doi:
10.1016/j.jfluidstructs.2018.10.001.

Brouwer, K. , Crowell, A.R. , and McNamara, J.J. . Rapid Prediction of Unsteady Aeroelastic Loads in Shock-
Dominated Flows. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
2015. doi: 10.2514/6.2015-0687.

Brouwer, K.R. , Gogulapati, A. , and McNamara, J.J. . Interplay of Surface Deformation and Shock-
Induced Separation in Shock/Boundary-Layer Interactions. AIAA Journal, 55(12):4258–4273, 2017. doi:
10.2514/1.J056030.

83

https://doi.org/10.1016/j.jcp.2004.04.010
https://doi.org/10.2514/1.J051516
https://doi.org/10.2514/1.J051516
https://doi.org/10.2514/1.J054013
https://doi.org/10.1017/S0022112087001873
https://doi.org/10.1017/S0022112087001873
https://doi.org/10.2514/1.J052249
https://doi.org/10.1007/s00348-015-1958-y
https://doi.org/10.1007/s00348-015-1958-y
https://doi.org/10.1017/CBO9780511842757
https://doi.org/10.1007/978-1-4614-0222-0_22
https://doi.org/10.1007/978-3-540-71382-1
https://doi.org/10.2514/6.2007-4003
https://doi.org/10.2514/6.2016-1091
https://doi.org/10.1016/j.jfluidstructs.2018.10.001
https://doi.org/10.1016/j.jfluidstructs.2018.10.001
https://doi.org/10.2514/6.2015-0687
https://doi.org/10.2514/1.J056030
https://doi.org/10.2514/1.J056030


84 Bibliography

Candel, S. . Concorde and the Future of Supersonic Transport. Journal of Propulsion and Power, 20(1):59–68,
2004. doi: 10.2514/1.9180.

Causin, P. , Gerbeau, J.F. , and Nobile, F. . Added-Mass Effect in the Design of Partitioned Algorithms for
Fluid–Structure Problems. Computer Methods in Applied Mechanics and Engineering, 194(42):4506 – 4527,
2005. doi: 10.1016/j.cma.2004.12.005.

Chapman, D.R. , Kumen, D.M. , and Larson, H.K. . Investigation of Separated Flows in Supersonic and Sub-
sonic Streams with Emphasis on the Effect of Transition. NACA Technical Report 1356, 1957.

Chaudhuri, A. and Hadjadj, A. . Numerical Simulation of Transient Supersonic Nozzle Flows. 2012. doi:
10.2514/6.2012-952.

Cirak, F. , Deiterding, R. , and Mauch, S.P. . Large-Scale Fluid–Structure Interaction Simulation of Viscoplastic
and Fracturing Thin-Shells Subjected to Shocks and Detonations. Computers and Structures, 85(11):1049 –
1065, 2007. doi: https://doi.org/10.1016/j.compstruc.2006.11.014.

Clemens, N.T. and Narayanaswamy, V. . Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary
Layer Interactions. Annual Review of Fluid Mechanics, 46(1):469–492, 2014. doi: 10.1146/annurev-fluid-
010313-141346.

Cousteix, J. . Couche limite laminaire. Cépaduès, 1988.

Cousteix, J. . Turbulence et couche limite. Cépaduès, 1989.

Culler, A.J. and McNamara, J.J. . Impact of Fluid-Thermal-Structural Coupling on Response Prediction of
Hypersonic Skin Panels. AIAA Journal, 49(11):2393–2406, 2011. ISSN 0001-1452. doi: 10.2514/1.J050617.

Daub, D. , Willems, S. , and Gülhan, A. . Experiments on the Interaction of a Fast-Moving Shock with an Elastic
Panel. AIAA Journal, 54(2):670 – 678, 2015b. ISSN 0001-1452. doi: 10.2514/1.J054233.

Davis, G. and Bendiksen, O. . Transonic Panel Flutter. In 34th Structures, Structural Dynamics and Ma-
terials Conference, La Jolla, CA, U.S.A., 1993. American Institute of Aeronautics and Astronautics. doi:
10.2514/6.1993-1476.

Dickens, J.M. , Nakagawa, J.M. , and Wittbrodt, M.J. . A Critique of Mode Acceleration and Modal Truncation
Augmentation Methods for Modal Response Analysis. Computers & Structures, 62(6):985 – 998, 1997. ISSN
0045-7949. doi: 10.1016/S0045-7949(96)00315-X.

Délery, J. and Dussauge, J.P. . Some Physical Aspects of Shock Wave/Boundary Layer Interactions. Shock
Waves, 19(6):453 – 468, Jul 2009. ISSN 1432-2153. doi: 10.1007/s00193-009-0220-z.

Dolling, D.S. and Brusniak, L. . Separation Shock Motion in Fin, Cylinder, and Compression Ramp - Induced
Turbulent Interactions. AIAA Journal, 27(6):734–742, 1989. doi: 10.2514/3.10173.

Dolling, D.S. and Erengil, M.E. . Unsteady Wave Structure near Separation in a Mach 5 Compression Ramp
Interaction. AIAA Journal, 29(5):728–735, 1991. doi: 10.2514/3.10647.

Domaradzki, J.A. and Adams, N.A. . Direct Modelling of Subgrid Scales of Turbulence in Large Eddy Simula-
tions. Journal of Turbulence, 3:N24, 2002. doi: 10.1088/1468-5248/3/1/024.

Dowell, E.H. . Nonlinear Oscillations of a Fluttering Plate. AIAA Journal, 4(7):1267–1275, 07 1966. doi:
10.2514/3.3658.

Dowell, E.H. . Nonlinear Oscillations of a Fluttering Plate. II. AIAA Journal, 5(10):1856–1862, 1967. doi:
10.2514/3.4316.

Dowell, E.H. . Panel Flutter - a Review of the Aeroelastic Stability of Plates and Shells. AIAA Journal, 8(3):
385–399, 1970. ISSN 0001-1452. doi: 10.2514/3.5680.

Dowell, E.H. . Generalized Aerodynamic Forces on a Flexible Plate Undergoing Transient Motion in a Shear
Flow with an Application to Panel Flutter. AIAA journal, 9(5):834–841, 1971. doi: 10.2514/3.6283.

https://doi.org/10.2514/1.9180
https://doi.org/10.1016/j.cma.2004.12.005
https://doi.org/10.2514/6.2012-952
https://doi.org/10.2514/6.2012-952
https://doi.org/https://doi.org/10.1016/j.compstruc.2006.11.014
https://doi.org/10.1146/annurev-fluid-010313-141346
https://doi.org/10.1146/annurev-fluid-010313-141346
https://doi.org/10.2514/1.J050617
https://doi.org/10.2514/1.J054233
https://doi.org/10.2514/6.1993-1476
https://doi.org/10.2514/6.1993-1476
https://doi.org/10.1016/S0045-7949(96)00315-X
https://doi.org/10.1007/s00193-009-0220-z
https://doi.org/10.2514/3.10173
https://doi.org/10.2514/3.10647
https://doi.org/10.1088/1468-5248/3/1/024
https://doi.org/10.2514/3.3658
https://doi.org/10.2514/3.3658
https://doi.org/10.2514/3.4316
https://doi.org/10.2514/3.4316
https://doi.org/10.2514/3.5680
https://doi.org/10.2514/3.6283


Bibliography 85

Dowell, E.H. . Aerodynamic Boundary Layer Effects on Flutter and Damping of Plates. Journal of Aircraft, 10
(12):734–738, 12 1973. doi: 10.2514/3.60298.

Dowell, E.H. and Hall, K.C. . Modeling of Fluid-Structure Interaction. Annual Review of Fluid Mechanics, 33
(1):445–490, 2001. doi: 10.1146/annurev.fluid.33.1.445.

Dowell, E.H. and Voss, H.M. . Theoretical and Experimental Panel Flutter Studies in the Mach Number Range
1.0 to 5.0. AIAA Journal, 3(12):2292–2304, 1965. ISSN 0001-1452. doi: 10.2514/3.3359.

Dupont, P. , Haddad, C. , and Debiève, J. F. . Space and Time Organization in a Shock-Induced Separated
Boundary Layer. Journal of Fluid Mechanics, 559:255–277, 2006. doi: 10.1017/S0022112006000267.

Erengil, M.E. and Dolling, D.S. . Physical Causes of Separation Shock Unsteadiness in Shock Wave Turbulent
Boundary Layer Interactions. In 24th AIAA Fluid Dyn. Conf., Orlando, FL, 1993. AIAA 1993-3134.

Farhat, C. and Lesoinne, M. . Two Efficient Staggered Algorithms for the Serial and Parallel Solution of Three-
Dimensional Nonlinear Transient Aeroelastic Problems. Computer Methods in Applied Mechanics and En-
gineering, 182(3):499 – 515, 2000. doi: 10.1016/S0045-7825(99)00206-6.

Farhat, C. , Lesoinne, M. , and Maman, N. . Mixed Explicit/Implicit Time Integration of Coupled Aeroelas-
tic Problems: Three-Field Formulation, Geometric Conservation and Distributed Solution. International
Journal for Numerical Methods in Fluids, 21(10):807–835, 1995. doi: 10.1002/fld.1650211004.

Farhat, C. , Lesoinne, M. , and Le Tallec, P. . Load and Motion Transfer Algorithms for Fluid/Structure Inter-
action Problems with Non-Matching Discrete Interfaces: Momentum and Energy Conservation, Optimal
Discretization and Application to Aeroelasticity. Computer Methods in Applied Mechanics and Engineering,
157(1):95 – 114, 1998. ISSN 0045-7825. doi: 10.1016/S0045-7825(97)00216-8.

Farhat, C. , van der Zee, K.G. , and Geuzaine, P. . Provably second-order time-accurate loosely-coupled so-
lution algorithms for transient nonlinear computational aeroelasticity. Computer Methods in Applied Me-
chanics and Engineering, 195(17):1973 – 2001, 2006. doi: 10.1016/j.cma.2004.11.031.

Flaszynski, P. , Doerffer, P. , Szwaba, R. , and Kaczynski, M. , P.and Piotrowicz. Shock Wave Boundary Layer In-
teraction on Suction Side of Compressor Profile in Single Passage Test Section. Journal of Thermal Science,
24(6):510–515, Nov 2015. doi: 10.1007/s11630-015-0816-9.

Fung, Y.C. . Foundations of Solid Mechanics. International Series in Dynmamics. Prentice Hall, 1965. ISBN
9780133299120.

Gan, J. and Zha, G. . Delayed Detached Eddy Simulation of Supersonic Panel Aeroelasticity Using Fully Cou-
pled Fluid Structure Interaction with High Order Schemes. In 34th AIAA Applied Aerodynamics Conference,
Washington, D.C., 2016. AIAA 2016-4046. doi: 10.2514/6.2016-4046.

Ganapathisubramani, B. , Clemens, N. T. , and Dolling, D. S. . Low-Frequency Dynamics of Shock-Induced
Separation in a Compression Ramp Interaction. Journal of Fluid Mechanics, 636:397–425, 2009. doi:
10.1017/S0022112009007952.

Garnier, E. , Adams, N. , and Sagaut, P. . Large Eddy Simulation for Compressible Flows. Scientific Computa-
tion. Springer Netherlands, 2009. doi: 10.1007/978-90-481-2819-8.

Geurts, B.J. . Inverse Modeling for Large-Eddy Simulation. Physics of Fluids, 9(12):3585–3587, 1997. doi:
10.1063/1.869495.

Giepman, R.H.M , Schrijer, F.F.J. , and van Oudheusden, B.W. . Flow Control of an Oblique Shock Wave Re-
flection with Micro-Ramp Vortex Generators: Effects of Location and Size. Physics of Fluids, 26, 2014. doi:
10.1063/1.4881941.

Gogulapati, A. , Deshmukh, R. , Crowell, A.R. , McNamara, J.J. , Vyas, V. , Wang, X.Q. , Mignolet, M. , Beberniss,
T. , Spottswood, S.M. , and Eason, T.G. . Response of a Panel to Shock Impingement: Modeling and Compar-
ison with Experiments. In 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. AIAA 2014-0148, 2014. doi: 10.2514/6.2014-0148.

https://doi.org/10.2514/3.60298
https://doi.org/10.1146/annurev.fluid.33.1.445
https://doi.org/10.2514/3.3359
https://doi.org/10.1017/S0022112006000267
https://doi.org/10.1016/S0045-7825(99)00206-6
https://doi.org/10.1002/fld.1650211004
https://doi.org/10.1016/S0045-7825(97)00216-8
https://doi.org/10.1016/j.cma.2004.11.031
https://doi.org/10.1007/s11630-015-0816-9
https://doi.org/10.2514/6.2016-4046
https://doi.org/10.1017/S0022112009007952
https://doi.org/10.1017/S0022112009007952
https://doi.org/10.1007/978-90-481-2819-8
https://doi.org/10.1063/1.869495
https://doi.org/10.1063/1.869495
https://doi.org/10.1063/1.4881941
https://doi.org/10.1063/1.4881941
https://doi.org/10.2514/6.2014-0148


86 Bibliography

Gogulapati, A. , Deshmukh, R. , McNamara, J.J. , Vyas, V. , Wang, X.Q. , Mignolet, M. , Beberniss, T. ,
Spottswood, S.M. , and Eason, T.G. . Response of a Panel to Shock Impingement: Modeling and Compari-
son with Experiments - Part 2. In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference. AIAA 2015-0685, 2015. doi: 10.2514/6.2015-0685.

Gordnier, R.E. and Visbal, M.R. . Development of a Three-Dimensional Viscous Aeroelastic Solver for
Nonlinear Panel Flutter. Journal of Fluids and Structures, 16(4):497– 527, 2002. ISSN 0889-9746. doi:
10.1006/jfls.2000.0434.

Gottlieb, S. and Shu, C.-W. . Total Variation Diminishing Runge-Kutta Schemes. Mathematics of Computation,
67(221):73–85, 1998.

Grilli, M. , Schmid, P.J. , Hickel, S. , and Adams, N.A. . Analysis of Unsteady Behaviour in Shockwave Turbulent
Boundary Layer Interaction. Journal of Fluid Mechanics, 700:16–28, 2012. doi: 10.1017/jfm.2012.37.

Grilli, M. , Hickel, S. , and Adams, N.A. . Large-Eddy Simulation of a Supersonic Turbulent Boundary Layer
over a Compression–Expansion Ramp. International Journal of Heat and Fluid Flow, 42:79 – 93, 2013. doi:
10.1016/j.ijheatfluidflow.2012.12.006.

Grossman, I.J. and Bruce, P.J.K. . Confinement Effects on Regular–Irregular Transition in Shock-
Wave–Boundary-Layer Interactions. Journal of Fluid Mechanics, 853:171–204, 2018. doi:
10.1017/jfm.2018.537.

Guo, X. and Mei, C. . Application of Aeroelastic Modes on Nonlinear Supersonic Panel Flutter at El-
evated Temperatures. Computers and Structures, 84(24):1619 – 1628, 2006. ISSN 0045-7949. doi:
10.1016/j.compstruc.2006.01.041.

Guobiao, C. , Dingqiang, Z. , and Xiaoying, Z. . Coupling Simulation of Heat Transfer and Temperature of the
Composite Walled Nozzle of Rocket. In 2007 IEEE Aerospace Conference, pages 1–12, 2007.

Hadjadj, A. . Large-Eddy Simulation of Shock/Boundary-Layer Interaction. AIAA Journal, 50(12):2919–2927,
2012. doi: 10.2514/1.J051786.

Hadjadj, A. , Perrot, Y. , and Verma, S. . Numerical Study of Shock/Boundary Layer Interaction in Super-
sonic Overexpanded Nozzles. Aerospace Science and Technology, 42:158 – 168, 2015. ISSN 1270-9638. doi:
10.1016/j.ast.2015.01.010.

Hashimoto, A. , N., Yagi. , and Nakamura, Y. . Effects of Boundary Layer on Supersonic Panel Flutter. Journal
of the Japan Society for Aeronautical and Space Sciences, 55(639):159–164, 2007. doi: 10.2322/jjsass.55.159.

Hashimoto, A. , Aoyama, T. , and Nakamura, Y. . Effects of Turbulent Boundary Layer on Panel Flutter. AIAA
Journal, 47(12):2785–2791, 2009. doi: 10.2514/1.35786.

Hedgepeth, J.M. . Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds. Journal of the
Aeronautical Sciences, 24(8):563–573, 1957. doi: 10.2514/8.3908.

Hickel, S. and Larsson, J. . An Adaptive Local Deconvolution Model for Compressible Turbulence. In Proceed-
ings of the 2008 Summer Program, pages 85–96, 2008.

Hickel, S. , Adams, N.A. , and Domaradzki, J.A. . An Adaptive Local Deconvolution Method for Implicit LES.
Journal of Computational Physics, 213(1):413 – 436, 2006. ISSN 0021-9991. doi: 10.1016/j.jcp.2005.08.017.

Hickel, S. , Adams, N. A. , and Mansour, N. N. . Implicit subgrid-scale modeling for large-eddy simulation of
passive-scalar mixing. Physics of Fluids, 19(9):095102, 2007. doi: 10.1063/1.2770522.

Hickel, S. , Egerer, C.P. , and Larsson, J. . Subgrid-scale modeling for implicit large eddy simulation
of compressible flows and shock-turbulence interaction. Physics of Fluids, 26(10):106101, 2014. doi:
10.1063/1.4898641.

Hilber, H. M. , Hughes, T. J. R. , and Taylor, R. L. . Improved Numerical Dissipation for Time Integration
Algorithms in Structural Dynamics. Earthquake Engineering & Structural Dynamics, 5(3):283–292, 1977.
doi: 10.1002/eqe.4290050306.

https://doi.org/10.2514/6.2015-0685
https://doi.org/10.1006/jfls.2000.0434
https://doi.org/10.1006/jfls.2000.0434
https://doi.org/10.1017/jfm.2012.37
https://doi.org/10.1016/j.ijheatfluidflow.2012.12.006
https://doi.org/10.1016/j.ijheatfluidflow.2012.12.006
https://doi.org/10.1017/jfm.2018.537
https://doi.org/10.1017/jfm.2018.537
https://doi.org/10.1016/j.compstruc.2006.01.041
https://doi.org/10.1016/j.compstruc.2006.01.041
https://doi.org/10.2514/1.J051786
https://doi.org/10.1016/j.ast.2015.01.010
https://doi.org/10.1016/j.ast.2015.01.010
https://doi.org/10.2322/jjsass.55.159
https://doi.org/10.2514/1.35786
https://doi.org/10.2514/8.3908
https://doi.org/10.1016/j.jcp.2005.08.017
https://doi.org/10.1063/1.2770522
https://doi.org/10.1063/1.4898641
https://doi.org/10.1063/1.4898641
https://doi.org/10.1002/eqe.4290050306


Bibliography 87

Houbolt, J.C. . A Study of Several Aerothermoelastic Problems of Aircraft Structures in High-Speed Flight. PhD
thesis, ETH Zürich, 1958.

Hu, X.Y. , Khoo, B.C. , Adams, N.A. , and Huang, F.L. . A Conservative Interface Method for Compressible
Flows. Journal of Computational Physics, 219(2):553 – 578, 2006. doi: 10.1016/j.jcp.2006.04.001.

Humble, R. A. , Elsinga, G. E. , Scarano, F. , and van Oudheusden, B. W. . Three-Dimensional Instantaneous
Structure of a Shock Wave/Turbulent Boundary Layer Interaction. Journal of Fluid Mechanics, 622:33–62,
2009. doi: 10.1017/S0022112008005090.

Hurwitz, A. . Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen
reellen Theilen besitzt. Mathematische Annalen, 46(2):273–284, Jun 1895. ISSN 1432-1807. doi:
10.1007/BF01446812.

Idris, A.C. , Saad, M.R. , Zare-Behtash, H. , and Kontis, K. . Luminescent Measurement Systems for the
Investigation of a Scramjet Inlet-Isolator. Sensors (Basel, Switzerland), 14:6606–6632, 04 2014. doi:
10.3390/s140406606.

Jinks, E.R. , Bruce, P.J. , and Santer, M.J. . Wind Tunnel Experiments with Flexible Plates in Transonic Flows. In
54th AIAA Aerospace Sciences Meeting, San Diego, California, 2016. AIAA 2016-1553. doi: 10.2514/6.2016-
1553.

Kallarbail, N.S. . The 3D Separation Behaviour of a Micro-Ramp Controlled Oblique Shock-Wave Reflection,
2016.

Karagiozis, K. , Kamakoti, R. , Cirak, F. , and Pantano, C. . A Computational Study of Supersonic Disk-Gap-
Band Parachutes using Large-Eddy Simulation Coupled to a Structural Membrane. Journal of Fluids and
Structures, 27(2):175 – 192, 2011. doi: 10.1016/j.jfluidstructs.2010.11.007.

Klein, M. , Sadiki, A. , and Janicka, J. . A Digital Filter Based Generation of Inflow Data for Spatially Developing
Direct Numerical or Large Eddy Simulations. Journal of Computational Physics, 186(2):652 – 665, 2003. doi:
10.1016/S0021-9991(03)00090-1.

Knight, D. , Yan, H. , Panaras, A.G. , and Zheltovodov, A. . Advances in CFD Prediction of Shock Wave Turbulent
Boundary Layer Interactions. Progress in Aerospace Sciences, 39(2):121–184, 2003. ISSN 0376-0421. doi:
10.1016/S0376-0421(02)00069-6.

Knight, D.D. and Degrez, G. . Shock Wave Boundary Layer Interactions in High Mach Number Flows - a
Critical Survey of Current Numerical Prediction Capabilities. AGARD Advisor Report, 2(319):1–35, 1998.

Kravchenko, A.G. and Moin, P. . On the Effect of Numerical Errors in Large Eddy Simulations of Turbulent
Flows. Journal of Computational Physics, 131(2):310–322, 1997. doi: 10.1006/jcph.1996.5597.

Kuerten, J. G. M. , Geurts, B. J. , Vreman, A. W. , and Germano, M. . Dynamic Inverse Modeling and its
Testing in Large-Eddy Simulations of the Mixing Layer. Physics of Fluids, 11(12):3778–3785, 1999. doi:
10.1063/1.870238.

Laurenson, M.R. and McPherson, I.J. . Design Procedures for Flutter-Free Surface Panels. (NASA CR-2801),
03 1977.

Leissa, A.W. . Vibration of Plates. (NASA-SP-160), 1969.

Leonard, A. . Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows. In Turbulent Diffusion
in Environmental Pollution, volume 18 of Advances in Geophysics, pages 237 – 248. Elsevier, 1975. doi:
10.1016/S0065-2687(08)60464-1.

Li, H. and Ben-Dor, G. . A Parametric Study of Mach Reflection in Steady Flows. Journal of Fluid Mechanics,
341:101–125, 1997.

Lighthill, M.J. . Oscillating Airfoils at High Mach Number. Journal of the Aeronautical Sciences, 20(6):402–406,
1953. doi: 10.2514/8.2657.

https://doi.org/10.1016/j.jcp.2006.04.001
https://doi.org/10.1017/S0022112008005090
https://doi.org/10.1007/BF01446812
https://doi.org/10.1007/BF01446812
https://doi.org/10.3390/s140406606
https://doi.org/10.3390/s140406606
https://doi.org/10.2514/6.2016-1553
https://doi.org/10.2514/6.2016-1553
https://doi.org/10.1016/j.jfluidstructs.2010.11.007
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1016/S0021-9991(03)00090-1
https://doi.org/10.1016/S0376-0421(02)00069-6
https://doi.org/10.1016/S0376-0421(02)00069-6
https://doi.org/10.1006/jcph.1996.5597
https://doi.org/10.1063/1.870238
https://doi.org/10.1063/1.870238
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.2514/8.2657


88 Bibliography

Loginov, M.S. , Adams, N.A. , and Zheltovodov, A.A. . Large-Eddy Simulation of Shock-
Wave/Turbulent-Boundary-Layer Interaction. Journal of Fluid Mechanics, 565:135–169, 2006. doi:
10.1017/S0022112006000930.

Lu, F.K. . Quasiconical Free Interaction Between a Swept Shock and a Turbulent Boundary Layer. 31(4):686–
692, 1993. doi: 10.2514/3.11604.

Matheis, J. and Hickel, S. . On the Transition between Regular and Irregular Shock Patterns of
Shock-Wave/Boundary-Layer Interactions. Journal of Fluid Mechanics, 776:200–234, 2015. doi:
10.1017/jfm.2015.319.

Mei, C. , Abdel-Motagaly, K. , and Chen, R. . Review of Nonlinear Panel Flutter at Supersonic and Hypersonic
Speeds. Applied Mechanics Reviews, 52(10):321 – 332, 01 1999. ISSN 0003-6900. doi: 10.1115/1.3098919.

Mei, G. , Zhang, J. , Xi, G. , Sun, X. , and Chen, J. . Analysis of Supersonic and Transonic Panel Flutter Using
a Fluid-Structure Coupling Algorithm. Journal of Vibration and Acoustics, 136(3):031013–031013–11, 2014.
doi: 10.1115/1.4027135.

Meyer, M. , Devesa, A. , Hickel, S. , Hu, X.Y. , and Adams, N.A. . A Conservative Immersed Interface Method for
Large-Eddy Simulation of Incompressible Flows. Journal of Computational Physics, 229(18):6300 – 6317,
2010. doi: 10.1016/j.jcp.2010.04.040.

Miller, B. , Crowell, A. , and McNamara, J. . Modeling and Analysis of Shock Impingements on Thermo-
Mechanically Compliant Surface Panels. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics and Materials Conference. AIAA 2012-1548, 2012. doi: 10.2514/6.2012-1548.

Mittal, R. , Dong, H. , Bozkurttas, M. , Najjar, F.M. , Vargas, A. , and von Loebbecke, A. . A Versatile Sharp
Interface Immersed Boundary Method for Incompressible Flows with Complex Boundaries. Journal of
Computational Physics, 227(10):4825 – 4852, 2008. ISSN 0021-9991. doi: 10.1016/j.jcp.2008.01.028.

Morgan, B. , Duraisamy, K. , Nguyen, N. , Kawai, S. , and Lele, S. K. . Flow Physics and RANS Modelling of
Oblique Shock/Turbulent Boundary Layer Interaction. Journal of Fluid Mechanics, 729:231–284, 2013. doi:
10.1017/jfm.2013.301.

Muhlstein, L. , Gaspers, P.A. , and Riddle, D. . An Experimental Study of the Influence of the Turbulent Bound-
ary Layer on Panel Flutter. (NASA-TN-D-4486), 1968.

Nayak, K. , Giepman, R.H.M. , Schrijer, F.F.J. , and van Oudheusden, B.W. . Tomographic-PIV investigation of
the 3D Separation Behaviour of a Micro-Ramp Controlled SWBLI. In 52nd 3AF International Conference on
Applied Aerodynamics, 2017.

Nichols, J.W. , Larsson, J. , Bernardini, M. , and Pirozzoli, S. . Stability and Modal Analysis of Shock-
/Boundary Layer Interactions. Theoretical and Computational Fluid Dynamics, 31(1):33–50, 2016. doi:
10.1007/s00162-016-0397-6.

Nilsson, A. and Liu, B. . Vibro-Acoustics, Volume 1. Springer-Verlag Berlin Heidelberg, 2015. doi: 10.1007/978-
3-662-47807-3.

Örley, F. , Pasquariello, V. , Hickel, S. , and Adams, N.A. . Cut-element Based Immersed Boundary Method for
Moving Geometries in Compressible Liquid Flows with Cavitation. Journal of Computational Physics, 283:
1–22, 2015. ISSN 0021-9991. doi: 10.1016/j.jcp.2014.11.028.

Östlund, J. and Muhammad-Klingmann, B. . Supersonic Flow Separation with Application to Rocket Engine
Nozzles. Applied Mechanics Reviews, 58:143 – 177, 2005. ISSN 0003-6900. doi: 10.1115/1.1894402.

Pasquariello, V. . Analysis and Control of Shock-Wave/Turbulent Boundary-Layer Interactions on Rigid and
Flexible Walls. PhD thesis, Technische Unversität München, 2018.

Pasquariello, V. , Hickel, S. , and Adams, N.A. . Extension of the Conservative Immersed Interface Method
towards high-order interpolation. In Sonderforschungsbereich/Transregio 40 - Annual Report, pages 269–
278, 2013.

https://doi.org/10.1017/S0022112006000930
https://doi.org/10.1017/S0022112006000930
https://doi.org/10.2514/3.11604
https://doi.org/10.1017/jfm.2015.319
https://doi.org/10.1017/jfm.2015.319
https://doi.org/10.1115/1.3098919
https://doi.org/10.1115/1.4027135
https://doi.org/10.1016/j.jcp.2010.04.040
https://doi.org/10.2514/6.2012-1548
https://doi.org/10.1016/j.jcp.2008.01.028
https://doi.org/10.1017/jfm.2013.301
https://doi.org/10.1017/jfm.2013.301
https://doi.org/10.1007/s00162-016-0397-6
https://doi.org/10.1007/s00162-016-0397-6
https://doi.org/10.1007/978-3-662-47807-3
https://doi.org/10.1007/978-3-662-47807-3
https://doi.org/10.1016/j.jcp.2014.11.028
https://doi.org/10.1115/1.1894402


Bibliography 89

Pasquariello, V. , Grilli, M. , Hickel, S. , and Adams, N.A. . Large-Eddy Simulation of Passive Shock-
Wave/Boundary-Layer Interaction Control. International Journal of Heat and Fluid Flow, 49:116 – 127,
2014. ISSN 0142-727X. doi: 10.1016/j.ijheatfluidflow.2014.04.005. 8th Symposium on Turbulence and
Shear Flow Phenomena (TSFP8).

Pasquariello, V. , Hickel, S. , Adams, N. , Hammerl, G. , Wall, W. , Daub, D. , Willems, S. , and Gülhan, A. .
Coupled Simulation of Shock-Wave/Turbulent Boundary-Layer Interaction over a Flexible Panel. In 6th
European Conference for Aeronautics and Space Sciences, Krakau, 06 2015.

Pasquariello, V. , Hammerl, G. , Öerley, F. , Hickel, S. , Danowski, C. , Popp, A. , Wall, W. , and Adams, N. . A Cut-
Cell Finite Volume - Finite Element Coupling Approach for Fluid-Structure Interaction in Compressible
Flow. Journal of Computational Physics, 307:670–695, 11 2016. doi: 10.1016/j.jcp.2015.12.013.

Pasquariello, V. , Hickel, S. , and Adams, N.A. . Unsteady Effects of Strong Shock-Wave/Boundary-
Layer Interaction at High Reynolds Number. Journal of Fluid Mechanics, 823:617–657, 2017. doi:
10.1017/jfm.2017.308.

Piponniau, S. , Dussauge, J. P. , Debiève, J. F. , and Dupont, P. . A Simple Model for Low-Frequency
Unsteadiness in Shock-Induced Separation. Journal of Fluid Mechanics, 629:87–108, 2009. doi:
10.1017/S0022112009006417.

Pirozzoli, S. and Grasso, F. . Direct Numerical Simulation of Impinging Shock Wave/Turbulent Boundary
Layer Interaction at M=2.25. Physics of Fluids, 18(6):065–113, 2006. doi: 10.1063/1.2216989.

Pirozzoli, S. , Beer, A. , Bernardini, M. , and Grasso, F. . Computational Analysis of Impinging Shock-Wave
Boundary Layer Interaction under Conditions of Incipient Separation. Shock Waves, 19:487–497, 2009. doi:
10.1007/s00193-009-0215-9.

Pirozzoli, S. , Larsson, J. , Nichols, J.W. , Morgan, B.E. , and Lele, S.K. . Analysis of Unsteady Effects in Shock-
/Boundary Layer Interactions. In Proceedings of the 2010 CTR Summer Program, Stanford, 2010. Center of
Turbulence Research.

Plotkin, K.J. . Shock Wave Oscillation Driven by Turbulent Boundary-Layer Fluctuations. AIAA Journal, 13(8):
1036–1040, 1975. doi: 10.2514/3.60501.

Priebe, S. , Wu, M. , and Martín, M.P. . Direct Numerical Simulation of a Reflected-Shock-Wave/Turbulent-
Boundary-Layer Interaction. AIAA Journal, 47(5):1173–1185, 2009. doi: 10.2514/1.38821.

Priebe, S. , Tu, J. H. , Rowley, C.W. , and Martín, M. P. . Low-Frequency Dynamics in a Shock-Induced Separated
Flow. Journal of Fluid Mechanics, 807:441–477, 2016. doi: 10.1017/jfm.2016.557.

Prony, R. . Essai Expérimental et Analytique Sur les Lois de la Dilatabilité des Fluides élastiques, et sur Celles
de la Force Expansive de la Vapeur de l’Eau et de la Vapeur de l’Alkool, á Différentes Temperatures. Journal
de l’École Polytechnique Floréal et Plairial, 1(22):24–76, 1795.

Rabey, P.K. and Bruce, P.J. . Experimental 3D Mapping of Reflected Shock - Boundary Layer Interaction Un-
steadiness. 01 2019. doi: 10.2514/6.2019-0341.

Rodríguez, A.F. , Rodrigo, L.d.S. , Guillén, E.L. , Rodríguez, J.M.R. , Jiménez, J.M.M. , and Boquete, L. . Coding
Prony’s Method in MATLAB and Applying it to Biomedical Signal Filtering. BMC BioInformatics, 19(1):451,
2018.

Routh, E.J. . A Treatise on the Stability of a Given State of Motion: Particularly Steady Motion. Macmillan,
1877. doi: 10.3390/s140406606.

Shapiro, A.H. and Shapiro, R.E. . The Dynamics and Thermodynamics of Compressible Fluid Flow. John Wiley
and Sons Inc, 1987. ISBN 9780471066910.

Shine, S.R. and Nidhi, S.S. . Review on Film Cooling of Liquid Rocket Engines. Propulsion and Power Research,
7(1):1 – 18, 2018. ISSN 2212-540X. doi: 10.1016/j.jppr.2018.01.004.

https://doi.org/10.1016/j.ijheatfluidflow.2014.04.005
https://doi.org/10.1016/j.jcp.2015.12.013
https://doi.org/10.1017/jfm.2017.308
https://doi.org/10.1017/jfm.2017.308
https://doi.org/10.1017/S0022112009006417
https://doi.org/10.1017/S0022112009006417
https://doi.org/10.1063/1.2216989
https://doi.org/10.1007/s00193-009-0215-9
https://doi.org/10.1007/s00193-009-0215-9
https://doi.org/10.2514/3.60501
https://doi.org/10.2514/1.38821
https://doi.org/10.1017/jfm.2016.557
https://doi.org/10.2514/6.2019-0341
https://doi.org/10.3390/s140406606
https://doi.org/10.1016/j.jppr.2018.01.004


90 Bibliography

Spottswood, S.M. , Eason, T.G. , and Beberniss, T. . Influence of Shock-Boundary Layer Interactions on the
Dynamic Response of a Flexible Panel. In Proceedings of the ISMA-2012, 17-19 September, Leuven, Belgium,
pages 603 – 616, 2012.

Spottswood, S.M. , Eason, T.G. , and Beberniss, T. . Full-Field, Dynamic Pressure and Displacement Measure-
ments of a Panel Excited by Shock Boundary-Layer Interaction. In 19th AIAA/CEAS Aeroacoustics Confer-
ence. American Institute of Aeronautics and Astronautics, 2013. doi: 10.2514/6.2013-2016.

Steinrück, H. . Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. CISM International
Centre for Mechanical Sciences. Springer-Verlag, 2011. ISBN 978-3-7091-1690-6. doi: 10.1007/978-3-7091-
0408-8.

Stewartson, K. and Williams, P.G. . Self-Induced Separation. Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 312(1509):181–206, 1969. ISSN 0080-4630. doi:
10.1098/rspa.1969.0148.

Stolz, S. and Adams, N. A. . An Approximate Deconvolution Procedure for Large-Eddy Simulation. Physics of
Fluids, 11(7):1699–1701, 1999. doi: 10.1063/1.869867.

Sun, Z. . Micro Ramps in Supersonic Turbulent Boundary Layers: An Experimental and Numerical Study. PhD
thesis, Faculty of Aerospace Engineering, TU Delft, 2014.

Sun, Z. , Schrijer, F.F.J. , Scarano, F. , and van Oudheusden, B.W. . The Three-Dimensional Flow Organization
past a Micro-Ramp in a Supersonic Boundary Layer. Physics of Fluids, 24(5), 2012. doi: 10.1063/1.4711372.

Tambe, S. , Schrijer, F.F.J. , and van Oudheusden, B.W. . Effect of Geometry on the Downstream Flow Topology
of a Micro Ramp in a Supersonic Turbulent Boundary Layer: An experimental Study. In 7th European
Conference For Aeronautics And Space Sciences, 2017.

Thari, A. , Pasquariello, V. , Aage, N. , and Hickel, S. . Adaptive Reduced-Order Modeling for Non-Linear
Fluid-Structure Interaction. 02 2017.

Thomas, F.O. , Putnam, C.M. , and Chu, H.C. . On the Mechanism of Unsteady Shock Oscillation in
Shock Wave/Turbulent Boundary Layer Interactions. Experiments in Fluids, 18(1):69–81, 1994. doi:
10.1007/BF00209362.

Threadgill, J.A. and Bruce, P.J.K. . Comparison of Unsteady Flow Similarities in Various Shock/Boundary-Layer
Interaction Configurations. In 55th AIAA Aerospace Sciences Meeting, 2017. doi: 10.2514/6.2017-0986.

Touber, E. and Sandham, N. D. . Low-Order Stochastic Modelling of Low-Frequency Motions in Re-
flected Shock-Wave/Boundary-Layer Interactions. Journal of Fluid Mechanics, 671:417–465, 2011. doi:
10.1017/S0022112010005811.

Touber, E. and Sandham, N.D. . Large-Eddy Simulation of Low-Frequency Unsteadiness in a Turbulent Shock-
Induced Separation Bubble. Theoretical and Computational Fluid Dynamics, 23(2):79–107, 2009. doi:
10.1007/s00162-009-0103-z.

Visbal, M.R. . On the Interaction of an Oblique Shock with a Flexible Panel. Journal of Fluids and Structures,
30:219 – 225, 2012. ISSN 0889-9746. doi: 10.1016/j.jfluidstructs.2012.02.002.

Visbal, M.R. . Viscous and Inviscid Interactions of an Oblique Shock with a Flexible Panel. Journal of Fluids
and Structures, 48:27 – 45, 2014. ISSN 0889-9746. doi: 10.1016/j.jfluidstructs.2014.02.003.

Vreman, B. , Geurts, B. , and Kuerten, H. . A Priori Tests of Large Eddy Simulation of the Compressible Plane
Mixing Layer. Journal of Engineering Mathematics, 29(4):299–327, 1995. doi: 10.1007/BF00042759.

Wang, B. , Sandham, N.D. , Hu, Z. , and Liu, W. . Numerical Study of Oblique Shock-Wave/Boundary-
Layer Interaction Considering Sidewall Effects. Journal of Fluid Mechanics, 767:526–561, 2015. doi:
10.1017/jfm.2015.58.

Wang, T.S. and Guidos, M.J. . Transient Three-Dimensional Side-Load Analysis of a Film-Cooled Nozzle.
Journal of Propulsion and Power, 25(6):1272 – 1280, 2009. ISSN 0748-4658. doi: 10.2514/1.41025.

https://doi.org/10.2514/6.2013-2016
https://doi.org/10.1007/978-3-7091-0408-8
https://doi.org/10.1007/978-3-7091-0408-8
https://doi.org/10.1098/rspa.1969.0148
https://doi.org/10.1098/rspa.1969.0148
https://doi.org/10.1063/1.869867
https://doi.org/10.1063/1.4711372
https://doi.org/10.1007/BF00209362
https://doi.org/10.1007/BF00209362
https://doi.org/10.2514/6.2017-0986
https://doi.org/10.1017/S0022112010005811
https://doi.org/10.1017/S0022112010005811
https://doi.org/10.1007/s00162-009-0103-z
https://doi.org/10.1007/s00162-009-0103-z
https://doi.org/10.1016/j.jfluidstructs.2012.02.002
https://doi.org/10.1016/j.jfluidstructs.2014.02.003
https://doi.org/10.1007/BF00042759
https://doi.org/10.1017/jfm.2015.58
https://doi.org/10.1017/jfm.2015.58
https://doi.org/10.2514/1.41025


Bibliography 91

Wu, M. and Martín, M.P. . Analysis of Shock Motion in Shockwave and Turbulent Boundary Layer In-
teraction using Direct Numerical Simulation Data. Journal of Fluid Mechanics, 594:71–83, 2008. doi:
10.1017/S0022112007009044.

Ye, L. and Ye, Z. . Effects of Shock Location on Aeroelastic Stability of Flexible Panel. AIAA Journal, pages 1 –
13, 2018. doi: 10.2514/1.J056924.

Ye, L. , Ye, Z. , and Wang, X. . Aeroelastic Stability Analysis of Heated Flexible Panel Subjected to an Oblique
Shock. Chinese Journal of Aeronautics, 2018. ISSN 10009361. doi: 10.1016/j.cja.2018.05.019.

Zauner, M. . Large-Eddy Simulation of a Turbulent Shock-Wave/Boundary-Layer Interaction over a Flexible
Panel, 2015.

Zhou, J. , Yang, Z. , and Gu, Y. . Aeroelastic Stability Analysis of Heated Panel with Aerodynamic Loading on
Both Surfaces. Science China Technological Sciences, 55(10):2720 – 2726, 2012. doi: 10.1007/s11431-012-
4942-2.

https://doi.org/10.1017/S0022112007009044
https://doi.org/10.1017/S0022112007009044
https://doi.org/10.2514/1.J056924
https://doi.org/10.1016/j.cja.2018.05.019
https://doi.org/10.1007/s11431-012-4942-2
https://doi.org/10.1007/s11431-012-4942-2

	Preface
	Summary
	Nomenclature
	Introduction
	Motivation
	Research Question, Aims, and Objectives
	Experimental Set-up

	Governing Equations
	Fluid
	Structure
	Fluid-Structure Interface Conditions

	Shock-Panel Interactions
	Inviscid Flow
	Viscous Flow
	Low Frequency Unsteadiness
	Interaction Length
	Numerical Simulation of SWBLI
	Coupled SWBLI over a Compliant Panel

	Governing Parameters
	Structural Parameters
	Aerodynamic Parameters
	Initial Conditions and Boundary Conditions
	Other Parameters


	Analytical Model for Shock-Panel Interaction
	Methodology
	Classic Panel Flutter
	Flutter of a Flat Plate Subject to an Impinging Shock
	Flutter of a Statically Deformed Panel Subject to an Impinging Shock

	Verification and Validation
	Python Script Outline
	Standard Panel Flutter
	Panel Flutter with Shock Impingement
	Panel Flutter with Deformed Equilibrium
	Discussion

	Design of Experiment

	Numerical Approach
	Fluid Discretisation
	Structure Discretisation
	Coupling
	Turbulence Modelling

	Two-Dimensional Inviscid Analysis
	Numerical Set-up, Boundary Conditions and Grid Distribution
	Postprocessing Methodology
	Results
	Effect of Shock Impingement Location
	Parametric Effects
	Effect of Initial Condition
	Adaptive Reduced Order Model
	Validity of  as a Parameter to Characterise Flutter


	Selection of a Set-Up for Future Analysis by LES and Experiment
	Selection of Values for the Governing Parameters
	Aerodynamic Parameters
	Structural Parameters
	Initial Conditions and Boundary Conditions

	Numerical Set-Up
	Boundary Conditions and Grid Distribution
	Preliminary Experimental Results

	Conclusion
	Conclusions
	Recommendations

	Four Mode Jacobian Entries at the Flat Plate Equilibrium Solution
	Entries for the Four Mode Routh-Hurwitz Criterion
	Bibliography

