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Abstract Fully or semi-automatic contouring tools are

increasingly being used in the tumor contouring task for

radiotherapy. While the fully automatic contouring tools

have not reached sufficient efficiency, the semi-automatic

contouring tools balance more effectively between the

human interaction and automation. This study evaluates the

influences of a semi-automation contouring tool, called

between-slice interpolation, on the resulting contours and

the contouring process. The tumor contouring study was

conducted on three patient cases with five physicians in a

naturalistic setting. The contouring task consisted of initi-

ating the 2D contour manually or with the interpolation

tool and correcting that initial contour. The similarity of the

resulting contours was pairwise measured within the

manual or the interpolated category. Interactions with the

software were recorded, and variations in the contouring

workflows steps were compared. Results indicated that

using the between-slice interpolation tool for creating the

initial contour, instead of initiating it manually, influenced

both the contouring process and outcomes. First, it was

identified that contours initiated by the interpolation tool

showed an increased similarity among themselves com-

pared to the manually initiated contours. At the same time,

influences to the resulting contours were below clinical

relevance, and toward the desired direction—improved

consistency of contours. Second, when interpolation was

used, in two cases out of three, the average contouring time

also decreased significantly. Therefore, the use of such an

automation tool can be encouraged.

Keywords Tumor � Contouring � Automatic contouring �
Interpolation � Automation bias � Radiotherapy

1 Introduction

1.1 Background

Radiotherapy is one of the most effective methods for the

treatment of cancer (Njeh 2008) with an estimate of 52% of

cancer patients benefitting from it (Delaney et al. 2005).

With the aging population, cancer incidence and mortality

are expected to increase (Yancik and Ries 2004). There is

an increasing need to optimize the radiotherapy workflows

as well as to automate different (parts of) tasks in order to

improve the efficiency of radiotherapy and to reduce the

workload of the physicians (e.g., Olsen et al. 2014; Kir-

rmann et al. 2015; Winkel et al. 2016).

One of the tasks within radiotherapy planning where

automation has been increasingly introduced is the
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contouring task. During this task, the tumor and the sur-

rounding organs at risk are contoured on the medical images

by a physician (Vieira et al. 2016). Manual contouring can

be tedious and time-consuming (Dowsett et al. 1992; Vor-

werk et al. 2014), and introducing automatic contouring

tools (i.e., contouring with the support of automation) is

generally expected to decrease the task duration (Lim and

Leech 2016). However, automation may influence physi-

cians’ decision-making process, i.e., introduce bias.

Automation bias is the phenomenon that appears when the

automatically generated decision aids are used as a

replacement for a more vigilant system monitoring or

decision-making (Skitka et al. 1999). This may result in

decisions that are strongly guided by those automatically

generated advices (Parasuraman and Manzey 2010).

Regarding tumor contouring, automation bias may result in

the errors of omission and the errors of commission (Skitka

et al. 1999). Here, the errors of omission indicate that the

automatic contour did not include all the relevant regions,

but was still accepted by the physician. The errors of com-

mission, at the same time, would mean that an automatically

suggested and accepted tumor contour included also healthy

tissue. These errors could lead to missing tumorous tissue

during radiation, or irradiating healthy tissue unnecessarily.

Therefore, automation bias should be taken into account

when introducing automatic contouring tools to radiother-

apy planning software (Wesley and Dau 2017).

Using a relatively basic automatic contouring tool,

named between-slice interpolation, this paper aims at

studying the influences of an automatically generated initial

contour(s) on the resulting contours and the contouring

process. Three aspects will be explored regarding this topic:

(1) The variations among the contours created by physicians

with and without the automation tool, as previous research

indicated that variability among physicians in manual

contouring is a large concern in radiotherapy (van Herk

2004; Fitton et al. 2011); (2) The duration of the contouring

task, i.e., the efficiency; and (3) Changes in the contouring

workflow introduced by using the automation tool.

The remainder of the paper is arranged as follows:

Sect. 1.2 gives an overview of the workflow in radiother-

apy with the emphasis on the contouring task. In Sect. 2,

the materials and methods of the proposed research are

described. The results regarding the influence of automa-

tion on the contours and the contouring process are given in

Sect. 3. Finally, the findings are discussed in Sect. 4 and

conclusions are given in Sect. 5.

1.2 Contouring in radiotherapy planning

The planning of radiotherapy involves a number of clini-

cians and tasks (Vieira et al. 2016). Once radiotherapy is

suggested based on the diagnosis and is discussed with the

patient, the necessary data for the treatment planning, such

as medical image datasets of different modalities (Batu-

malai et al. 2016), are acquired. Those images may consist

of Computed Tomography (CT) images, various sequences

of Magnetic Resonance Imaging (MRI) images, and/or

Positron Emission Tomography (PET) images, depending

on the type of the tumor (Batumalai et al. 2016). All

acquired medical image datasets are then co-registered, i.e.,

aligned to the same coordinate space for inclusion in the

planning process (Weersink 2016).

The image co-registration step is then followed by the

contouring task, during which the various treatment vol-

umes, i.e., the tumor, as well as the surrounding healthy

tissues are contoured by a physician(s) (Vieira et al. 2016).

One of the axioms of radiotherapy is to maximize the

prescribed radiation dose to the tumor while sparing sur-

rounding organs at risk (Burnet 2004). For this, accurately

identifying the location and the shape of the tumor is a

prerequisite. This is especially true, as with the techno-

logical advancements in image-guided radiotherapy, it is

possible to precisely deliver the radiation to complicated

3D volumes (Nutting et al. 2000; Xing et al. 2006).

Different types of volumes are used for the treatment

planning as recommended by the International Commis-

sion on Radiation Units and Measurements (ICRU) in

report 62 (ICRU 1999). The Gross Tumor Volume (GTV),

which represents the visible (on medical image datasets)

and/or palpable tumor, is the basis of other relevant tumor

volumes, such as the Clinical Target Volume (CTV)

(Burnet 2004). During the contouring process of the GTV,

medical image datasets are presented on the computer

screen as 2D images, each of them representing a section of

the human body (i.e., ‘‘slice’’). The physician then draws

the visually seen borders of the tumor on a number of slices

(Dowsett et al. 1992), resulting in a set of 2D contours

representing the 3D volume of the GTV. Once all the

relevant contours are created, different 3D volumes are

constructed, e.g., by lofting those contours. Radiation dose

is then planned and validated (e.g., Winkel et al. 2016)

based on the dose constraints on these volumes. Among

different contouring tasks, the GTV contouring task is

especially important in radiotherapy planning since GTV is

the basis for defining other volumes for the treatment

planning and consequently, uncertainties in this step may

introduce a systematic error for the complete treatment

planning (van Herk 2004).

The GTV contouring task can be divided into three

phases: familiarization, contouring (i.e., action), and eval-

uation (Aselmaa et al. 2017). Prior to creating any contour,

the physician usually spends some amount of time

exploring the information presented on the graphical user

interface getting familiar with the data. The contouring

action itself can be further divided into creating an initial
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contour(s) and correcting this contour(s), either immedi-

ately or later. Then, the contour(s) is iteratively evaluated

and modified as needed throughout the contouring process.

For example, a physician may first create the initial con-

tours for a few neighboring slices and then continue with

iteratively modifying these contours or creating contours

on further slices.

Contouring without any computational support can be

lengthy and tedious as it requires drawing the visually seen

borders of the tumor on all intersecting slices (Dowsett

et al. 1992; Vorwerk et al. 2014). In the past decades,

extensive research has been conducted and various auto-

matic contouring tools (i.e., segmentation methods) have

been developed (Olabarriaga and Smeulders 2001). Some

of these tools have been gradually introduced in commer-

cial radiotherapy planning software solutions (Sykes 2014).

The expected benefits of using automatic tools are the

reduction of the overall amount of time taken to draw the

contours, and potentially also increased reproducibility of

the contours (i.e., reduced inter-observer variation).

Contouring tools can be categorized as fully automatic,

semi-automatic or fully manual (Heckel et al. 2013;

Ramkumar et al. 2016) based on the intended level of

involvement of the physician and computation. Fully

automatic contouring is potentially the most time efficient

as it is designed to have little involvement of the physician.

However, fully automatic contouring methods have shown

limited success and often extensive post-processing is

needed (Bauer et al. 2013; Sykes 2014). Automation may

be introduced in different levels for semi-automatic

methods: from automatically generated 3D volumes based

on a few 2D contours [e.g., based on the foreground and

background seeds (Dolz et al. 2016)] to computationally

adjusting the contour while it is being drawn by the

physician [e.g., live-wire tool (Barrett and Mortensen

1997)]. And different levels of automation may pose dif-

ferent influences (Bravo and Ostos 2017) on the physi-

cian’s decision-making process. Among different semi-

automatic methods, a commonly used category of tools in

commercial software solutions is the contour interpolation

[e.g., shape based interpolation (Prabhakar et al. 2011)].

One such tool is the between-slice interpolation which

generates a 2D contour based on the nearest contours on

the inferior and superior slices, and the physician is

expected to make corrections until reaching a satisfactory

result. The advantage of such a semi-automatic method is

that it accelerates the contouring process by combining the

power of computing and human expertise for the initial

contours, based on the assumption of the continuity of the

tumor shape while allowing physicians to control the

outcomes.

Physicians play a central role in steering and correcting

the outcomes of the contouring task (Heckel et al. 2013).

However, their cognition can be influenced by those

automatically generated or corrected contours, especially

as there is no gold standard in GTV contouring (Weiss and

Hess 2003; Aselmaa et al. 2017). A higher level of

automation can introduce a higher level of bias (Manzey

et al. 2012). On the other side, lower level of automation,

which has a higher level of human involvement, may have

a smaller gap between physicians’ cognition and the data;

thus, the influence of the automation can be expected to be

smaller. The contouring task is an iterative process during

which contours are being inspected multiple times.

Therefore, it is expected that the gap narrows even further

in this iterative process. However, literature study did not

reveal to what extent such or similar interpolation may

influence the physicians’ decision-making process. The

questions about the clinical relevance of such an automa-

tion bias and its effects on the inter-observer variation also

remain to be answered.

2 Methods

2.1 Study setup

To evaluate the influence of using the between-slice

interpolation tool on the resulting GTV contours and on the

contouring process, a GTV contouring study was con-

ducted in the radiotherapy department of Institut Claudius-

Regaud, Institut Universitaire du Cancer de Toulouse-On-

copole, Toulouse, France with five physicians (three

medical residents, two attending physicians) over the per-

iod of 5 days. The investigated task was the GTV con-

touring of the Glioblastoma Multiforme (GBM) tumor, a

common type of primary brain tumor (Behin et al. 2003).

Four patient cases (a sample case, C-1, C-2, and C-3) were

used in the study. Subjective rating of the case difficulties

(easy, medium difficulty or difficult) was given by an

experienced physician independently from the present

study. Similar to the clinical practice, eight image datasets

were made available for the physicians for each case.

Those eight images datasets were: radiotherapy planning

CT, radiotherapy planning MRI T1-weighted with contrast

enhancement, radiotherapy planning MRI T1-weighted

without contrast enhancement, radiotherapy planning MRI

T2-weighted, radiotherapy planning MRI FLAIR, pre-sur-

gery MRI T1-weighted with contract enhancement, pre-

surgery MRI T1-weighted without contrast enhancement,

and pre-surgery MRI FLAIR. Prior to conducting the study,

the MRI datasets were co-registered to the radiotherapy

planning CT coordinate system. The distance between any

two consecutive axial slices was 2.5 mm in the case C-1,

and 1.25 mm for the other two cases.
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The study was conducted using a modified and extended

version of a research contouring software (Steenbakkers

et al. 2005) (Fig. 1). The software allowed manual con-

touring (i.e., using the freehand and/or the nudge tools) and

between-slice interpolation (i.e., using the interpolation

tool) on any of the axial slices of any of the available

datasets displayed on the computer screen. Using the

interpolation tool, a contour could be generated on the

displayed axial slice based on the contours on the nearest

neighboring slices via linear interpolation where the point

correspondences were obtained using a radial coordinate

system. Within this study, the interpolation tool was used

only for creating the initial contour, i.e., the method was

only available when there was no existing contour on the

slice. The interpolation tool was not available for correct-

ing an existing contour, neither for the first and last slices,

as the interpolation relied on the information of the

neighboring contours. For the rest, to guarantee the ‘‘nat-

ural’’ performance of physicians as it is in a clinical setting,

physicians were free to choose either the manual or the

interpolation tool to create the initial 2D contours. We

expected that such a ‘‘randomized’’ setup will minimize the

cognitive and psychological difference in the selection of

methods. Meanwhile, the software recorded all user inter-

actions during the task into a log file together with

timestamps.

In the beginning of the task, the physician was intro-

duced to the software and a brief training was given with

the sample case. In addition, the physician was allowed to

explore the software further as they felt necessary. Then,

the physician was asked to contour the GTV of the rest of

the three GBM cases. Following the treatment protocol

(Stupp et al. 2005), the GTV was instructed as ‘‘consisting

of the resection cavity and any residual contrast-enhancing

tumor’’. The order in which these three cases were pre-

sented varied among physicians in order to distribute the

impact of learning effects. The researcher was observing

the task during the study and was available for assistance

with the use of the software at request.

After finishing each GTV contouring task, each physi-

cian filled the NASA Task Load Index (NASA-TLX)

questionnaire (Hart and Staveland 1988), which was used

for assessing the mental workload of physicians based on

the subjective rating on six aspects: the physical demand,

the mental demand, the temporal demand, the performance,

the effort, and the frustration. The original NASA-TLX

consists of two parts: rating each aspect, and comparing

them pairwise based on their perceived importance. How-

ever, it has been shown that the unweighted and the

weighted ratings have a high correlation (Noyes and Bru-

neau 2007). In this study, the outcome of the NASA-TLX

was calculated based on the unweighted ratings.

Fig. 1 A screenshot of the software prototype used in the study. The

contouring tools available in the study are in the top part of the

graphical user interface. The image datasets are presented in the

middle-bottom region. An illustrative 2D contour of the GTV is

shown in red color, overlaid on the radiotherapy planning CT (left

image), radiotherapy planning MRI T1-weighted with contrast

enhancement (middle image), and radiotherapy planning MRI T1-

weighted (right image)
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2.2 Data inclusion and analysis

Figure 2 illustrates different steps in the data inclusion and

analysis process. In the proposed research, contouring was

made possible on axial slices only. The slices toward the

superior and inferior boundary of the tumor typically have

a larger level of variation than the central slices. For

instance, given a boundary slice, it was often that not all

physicians contoured, i.e., not all physicians agreed that

there was tumorous tissue. Such a cognitive difference

often leads to large deviations among the boundary slices.

The influence of automation, if any, was expected to be

smaller than other influences. Therefore, two criteria were

applied to eliminate ‘‘boundary slices’’: (1) the slices on

which not all physicians contoured (N\ 5) were excluded

from the analysis; (2) for the remaining slices, the mean

enclosed areas of each contour (Meanarea) and the standard

deviation (SDarea) among them were calculated for each

slice over the observers. Then, the coefficient of variation

(i.e., relative standard deviation, CVarea) within each slice

was calculated as the ratio between SDarea and Meanarea.

Contours that would be included in the further analysis

were defined by its CVarea being less than the mean of

CVarea ? 1 SDarea of the given case.

Then contours on the included slices were categorized as

being manual or interpolated based on whether interpola-

tion was used to generate the initial 2D contour or not. The

2D slices on which at least one contour was interpolated or

manually created, remained for the further analysis. All

contours were resampled to increase the point density—the

maximum distance between two neighboring points of a

resampled contour was 0.01 mm as we wanted to achieve a

0.1 mm measurement accuracy.

Using three different measures, the similarity of con-

tours was evaluated pairwise by a program developed

based on the MevisLab� (MeVis Medical Solutions

AG 2016; Kuijf 2015). The Dice–Jaccard coefficient

(DJC) (Fotina et al. 2012) was introduced as a measure of

the overlap of the enclosed areas between two contours

where 1 indicates complete overlap and 0 indicates no

overlap. The Bidirectional Hausdorff Distance (BHD)

(Huttenlocher et al. 1993) was used to measure the largest

variation between shapes of two contours. BHD is defined

based on Direct Hausdorff Distance (DHD). Given two

contours C1 and C2, DHD delivers the distance from C1 to

C2 and it can be defined as DHD C1;C2ð Þ ¼ supr2C1
infs2C2 r � sj jð Þ. In a generalized discreet form, contours

C1 and C2 are available as the point sets PC1 and PC2,

where PC1 ¼ fPi
C1 2 C1ji ¼ 1;mg and PC2 ¼ fPi

C2 2
C2ji ¼ 1; ng, representing contour C1 and C2, respectively.
Thus the DHD from PC1 to PC2 is DHD C1;C2ð Þ ¼
maxi¼1;m minj¼1;n Pi

C1 � P
j
C2

�
�

�
�: Though DHD is able find

the largest shape variation from contour C1 to C2, it is

directional, i.e., DHD C1;C2ð Þ is not always same as

DHD C2;C1ð Þ. Therefore, we introduced BHD which is

defined as BHD C1;C2ð Þ ¼ DHD C1;C2ð Þþð DHD C2;ð
C1ÞÞ=2. Similar to the concept of BHD, to measure the

average deviation between contour C1 to C2, we intro-

duced Bidirectional Mean Hausdorff Distance (BMHD),

which is defined as BMHDðPM ;PEÞ ¼ 1
2

1
m

Pm
i¼1 minj¼1;n

�

Pi
C1 � P

j
C2

�
�

�
� þ 1

n

Pn
i¼1 minj¼1;m Pi

C2 � P
j
C1

�
�

�
�Þ, as the overall

shape similarity measure (Song et al. 2017). BMHD is non-

directional regarding contours and comparing to BHD, it is

able to reduce the sensitivity to noise and represents the

overall shape similarity between contours C1 and C2.

Measures of the contours were calculated for C2
5 ¼ 10

pairs of contours in each slice. Those pairwise measures

were then categorized as being manual (both physicians

contoured manually), mixed (one physician contoured

manually, the other used interpolation), or interpolated

(both physicians used the interpolation tool). The mixed

pairs were not further analyzed. Independent samples t test

was conducted to evaluate the significance of variation in

the mean values using SPSS (version 22).

The details of the software interactions within each slice

were extracted from the interaction log files. Each inter-

action was categorized according to the moment it hap-

pened within the steps of the workflow: familiarization,

initial contouring, immediate correction, evaluation, and

additional corrections. The duration of each of the con-

touring workflow step was calculated as a sum of the

durations of the interactions occurring within this step.

Since not all physicians had interactions within each of the

five workflow steps, the overall occurrence rate was

Fig. 2 Data inclusion and analysis process
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calculated as a percentage of the total number of engage-

ments in the step over the total number of contouring

workflows of the given case. Independent samples t test

was conducted to evaluate the significance of variation

among the durations of the workflow steps in the manual

and interpolated contour using SPSS.

3 Results

The subjective ratings of the cases were given by a

physician prior to the study as: case C-1 was identified as

easy, case C-2 as difficult, and case C-3 as medium diffi-

culty (see example Fig. 3). The calculated NASA-TLX

indexes corresponded to the rated difficulty levels, though

gaps among them were small: the individual NASA-TLX

index values being 5.6 out of 20 in case C-1, 7.8 out of 20

in case C-2, and 6.7 out of 20 in case C-3 (Fig. 4).

In total, 377 GTV contours on 83 slices were created by

five physicians over the three cases. Fifteen slices had less

than five contours on them and were excluded from further

analysis. On the remaining slices, the mean enclosed area

of contours in a slice was 448 mm2 (SD = 199 mm2) in

case C-1, 876 mm2 (SD = 323 mm2) in case C-2, and

596 mm2 (SD = 269 mm2) in case C-3. In boundary slices

toward the superior and inferior directions, the mean

enclosed areas Meanarea were decreasing as expected.

The CVarea gives a comparable measure of variation of

the contoured areas on each slice, with a value of 0 indi-

cating no variation. The mean CVarea was 0.18

(SD = 0.17), 0.22 (SD = 0.25) and 0.15 (SD = 0.20) for

the three cases C-1, C-2, and C-3, respectively. Based on

the CVarea and the standard deviation of it, six slices were

categorized as ‘‘outliers’’ and were excluded from further

analysis. In addition, six slices were eliminated as only

containing one type of contours (all manual). As a result,

for the detailed analysis, contours on 56 slices remained: 8

slices in case C-1, 23 slices in case C-2, and 25 slices in

case C-3, involving 280 individual contours (40 in C-1, 115

in C-2, and 125 in C-3). Among these 280 contours, 144

contours were initiated manually (manual group), and 136

were initiated using the interpolation tool (interpolation

group).

3.1 Influence of automation to the contours

An overview of the calculated measures of the included

contours is presented in Table 1.

The overlap between physicians’ contours was generally

high, with the overall mean DJC being 0.79 (min = 0.30,

max = 0.94). In the interpolation group, the overall mean

DJC was 0.81, thus being slightly higher than in the manual

group where it was 0.77. In the studied cases, the DJC

showed a tendency to be on average higher by 0.04–0.09

when the interpolation tool had been used. In two of the

Fig. 3 Examples of the three cases and the resulting contours on 2D axial slices. The contours of five physicians (each in different color) are

overlaid on MRI T1-weighted contrast enhanced image of case C-1, C-2 and C-3

Fig. 4 Boxplot of the results of NASA-TLX regarding case C-1, C-2

and C-3, the sequence is adjusted according to the mean difficulty

levels
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three cases, the improvement also reached statistical sig-

nificance (p = 0.002, p = 0.011 for cases C-1, and C-3,

respectively). Such an increase indicated that contours

initiated by the interpolation tool were more similar to each

other within a slice.

The BHD on a slice was significantly smaller when

interpolation was used for all three cases (p = 0.003,

p = 0.005, and p = 0.005). The decrease was the highest

in case C-2, where it was reduced by 2.7 mm, followed by

C-1 where it was less by 1.5 mm and the smallest reduction

was in case C-3 by 0.9 mm. In terms of the overall shape

similarity as measured by BMHD, the average distance

between the two contours, independent from its creation

method, was 1.2 mm in the cases C-1 and C-3, and 2.2 mm

in case C-2. Generally, the mean BMHD showed a ten-

dency toward a decrease when the interpolation had been

used but was only significant in case C-3 (p = 0.038).

3.2 Influence of automation on the contouring

process

Detailed contouring workflow within a slice as was

observed in the conducted study is depicted in Fig. 5. The

initial contouring step (Step 2A or 2B) represented the

action of creating the first (i.e., initial) closed loop

boundary of the visible tumor, visually inspecting and

perceiving the contour and/or the medical image(s) while

contouring, as well as of deciding on the next action (i.e., to

correct the contour or to navigate away). Contour correc-

tions were categorized as immediate corrections and

additional corrections. The immediate corrections (Step 3)

accounted for the corrections of the contour until the first

slice change (i.e., navigate away). These corrections were

done, for example, to compensate for mouse inaccuracy

(Zabramski 2011), or to adjust the contour based on the

further inspection of the presented 2D medical image(s) as

well as clinical reasoning. Returning to the contour for

corrections after inspecting the neighbor slices or at any

later moment, were identified as additional corrections

(Step 5).

The mean durations of the workflow steps are presented

in Fig. 6. Generally, a physician completed the contouring

task faster when using the interpolation tool. In terms of

specific workflow steps, when interpolation was used,

physicians tended to spend more time on familiarizing

(Step 1) and less time on evaluating (Step 4). Furthermore,

some physicians tended to spend more time to complete the

task compared to others.

The details of the workflow steps averaged over all

physicians for each case are shown in Table 2. In addition,

within each workflow, the total durations of contour cor-

rections (sum of time spent on Step 3 and Step 5) were

calculated. The total durations of the contouring process on

a slice per physician were also summed. Furthermore, the

average duration of each step was also calculated over the

three cases.

When the initial contour was done manually, physicians

always returned to the slice (i.e., 100% occurrence of the

evaluation step). No separate evaluation step was recorded

in 15% (N = 20) of all contours initiated by the interpo-

lation tool, which indicated that after the initial contour

was interpolated, and possibly corrected (N = 2), the

Table 1 Overview of contour

similarity measures
Measure Grouping Case C-1 Case C-2 Case C-3

Subjective rating Easy Difficult Medium

Number of contours Manual 26 57 61

Interpolated 14 58 64

Mean area Manual 517 mm2 947 mm2 617 mm2

Interplolated 541 mm2 908 mm2 695 mm2

p value 0.607 0.489 0.060

Mean DJC Manual 0.78 0.72 0.80

Interpolated 0.87 0.76 0.85

p value 0.002 0.155 0.011

Mean BHD Manual 4.5 mm 10.5 mm 4.2 mm

Interpolated 2.5 mm 7.8 mm 3.3 mm

p value 0.003 0.005 0.005

Mean BMHD Manual 1.4 mm 2.3 mm 1.3 mm

Interpolated 0.9 mm 2.1 mm 1.1 mm

p value 0.106 0.209 0.038

The following measures were calculated pairwise between two physicians in a slice within the group: DJC

Dice–Jaccard coefficient; BHD Bidirectional Hausdorff Distance; BMHD Bidirectional Mean Hausdorff

distance. Mean over these individual pairwise measures is presented in this table. p values are from the

independent samples t test conducted between these two groups
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physician did not revisit it. Regarding individual cases,

such contouring workflows were present in two of the

cases, being 22% (N = 13) in case C-2 and 10% (N = 7)

in case C-3. Further analysis revealed that the average

viewing time of those interpolated contours was 0.6 s

(SD = 0.19 s), which is less than the overall average of

1.0 s. More than half of such contours (N = 9 in C-2,

N = 4 in C-3) could be accounted for one physician.

4 Discussion

4.1 Automation bias

Automation may influence physicians’ reasoning during

contouring by providing an automatically generated con-

tour. When such a contour is accepted without sufficient

evaluation of the available data, automation bias occurs

and errors might be introduced. Automation bias may have

either negative or positive effect on the process and the

outcomes of the contouring task, as in many steps of the

contouring task, physicians must make a subjective deci-

sion based on their knowledge and experience.

The influences of automation on the reasoning process

are more difficult to be categorized as being positive or

negative. One of the challenges in evaluating the outcomes

of a contouring task is that there is no gold standard in

GTV contouring (Weiss and Hess 2003). There is general

acknowledgement that less variation among physicians is

desired, i.e., methods which lead to reduced inter-observer

variation with improved consistency are preferred. How-

ever, categorizing variations to be erroneous is challenging

due to the nature of task. Another aspect that can be

measured is the amount of time spent on inspecting data as

shown in the Familiarizing and Evaluating steps of the

workflow. However, increased time does not necessarily

correlate with the quality of contours as physicians are

capable of detecting abnormalities rather rapidly (Drew

et al. 2013).

In this paper, inter-observer variation of selected

contours was used to evaluate effects of automation bias

on the outcomes. On the negative side, the automation

bias may lead to errors in the contours. On the positive

side, it may increase consistency of contours. The inter-

observer variation can be evaluated by different types of

measures such as the DJC (area overlap), BHD (shape

outliers) and BMHD (shape similarity), where smaller

variation among physicians indicates higher confidence

in having the ‘‘consistent’’ tumor contour. Regarding the

process, the mean durations of different steps of the task

were adopted as the measures of effects of automation

bias.

Fig. 5 Contouring workflows of this study with a variation in the

initial contour creation step. In the manual workflow, as step 2A the

physician manually contoured the boundary of the tumor. In the

interpolated workflow, as step 2B the physician used the between

contour interpolation tool. Data regarding the contouring process

were extracted according to these workflow steps

Fig. 6 Mean durations of

different workflow steps in case

C-1, C-2, and C-3. The type of

workflow is labeled as manual

or interpolated. In addition, the

average of each step over all

cases is shown as ‘‘All’’
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4.2 Inter-observer variation among outcomes

In radiotherapy, 60% or more of the mis-administrations

are due to human error (Duffey and Saull 2002). Lack of a

gold standard, as well as the expected variation among

physicians, increases the probability of human errors dur-

ing the contouring task. For instance, Brundage et al.

(1999) identified that insufficient target volumes were one

of the common reasons for treatment plan modification. In

order to tackle this, in clinical practice, peer review is the

proposed approach to decrease the probability of such (and

other) human errors (Marks et al. 2013; Mackenzie et al.

2016; Brunskill et al. 2017). In short, it is expected that the

smaller the variations among physicians are, the fewer

errors there are.

Variation among physicians is well documented (e.g.,

van Herk 2004; Louie et al. 2010; Fotina et al. 2012;

Dinkel et al. 2013; Whitfield et al. 2013). However, there is

a lack of consensus on which measures to use for judging

the variability (Fotina et al. 2012). Furthermore, there is no

Table 2 Details of the workflow steps of the three cases

Workflow C-1 C-2 C-3 All

Step Type Occurrence

(%)

Mean

duration

(±1 SD)

Occurrence

(%)

Mean

duration

(±1 SD)

Occurrence

(%)

Mean

duration

(±1 SD)

Occurrence

(%)

Mean

duration

(±1 SD)

1

Familiarizing

Manual 100 1.7 s

(±2.7 s)

100 2.2 s

(±1.4 s)

100 3.5 s

(±5.2 s)

100 2.7 s

(±3.7 s)

Interpolated 100 2.5 s

(±1.3 s)

100 3.4 s

(±2.1 s)

100 3.4 s

(±3.3 s)

100 3.3 s

(±2.7 s)

p value – 0.303 – 0.001 – 0.937 – 0.100

2A/B Initial

contour

Manual 100 7.4 s

(±2.2 s)

100 6.5 s

(±1.9 s)

100 7.7 s

(±3.3 s)

100 7.2 s

(±2.7 s)

Interpolated 100 1.4 s

(±0.9 s)

100 1.0 s

(±0.8 s)

100 1.0 s

(±1.3 s)

100 1.0 s

(±1.0 s)

p value – N/A – N/A – N/A – N/A

3 Immediate

corrections

Manual 8 5.6 s

(±3.8 s)

7 19.9 s

(±14.0 s)

7 8.6 s

(±6.5 s)

7 12.5 s

(±11.0 s)

Interpolated 50 9.8 s

(±3.1 s)

28 9.6 s

(±9.5 s)

5 5.7 s

(±3.2 s)

19 9.2 s

(±7.7 s)

p value – 0.142 – 0.095 – 0.468 – 0.316

4 Evaluating Manual 100 5.1 s

(±4.0 s)

100 3.4 s

(±2.5 s)

100 4.5 s

(±3.3 s)

100 4.2 s

(±3.2 s)

Interpolated 100 5.4 s

(±7.0 s)

78 2.6 s

(±4.8 s)

89 2.8 s

(±3.2 s)

85 3.0 s

(±4.5 s)

p value – 0.853 – 0.347 – 0.004 – 0.018

5 Additional

corrections

Manual 46 6.5 s

(±7.0 s)

46 9.6 s

(±7.5 s)

39 11.2 s

(±9.4 s)

43 9.6 s

(±8.2 s)

Interpolated 57 7.5 s

(±5.3 s)

22 11.3 s

(±9.8 s)

45 8.6 s

(±6.6 s)

37 9.1 s

(±7.4 s)

p value – 0.753 – 0.567 – 0.242 – 0.723

(3 ? 5) Total

correction

Manual 50 6.9 s

(±7.0 s)

51 11.4 s

(±10.4 s)

43 11.7 s

(±9.2 s)

47 10.6 s

(±9.4 s)

Interpolated 79 11.7 s

(±6.1 s)

40 13.1 s

(±14.0 s)

48 8.6 s

(±6.3 s)

48 10.7 s

(±9.8 s)

p value – 0.092 – 0.623 – 0.144 – 0.969

Total Manual – 17.7 s

(±9.9 s)

– 18.1 s

(±12.0 s)

– 20.8 s

(±13.5 s)

– 19.2

(±12.3 s)

Interpolated – 18.6 s

(±14.3 s)

– 12.0 s

(±15.9 s)

– 11.0 s

(±8.9 s)

– 12.2

(±13.0 s)

p value – 0.818 – 0.022 – \0.001 – \0.001

Occurrence percentage, the mean duration (in seconds per slice), and standard deviation (SD) of the duration of each workflow step for both types

of workflows are listed. Step 2A and 2B were not representing the same type of interactions; thus, statistical comparison was not suitable (N/A).

s = second
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reproducible gold standard for evaluating the accuracy of

contours due to many reasons [e.g., image quality, and

subjectivity of physicians (Weiss and Hess 2003)]. In many

studies, a manual contour done by an experienced physi-

cian (i.e., expert contour) is being used as a reference

(Olabarriaga and Smeulders 2001). Such an approach can

be sufficient to evaluate the reproducibility of an automatic

contouring method, but the results are dependent on the

contours provided by that expert. This study aimed to

measure whether the manually initiated contours were

more similar to each other than contours initiated by the

interpolation tool. Thus, we incorporated pairwise contour

similarity measures such as pairwise DJC, pairwise BHD,

and pairwise BMHD. Based on the results presented in the

results section, we observed a tendency that contours ini-

tiated by the interpolation tool were slightly more similar

to each other among different physicians than manually

initiated contours. In all three cases, the mean BHD and

BMHD decreased, while also the mean DJC showed

improvement. Statistical significance was reached for six of

the nine pairwise calculated similarity measures. One of

the sources for the increase is shape similarity might be that

the computer is better in creating a smoother shape com-

pared to the human, who must draw it manually with a

mouse in this study.

Though the shape similarities of the GTV contours were

improved, the improvements were below the current

accuracy of radiotherapy. For instance, we observed a

mean shape variation (measured by BMHD) decrease by

0.2–0.5 mm. In the treatment plan of GBM, the recom-

mended margin to encompass possible treatment delivery

uncertainties is between 3 and 5 mm, depending on the

specific situation (Niyazi et al. 2016). Such margins are

used to compensate the uncertainties in the GTV contour-

ing as well as for shifts in patient positioning. For instance,

Drabik et al. (2007) measured that on average there was an

(up to) 0.5 mm positioning shift of a GBM patient in the

treatment. Nevertheless, among multiple sources of

uncertainty within the radiotherapy planning process (van

Herk 2004), GTV contouring has been identified as the

weakest link (Njeh 2008). Thus, decreasing variation in

GTV contouring can be beneficial especially that the level

of precision of dose delivery is increasing (Schaffner and

Pedroni 1998).

The case difficulty could not be clearly associated with

reduced variations of the contours initiated by the inter-

polation tool. The simplest case (C-1) showed the largest

improvement, while the medium difficulty case (C-3) and

difficult case (C-2) showed similar tendencies. Therefore,

further studies with more cases of varying levels of diffi-

culty are required to evaluate the correlation between the

decrease of variation by utilizing automation and the dif-

ficulty of the case. At the same time, it was clear that the

level of difficulty is related to the general level of variation

among physicians. The more difficult case in the study (C-

2) had the lowest DJC and the highest BHD. Besides, the

BMHD in this case was nearly double compared to the

other two cases.

4.3 The efficiency of and the influences

on the contouring process

Detailed analysis of the contouring process reveals the

impact of incorporating automatic initial contour creation

(i.e., interpolation) to the overall process. The between-

slice interpolation tool that was investigated in this study,

changed the way the initial contour was created (click of a

button or press of a key on keyboard, instead of drawing

with the mouse). As expected, including automation gen-

erally decreased the overall contouring time. In the case

C-1, the average duration was slightly higher, though not

statistically significant. For this specific case, it might have

been influenced by the small size of the tumor, larger slice

thickness (2.5 mm instead of 1.25 mm), or being an easy

case. In the case C-2, the overall duration was reduced due

to the shorter initial contour drawing time. In the case C-3,

the evaluation step was also significantly shorter when the

interpolation tool had been used, resulting in a further

reduction of the task completion time.

The availability of the interpolation tool for some

physicians changed their contouring strategy. During this

interpolation-influenced contouring strategy, the physician

would first contour in a set of slices manually while skip-

ping some in-between slices (i.e., seeing them but not

contouring on them), and then return to the empty slices

later in the process and utilize interpolation to fill in the

missing contours. This type of contouring strategy is

characterized by slight changes of the contouring workflow

on the interpolated slices: longer time may be spent in

familiarizing (step 1), fewer additional corrections (steps 3

and 5) on the interpolated contours, and there are fewer (or

no) returns (step 4) to the slice once interpolation had been

used.

The frequency of corrections gives a measure of the

acceptance of the contour. Based on the presented three

cases, it was observed that the frequency of corrections (on

average 47.5% of the cases), as well as the duration of

them, remained similar for both manually drawn initial

contours (47%) and contours initiated by the interpolation

tool (48%). This could indicate that if a contour is in a

clinically acceptable range, then the likelihood of a manual

correction is independent from its’ original creation

method. Eighty-four percent of these corrections occurred

after returning to the contoured slice at a later point. One

common motivation for correction, for example, is a

comparison with neighboring slices (Aselmaa et al. 2017).
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These later stage corrections can be assumed to correspond

to the physicians updating their mental model (Varga et al.

2013) and then correcting the contours correspondingly.

In medical image related decision-making, the duration

of one second is considered to be a significant allocation of

visual attention for detecting an object of interest (Hill-

strom 2000). In addition, it has been shown that a visual

fixation time of one second is significantly correlated with

correct detection of a lesion (Nodine et al. 2002). In our

study, an interpolated contour was on average viewed for

one second prior to an action, indicating that the level of

evaluation for determining the correctness of a contour

could be deemed sufficient. In the study, 15% of the

interpolated contours were not revisited. In the contouring

process of those contours, the physician spent on average

0.6 s viewing it prior to changing to another slice, being

below the recognized sufficient level of visual attention

allocation. However, this measure on its own is not suffi-

cient for concluding whether this 0.6 s is a sufficient

duration of visual inspection in such specific cases. At the

same time, interpolated contours showed a slight

improvement in the inter-observer variation. Thus, even

though the automation bias seems to be present, it was

leading toward more desirable results and reductions in the

overall task completion times. Therefore, the use of inter-

polation can be encouraged.

4.4 Pros and cons of automation

The reasoning occurring during the contouring task is

influenced by a number of variables, such as the type of

treatment, whether there was a preceding surgery, the size

and the location of the tumor, tumor characteristics, etc.

(Aselmaa et al. 2014). Physicians need to weigh such

various aspects against their past experiences in order to

reach a decision. This process can be seen as case-based

reasoning where individual knowledge captured from a

very specific context (e.g., treating a particular patient with

a particular disease) can be extrapolated to similar contexts

(Pantazi et al. 2004).

The benefit of a (semi-)automatic contouring method

strongly depends on its robustness. For example, during

this study, in few instances, the interpolation generated a

partially zig-zag contour instead of a smooth one which

took physicians’ more than average efforts to correct.

Automatically generated contours, that are found unac-

ceptable, result in unnecessary software interactions and

thus could increase workplace frustrations. It has been

reported that in general there is a rather high loss of work

time due to frustrating experiences with software (Lazar

et al. 2006) which in turn led to higher financial costs and

possibly even impacts the outcomes of the treatment

(Johnson 2006). Therefore, advances in improving the

robustness and increasing the accuracy of contouring

methods, together with improving the general usability of

software solutions, are required.

In our study, it was identified that automation guided

physicians toward more similar contours, which is a

desired effect as there is no gold standard. We postulate

that when the automation is used to provide contouring aids

on 2D slices, the automation bias is more noticeable on the

slices where the level of cognitive involvement is lower. At

the same time, automation bias can be more prominent in

the more cognitively demanding situation, but may be

obfuscated by other variables influencing the physician’s

subjective reasoning process.

4.5 Limitations

The study presented was conducted on three different

patient datasets. Conducting a study involving manual

contouring is challenging due to the time requirement from

the physicians. However, a larger sample size would be

beneficial to have a deeper understanding the influence of

automation bias in relation to other variables such as the

size of the tumor, slice thickness, levels of case difficulties,

or levels of physicians’ experience.

The case difficulties were based on a subjective rating of

a senior physician acquired independently from the present

study. Those ratings were given in three-point scale (easy,

medium, difficult). A more robust evaluation method for

determining case difficulty could be beneficial, for exam-

ple, objective description of the tumor based on image

features (Gevaert et al. 2014).

The aim of this study was to investigate the automation

bias in a naturalistic setting. While we found our findings

valuable, a controlled study with fewer variables (e.g., pre-

defined choice of the tool per physician) may reach

stronger conclusions. In addition, though this study

describes the relations between automation bias and the

reasoning process based on the software interaction data,

studies complemented with eye tracking might reveal more

insights of the influence of automation on the reasoning

process.

5 Conclusion

Automation is increasingly incorporated into the radio-

therapy planning process. This paper presented a study of

evaluating the impact of using a between-slice interpola-

tion for initiating a contour on the resulting contours as

well as on the contouring process in comparison with the

fully manual contouring.

A GTV contouring study with five physicians on three

patient cases was conducted, from which 280 individual 2D
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contours were analyzed. The contours obtained with and

without the use of the interpolation tool were pairwise

analyzed within each slice in terms of area overlap (DJC),

shape outliers (BHD), and overall shape similarity

(BMHD). In all measures, outcomes based on the use of the

interpolation tool showed an increased agreement among

physicians (DJC increase by 0.04–0.09; BHD decrease by

0.9–2.7 mm; BMHD decrease by 0.2–0.5 mm).

Influences to the contouring process were also identified.

The efficiency was improved—the overall interaction time

within a slice was reduced by 6.1 s (p = 0.022) and 9.8 s

(p\ 0.001) in two of the three cases, mainly due to the

time-saving in creating the initial contour. In addition,

interpolated contours were corrected at a similar rate as

manually drawn contours, which indicated a similar level

of evaluation. In a sub-set of contouring processes, an

interpolation-influenced contouring strategy was identified.

This contouring strategy consisted of first contouring in a

set of slices manually and then used the interpolation tool

to fill in the missing contours in the in-between slices.

However, precaution is needed, as in our study 15% of

interpolated contours were not revisited after initial cre-

ation and inspection.

Based on the presented findings, it can be concluded that

using the between-slice interpolation tool influences the

contouring outcomes in a desirable direction, as well as

significantly decreases task completion time. Thus, the use

of such automatic contouring tools can be encouraged in

radiotherapy planning software.
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