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The influence of level ice on the frequency domain response of floaters

Chris Keijdenera,b,∗, João Manuel de Oliveira Barbosaa, Andrei Metrikinea,b

aDelft University of Technology, Stevinweg 1, 2628CN, Delft
bSAMCoT, Department of Civil and Transport Engineering, NTNU, NO-7491 Trondheim

Abstract

In this paper the effect of a nearby, semi-infinite, level ice sheet on the frequency domain response of a thin, floating,
rigid body is studied using a 2D model. The ice is modeled using a dynamic Euler-Bernoulli beam and the finite depth
water layer is described with the Laplace equation and the linearized Bernoulli equation. Eigenfunction matching is used
to resolve the interface between the ice covered and open water regions.

The body is excited by external loads, generating waves. The waves are partially reflected by the ice edge and these
reflected waves influence the body’s response. It is this influence that this paper focuses on. Below a certain onset
frequency the amplitude of the reflected waves is insignificant and consequently the body remains unaffected by the ice.
This frequency is only sensitive to the ice thickness with thinner ice resulting in a higher onset frequency.

Above the onset frequency the reflected waves cause quasi-standing waves between body and ice. For frequencies
at which half the wavelength of the surface wave in the water is approximately an integer multiple of the gap length,
the amplitude of the standing waves is greatly amplified. This can result in (anti-)resonance depending on the phasing
between the reflected waves and the body’s motion.

Keywords: Ice-floater interaction, hydrodynamics, level ice, frequency domain response

1. Introduction

Although the interest in offshore Arctic hydrocarbons
has declined in recent times, it is still a great prospect for
our future. The water depths encountered in large parts
of the Arctic offshore region make floating structures the5

main platform for drilling and production. Understand-
ing the interaction between ice and floaters is therefore
paramount in performing the eventual extraction of those
resources in a safe and sustainable way.

Ice-floater interaction (IFI) is a challenging problem10

because of the many disciplines it combines and is fur-
ther complicated by the complex material properties of sea
ice (Timco and Weeks, 2010). Although full scale data is
mostly limited to ice breakers and the drilling vessel Kul-
luk (Wright, 2001), theoretical studies have been going on15

for several decades (Palmer and Croasdale, 2013).
IFI has three main components: the ice, the floater

and the fluid. Focus is often on the ice with the floater
assumed to be immovable and rigid. The interaction is
then governed by the ice and takes place through the con-20

tact. However, for the design of station-keeping systems
the dynamics of the floater is of importance. Allowing the
floater to move adds a second path of interaction in addi-
tion to the contact, namely through the fluid. Quite often
this coupling is not included because it involves solving a25

coupled hydrodynamics (HD) problem.

∗Corresponding author. Tel.: +31 15 278 6899
Email address: c.keijdener@tudelft.nl (Chris Keijdener)

[1] This paper addresses the hydrodynamic coupling
between vessel and ice. The focus is placed on the effect of
the presence of level ice on the frequency domain response
of the floating vessel. The fundamental question we an-30

swer is whether the open-water response of the floater is
applicable in the presence of ice. The coupling investigated
in this paper has been addressed in very few studies and,
therefore, its effect remains largely unexplored.

[1] Two fields of research are closely associated with35

the type of coupling addressed in this paper, namely the
field of ice-structure interaction and the field of wave prop-
agation in and wave reflection from ice. In the former the
focus has mostly been placed on the mechanical aspects
of the interaction, namely on the vessel excitation by the40

contact with ice and the resulting failure of the ice. Hy-
drodynamics has been incorporated in the sense that its
effect on these mechanical aspects has been studied. To
the author’s knowledge the most advanced model to date
that includes hydrodynamics is by Valanto (2001), who45

solved the 3D interaction between a forward advancing ice
breaker and an ice plate. The comparison with full-scale
data was very satisfactory. In this model however, the
vessel was kinematically prescribed to move forward at a
constant speed.50

[1] Few studies have included hydrodynamic coupling
between vessel and ice. Tsarau et al. (2014) studied the
coupling between a floater and nearby ice rubble and found
good agreement with model tests performed in a wave
tank. They did not include the effect of the surface waves55
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though. In Su et al. (2010) a numerical model was in-
troduced for the interaction between an ice breaker with
three degrees of freedom and level ice but hydrodynamic
coupling was not accounted for either. A more rigorous
approach is to use CFD but this results in extreme com-60

putation times and hardware requirements. This was done
by Gagnon (2007) and Gagnon and Wang (2012) to study
the collision between an iceberg and a loaded tanker.

[1] Overall it can be concluded that in this field the
amount of studies on the hydrodynamic coupling between65

vessel and ice is limited and no qualitative studies on the
coupling have been done.

[1] In the closely related field of waves in ice infested
waters the interaction between ocean waves and ice sheets
is studied. This field has had a steady activity since the70

1990’s, Squire (1995), and has seen a resurgence in the last
two decades (Squire, 2007). By its very nature this field
has incorporated hydrodynamics from the very beginning
but its goal has been to understand the wave processes that
go on in marginal ice zone (MIZ). The focus was placed on75

understand the reflection and transmission of ocean waves
by the ice. This process, in combination with the result-
ing break-up of the ice, is essential in understanding the
attenuation of waves as they propagate through the MIZ.
Some of the findings in this field are that when waves are at80

normal incidence to an ice edge, at low frequencies nearly
all energy is transmitted into the ice sheet and is almost
fully reflected back into the sea at high frequencies Fox
and Squire (1990). For oblique waves a critical angle ex-
ists beyond which no waves propagate into the ice (Fox and85

Squire, 1994). In both these studies the reflection by the
draft of the ice was ignored, an assumption of minor con-
sequences as shown in, for instance, (Williams and Squire,
2008). Lastly (Chung and Linton, 2005) studied the effect
of a gap between two adjacent semi-infinite ice sheets. In90

this case the reflection coefficient becomes periodic, hav-
ing a series of resonance peaks at regular intervals. When
a vessel operates in the presence of ice, the waves it radi-
ates will also be reflected by the ice, which associates the
problem considered in this paper to the work by Chung95

and Linton.
[1] Because of the apparent lack of studies in this over-

lapping region between the research fields, this work aims
to improve our understanding of the hydrodynamic cou-
pling (HD) coupling between a floater and flexible level100

ice. To this end a very common IFI scenario is studied,
namely the dynamics of a floater in the vicinity of level
ice. The main questions to be answered are:

• How is the frequency domain response of the floater
that is excited by a sinusoidal load affected by the105

presence of a flexible level ice sheet located in close
proximity of the floater?

• Under which circumstances can the floater-ice cou-
pling be neglected?

As this paper aims at obtaining qualitative answers to110

the above-formulated questions, the problem is restricted
to a two dimensional vertical plane and the floater is as-
sumed to be thin. Although the response in the presence
of level ice will be quantitatively different for each floater,
it is postulated that the phenomenon observed and under-115

standing gained from this simple model are applicable to
a broader range of floaters.

In the next section the adopted mathematical model
is defined. After this the solution strategy is explained in
sections 3 and 4. The results are then discussed in section120

5 and lastly conclusions and recommendations are given
in section 6.

2. Model description

The problem to be solved is depicted in Figure 1. A
rigid body, whose thickness is small compared to the water125

depth, floats on the surface of the fluid layer. At a distance
l from the body there is a floating ice sheet that extends
to negative infinity. The goal is to determine the body’s
vertical and rotational motion caused by time harmonic
forces or moments acting on it, while accounting for the130

presence of the ice sheet.

Floater

Water

Ice

H

Ll∞ ∞

z

x

W, Fext

φ Mext

w(x)

Figure 1: The waves generated by the body’s motion reflect at the
ice-open water interface. The pressure exerted by the reflected waves
alter the body’s response.

The model is assumed 2D, which means that the out-
of-plane dimension of the body is much bigger than the
distance to the floating ice sheet. This scenario may be
representative of the heave and roll motions of barges, tab-135

ular icebergs or large pieces of ice rubble. The extension
to three-dimensional bodies would allow for more accu-
rate analysis of other motion types, like pitch and yaw
and would lift the restriction on the out-of-plane dimen-
sion of the body. The extension to embedded bodies (i.e.,140

without ignoring the draft) would enable the analysis of
horizontal motions, such as surge and sway and allow a
more complex geometry of the body to be considered.

The body is excited by external loads. These push it
against the fluid, which in turn offers resistance to the145

body’s motion. Waves are generated at the body-fluid in-
terface, and propagate away from it, see figure 2 on the
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Figure 2: Excitation of the body generates waves (right image) which are party reflected and transmitted by the ice sheet (left image)

right. Waves that propagate to the right, find no hetero-
geneity and therefor do not return to the body. On the
contrary, waves propagating to the left will encounter the150

ice sheet and will be partially transmitted and partially
reflected at the ice edge, see figure 2 on the left. The re-
sponse of the floating body is affected by the reflected wave
field. The influence of the reflected waves on the body’s
response is the main subject of this paper. In the ensuing155

the mathematical problem is formulated and in the next
section the solution method is discussed.

Since the results are studied in the frequency domain,
all equations presented in this paper have already been
transformed to that domain, denoted by a tilde accent.160

The Fourier transform used can be found in Appendix A,
Eq. (A.1).

2.1. Body’s governing equations

The forces acting on the body are the external force
Fext = F̃exte

iωt and moment Mext = M̃exte
iωt and the165

interaction pressure p̂(x) acting along the interface with
the fluid. The equation of motion (EOM) of the body is
therefore:

−ω2

[
m 0
0 J

] [
W̃
ϕ̃

]
(1)

= −
∫ L

0

[
p̂(x)

(x− Cx)p̂(x)

]
dx+

[
F̃ext

M̃ext

]
(2)

where m is the body’s mass, J its rotational inertia, W̃ its
heave motion, ϕ̃ its rotational motion, L its length and Cx170

the x-coordinate of its center of gravity. The integral on
the right-hand side converts the distributed fluid pressure
into equivalent forces and moments with respect to the
center of gravity of the body.

The unknowns of this system of equations are the dis-175

placement W̃ , rotation ϕ̃ and the interaction pressure p̂.
On its own the system is undetermined and must be cou-
pled to the fluid to relate the vessel’s displacements with
the resulting interaction pressure. The fluid governing
equations are described next.180

2.2. Fluid’s governing equations

The fluid is assumed to be incompressible, inviscid and
irrotational allowing it to be described by the Laplace
equation:

∇2φ̃ = 0 ∀ x ∈ (−∞,∞) ∩ z ∈ (−H, 0) (3)

where parentheses denote an open interval and brackets,185

in formulas to follow, a closed one. The displacement po-
tential φ̃(x, z) is defined by:

~u = ∇φ (4)

where ~u contains the horizontal and vertical displacements
of the fluid. [2] A displacement potential (see for instance
Jensen et al. (2011)) is used as it results in a clearer and190

more standard notation from a structural dynamics point
of view.

The governing equation of the fluid must be accompa-
nied by proper boundary conditions (BC) in order for the
system to be determined. At the lower boundary, z = −H,195

the BC prevents penetration of the fluid into the seabed.
This translates into the vertical displacements of the fluid
to be zero:

∂φ̃

∂z

∣∣∣∣∣
z=−H

= 0 ∀ x ∈ (−∞,∞) (5)

At the upper boundary, z = 0, the fluid pressure p̃ must
balance with the external pressure. The fluid pressure is200

calculated according to the linearized Bernoulli equation
[3] for unsteady potential flow (Stoker, 1992):

p̃(x, z) = −ρwb

(
−ω2φ̃+ g

(
∂φ̃

∂z
+ z

))
(6)

where ρw is the fluid density and g is the gravitational
constant. [3] The first term in Eq. (6) introduces linear
hydrodynamic effects, whereas the second term is respon-205

sible for the hydrostatic effects. The dynamic pressure
term was removed by the linearization.

The external surface pressure acting on the fluid sur-
face is position dependent. Under the ice sheet the fluid
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pressure must be equal to that imposed by the dynamically210

flexible ice (which is modeled as an Euler-Bernoulli Beam).
Under the rigid body the pressure is equal to the interac-
tion pressure p̂(x) defined in the previous sub-section and
outside these regions the pressure is zero (as the atmo-
spheric pressure is ignored). In this way, the boundary215

pressure at z = 0 is:

p̃(x, 0) =


−ω2ρiAw̃(x) + EIw̃′′′′(x) ∀ x ∈ (−∞,−l]
0 ∀ x ∈ (−l, 0]

p̂(x) ∀ x ∈ (0, L]

0 ∀ x ∈ (L,∞)

(7)

where [4] w(x) is the vertical displacements of the ice, ρi
is the density of the ice, A its cross-sectional area, w̃(x)
its transverse displacements, E its Young’s modules, I its
second moment of area and the prime denotes a spatial220

derivative. Solving the beam equation requires four BCs.
Two of them are related to the radiation at infinity, which
enforce that no energy propagates from infinity and that
the beam’s deflection is bounded at infinity. The other
two are related to the stress free edge of the ice (free of225

moments and shear forces):

EIw̃′′|x=−l = 0 (8a)

EIw̃′′′|x=−l = 0 (8b)

To ensure a continuity of vertical displacements of ice and
fluid the following kinematic interface condition (IC) ap-
plies:

w̃(x) =
∂φ̃(x, z)

∂z

∣∣∣∣∣
z=0

∀ x ∈ (−∞,−l] (9)

A similar kinematic IC applies between body and fluid.230

However, since the body is rigid the vertical displacements
caused by its rotations have to be included:

W̃ + (x− Cx)ϕ̃ =
∂φ̃

∂z

∣∣∣∣∣
z=0

∀ x ∈ (0, L] (10)

For convenience, the fluid is divided into two regions:
the ice-covered region, x ≤ −l, and the open-water region,
x > −l, see Figure 1. In the open-water region two po-235

tentials are used: φ̃p to capture the waves radiated by the
body and φr to capture the waves that are reflected by the
ice. In the ice-covered region a single potential φ̃t is used
to capture those radiated waves that are transmitted into
the ice-covered region; all waves in this region either prop-240

agate towards negative infinity or, in case of evanescent
modes, decay exponentially with the distance from the ice
edge.

Based on this definition the interaction pressure p̂(x)
is accounted for by φ̃p. Consequently, φ̃r will satisfy the245

pressure release condition at the surface for all x > −l.

However, while satisfying the kinematic IC between body
and fluid, Eq. (9), the summation of both potentials has to
be used because both contribute to the vertical displace-
ments at the surface.250

φ̃ thus is composed of three potentials and their spatial
dependence is:

φ̃(x, z) =

{
φ̃t(x, z) ∀ x ∈ (∞,−l]
φ̃p(x, z) + φ̃r(x, z) ∀ x ∈ (−l,∞)

(11)

∩ z ∈ [−H, 0]

To ensure compatibility and continuity between the two
regions, two extra ICs need be satisfied along their inter-
face:255

φ̃t

∣∣∣
x=−l

=
(
φ̃p + φ̃r

)∣∣∣
x=−l

∀ z ∈ [−H, 0] (12a)

∂φ̃t

∂x

∣∣∣∣∣
x=−l

=

(
∂φ̃r

∂x
+
∂φ̃p

∂x

)∣∣∣∣∣
x=−l

∀ z ∈ [−H, 0] (12b)

The first one ensures a continuity of fluid pressure while
the second one a continuity of horizontal displacements.

The methodology used for solving the defined problem
is discussed next.

3. Discretization260

An analytical solution to the problem as defined above
is difficult because of the integral in the body’s EOM
(Eq. (1)) and the spatial dependence of the IC between
body and fluid (Eq. (10)). To overcome this difficulty
both equations are discretized, starting with the interac-265

tion pressure. The discretization strategy used in this pa-
per is similar to the boundary element method.

3.1. Discretization of the interaction pressure

The integral in Eq. (1) cannot be evaluated directly
because the interaction pressure p̂(x) is unknown. The270

pressure is distributed continuously between (0, L] and so
can be seen as working on infinitely many points. This con-
dition is relaxed by approximating the continuous pressure
with a summation of elements. To illustrate the discretiza-
tion procedure, figure 3 shows a fictitious continuous pres-275

sure profile, depicted by the dashed line. This continues
profile is approximated by the summation of Θ elements,
analogous to a Riemann sum. [5] The approximation in
figure 3 uses eight such elements, i.e. Θ = 8. These ele-
ments are indexed with α. For convenience, the pressure280

is assumed invariant within each element. Increasing the
number of elements lets the approximation converge to the
exact solution.

Figure 4 shows the pressure exerted by a single element
on the fluid. The pressure, with amplitude Pα, is applied285

within the domain of the element (xα−∆x, xα+∆x]. The
element is centered around xα = (α − 1/2)2∆x and has a
width ∆x. This surface pressure excites the fluid, thereby
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x = 0

2Δx

Pα

x = Lxα xΘ

p(x)

Figure 3: The interfacial pressure is discretized using 8 elements,
analogous to the Riemann sum. Within each element α the pressure
is constant and proportional to P̃α.

generating waves which are captured by the potential φ̃α.
Since each element generates its own set of waves, the total290

response of the fluid is given by the combined effect of all
elements and so:

φ̃ =

Θ∑
α=1

φ̃α (13)

After discretization, the integrals over the hull of the
body in Eq. (1) can be evaluated:∫ L

0

p̂(x) dx = 2∆x

Θ∑
α=1

P̃α (14a)

∫ L

0

(x− Cx)p̂(x) dx = 2∆x

Θ∑
α=1

rαP̃α (14b)

where rα = xα − Cx.295

Approximating the continuous profile with the Rie-
mann sum has reduced the number of unknowns to the
Θ unknown complex amplitudes P̃α. The goal is now to
obtain these amplitudes, allowing the interaction problem
to be solved. Doing this requires the fluid response gen-300

erated by each element: φ̃α. These potentials are derived
after the discretization of the IC.

3.2. Discretization of the kinematic body-fluid interface
condition

The second equation that has to be discretized is the305

IC in Eq. (10). Just like the interaction pressure the IC
also applies continuously between (0, L]. Discretizing the
IC will result in a finite number of conditions that need to
be satisfied.

The discretization of the pressure introduced Θ un-310

knowns so enforcing the IC the same amount of times re-
sults in the same number of equations as there are un-
knowns, making the problem solvable. This is done by
enforcing an equivalent IC within the domain of each ele-
ment. There are multiple ways to do this. In this paper the315

average vertical displacement (AVD) within each element
is matched to the AVD of the body within the element’s
domain. Using this strategy the IC in Eq. (10) is replaced

by the following set of Θ equations, indexed with β:

1

2∆x

∫ xβ+∆x

xβ−∆x

(
W̃ + (x− Cx)ϕ̃

)
dx

=
1

2∆x

∫ xβ+∆x

xβ−∆x

∂φ̃(x, z)

∂z

∣∣∣∣∣
z=0

dx

= w̃β ∀ β = 1 . . Θ (15)

where the symbol w̃β is given to the fluid’s AVD within320

element β. Due to the discretization of the pressure, the
fluid response φ̃ is given by the superimposed response of
all elements (see Eq. (13)) and so the IC becomes:

W̃ + rβϕ̃ =
1

2∆x

Θ∑
α=1

∫ xβ+∆x

xβ−∆x

∂φ̃α(x, z)

∂z

∣∣∣∣∣
z=0

dx

=

Θ∑
α=1

w̃α,β ∀ β = 1 . . Θ (16)

where the integral on the left hand side resulted in the
arm rβ = xβ − Cx and the symbol w̃α,β designates the325

contribution of element α to the AVD within element β.
In the next section the discretized problem is solved

and the body’s response is obtained.

4. Solving the problem

The discretization performed in the previous section re-330

sulted in Θ discrete potentials φ̃α, each capturing the fluid
response generated by the surface pressure of the corre-
sponding element α as depicted in figure 4. The next step
in solving the problem is to find an expression for each φ̃α.

4.1. Fluid response due to each element’s surface pressure335

The reflection and transmission processes described be-
fore also occur when the waves generated by each element
hit the ice and so each φ̃α also consists of three potentials:

φ̃α =

{
φ̃t,α ∀ x ∈ (∞,−l] ∩ z ∈ [−H, 0]

φ̃p,α + φ̃r,α ∀ x ∈ (−l,∞) ∩ z ∈ [−H, 0]
(17)

where φ̃p,α is the potential associated with the waves ra-340

diated by element α of the body whereas φ̃r,α satisfies the
pressure release condition in the whole region x ∈ (−l,∞).
The three potentials are depicted in figure 4. Finding φ̃α
therefore implies finding its three constituents.

The final form of each of the three potentials is pre-345

sented next. As the focus of the paper is on the results
rather than the methodology the derivations have been
moved to the appendices.

The final expression of φ̃p,α is shown below. The full
derivation based on the Residue Theorem can be found in350
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Figure 4: The generation of a transmitted and reflected potential
due to the presence of the ice.

Appendix A.

φ̃p,α(x, z) = − P̃α
ρwg

N∑
n=0

γnQ
−1
n In,α(x)Zn(z)

∀ x ∈ (−l,∞) ∩ z ∈ [−H, 0] (18)

where γn is related to [6] the type of contour used for each
root. All roots use a circular shaped contour that fully
encloses its singularity. However, the root k = 0 lays on
the real axis and thus on the integration path and so has355

to be omitted using Cauchy principle value. This results
in a half-circle rather than a full circle. Consequently its
magnitude is halved resulting in the following definition
for γn:

γn =

{
1/2, if n = 0

1, if n > 0
(19)

Qn is the derivative of ω2/g − k tanh(kH) for k = kn:360

Q(k) =
(
ω2/g − k tanh(kH)

)
− k

(
kH sech2(kH) + tanh(kH)

)
(20)

In,α(x) captures the rectangular shape of the pressure el-
ements is given by:

In,α(x) = sgn(x1(x))eikn|x1(x)|

− sgn(x2(x))eikn|x2(x)| (21)

where x1(x) = x− (xα +∆x) and x2(x) = x− (xα −∆x)
[6] capture the distance with respect to the boundaries of
each element and the depth Eigenfunction Zn(z) ensures365

the solution satisfies the Laplace equation and the BC at
the seabed. It is given by:

Z(z) = cosh(k(z +H)) cosh−1(kH) (22)

where Zn(z) = Z(z)|k=kn and lastly the summation is
taken over the kn wavenumbers that satisfy the following
dispersion relation:370

ω2/g − k tanh(kH) = 0 (23)

kn is defined as:

• k0: 0 (generated by the rectangular shape of the
pressure element)

• k1: the negative real pole (propagating mode) of Eq.
(23) where the Sommerfeld radiation condition was375

used to eliminate the positive real pole

• kn, n ≥ 2: the imaginary poles (evanescent modes)
of Eq. (23) located in the upper half-plane (UHP)
in ascending order

In this expression for φ̃p,α(x, z) there is only one unknown;380

P̃α.
It is important to note that the solution sums over

N modes. In actual fact there are infinitely many modes
which satisfy the equations governing φ̃p,α but this infinite
set was truncated at N for practical reasons. The numer-385

ical value of N is determined based on the convergence of
the results.

Next, general expressions for the potentials φ̃t,α and

φ̃r,α are presented. These satisfy the governing equation
(Eq. (3)) and the BC at the seabed (Eq. (5)). The poten-390

tials satisfy different surface conditions; φ̃t,α balances the

fluid pressure with the pressure in the ice and φ̃r,α satisfies
the pressure release condition. Eigenfunction matching is
then used to get these general expression to satisfy the ICs
at x = −l, given by Eqs. (8) and (12). This will result in395

an expression for their modal amplitudes.
First, the general solution for φ̃r,α is presented. Within

the domain of definition of this potential, x > −l, the
surface boundary condition in Eq. (7) simplifies to the
pressure release condition, i.e. p̃ = 0 (the external forcing400

from the pressure element has already been accounted for
by φ̃p,α). The solution, derived in Appendix B, is:

φ̃r,α(x, z) =
N∑
n=1

an,αeikn(x+l)Zn(z)

∀ x ∈ [−l,∞) ∩ z ∈ [−H, 0] (24)

where all amplitudes an,α are unknown and i is the imagi-

nary unit. It is important to note that φ̃r,α sums over the

same modes as φ̃p,α, albeit with different amplitudes, as405

both potentials satisfy the same surface boundary condi-
tions and consequently the same dispersion relation.

Lastly, the general solution for the transmitted poten-
tial is presented. For this potential the surface condition
reduces to a balance between fluid pressure and the pres-410

sure imposed by the Euler-Bernoulli beam used to model
the ice. As shown in Appendix C, this potential can be
represented as:

φ̃t,α(x, z) =

M∑
m=1

ām,αe−ik̄m(x+l)Z̄m(z)

∀ x ∈ (−∞,−l] ∩ z ∈ [−H, 0] (25)
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where all ām,α are unknown, M = N + 2 and Z̄m(z) =
Z(z)|k=k̄m . [7] Because of the presence of the ice this po-415

tential satisfies a different surface condition then φ̃p,α and

φ̃r,α, its roots have to satisfy a different dispersion rela-
tion. The fluid modes in the ice-covered region are thus
different from those in the open-water region. The bar
accent is used to highlight terms affected by this different420

set of modes. The set of roots k̄m that can exist in the
ice-covered region is defined as:

• k̄1,2: the complex poles located in the upper half-
plane which are related to the bending modes of the
beam425

• k̄3: the negative real pole (propagating fluid mode)
related to surface waves of the water layer where the
Sommerfeld radiation condition was used to elimi-
nate the positive real pole

• k̄m,m ≥ 4: the countably infinite imaginary poles430

(evanescent fluid modes) from the upper half-plane
in ascending order

With solutions for all three potentials the IC at x = −l
can be resolved. This is done using Eigenfunction match-
ing, performed in Appendix D, similar too (Montiel et al.,435

2012). During this process expressions are found for the
unknown amplitudes an,α and ām,α and these amplitudes

become proportional to the excitation of φ̃p,α at x = −l.
[8] At this point all potential have become proportional to
the unknown P̃α’s.440

The response of the fluid due to each pressure element,
including the effects of the ice, has now been obtained in
the form of φ̃α. The only remaining unknowns are now
the Θ P̃α’s and the body’s response. The only remain-
ing equations still to be satisfied are the interface between445

body and fluid, Eq. (10), and the body’s EOM, Eq. (1).
All remaining unknowns are found in the next subsection.

4.2. Resolving the body-fluid interface

Now that an expression has been found for φ̃α, the
body-fluid IC can be applied. This will result in an ex-450

pression for each P̃α. The last step is then to solve the
EOM of the body, thereby obtaining the response of the
body and concluding the derivation.

The body-fluid IC was discretized in Eq. (15). It states
that the fluid’s vertical displacement averaged over ele-455

ment β’s domain, i.e. w̃β , should be equal to the body’s
AVD within the same domain. As the fluid response is
given by the combined effect of all elements, see Eq. (13),
the contribution of each element α to the AVD of each
interfacial element β is needed, see Eq. (16). These con-460

tributions are represented by the symbol w̃α,β . After ob-
taining all contributions they can be summed to obtain
the AVD of the fluid w̃β :

w̃β =

Θ∑
α=1

w̃α,β ∀ β = 1 . . Θ (26)

To find an expression for w̃α,β the integral in Eq. (16)
has to be evaluated. Because the body is always located to465

the right of the ice, φ̃α reduces to the summation of φ̃p,α

and φ̃r,α within the domain of the body (see Eq. (17)).
Substituting this into Eq. (16) gives:

w̃α,β = w̃p,α,β + w̃r,α,β

=
1

2∆x

∫ xβ+∆x

xβ−∆x

(
∂φ̃p,α

∂z
+
∂φ̃r,α

∂z

)∣∣∣∣∣
z=0

dx (27)

The contribution of φ̃r,α to element β’s AVD is:

w̃r,α,β =

1

2∆x

N∑
n=1

an,α
ikn

(
eikn(l+xβ+∆x) − eikn(l+xβ−∆x)

)
λn (28)

where λn = Z ′n(0) = kn tanh(knH). The contribution of470

φ̃p,α is:

w̃p,α,β =
2P̃α
ρwg

∞∑
n=0

γnQ
−1
n λnΓn,α,β (29)

where sinc(x) = sin(x)/x and Γn,α,β is given by:

Γn,α,β =

{
ei∆xkn sinc(∆xkn), if α = β

i∆xkne2i∆xkn|α−β| sinc2(∆xkn), if α 6= β

(30)
As each w̃α,β scales linearly with its P̃α (see Eq. (18),

(D.9) and (D.10)), P̃α can be factored out to get:

w̃β =

Θ∑
α=1

w̃p,α,β + w̃r,α,β =

Θ∑
α=1

(Λ̃p,α,β + Λ̃r,α,β)P̃α ∀ β = 1 . . Θ (31)

All Θ equations are now combined into matrix form:475

w̃ = (Λ̃p + Λ̃r)P̃ = Λ̃P̃ (32)

where w̃ and P̃ are Θ × 1 vectors containing the AVD
and pressure of all elements and Λ̃p, Λ̃r and Λ̃ are Θ×Θ

matrices relating the two. [9] Since φ̃p,α is shift-invariant

in x, Λ̃p is a symmetric Toeplitz matrix and thus only
requires Θ evaluations to fill. Due to the dependence on l,480

φ̃r,α is not shift-invariant making Λ̃r a “normal” symmetric
matrix requiring (Θ− 1)2/2 + Θ evaluations to fill.

The IC given in Eq. (16) can be rewritten into matrix
form:

1W̃ + rϕ̃ = w̃ (33)

where 1 and r are Θ× 1 vectors, the former filled with 1’s485

and the latter containing all Θ arms rβ . Combining this

equation with Eq. (32) and solving for P̃ result in:

P̃ = Λ̃−1(1W̃ + rϕ̃) = κ̃W̃ + κ̃ϕϕ̃ (34)
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where the Θ× 1 vectors κ̃ and κ̃ϕ represent the frequency
dependent effective heave and pitch stiffnesses of the fluid
layer.490

Having obtained a relation between the fluid pressure
and body’s response the last step in obtaining the coupled
response is to solve Eq. (34) together with the EOM of
the body. This is done in the next subsection.

4.3. Body’s response495

Now that a relation between the amplitudes P̃α and
the bodies motion’s has been found its EOM can be solved.
The integrals in the EOM (Eq. (3)) were evaluated in Eqs.
(14) which can be rewritten in matrix form:

2∆x

Θ∑
α=1

P̃α = 2∆x(P̃ · 1) (35a)

2∆x

Θ∑
α=1

P̃αrα = 2∆x(P̃ · r) (35b)

Substituting these solutions into the EOM of the body500

(Eq. (1)) yields:

− ω2

[
m 0
0 J

] [
W̃
ϕ̃

]
= 2∆x

[
P̃ · 1
P̃ · r

]
+

[
F̃ext
M̃ext

]
(36)

Rewriting the interaction forces in terms of the effective
stiffnesses introduced in Eq. (34) gives:

−ω2

[
m 0
0 J

] [
W̃
ϕ̃

]
(37)

= 2∆x

[
κ̃ · 1 κ̃ϕ · 1
κ̃ · r κ̃ϕ · r

] [
W̃
ϕ̃

]
+

[
F̃ext

M̃ext

]
(38)

= 2∆xK̃

[
W̃
ϕ̃

]
+

[
F̃ext

M̃ext

]
(39)

Solving this set of equations gives the unknown amplitudes
gives:505 [

W̃
ϕ̃

]
=

(
−ω2

[
m 0
0 J

]
− 2∆xK̃

)−1 [
F̃ext

M̃ext

]
(40)

The frequency response function of the heave and rota-
tional motion have now been obtained. This frequency
response function includes both the effect of the immedi-
ate fluid response through Λ̃p and the effect of the waves

reflected by the ice through Λ̃r, see Eq. (32). By replacing510

Λ̃ by Λ̃p in Eq (34) and then solving the body’s EOM the
ice effect can be removed and the response of the body in
open water can be obtained. This allows for easy com-
parison between the cases when ice is present and when it
is not. In the next section the ice’s effect on the floater’s515

response is studied by comparing these two cases.

5. Results

The goal of this paper is to study the changes in the
frequency domain response of the body due to the presence
of the ice. In this section these changes are studied by520

comparing the body’s response in the presence of ice with
its response in open water. The difference between the two
scenarios will be referred to as the ice effect.

The frequency response matrix (given by Eq. (40))
is complex valued and frequency dependent. It captures525

both the amplitude of the body’s vibration and the phase
lag of the body’s response with respect to the harmonic
loading. In this paper only the amplitude of the response
is focused upon and so the absolute value of the response
is studied.530

As the ice is only present on one side of the body,
the problem is not symmetric in space. [10] The reflected
waves only come from the left side and so exert an assy-
metric pressure on the body that integrates to a non-zero
moment. This implies that even if the vessel is only ex-535

cited in heave, after some time the reflected waves will also
cause a rotational motion. The ice thus couples heave and
rotational motion of the body.

[10] The body is acted upon by two two excitations:
an external vertical force F̃ext and moment M̃ext. These540

excite the heave motion W̃ and rotation ϕ̃. Consequently
there are three items to discuss; 1) the heave response due
to the external force, given the symbol W̃F , 2) the rotation
due to the external moment, ϕ̃M and 3) the coupling terms
W̃M = ϕ̃F .545

For convenience the magnitude of the loads is chosen
such that the resulting quasi-static responses of W̃F and
ϕ̃M are of unit amplitude:

F̃ext = ρwgL → |W̃F |ω=0 = 1 [m] (41a)

M̃ext =
ρwgL

3

12
→ |ϕ̃M |ω=0 = 1 [rad] (41b)

For computing the results the following set of param-
eters are used unless specified otherwise: g = 9.81 m/s2,550

ice thickness h = 1 m, A = h (rectangular cross-section),
I = 1/12h3, ρi = 925 kg/m3, E = 5 GPa, H = 100 m,
ρw = 1025 kg/m3, l = 15 m, Cx = L/2, m = 1E5 kg and
L = 30 m. The thickness of the body is assumed to be
negligible and so J = m/12L2. [2] The default values of555

the environmental parameters (h, ρi, E and H) were set
to mean values observed in nature. For the remaining pa-
rameters it is more difficult to set default value. For this
reason parametric studies will be done to investigate their
influence over a range that was deemed realistic.560

Lastly, based on the convergence of the results, N =
1000 modes and the number of elements Θ is set to Θ =
d∆LLe where ∆L is set to 4 elements per meter. [11] From
internal testing it was established that this is sufficiently
dense to guarantee a converged response of the body for565

the cases addressed in this paper. [2] Because an element
density is used rather than a fixed number, the error is
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independent of L and so the numerical error remains of
constant order of magnitude when performing sensitivity
study on L.570

First the response due to the force is studied and then
due to the moment.

5.1. Excitation by the force

The [12] magnitude of the heave W̃F and rotational ϕ̃F
motion induced by the harmonic force F̃ext are shown in575

figure 5. The superscript i denotes response of the body
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Figure 5: The vertical lines are related to the recurrence rate of the
peaks and is discussed later.

in the presence of ice and the superscript o gives that in
open water. The difference between the two is the ice
effect. The body itself is symmetric and so ϕ̃oF is zero for
all frequencies.580

Two things stand out when looking at this figure: 1)
below a certain frequency the ice has a negligible effect
and 2) above this frequency the ice has a significant effect
and results in a series of peaks. These observations are
explained sequentially.585

5.1.1. No ice effect at low frequencies

The reason for the body to remain unaffected at low
frequencies lies in the reflection and transmission of the
waves incident to an ice edge. Research into this field
started in the 1960’s. An overview of the earlier work is590

given by Fox and Squire (1990). A resurgence of activity
has taken place in the last two decades (Squire, 2007).
In these works it is concluded that, when waves are at
normal incidence to an ice edge, at low frequencies nearly
all energy is transmitted into the sheet and almost fully595

reflected back into the sea at high frequencies.
A corresponding type of behavior can also be seen in

figure 5. Below a frequency of roughly 0.5 [rad/s] almost
no waves are reflected and, consequently, the body is not
effected by the ice. The frequency at which the ice ef-600

fect becomes perceptible is defined as the onset frequency
(OF). The OF is defined as the frequency at which the
reflection coefficient R of an incoming propagating surface
wave k1 first exceeds 1%. The evanescent modes decay
very rapidly in space and so their effect on the response605

of the body is assumed to be negligible. Because of this
only the propagating surface wave is considered. This is

indeed the same definition of the reflection coefficient given
in (Fox and Squire, 1990).
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Figure 6: The OF for a range of ice parameters.

In figure 6 the OF is shown as a function of ice thick-610

ness. The sensitivity of the OF to various parameters
was checked. Of all the environmental parameters in this
model only the ice thickness, its Young’s modulus and the
water depth have a large natural variance. Figure 6 shows
that of these three only the ice thickness has a significant615

influence on the OF. This behavior is consistent with that
found in (Fox and Squire, 1990). The following power func-
tions give an accurate fit of the dependence of the OF on
the ice thickness for the two cases where H = 200 m:

ωof =

{
0.46898h−0.3811 − 0.0531 if E = 5 GPa

0.4183h−0.3882 − 0.0391 if E = 10 GPa
(42)

with an RMS of 0.0026 and 0.0017 [rad/s] respectively.620

Two conclusions can be drawn related to the OF. Firstly,
up to the OF the body is unaffected by the ice as seen in
[13] figure 5. This implies that if a body has a low nat-
ural frequency most of its response occurs at frequencies
below the OF and consequently the ice effect will be min-625

imal. This is further enhanced by thin ice as this greatly
increases the OF. Secondly, above the OF the ice effect is
proportional to the amplitude of the body’s vibration in
open water, see figure 5. If the amplitude above the OF
is small then the ice effect will be small as well. Figure 6630

can thus be used to estimate whether a particular body is
susceptible to ice effects based on its open water response.

It is important to note that the 2D nature of the model
in combination with the simplistic geometry of the body
mean that the above formulated results should only be635

viewed as a first step towards understanding hydrody-
namic coupling between ice and body. Also when the
gap between ice and body becomes very small evanescent
modes might affect the response of the body which will
affect the OF.640

To sum up, the OF in combination with a body’s open
water response can be used to estimate the susceptibility
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of that body to the ice effect. Only the ice thickness has
a significant effect on the OF.

5.1.2. The ice effect after the onset frequency645

In the frequency band above the onset frequency the ice
effect starts to have a pronounced effect on the response of
the body. The most interesting effect is the appearance of
the resonance peaks, see figure [13] figure 5, at a series of
frequencies. The periodicity of these peaks is characterized650

by the following equation:

2l =
2π

|k1(ω)|
j ∀ j = 1 . .∞ (43)

[14] where the absolute value negates the negative sign of
k1. Each frequency found this way is related to the fre-
quency dependent wavelength of the wavenumber k1 being
an integer multiple of twice the gap length. k1 is the only655

propagating surface wave contained in the set kn and is
therefor the only root of interest at larger distances from
the body. These frequencies are shown in figures 5 and 7
with the dotted lines.

Figure 5 shows that there are well-defined frequency660

bands wherein the response is altered by the reflected waves.
When the body oscillates it loses energy in the form of ra-
diated waves and some of this energy is trapped in the gap
between the body and ice in the form of standing wave and
the response of the whole system in general. Within these665

frequency bands the wavelength of the propagating surface
wave approximately coincides with the gap length and the
amount of energy trapped is greatly increased, dramati-
cally amplifying the amplitude of the standing waves.

These quasi-standing waves, of which the nodes oscil-670

late slightly about the positions that can be divised based
on Eq. (43), are visualized in figure 7. The frequencies at
which their amplitudes increases coincide with the frequen-
cies at which the resonance amplification of the response is
seen in figure 5. Standing waves are characterized by the675

quasi-sinusoidal patterns seen in figure 7 at some frequen-
cies. Propagating waves are characterized by a constant
color in the same figure.

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

Frequency [rad/s]

x
-c

o
or

d
in

at
e

[m
]

Figure 7: The surface amplitude within the gap for different frequen-
cies. White represents a small amplitude, black a large.

In addition to the standing waves the phasing of the re-
flected waves is also important. When the reflected waves680

are in-phase with the vertical motions of the body, reso-
nance occurs and the body’s response increases. If the re-
flected waves are in anti-phase with the body, anti-resonance
occurs and its response lowers.

The combined effect of standing waves and (anti-)resonance685

results in the alterations seen in figure 5. When standing
waves occur the rotational motions are greatly amplified
because the standing waves occur only on one side of the
body and are thus asymmetric in space, exerting a mo-
ment and causing the vessel to rock. For the heave motions690

(anti-)resonance can be seen when the standing waves oc-
cur.

5.1.3. Influence of the body’s mass

The influence of the body’s mass on the ice effect is
checked next. This is shown in figure 8. Although the695

range of masses shown in the figure goes into the unphys-
ical regime, as they would cause the body to sink, it is
interesting to check what effect these high masses have.
To reduce the ice effect to a single value the root mean
squared (RMS) over the frequency range of [0, 3] rad/s is700

used.

2 4 6 8
0

5 · 10−2

0.1

0.15

Mass [kg] - log10

R
M

S
[m

]

Ice effect for W̃F

2 4 6 8
0

0.2

0.4

0.6

0.8

Mass [kg] - log10

R
M

S
[m

]

Ice effect for ϕ̃F

L = 30 [m]

L = 60 [m]

L = 90 [m]

Figure 8: The effect of the body’s mass on the ice effect.

Figure 8 clearly shows that increasing the mass lowers
the ice effect. As the mass of the body increases while
the fluid pressure exerted by the reflected waves remain
the same, their overall influence on the response of the705

body lowers. Increasing the mass reduces the magnitude of
the peaks but the frequencies at which they occur remain
unaltered. This is supported by Eq. (43).

5.1.4. Influence of the gap length

The last parameter whose effect will be investigated710

herein is the gap length l. The range that will be checked
is [0, L]. The larger the ratio l/L, the more important 3D
effects become making the results of this 2D model less
accurate. For this reason an upper bound of L is used.
Special attention is given to the case when ice and body715
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are almost in contact, i.e. l → 0. Figure 9 shows the
influence of l on the ice effect.
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Figure 9: The effect of the gap length l on the response with nearby
ice. White is a large amplitude and black a small.

Two things stand out in the figure. Firstly increasing
l reduces the spacing between the peaks and introduces
more of them. This is consistent with Eq. (43). Secondly,720

the body’s response is affected by the ice when l = 0 as
shown in figure 10.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Frequency [rad/s]

F
D

R
[m

,
d

gr
]

W̃ o
F

ϕ̃oF

W̃ i
F

ϕ̃iF

Figure 10: The main peak of the FDR is amplified when l = 0.

Although no standing waves can occur at this gap length,
the phasing of the reflected wave still results in (anti-
)resonance. The resulting peak is slightly higher than the725

one in open water and is shifted to a higher frequency.
With this the analysis of the body’s response excited

by the harmonic force is concluded.

5.2. Excitation by the moment

Next the response caused by the external moment is730

studied. Since the coupling terms are the same (ϕ̃F =
W̃M ) W̃M will not be discussed again so the analysis in
this subsection is limited to ϕ̃M . ϕ̃M is shown below using
the default set of parameters:

ϕ̃M looks qualitatively the same as W̃F studied before.735

The OF is independent of the body so it also applies to
an excitation by the moment. The peaks and troughs are
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Figure 11: ϕ̃M for the default parameters.

again caused by the standing waves in combination with
(anti-)resonance. For very small gap lengths the same ef-
fects occur as seen in figure 10. The behavior of ϕ̃M is740

qualitatively the same as W̃F so no further studies are
done.

5.3. Discussion of results

[3] As this study is theoretical, a comparison with rel-
evant model tests is desired. In particular a critical look745

must be given to the assumption of linearity as model tests
have shown that nonlinearities can play an important role
for this type of interaction.

[3] In (Toffoli et al., 2015, Nelli et al., 2017) the in-
teraction between a floating elastic plate and incoming750

monochromatic waves is studied in a two-dimensional wave
basin experimental campaign. During these experiments
it was observed that for steep waves water can wash on
top of the ice floes, a process called overwash (Bennetts
et al., 2015). Overwash acts as an amplitude dependent755

wave energy dissipation mechanism. A comparison of their
theoretical model, also based on linear theory, with their
experimental results show that the linear model correctly
predicts the transmitted amplitudes for low incident steep-
ness. As the steepness increases, overwash starts to play760

an increasingly important role and consequently the trans-
mitted amplitudes are overpredicted.

[3] As the model presented in this paper is also lin-
ear, overwash is not accounted for. Estimating whether it
would occur is not possible because the magnitude of the765

external loads are not based on a physical process and so
no quantitative statements can be made about the steep-
ness of the waves. Despite this, some reservations are in
order based on their findings. Particularly, the amplified
response of the fluid within the gap at the resonance fre-770

quencies will be especially susceptible to overwash. As
overwash acts as limiting mechanism on the amplitudes
of these waves, they might not reach the amplitudes pre-
dicted by the linear model. This, in turn, implies that the
amplification of the body’s response at these frequencies775

will be lower than those predicted as overwash dissipates
energy.
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[3] Additionally, when overwash occurs energy can shift
to higher harmonics in the reflected wave field and ulti-
mately become irregular all together (Bennetts et al., 2015,780

Nelli et al., 2017). This effect also disrupts the resonance
build-ups observed in this paper. The qualitative results
presented in this paper are thus only valid for waves with
a low steepness and consequently for relatively small mo-
tions of the body.785

[3] Lastly, (Nelli et al., 2017) shows that significant
drift of the floating plate can occur. Drift forces are not
included in the linear model presented in this paper. As
the body in this model represents a vessel it would nor-
mally have a station-keeping system that would counteract790

these forces. Even so, the second order wave drift forces
act additive to the first order forces studied in this paper
and consequently the qualitative results on the effect of
the first order forces remain valid.

6. Conclusions and recommendations795

In this paper the effects of a nearby level ice sheet on
the frequency domain response of a floating body was in-
vestigated. Once subjected to an external sinusoidal exci-
tation, the body starts to generate waves that propagate
away from it. Those waves falling on ice sheet are partly800

transmitted into the ice sheet and partly reflected back
towards the body. The reflected waves interact with the
body, altering its response. How the presence of the ice
affects the body’s response, i.e., the ice effect, was studied
in this paper using a 2D model. Based on the numerical805

results presented the following conclusions can be drawn.
Below a certain onset frequency the waves reflected by

the ice sheet are negligible and consequently the body does
not feel the presence of the ice. Above the onset frequency
the ice effect is proportional to the response of the body810

in open water. Consequently, the susceptibility of a body
to the ice effect can be estimated by checking how much
of its open water response occurs above or below the onset
frequency.

Above the onset frequency the waves reflected by the815

ice have a pronounced effect on the response of the floater.
Quasi-standing waves can occur within the gap between
ice and body in certain frequency ranges. Within certain
frequency ranges, of which there are infinitely many, half
the wavelength of the propagating surface wave of the wa-820

ter layer is approximately an integer multiple of the gap
length causing the amplitude of these standing waves to be
greatly amplified. Increasing the gap length reduces the
spacing (in frequency) of these ranges, i.e. they occur at
more frequencies.825

Within these ranges the response of the body is sig-
nificantly altered. Depending on the phasing between the
reflected waves and the body’s motions resonance or anti-
resonance can occur. Even when there is no gap between
ice and body the amplitude of the body can still be am-830

plified and its natural frequency somewhat shifted.

Changes in the ice thickness have a significant influence
on onset frequency while changes in the Young’s modules
of the ice and the water depth do not. Lower thicknesses
increase the onset frequency. Increasing the mass of the835

body reduces the magnitude of the ice effect.
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Appendix A. Derivation of φ̃p,α

In this appendix φ̃p,α(x, z) is derived. The problem
statement is given in section 2.2. The inverse Fourier845

transform from k to x which arises will be carried out
using contour integration.

For the derivation in this appendix and the subsequent
ones the following Fourier transform and its inverse are
used (an equivalent one is used for the transformation from850

x to wavenumber k):

f̃(ω) = F(f(t)) =

∫ ∞
−∞

f(t)e−iωt dt (A.1a)

f(t) = F−1(f̃(ω)) =
1

2π

∫ ∞
−∞

f̃(ω)eiωt dt (A.1b)

As a first step, the EOM of the fluid, Eq. (3), is trans-
formed to the wavenumber-frequency domain:

−k2 ˜̃
φα +

∂2 ˜̃
φα

∂z2
= 0 ∀ z ∈ (−H, 0) (A.2)

Solving this ordinary differential equation for
˜̃
φα gives:

˜̃
φα(k, z) = c1 cosh(kz) + c2i sinh(kz)

∀ z ∈ (−H, 0) (A.3)

Substituting Eq. (A.3) into the BC at the seabed (Eq.855

(5)) gives:

c2 = c1 tanh(kH) (A.4)

Substituting this into the expression of
˜̃
φα and rewriting

gives:

˜̃
φα = c1

cosh(k(z +H))

cosh(kH)
= c1Z(k, z) (A.5)

The BC at the surface, z = 0, is:

p̃|z=0 =

{
P̃α ∀ x ∈ (xα −∆x, xα +∆x]

0 otherwise
(A.6)
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Transforming this equation into the wavenumber-domain860

gives:

− ρwb

(
−ω2 ˜̃

φα + g
∂

˜̃
φα
∂z

)∣∣∣∣∣
z=0

= P̃α
e−ik(xα+∆x) − e−ik(xα−∆x)

−ik
(A.7)

where the fluid pressure p̃(x) is given by Eq. (6). Substi-

tuting the previously found expression for
˜̃
φα and solving

for the unknown amplitude c1 gives:

c1 =
P̃α
ρwg

i

k

e−ik(xα+∆x) − e−ik(xα−∆x)

ω2/g − k tanh(kH)
(A.8)

Finally, the expression for the potential in the (x, z)-domain865

is obtained using the inverse Fourier transform with re-
spect to the wavenumber k:

φ̃α(x, z) =

iP̃α
ρwg

1

2π

∫ ∞
−∞

1

k

eik(x−(xα+∆x)) − eik(x−(xα−∆x))

ω2/g − k tanh(kH)
Z(k, z) dk

(A.9)

The basic integral to be taken in order to evaluate Eq.
(A.9) is:

Φ̃(x̂, z) =
iP̃α
ρwg

1

2π

∫ ∞
−∞

1

k

eikx̂Z(k, z)

ω2/g − k tanh(kH)
dk (A.10)

The solution to the original problem can then be obtained870

using:

φ̃α(x, z) = Φ̃(x− (xα +∆x), z, ω)

− Φ̃(x− (xα −∆x), z, ω) (A.11)

In order to evaluate the basic integral it will be con-
verted into a contour integral. The original integration
range is a line (in the complex k-plane) ranging from −∞
to ∞ along the real axis. To obtain a closed contour C,875

the original integration range is closed by adding a seg-
ment which connects its extremities, i.e. the positive and
negative real-valued infinities. This will be done using a
semi-circle with infinite radius which will go over either up-
per or lower half-plane, depending on the sign of x̂. Using880

the residue theorem, the integral can then be represented
as a summation of the residues of the integrand evaluated
at the poles enclosed in the contour. Before starting with
this procedure the following definitions are made:

Φ̃(x̂, z) =

∫ ∞
−∞

I(k) dk =

∫ ∞
−∞

Inum(k)

Idenom(k)
dk (A.12)

The conversion to a contour integral can only be done885

if the integral evaluates to zero along the added segment
as otherwise the result of the integral would change. This

requires the integrand to converge to zero in the limit of
|k| → ∞ along the added segment. To assure this, the
integrand is analyzed starting with Z(k, z):890

Z(k, z) =
exp(k(z +H)) + exp(−k(z +H))

exp(kH) + exp(−kH)
(A.13)

The extra segments spans one half-plane and so the values
k will take on the segment will be complex. The imaginary
part of k results in oscillatory behavior bounded between
-1 and 1 and so does not effect convergence. For the real
part the two extremes are considered: k → ±∞. Both895

numerator and denominator become infinite at those ex-
tremes. However, since z+H ∈ [0..H] < H, the numerator
is equal or smaller than the denominator, making the am-
plitude of Z(z) bounded.

As the integrand goes to infinite at its poles, all the900

poles have to be identified to make sure that the extra
segment does not cross any of them:

• k−1: This term generates a single simple pole, namely
k = 0.

• (ω2/g − k tanh(kH))−1: This is the dispersion rela-905

tion of surface waves. This term generates two sim-
ple poles of opposite sign located on the real-axis
related to propagating surface waves. In addition, it
generates two countably infinite sets of simple poles
of opposite sign located on the imaginary axis which910

have an accumulation point at ±i∞. However, as
all poles fall inside the proposed contour, the con-
tour does not cross them and so the accumulation
point does not influence the convergence.

• cosh−1(kH): This term does not generate poles be-915

cause its zeros are negated by the cosine inside the
tangent hyperbolic.

Lastly, the exponent is analyzed. Its dependence on x
dictates which half-plane has to be used:

lim
k→∞

eikx̂ = 0 →

{
C closes over UHP if x̂ > 0

C closes over LHP if x̂ < 0

(A.14)
where LHP and UHP mean the lower and upper half-plane.920

Even for the special case when x = 0 the integrand still
converges to zero since the integrand is proportional to
1/k2 when |k| → ∞. This means that the integrand con-
verges unconditionally as long as the correct half-planes is
used.925

Since the integral converges to zero along the added
segment it can be added to the integration path without
changing the result of the integral. The obtained contour
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integral is now evaluated using Cauchy’s integral formula:∮
C

I(k) dk =

{
2πi
∑

poles in UHP Res I(kn) if x̂ > 0

−2πi
∑

poles in LHP Res I(k−n ) if x̂ < 0

=

2πi
∑∞
n=0 γn

Inum(k)
I′denom(k)

∣∣∣
k=kn

if x̂ > 0

−2πi
∑∞
n=0 γn

Inum(k)
I′denom(k)

∣∣∣
k=k−n

if x̂ < 0

(A.15)

where k−n are the roots located in the LHP and kn those930

in the UHP. kn is defined as follows:

• k0: 0 (generated by the rectangular shape of the
pressure element)

• k1: the negative real pole (propagating mode) of the
ω2/g − k tanh(kH) where the Sommerfeld radiation935

condition was used to eliminate the positive real pole

• kn, n ≥ 2: the imaginary poles (evanescent modes)
located in the UHP from ω2/g − k tanh(kH) in as-
cending order

Since the dispersion relation ω2/g−k tanh(kH) is an even940

function in k, its poles are mirrored in the real and imag-
inary axis. This implies that its poles in the LHP are
minus the poles in the UHP and so k−n = −kn. Lastly,
since the first pole (k = 0) falls on integration part it has
to be excluded using Cauchy principal value. To this end945

a semi-circle with an infinitesimal radius is used. γn is in-
troduced to account for the contribution of k = 0 which is
half compared to the poles that fall inside the contour:

γn =

{
1/2, if n = 0

1, if n > 0
(A.16)

The derivative of the denominator in Eq. (A.15) is given
by:950

I ′denom(k) =
∂

∂k

(
k(ω2/g − k tanh(kH))

)
=
(
ω2/g − k tanh(kH)

)
− k

(
kH sech2(kH) + tanh(kH)

)
= Q(k)

(A.17)

Combining all these results Eq. (A.10) becomes:

Φ̃(x̂, z, ω) =

− P

ρwg

{∑∞
n=0 γnQ

−1(kn)eiknx̂Z(kn, z), if x̂ > 0

−
∑∞
n=0 γnQ

−1(−kn)e−iknx̂Z(−kn, z), if x̂ < 0

(A.18)

where κn was replaced by −kn. Since both Q(k) and
Z(k, z) are even functions in k this equation can be further

simplified to:

Φ̃(x̂, z, ω) = − P

ρwg
sgn(x̂)

∞∑
n=0

γnQ
−1(kn)eikn|x̂|Z(kn, z)

(A.19)

= − P

ρwg
sgn(x̂)

∞∑
n=0

γnQ
−1
n eikn|x̂|Zn(z) (A.20)

Using this result φ̃α(x, z) can be constructed using Eq.955

(A.10) which results in:

φ̃p,α(x, z) = − P̃α
ρwg

N∑
n=0

γnQ
−1
n In,α(x)Zn(z) (A.21)

where In,α(x) is given by:

In,α(x) = sgn(x1(x)) eikn|x1(x)| − sgn(x2(x)) eikn|x2(x)|

(A.22)
where x1(x) = x− (xα +∆x) and x2(x) = x− (xα −∆x).

It is important to note that k0 only contributes to the
domain xα − ∆x < x ≤ xα + ∆x. When considering the960

summed effect of all elements this limits the effect of k0

to (0, L]. This is important when the orthogonality of the
modes is considered when resolving the interface between
ice and water in Appendix D. This is because the interface
is located at x = −l and thus falls outside (0, L], making965

the contribution of k0 to disappear.
This concludes the derivation of the fluid response φ̃p,α(x, z)

to the excitation of pressure element α.

Appendix B. Derivation of φ̃r,α

The derivation of φ̃r,α is very similar to that of φ̃p,α.970

All governing equations are the same except for the BC at
the surface and so its derivation can start from Eq. (A.5):

˜̃
φr,α = aαZ(k, z) (B.1)

where aα is the unknown amplitude. The external forcing
in Eq. (7) caused by the pressure element has already been975

accounted for by φ̃p,α and so φ̃r,α must satisfy the pressure
release condition at its surface, i.e. p = 0. This results in
the same dispersion relation in the (k, z, ω)-domain:

−ω2 + gk tanh(kH) = 0 (B.2)

This equation is again solved for k resulting in the same
set of roots kn as found in section Appendix A with the980

exception that n now starts at 1 due to the absence of
the pressure element. Based on this the expression for the
reflected potential becomes:

φ̃r,α =

N∑
n=1

an,αeikn(x+l)Zn(z)

∀ x ∈ [−l,∞) ∩ z ∈ [−H, 0] (B.3)
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where the modal amplitudes an,α are still unknown and
the plus in the exponent is due to all the waves having985

to propagate away from the ice-water interface and this
potential being restricted to the right side of the interface
(x > −l).

Appendix C. Derivation of φ̃t,α

Apart from the BC at the surface all other equations990

are the same as in the previous section and so the trans-
mitted potential φ̃t,α starts off with the same expression
as before:

˜̃
φt,α = āαZ(k, z) (C.1)

where the overbar will be used to differentiate terms re-
lated to the ice region from those related to the open water995

region. For this potential the BC at the surface (Eq. (7))
simplifies to the following:

−ω2ρiAw̃ + EI
∂4w̃

∂x4
= p̃|z=0 (C.2)

Using Eq. (9) to express w̃ in terms of φ̃t,α and using Eq.
(6) for the fluid pressure this BC results in the following
dispersion relation after transforming to the wavenumber-1000

domain:

āα

(
−ω2ρiA+ EIk4 + ρwg − ρwb

ω2

λ(k)

)
λ(k) = 0 (C.3)

where λ(k) = Z ′(k, 0) = k tanh(kH). This dispersion re-
lation is solved for k resulting in a countable set of roots
k̄m which is defined as:

• k̄1,2: the complex poles located in the upper half-1005

plane which are related to the bending modes of the
beam

• k̄3: the negative real pole (propagating fluid mode)
related to the free surface where the Sommerfeld ra-
diation condition was used to eliminate the positive1010

real pole

• k̄m,m ≥ 4: the countable set of imaginary poles
(evanescent fluid modes) from the upper half-plane
in ascending order

Based on this, the transmitted potential becomes:1015

φ̃t,α =

M∑
m=1

ām,αe−ik̄m(x+l)Z̄m(z)

∀ x ∈ (−∞,−l] ∩ z ∈ [−H, 0] (C.4)

where the infinite summation was truncated at M for prac-
tical reasons, the modal amplitudes ām,α are still unknown,
the minus in the exponent ensures that all waves propagate
away from the interface and lastly Z̄m(z) = Z(k̄m, z).

Appendix D. Resolving the interface at x = −l1020

In this appendix the IC between the open water and
the ice covered region is resolved. When the waves caused
by the pressure elements arrive at the ice some will be
reflected back, generating the reflected potential φ̃r,α and
some will be transmitted into the ice covered domain, gen-1025

erating the transmitted potential φ̃t,α. An illustration of
the problem to be solved is given in figure 4.

The three potentials derived in the previous appendices
satisfy all conditions except the IC at x = −l. At this loca-
tion the following two beam-related stress-free boundaries1030

apply at z = 0:

EI
∂3φ̃t,α

∂zx2

∣∣∣∣∣
x=−l,z=0

= 0 →
M∑
m=1

āmk̄
2
mλ̄m = 0

(D.1a)

EI
∂4φ̃t,α

∂zx3

∣∣∣∣∣
x=−l,z=0

= 0 →
M∑
m=1

āmk̄
3
mλ̄m = 0

(D.1b)

where λ̄m = λ(k̄m) = k̄m tanh(k̄mH).
In addition, for z ∈ (−H, 0) the ICs between the fluid

regions need to be satisfied, Eq. (12). They ensure a conti-
nuity of horizontal displacements and (linearized) pressure1035

throughout the water column:

∂φ̃t,α

∂x

∣∣∣∣∣
x=−l

=

(
∂φ̃r,α

∂x
+
∂φ̃p,α

∂x

)∣∣∣∣∣
x=−l

(D.2a)

−ρwb

(
−ω2φ̃t,α + g

∂φ̃t,α

∂z

)∣∣∣∣∣
x=−l

=

− ρwb

(
−ω2

(
φ̃r,α + φ̃p,α

)
+ g

(
∂φ̃r,α

∂z
+
∂φ̃p,α

∂z

))∣∣∣∣∣
x=−l

(D.2b)

Through the Laplace equation (Eq. (3)), enforcing a con-
tinues horizontal displacements also guarantees a conti-
nuity of vertical displacements. From this it follows that

the hydrostatic pressure terms in Eq. (D.2b), −ρwbg ∂φ̃∂z ,1040

are already continues across the interface. Next, the re-
maining hydrodynamic pressure terms are proportional to
the potentials themselves (after applying a Fourier trans-
form from time to frequency) and so a continuity of poten-
tials themselves will ensure a continuity of fluid pressure.1045

Therefore Eq. (D.2b) will be satisfied when the following
simpler condition is satisfied:

φ̃t,α

∣∣∣
x=−l

= (φ̃r,α + φ̃p,α)
∣∣∣
x=−l

(D.3)

To satisfy these two equations the orthogonality prop-
erty of the depth Eigen function Zn(z) will be used. To
do this, both sides of Eq. (D.2a) and (D.3) are multi-1050

plied by Zj(z), where all kj satisfy the dispersion relation
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in Eq. (B.2), and then integrated along z from −H to
0. Noting again that the contribution of k0 is zero when
x 6∈ (0, L] and that the interface falls outside this region
(see Figure 4), k0 will not contribute to the evaluation of1055

φ̃p,α at x = −l. Consequently, all remaining N modes of

φ̃p,α satisfy the dispersion equation in Eq. (B.2) and will
therefor be orthogonal to Zj(z). The procedure will first
be applied to Eq. (D.2a):

M∑
m=1

ām,α
λ̄m − λj
k̄2
m − k2

j

(−ik̄m) =

N∑
n=1

an,α
λn − λj
k2
n − k2

j

(ikn)

− P̃α
ρwg

N∑
n=1

Q−1
n I

′

n,α(−l)λn − λj
k2
n − k2

j

∀ j = 1 . . N

(D.4)

where the summation over N starts at 1 to skip k0, λn =1060

λ(kn) and I ′n,α(−l) = −iknIn,α(−l). Since λn = λj =
ω2/g, see Eq. (B.2), the right hand side of Eq. (D.4) is
zero unless n = j and so the summation on the right hand
side disappears:

M∑
m=1

ām,α
λ̄m − λj
k̄2
m − k2

j

(−ik̄m) =

− Qj
2k2
j

(ikj)

(
aj,α +

P̃α
ρwg

Q−1
j Ij,α(−l)

)
(D.5)

∀ j = 1 . . N (D.6)

where limkn→kj (λn−λj)(k2
n−k2

j )−1 = (knH sech2(knH)+1065

tanh(knH))(2kj)
−1 = −Qj (2k2

j )−1. Since now all roots
satisfy the dispersion relation given by Eq. (B.2) (previ-
ously k0 did not) Qn, given in Eq. (A.17), simplifies to:

Qn = −kn
(
knH sech2(knH) + tanh(knH)

)
∀ n > 0 (D.7)

The same procedure is now applied to the IC prescrib-
ing a continuity of potentials, Eq. (D.3), resulting in:1070

M∑
m=1

ām,α
λ̄m − λj
k̄2
m − k2

j

= − Qj
2k2
j

(
aj,α −

P̃α
ρwg

Q−1
j Ij,α(−l)

)
∀ j = 1 . . N (D.8)

Eq. (D.8) is now multiplied by −ikj and added to Eq.
(D.5) to get the final expression for the ICs of the fluids:

M∑
m=1

ām,α
λ̄m − λj
k̄m − kj

=
P̃α
ρwg

Ij,α(−l)
kj

∀ j = 1 . . N

(D.9)
This gives N equations to be satisfied. Together with the
two equations from the beam’s BCs, Eq. (8), a total of
N + 2 equations need to be satisfied. This means N + 21075

unknown ām’s are needed and so M = N + 2. The overall
number of modes, given by N , will be determined later

based on the convergence of the model’s output. Once
the linear problem for ām,α has been solved the unknown
amplitude an,α are easily obtained using:1080

an,α = −2k2
n

Qj

M∑
m=1

ām,α
λ̄m − λn
k̄2
m − k2

n

+
P̃α
ρwg

Q−1
n In,α(−l)

∀ n = 1 . . N (D.10)

The amplitudes of the transmitted and reflected poten-
tials have now been obtained. The combined effect of all
three potentials gives the response due to the excitation of
a single pressure element α, including the effects of the ice
covered region.1085
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