<]
TUDelft

Delft University of Technology

Topology-Driven Parallel Trajectory Optimization in Dynamic Environments

De Groot, Oscar; Ferranti, Laura; Gavrila, Dariu M.; Alonso-Mora, Javier

DOI
10.1109/TR0O.2024.3475047

Publication date
2024

Document Version
Final published version

Published in
IEEE Transactions on Robotics

Citation (APA)

De Groot, O., Ferranti, L., Gavrila, D. M., & Alonso-Mora, J. (2024). Topology-Driven Parallel Trajectory
Optimization in Dynamic Environments. IEEE Transactions on Robotics, 41, 110-126.
https://doi.org/10.1109/TR0O.2024.3475047

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TRO.2024.3475047
https://doi.org/10.1109/TRO.2024.3475047

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

110

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Topology-Driven Parallel Trajectory Optimization
in Dynamic Environments

Oscar de Groot”, Laura Ferranti

and Javier Alonso-Mora

Abstract—Ground robots navigating in complex, dynamic en-
vironments must compute collision-free trajectories to avoid ob-
stacles safely and efficiently. Nonconvex optimization is a popu-
lar method to compute a trajectory in real time. However, these
methods often converge to locally optimal solutions and frequently
switch between different local minima, leading to inefficient and
unsafe robot motion. In this work, we propose a novel topology-
driven trajectory optimization strategy for dynamic environments
that plans multiple distinct evasive trajectories to enhance the
robot’s behavior and efficiency. A global planner iteratively gen-
erates trajectories in distinct homotopy classes. These trajectories
are then optimized by local planners working in parallel. While
each planner shares the same navigation objectives, they are lo-
cally constrained to a specific homotopy class, meaning each local
planner attempts a different evasive maneuver. The robot then
executes the feasible trajectory with the lowest cost in a receding
horizon manner. We demonstrate on a mobile robot navigating
among pedestrians that our approach leads to faster trajectories
than existing planners.

Index Terms—Collision avoidance, constrained motion planning,
motion and path planning, optimization and optimal control.

I. INTRODUCTION

OBILE robots are being deployed in increasingly more
M complex environments, for example, to automate logis-
tics in warehouses [1] or mobility through self-driving cars [2].
However, it remains challenging to safely and efficiently navi-
gate complex dynamic environments.

In dynamic environments, a robot must make both high-
level and low-level decisions. High-level decisions involve, for
example, choosing the general direction for safely avoiding

Received 4 June 2024; accepted 20 August 2024. Date of publication 4 Oc-
tober 2024; date of current version 6 December 2024. This work was supported
in part by the Dutch Science Foundation NWO-TTW within the Veni project
HARMONIA under Grant 18165, in part by the European Union within the ERC
Starting Grant INTERACT under Grant 101041863, and in part by the EVENTS
Project under Grant 101069614. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of the European
Union or European Commission. Neither the European Union nor the granting
authority can be held responsible for them. This article was recommended for
publication by Associate Editor P. Cai and Editor D. Hsu upon evaluation of the
reviewers’ comments. (Corresponding author: Oscar de Groot.)

The authors are with the Department of Cognitive Robotics, TU Delft, 2628
CD Delft, The Netherlands (e-mail: o.m.degroot@tudelft.nl).

Video: https://youtu.be/kXUAIdQXrNk

Code: https://github.com/tud-amr/mpc_planner

This article has supplementary downloadable material available at
https://doi.org/10.1109/TR0O.2024.3475047, provided by the authors.

Digital Object Identifier 10.1109/TRO.2024.3475047

, Member, IEEE, Dariu M. Gavrila

, Member, IEEE,

, Senior Member, IEEE

Distinct Guidance
Trajectories P\

l

Distinct Locally
Optimal Trajectories

Fig. 1. T-MPC first computes distinct guidance trajectories in the state space
(time is visualized in the upwards direction). Each guidance trajectory initializes
a local planner, resulting in several distinct locally optimized trajectories. The
locally optimized trajectories each pass the obstacles (predicted future motion
visualized as cylinders) in a distinct way.

obstacles (e.g., going left or right). Low-level decisions involve,
for example, determining the exact shape of a trajectory that
is both collision-free and dynamically feasible. While these
decisions operate on separate levels of the planning problem,
they are often not differentiated, which can degrade planner
performance in terms of time efficiency and safety. Existing
methods make the high-level decision implicitly [3], [4], [5],
do not distinguish the high-level and low-level decisions [6],
[71, only consider static obstacles in the high-level decision [8]
or require a structured environment to make the high-level deci-
sion [9], [10], [11]. We propose a trajectory optimization algo-
rithm that accounts for these two levels of the planning problem
explicitly.

Widely used optimization-based local planners, such as
model predictive control (MPC) [3], formulate the motion plan-
ning problem as an optimization problem that can efficiently
compute trajectories satisfying dynamic and collision avoidance
constraints. Optimization-based planners make high-level deci-
sions implicitly through the initialization of the optimization and
tuning of the cost function. The planner explores only a small set
of possible motion plans near the initial guess. An inadequate

1941-0468 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6527-7367
https://orcid.org/0000-0003-3856-6221
https://orcid.org/0000-0002-1810-4196
https://orcid.org/0000-0003-0058-570X
mailto:o.m.degroot@tudelft.nl
https://youtu.be/kXUAldQXrNk
https://github.com/tud-amr/mpc_planner
https://doi.org/10.1109/TRO.2024.3475047

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 111

initial guess may lead to a poor (i.e., slow or nonsmooth) trajec-
tory, slow convergence, or infeasibility. When the initial guess
is not consistent over multiple planner cycles, the planner can
repeatedly switch its high-level decision, leading to indecisive
behavior.

Alternatively, global planners, such as randomly exploring
random trees (RRT*) [7] and motion primitives [6], generate
many feasible trajectories, evaluating safety and performance
for each. Because they do not distinguish between high-level
and low-level decisions, many redundant poor trajectories may
be generated, leading to poor-quality motion plans under strict
computational limits. This issue is especially prevalent in highly
dynamic environments where trajectories need to be computed
fast.

In this work, we present a planning framework, which we
refer to as Topology-driven Model Predictive Control (T-MPC)
(see Fig. 1) that leverages the strengths of optimization-based
planners and global planners.

We present a global planner that identifies several distinct,
high-level navigation options by considering the topology of
the dynamic collision-free space. The underlying topology al-
lows us to distinguish between similar and distinct trajectories.
We then use each high-level trajectory as initialization for an
optimization-based planner. The low-level planning problems
are independent and are solved in parallel. Our framework does
not modify the cost function of the optimization-based planner
and can select the executed trajectory by comparing their optimal
costs.

II. RELATED WORK AND CONTRIBUTION

Motion planning methods can be divided into local and global
planning methods and combinations of these methods.

1) Local Planners: Local planners such as MPC [3], [12]
typically formulate trajectory planning as a nonlinear optimiza-
tion problem where performance (e.g., progress and smooth-
ness) is optimized under constraints (e.g., dynamic constraints
and collision avoidance). MPC can plan time efficient and
smooth trajectories and handles various constraints, for example,
to account for uncertainty in human behavior [4], [13], [14],
[15]. However, because the collision-free space is nonconvex
(obstacle regions are excluded), the optimized trajectory is lo-
cally optimal, and there may therefore exist a lower cost motion
plan than the returned solution. This may occasionally result in
poor (e.g., slow, nonsmooth) trajectories and can prevent MPC
from returning a feasible trajectory in time.

To mitigate infeasibility with MPC, some authors propose
to use two trajectories where one features as a contingency
plan [16], [17] improving planner safety. The planner may
still perform poorly when the contingency plan is activated.
Alternatively, robustness can be improved by running several
optimizations in parallel. For example, in [18], an MPC is paral-
lelized over goal locations, but requires a structured environment
and a specific cost function and constraint set.

2) Global Planners: In contrast with local planners,
global planners do not rely on nonconvex optimization and,
therefore, do not get trapped in local optima. Sampling-based

global planners such as RRT* [7] and probabilistic roadmaps
(PRM) [19] plan by randomly sampling and connecting states
in the configuration space until a goal configuration is reached.
These methods typically consider static obstacles. In dynamic
environments, RRT* [20] continuously rewires the graph. Re-
cent work [21] greatly improved the computational efficiency
of sampling-based planners for high-dimensional problems by
using topological abstraction over fiber bundles. Unfortunately,
these methods remain computationally demanding when dy-
namic constraints and collision avoidance are imposed on the
problem and may return nonsmooth trajectories.

Motion primitive planners (e.g., [6], [22]) instead generate
a large number of trajectories that are dynamically feasible by
construction. The best trajectory is identified by scoring each tra-
jectory. Motion primitives planners efficiently compute smooth
trajectories, but discretize the possible maneuvers, which can
lead to infeasibility and inefficient robot motion. For static
environments, Ortiz-Haro et al. [23] presented a smooth global
planner that repairs dynamic mismatches between global plans
through trajectory optimization. It is, however, computationally
demanding. Similarly, PiP-X [24] combines graph-search with
funnels to find robust dynamically feasible paths but may return
inefficient trajectories. In [25], the motion planning problem
with collision avoidance is solved via a convex optimization by
utilizing graphs of convex sets. This approach is promising, but
is not real time yet and imposes limitations on the trajectory end
point, supported dynamics and constraints.

3) Guidance Planners: Local planners typically receive
an initial trajectory or reference path from a global planner.
This global planner takes into account static obstacles and the
overall route to the goal, which helps prevent the local planner
from encountering deadlocks [9], [26]. The performance can
be further enhanced by incorporating dynamic obstacles into
the global planner. We refer to global planners that consider
dynamic obstacles as “guidance planners.” For example, for
self-driving vehicle applications, Eiras et al. [27] initialized an
MPC in the desired behavior with a simplified mixed-integer
linear program. In [28], a behavior planner based on a par-
tially observable Markov decision process guides a local motion
planner in interactive scenarios for a self-driving vehicle. Both
methods rely on a structured environment.

To compute a suitable initial guess for a local planner con-
sidering obstacles, several authors [8], [11], [29], [30], [31],
[32], [33], [34], [35] have noted that local optima related to
collision avoidance link to the topology of trajectories through
the collision-free space. Roughly speaking, two trajectories are
in the same homotopy class if they can be smoothly transformed
into each other in the collision-free space [30] (e.g., when they
evade the obstacles on the same side). Unfortunately, homotopy
classes of trajectories are difficult to compute in general. If
the environment can be consistently represented as a graph,
then homotopy classes of trajectories can be identified through
distinct paths over the graph [29]. This applies, for example,
in structured autonomous driving applications through the lane
structure of the road network [11], [31].

Without structure in the environment, it is difficult to compute
a trajectory in each homotopy class. Graphs can be constructed

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

112

from static obstacles. In [36], Delauney triangulation is used to
identify passable gaps between dynamic obstacles in a global
planner. Voronoi graphs are used in [34] to identify homotopy
classes with respect to static obstacles and in [8] include each
dynamic obstacle and their predicted motion as a static obstacle.
Trajectories are generated from the homotopy class description
in [37] by modeling interactions as a physical vortex system.
These graph-based and generative approaches can exhaust the
possible homotopy classes, but scale poorly to crowded envi-
ronments (as noted in [8] and [37]).

Instead, several works, such as [8], [30], [33], compute distinct
trajectories by filtering out homotopy equivalent trajectories dur-
ing planning. For 3-D navigation among static obstacles, Zhou
et al. [33] introduced universal visibility deformation (UVD)
to compare trajectories. Trajectories are UVD equivalent if they
can be connected without collision at several intermediate times.
The authors present a visibility-PRM [38] to generate UVD-
distinct trajectories. In 2-D dynamic environments, homotopy
classes are typically compared via winding numbers [39] or
the H-signature [30]. Winding numbers track the relative angle
between the robot and dynamic obstacles over their trajectories.
They were used in [34] to distinguish homotopy classes of trajec-
tories with respect to dynamic obstacles. In [35], an MPC with
winding numbers in the cost function was proposed to motivate
passing progress. The H-signature uses homology classes as an
approximation for homotopy classes. The work in [8], which
relates most closely to this work, applied this approximation
for 2-D navigation among static obstacles. Their planner, time
elastic band (TEB) local planner, identifies several trajectories
in distinct homology classes (using regular PRM) and uses each
to initialize a soft-constrained optimization-based planner. TEB
has, however, three main limitations that can hinder its perfor-
mance in dynamic environments. First, the trajectory topology
is confined to the static workspace, treating dynamic obstacles
and their future motion as static obstacles. Second, the guidance
planner is designed to reach a single goal. Lastly, the local
planner lacks hard constraints.

In this work, we introduce a topology-guided planner that
is different from these existing works in four ways. First, we
consider homotopy classes in the dynamic collision-free space
that includes time, to incorporate the motion of dynamic ob-
stacles (contrary to [8], [33]). Second, our framework does not
modify the cost function (i.e., the performance criteria) of the
local planner (contrary to [18], [25], [35]). Third, our planner
does not rely on a structured environment (contrary to [11], [28],
[31]). Finally, our guidance planner can handle the case where
its goal is blocked (contrary to [8], [33]) by considering multiple
goal positions.

In addition, we enforce the final trajectories to be in distinct
homotopy classes using constraints in the local planner and
we show that it is not sufficient to initialize the solver in a
homotopy class (contrary to [8]). By consistently planning dis-
tinct trajectories, we can reidentify trajectories of prior planning
iterations and use this information to make the planner more
consistent and decisive. Our method furthermore supports the H-
signature, winding numbers, and UVD for comparing homotopy
classes.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

B. Contribution

In summary, our topology-driven parallel planning frame-
work, T-MPC, contributes to the state of the art as follows.

1) A planning framework for dynamic environments that op-
timizes trajectories in multiple distinct homotopy classes
in parallel. Our framework extends existing optimization-
based local planners, improving their time efficiency,
safety, and consistency.

2) A fast guidance planner that computes homotopy distinct
trajectories through the dynamic collision-free space to-
ward multiple goal positions.

We validate our proposed framework in simulation on a
mobile robot navigating among interactive pedestrians. We show
how our framework can accommodate different trajectory op-
timization approaches (e.g., [3] in the nominal case, and [4]
to accommodate Gaussian uncertainties added to the motion of
the dynamic obstacles). We show how our framework enhances
the performance of [3], [4] out of the box and we compare
against three additional baselines (see[6], [8], [32]). We finally
demonstrate our planner in the real world on a mobile robot nav-
igating among five pedestrians. Our C++/ROS implementation
of T-MPC will be released open source.

This work is an extension of our earlier conference publica-
tion [32]. In [32], we computed a single guidance trajectory
and followed it with a local planner by adding a tracking
term. Compared to [32], we compute and optimize multiple
distinct guidance trajectories in parallel. In addition, we derive
constraints from the guidance trajectory such that the cost of
the optimization is unmodified and can be used to compare
optimized trajectories. Finally, we improved the robustness and
consistency of the guidance planner and extended the experi-
mental evaluation.

The rest of this article is organized as follows. We introduce
the planning problem in Section III. The planning framework is
described and analyzed in Section I'V. Simulation and real-world
results are presented in Sections V and VI, respectively, followed
by a discussion in Section VII. Finally, Section VIII concludes
this article.

III. PROBLEM FORMULATION

We consider discrete-time nonlinear robot dynamics

Tpp1 =[xk, ur) (D)

where ¢, € R™» and u;, € R™ are the state and input at discrete
time instance k, n, and n,, are the state and input dimensions,
respectively, and the state contains the 2-D position of the robot
P = (Tk, yr) € R? C R"=,

The robot must avoid moving obstacles in the environment.
The position of obstacle j at time & = 0 is denoted o}, € R? and
we assume that for each obstacle, predictions of its positions
over the next N time steps are provided to the planner (i.e.,
o0],...,0%) at each time instance. The collision region of the
robot is modeled by a disc of radius 7 and that of each obstacle
j by a disc with radius 77 [see Fig. 2(a)].

For high-level planning with dynamic collision avoidance, we
consider the simplified state space X' := R? x [0, T, with [0, T]

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 113

Time

(a) (b)

Fig. 2. (a) Depiction of the planning problem and (b) equivalent in the state
space. Trajectory 1 and 2 are in the same homotopy class while trajectory 1 and
3 are in distinct homotopy classes. (a) Planning scene. (b) State-space view.

a continuous finite time domain [see Fig. 2(b)]. The area of the
workspace occupied by the union of obstacles at time ¢ is denoted
by O, C R? and the obstacle set in the state space is, thus,
O = Usytefo,77(Or: 1) C X. The collision free state space (or
free space) is denoted C := X\ O. A trajectory is a continuous
path through the state space, 7 : [0,1] — X. The goal of the
robot is to traverse along a given reference path v : [0,1] — R?
without colliding with the obstacles while tracking a reference
velocity vgs. It is allowed us to deviate from the path.

A. Optimization Problem

We formalize the planning problem as the following trajectory
optimization problem over a horizon of NV steps:

N

wlilx 2T () =
k=0

st @1 = f(xp,ug) Vk (2b)

Ty = Tinit (20)

g (2r.0}) <0 k] (2d)

where the cost function J in (2a) expresses the planning ob-
jectives (e.g., following reference path «). Robot dynamics and
initial conditions are imposed by (2b) and (2c), respectively, and
collision avoidance constraints are imposed by (2d).

Because dynamic obstacles puncture holes in the free space,
the free space associated with the constraints (2d) is noncon-
vex. Nonlinear optimization algorithms, solving this problem,
return just one of possibly many local optimal trajectories. The
initial guess provided to them determines which local optimal
trajectory is returned. It is generally unclear how close this
trajectory is to the globally optimal trajectory (i.e., the best
trajectory under the specified cost). In this work, we want to
leverage this weakness to explore in parallel multiple locally
optimal trajectories (provided as initial guesses on x) that evade
obstacles in a distinct way.

B. Homotopic Trajectories

To achieve the goal above, we rely on the concept of homo-
topic trajectories, which can be formalized as follows.

Definition 1 ([30] Homotopic Trajectories): Two paths con-
necting the same start and end points x, and x4, respec-
tively, are homotopic if they can be continuously deformed
into each other without intersecting any obstacle. Formally, if
71,79 € T represent two trajectories, with 71(0) = 72(0) =
s and 71 (1) = 72(1) = x4, then 7 is homotopic to 7 iff
there exists a continuous map 7 : [0, 1] x [0,1] — C such that
n(a,0) = 1 (a)Va € [0,1], n(8,1) =72(8),v8 € [0,1] and
77(077) = s, 77(177) = wgv7 € [07 1]'

If two trajectories are homotopic, they are said to be in the
same homotopy class. An example is depicted in Fig. 2. To
distinguish between trajectories in different homotopy classes,
we make use of the homotopy comparison function

1, 74,7, in the same homotopy class 3)

0, otherwise.

H(Ti,Tj,O)—{

Verifying whether two trajectories are in the same homotopy
class can be computationally inefficient. We support the H-
signature [30], winding numbers [39], and UVD [33] that allow
us to approximately perform this verification in real time. Details
of the three methods are provided in Appendix A.

IV. TOPOLOGY-DRIVEN MODEL PREDICTIVE CONTROL

In this section, we propose T-MPC, a topology-guided planner
that optimizes trajectories in multiple distinct homotopy classes
in parallel.

Our planner consists of two components: A high-level guid-
ance planner and multiple identical low-level local planners (see
Fig. 3). The guidance planner G generates homotopy distinct
trajectories through the free space

G (x0, Py,C) = {T1,...,Tp} = Tp 4)

where x(denotes the robot initial state and P, denotes a set of
goal positions. Each local planner is initialized with one of the
guidance trajectories and optimizes the trajectory in the same
homotopy class. With IV the horizon of the guidance and local
planners,' each local planner defines a mapping L : XV — xV

L(r;) =7} 5)

To ensure that the local planner optimizes in the provided
homotopy class, we append a set of constraints derived from the
guidance trajectory. These constraints are appended to existing
collision avoidance constraints to adapt the planner to the global-
ized framework. The proposed planner computes locally optimal
trajectories 75 := {7},...,7p} in several distinct homotopy
classes.

A. Guidance Planner—Overview
The goal of the guidance planner is to quickly compute several

homotopy distinct trajectories through the free space. Similarly

!The guidance planner horizon could extend beyond the horizon of the local
planner. We set them equal for simplicity.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

114

Guidance Planner

T€Tp
—

Fig. 3.

Local Planners

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Decision Making

T eTp
_—>

Schematic of T-MPC. An environment with several obstacles and a robot is visualized in x, y, t (time in the upwards axis). Obstacle motion predictions

are denoted with cylinders. 1) A guidance planner (see Section IV-A) finds P = 4 trajectories (visualized with colored lines) from the robot initial position to
one of the goals. Each of these trajectories is in a distinct homotopy class in the state space. 2) Each trajectory guides a local planner (see Section IV-C) as initial
guess and through a set of homotopy constraints. Four guidance trajectories and optimized trajectories (as occupied regions for each step) are visualized. 3) The
optimized trajectories are compared through their objective value (see Section IV-E) and a single trajectory (in red) is executed by the robot.

Reference
Path &

¥y
Goals

N
Pedestrians

Connectors (and Predictions)

(a) (b)

Fig. 4. Tllustration of the guidance planner in the state space (time in the
upwards axis). Visualization follows Fig. 3. (a) Visibility-PRM graph (black
lines and dots) explores the free space toward the goals placed at ¢ = 7" around
the reference path (orange dots). The homotopy distinct guidance paths (colored
lines) are obtained by searching the graph. (b) Final trajectories are smoothened.

to [8], [33], we perform this search via visibility-probabilistic
RoadMaps (Visibility-PRM [38]), a sampling-based global
planner. The modifications that we make ensure that the graph
remains consistent over successive iterations.

The guidance planner is outlined in Algorithm 1 and visual-
ized in Fig. 4. Details of the algorithm are given in Section IV-B.
We give a high-level overview here. First, Visibility-PRM con-
structs a sparse graph through the state space from the robot
position to a set of goals, where each connection is homotopy
distinct (line 1). The goals represent end points for the guidance
planner and are placed along the reference path. For each goal,
DepthFirstSearch (line 2) searches in this graph for the shortest
P trajectories thatreach it. Any homotopy equivalent trajectories
are filtered out by FilterAndSelect (line 3), ensuring that the
remaining trajectories are in distinct homotopy classes. The P
trajectories that seem most promising are selected by a heuristic

Algorithm 1: Guidance Planner.

Input: C, x(, x , previous graph G, previous
trajectories 7,5
1: G < Visibility-PRM(C, zg, N, G)
2:{7g,...,Tngs} < DepthFirstSearch(G)
3: Tp={70,...,7p} «FilterAndSelect({T,..., TNy}
4: G~ <« IdentifyAndPropagate({7o,...,7p},75)
Output: 7p

that prefers its goal to be as close as possible to the reference path
at the reference velocity [see Fig. 4(a)]. IdentifyAndPropagate
(line 4) verifies if any of the selected trajectories are equivalent
to trajectories of the previous planning iteration. This reidenti-
fication makes it possible to follow the same passing behavior
over multiple planning iterations. We finally propagate the nodes
in the Visibility-PRM graph by lowering their time state by the
planning time step.

Through this process, we obtain in each iteration P piecewise
linear trajectories 7p = {71,...,7p} that each connects the
robot position to one of the goals (see Fig. 3). We finally
smoothen these trajectories and fit cubic splines to make them
differentiable [see Fig. 4(b)]. More details can be found in [32].
The smoothening procedure produces only a small displacement
in trajectories to maintain their homotopy class. These trajecto-
ries serve as initializations for the local planners, described in
Section IV-C.

B. Guidance Planner—Detailed Description

We detail each step of Algorithm 1 in the following.

Visibility-PRM computes sparse paths through the free space
by randomly sampling positions and creating either a Guard
or Connector node at the sampled position. The type of node
depends on the number of Guards that it can directly connect
to without colliding (i.e., which Guards are visible). A Guard

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 115

is added if no other Guards are visible. A Connector (see black
dots in Fig. 4) is added when exactly two Guards are visible and
its connection to the Guards is feasible (e.g., satisfying velocity
and acceleration limits). Similar to [33], we also check if any
Connectors link to the same Guards (referred to as neighbors). If
there are neighbors, we keep the new connection if it is distinct
from existing connections, which we verify with homotopy
comparison function (3). If it is equivalent and more efficient
than the existing connection (e.g., if its connection is shorter),
then we replace the existing connector with the new connector.
In regular visibility-PRM [38], the graph is initialized with a
Guard at the start and goal positions and new nodes are drawn
up to a time or node limit. More details of the algorithm can be
found in [32, Algorithm 1].

Multiple Goals in Visibility-PRM: In this work, we address the
limitation that a single goal must be reached by Visibility-PRM,
which causes the planner to fail when that goal cannot be
reached. We propose to add a Goal node type to Visibility-PRM.
Goals inherit the properties of Guards but are inserted initially
and are likely visible to each other. When a connector can
connect to multiple goals, we single out the goal with the lowest
distance to the point on the reference path reached with the
reference velocity (i.e., our ideal goal). By supporting multiple
goals, we increase the robustness of the guidance planner. In
practice, we deploy a grid of goals centered around the reference
path (see Fig. 4).

Homotopy Comparison: We use the homotopy comparison
function (3) to verify if two trajectories are in the same homotopy
class. We implemented (3) with the H-signature [30], winding
numbers [39], and UVD [33]. Appendix A provides details on
these methods. In our experiments, we use the H-signature that
joins the two trajectories to be compared into a loop and verifies
if that loop encircles any moving obstacles. If it does, then the
two trajectories pass obstacles differently and belong to different
homotopy classes.

DepthFirstSearch searches for P paths to each goal, with each
search implemented similar to [8, Algorithm 1].

FilterAndSelect uses homotopy comparison function (3) to re-
move equivalent trajectories to different Goals found by Depth-
FirstSearch. The set of filtered trajectories T, therefore, satisfy

H(Ti,Tj,O):O VZ,],Z#], TiaTjETF- (6)

The P lowest cost trajectories in T constitute the output 7p.
IdentifyAndPropagate uses homotopy comparison function

(3) to link new trajectories to trajectories found in the previous

iteration. It checks for each previous trajectory 7, € T, if

HTJ‘ETP,H(T;7TJ‘):1. (7)

A unique identifier, tied to the homotopy class, is passed from
T, to 7 if the latter exists. We can use this identifier to decide
which trajectory to follow (see Section IV-E).

C. Local Planner

To refine the trajectories of the guidance planner, we apply
P local planners in parallel. Each local planner refines one of

Fig.5. Twodistinct locally planned trajectories for a robot (black dot) evading
an obstacle (black region and dot) that is static (0, = 09, k=1, ..., N). For
both planners, we depict the topology constraints for each time step in their
respective colors showing the constraint boundaries (broken lines) and their
feasible region (colored regions with increasing transparency over time). (a)
Local planner 1 plans to evade the obstacle left. (b) Local planner 2 plans to
evade the obstacle right.

the guidance trajectories 7; and needs to ensure that the final
trajectory is dynamically feasible and that it satisfies any other
imposed constraints. We pose the following definition.

Definition 2 (Local Planner): The local planner is an algo-
rithm L : XN — X'V that respects constraints.

This definition captures many existing optimization-based
planners. In this work, we define the local planner through the
trajectory optimization in (2), where we make two modifications
to ensure that the optimized trajectories are in the homotopy
class of the associated guidance trajectory. First, the trajectory
optimization of each local planner uses its guidance trajectory as
the initial guess for . The initial guess speeds up convergence
but does not guarantee that the optimized trajectory remains
in the same homotopy class when there are obstacles. In the
following section (see Section IV-D), we provide an example
where initialization in distinct homotopy classes still leads to
identical optimized trajectories.

To ensure that the homotopy class of the guidance trajectory
is respected, we add to each local planner a set of constraints
gu (@, ofc, T;.1). For this purpose, we construct for each time
instance k and obstacle j a linear constraint between the guid-
ance trajectory and obstacle position (see Fig. 5). With guidance
trajectory 7; and obstacle trajectory o, these constraints are
given by Apxy < by, where

O — Tik

Ay = 2Tk
|lox — ikl

by = Ag (o — Ap (B(r +7ops))) -
(3

The relaxation factor 0 < § < 1 scales the distance that the
constraints enforce from each obstacle. A key observation is
that, with other collision avoidance constraints in place, the
topology constraints can be relaxed (5 ~ 0) such that they are
inactive at the obstacle boundary. Since the constraints do ensure
that the trajectory remains on the same side of each obstacle,

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025
T -
1 = = 1 1
E eObstacle | £ a eObstacle | £ ¢
-~ | T T =—— P
—1 -1y T T === g —1
Low Path Following Weight
1 = .o 1 1
= L === = =
20 0“"“::':"“ eObstacle | = 0 Z 0
> ” - -
| High Path Following Weight - | High Path Following Weight ~ ==~~~
0 2 i 6 3 10 12 0 2 4 6 8 10 12 0 2 i 6 8 10 12
X (m) X (m) X (m)
(a) (b) ©
Fig. 6. Planned trajectories (lines with shaded discs) tracking a reference path (dashed black line) while avoiding a static obstacle with two guidance trajectories

(dashed lines) for a low (0.01) and high (0.3) path following weight. (a) Without homotopy comparison (3), guidance trajectories are not distinct and optimized
trajectories are identical. (b) Without homotopy constraints, increasing the path following weight results in identical trajectories. (¢) With homotopy comparison (3)
and homotopy constraints (9e), optimized trajectories are distinct. (a) Without homotopy comparison (3). (b) Without constraints (9e). (c) Our proposed method.

the optimized trajectory is in the same homotopy class as the
initialization provided by the guidance planner.
The resulting homotopy preserving local planner is given by

N

= in DT (o, ur) (9a)
k=0

st xp1 = f(xp,ug) VEk (9b)

To = Tinit (9¢)

g(wr.0f) <0 k. (9d)

9gH (wkaoiﬂ'i,k> <0 Vk,j. (%e)

The topology constraints and initialization of the optimization
realize the local planning mapping of (5) which, as a function of
the guidance trajectory, returns a distinct local optimal trajectory
(see Fig. 3).

D. Enforcing Consistency Over Time

Our proposed method computes distinct trajectories through
two algorithmic features: The guidance trajectories are dis-
tinct with respect to homotopy comparison function (3) and
the homotopy constraints (9¢) ensure that the local plan-
ner does not change the homotopy class during optimization.
We illustrate the necessity of these two components with an
example.

Consider a planning scenario with a robot and static ob-
stacle (both at y = 0) and the reference path at y = 1. We
plan the robot’s trajectory for a low and high weight on fol-
lowing the path.”> Fig. 6 shows the planned trajectories after
optimization. Without homotopy comparison (3) [see Fig. 6(a)],
guidance trajectories are not distinct and lead to identical op-
timized trajectories. Without homotopy constraints (9¢) [see
Fig. 6(b)], trajectories are distinct for a low path following
weight but become identical by increasing the path following
weight. This is possible as the final state of the optimized
trajectory is free to move to the other side of the obstacle.

The path following weight is the contouring weight from [3].

Our proposed method [see Fig. 6(c)] maintains the two trajec-
tories in both cases, irrespective of the tuning of the objective
function.

E. Decision Making

The robot can only execute one trajectory. Since the cost
function of the local planners (9a) matches that of the original
trajectory optimization (2a), the quality of the guided plans are
directly comparable? through their optimal costs J;.

The local planners output P optimized trajectories

Tp={71,...,Tp}. (10)

Since each local planner minimizes the same cost function, the
lowest cost trajectory?

T} (1n

7, 1 =argmin J;
1
is the best trajectory under the specified objective. We refer to
executing 7; as obtained from (11) as the minimal cost decision.
In practice, frequently switching the homotopy class of the
executed trajectory can degrade motion planning performance
and lead to collisions even if, in each time instance, the selected
trajectory attains the lowest cost. We, therefore, consider a gen-
eralization of the decision-making process where the previously
selected trajectory is given precedence. This is possible as we
maintain a consistent set of trajectories in distinct homotopy
classes where the previously executed trajectory is marked. This
consistent decision is given by

Tt (12)

. . «
i, ©=argmin w;J;

(]
where w; = ¢; if this trajectory was previously selected, with
c; aconstant 0 < ¢; < 1, and w; = 1 otherwise. If ¢; = 0, then
the planner will pick the trajectory with the same homotopy
class of the previous iteration, while for ¢; = 1, we recover the
minimal cost decision. In practice, this decision-making scheme
improves navigation behavior over consecutive iterations.

3 As trajectory end points can be distinct, their quality needs to be represented
in the cost function. We include a terminal cost that accounts for the deviation
of the end point from the reference path.

4We set J; = oo when the optimization is infeasible.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 117

F. Theoretical Analysis

In the following, we formalize to what extent our proposed
planner resolves the nonconvexity of the free space. First, note
that due to the cost function and/or nonlinear robot dynamics,
the trajectory optimization in (2) remains nonconvex, even when
it is constrained to stay in a single homotopy class. There may,
therefore, be multiple local optima in each homotopy class. This
means that the proposed planner does not provably return a
globally optimal solution to the optimization in (2). We propose
instead a weaker notion of globalization.’

Definition 3 (Homotopy Globally Optimal (HGO)): Denote
the highest-cost local-optimum of optimization (2) in homotopy
class i as 7, . A trajectory 7 is said to be an HGO solution if its
cost is lower or equal to that solution in each homotopy class,
thatis,if J(7) < J(7;), Vi, for all homotopy classes that admit
a feasible trajectory.

To prove when the proposed scheme computes an HGO
solution, we pose three conditions. These conditions link the
solution of (9) to that of (2).

Condition 1. The homotopy constraints are not active
(9m (mk, oi, ’Ti’k) < 0 Vi, k, j) in the final solution of (9).

Condition 2. The guidance planner finds a trajectory in each
homotopy class where a dynamically feasible trajectory exists.

Condition 3. The executed trajectory is selected via (11).

Theorem 1: If Conditions 1-3 hold, T-MPC is HGO for
optimization problem (2).

Proof: Under Condition 1, the solution for each optimiza-
tion (9), 7, is locally optimal for (2) since homotopy con-
straints (9e) are the only distinction between the two problems.
Therefore, J(75) < J(7;). If Condition 2 is satisfied, then Tp
contains a guidance trajectory in every feasible homotopy class.
Therefore, under Condition 3, the final trajectory 7" executed
by T-MPC satisfies J(7*) < J(7}) < J(7;), Vi and we obtain
the HGO property. ([

This shows under what conditions the proposed planner finds
a provably HGO trajectory. Although these conditions are use-
ful for analysis, they are not necessarily satisfied in practice.
Condition 1 can fail if there is no local optimum in a homotopy
class or when the linearization around the guidance trajectory
restricts the optimization.

Condition 2 is hard to guarantee in crowded environments. In
2-D navigation with M obstacles, there can be 2 homotopy
classes that do not wind around obstacles. Although robot dy-
namic constraints and bundled obstacles may reduce this amount
in practice, the number of classes can still be too large. Limiting
the planner to P classes allows us to plan in real time, but the
executed trajectory may not be HGO.

Condition 3 ensures that the lowest cost trajectory is executed
but can lead to nonsmooth driving behavior over consecutive
iterations and it may be preferable to use (12) instead.

While these conditions may not always be satisfied and the
HGO property is not provably obtained in each iteration, we
will show that the proposed planner always improves on the
local planner in isolation.

SIn the following, with some abuse of notation, J(7) refers to the optimal
cost of the optimization initialized with trajectory 7.

G. Nonguided Local Planner in Parallel

The constraints and initialization provided by the guidance
planner allow the local planner to escape poor local optima. Once
the planner is in the correct homotopy class, the restrictions im-
posed by the guidance planner (i.e., homotopy constraints) may
degrade performance. For this reason, we consider an extension
of the proposed planner where the regular local planner without
guidance [i.e., the optimization in (2)] is added to the set of
parallel guided local planners. Since this planner is less restricted
and does not rely on the global planner, it can occasionally find
a better solution.

Next to practical benefits, this allows us to trivially establish
that the proposed scheme does not achieve a higher cost solution
than the local planner in isolation.

Theorem 2: Consider the planner in Fig. 3 that includes a
nonguided planner with solution 7*. If a trajectory is selected
according to (11), then J(7*) < J(7%).

Proof: Decision (11) picks the lowest cost solution from
J(T5), ..., J(T%), J(T*), which cannot exceed J (7). O

If the guided plans are always higher or equal cost compared
to the nonguided planner, then this planner architecture reduces
to the local planner (the nonguided planner is always selected).
If they ever have a lower cost, then guidance must improve the
planner in the sense that it reduces the cost of the executed
trajectory. We will show in the following section that the latter
holds true. We refer to the method where the nonguided local
planner is added in parallel as T-MPC++.

H. Computation Time Analysis

T-MPC plans guidance trajectories before optimization. In
the following, we analyze the computational complexity of the
guidance planner (see Algorithm 1), considering the number of
PRM samples n, obstacles M and distinct trajectories P.

Visibility-PRM: The time complexity of regular Visibility-
PRM is dominated by the visibility check. When adding a
node, it checks its visibility in the worst case to all nodes (if
all nodes are guards), where each visibility check considers
all obstacles. Its time complexity, therefore, is O(n2M). We
additionally verify that new connections are distinct. The time
complexity of a single homotopy comparison is O(M): the
H-signature or winding numbers are evaluated for each obstacle.
The homotopy class is compared roughly n times if a new dis-
tinct connection neighbors all connectors. Its time complexity,
therefore, is O(n?M) and does not change the time complexity
of Visibility-PRM.

DepthFirstSearch: Each node links to at most one goal.
Hence, searching the graph for at most P paths to each goal
at worst considers each node once. Its time complexity is O(n).

FilterAndSelect: Sorting P trajectories has time complexity
O(Plog P). Filtering homotopy distinct trajectories from the
sorted list must compare a trajectory to P others in the worst
case and has time complexity O(P?M).

IdentifyAndPropagate: Similarly, comparing the homotopy
class of new and existing trajectories has time complexity
O(P?M). Propagating the graph has time complexity O(n).

Total: The time complexity of the guidance planner is
O((n? + P?)M). In practice, this time complexity can be

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

118

approximated by O(n?M), given that the number of relevant
homotopy classes is typically small (i.e., » > P). Thanks to
the propagation of nodes from the previous iteration, we find
that n can be relatively small as well (e.g., n < 100). For our
use case, a relatively small n and P are usually sufficient to
construct a sparse graph from which the relevant homotopy
classes can be extracted.

V. SIMULATION RESULTS

In the following, we compare our planner against several
baselines on a mobile robot navigating among pedestrians.

A. Implementation

Our implementation for T-MPC is written in C++/ROS and
will be released open source.® We will also release the guidance
planner as a standalone package.

For the deterministic simulations, we implement the
optimization-based planner Local Model Predictive Contouring
Control (LMPCC) [3] as local planner. The robot dynamics
follow second-order unicycle dynamics [40]. Its objective, with
weights w, is given by’

J:chc+lel+wv<]1;+wwt]w+wa<]a (13)

for each time instance k in the horizon N. Herein, J., .J; are the
contour and lag error used to follow the reference path, J, =
[[v — viet||3 tracks a desired velocity and J, = ||w||3, J, =
[|la]|3 weigh the control inputs consisting of the rotational ve-
locity w and acceleration a. Collision avoidance constraints are

imposed with g (wk, oi) <0

1

9 (er0l) =1-(ApD)TRE)" |7 ? R(9) (ap])

(14)

here Apf; =p, — oi, R(¢) is arotation matrix with orientation
¢ of therobotand 7 = ryopot + Tobs- These nonconvex constraints
directly formulate that the robot region should not overlap with
that of the obstacles. We solve each parallel local optimization
with Forces Pro [41]. Parameters of the full planner are listed
in Table I. Weights of the guidance and local planners are
manually tuned. The planning scheme, including guidance and
local planners, is updated in each iteration in a receding horizon
manner.

B. Simulation Environment

The first simulation environment (see Fig. 1) consists of a
mobile robot (Clearpath Jackal) moving through a 6 m wide
corridor with up to 12 pedestrians. The robot follows the cen-
terline with a reference velocity of 2 m/s and is controlled at
20 Hz. The pedestrians follow the social forces model [42] using
implementation [43]. They interact with other pedestrians and

6See https://github.com/tud-amr/mpc_planner
7We do not use the repulsive forces around obstacles from [3] as they lead to
more conservative plans and slow down the optimization problem.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

TABLE I
EXPERIMENTAL SETTINGS

Parameter | Parameter | Parameter Description
Name Value
N 30 Global and local planner horizon
AT 0.2s Integration time step
h 0.05 s Planning time step
n 30 Visibility-PRM sample limit
Tmax 10 ms Visibility-PRM time limit
Eq. 3 H-signature | Homotopy comparison function
P 4 # of distinct guidance trajectories
G 5 X5 Grid of goals (longitudinal X lateral)
r 0.725 m Combined obstacle and robot radius
We 0.05 Optimization contouring weight
w) 0.75 Optimization lag weight
Way 0.55 Optimization velocity tracking weight
Wey 0.85 Optimization rotational velocity weight
Wa 0.34 Optimization acceleration weight
Decision Eq. (12) Type of decision-making
c; 0.75 Discount factor for trajectory in

previously followed homotopy class

the robot and are aware of the walls. We use a constant velocity
model to predict the future pedestrian positions for the planner.
The pedestrians have a radius of 0.3 m. We specify a radius
of 0.4 m in the planners to account for discretization effects,
allowing us to clearly identify collisions. Pedestrians spawn
on two sides of the corridor with the objective to traverse the
corridor. The random start and goal locations are the same for
each planner.

C. Comparison to Baselines

We compare T-MPC and T-MPC++ against four baselines.
Baselines are selected on the availability of an open-source im-
plementation and their application to navigation in 2-D dynamic
environments. We consider the following baselines.

1) Motion Primitives (global planner) [6]: A
nonoptimization-based global planner that respects
the robot dynamics.

2) TEB Local Planner (topology-guided planner) [8]: One
of the most used local planners in the ROS navigation
stack [44] that considers multiple homotopy classes.

3) LMPCC (local planner) [3]: An open-source nonparal-
lelized MPC (see Section V-A). We supply the previous
solution shifted forward in time as the initial guess of the
optimization.

4) Guidance-MPCC (topology-guided planner) [32]: Our
previous conference work. We updated the guidance plan-
ner to that used in this work to make it more competitive
with T-MPC++.

We use the same weights for the MPC planners (LMPCC,
Guidance-MPCC, T-MPC, T-MPC++). Baseline actuation lim-
its and tracking objectives are adapted to match the MPC objec-
tives. TEB local planner tuning uses its default but with increased
collision avoidance weight (from 10 to 20) to decrease collisions
in crowded environments.

We perform the simulations with 4, 8, and 12 pedestrians.

Evaluation metrics. We compare the planners on the following
metrics.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tud-amr/mpc_planner

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 119

TABLE I
QUANTITATIVE RESULTS FOR INTERACTIVE NAVIGATION SIMULATIONS OF
SECTION V-C OVER 200 EXPERIMENTS WITH PEDESTRIAN MOTION
PREDICTION FOLLOWING A CONSTANT VELOCITY MODEL

Ped. | Method Dur. [s] Safe (%) | Runtime [ms]
0 - 12.9 (0.0) - -
Frenét-Planner [0] 14.0 (0.9) 77 1.6 (2.6)
TEB Local Planner [8] | 13.0 (1.1) 100 5.8 (5.2)
. LMPCC [3] 13.1 (0.4) 98 11.3 (2.6)
Guidance-MPCC [32] 13.0 (0.4) 92 13.9 (1.3)
T-MPC (ours) 13.0 (0.2) 100 18.3 (3.5)
T-MPC++ (ours) 13.0 (0.1) 100 19.4 (3.7)
Frenét-Planner [6] 15.1 (1.7) 64 1.6 2.4)
TEB Local Planner [8] 13.8 (1.7) 98 7.5 (5.1)
g LMPCC [3] 13.8 (1.3) 96 13.7 (4.2)
Guidance-MPCC [32] | 132 (0.7) 92 13.4 (1.4)
T-MPC (ours) 13.3 (0.7) 96 20.2 (4.8)
T-MPC++ (ours) 13.2 (0.6) 96 21.4 (4.9)
Frenét-Planner [6] 16.5 (2.4) 42 14.1 (6.3)
TEB Local Planner [8] | 14.9 (2.4) 92 8.7 (5.4)
12 LMPCC [3] 14.0 (1.5) 90 12.9 (4.5)
Guidance-MPCC [32] | 13.6 (1.1) 86 13.6 (1.6)
T-MPC (ours) 14.1 (1.3) 90 183 (5.1)
T-MPC++ (ours) 13.6 (1.0) 93 20.1 (5.4)

Task duration (Dur.) and runtime are reported as “mean (std. dev.).” Without obstacles,
the task duration is 12.9 s. Best planner performances per column are denoted in bold.
Underlined results indicate that T-MPC++ significantly outperforms the respective
method as tested with a U-test for a significance value of p = 0.001.

1) Task Duration: The time it takes to reach the end of the

corridor.

2) Safety: The percentage of experiments in which the robot

does not collide with pedestrians or the corridor bounds.

3) Runtime: Computation time of the control loop.

We note that collisions in simulation may not correspond to
collisions in practice but do provide insight into the safety of the
planners (more details in Section VII).

The simulations are performed on a laptop with an Intel 19
CPU@2.4GHz 16 core CPU. Our implementation of T-MPC
and T-MPC++ use P and P + 1 CPU threads, respectively. We
terminate threads when they exceed the control period of 50 ms
and in this case select the best trajectory out of the completed
optimization problems.

The results over 200 experiments are summarized in Table II
and the task duration is visualized in Fig. 7. The motion prim-
itives planner is not safe and has a significantly longer task
duration than the other planners even in the least crowded case. In
the two more crowded environments, LMPCC has a significantly
longer task duration than T-MPC++ and is less safe, in part
because LMPCC plans a single trajectory. When the optimiza-
tion becomes infeasible, it often does not recover fast enough to
avoid oncoming obstacles. TEB local planner is marginally safer
than LMPCC and maintains competitive average task durations
to the other methods in the four and eight pedestrian scenar-
ios under less computational cost. In the crowded scenario,
T-MPC++ completes the task significantly faster. In addition,
in all cases, T-MPC++ has a much smaller standard deviation of
the task duration indicating that its behavior is more consistent
(visible also in Fig. 7). The TEB local planner soft constrains
collision avoidance which, in crowded environments, leads the
robot into poor behaviors (e.g., reversing) due to the shape of the
cost function. To further compare T-MPC++ and the TEB local
planner, we visualize their trajectories in Fig. 8. Our proposed

Frenét-Planner [6]

TEB Local Planner [8]
o LMPCC [3]
Guidance-MPCC [32]
T-MPC (ours)
T-MPC++ (ours)

Experiment

12 1

12 14 16 1:‘3 20 22 24
Task Duration (s)

Fig.7. Visualization of the task duration (i.e., the time taken to reach the goal)
in Table II. The dashed vertical line denotes the task duration without obstacles.
Our method achieves the smallest variation in task duration and the shortest task
duration in crowded environments.

(=1
S
—
=
—
S
%)
[=]

=
—
—
=%
=
[V
&

Fig. 8. Trajectories of 200 experiments with 12 pedestrians for the TEB-
Planner and T-MPC++. Our method results in smoother and more consistent
robot navigation. (a) TEB-Planner [8]. (b) T-MPC++ (ours).

planner results in smoother and more consistent trajectories and
can follow the reference path more closely. We quantitatively
compare the smoothness of the planners through the standard
deviation on second-order input commands. The deviation on
acceleration (0,) and rotational acceleration (o) for TEB local
planner are higher (o, = 0.16, 0, = 0.12) than for T-MPC++
(0, =0.04, 0, = 0.05).

Out of the guidance planners, Guidance-MPCC attains the
same mean task duration as T-MPC++ but is less consistent (high
std. dev.) because the guidance planner, which does not account
for the robot dynamics, determines the planner’s behavior. This
results in larger tracking errors under the same cost function, for
example in the 12 pedestrian case, the mean path and velocity
errors of Guidance-MPCC are 0.45 m and 0.47 m/s, respectively,
compared to values of 0.20 m and 0.42 m/s for T-MPC++.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

120

TABLE III
QUANTATIVE RESULTS IN CROWDED ENVIRONMENT OF SECTION V-D OVER
200 EXPERIMENTS

Ped. | Method Dur. [s] Safe (%) | Runtime* [ms]

0 - 20.6 (0.0) - -

50 TEB Local Planner [8] | 224 (2.4) 92 9.4 (177.1)
T-MPC++ (ours) 21.0 (0.9) 92 21.2 (46.9)

Notation follows that of Table II. Without obstacles, the task duration is 20.6 s. The runtime is denoted
as “mean (max).”

It also leads to more collisions than LMPCC. T-MPC is gen-
erally faster than LMPCC, except for the 12 pedestrian case.
In this environment, the local planner may find solutions that
the guidance planner did not, given that the space is cluttered.
T-MPC++ demonstrates superior navigation performance over
the other planners: it is significantly faster (with the exception
of Guidance-MPCC), varies less in its task duration (lower std.
dev.) and is safer in almost all cases (the TEB local planner is
safer in the 8 pedestrian case). T-MPC++ has higher computa-
tional demands than the other planners. Compared to the other
MPC planners, T-MPC++ first computes guidance plans. We
measured that this step takes approximately 5 ms on average
(included in the runtime of Table II) in all scenarios.

D. Crowded Baseline Comparison

We further compare T-MPC++ against TEB local planner in
a square-shaped crowded environment with 50 pedestrians. The
robot’s task is to move diagonally through the environment at
Vet = 1.5 m/s. We consider the 12 pedestrians closest to the
plan, with preference for nearby pedestrians in both methods.
Pedestrians are removed when they reach the goal to prevent
unpredictable turns. Table III presents the results. T-MPC++ is
significantly faster and the standard deviation of the task duration
isless than half that of TEB local planner. TEB local planner is on
average computationally faster as it does not compute a new plan
in each iteration. When it does compute a plan, its computation
time can exceed the planning frequency of 20 Hz as shown by
the maximum in Table III (it exceeded 50 ms in 0.26% of its
iterations). In contrast, T-MPC++ is explicitly limited to 50 ms
such that its maximum computation time remains below 50 ms.

E. Sensitivity Studies

To provide more insight into the key parameters of our ap-
proach, we study their sensitivity.

1) Sensitivity to the Number of Trajectories P: To study how
the number of guidance trajectories impacts the task duration,
we run 100 experiments in the 12 pedestrians environment and
compute P = 0,...,6 guidance trajectories. The P = 0 case
corresponds to the nonguided local planner, LMPCC [3].

Fig. 9 displays statistics on task duration. We observe from
Fig. 9(a) that guidance trajectories reduce the task duration
compared to the local planner. Fig. 9(b) shows for both T-MPC
and T-MPC++ how often the planner becomes infeasible. It
indicates that the availability of at least two plans makes it more
likely that a trajectory is found and shows that the nonguided
planner added in T-MPC++ further improves feasibility.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

P
DU WD~ O
T
.1;-
1
+
[]

2 13 14 15 16 17 18 19 20
Task Duration

(a)

Infeasible
) =
—
/
/
/
—f—
/
/
/
*—t
-o—i
+—
\
\
\
o+—rt
I
I
1
L

e e e

o= - g
—— 1
o = i 1 1

0 1 2 3 4 5 6
Number of Trajectories (P)
(b)
Fig. 9. Sensitivity study of the number of guidance trajectories P. (a) Task

duration of T-MPC++, individual experiments denoted by dots. (b) Mean and
standard deviation of the number of control iterations in which the optimization
is infeasible per experiment (out of approximately 280 iterations each) for the
same simulations. (a) Task duration of T-MPC++. (b) Infeasible iterations (mean
and std) per experiment.

0.0 . . .
0.25

S 0.5
0.75
1.0

12 13 14 15 16 17 18 19 20
Task Duration

Infeasible
— [N
—
{—e——
1
o—f

~
S Ml |, Sl
0.0 0.25 05 0.75 1.0

Consistency Parameter (¢;)

Fig. 10. Sensitivity study of the consistency parameter c; comparing the task
duration and infeasibility of the planner. Note that a lower ¢; makes the planner
more consistent.

2) Sensitivity to the Consistency Parameter c;: We recall that
c; [see (12)] expresses our preference to follow the trajectory
with the same passing behavior as in the previous planning
iteration. We vary ¢; € [0, 1] within its range, including ¢; = 0
that enforces the robot to follow the trajectory in the previous
homotopy class, if it still exists, and ¢; = 1 that expresses no
preference.

Fig. 10 compares task duration and infeasibility. Both extreme
values show a poor performance. For ¢; = 0, the task duration
increases, while for ¢; = 1, the planner becomes infeasible more
often (it is indecisive). We deployed c; = 0.75, which best
retains the feasibility of the optimization.

F. Empirical Cost Comparison

To verify that T-MPC++ is able to find lower cost local optima
than the local planner in isolation (as discussed in Section IV-F),

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS 121

TABLE IV
COMPARISON OF THE ATTAINED COST IN THE CROWDED ENVIRONMENT OF
SECTION V-D OVER 50 EXPERIMENTS

TABLE V
QUANTATIVE RESULTS FOR SIMULATIONS WITH UNCERTAIN OBSTACLE
MOTION OF SECTION V-G OVER 200 EXPERIMENTS

Ped. | Method Dur. [s] Safe (%) Cost Runtime [ms] # Method Task Duration [s] | Safe (%) | Runtime [ms]
LMPCC [3] 219 (1.7) 84 275 (9.36) | 7.1 (4.8) Hiah riek CC-MPC [4] 158 23) 91 17.0 3.7)
50 T-MPC (ours) 21.6 (1.5) 84 160 (6.21) | 20.6 (7.7) gh s TCC-MPC++ (ours) 14.1 (0.8) 9 34.5 (7.9)
T-MPC++ (ours) | 21.0 (0.9) 96 1.05 (4.67) | 21.7 (7.4) Modiom sk | CC-MPC 4] 165 (2.7) 9% 7.4 9.7)
Notation, including the cost that is tested for significance, follows that of Table II. The cost excludes TCC-MPC++ (ours) 151 (1.4) 93 35.8 (82)
infeasible planner iterations Low risk CC-MPC [4] 172 2.5 90 18.5 (10.2)
’ TCC-MPC++ (ours) 16.1 (1.3) 97 38.1 (7.9)
Notation follows that of Table IL.
we compare the optimal cost of the executed trajectory attained
- - ++ . . :
py LMPCC (local .planner), T-MPC, a'nd T MI?C that use High Risk :@_. CC-MPC [4]
identical cost functions. We perform this study in the crowded i TCC-MPC++ (ours)
environment of Section V-D over 50 experiments. Table IV Medium Risk ’—:EIE__‘
indicates that T-MPC finds lower cost local optima than LMPCC Low Risk| |y
1

and does so consistently (lower std. dev.). T-MPC++ further
reduces this cost and its deviation. The average cost of T-MPC++
is less than half that of the nonguided planner.

G. T-MPC Under Obstacle Uncertainty

To illustrate that T-MPC applies to different local planner
formulations, we deploy T-MPC on top of Chance-Constrained
MPC (CC-MPC) [4]. CC-MPC is a local planner that considers
the probability of collision with obstacles when their motion is
represented by a Gaussian distribution at each time step. We
assume that the motion of the obstacles follows the uncertain
dynamics

0] =0} + (vl +ni) dt, n ~ B, (15)
Here, v, is the velocity that follows the social forces model as
in previous experiments. The distribution of 7}, € RR? follows a
bivariate Gaussian distribution, ni ~N (ui, E{;), where ui =
0 and Ei = oI. In this simulation, we set o = 0.3. Instead of
deterministic collision avoidance constraints (14), we formulate
a chance constraint with risk 0 < e < 1
P[Hpk—oiuz>r} >1—c Vkj (16)
that specifies collision avoidance to hold with a probability of
1 — € for each agent and time instance. CC-MPC [4] reformu-
lates this constraint using the Gaussian 1-D CDF in the direction
of the obstacle. In this formulation, the collision avoidance
constraint is linearized and reduces to

(Ai)T(pk—oi) —r—ri> erf‘1(1—26)\/2 (Ai)T =/ (Ai)
with Ai as in (8) and where erf ! is the inverse standard error
function.

We apply T-MPC with the nonguided CC-MPC in par-
allel (referred to as TCC-MPC++). The uncertainty directly
affects the local planner, while the guidance planner only
avoids the mean obstacle trajectories. It may happen that
some guidance trajectories are not feasible for the local
planner.

We deploy both planners in the scenario with 12 randomized
pedestrians and compare the planners under high (e = 0.1),

15 20 2 30
Task Duration (s)

Fig. 11. Visualization of the task duration in Table V.

medium (e = 0.01), and low (e = 0.001) risk settings. The
results are shown in Table V and visualized in Fig. 11. TCC-
MPC++ consistently outperforms CC-MPC in isolation, lead-
ing to significantly faster and more consistent task completion
and fewer collisions. The local planner often collides when it
becomes infeasible since it cannot recover. The initialization
provided by the guidance planner resolves infeasibility and
improves robustness.

VI. REAL-WORLD EXPERIMENTS

We demonstrate the proposed planner in a real-world setting
on a mobile robot driving among pedestrians.

A. Experimental Setup

The experiment takes place in a 5 mx8 m square environ-
ment where participants walk among the robot. The robot and
pedestrian positions are detected by a motion capture system at
20 Hz. The pedestrian positions are passed through a Kalman
filter and constant velocity predictions are passed to the planner.
The robot is given a reference path between two opposite corners
and turns around once a corner is reached.

B. One Pedestrian

In the first set of experiments, a single pedestrian interacts
with the robot. We run TCC-MPC++ to evade the pedestrian.
Fig. 12 shows the results of two experiments. In Fig. 12(a),
the pedestrian turns and speeds up to pass the robot in front.
The robot changes its behavior from passing in front to passing
behind to let the pedestrian pass. In Fig. 12(b), the pedestrian
changes its intended passing side from the right to the left side
of the robot. The planner detects the change in direction and
switches sides, passing the pedestrian smoothly.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

122

t=7.0s TCC-MPC++ t=8.6s TCC-MPC++

-

(2)

Fig. 12.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

t=6.8s TCC-MPC++ t=8.8s TCC-MPC++

(b)

Overlayed top view camera images of real-world experiments of TCC-MPC++ with one pedestrian. Blue and green overlays denote the robot and

pedestrian trajectories, respectively. Time stamps of each image denoted in the upper left corner. (a) Encounter with a turning pedestrian. (b) Pedestrian switching

intended passing side.

t=5.7s CC-MPC t=6.7s CC-MPC

t=6.4s CC-MPC

t=8.4s CC-MPC

Fig. 13.

t=7.7s CC-MPC t=8.7s CC-MPC

t=10.4s CC-MPC t=12.4s CC-MPC

(b)

Trajectories of baseline CC-MPC [4] overlayed on camera images. Black dots denote pedestrian start positions. (a) Baseline fails to find the more efficient

trajectory passing between two incoming pedestrians. (b) Baseline becomes infeasible and does not recover quickly (note the time scale).

C. Five Pedestrians

In the second set of experiments, we run LMPCC, T-MPC++,
CC-MPC, and TCC-MPC++ for 5 min each with 5 pedestrians
in the space. The participants were instructed to walk naturally
toward a point on the other side of the lab. Before starting
the recorded experiments, participants were asked to walk for
3 min without the robot, to get used to the environment. The
participants were not aware of the planner running in each ex-
periment and the order of planners was randomized. Several runs
of CC-MPC and TCC-MPC++ are visualized in Figs. 13 and 14,
respectively. The reader is encouraged to watch the associated
video [45]. Fig. 13(a) highlights a case where CC-MPC con-
servatively avoids two pedestrians, not detecting the pathway in
between the pedestrians. In Fig. 13(b), CC-MPC gets infeasible
and is not able to replan fast enough, requiring the robot to
wait for a pedestrian to pass. In all experiments of Fig. 14, the
robot passes pedestrians efficiently and smoothly. Fig. 14(a) and
(b) highlights cases where the planner has to navigate through
the crowd and does so successfully. In Fig. 14(c), we observe
the planner falling in line with a pedestrian to pass another
pedestrian.

After the experiments, the participants unanimously preferred
the planners running in experiments 1 and 4, which were both
guided planners. In general, participants reported that the guided

planners felt safer and more predictable than the nonguided
planners.

VII. DISCUSSION

Our results have indicated that our proposed global and local
planning framework can improve the safety, consistency, and
time efficiency of the planner. We discuss further insights related
to our planning framework in the following.

A. Safety in Dynamic Environments

Planners deployed in the real world must be safe (i.e., col-
lisions are unacceptable) and should not impede humans more
than necessary. Table II indicated that all planners collided at
least once in simulation. To identify the source of collisions,
we repeated the experiments using the social forces model for
both the pedestrian simulation model and the prediction model
of the planner (i.e., removing prediction mismatch). The results
are summarized in Table VI. Collisions are almost reduced to
zero for T-MPC++ in this case, which shows that prediction
mismatch causes most of the collisions.

In the real-world experiments, we did not observe collisions.
We analyzed the video of the experiments and visually annotated
the following instances where pedestrians had to take evasive

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.:

t=7.3s

TCC-MPC++

® ¢

t=8.3s TCC-MPC++

t=7.9s TCC-MPC++ t=9.9s TCC-MPC++

\}

t=8.0s . TCC-MPC++

e

t=8.9s TCC-MPC++

Fig. 14.

TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS

t=9.3s

t=10.9s

(b)

©

123

TCC-MPC++

t=10.3s

TCC-MPC++

TCC-MPC++

t=11.9s TCC-MPC++

TCC-MPC++ t=10.9s TCC-MPC++

Trajectories of TCC-MPC++ overlayed on camera images for three examples. (a) Planner passes between two humans smoothly. (b) Noticing the

oncoming pedestrians, the planner passes behind them smoothly. (c) Planner follows another passing pedestrian to pass.

TABLE VI
QUANTATIVE RESULTS FOR THE SIMULATIONS OF SECTION V-C REPEATED
WITH THE PEDESTRIAN MOTION PREDICTIONS FOLLOWING THE SOCIAL
FORCES MODEL

Peds. | Method Task duration[s] | Safe (%) | Runtime [ms]
4 T-MPC++ (ours) 13.0 (0.1) 100 254 (4.9)
8 T-MPC++ (ours) 13.2 (0.4) 100 27.7 (6.2)
12 T-MPC++ (ours) 13.6 (0.7) 98 26.7 (7.0)

action: 3 out of 63 interactions using LMPCC, 4 out of 61 inter-
actions using CC-MPC, 0 out of 61 interactions for T-MPC++,
and 0 out of 60 interactions for TCC-MPC++. This indicates that
pedestrians take direct evasive action when the robot impedes
their safety, deviating from the social forces model. Collisions
in simulation, therefore, seem to correspond to cases where the
human must take evasive action in practice.

We also observed in the real world that evasive action was
necessary when the baseline planner became infeasible. Safety
guarantees provided through constraints only hold when the
optimization problem is feasible and can impose danger when
no solution is found in time. Our proposed approach reduced
this danger by planning more than a single trajectory and we did
not observe dangerous cases of infeasibility for T-MPC.

B. Advantages of Parallel Optimization

Deploying several local planners in parallel makes it more
likely that the planner returns a trajectory (in time) as a feasible

trajectory can be provided by not a single, but several optimiza-
tion problems. We suspect that this effect is more pronounced
when the planning problems are more diverse. In addition, paral-
lelization reduces the maximum computation times. The fastest
solved optimization immediately provides a trajectory and other
problems can be ignored if necessary. The parallel planner
computation time is, at worst, equal to that of a single planner but
is almost always faster. Several CPU cores are necessary to paral-
lelize the planner but are usually available. These two advantages
inherently improve all performance metrics (e.g., safety and
time efficiency) as a solution is more often available. Because
redundancy and reduced computation times are key for real-
world applications, parallelization may be the key to safely and
efficiently deploying optimization-based planners in practice.

C. Selection of the Homotopy Class

The decision-making in Section IV-E used the optimal costs
of the local planners to decide which trajectory to execute and
preferred the homotopy class of the last followed trajectory. We
observed in practice that the robot stayed closer to the reference
path and velocity, and passed pedestrians behind rather than
in front when necessary. We additionally observed that due to
measurement and prediction noise, making a more consistent
decision led to better navigation. With high consistency, the
robot switches behavior only if the new one is significantly better

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

124

than the current one. In this way, we can ensure a more robust
estimation of the cost of the trajectory. While our proposed
decision-making led to fast navigation, it ignored social norms.
The decision-making could be made more socially compliant by
learning to pick the homotopy class that humans take from data
(see e.g., [34], [46], [47]). Finally, as noted by [8], homotopy
classes merge and split when obstacles are passed or appear in
the planning horizon. Reacting to these events could make the
planner more responsive in practice.

D. Limitations and Future Work

One of the remaining limitations of the framework is the
lack of interaction between the humans and the robot. The
social forces model that we used in simulation is interactive but
does not accurately model human—robot interactions. It may be
possible to reduce the complexity of interaction with humans
to an explicit decision on the topology class of interaction
(along the lines of [48]) that simplifies the planning problem. In
addition, T-MPC++ can possibly be extended to 3-D navigation
in dynamic environments, for instance, using higher dimensional
H-signatures, and the guidance planner could be extended to
incorporate non-Gaussian (i.e., multimodal) uncertainty in ob-
stacle motion (e.g., [15]).

VIII. CONCLUSION

We presented in this article a two-fold planning approach
to address the inherent local optimality of optimization-based
planners. Our planner consisted of a high-level global planner
and a low-level optimization-based planner. By accounting for
the topology classes of trajectories in the dynamic free space,
we generated trajectories with distinct passing behaviors that we
then used to guide several local optimization-based planners in
parallel.

We simulated a mobile robot navigating among pedestrians
and showed that the proposed guided planner resulted in faster
and more consistent robot motion than existing planners, includ-
ing a state-of-the-art topology-guided planner. We qualitatively
observed the same improvement in the real world, where we
navigated successfully among five pedestrians.

In future work, we aim to deploy the proposed method,
considering uncertainty in obstacle motion, on a self-driving
vehicle navigating in urban environments.

APPENDIX A
HomoToPY COMPARISON

This Appendix details and compares three implementations
of homotopy comparison function (3) for 2-D motion planning
in dynamic environments.

A. H-Signature

The H-signature [30] approximates homotopy classes by ho-
mology classes, formally defined as follows.

Definition 4 ([30] Homologous Trajectories): Two trajecto-
ries 71, To € T connecting the same start and end points x5 and
x4, respectively, are homologous iff 7 together with 75 (the

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Fig. 15. Illustrating example for the H-signature [30]. The two trajectories 71
(blue) and T2 (green) are in distinct homology classes as the loop that they form
contains obstacle skeleton (orange). In practice, link (3) is placed far away.

latter in the opposite direction) forms the complete boundary
of a 2-dimensional manifold embedded in X not containing or
intersecting any of the obstacles.

If two trajectories are homotopic, they are homologous. The
reverse does not hold. To compute the H-signature in the 3-D
space composed of x, y-position and time, each obstacle and
its prediction is virtually modeled as a current-carrying wire
(see Fig. 15). The H-signature of obstacle j, h’(7) is defined
by the virtual magnetic field resulting from obstacle js current
loop, integrated over trajectory 7. If two trajectories 71, 72 (see
Fig. 15) enclose the loop of obstacle j, then h? (71) # h7(7T2).
Hence, two trajectories are equivalent if b7 (71) = h/(73) Vj
and are distinct otherwise. We compute the H-signature for a
finite-time state space, by constructing a 1-D skeleton of the
obstacle prediction that is looped outside of the workspace and
time horizon (see Fig. 15). The skeleton is composed of the
following lines.

1) The obstacle’s prediction for 0 < t < T

2) A line upwards to t =T + € where € > 0 is a small

constant and a line going outside of the workspace.

3) Alinedowntot = —e.

4) A line to the obstacle position at ¢t = 0.

This skeleton ensures that trajectories can only enclose the
predicted obstacle motion for 0 < ¢ < T'.

We assume that obstacle trajectories are piecewise linear (e.g.,
discrete-time trajectories). The integration of the magnetic field
B can then be computed analytically (see [30]) per segment ¢

of Obstacle js skeleton og o{ as follows:
o (of —0l) x (pxp)
p=ol —r,p =0 —r,d= ‘ -

o —ojl?

1 (dxp’ dxp)
lall> \ 1l lpll

I
o
® (og,og ,r)
-0

/

J ol
(I)(oi,oi,r)

2

with [the number of segments in Obstacle js skeleton. The
integral [, B(r)dr over looped robot trajectories I yields 1 if
the obstacle is enclosed and 0 otherwise. To compare trajectories
that reach different goals in our guidance planner, we connect
their end points directly at ¢ = 7" with an additional line. We use

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

DE GROOT et al.: TOPOLOGY-DRIVEN PARALLEL TRAJECTORY OPTIMIZATION IN DYNAMIC ENVIRONMENTS

TABLE VII
COMPARISON BETWEEN HOMOTOPY COMPARISON IMPLEMENTATIONS

Method Dur. [s] Safe (%) | Homotopy Comparison Time [ms]
Homotopy Winding Angles | 21.2 (0.9) 93 0.3 (0.7)
Comparison H-Signature 21.2 (1.0 92 2.1 (4.0)

] UvVD 21.1 (0.9) 88 3.7 (8.5)

Notation follows that of Table II.

the GSL library [49] to perform the integration and cache com-
puted H-signature for each trajectory to prevent recomputation.

B. Winding Number

The winding number [39] is a topological invariant that indi-
cates how the robot and obstacle j are rotated around each other.
It is computed as follows. The relative position of obstacle j to
the robot for time step k is d) = p;. — o}, Therelative angle /0],
is the angle of d, in a fixed global frame. Between time steps
k and k + 1, the relative angle changes by Aﬁi = 9{; 41— Hi.
The winding number accumulates these changes over all time
steps, A(T,07) = 5= fo:l A®.. The sign of the winding num-
ber A indicates the passing direction, its magnitude denotes
passing progress. We consider a trajectory to pass obstacle j
if |7 > Apass» Where by default Ap, = ﬁ. We consider two
trajectories distinct if there exists at least one obstacle that the
trajectories pass on different sides and consider them equivalent
otherwise.® We cache computed winding numbers to prevent
recomputation.

C. Universal Visibility Deformation

UVD was proposed for static obstacle avoidance in 3-D and,
therefore, does not exactly capture the local optima for collision
avoidance in 2-D dynamic environments. Two trajectories are
in the same UVD class if points along the trajectories can be
connected, without intersecting with obstacles.

Definition 5 (see: [33]) Two trajectories 71 (s), T2(s) param-
eterized by s € [0,1] and satisfying 71(0) = 72(0), 71(1) =
72(1), belong to the same uniform visibility deformation class,
if for all s, line 71 (s)72(s) is collision-free.

In practice, we check collisions for s at discrete intervals along
the trajectories.

D. Comparison

We compare the homotopy comparison functions in simu-
lation on the scenario of Section V-D over 100 experiments.
Table VII indicates that UVD degrades navigation performance,
likely because it is not designed for dynamic environments and
may lead to duplicate trajectories in practice. The H-signature
and winding numbers show similar navigation performance.
Winding numbers are computationally more efficient but require
a minimum passing angle to be tuned. Since the H-signature
generalizes to higher dimensions and both methods are still
real-time, we opted to use the H-signature in this article.

8Future work could also use winding numbers to distinguish between passing
and nonpassing trajectories.

[1]

[2

—

[3

=

[4

=

[5

[t}

[6]

[7]
[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

125

REFERENCES

M. Simon, “Inside the Amazon warehouse where humans and machines
become one,” 2019. [Online]. Available: https://www.wired.com/story/
amazon-warehouse-robots/

J. Walker, “The self-driving car timeline—predictions from the top 11
global automakers,” 2019. [Online]. Available: https://emerj.com/ai-
adoption-timelines/self-driving-car-timeline-themselves-top-11-
automakers/

B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic en-
vironments,” I[EEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4459-4466,
Oct. 2019.

H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for
MAVs in dynamic environments,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 776-783, Apr. 2019.

M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in Proc. IEEE
Int. Conf. Intell. Robots Syst., Oct. 2018, pp. 3052-3059.

M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frenét Frame,” in Proc. [IEEE
Int. Conf. Robot. Autom., May 2010, pp. 987-993.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30,n0. 7, pp. 846—894, Jun.2011.
C. Rosmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory
planning and optimization in distinctive topologies,” Robot. Auton. Syst.,
vol. 88, pp. 142-153, Feb. 2017.

J. Ziegler et al., “Making bertha drive—an autonomous journey on a historic
route,” IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8-20, Summer
2014.

F. Kunz et al., “Autonomous driving at Ulm University: A modular, robust,
and sensor-independent fusion approach,” in Proc. IEEE Intell. Veh. Symp.,
Jun. 2015, pp. 666-673.

F. Altché and A. de La Fortelle, “Partitioning of the free space-time for
on-road navigation of autonomous ground vehicles,” in Proc. IEEE 56th
Annu. Conf. Decis. Control., Dec. 2017, pp. 2126-2133.

L. Ferranti et al., “SafeVRU: A research platform for the interaction of
self-driving vehicles with vulnerable road users,” in Proc. IEEE Intell.
Veh., 2019, pp. 1660—1666.

A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast risk assessment
for autonomous vehicles using learned models of agent futures,” in Proc.
Robot.: Sci. Syst., Jul. 2020, pp. 1-9.

O. de Groot, B. Brito, L. Ferranti, D. Gavrila, and J. Alonso-Mora,
“Scenario-based trajectory optimization in uncertain dynamic environ-
ments,” [EEE Robot. Autom. Lett., vol. 53, no. 2, pp.5389-5396,
Jul. 2021.

0. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-based
motion planning with bounded probability of collision,” Jul. 2023. [On-
line]. Available: https://arxiv.org/pdf/2307.01070.pdf

C. Pek and M. Althoff, “Fail-safe motion planning for online verification
of autonomous vehicles using convex optimization,” IEEE Trans. Robot.,
vol. 37, no. 3, pp. 798-814, Jun. 2021.

J. P. Alsterda, M. Brown, and J. C. Gerdes, “Contingency model predictive
control for automated vehicles,” in Proc. IEEE Amer. Control Conf.,
Philadelphia, PA, USA, Jul. 2019, pp. 717-722.

V. K. Adajania, A. Sharma, A. Gupta, H. Masnavi, K. M. Krishna, and
A. K. Singh, “Multi-modal model predictive control through batch non-
holonomic trajectory optimization: Application to highway driving,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 4220-4227, Apr. 2022.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configura-
tion spaces,” IEEE Robot. Autom. Lett., vol. 12, no. 4, pp. 566-580,
Aug. 1996.

M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” Int. J. Robot.
Res., vol. 35, no. 7, pp. 797-822, Jun. 2016.

A. Orthey, S. Akbar, and M. Toussaint, “Multilevel motion planning: A
fiber bundle formulation,” Int. J. Robot. Res., vol. 43, no. 1, pp. 3-33,
Jan. 2024.

T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer graph-
based trajectory planning for race vehicles in dynamic scenarios,” in Proc.
IEEE Intell. Transp. Syst. Conf., Oct. 2019, pp. 3149-3154.

J. Ortiz-Haro, W. Hoenig, V. N. Hartmann, and M. Toussaint, “iDb-A*:
Iterative Search and Optimization for Optimal Kinodynamic Motion Plan-
ning,” Nov. 2023. [Online]. Available: http://arxiv.org/abs/2311.03553

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

https://www.wired.com/story/amazon-warehouse-robots/
https://www.wired.com/story/amazon-warehouse-robots/
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://emerj.com/ai-adoption-timelines/self-driving-car-timeline-themselves-top-11-automakers/
https://arxiv.org/pdf/2307.01070.pdf
http://arxiv.org/abs/2311.03553

126

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

M. K. M. Jaffar and M. Otte, “PiP-X: Funnel-based online feedback
motion planning/replanning in dynamic environments,” in Proc. Workshop
Algorithmic Found. Robot., 2022, pp. 132-148.

T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Sci. Robot., vol. 8,
no. 84, 2023, Art. no. eadf7843.

K. Zheng, “ROS navigation tuning guide,” in Robot Operating System
(ROS): The Complete Reference (Studies in Computational Intelligence 6),
A. Koubaa, Ed. Berlin, Germany: Springer, 2021, pp. 197-226. [Online].
Available: https://doi.org/10.1007/978-3-030-75472-3_6

F. Eiras, M. Hawasly, S. V. Albrecht, and S. Ramamoorthy, “A two-stage
optimization-based motion planner for safe urban driving,” IEEE Trans.
Robot., vol. 38, no. 2, pp. 822-834, Apr. 2022.

W.Ding, L. Zhang, J. Chen, and S. Shen, “EPSILON: An efficient planning
system for automated vehicles in highly interactive environments,” /[EEE
Trans. Robot., vol. 38, no. 2, pp. 1118-1138, Apr. 2022.

J. Park, S. Karumanchi, and K. Jagnemma, “Homotopy-based divide-
and-conquer strategy for optimal trajectory planning via mixed-integer
programming,” [EEE Trans. Robot., vol. 31, no. 5, pp. 1101-1115,
Oct. 2015.

S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints
in search-based robot path planning,” Auton. Robots, vol. 33, no. 3,
pp. 273-290, Oct. 2012.

B. Yi, P. Bender, F. Bonarens, and C. Stiller, “Model predictive trajectory
planning for automated driving,” IEEE Trans. Intell. Veh., vol. 4, no. 1,
pp. 24-38, Mar. 2019.

0. de Groot, L. Ferranti, D. Gavrila, and J. Alonso—Mora, “Globally guided
trajectory planning in dynamic environments,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2023, pp. 10118-10124.

B. Zhou, F. Gao, J. Pan, and S. Shen, “Robust real-time UAV replanning
using guided gradient-based optimization and topological paths,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2020, pp. 1208-1214.

H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially compliant
mobile robot navigation via inverse reinforcement learning,” Int. J. Robot.
Res., vol. 35, no. 11, pp. 1289-1307, Sep. 2016.

C. Mavrogiannis, K. Balasubramanian, S. Poddar, A. Gandra, and S. S.
Srinivasa, “Winding through: Crowd navigation via topological invari-
ance,” IEEE Robot. Autom. Lett., vol. 8, no. 1, pp. 121-128, Jan. 2023.
C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A planning framework
for crowd navigation,” in Proc. IEEE Int. Conf. Robot. Autom., May 2019,
pp. 5551-5557.

C. Mavrogiannis and R. A. Knepper, “Hamiltonian coordination primitives
for decentralized multiagent navigation,” Int. J. Robot. Res., vol. 40,
no. 10/11, pp. 1234-1254, Sep. 2021.

T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” Adv. Robot., vol. 14, no. 6, pp. 477-493,
Jan. 2000.

M. A. Berger, “Topological invariants in braid theory,” Lett. Math. Phys.,
vol. 55, no. 3, pp. 181-192, Mar. 2001.

R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile
Robots, 2nd ed. Cambridge, MA, USA: MIT Press, 2011.

A. Domahidi and J. Jerez, “FORCES Professional,” Embotech AG,
Jul. 2014. [Online]. Available: https://embotech.com/FORCES-Pro

D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,”
Phys. Rev. E, vol. 51, no. 5, pp. 4282-4286, May 1995.

C. Gloor, “Pedsim: Pedestrian crowd simulation,” 2016. [Online]. Avail-
able: https://github.com/chgloor/pedsim

C. Rosmann, “ROS package teb_local_planner,” Nov. 2023. [Online].
Available: https://github.com/rst-tu-dortmund/teb_local_planner

0. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Video
topology-driven parallel trajectory optimization in dynamic environ-
ments,” Jan. 2024. [Online]. Available: https://youtu.be/kXUAIdQXrNk
D. Martinez-Baselga, O. de Groot, L. Knoedler, L. Riazuelo, J. Alonso-
Mora, and L. Montano, “SHINE: Social homology identification for
navigation in crowded environments,” Apr. 2024. [Online]. Available:
http://arxiv.org/abs/2404.16705

C. Rosmann, M. Oeljeklaus, F. Hoffmann, and T. Bertram, “Online trajec-
tory prediction and planning for social robot navigation,” in Proc. IEEE
Int. Conf. Adv. Int. Mech., Jul. 2017, pp. 1255-1260.

C. I. Mavrogiannis and R. A. Knepper, “Multi-agent path topology in
support of socially competent navigation planning,” Int. J. Robot. Res.,
vol. 38, no. 2/3, pp. 338-356, Mar. 2019.

IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

[49] M. Galassi et al., “GNU scientific library reference manual,” 3rd ed.,
Aug. 2019. [Online]. Available: http://www.gnu.org/software/gsl/

Oscar de Groot received the B.Sc. degree in elec-
trical engineering and the M.Sc. degree in systems
and control from the Delft University of Technology,
Delft, The Netherlands, in 2016 and 2019, respec-
tively. He is currently working toward the Ph.D. de-
gree in motion planning for autonomous vehicles in
urban environments with the Department of Cognitive
Robotics, Delft University of Technology.

His research interests include probabilistic safe
motion planning, scenario optimization, model pre-
dictive control, and self-driving vehicles.

Laura Ferranti (Member, IEEE) received the Ph.D.
degree in control engineering from the Delft Univer-
sity of Technology, Delft, The Netherlands, in 2017.

She is currently an Assistant Professor with the
Cognitive Robotics (CoR) Department, Delft Univer-
sity of Technology. Her research interests include op-
timization and optimal control, model predictive con-
trol, reinforcement learning, embedded optimization-
based control with application in flight control, mar-
itime transportation, robotics, and automotive..

Dr. Ferranti was the recipient of an NWO Veni
Grant from The Netherlands Organization for Scientific Research (2020), and
of the Best Paper Award in Multirobot Systems at ICRA 2019.

Dariu M. Gavrila (Member, IEEE) received the
Ph.D. degree in computer science from the University
of Maryland at College Park, College Park, MD,
USA, in 1996.

From 1997 to 2016, he was with Daimler R&D,
Ulm, Germany, where he became a Distinguished
¥ Scientist. He led the vision-based pedestrian detection

D

P ‘ ~ research, which was commercialized 2013-2014 in

\ various Mercedes-Benz models. In 2016, he moved
to TU Delft, where he since heads the Intelligent Ve-
hicles group as a Full Professor. His current research

deals with sensor-based detection of humans and analysis of behavior in the
context of self-driving vehicles.

Dr. Gavrila was the recipient of the Outstanding Application Award 2014
and the Outstanding Researcher Award 2019, both from the IEEE Intelligent
Transportation Systems Society.

Javier Alonso-Mora (Senior Member, IEEE) re-
ceived the Ph.D. degree in robotics from ETH Zurich,
Ziirich, Switzerland, in 2014.

He is currently an Associate Professor with the
Cognitive Robotics Department, Delft University of
Technology, Delft, The Netherlands, and a Princi-
pal Investigator with the Amsterdam Institute for
Advanced Metropolitan Solutions (AMS Institute),
Amsterdam, The Netherlands. Before joining TU
Delft, he was a Postdoctoral Associate with the
Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA. His main research interest is in navigation, motion planning
and control of autonomous mobile robots, with a special emphasis on multirobot
systems, on-demand transportation and robots that interact with other robots and
humans in dynamic and uncertain environments.

Dr. Alonso-Mora was the recipient of an ERC Starting Grant (2021), the ICRA
Best Paper Award on Multi-Robot Systems (2019), an Amazon Research Award
(2019), and a talent scheme VENI Grant from the Netherlands Organisation for
Scientific Research (2017).

Authorized licensed use limited to: TU Delft Library. Downloaded on December 24,2024 at 09:03:45 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/978-3-030-75472-3_6
https://embotech.com/FORCES-Pro
https://github.com/chgloor/pedsim
https://github.com/rst-tu-dortmund/teb_local_planner
https://youtu.be/kXUAldQXrNk
http://arxiv.org/abs/2404.16705
http://www.gnu.org/software/gsl/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

