
Delft Center for Systems and Control

LQG Coordination Control
Optimal Control Theory for Coordinated Linear Systems
with Application to Autonomous Underwater Vehicles

Nicola Pambakian

M
a
s
te

r
o
f

S
c
ie

n
c
e

T
h
e
s
is





LQG Coordination Control
Optimal Control Theory for Coordinated Linear Systems with

Application to Autonomous Underwater Vehicles

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Nicola Pambakian

August 10th, 2011

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology



Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Delft University of Technology

Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled

LQG Coordination Control

by

Nicola Pambakian

in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: August 10th, 2011

Supervisor(s):
Prof.dr.ir. Jan H. van Schuppen

Prof.dr.ir. Bart De Schutter

Reader(s):
Dr.ir. Tamás Keviczky

Ms. Pia L. Kempker (M.Sc.)





Abstract

The topic of this thesis is the solution of the ‘LQG coordination control’ problem, which
is the Linear-Quadratic-Gaussian (LQG) control problem for the class of Coordinated Lin-
ear Systems (CLSs). Decentralized and Distributed Control have attracted the interest of
many researchers in the last decades. During the past years, numerous methodologies and
approaches have been introduced. This thesis focuses on Linear Coordination Control, a the-
oretical framework developed to control CLSs. A CLS is a hierarchical system composed of
a number of subsystems and a ‘coordinator’. The subsystems are independent of each other,
but they depend on the coordinator, while the coordinator is independant of the subsystems.
Thus, a ‘nested information pattern’ is available to the control law. The following issues are
investigated: (1) the applicability of the separation principle; (2) the synthesis of the optimal
state-feedback gain and (3) the synthesis of the optimal observer gain (or Kalman gain). The
solution to these three issues, and therefore to the LQG coordination control problem, are
discussed for different categories of problem formulations: general problems, decomposable
problems and virtual coordination problems. No results were found for general problems. For
decomposable problems, we show that the separation property holds if certain parameters
are fixed, and we present a control synthesis procedure that involves numerical optimization
of cost functions; for these cost functions, the convexity in the optimization parameters is
conjectured. For virtual coordination problems, we derive optimal analytical results.
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Chapter 1

Introduction

The goal of the present work is to provide a solution to the LQG (Linear Quadratic Gaussian)
optimal control problem for a particular class of linear, time-invariant systems: the coordi-
nated linear systems (CLSs). This class of systems is used to model distributed stochastic
systems which are independent of each other, with a coordinator subsystem having influence
on all of them. The influence of the coordinator on the subsystems describes a particular set
of data that is available to the control system, or information pattern.

Classical LQG control theory assumes a classical pattern, which roughly consists of a non-
delayed sharing for all the present and past inputs and outputs within the whole system.
In this master thesis we consider a non-classical, nested information pattern. Limiting our
focus to this kind of patterns introduces an intrinsic difficulty for the control synthesis, as
the classical LQG optimal control theory does not provide for a control synthesis for every
information pattern, but only for the classical one. By the nested information structure, the
coordinator of the CLS shares its information with the other subsystems subsystems, which
are independent of each other, without having access to their iformation (its present and
past inputs and outputs). In other words, the information of each subsystem is only locally
available, while that of the coordinator is shared with every other subsystem.

In order to introduce the reader to our problem, in Section 1-1 we motivate this work by
showing the possible benefits it would provide, for example, to the problems of vehicles co-
ordination. A generic problem description is given in Section 1-2, while the most crucial
objectives to be reached are introduced in Section 1-3. The general approach adopted to solve
the LQG coordination control problem is summarized in Section 1-3-2. At last, an outline of
the thesis is found at the end of the chapter, in Section 1-4.

1-1 Motivation

An improvement in the theory of linear coordination control would be of benefit for problems
requiring dynamical coordination of agents. An important field of application of this class of

Master of Science Thesis



2 Introduction

problems is given by autonomous vehicles coordination problems. To these kind of problems,
much attention has been given in the last decades.

In practice, coordinated groups of autonomous vehicles can provide significant benefits to
many applications. These include environmental sampling, mapping, surveillance, fire-detection,
mine-sweeping, military use and sensor networks (see, for instance, [13, 17, 19, 31, 32] and
the references therein). In these years, different approaches have been formulated to tackle
vehicles coordination problems. Some of these make use of advanced control techniques such
as model predictive control [29] and non-linear control [2]. Others use different approaches,
such as auction bidding systems [52] or other optimization methods. A glance of the state-
of-the-art of coordination of groups of vehicles is given in [37], while a more generic overview
on coordination control and cooperative control can be found in [30].

Some issues still appear to be poorly treated in the literature framework.

1. The necessity of communication from the vehicles, hidden by the frequently assumed
full or partial knowledge of their state by the rest of the system (see for example [3, 19])
often reflects into the need of a complex communication apparatus, and represents both
an energetic and an economical cost.

2. Stochastic systems have been considered relatively little in the coordination control
literature. Stochastic disturbances (e.g. air and water turbulence, measurement noises,
or pavement irregularities) may play a role in the performance of the control laws, as it
could happen, for instance, in the leader-following problems.

3. Computationally efficient approaches might be required for some applications. More
and more the control systems tend to be decentralized and embedded in vehicles. The
computational power of these systems cannot always afford complex operations, and
limited time is usually available for computations.

We aim to offer a solution for these issues by extending the boundaries of the LQG optimal
control theory to the class of coordinated linear systems (CLSs). A CLS is in fact a useful
abstraction to model coordinated vehicles systems. It does not only give the possibility to
represent leader-followers dynamical systems, but also allows the representation of virtually
coordinated agents (i.e. coordinated by virtually-built operators, like computer programs).

An important aspect of CLSs is that of communication. There, subsystems do not commu-
nicate any data to the coordinator nor to their peers. As communication can represent an
expensive cost to the vehicles, this translates to an extremely important advantage. Avoidance
of communication is particularly welcome for Autonomous Underwater Vehicles (AUVs) coor-
dination problems, where the communication, carried out by sonars, induces a huge energetic
cost.

1-2 Problem Description

The classical version of the LQG optimal control theory provides for an instrument to syn-
thesize optimal control laws for linear systems with a classical information pattern[22]. As
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Figure 1-1: Example of coordination control structure.

mentioned before, in this thesis we consider a nested information pattern instead. The nested
information structure of the system is illustrated in Figure 1-1 by means of an example.

In the figure, a coordinator influences three subsystems which are independent of each other.
The coordinator can be seen as the leading part of the system. It does not receive or measure
the states of the subsystems, but it influences them. Any of these subsystems can be a
coordinated system itself, allowing in this way a nested structure. Since no feedback is applied
from the subsystems to the coordinator, there is no communication from the subsystems. In
general, the absence of communication from the subsystems inevitably introduces a loss in
performance for the global control system but might represent a good approach for problems
where avoidance of communication is strongly appreciated.

It is our goal to build a theoretical framework which fully reproduces the advantages of
the classical LQG optimal control theory for this particular class of problems. We want,
therefore, to offer a procedure to find the optimal state-feedback gain separately from the
optimal observer gain by applying the separation principle.

1-3 Ends and Means

Final goals of LQG coordination control and the approach taken to solve the problem are
explained here.

Master of Science Thesis



4 Introduction

1-3-1 Objectives

In the process of extending the LQG optimal control theory to the class of coordinated linear
systems, the following objectives will be pursued.

1. Establish that the separation property holds. If it holds then the problem of control with
partial observations separates into two problems: one for the optimal state estimator
and one for the state-feedback control law based on complete observations [49].

2. Develop a control synthesis procedure. Derive the procedure by which the optimal
control law and the state estimator can be determined.

3. Show the validity of the developed procedures through an implementation in a case
study. For this purpose, the problem of coordination control of AUVs will be taken into
account, in Chapter 4.

These three objectives will be formulated as problems in Chapter 2, and solved in Chapter 3.

1-3-2 Approach

We choose to represent our systems in the discrete-time domain. This decision lies on the
relative ease of implementation of discrete-time controllers in relation to analog controllers.
We assume the reader is familiar with the concepts of stable and asymptotically stable matrices,
and the concepts of controllable and stabilizable pairs, of which a definition can be found, e.g.
in [48].

We will divide the problem formulations of LQG coordination control in three categories: the
general problems, the decomposable problems and the virtual coordination problems. For each
of these categories, the following approach is taken.

1. At first, we determine the main passages required for solving the classical LQG control
problem.

2. We check whether, and under which conditions, these passages are valid for the optimal
control synthesis for CLSs. If they cannot be applied to our problem, we look for a
decomposition of the problem itself that allows for it.

3. An analytical solution is then sought. If this is not found, a numerical optimization is
indicated instead.

As we will see, this approach produced good results for decomposable problems and for virtual
coordination problems.

Master of Science Thesis



1-4 Outline of the Thesis 5

1-4 Outline of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the problem of LQG coordination
control is formulated after defining the main actors of the thesis, and after overviewing some
existing approaches in the literature. In Chapter 3 we treat the LQG coordination control
problem by dividing it into the three categories introduced above, and the respective achieved
results are presented. After that, in Chapter 4 the developed theory is implemented to a case
study: coordination control of a group of autonomous underwater vehicles (AUVs). Chapter
5 collects the conclusions to the work, the main contributions given by the thesis, its strengths
and weaknesses, and some suggestions for future work.

Master of Science Thesis
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Chapter 2

Problem Formulation

This chapter is dedicated to the formulation of the thesis problem in a mathematical way.
In order to introduce the problem of LQG coordination control, in Section 2-1 we define
the class of coordinated linear systems (CLSs), and show the properties of two classes of
matrices which will play an important role in in the coming pages: the swallow and the
arrow matrices. To introduce the results already available about the argument, in Section
2-2 we briefly explain the classical LQG optimal control theory, then, in Section 2-3, we
make an overview of correlated works in the literature. At last, we formulate the problem of
LQG coordination control in Section 2-4. General conclusions about the chapter are found in
Section 2-5.

2-1 Introduction to Coordinated Linear Systems

A coordinated linear system (CLS) is a special class of hierarchical systems in which every
subsystem can be influenced by one coordinator. A CLS has a nested structure which is
reflected by its information pattern. In this section, we define CLSs and explain some of their
important properties.

2-1-1 Definition

Let us indicate with Ns the total number of subsystems (excluding the coordinator) of a
CLS. To simplify notation, we will always represent only two subsystems in formulas, even
if Ns > 2. The class of CLSs, on which our focus is going to be set for the whole thesis, is
defined as follows.

Definition 2-1.1. A Coordinated Linear System (CLS) with Ns subsystems is a linear state-
space system of the form

Master of Science Thesis



8 Problem Formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ x1(t+ 1)
x2(t+ 1)
xc(t+ 1)

⎤
⎦ =

⎡
⎣ A11 0 A1c

0 A22 A2c

0 0 Acc

⎤
⎦
⎡
⎣ x1(t)
x2(t)
xc(t)

⎤
⎦ +

⎡
⎣ B11 0 B1c

0 B22 B2c

0 0 Bcc

⎤
⎦
⎡
⎣ u1(t)
u2(t)
uc(t)

⎤
⎦+

+

⎡
⎣ M11 0 M1c

0 M22 M2c

0 0 Mcc

⎤
⎦
⎡
⎣ vx,1(t)
vx,2(t)
vx,c(t)

⎤
⎦

⎡
⎣ y1(t+ 1)
y2(t+ 1)
yc(t+ 1)

⎤
⎦ =

⎡
⎣ C11 0 C1c

0 C22 C2c

0 0 Ccc

⎤
⎦
⎡
⎣ x1(t)
x2(t)
xc(t)

⎤
⎦ +

⎡
⎣ N11 0 N1c

0 N22 N2c

0 0 Ncc

⎤
⎦
⎡
⎣ vy,1(t)
vy,2(t)
vy,c(t)

⎤
⎦ ;

x1 (t0) = x1,0; x2 (t0) = x2,0; xc (t0) = xc,0;

(2-1)

where vx,i, vy,i, for i = 1, . . . , Ns, c are Gaussian white noises, and A, B, C,M , N are matrices
of appropriate sizes.

General references about CLSs and their properties are found in [26, 27, 25, 40]. For ease of
notation, we will often indicate states, inputs and outputs as

x (t) =
[
xT1 (t) , xT2 (t) , xTc (t)

]T
;

u (t) =
[
uT1 (t) , uT2 (t) , uTc (t)

]T
;

y (t) =
[
yT1 (t) , yT2 (t) , yTc (t)

]T
,

recalling that wherever we will display a subsystem of two subsystems only, we intend its
general version with Ns subsystems instead.

2-1-2 Swallow and Arrow Matrices

In CLSs, it is very common to find matrices of, as we define it, the swallow form. A swallow
matrix (named after the shape it describes by its non-zero elements, that recalls a flying bird)
reflects the information pattern of CLSs. We hereby define this class of matrices and study
its properties.

Definition 2-1.2. A matrix is said to be swallow if it is structured as

⎡
⎢⎢⎢⎢⎢⎢⎣

S11 0 · · · 0 S1c
0 S22 · · · 0 S2c
...

... . . . ...
...

0 0 · · · SNsNs SNsc
0 0 · · · 0 Scc

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where S11 ∈ R
l1×c1 ,. . . , SNsNs ∈ R

lNs×cNs , Scc ∈ R
lc×cc , and S1c ∈ R

l1×cc ,. . . , SNsc ∈ R
lNs×cc .

Some conservation properties hold for swallow matrices.
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2-2 LQG Optimal Control Theory 9

1. If A and B are two swallow matrices with compatible dimensions, then A + B is also
swallow.

2. If A and B are two swallow matrices with compatible dimensions, then A · B is also
swallow.

3. If an invertible matrix A is swallow, then its inverse A−1is also swallow.

Following from these properties, important conclusions can be inferred regarding CLSs. For
example, applying a control action u (t) = Fx (t), F being swallow with compatible dimen-
sions, the shape of the closed-loop state-space matrices (A+BF ) remains swallow.

Another form of matrix we will often mention in the thesis is the arrow form. This is defined
below.

Definition 2-1.3. A matrix is said to be in the arrow form if it is structured as⎡
⎢⎢⎢⎢⎢⎢⎣

A11 0 · · · 0 A1c
0 A22 · · · 0 A2c
...

... . . . ...
...

0 0 · · · ANsNs ANsc
Ac1 Ac2 · · · AcNs Acc

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where A11 ∈ R
l1×c1 ,. . . , ANsNs ∈ R

lNs×cNs , Acc ∈ R
lc×cc , and A1c ∈ R

l1×cc ,. . . , ANsc ∈
R
lNs×cc ,Ac1 ∈ R

lc×c1 ,. . . , ANsc ∈ R
lc×cNs .

Another conservation property involving the product of arrow and swallow matrices is given
by the following lemma.

Lemma 2-1.4. (Arrow-Swallow Multiplication) Let S be a swallow matrix and A be a matrix
in the arrow form. The products AS, STA and STAS result into a matrix of the arrow form.

Proof. This follows from term-by-term multiplication.

2-2 LQG Optimal Control Theory

The most popular, and better explored area of optimal stochastic control theory is that of
LQG (Linear-Quadratic-Gaussian) control. This is an optimal control synthesis technique
applicable to linear systems affected by Gaussian white noise of known variance. A general
reference on the topic can be found in [22], but thousands of pages have been written about
LQG control. For interested readers, a huge collection of references divided by argument can
be found in the bibliography [33].

In the classical LQG control theory, the control synthesis procedure is divided in two parts.
An optimal state-feedback gain F is computed in order to minimize the variance of the closed-
loop system’s state, having the possibility to emphasize the importance of states and control
inputs by selecting proper weighing matrices Q, R and S. Secondly, solving a dual problem,
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10 Problem Formulation

the optimal gain of the observer is computed. This gain, denoted by K, is often referred
to, in literature, as the Kalman gain. The introduction of an observer in a system modifies
its closed-loop dynamics. In general, this fact couples the computation of the two gains.
However, if a control problem has the separation property, the optimal feedback gain F and
the Kalman gain K can be computed separately, in a fully decoupled way [51]. This idea
follows what it is called the separation principle.

In this section we summarize the separation principle and the procedures to obtain the two
gains in the classical version of the LQG control theory. The following generic linear system
is considered, {

x (t+ 1) = Ax (t) +Bu (t) +Mvx (t)
y (t) = Cx (t) +Nvy (t) ,

where vx(t) and vy(t) are jointly Gaussian noises with zero average and covariance matrix

Vtot = V Ttot =
[
Vx Vxy
V Txy Vy

]
≥ 0

with Vy > 0.

2-2-1 Separation Principle

Since the gain of the observer modifies the dynamics of the closed-loop system, the optimal
values of F and K are, in general, coupled. In LQG optimal control, the separation property
allows the syntheses of the optimal gains F and K to be performed separately.

The validity of this principle is strongly connected with the information pattern of the con-
troller and the observer, with the presence of delays and with the structure of the controller
[51]. The separation property holds for LTI systems with classical information pattern [11],
as it is the case of LQG optimal control. Thus, for the classical LQG control, the synthesis
of the two gains can be separated.

2-2-2 LQG Optimal State-Feedback Gain Synthesis

To obtain the optimal feedback gain F , an appropriate cost function J to be minimized
is defined. In this thesis, we focus on the type of infinite-horizon cost function, as we are
interested in a static control action minimizing the steady-state behavior of the system. Let

J = lim
t→∞

1
t
E

⎡
⎣t−1∑
s=0

(
x(s)
u(s)

)T [
Q S
ST R

](
x(s)
u(s)

)⎤
⎦ , (2-2)

where [
Q S
ST R

]
≥ 0
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2-2 LQG Optimal Control Theory 11

and R > 0. Let us assume a classical information pattern to be available for the controller.
This means that the controller has access to the value of every present and past state of the
whole system. Now, choosing u(t) = Fx(t), J can be rewritten as follows [5],

J = trace
[
W

(
Q+ SF + F TST + F TRF

)]
, (2-3)

where W is the steady-state variance of the closed-loop system, and it is given by the solution
of the Lyapunov equation

W = (A+BF )W (A+BF )T +MVxMT .

The gain F which minimizes this cost function is then given by

F = −
(
BTPB +R

)−1 (
BTPA+ ST

)
,

where P is the solution of the Discrete-time Algebraic Riccati Equation (DARE) [1],

P = ATPA+Q−
(
ATPB + S

) (
BTPB +R

)−1 (
BTPA+ ST

)
.

This equation is proved to have only one, positive-definite solution if and only if two conditions
hold: (A,B) is a stabilizable pair and (AF , LF ) is an observable pair, where AF = A−BR−1ST

and LFLTF = Q − SR−1ST [49]. We denote the solution of this problem by the short-hand
notation

F = LQG (A,B,Q,R, S) .

2-2-3 LQG Optimal Observer Gain Synthesis

LQG optimal control provides a procedure to synthesize an optimal gain to minimize the
variance of the state-observation error. Denoting by x̂ (t) the observed state, and by e(t) =
x(t)− x̂(t) the observation error, we have

e(t+ 1) = (A+KC) e(t) +Mvx(t) +KNvy(t). (2-4)

As we wish to minimize the steady-state variance of this process, a cost function H is defined
as

H = lim
t→∞

1
t
E

[
t−1∑
s=0
e (t)T e (t)

]
.

This can be rewritten as follows [5],

H = trace (We) , (2-5)

where We is the solution of the Lyapunov equation

We = (A+KC)We (A+KC)T +
[
M KN

] [ Vx Vxy
V Txy Vy

] [
MT

NTKT

]
.
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12 Problem Formulation

As for the feedback gain, the information pattern is assumed to be classical. In this case, the
theory provides the following optimal solution,

K = −
(
AXCT +MVxyNT

) (
CXCT +NVyNT

)−1
,

where X is the solution of the DARE [1],

X = AXAT+MVxMT−
(
AXCT +MVxyNT

) (
CXCT +NVyNT

)−1 (
CXAT +NV TxyMT

)
.

This Lyapunov equation has a unique, positive-definite solution, if and only if the following
conditions hold: (A,C) is a detectable pair and (AK , LK) is an observable pair, being AK =
A−MVxyNT

(
NVyN

T
)−1
C and LKLTK =MVxMT −MVxyNT

(
NVyN

T
)−1
NV TxyM

T [49].
Consistently with the notation introduced before, the solution to this problem can be written
as

K =
[
LQG

(
AT , CT ,MVxM

T , NVyN
T ,MVxyN

T
)]T
.

Note that this problem is dual to that of the synthesis of the state-feedback gain F . A duality
table is shown in 2-1.

Optimal Gain F Optimal Gain KT
A AT

B CT

Q MVxM
T

R NVyN
T

S MVxyN
T

Table 2-1: Duality table for the problems of synthesis of the optimal gains F and K in classical
LQG control theory.

2-3 Literature Overview

We present here a brief literature overview related to the topic of this thesis.

2-3-1 Literature on Linear Coordination Control

Linear coordination control is a recently developed branch of the linear control theory. The
approach was originally introduced by Ran and van Schuppen in [40], with the aim of build-
ing a framework to control CLSs. The theory was then extended by the two authors and
Kempker: in [25] it is shown how to construct a coordinated linear system by a state trans-
formation starting from a generic linear system, while in[26], controllability and observability
properties of CLSs are considered. There, interesting patterns and totally new concepts of
controllable and reachable states are introduced to describe the complexity of states and
inputs interactions.

The theory of LQ-optimal control, very close in both ideal and practical development to that
of LQG control, is extended by Kempker to the class of CLSs, in [28]. Results and approaches
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2-3 Literature Overview 13

there described forms the basis of the work of this thesis. The results of Kempker’s extension
of LQ-optimal control for CLSs were used to implement a formation-flying control system for
AUVs, in [27].

2-3-2 Alternative Approaches

Theoretical frameworks to build stabilizing and even optimal controllers for CLSs exist already.
We depict a selection of these approaches.

One of the most generic frameworks that could be implemented is that of Model Predictive
Control (MPC). Model predictive control is one of the most important existing approaches
to coordination control. Its intrinsic power to guarantee stabilizing (in some cases optimal)
control laws, already allowed for successful studies in the field of coordination control of
autonomous vehicles [7, 16, 29]. When considering the problem of coordination control, the
choice of MPC has several advantages. Among others, it can handle constraints, and it can
be applied to non-linear stochastic systems. The main restriction of the technique lies in its
computational power requirements. In fact, at every time-step, each agent and the coordinator
are required to run an optimization problem whose difficulty varies depending on the type
of problem considered. Another possible disadvantage of the approach could depend on the
information needed by each controller, and we recall here that information may imply either
data communication or sensing. To explore possible available solutions to the communication
issue, a recent survey on architectures for distributed and hierarchical MPC can be found in
[46].

LQG problems with a non-classical information patterns have already been studied by Gupta
et al. [23]. There, an approach is developed to compute the LQG optimal feedback gain
F lying in particular vector spaces, as it is in the case for CLSs. However, the approach
requires the state-space matrix A to be block-diagonal, reducing in this way the generality of
the results. Furthermore, for the optimal controller to be found, nT coupled matrix equation
are to be solved at every time instant, where n is the number of independent subsystems and
T is the horizon of the quadratic cost function taken into account. A simplified version of
the algorithm is also offered in [23] to overcome this problem, but a theoretical loss of the
technique’s optimality occurs. Moreover, it requires the covariance matrices of disturbances,
states and inputs to be computed in every equation, resulting then in a computationally
cumbersome solution.

Another important approach to coordination control is provided by Rotkowitz and Lall. In
[44], they provide a condition to determine the optimal control laws to be applied to a class
of problems in which the information constraints given to the controller are quadratically
invariant (see [43] for more information). This class of problems includes LQG coordination
control. In particular, the approach was analyzed and explored for partially ordered sets by
Shah and Parrilo [47]. These papers give an important alternative to the approach studied in
this thesis. However, they do not provide an equipotent extension to the LQG classical theory.
In fact, no results are shown about how to compute optimal observer and state-feedback gains
separately, but only a less transparent, yet optimal, transfer function from output to input.

To conclude, a wide class of distributed and decentralized control approaches are available.
Because of the vastness of this literature, we will not cover it in this section, and we refer the
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reader to a famous general survey as, for instance, [45].

2-4 LQG Coordination Control Problem Formulation

Application of the classical LQG control synthesis procedure to CLSs can be performed to
compute the optimal gains F and K for CLSs. However, we recall that every subsystem only
has access to its own states and those of the coordinator. It could be necessary, or at least
preferable, to restrict the information pattern of the controller to the same data.

In this case, we look for swallow state-feedback and observer gain matrices. In fact, the
swallow matrix reflects the nested information pattern.

2-4-1 Problems Formulation

Three problems are to be formulated. The first problem to be solved is to show the validity
of the separation property.

Problem 2-4.1. (separation property) Prove that the separation property holds for the
control problem.

Consequently, if this problem is solved, we can proceed with the synthesis of the two gains,
F and K, in the swallow form.

Problem 2-4.2. (swallow state-feedback gain synthesis) Consider the state-equation of a
generic CLS, as displayed in (2-1). Consider a nested past-state information pattern, and the
set of linear control laws u(t) = Fx(t) in which F is restricted to

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 0 · · · 0 F1c
0 F22 · · · 0 F2c
...

... . . . ...
...

0 0 · · · FNsNs FNsc
0 0 · · · 0 Fcc

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Given the infinite-horizon average cost function

J = lim
t→∞

1
t
E

{
t∑
s=1

[
xT (s)Qx (s) + uT (F, s)Ru (F, s)

]}
,

solve
inf

F11,F1c,...,FNsNsFNsc,Fcc
J (F11,F1c, . . . , FNsNsFNsc, Fcc) .

such that the closed-loop system is stable.

In a dual way, the problem of finding the optimal observer gain follows.
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2-4 LQG Coordination Control Problem Formulation 15

Problem 2-4.3. (swallow observer gain synthesis) Consider the state-equation of a generic
CLS, as displayed in (2-1). Consider a nested past-input and past-output information pattern
for the observer system{

x̂(t+ 1) = Ax̂(t) +Bu(t) +K [ŷ(t)− y(t)]
ŷ(t) = Cx̂(t) +Du(t).

with x̂(t0) = x̂0 in which K is restricted to the swallow form,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

K11 0 · · · 0 K1c
0 K22 · · · 0 K2c
...

... . . . ...
...

0 0 · · · KNsNs KNsc
0 0 · · · 0 Kcc

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Given the infinite-horizon average cost function

H = lim
t→∞

1
t
E

[
t−1∑
s=0
e (K, s)T e (K, s)

]
,

where e(t) is the error signal defined in eq. (2-4), solve

inf
K11,K1c,...,KNsNsKNsc,Kcc

H (K11,K1c, . . . ,KNsNsKNsc,Kcc) .

The solution to these three problems corresponds to the solution to the LQG coordination
control problem.

Problem 2-4.4. (LQG Coordination Control Problem) Solve Problem 2-4.1, Problem 2-4.2
and Problem 2-4.3 for a given CLS, and for given weighing matrices and given disturbance
covariance matrices Vx, Vxy and Vy.

2-4-2 Control Objectives

Goal of LQG coordination control is to solve Problem 2-4.4. A direct consequence of its
solution is the achievement of the following closed-loop properties:

• stability,

• optimality with respect to the performance criterion (minimization of the cost functions).

Ancillary results are sought in the solution to the problem:

• computational efficiency,

• elasticity to changes.

Comments regarding these properties will be discussed in Chapter 5, where general strengths
and weaknesses of the results will be considered.
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2-5 Conclusions

In this chapter, the problem of LQG coordination control was formulated. LQG coordination
control is required to emulate the characteristics of the classical LQG optimal control theory.
For CLSs, the gain matrices F and K are required to be swallow matrices, which were intro-
duced in Section 2-1. The shape of this matrices reflects the information constraints of the
control laws, and important invariance properties hold for them.

As overviewed in Section 2-3, a few results are already available in the literature to control
CLSs. LQG coordination control could be a suitable alternative to these approaches where
requirements impose a low computational burden and imply the separation of observer and
state-feedback gains syntheses.

Master of Science Thesis



Chapter 3

LQG Coordination Control

In this chapter we present all the results obtained for LQG coordination control. An intro-
duction of the methodology applied to the problem is given in Section 3-1. Then, different
results are explained for three categories of problems. In Section 3-2, the general problems
formulation is treated. For decomposable problems, a class of problems with a slightly stricter
problem formulation, results are shown in Section 3-3. Going down along the chain, a very
specific class of problems, defined as virtual coordination problems is considered in Section
3-4. At last, conclusions are drawn in Section 3-6.

3-1 Introduction

The results obtained in this thesis are classified through a problem categorization. The main
bottleneck preventing general results to be achieved is the validity of the separation property.
Due to this, the main theorems we provide only cover particular subclasses of the general
problem formulation. A graphical representation of the problem categories considered is
given by Figure (3-1). We distinguish the following:

1. General problems: no restrictions are set for weighing and covariance matrices. The
LQG coordination control theory cannot always be applied to this class of problems
because of the invalidity of the separation property.

2. Decomposable problems: weighing and covariance matrices are restricted to a form which
allow a problem decomposition. A control synthesis involving a numerical optimization
is available for this class of problems.

3. Virtual coordination problems: the decomposable problem’s limitations are applied with
the ulterior assumption that no noise affects the coordinator. For this class of problems,
the local LQG control solution is proved to produce globally optimal control laws.
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Figure 3-1: The three categories of problems considered. Constraints are set for the weighing
matrices Q and R, and for the covariance matrix V .

To reduce the notational load on the following pages, in formulas we display every CLS as if
it only had Ns = 2 subsystems. No loss of generality is introduced by this decision, as all the
expressions can easily be extended. Although the formulas contain only two subsystems, we
in fact provide results covering any number Ns of subsystems.

3-2 General Problems

We here define the LQG coordination control problem in its most generic formulation.

Problem 3-2.1. (General Problem Formulation) Solve Problem 2-4.4 given the weighing
matrices

Qtot = QTtot =
[
Q S
ST R

]
≥ 0; Q = QT =

⎡
⎢⎣ Q11 Q12 Q1c
QT12 Q22 Q2c
QT1c Q

T
2c Qcc

⎤
⎥⎦ ;

S =

⎡
⎢⎣ S11 S12 S1c
ST12 S22 S2c
ST1c S

T
2c Scc

⎤
⎥⎦ , R = RT =

⎡
⎢⎣ R11 R12 R1c
RT12 R22 R2c
RT1c R

T
2c Rcc

⎤
⎥⎦ > 0.

and a disturbance vector vtot (t) =
[
vTx (t) , vTy (t)

]T
being a Gaussian zero-average noise with

covariance matrices

Vtot = V Ttot

[
Vx Vxy
V Txy Vy

]
≥ 0; Vx = V Tx =

⎡
⎢⎣ Vx,11 Vx,12 Vx,1c
V Tx,12 Vx,22 Vx,2c
V Tx,1c V

T
x,2c Vx,cc

⎤
⎥⎦ ;

Vxy =

⎡
⎢⎣ Vxy,11 Vxy,12 Vxy,1c
V Txy,12 Vxy,22 Vxy,2c
V Txy,1c V

T
xy,2c Vxy,cc

⎤
⎥⎦ ; Vy = V Ty =

⎡
⎢⎣ Vy,11 Vy,12 Vy,1c
V Ty,12 Vy,22 Vy,2c
V Ty,1c V

T
y,2c Vy,cc

⎤
⎥⎦ > 0.
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3-3 Decomposable Problems 19

For this class of problems, the author is not able to present a solution to the LQG coordination
control problem. Therefore, after discussing the issues which prevent results from being
produced, the reader is referred to the only external result given in the literature that could
be of interest for the topic.

3-2-1 Issues

The first issue about general problems is related to the separation principle. The information
pattern of our controller is non-classical, which means the controller and the observer do not
have access to the information of the whole system, but only to a selection of it. The separation
property does not hold, in general, for problems with an information pattern different from
the classical one [42, 51]. Unfortunately, no proof has been found for the validity of the
separation principle for the general problem formulation.

A second important issue is related to the coupling of subsystems’ information introduced
by the cost functions. In fact, if the weighing matrices Q, R and S can be any symmetric
positive semi-definite, and definite matrices respectively, the closed-loop covariance between
the states of the subsystems is weighted in the cost function. Results are hard to be achieved
even under the assumption that no observation of the states needed, and the present and past
states of the local subsystem and the coordinator are known at every time instant.

3-2-2 Available Results

An important theoretical result is available for this class of problems. The solution to the
LQG optimal control problem is a linear control law. In fact, Ho and Chu [24] proved that
for problems with partially nested information structure, the optimal control law that solves
the LQG problem is linear. The rough meaning of nested information structure is that if
a subsystem is influenced by another one, it also has access to all its information. This,
of course, is the case of CLSs. The result is therefore applicable to the General Problem
formulation, and therefore to all its subclasses.

3-3 Decomposable Problems

Decomposable problems are a particular class of problems for which a problem decomposition
can be performed. The definition of the LQG coordination control problem to them related
follows.

Problem 3-3.1. (Decomposable Problems) Solve Problem 2-4.4 given the weighing matrices

Qtot = QTtot =
[
Q S
ST R

]
≥ 0; Q = QT =

⎡
⎢⎣ Q11 0 Q1c

0 Q22 Q2c
QT1c Q

T
2c Qcc

⎤
⎥⎦ ;

S =

⎡
⎢⎣ S11 0 S1c

0 S22 S2c
0 0 Scc

⎤
⎥⎦ , R = RT =

⎡
⎢⎣ R11 0 0

0 R22 0
0 0 Rcc

⎤
⎥⎦ > 0.
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and a disturbance vector vtot (t) =
[
vTx (t) , vTy (t)

]T
being a Gaussian zero-average noise with

covariance matrices

Vtot = V Ttot

[
Vx Vxy
V Txy Vy

]
≥ 0; Vx = V Tx =

⎡
⎢⎣ Vx,11 0 Vx,1c

0 Vx,22 Vx,2c
V Tx,1c V

T
x,2c Vx,cc

⎤
⎥⎦ ;

Vxy =

⎡
⎢⎣ Vxy,11 0 Vxy,1c

0 Vxy,22 Vxy,2c
V Txy,1c V

T
xy,2c Vxy,cc

⎤
⎥⎦ ; Vy = V Ty =

⎡
⎢⎣ Vy,11 0 Vy,1c

0 Vy,22 Vy,2c
V Ty,1c V

T
y,2c Vy,cc

⎤
⎥⎦ > 0.

The approach adopted to solve these problems is that of fixing part of the swallow gains F
and K to be determined (precisely, Fcc and Kii, i = 1, . . . , Ns) in order to decompose the
global optimization problem into decoupled subproblems for which the separation principle
holds. Then, we solve each of the subproblems optimally by use of the classical LQG control
theory.

3-3-1 Applicability of the Separation Principle

Topic of this section is the solution of Problem 2-4.1 for the category of decomposable prob-
lems, a crucial step to solve the LQG coordination control problem. We show hereby that
if the parameters Fcc and Kii, for i = 1, . . . , Ns, are fixed, the separation principle can be
applied to the class of decomposable problems. The procedure adopted to prove it is explained
by the next passages.

1. We show that every CLS (including its observer system) can be decomposed into Ns
independent systems.

2. We prove that the separation property holds for each of these Ns systems if the gains
Fcc and Kii are fixed.

3. We show that the cost functions of the global problem can be decomposed additively,
and that proper subcost functions can be defined to be associated to the Ns independent
systems representing the CLS.

4. A theorem combines all the above results to show that, for decomposable problems,
the control synthesis problem is equivalent to the control synthesis of Ns independent
subproblems, for which the separation principle holds.

We prove in this way both the possibility of decomposing the problem into Ns subproblems
and the validity of the separation principle for given values of Fcc and Kii, for i = 1, . . . , Ns.

Step 1: Decomposition of Coordinated Linear Systems

Every CLS, together with their state-observers, can be decomposed in Ns independent sub-
systems. We show how by means of two lemmas.
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Lemma 3-3.2. (CLS System Decomposition) Let Fcc ∈ R
mc×nc be given such that (Acc +BccFcc)

is asymptotically stable, mc and nc being the number of inputs and states of the coordinator
respectively. Then, a CLS can be decomposed into Ns subsystems of the form

⎧⎪⎪⎨
⎪⎪⎩

[
xi (t+ 1)
xc (t+ 1)

]
=

[
Aii Aic +BicFcc
0 Acc +BccFcc

][
xi (t)
xc (t)

]
+

[
Bii

0

]
ui(t) +

[
Mii Mic

0 Mcc

][
vx,i(t)
vx,c(t)

]
[
yi(t)
yc(t)

]
=

[
Cii Cic

0 Ccc

][
xi(t)
xc(t)

]
+

[
Nii Nic

0 Ncc

][
vy,i(t)
vy,c(t)

] .

(3-1)

Proof. Trivially, after setting uc (t) = Fccxc (t), all the remaining inputs act in a decoupled
way on the system, allowing the given decomposition.

Notice that the system obtained after fixing Fcc is stabilizable, but not controllable. This
decomposition approach was at first discovered by Kempker for the continuous-time case,
studying an extension of the LQ-optimal control theory for CLSs [28]. The same idea is
applied in the following lemma also to the state-observer system,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂(t+ 1) =

⎡
⎣ A11 0 A1c

0 A22 A2c

0 0 Acc

⎤
⎦ x̂(t) +

⎡
⎣ B11 0 B1c

0 B22 B2c

0 0 Bcc

⎤
⎦u(t) +

⎡
⎣ K11 0 K1c

0 K22 K2c

0 0 Kcc

⎤
⎦ (ŷ(t)− y(t))

ŷ(t) =

⎡
⎣ C11 0 C1c

0 C22 C2c

0 0 Ccc

⎤
⎦ x̂(t);

x̂(t0) = x̂0.
(3-2)

Lemma 3-3.3. (CLS Observer System Decomposition) Let Fcc ∈ R
mc×nc and Kii ∈ R

ni×oi,
for i = 1, . . . , Ns, be given such that (Aii +KiiCii), for i = 1, . . . , Ns, and (Acc +BccFcc)
are asymptotically stable, mc and nc being the number of inputs and states of the coordinator
respectively; ni and oi the number of states and outputs of the ith subsystem, for i = 1, . . . , Ns.
Then, the state-observer of a CLS can be decomposed into Ns observer systems of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
x̂i(t+ 1)
x̂c(t+ 1)

]
=

[
Aii +KiiCii Aic +BicFcc +KiiCic

0 Acc +BccFcc

][
x̂i(t)
x̂c(t)

]
+

+
[
Bii

0

]
ui(t) +

[
Kic

Kcc

]
(ŷc(t)− yc(t))[

ŷi(t)
ŷc(t)

]
=

[
Cii Cic

0 Ccc

][
x̂i(t)
x̂c(t)

]
.

(3-3)

Proof. The decomposition follows from fixing Fcc and Kii, for i = 1, . . . , Ns in equation (3-
2).

Again, we notice that the system obtained after fixing the two gains is detectable, but not
observable. As we will see, the system decomposition here retrieved plays an important role
in the control synthesis problem decomposition.
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Step 2: Investigation on Information Patterns and Separation Property

By the following proposition we show that the information pattern of each of the Ns systems
equivalently representing a CLS is classical. This is the most important result needed to apply
the separation principle to Problem 3-3.1.

Proposition 3-3.4. (Classical Information Pattern) Let Fcc ∈ R
mc×nc and Kii ∈ R

ni×oi,
for i = 1, . . . , Ns, be given such that (Aii +KiiCii), for i = 1, . . . , Ns, and (Acc +BccFcc)
are asymptotically stable, mc and nc being the number of inputs and states of the coordinator
respectively; ni and oi the number of states and outputs of the ith subsystem, for i = 1, . . . , Ns.
Let us consider the decomposed CLS system (3-1) and its observer (3-3), for any i ∈ [1, Ns].
Let the control law be determined by the two gains

Fi =
[
Fii Fic

]
; Ki =

[
Kic
Kcc

]
.

Then, the control law is associated to a classical information pattern, for i = 1, . . . , Ns.

Proof. The gains Fi = [Fii, Fic] and Ki = [Kic;Kcc], for i = 1, . . . , Ns, have no structural
constraints (i.e., they are, in general, filled by non-zero entries). As a direct consequence, the
information pattern related to each of the considered control problems is classical.

The fact that each of the Ns systems composing the CLS has a classical information pattern,
this does not directly imply that the control synthesis problem can be approached in a sepa-
rated way. This is a necessary condition, yet not sufficient. In fact, not only the system, but
also the cost functions have to be decomposed in the same way as we did for CLS. In this
way, the whole problem can be separated into Ns equivalent subproblems. We treat the cost
function decomposition in the following paragraph.

Step 3: Decomposition of the Cost Functions

By means of two propositions, we show that the two cost functions J and H as in eq. (2-3)
and (2-5) can be decomposed additively. This decomposition will be used to associate to each
of the Ns systems previously obtained an appropriate subcost function.

Lemma 3-3.5. (Decomposition of the Cost Function J) The cost function J of eq. (2-3)
decomposes additively as

J = trace
[
W

(
Q+ SF + F TST + F TRF

)]
=

= J11 + J1c + · · ·+ JNsNs + JNsc + Jcc =
=

∑Ns
i=1 [Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)] + Jcc (Fcc) ,

with

Jii (Fii, Fic, Fcc) = trace
{
Wii (Fii, Fic, Fcc)

[
Qii + SiiFii + F Tii STii + F TiiRiiFii

]}
;

Jic (Fii, Fic, Fcc) = 2× trace
[
Wic

(
QTic + F TicSTii + F TccSTic + F TicRiiFii

)]
;

Jci (Fic, Fcc) = trace
{
WccF

T
icRiiFic

}
,
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for i = 1, . . . , Ns, and

Jcc (Fcc) = trace
[
Wcc

(
Qcc + SccFcc + F TccSTcc + F TccRccFcc

)]
.

Proof. The steady-state variance of the closed-loop system’s state is given by the solution of
the Lyapunov equation

W = (A+BF )W (A+BF )T +MVxMT ,

which can be separated into the following,

Wij = Aii,clWijA
T
jj,cl +Aic,clWcjATjj,cl +Aii,clWicATjc,cl +Aic,clWccATjc,cl+

+MiiVx,ijMTjj +MicVx,cjMTjj +MiiVx,icMTjc +MicVx,ccMTjc;
Wic = Aii,clWicA

T
cc,cl +Aic,clWccATcc,cl +MiiVx,icMTcc +MicVx,ccMTcc;

Wcc = Acc,clWccA
T
cc,cl +MccVx,ccMTcc.

(3-4)

for i, j = 1, . . . , Ns, where Aii,cl = Aii+BiiFii; Aic,cl = Aic+BiiFic+BicFcc , for i = 1, . . . , Ns,
and Acc,cl = Acc +BccFcc. The term W is weighted by

Q =
(
Q+ SF + F TST + F TRF

)
.

Because of Proposition 2-1.4,Q is in the arrow form,

Q =

⎡
⎢⎣
Q11 0 Q1c
0 Q22 Q2c
Q
T
1c Q

T
2c Qcc

⎤
⎥⎦ ,

where
Qii = Qii + SiiFii + F Tii STii + F TiiRiiFii;
Qic = Qic + SiiFic + SicFcc + F TiiRiiFic;
Qcc = Qcc + SccFcc + F TccSTcc +

∑
k=1,2,c F

T
kcRccFkc.

The cost function is therefore

J = trace

⎡
⎣
⎛
⎝ W11 (F11, F1c, Fcc) W12 W1c (F1c, Fcc)

WT12 W22 (F22, F2c, Fcc) W2c (F2c, Fcc)
WT1c (Fic, Fcc) WT1c (Fic, Fcc) Wcc (Fcc)

⎞
⎠

⎛
⎝ Q11 0 Q1c

0 Q22 Q2c

Q
T

1c Q
T

2c Qcc

⎞
⎠
⎤
⎦ =

=
∑Ns
i=1

(
trace

{
Wii (Fii, Fic, Fcc)

[
Qii + SiiFii + FTii STii + FTiiRiiFii

]})
+

+
∑Ns
i=1

(
2× trace

{
Wic (Fic, Fcc)

[
Qic + SiiFic + SicFcc + FTiiRiiFic

]})
+

+
∑Ns
i=1

(
trace

{
Wcc (Fcc)FTicRiiFic

})
+

+trace
(
Wcc (Fcc)

[
QTic + FTicSTii + FTccSTic + FTicRiiFii

])
=

=
∑Ns
i=1 [Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)] + Jcc (Fcc) ,

as it was to be proved.

The corrisponding result for the cost function H follows.

Lemma 3-3.6. (Decomposition of the Cost Function H) The cost function H of eq. (2-5)
decomposes additively,

H = trace(We) =
= H11 + · · ·+HNsNs +Hcc =
=

∑Ns
i=1 [Hii (Kii,Kic,Kcc)] +Hcc (Kcc) ,
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with
Hii (Kii,Kic,Kcc) = trace [We,ii (Kii,Kic,Kcc)] ,

for i = 1, . . . , Ns, and

Hcc (Kcc, Fcc) = trace [We,cc (Kcc, Fcc)] .

Proof. The covariance matrixWe of the steady-state observation error is given by the solution
of the Lyapunov equation

We = (A+KC)We (A+KC)T +
[
M KN

] [ Vx Vxy
V Txy Vy

] [
MT

NTKT

]
.

Expanding the terms, we observe

We,ii (Kii,Kic,Kcc, Fcc) = [Aii +KiiCii]We,ii (Kii,Kic,Kcc) [Aii +KiiCii]T +
+ [Aic +BicFcc + CiiKic + CicKcc]WTe,ic (Kii,Kic,Kcc) [Aii +KiiCii]T +
+ [Aii +KiiCii]We,ic (Kii,Kic,Kcc) [Acc +BccFcc +KccCcc]T +
+ [Aic +BicFcc + CiiKic + CicKcc]We,cc [Aic +BicFcc + CiiKic + CicKcc]T +
+ MiiVx,iiM

T
ii +MiiV Tx,icMTic +MicVx,ccMTic+

+ MiiVxy,iiN
T
iiK

T
ii +MicV Txy,icNTiiKTii +MiiVxy,icNTicKTii +MicVxy,ccNTicKTii+

+ MiiVxy,icN
T
ccK

T
ic +MicVxy,ccNTccKTic +KiiNiiVxy,iiMTii +KiiNicV Txy,icMTii+

+ KicNccVxy,icM
T
ii +KiiNiiVxy,icMTic +KiiNicVxy,ccMTic +KicNccVxy,ccMTic+

+ KiiNiiVy,iiN
T
iiK

T
ii +KiiNicV Ty,icNTii +KicNccV Ty,icNTii+

+ KiiNiiVy,icN
T
icK

T
ii +KiiNiiVy,icNTccKTic +KiiNicVy,ccNTicKTii+

+ KicNccVy,ccN
T
icK

T
ii +KiiNicVy,ccNTccKTic +KicNccVy,ccNTccKTic;

We,ic (Kii,Kic,Kcc, Fcc) = [Aii +KiiCii]We,ic (Kii,Kic,Kcc, Fcc) [Acc +BccFcc +KccCcc]T
+ MiiVx,icM

T
cc +MicVx,ccMTcc +MiiVxy,icNTccKTcc +MicVxy,ccNTccKTcc+

+ KiiNiiVxy,icM
T
cc +KiiNicVxy,ccMTcc +KicNccVxy,ccMTcc

+ KiiNiiVy,icNccK
T
cc +KiiNicVy,ccNTccKTcc +KicNccVy,ccNTccKTcc;

We,cc (Kcc, Fcc) = [Acc +BccFcc +KccCcc]We,cc (Kcc, Fcc) [Acc +BccFcc +KccCcc]T +
+ MccVx,ccM

T
cc +MccVxy,ccNTccKTcc +KccNccVxy,ccMTcc +KccNccVy,ccNTccKTcc.

(3-5)

Since (Aii +KiiCii), for i = 1, . . . , Ns and (Acc +BccFcc +KccCcc) are asymptotically stable,
the Lyapunov equation has a unique, symmetric, positive-definite solution (see [49], appendix
E). By the definition of the trace operator, it follows that

H =
Ns∑
i=1

[Hii (Kii,Kic,Kcc, Fcc)] +Hcc (Kcc, Fcc) ,

as it was to be proved.

Step 4: Separation Principle for Decomposable Problems

The results obtained so far allow to decompose the system into Ns equivalent systems for
which the separation principle holds. We now show that, as the cost functions decompose in
the same way of the system, the whole problem can be decomposed into Ns subproblems.
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Theorem 3-3.7. (Separation Principle for Decomposable Problems) Consider a decomposable
problem. Let the gains Fcc ∈ R

mc×nc and Kii ∈ R
ni×oi, for i = 1, . . . , Ns, be fixed such that

(Aii +KiiCii), for i = 1, . . . , Ns, and (Acc +BccFcc) are asymptotically stable, mc and nc
being the number of inputs and states of the coordinator respectively; ni and oi the number of
states and outputs of the ith subsystem, i = 1, . . . , Ns. Then,

a) Problem 2-4.2 can be decomposed into Ns subproblems of the form

inf
Fii,Fic

{
Ns∑
i=1

[Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)]
}
,

for i = 1, . . . , Ns;

b) Problem 2-4.3 can be decomposed in Ns subproblems of the form

inf
Kic

{
Ns∑
i=1

[Hii (Kii,Kic,Kcc, Fcc)]
}
,

for i = 1, . . . , Ns;

c) the separation property holds for each of these subproblems.

Proof. Each claim is proved in order of appearance.

a) Problem 2-4.2 requires to find

inf
F11,F1c,...,FNsNsFNsc,Fcc

J (F11,F1c, . . . , FNsNsFNsc, Fcc) .

As it was proved in Lemma 3-3.5, the cost function J can be decomposed additively.
Therefore, we have

inf
F11,F1c,...,FNsNsFNsc,Fcc

{
Ns∑
i=1

[Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)] + Jcc (Fcc)

}
.

As Fcc is fixed, it has to be excluded from the minimization domain. For this reason,
the term Jcc (Fcc) can be separated from the cost function. The problem results into
the following.

inf
F11,F1c,...,FNsNsFNsc

{
Ns∑
i=1

[Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)]
}

=

=
Ns∑
i=1

inf
Fii,Fic

{[Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)]} ,

which is the same as minimizing the Ns subproblems

inf
Fii,Fic

{Jii (Fii, Fic, Fcc) + Jic (Fii, Fic, Fcc) + Jci (Fic, Fcc)}

for i = 1, . . . , Ns separately. The initial minimization problem is therefore decomposed
into Ns subproblems.
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b) Similarly, Problem 2-4.3 requires to find

inf
K11,K1c,...,KNsNsKNsc,Kcc

H (K11,K1c, . . . ,KNsNs ,KNsc,Kcc, Fcc) .

As it was proved in Lemma 3-3.6, the cost function H can be decomposed additively.
Therefore, we have

inf
K11,K1c,...,KNsNsKNsc,Kcc

{
Ns∑
i=1

[Hii (Kii,Kic,Kcc, Fcc)] +Hcc (Kcc, Fcc)
}
.

As Fcc and Kii, for i = 1, . . . , Ns, are fixed, the problem becomes

inf
K1c,...,KNsc,Kcc

Ns∑
i=1

[Hii (Kii,Kic,Kcc, Fcc)] .

To furtherly decompose the cost function, an external result is necessary. This result
is proved in a future section, in Theorem 3-3.15. There, we show that the optimal
value of Kcc, once the parameters Kii, for i = 1, . . . , Ns and Fcc are fixed, is computed
independently as

Kcc =
[
LQG

(
Acc +BccFcc, CTcc,MccVx,ccMTcc, NccVy,ccNTcc,MccVxy,ccNTcc

)]T
.

This fact allows the problem to be decomposed into the Ns subproblems of the form

inf
Kic
{Hii (Kii,Kic,Kcc, Fcc)} ,

for i = 1, . . . , Ns.

c) The subcost functions Jii, Jic, Jci and Hii are associated to the ith of the Ns subsystems,
for i = 1, . . . , Ns. Since the LQG coordination control problem can be decomposed into
Ns subproblems, and since we have proved in Proposition 3-3.4 that the separation
property holds for the Ns systems, then this property holds for the whole system, if and
only if the parameters Fcc and Kii, for i = 1, . . . , Ns are fixed.

The proof is therefore complete.

The decomposition of the original control synthesis problem intoNs independent subproblems,
for which the separation principle is applicable, is an extremely important result. We will
show, in Section 3-3-2 and Section 3-3-3, that this result is the key to obtain a procedure
to synthesize a swallow state-feedback gain F and a swallow observer gain K. A schematic
representation of this procedure is illustrated in Figure 3-2.
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Figure 3-2: Control synthesis problem decomposition for decomposable problems. Fixing the
parameters Fcc, Kii for i = 1, . . . , Ns the problem is decomposed into Ns subproblems. Each of
these problems can be solved independently by use of the classical LQG control theory.

3-3-2 State-Feedback Gain Synthesis

In this section we discuss the solution to Problem 2-4.2 for decomposable problems. We look
for the optimal state-feedback gain F such that the control law is defined as⎡

⎢⎣ u1(t)
u2(t)
uc(t)

⎤
⎥⎦ =

⎡
⎢⎣ F11 0 F1c

0 F22 F2c
0 0 Fcc

⎤
⎥⎦
⎡
⎢⎣ x1(t)
x2(t)
xc(t)

⎤
⎥⎦ .

The synthesis of this gain is done as explained below.

1. We make use of the decomposability of the problem to define a procedure to obtain
F (Fcc) in an optimal way, given an arbitrary Fcc.

2. We define a procedure to minimize J (Fcc), also offering a way to derive symbolic expres-
sions for the gradient and the Hessian of J with respect to the optimization parameter,
Fcc.

3. The state-feedback gain F is then obtained by numerical optimization of J (Fcc) on the
parameter Fcc. We conjecture J to be convex in Fcc.

Decomposition of the State-Feedback Gain Synthesis Problem

Following from the results of Theorem 3-3.7, Problem 2-4.2 can be decomposed in Ns sub-
problems if we provide a value for Fcc. This result is an adaptation and revision of the
results obtained by Kempker, Ran and van Schuppen in the field of LQ-optimal control for
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continuous-time, deterministic CLSs [28]. Detailed results regarding the synthesis of a swallow
gain F follow.

Theorem 3-3.8. (Problem Decomposition for the Feedback Gain F ) Given a decomposable
problem, let a CLS with Ns subsystems be given, where⎡

⎢⎣ u1(t)
u2(t)
uc(t)

⎤
⎥⎦ =

⎡
⎢⎣ F11 0 F1c

0 F22 F2c
0 0 Fcc

⎤
⎥⎦
⎡
⎢⎣ x1(t)
x2(t)
xc(t)

⎤
⎥⎦ .

Let Fcc be fixed. For i = 1, . . . , Ns, define

Ai =
[
Aii Aic +BicFcc
0 Acc +BccFcc

]
; Bi =

[
Bii
0

]
;

Qi =
[
Qii Qic
QTic Qcc

]
; Mi =

[
Mii Mic
0 Mcc

]
;

Si =
[
Sii
0

]
; Fi =

[
Fii Fic

]
;

LF,iL
T
F,i = Qi − SiR−1

i S
T
i ; AF,i = Ai −BiR−1

i S
T
i ;

xi,pair(t) =
[
xi(t)
xc(t)

]
; vi,pair(t) =

[
vx,i(t)
vx,c(t)

]
.

If

1) (Acc +BccFcc) is asymptotically stable;

2) (Aii, Bii) is stabilizable, for i = 1, ..., Ns;

3) (AF,i, LF,i) is detectable, for i = 1, ..., Ns;

then

a) the optimal value of Fi =
[
Fii Fic

]
can be retrieved from

Fi = LQG (Ai, Bi, Qi, Rii, Si) ,

b) and, in particular, Fii is independently computed as

Fii = LQG (Aii, Bii, Qii, Rii, Sii) .

Proof. The two claims are hereby proved.

a) Recall that, by Theorem 3-3.7, by imposing uc(t) = Fccxc(t), our state-space system
can be rewritten as follows,

x(t+ 1) =

[
A11 0 A1c +B1cFcc

0 A22 A2c +B2cFcc
0 0 Acc +BccFcc

]
x(t) +

[
B11 0 0

0 B22 0
0 0 0

]
u(t) +

[
M11 0 M1c

0 M22 M2c
0 0 Mcc

]
v(t),
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and the control synthesis problem separates into Ns independent subproblems, for which
the separation property holds. For each subproblem, we are required to find the optimal
state-feedback gain for a system of the form,

xi,pair(t+ 1) = Aixi,pair(t) +Biui(t) +Mivi,pair(t),

for i = 1, ..., Ns. The state-feedback gain of each system can be synthesized by clas-
sical LQG control theory, since by assumption (Ai, Bi) is stabilizable, (AF,i, LF,i) is
detectable, Qi ≥ 0 and Rii > 0, for i = 1, . . . , Ns. These hypotheses imply that there is
a unique solution to the DARE (see [49], Chapter 11)

Pi = ATi PiAi +Qi −
[
ATi PiBi + Si

] [
BTi PiBi +Rii

]−1 [
ATi PiBi + Si

]T
, (3-6)

for i = 1, ..., Ns, and that the optimal feedback gain Fi is given by

Fi = −
[
BTi PiBi +Rii

]−1 [
ATi PiBi + Si

]T
, (3-7)

for i = 1, ..., Ns.

b) By mere expansion of (3-6) and (3-7), it follows that

Pii = ATiiPiiAii +Qii −
[
ATiiPiiBii + Sii

]
[BiiPiiBii +Rii]−1

[
ATiiPiiBii + Sii

]T
Fii = − [BiiPiiBii +Rii]−1

[
ATiiPiiBii + Sii

]T
,

for i = 1, ..., Ns. Following from our notation,

Fii = LQG (Aii, Bii, Qii, Rii, Sii) .

This completes the proof.

We have therefore indicated how to compute the optimal swallow gain F , given an arbitrary
value of Fcc, by solving Ns subproblems. We will now formally indicate a procedure for the
synthesis of the swallow F gain.

Feedback Gain Synthesis Procedure

As we saw, by fixing a value of Fcc, the problem decomposes into Ns subproblems. Each of
these can be solved by the classical LQG control theory, and the remaining values of the F
matrix are filled by optimal entries which depend on Fcc, as it was shown in Theorem 3-3.8.
The cost function J can, in other words, be defined as a mere function of the gain Fcc, which,
up to now, is chosen arbitrarily.

Within the stability region of the system, the cost function J (Fcc) is continuous in the elements
of the matrix Fcc [15, 38]. As a consequence, we can minimize its value numerically, using the
elements of Fcc as optimization domain. A schematic procedure for the synthesis of a (locally)
optimal state-feedback gain F is given below.
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Algorithm 3-3.9. (Feedback Gain Synthesis Procedure)

1) Fix an initial value for Fcc ∈ R
mc×nc such that (Acc +BccFcc) is asymptotically stable,

being mc the number of inputs of the coordinator and nc the number of its states.

2) Use a numerical optimization method to solve

Fcc,opt = arg inf
Fcc
J (Fcc)

3) Determine Fii, Fic, for i = 1, . . . , Ns by use of Theorem 3-3.8, fixing Fcc = Fcc,opt.

4) Construct the swallow state-feedback gain F .

Remark 3-3.10. Notice that, given any Fcc that stabilizes the coordinator, Theorem 3-3.8
provides the corresponding optimal stabilizing F . This is not claimed to be the globally
optimal result.

The convexity of the numerical problem to be run in Step 2 of the algorithm is conjectured.
If this convexity could be proven, the optimal solution to the problem would converge to the
global minimum. We do not suggest a particular numerical method to solve this problem.
Instead, we provide the reader with useful tools for choosing the algorithm that best fits the
situation, by indicating a way to compute the symbolic expressions of the gradient and the
Hessian of the cost function.

Gradient and Hessian of the Cost Function J

Finding the expression of the gradient of J (Fcc) is not a trivial issue. The cost function is
given by

J (Fcc) = trace
[
W (Fcc)

(
Q+ SF (Fcc) + F T (Fcc)ST + F T (Fcc)RF (Fcc)

)]
,

where

W (Fcc) =

⎡
⎣ W11 (Fcc) W12 (Fcc) W1c (Fcc)
WT12 (Fcc) W22 (Fcc) W2c (Fcc)
WT1c (Fcc) WT2c (Fcc) Wcc (Fcc)

⎤
⎦ ; F (Fcc) =

[
F11 0 F1c (Fcc)
0 F22 F2c (Fcc)
0 0 Fcc

]
.

In fact, the terms Wii, Wic, Wcc, Fii and Fic, for i = 1, . . . , Ns, all depend in a direct and/or
indirect way on the parameter Fcc. As we have seen, these terms are computed through
solutions of Riccati and Lyapunov equations. There is no known procedure for the analytical
solutions to Riccati equations in their generic form, and numerical methods are usually applied
to determine their solution. However, all the equations that are to be solved in order to find
a symbolic expression of the cost function J (Fcc) can be reduced to the class of Sylvester’s
equations. This is due to the fact that each matrix equation is linear in the variable to be
determined.
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Definition 3-3.11. (Sylvester’s Equations) A matrix equation is called Sylvester’s equation
if it is of the form

X = LXR+M,

with X ∈ R
m×n, L ∈ R

m×m, R ∈ R
n×n and M ∈ R

m×n.

The solution of such equations is treated in the following lemma.

Lemma 3-3.12. (Solution Sylvester’s Equations) The solution to the Sylvester’s equation is
given by

X = −vec−1
(
[A− I]†B

)
,

where A = L⊗RT − I ; B = vec (M). Here, ⊗ indicates the Kronecker’s product; † indicates
the pseudo-inverse of the matrix; the vec operator builds a vector from the columns of its
argument; vec−1(V ) builds a matrix of appropriate dimensions by juxtaposition of columns
taken by the vector V .

Proof. The Sylvester’s equation is a set of m × n linear equations in m × n variables. The
solution to the equations comes straightforward from the explicitation of the expression
X − LXR+M = 0.
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Figure 3-3: Variables interconnections and dependence on the parameter Fcc. The dark tonality
of an element indicates the amount of previous (parallel) operations needed in order to compute
its analytic expression.

In Figure 3-3, we sketch the structure of direct dependencies of all the variables playing
a role in determining the cost function J . These variables appear in a nested structure.
Starting from the computation of the bottom elements (in white), it is possible to arrive to
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an expression for the upper ones; the darker a block is, the more steps are required to get its
analytic expression.

By the following procedure, it is possible to express the cost function J (Fcc), its gradient and
its Hessian explicitly in terms of the parameter Fcc.

Algorithm 3-3.13. (Analytic Expression of J , its Gradient and its Hessian in Terms of Fcc)
Let Fcc ∈ R

mc×nc be given, where mc is the number of inputs of the coordinator and nc is the
number of its states. Define

Acc,cl (Fcc) = Acc +BccFcc;
Aic,cl (Fcc) = Aic +BiiFic +BicFcc;
Aii,cl = Aii +BiiFii,

for i = 1, . . . , Ns.

1) Solve the following Sylvester’s equation for Wcc (Fcc) analytically,

Wcc (Fcc) = Acc,cl (Fcc)WccATcc,cl (Fcc) +MccVx,ccMTcc,

being Wcc (Fcc) a rational function of the elements of Fcc.

2) For i = 1, . . . , Ns, do

2a) compute the numerical solution to the Riccati equation

Pii = ATiiPiiAii +Qii −
[
ATiiPiiBii + Sii

] [
BTiiPiiBii +Rii

]−1 [
ATiiPiiBii + Sii

]T
;

note that Pii does not depend on Fcc;

2b) compute

Fii = −
[
BTiiPiiBii +Rii

]−1 [
ATiiPiiBii + Sii

]T ;

note that Fii does not depend on Fcc;
2c) solve the following Sylvester’s equation for Pic (Fcc) analytically,

Pic (Fcc) =
{
ATii −

[
ATiiPiiBii + Sii

] [
BTiiPiiBii +Rii

]−1
BTii

}
Pic [Acc +BccFcc] +

+Qic +
{
ATiiPii [Aic +BicFcc]

}
+

−
[
ATiiPiiBii + Sii

] [
BTiiPiiBii +Rii

]−1 {
BTiiPii [Aic +BicFcc]

}
;

Pic (Fcc)is a rational function of the elements of Fcc because of the way it occurs in
the equation;

2d) define the symbolic expression

Fic (Fcc) = − [BiiPiiBii +Rii]−1 {BTiiPii [Aic +BicFcc] +BTiiPic (Fcc) [Acc +BccFcc]
}

;

Fic (Fcc) is a rational function of the elements of Fcc via the term Fcc itself and via
the rational dependence on the term Pic (Fcc);
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2e) solve the following Sylvester’s equation for Wic (Fcc) analytically,

Wic (Fcc) = Aii,clWic (Fcc)ATcc,cl (Fcc) +Aic,cl (Fcc)Wcc (Fcc)ATcc,cl (Fcc) +
+MiiVx,icMTcc +MicVx,ccMTcc;

Wic (Fcc) is a rational function of the elements of Fcc because of its dependence on
the terms Aic,cl (Fcc) and Acc,cl (Fcc), which are linear in Fcc;

2f) solve the following Sylvester’s equation for Wii (Fcc) analytically,

Wii (Fcc) = Aii,clWii (Fcc)ATii,cl +Aic,cl (Fcc)W Tic (Fcc)ATii,cl+
+Aii,clWic (Fcc)ATic,cl (Fcc) +Aic,cl (Fcc)Wcc (Fcc)ATic,cl (Fcc) +
+MiiVx,iiMTii +MicV Tx,icMTii +MiiVx,icMTic +MicVx,ccMTic ;

Wii (Fcc) is a rational function of the elements of Fcc because the equation depends
on Aic,cl (Fcc), Wic (Fcc) and Wcc (Fcc).

3) Define

F (Fcc) =

⎡
⎢⎢⎢⎢⎢⎢⎣

F11 0 · · · 0 F1c (Fcc)
0 F22 · · · 0 F2c (Fcc)
...

... . . . ...
...

0 0 · · · FNsNs FNsc (Fcc)
0 0 · · · 0 Fcc

⎤
⎥⎥⎥⎥⎥⎥⎦

;

W (Fcc) =

⎡
⎢⎢⎢⎢⎢⎢⎣

W11 (Fcc) 0 · · · 0 W1c (Fcc)
0 W22 (Fcc) · · · 0 W2c (Fcc)
...

... . . . ...
...

0 0 · · · WNsNs (Fcc) WNsc (Fcc)
W T1c (Fcc) W T2c (Fcc) · · · W TNsc (Fcc) Wcc (Fcc)

⎤
⎥⎥⎥⎥⎥⎥⎦

;

the two matrices F (Fcc) and W (Fcc) are rational functions of the elements of Fcc.

4) Find the expression of the cost function,

J (Fcc) = trace
{
W

[
Q+ SF (Fcc) + F T (Fcc)ST + F T (Fcc)RF (Fcc)

]}
,

which is then a rational function of the elements of Fcc.

5) A symbolic expression of the gradient of J (Fcc) is obtained as

Grad (J (Fcc)) = ∂J

∂Fcc
,

where each element
(
∂J
∂Fcc

)
i,j

= ∂J
∂Fcc,ij

for i = 1, . . . , Ns. The gradient of J (Fcc) is a
rational function of the elements of Fcc.

6) A symbolic expression of the Hessian of J (Fcc) is obtained as

Hess (J (Fcc)) = ∂
2J

∂F 2
cc

where each element
(
∂J
∂F 2
cc

)
i,j

= ∂J
∂F 2
cc,ij

for i = 1, . . . , Ns. The Hessian of J (Fcc) is a
rational function of the elements of Fcc.
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Remark 3-3.14. The passages indicated are equivalent to those of the proof of Theorem 3-3.8.
Note that the concatenation of interdependent equations introduces a symbolic complexity
that translates into huge expressions for the gradient and the Hessian, even for the simplest
cases.

Notice that no claim of convexity of J (Fcc) has been made. In fact, rational functions are
not convex in general. However, this property will be conjectured. We now extend the results
obtained for the state-feedback gain F to the synthesis of the observer gain K.

3-3-3 Observer Gain Synthesis

A control system based on state-feedback requires information regarding the states. When
these states cannot be directly measured, a state-observer system is necessary to construct
an estimate x̂ (t) of the state by using the information coming from the system’s inputs and
outputs. The observer system requires a gain which multiplies the output error (y (t)− ŷ (t)),
being ŷ(t) the observer’s expected output. This chapter treats the synthesis of this gain, K.
Deeper insights into state-observers can be found, for instance, in [48].

In this section we build a solution of Problem 2-4.3 for decomposable problems. After having
shown the validity of the separation property for CLSs once the parameters Fcc and Kii,for
i, . . . , Ns are fixed, and after having indicated an expression for the synthesis of the swallow
state-feedback gain F , we here define a similar procedure to obtain the swallow optimal
observer gain K.

Although steps and approaches are basically the same as those made for F , proofs and algo-
rithms needed to generate an adequate framework for the synthesis of K are intrinsically more
complex, and the results are less straightforward. This is due to the fact that the observer
influences the state-space dynamics and couples the disturbances acting on the outputs to
those acting on the inputs.

The following steps will be taken.

1. We begin by showing how to compute the whole gain K exploiting the problem’s de-
composition once the parameters Fcc and Kii are fixed.

2. The cost function H (K11, . . . ,KNsNs ,Kcc, Fcc) is separated into Ns subcost functions.
We define a procedure to minimize the subcost functions Hi (Fcc,Kii), for i = 1, . . . , Ns,
also offering a way to obtain symbolic expressions for gradient and Hessian with respect
to the parameter Kii, for a fixed value of Fcc.

3. The swallow observer gain K is obtained by numerical optimization of the functions
Hi (Fcc,Kii), for i = 1, . . . , Ns. The Ns related numerical optimization problems are
conjectured to be convex.

Decomposition of the Observer Gain Synthesis Problem

Consider Problem 2-4.3. Here, we derive an approach to find the swallow observer gain K,
given the parameters Kii, for i = 1, . . . , Ns and Fcc, based on a problem decomposition.
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Theorem 3-3.15. (Problem Decomposition for Swallow Kalman Filter) Given a decomposable
problem, let a CLS with Ns subsystems be given, and let its observer system to be

{
x̂(t+ 1) = (A+KC) x̂(t) +Bu(t)−Ky(t)
ŷ(t) = Cx̂(t) +Du(t),

where every matrix is assumed to be in the swallow form. Assume that Kii, for i = 1, . . . , Ns
and Fcc are fixed. Define

Ai =
[
Aii +KiiCii Aic +B1cFcc +KiiCic

0 Acc +BccFcc

]
; C =

[
0 Ccc

]
;

Mi =
[
Mii Mic KiiNii KiiNic

0 Mcc 0 0

]
; N =

[
0 0 0 Ncc

]
;

Acc,pcl = Acc +BccFcc;

Vi,tot =

⎡
⎢⎣
Vx,ii Vx,ic Vxy,ii Vxy,ic
V Tx,ic Vx,cc V Txy,ic Vxy,cc
V Txy,ii Vxy,ic Vy,ii Vy,ic
V Txy,ic V

T
xy,cc V Ty,ic Vy,cc

⎤
⎥⎦ ; vi,tot(t) =

⎡
⎢⎣
vx,i(t)
vx,c(t)
vy,i(t)
vy,c(t)

⎤
⎥⎦ ;

AK,i = Ai −MiVtotNT
(
NVtotN

T
)−1
C̄; Ki =

[
Kic
Kcc

]
;

LK,iL
T
K,i = MiVtotM

T
i −MiVtotNT

(
NVtotN

T
)−1
NVtotM

T
i ; ei,tot(t) =

[
ei(t)
ec(t)

]
.

(3-8)

If

1) (Aii +KiiCii) is asymptotically stable for i = 1, ..., Ns,

2) (Acc, Ccc) is a detectable pair and

3) (AK,i, LK,i) is a stabilizable pair for i = 1, ..., Ns,

then,

a) the optimal value of Ki =
[
Kic
Kcc

]
is given by

Ki =
[
LQG

(
ATi , C

T
,MiVi,totM

T
i , NVi,totN

T
,MiVi,totN

T
)]T
,

b) and, particularly, the gain Kcc is computed independently as

Kcc =
[
LQG

(
ATcc,pcl, C

T
cc,MccVx,ccM

T
cc, NccVy,ccN

T
cc,MccVxy,ccN

T
cc

)]T
.

Proof. The two claims are proved hereby.
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a) As a result of Theorem 3-3.7, fixing Kii, for i = 1, . . . , Ns and Fcc, the control syn-
thesis problem decomposes into Ns independent subproblems, for which the separation
property holds. To each of these problems, the following error process is associated[
ei(t+ 1)
ec(t+ 1)

]
=

[
Aii +KiiCii Aic +BicFcc +KiiCic

0 Acc +BccFcc

] [
ei(t)
ec(t)

]
+
[
Kic
Kcc

] [
0 Ccc

] [ ei(t)
ec(t)

]
+

+
[
Mii Mic

0 Mcc

] [
vx,i(t)
vx,c(t)

]
+
[
KiiNii KiiNic

] [ vy,i(t)
vyc(t)

]
+

+
[
Kic
Kcc

] [
0 Ncc

] [ 0
vyc(t)

]
,

for i = 1, . . . , Ns. Collecting the disturbance matrices, we obtain[
ei(t+ 1)
ec(t+ 1)

]
=

[
Aii +KiiCii Aic +BicFcc +KiiCic

0 Acc +BccFcc

] [
ei(t)
ec(t)

]
+
[
Kic
Kcc

] [
0 Ccc

] [ ei(t)
ec(t)

]

+
[
Mii Mic KiiNii KiiNic

0 Mcc 0 0

]⎡⎣ vi(t)
vc(t)
vyi(t)
vyc(t)

⎤
⎦ +

[
Kic
Kcc

] [
Ncc

] [
vyc(t)

]
.

This is equivalent to

ei,tot(t+ 1) =
(
Āi + K̄iC̄

)
ei,tot(t) +

(
M̄i + K̄iN̄

)
vi,tot(t).

Since, by assumption, (Aii +KiiCii) is asymptotically stable for i = 1, ..., Ns, (AK,i, LK,i)
is a stabilizable pair for i = 1, ..., Ns, and (Acc, Ccc) is detectable, the optimal gain Ki
can be derived by the LQG classical theory as the solution of
Xi = AiXiA

T
i +MiVi,totMTi +

−
[
AiXiC

T +MiVi,totN
T
] [
CXiC

T +NVi,totN
T
]−1 [

AiXiC
T +MiVi,totN

T
]T

;

Ki = −
[
AiXiC

T +MiVi,totN
T
] [
CXiC

T +NVi,totN
T
]−1
,

(3-9)

for i = 1, . . . , Ns.

b) By mere expansion of the above expressions, we find
Xcc = Acc,pclXccA

T
cc,pcl +MccVx,ccMTcc+

−
[
Acc,pclXccC

T
cc +MccVxy,ccNTcc

] [
CccXccC

T
cc +NccVy,ccNTcc

]−1×
×
[
Acc,pclXccC

T
cc +MccVxy,ccNTcc

]T ;
Kcc = −

[
Acc,pclXccC

T
cc +MccVxy,ccNTcc

] [
CccXccC

T
cc +NccVy,ccNTcc

]−1
,

which, by our notation, is nothing but

Kcc =
[
LQG

(
ATcc,pcl, C

T
cc,MccVx,ccM

T
cc, NccVy,ccN

T
cc,MccVxy,ccN

T
cc

)]T
.

This completes the proof.

Remark 3-3.16. The fact that the observer gain Kcc can be computed independently does not
follow from the problem decomposition resulting from Theorem 3-3.7. This is an important
remark, as the proof of Theorem 3-3.7 is based on the independence of Kcc.

Theorem 3-3.8, introduced in the previous section, allowed part of the entries of F to be
computed given an arbitrary value, of Fcc. Similarly, Theorem 3-3.15 proves that the whole
swallow gain K can be optimally computed given arbitrary values of Kii, i = 1, . . . , Ns and
Fcc itself. As the parameters Fii, for i = 1, . . . , Ns, could be computed independently from
the rest of the gain, the same holds here for the local observer gain Kcc of the coordinator.
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Observer Gain Synthesis Procedure

In order to construct an algorithm to synthesize a swallow (locally) optimal observer gain
K, we define the following subcost function of the cost function H. Each subcost function
Hi is associated to a subsystem i, and it only depends on the parameters Kii and Fcc, for
i = 1, . . . , Ns.

Definition 3-3.17. (Explicit Subcost Function Hi) Given a decomposable problem, the sub-
cost function of H related to the ith subsystem is defined as

Hi (Kii, Fcc) = trace [We,ii (Kii, Fcc)] ,

for i = 1, . . . , Ns, where We,ii (Kii, Fcc), for i = 1, . . . , Ns, are given by eq. (3-5), and
Kic (Kii, Fcc) and Kcc (Fcc) are computed as indicated in Theorem 3-3.15.

The result of Theorem 3-3.15 can be exploited to synthesize a locally optimal observer gain
K by numerical optimization of the cost functions Hi over the variables Kii, for i = 1, . . . , Ns.
A synthesis procedure for the observer gain K follows.

Algorithm 3-3.18. (Observer Gain Synthesis Procedure)

1) Fix values for Kii ∈ R
ni×oi such that (Aii +KiiCii) is asymptotically stable, for i =

1, . . . , Ns, being ni the number of states of the ith subsystem and oi its the number of
outputs.

2) Fix the optimal gain Fcc = Fcc,opt as computed by Algorithm 3-3.9.

3) For i = 1, . . . , Ns, solve

Kii,opt = arg min
Kii
Hi (Kii, Fcc) .

4) For i = 1, . . . , Ns, determine Kic and Kcc applying Theorem 3-3.15, fixing Kii = Kii,opt.

5) Construct the swallow observer gain K .

Remark 3-3.19. This algorithm is not claimed to produce the globally optimal result, but the
convexity of the involved numerical optimization problem is conjectured (see Section 3-3-4).
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Figure 3-4: Variables interconnections and dependence on the parameterKii for the cost function
Hi. The dark tonality of an element indicates the amount of previous (parallel) operations needed
in order to compute its analytic expression.

Gradient and Hessian of the Cost Function H

The algorithm we have presented to determine J (Fcc) is here similarly reproduced to derive
a symbolic expression for Hi (Kii, Fcc), their gradients and the Hessians in terms of Kii, for
i = 1, . . . , Ns. As for the previous case, we sketch in Figure 3-4 the interdependencies between
the involved variables. This dependencies, although slightly more complex than that of Figure
3-3, also appear in a nested structure.

Algorithm 3-3.20. (Analytic Expression for Hi, Gradient and Hessian in Terms of Kii) Let
Fcc ∈ R

mc×nc and Kii ∈ R
ni×oi, for i = 1, . . . , Ns be given, where ni and nc are the number

of states of the ith subsystem and the coordinator respectively; mc is the number of inputs of
the coordinator; oi is the number of outputs of the ith subsystem. For i = 1, . . . , Ns, define
the partially closed-loop and closed-loop state matrices

Aii,cl (Kii) = Aii +KiiCii;
Aic,pcl (Kii) = Aic +B1cFcc +KiiCic; Aic,cl (Kii) = Aii +BicFcc +KiiCic +KicCcc;

Acc,pcl = Acc +BccFcc; Acc,cl = Acc +BccFcc +KccCcc.

1) Compute Xcc numerically from the Lyapunov equation

Xcc = Acc,pclXccA
T
cc,pcl +MccVx,ccMTcc+

− [
Acc,pclXccC

T
cc

] [
CccXccC

T
cc +NccVy,ccNTcc

]−1 [
Acc,pclXccC

T
cc

]T ;

note that this term does not depend on Kii, i = 1, . . . , Ns.
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2) Define Kcc as
Kcc = −

[
Acc,pclXccC

T
cc

] [
CccXccC

T
cc +NccVy,ccNTcc

]−1 ;

note that this term does not depend on Kii, i = 1, . . . , Ns.

3) solve the following Sylvester’s equation for We,cc analytically.

We,cc = Acc,clWe,ccA
T
cc,cl +MccVx,ccMTcc +MccVxy,ccNTccKTcc+

+KccNccV Txy,ccMcc +KccNccVy,ccNTccKTcc;

note that this term does not depend on Kii, i = 1, . . . , Ns.

4) For i = 1, . . . , Ns, do

4a) solve the following Sylvester’s equation for Xic (Kii) analytically,

Xic (Kii) = Aii,cl (Kii)XicATcc,pcl +Aic,pcl (Kii)XccATcc,pcl +MiiV Tx,icMTcc +MicVx,ccMTcc
+KiiNiiVy,icMTcc +KiiNicVy,ccMTcc+
−
[
Aii,cl (Kii)XicCcc +Aic,pcl (Kii)XccCcc +MiiVxy,icNTcc+

MicVxy,ccN
T
cc +KiiNiiVy,icNTcc +KiiNicVy,ccNTcc

]
×

×
[
CccXccC

T
cc +NccVy,ccNTcc

]−1 [
CccX

T
ccA

T
cc,pcl +NccVy,ccMTcc

]
;

notice that the term Xic (Kii) is a rational function of the elements of Kii because
of its dependence from Aii,cl (Kii), Aic,pcl (Kii), and Kii directly;

4b) determine Kic (Kii),

Kic (Kii) = −
[
Aii,cl (Kii)Xic (Kii)Ccc +Aic,pcl (Kii)XccCcc +MiiVxy,icNTcc +MicVxy,ccNTcc

+KiiNiiVxy,icNTcc +KiiNicVxy,ccNTcc
]
×[

CccXccC
T
cc +NccVy,ccNTcc

]−1
.

the term Kic (Kii) is a rational function of the elements of Kii because of its de-
pendence from Aii,cl (Kii), Aic,pcl (Kii) and Kii directly;

4c) solve the following Sylvester’s equation for We,ic (Kii) analytically,

We,ic (Kii) = Aii,cl (Kii)We,ic (Kii)ATcc,cl +Aic,cl (Kii)We,ccATcc,cl
+MiiVx,icMTcc +MicVx,ccMTcc +MiiVxy,icNTccKTcc +MicVxy,ccNTccKTcc+
+KiiNiiVxy,icMTcc +KiiNicVxy,ccMTcc +Kic (Kii)NccVxy,ccMTcc
+KiiNiiVy,icNccKTcc +KiiNicVy,ccNTccKTcc +Kic (Kii)NccVy,ccNTccKTcc;

the term We,ic (Kii) is a rational function of the elements of Kii;
4d) solve the following Sylvester’s equation for We,ii (Kii) analytically,

We,ii (Kii) = Aii,cl (Kii)We,ii (Kii)ATii,cl (Kii) +Aic,cl (Kii)WTe,ic (Kii)ATii,cl (Kii) +
+Aii,cl (Kii)We,ic (Kii)ATic,cl (Kii) +Aic,cl (Kii)We,ccATic,cl (Kii) +
+MiiVx,iiMTii +MiiV Tx,icMTic +MicVx,ccMTic+
+MiiVxy,iiNTiiKTii +MicV Txy,icNTiiKTii +MiiVxy,icNTicKTii +MicVxy,ccNTicKTii+
+MiiVxy,icNTccKTic +MicVxy,ccNTccKTic +KiiNiiVxy,iiMTii +KiiNicV Txy,icMTii+
+KicNccVxy,icMTii +KiiNiiVxy,icMTic +KiiNicVxy,ccMTic +KicNccVxy,ccMTic+
+KiiNiiVy,iiNTiiKTii +KiiNicV Ty,icNTii +KicNccV Ty,icNTii+
+KiiNiiVy,icNTicKTii +KiiNiiVy,icNTccKTic +KiiNicVy,ccNTicKTii+
+KicNccVy,ccNTicKTii +KiiNicVy,ccNTccKTic +KicNccVy,ccNTccKTic;

the term We,ii (Kii) is a rational function of the elements of Kii;
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5) For i = 1, . . . , Ns, do

5a) determine the symbolic expression

Hi (Kii, Fcc) = trace [We,ii (Kii, Fcc)] ,

which results in a rational function of the elements of Kii;

5b) determine the gradient of Hi (Kii) as

Grad [Hi (Kii, Fcc)] = ∂Hi (Kii, Fcc)
∂Kii

,

where each element
(
∂Hi(Kii)
∂Hii

)
m,n

= ∂Hi(Kii)
∂Hii,mn

for each m, n. The gradient of
Hi (Kii) is a rational function of the elements of Kii.

5c) Determine the Hessian of Hi (Kii) as

Hess [Hi (Kii, Fcc)] = ∂
2Hi (Kii, Fcc)
∂K2
ii

,

where each element
(
∂2Hi(Kii)
∂K2
ii

)
m,n

= ∂2Hi(Kii)
∂K2
ii,mn

for each m, n. The Hessian of

Hi (Kii, Fcc) is a rational function of the elements of Kii.

Remark 3-3.21. Recall that a procedure to solve Sylvester’s equations analytically was given in
Lemma 3-3.12. The validity of the algorithm can be confirmed by comparison with the proof
of Theorem 3-3.15. As in the case of Algorithm 3-3.13, the concatenation of interdependent
equations introduces a symbolic complexity that reflects into huge expressions for the gradient
and the Hessian, even for the simplest cases.

With this we have concluded the solution to the control synthesis problem for decomposable
systems. We will now make two important considerations about the results. The first one, in
the next section, is about the convexity of the numerical minimization problems encountered
in the solution process. Then, in Section 3-3-5, we will show how the constructed synthesis
procedures can be decentralized.

3-3-4 About the Convexity of the Problems

Time and effort have been put on proving the convexity of the minimization problems

inf
Fcc
J (Fcc) ; inf

Kii
Hi (Kii, Fcc) ,

for i = 1, . . . , Ns, with regards to the stability region of the closed-loop system. The reasons
for which convexity is conjectured and some possible ways to prove it are discussed in this
section.
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Figure 3-5: Typical shape of the cost function J (Fcc) in the scalar case.

Conjecture of Convexity

Experimental evidence shows the convexity of the two problems. Three arguments stand
behind this belief.

1. A typical plot of J (Fcc) for the scalar case (every parameter is considered a scalar)
is shown in Figure 3-5. Similar results were found for the nth-order case, in which an
arbitrary set of elements of Fcc were defined to be linearly dependent on a parameter p.
The cost function J (Fcc (p)) appeared to be convex in p.

2. Another study was conducted on the existence of more than one stability region for
closed-loop systems of generic order. As we said, we in fact conjecture the convexity of
the function on its stability region. The existence of more than one such regions would
imply the incorrectness of the conjecture. This stability region appeared to be unique
depending on parameters p1, p2 and p3 in which the feedback gain Fcc (p1, p2, p3) was
defined linearly. No more than three parameters per time were considered because of
graphical representation reasons. The result of this experimental research never showed
the existence of more than one stability region.

3. Numerical optimization methods always seem to converge to one global minimum. Ta-
ble 3-1 summarizes some experimental results of numerical optimization starting from
random, stabilizing initial values of Fcc, for randomly generated systems with increasing
number of optimization variables nv. It appears that, increasing the number of vari-
ables, the probability of failing to find the minimum of the function increases. However,
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it seems that this failure is not due to the presence of more than one minimum, but to
the numerical errors. In fact, by decreasing the tolerance of the optimization algorithm,
the rate of convergence of the algorithm increases.

MATLAB fmincon nv = 1 nv = 2 nv = 6 nv = 15 nv = 25 nv = 50
TolX= 10−5 100% 100% 100% 86% 78% 60%
TolX= 10−10 100% 100% 100% 92% 88% 76%
TolX= 10−15 100% 100% 100% 96% 90% 82%

Table 3-1: Convergence rate of numerical optimizations using the MATLAB function fmincon.
nv is the number of optimization variables, given either by the elements of the Fcc gain for the
minimization of J , or by the elements of Kii for the minimization of Hi, for any i ∈ [1, Nc]; TolX
is the tolerance on the minimal variation on a variable allowed in the numerical optimization. 50
randomly generated systems are considered for each case.

For the above reasons, the following conjecture is formulated.

Conjecture 3-3.22. (Convexity of the Optimization Problems) The optimization problems

min
Fcc
J (Fcc) and min

Kii
Hi (Kii, Fcc) ,

for i = 1, . . . , Ns, are convex in the set of stabilizing values of the parameters Fcc and Kii
respectively.

By the results formulated by Ho and Chu [24], the optimal control law for systems with
nested information structure is linear. Thus, the convexity of this problem is conjectured
to guarantee that the numerical computation of the globally optimal control law converges
eventually.

About Numerical Errors

The numerical optimization problems to be solved for decomposable problems in Algorithm
3-3.9 and Algorithm 3-3.18 do not always converge to an optimal result. This failure could be
attributed to two factors: the non-convexity of the function to be minimized, or to numerical
errors. In turn, the numerical errors could be due to the following two different factors, whose
occurrence is established by experimental evidence.

1. Flat cost functions. In Table 3-1, some numerical optimization attempts are summa-
rized. There, the impression is given that the more optimization variables there are,
the higher is the rate of failure in finding the optimal result. Because of space reasons,
we do not provide with all the results obtained for numerical experiments. However, in
multi-start optimizations, most of the converging results did not match perfectly, but
were slightly different from each other. In the table, these results are still classified
as successful. Different experiments showed how both the precision of the convergent
results and the number of totally different results considerably decreased by improving
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the tolerance parameters of the minimization algorithm (MATLAB’s fmincon). This
is explained by the presence of “flat” areas in the cost functions, where, therefore, the
derivative computed on one or more variables of the minimization domain is almost
zero. The “flatness” of the cost function can be observed in the typical plot produced
in Figure 3-5.

Figure 3-6: Example of “broken” cost function. The black lines determine the boundaries of the
stability region. The minimum of the function with the stability region lies at the boundary just
inside that region.

2. Broken cost functions. Not always the global minimum of the cost function lies in the
stability region of the system. Often, the convex shape of the cost function is “broken”,
as it is shown in Figure 3-6. Line-search optimization methods encounter problems with
this kind of functions. The result they seek is in fact outside the acceptable region,
as we require the closed-loop system to be stable. Two solutions can be given to this
problem. Both of them introducing other issues. The first one is to include a non-linear
stability constraint, imposing the maximum eigenvalue of the closed-loop system to be
located in the unitary circle. However, as we show in Figure 3-7, this is, in general,
a non-convex constraint. By its implementation, the optimization problem would not
be convex anymore, as to be convex, a constrained optimization problem requires the
inequality constraint to be convex [10]. A second solution is that to include a barrier
function, whose value increases as the maximum eigenvalues of the system approaches
the instability boundaries. An intrinsic limitation of this approach is that the result
obtained would not represent the global minimum of the cost function anymore, as it
minimizes the sum of the cost function with the barrier function. Although the two
solutions proposed have some limitations, they both worked well in experiments. In
particular, the constrained minimization is a suggested solution.
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Figure 3-7: Non-convexity of the stability constraint. The absolute value of all the eigenvalues
of a 10th order closed-loop system are plotted as a function of one (arbitrary) element of the
parameter F . In this example we can observe that the maximum-eigenvalue function presents two
local minima.

Directions for a Proof

We indicate three ways to prove the convexity of the two problems.

1. Show that the Hessian of the cost functions is positive-definite. A procedure to obtain
a symbolic expression for the Hessians was given in Algorithm 3-3.13 and Algorithm
3-3.20.

2. Show that the subgradient inequality holds for both the cost functions (for a deeper
insight on the subgradient inequality, see, for example, [10, 34]). A procedure to obtain
a symbolic expression of the (sub)gradients was also given in Algorithm 3-3.13 and
Algorithm 3-3.20.

3. The symbolic expression of each cost function is found by computing a nested set of
expressions and solutions to Sylvester’s equations. Figures 3-3 and 3-4 show how the
cost functions depend on the optimization variables. As a convex function of a function
which is convex in a parameter, is also convex in that parameter [10], the convexity of
the cost function could be proved recursively.

Although efforts have been spent on these three directions, no results were achieved. The
main problems with proving the convexity via the gradients or Hessians of the cost functions
is the huge dimension of these expressions. Even for the simplest scalar case, if the Hessian
of J (Fcc) was to be reported on this document, it would occupy more than 20 pages, and the
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gradient more than 5. Operations with these expressions are hard to handle. Moreover, the
algorithms we provide allow to compute gradient and Hessian for particular cases. No general
results for every CLS and problem could be inferred from eventual proofs in particular cases.

The third way, which explores the elements of the functions step-by-step recursively, is more
likely to produce a general result. We suggest this way to be pursued.

3-3-5 Decentralization of the Control Synthesis

A surprising result which was not sought, but that is very welcome, is treated hereby. The
information constraints imposed to the control system can also be reflected to the control
synthesis. We here explain how the synthesis of F and K can be done by allowing communi-
cation only from the coordinator to the subsystems, as the nested information pattern of the
control system requires.

One of the main consequences of the gain synthesis procedures developed for decomposable
problems is their decentralizability. In fact, the procedure of finding F and K can be done as
indicated below.

Algorithm 3-3.23. (Decentralized Control Synthesis) Let a decomposable problem be given.

1) At the level of the coordinator, run Algorithm 3-3.9 to find the gain F .

2) At the level of the coordinator, find the local observer gain Kcc as it is indicated in
Theorem 3-3.15.

3) The coordinator communicates the gains Fii, Fic and Fcc to each subsystem i, for i =
1, . . . , Ns.

4) Each subsystem i, for i = 1 . . . , Ns, computes the observer’s gains Kii and Kic using
Algorithm 3-3.18, fixing the value of Fcc obtained from the coordinator.

Remark 3-3.24. The validity of the algorithm follows from Theorem 3-3.1 and 3-3.15.

The decentralization of the computation is sketched in Figure 3-8.
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Figure 3-8: Decentralization of the control synthesis procedure.

While F depends on the selection of weighing matrices,K is merely determined by the variance
of external disturbances. If these variances change at the coordinator’s level, a new Kcc can
be computed locally, and the data regarding the variance can be sent to the subsystem, which
will carry a new optimization to find the new optimal values of Kii and Kic.

Note that if a change of variance is detected at the level of a subsystem, a new optimization is
simply run locally to recompute the local observer’s gains, without affecting the whole control
system.

3-4 Virtual Coordination Problems

In this section we treat the problem of LQG coordination control for the case of virtual
coordination problems.

Problem 3-4.1. (Virtual Coordination Problem Formulation) Solve problem 2-4.4 given the
weighing matrices

Qtot = QTtot =
[
Q S
ST R

]
≥ 0; Q = QT =

⎡
⎢⎣ Q11 0 Q1c

0 Q22 Q2c
QT1c Q

T
2c Qcc

⎤
⎥⎦ ;

S =

⎡
⎢⎣ S11 0 S1c

0 S22 S2c
0 0 Scc

⎤
⎥⎦ , R = RT =

⎡
⎢⎣ R11 0 0

0 R22 0
0 0 Rcc

⎤
⎥⎦ > 0.

and a disturbance vector vtot (t) =
[
vTx (t) , vTy (t)

]T
being a Gaussian zero-average noise with
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covariance matrices

Vtot = V Ttot

[
Vx Vxy
V Txy Vy

]
≥ 0; Vx = V Tx =

⎡
⎢⎣ Vx,11 0 0

0 Vx,22 0
0 0 0

⎤
⎥⎦ ;

Vxy =

⎡
⎢⎣ Vxy,11 0 0

0 Vxy,22 0
0 0 0

⎤
⎥⎦ ; Vy = V Ty =

⎡
⎢⎣ Vy,11 0 0

0 Vy,22 0
0 0 Vy,cc

⎤
⎥⎦ > 0.

For this class of problems, we depict the coordinator as a virtual entity, whose state is unaf-
fected by disturbances. Ideally, this class of problems means to represent computer-controlled
distributed systems.

Notice that virtual coordination problems are a particular case of decomposable problems
(see Section 3-3-1 for comparison). The results obtained for decomposable problems therefore
naturally extend to virtual coordination problems.

The main issue for finding optimal control policies in decomposable problems was the fact
that disturbances acting on the coordinator propagate into the subsystems both through the
inputs and the states. Since this issue is absent in virtual coordination problems, the solution
to the LQG coordination control becomes easier. In fact, we show that this matches with the
solution of classical LQG control applied to each subsystem independently.

We follow the usual steps to solve the LQG coordination control problem: we start by a
consideration on the separation property; then, we find the optimal swallow gains F and K
separately.

3-4-1 Separation Property

We recall that we are basically dealing with a decomposable problem applied to a special class
of systems. The decomposition of the control synthesis problem intoNs subproblems for which
the separation property holds were proved in Theorem 3-3.7 for decomposable problems. This
result holds for virtual coordination control problem as well.

The results related to the synthesis of the two gains are heavily improved for this class of
systems. We show this in the following two sections.

3-4-2 Decentralization of the State-Feedback Gain Synthesis

By the following proposition, we show that the LQG coordination control problem of finding
an optimal state-feedback gain in the swallow form reduces to the synthesis of local LQG
control problems.

Proposition 3-4.2. (State-Feedback Gain Synthesis for Virtual Coordination Problems) Let
a virtual coordination problem be given. Define

LF,iiL
T
F,ii = Qii − SiiR−1

ii S
T
ii ; AF,ii = Aii −BiiR−1

ii S
T
ii ,

for i = 1, . . . , Ns. If
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1) Fcc is fixed arbitrarily such that (Acc +BccFcc) is asymptotically stable;

2) (Aii, Bii) is stabilizable, for i = 1, ..., N ;

3) (AF,ii, LF,ii) is detectable, for i = 1, ..., N ;

then,

a) for i = 1, . . . , Ns the optimal feedback gains Fii are determined as

Fii = LQG (Aii, Bii, Qii, Rii, Sii) ,

b) the rest of the gains have no influence on the optimality of the closed-loop system and
can be chosen arbitrarily, as long as the closed-loop system is stable and F is in the
swallow form,

F =

⎡
⎢⎣ F11 0 F1c

0 F22 F2c
0 0 Fcc

⎤
⎥⎦ .

Proof. a) This follows from Theorem 3-3.8.

b) To show that the gains Fic, i = 1, . . . , Ns and Fcc can be chosen arbitrarily, we proceed
as follows. In a virtual coordination problem, we have Vx,cc = 0, and Vx,ic = 0 for
i = 1, . . . , Ns. Substituting these values in the closed-loop steady-state variance of the
state W , we obtain

Wii = (Aii +BiiFii)Wii (Aii +BiiFii)T +MiiViiMTii ,

and Wic = 0; Wcc = 0. The cost function becomes

J =
Ns∑
i=1
trace

[
Wii

(
Qii + SiiFii + F Tii STii + F TiiRiiFii

)]
.

Since the cost function only depends on Fii, i = 1, . . . , Ns, all the other gains are neutral
to its optimality. Hence, they can be chosen arbitrarily.

This completes the proof.

3-4-3 Decentralization of the Observer Gain Synthesis

We here show the dual result regarding the optimal swallow observer gain.

Proposition 3-4.3. (Observer Gain Synthesis for Virtual Coordination Problems) Let a vir-
tual coordination problem be given. Define

AK,ii = Aii −MiiVxy,iiNTii
(
NiiVy,iiN

T
ii

)−1
Cii;

LK,iiL
T
K,ii = MiiVx,iiM

T
ii −MiiVxy,iiNTii

(
NiiVy,iiN

T
ii

)−1
NiiV

T
xy,iiM

T
ii ,

for i = 1, . . . , Ns. If
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1) Fcc is fixed such that (Acc +BccFcc) is asymptotically stable;

2) (Aii, Cii), i = 1, . . . , Ns are detectable pairs;

3) (AK,ii, LK,i), i = 1, . . . , Nsare stabilizable pairs;

then,

a) for i = 1, . . . Ns, the optimal observer gain Kii is given by

Kii =
[
LQG

(
ATii, C

T
ii ,MiiVx,iiM

T
ii , NiiVy,iiN

T
ii ,MiiVxy,iiN

T
ii

)]T
,

b) the rest of the gains have no influence on the optimality of the closed-loop system and
can be chosen arbitrarily, as long as the closed-loop system is stable and K is in the
swallow form,

K =

⎡
⎢⎣ K11 0 K1c

0 K22 K2c
0 0 Kcc

⎤
⎥⎦ .

Proof. a) Let us consider the algebraic Riccati equation leading to the Kalman gain in its
general form,

X = ApclXĀ
T +MVxMT+

− [
ApclXC

T +MVxyNT
] [
CXCT +NVyNT

]−1 [
ApclXC

T +MVxyNT
]T
,

where

Apcl =

⎡
⎢⎣ A11 0 A1c +B1cFcc

0 A22 A2c +B2cFcc
0 0 Acc +BccFcc

⎤
⎥⎦ =

⎡
⎢⎣ A11 0 Apcl,1c

0 A22 Apcl,2c
0 0 Apcl,cc

⎤
⎥⎦ .

Following the assumptions, there exists a unique X = XT ≥ 0 that solves the above
equation. We focus at first our attention on Xcc, where substituting Vx,cc = 0 and
Vxy,cc = 0, we have

Xcc = Apcl,ccXccATpcl,cc −Apcl,ccXccCTcc
[
CccXccC

T
cc +NccVy,ccNTcc

]−1
CccXccApcl,cc.

The unique solution to the equation is

Xcc = 0.

After substituting the known values of the variables, the term Xic is given by
Xic = AiiXicA

T
pcl,cc −

[
AiiXiiC

T
ii + ĀicXTicCTii +AiiXicCTic 0

]
×

×
[
CiiXiiC

T
ii + CicXTicCTii + CiiXicCTic +NiiViNTii CiiXicCTcc + CicXccCTcc +NicVcNTic
CccX

T
icC

T
ii +NTicVcNic NTccVcNcc

]−1

×

×
[
CiiXicA

T
pcl,cc

0

]
,

Thus, the only solution to the equation is

Xic = 0,
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for i = 1, . . . , Ns. Substituting the two solutions Xcc = 0 and Xic = 0, for i = 1, . . . , Ns,
in the algebraic Riccati equation for Xii, we finally obtain

Xii = AiiXiiATii +MiiVx,iiMTii −
[
AiiXiiC

T
ii

] [
CiiXiiC

T
ii +NiiVy,iiNTii

]−1 [
AiiXiiC

T
ii

]T
,

for i = 1 . . . Ns. Following from the LQG optimal control theory, the optimal observer
gains Kii, for i = 1, . . . , Ns, are given by

Kii = −AiiXiiCTii
[
CiiXiiC

T
ii +NiiVy,iiNTii

]−1
.

b) To show that Kcc and Kic, for i = 1, . . . , Ns, can be chosen arbitrarily, we simply notice
that these terms do not appear in the cost function to be minimized,

H = trace (We) ,

as, after substituting the known values of the covariance matrices, this becomes

H =
∑Ns
i=1 trace

{
(Aii +KiiCii)We,ii (Aii +KiiCii)T +MiiVx,iiMTii+

+MiiVxy,iiNTiiKTii +KiiNiiV Txy,iiMTii +KiiNiiVy,iiNTiiKTii
}
.

This completes the proof.

No ulterior research is necessary for the class of virtual coordination problems. The results
of this section exhaust the solution to Problem 3-4.1.

3-5 Comments

Some general comments regarding the theory of LQG coordination control we developed in
this chapter follow.

Off-line Computations For problems of known linear, time-invariant models and disturbance
covariance matrix, the LQG coordination control synthesis can be run off-line and directly
implemented into the CLS.

Transformations of the State-Space State-space transformations are useful to formulate
control problems. Intuitively, any transformation leading to a state-space system composed of
swallow matrices can be performed. Following from the conservation properties of the swallow
matrix, any swallow transformation matrix T is therefore allowed for this purpose.

Separation Principle for General Problems We have stated that the biggest unsolved issue
about general problems is the inapplicability of the separation principle. In Section 3-3 we
have seen how, for decomposable problems, the separation property of the system is proved
by allowing the gains Fcc and Kii, for i = 1, . . . , Ns to be fixed. The same reasoning cannot be
applied to general problems. In fact, since the weighing matrices and the covariance matrices
are not limited to any structure, the cost functions cannot be decomposed in the same way
as we have done for decomposable problems, and consequently the separation property does
not hold.
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Considerations on Block-Diagonal Gains By the results of Theorem 3-3.8 and Theorem
3-3.15, we notice that if we restrict our attention to block-diagonal gains F and K only,
instead of the more general swallow matrix structure, the control synthesis procedure can be
run in a much faster way (experimentally, it reveals to be about 6 times faster). In fact, no
computations of LQG optimal gains would be required at each step, as the only gains to be
found would be Fii, for i = 1, . . . , Ns and Kcc, which can be computed independently, only
once.

Comparison with Direct Numerical Approaches The largest part of this chapter is dedi-
cated to the research of (locally) optimal results, either given a fixed parameter (as it is the
case of decomposable problems) either in a more direct way (as it is the case for virtual co-
ordination problems). An alternative, less thoughtful way to pursue the same result could be
given by a numerical optimization over all the elements of the swallow gains. This approach
was implemented by the author, and its results were used as a comparison to the results
obtained through the proposed procedures. In Table 3-2 we compare the number of variables
that would compose the optimization domain between the implementation of our approaches
and that of direct line-search applied to the matrices as a whole. The direct numerical ap-
proach over the whole matrix not only proved to be way slower than our approach, but also
hardly converged to the minimum because of numerical problems due to the larger number
of variables.

Number of optimization variables Finding F Finding K
Direct line-search method

∑Ns
i=1mi (ni + nc) +mcnc

∑Ns
i=1 ni (oi + oc) + ncoc

Decomposable Problems mcnc
∑Ns
i=1 nioi

Virtual Coord. Problems 0 0
General Problems Not Applicable Not Applicable

Table 3-2: Comparison of the number of optimization variables between a direct line-search
method and those proposed in this thesis. The parameters ni, mi and oi represent the number
of states, inputs, and outputs of each subsystem i and the coordinator respectively, for i =
1, . . . , Ns, c. For virtual coordination problems no numerical optimization is required. No method
is applicable to the general problems, as for this class of problems the separation property was not
proved to hold.

Computational Time For decomposable problems, we offer a control synthesis that passes
through a numerical optimization process. It may happen that the control synthesis is to
be done while the controlled system is running. In these cases, it is necessary to know how
much time the synthesis would require. Roughly, if the synthesis was run in a decentralized
way following the instructions of Algorithm 3-3.23, for problems with about 15 optimization
variables, running the synthesis on MATLAB, on a laptop of today’s average computational
power, the whole synthesis would require about 5 seconds. This value has to be considered
as a mere estimate. Several parameters influence in fact the computational time. To mention
some: the type and power of the processing unit, the number of optimization variables (over
which the computations appear to require exponential time), the distance from the optimal
value with respect to the starting point of the optimization, the communication delay of the
information transmitted from the coordinator to the subsystems.
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3-6 Conclusions

Throughout the chapter, we studied approaches to solve the LQG coordination control prob-
lem as it was formulated in chapter 2. We differentiated the results by following three different
problem categories: the general problem, the decomposable problem, and the virtual coordi-
nation problem. The differences in the formulations of these problems lie in the assumptions
made for the structures of the weighing matrices Q and R and on the covariance matrix of
the disturbances acting on the system, V .

For the general problem, discussed in Section 3-2 where no limitations are given to the struc-
ture of these matrices, no results have been found. The main difficulty to be overcome for
this class of problems is the applicability of the separation principle.

For decomposable problems, important results were found were found in Section 3-3. To begin,
the separation property was proved to hold if part of the parameters to be found were fixed
(Fcc and Kii, i = 1, . . . , Ns). After this result, a new approach was developed to obtain the
optimal state-feedback gain and the optimal observer gain separately, starting from a problem
decomposition. To find these two gains, a decentralizable technique has been developed. The
optimization domain of the numerical problems to be solved is given by the elements of the
parameters Fcc and Kii, i = 1, . . . , Ns. The convexity of these problems was conjectured. A
procedure to obtain the analytical expression of the gradients and the Hessians of the cost
functions to be minimized, based on the solution of Sylvester’s equations, was also indicated.
Since the two gains obtained by the procedure are in the swallow form, they comply with the
nested information pattern restriction imposed.

In the end, in Section 3-4, special results have been achieved for the category of virtual
coordination problems. For this class of problems, it was shown that the optimal controller
can be obtained with no need of numerical optimization. The optimal gains are in fact proved
to coincide with those locally obtained by the classical LQG control theory.

All the results presented in this section have been implemented in MATLAB. Interested
readers may request the source codes to the author.
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Chapter 4

Coordination Control of AUVs

In this chapter we present a case study. The LQG coordination control theory developed in
this thesis is applied to control the position of a group of autonomous underwater vehicles
(AUVs). The adopted approach is based on a previous paper by Kempker [27], where an
LQ-optimal procedure was used to control a formation of AUVs. Objective of the control
system is to guarantee a number of AUVs to track an external reference. The control system
also has to take into account the possibility of AUVs to move in formation. The design of
such control system is a straightforward application of the LQG coordination control theory.
In particular, it follows from the results obtained for virtual coordination problems and those
for the more generic class of decomposable problems.

The chapter is organized as follows. Section 4-1 introduces the importance of AUVs and
the difficulties related to the relative control system to be synthesized; in Section 4-2, we
indicate the approach used to control the vehicles; in Section 4-3 we formulate this problem
in a mathematical way, while Section 4-4 solves the problem by implementation of the LQG
coordination control theory. The resulting closed-loop system is simulated in Section 4-5.
Then, Section 4-6 collects some comments on the control system developed, pointing out
strengths and weaknesses of the approach, and in Section 4-7 suggestions for future work are
listed. Conclusions are drawn in Section 4-8.

4-1 Introduction

We here provide the reader with a short introduction about AUVs. After motivating their
importance by means of a small survey on their use in modern applications, we analyze the
general difficulties in the coordination control of a groups of vehicles. After that, we show the
general set-up of these vehicles, taking as example the AUVs used in the University of Porto,
Portugal, for the Control for Coordination (C4C) Project [20].
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4-1-1 Importance of AUVs

AUVs are already used, and planned to be used in future, for several tasks. The key of their
success comes from the obvious fact that they are uninhabited vehicles. They can perform
tasks in hostile environments [14]. Groups of AUVs can be used for mere supervision of ocean
areas, pollution detection, and environmental purposes.

AUVs are also used for source localization of chemicals. Examples are given by the prospection
of hydrothermal vents [18], by chemical plume tracing, or in general the tracing of a substance,
down to its source [35, 36].

Furthermore, these vehicles have proved invaluable in oceanographic and environmental field
studies, by providing levels of spatial-temporal sampling resolution which could have not
be attained before [9]. In fact, persistent sampling over wide areas has the potential to
revolutionize environmental field studies. This is done by collection of sensor readings over
an operating area, so that a map can be generated. The map can then be used for other
purposes such as model validation and mission re-planning (adaptive sampling) [19, 31].

Autonomous vehicles are capable of executing mission plans without the intervention of human
operators, who can be a mere part of the planning of the vehicle. For the operator it is possible
to simply generate plans for autonomous execution and to override them when necessary.

4-1-2 Difficulties

The main objective of the control system to be synthesized is to steer a group of underwater
vehicles along predetermined trajectories, ensuring a few properties which may change from
case to case. A number of issues are to be considered at this purpose.

1. Collision danger: the vehicles should not collide with obstacles, nor with each other.

2. Delays and packet-losses: communication stations need time to transmit data by sonar.
Consequently, information travels with the speed of sound. Sometimes, this information
is never received by the vehicles. Delays and packet-losses are to be taken into account
when designing a control system for coordination of AUVs.

3. Stochasticity: water currents and turbulence act on the vehicles in a hardly measurable
or predictable way. Stochastic properties of this kind of disturbances could be difficult
to be modeled.

4. Energy storage limitation: the endurance of these vehicles is highly correlated with
the limitations of current energy storage technologies, and by the size of the vehicles
themselves. Energy consumption is not only affected by their actuation, but also by
communication. The sonar, used by AUVs to communicate, is energetically expensive.
Communication should therefore be limited.

5. Control for exceptional circumstances: in case of malfunctioning of either the control or
the communication system, the AUV has to be recovered.
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6. Computational power limitation: due to space, cost and energy reasons, the computa-
tional power of AUVs is limited.

7. Information constraint: because of the costs and the functionality of sensors underwater,
the vehicles have access to limited information about their state.

The framework built in this thesis intrinsically takes into account some of the above problems.
For instance, LQG coordination control does not require subsystems (AUVs) to communicate
data to the coordinator (here considered as a surface vessel). This represents a significant
energy saving, since communication underwater has a consistent energetic cost. Furthermore,
the framework we developed implicitly allows to take into account biased disturbances, posi-
tion tracking, and collision avoidance. A natural application of the selected approach could
be that of formation-flying.

4-1-3 Set-up

There exist various different types of AUVs. To give the reader a coarse idea of their char-
acteristics, we hereby report those of the AUVs used by the University of Porto, Portugal,
where a team of researchers is conducting coordination control studies under grant of the EU
[9, 8, 6, 7], within the C4C project [20]. A picture of the vehicle is shown in Figure 4-1, while
a description of its hardware is reported on Figure 4-2. The data have been taken from a
deliverable of the C4C project [8].

Figure 4-1: The AUV used at the University of Porto, Portugal. [8].

Each AUV is equipped with processing unit, camera, altimeter, leak and pressure sensor, and
sonar. Although a GPS receiver is also implemented, the reader should be aware of the fact
that the GPS signals do not pass the water surface. Therefore, the vehicles cannot rely on that
to obtain an estimate of their own position. The positions of the vehicles can be estimated in
different ways, as for instance by an acoustic localization network that makes use of beacons
and external localization systems, as displayed in Figure 4-3.
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Figure 4-2: Data-sheet of the AUV used at the University of Porto, Portugal. [8].

4-2 Approach to the Problem

For the coordination control of a group of AUVs, we will make use of the results developed for
LQG coordination control theory. The approach with which these results are implemented
are described in this section. In order for this approach to be implemented, a few assumptions
are required. These are also discussed hereby.

4-2-1 Coordination Control Approach

We propose an approach that exploits the advantages of LQG coordination control. The
control synthesis is divided in two passages.

1. A surface vessel, mounting a computation and communication system, acts as a virtual
coordinator for one or more Master AUVs. Since we assume the system to be computer-
controlled, this is a virtual coordination problem, for which optimal results have been
presented in Section 3-3.

2. Each Master AUV is followed by a number of independent AUVs. Each Follower AUV
simply maintains a fixed distance from the Master, which behaves like a coordinator
to it. By means of some decoupling hypotheses on the covariance matrices of the dis-
turbances acting on each AUV, we can treat this leader-followers problem with the
LQG coordination control theory developed for decomposable problems. For this class
of problems, only locally optimal results involving a numerical optimization have been
obtained (see Section 3-4), but the global optimality of the results was conjectured.

In order to avoid an excessively large mathematical notational load, we choose to consider
only one Master and two Follower AUVs. However, the approach can easily be extended to
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Figure 4-3: Sketch of a beacon used to track the position of the AUVs [9].

the case of any number of Master AUVs having any number of Follower vehicles. Figure 4-4
illustrates the case under focus.

Figure 4-4: Scheme of coordination for three AUVs moving in formation.
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4-2-2 Assumptions

In order to allow the implementation of LQG coordination control, a few assumptions are
done about the problem.

1. The AUVs behave as linear systems, and they move on a plane. A linear model for each
AUV is provided in [6]. This model is assumed to be reliable. Moreover, all the AUVs
are assumed to be equal.

2. The vehicle has access to an estimate of its own position. Although GPS signals are not
available underwater, position-estimation systems are available [8, 21]. This assumption
is commonly made by researchers working on the same kind of problems [2, 19].

3. The disturbances acting on the states (water turbulence) and on the output (measure-
ment noise) are assumed to have a Gaussian distribution.

4. The trajectories to be tracked by the vehicles are generated externally. Trajectory
generation can be done in several different ways. An efficient linear-optimization-based
way to do it can be found in [41].

4-3 Problem Formulation

For the control system to reflect the information constraints depicted in Figure 4-4, we for-
mulate a nested coordination control problem. We hereby introduce the models we will use
to represent AUVs’ dynamics and disturbances. Then we formulate the problem.

4-3-1 Model for the AUVs

A linear model for one AUV was retrieved in [6]. Since the framework we built needs a
discrete-time system, we apply a discretization to this model. Choosing Δt = 1 sec, and
adding stochastic disturbances, this becomes

{
xAUV (t+ 1) = AAUV x(t) +BAUV uAUV (t) +MAUV dx(t)
yAUV (t) = CAUV x(t) + dy(t).

where

x(t) =
[
p(t)
s(t)

]
;

AAUV =
[
I I

0
(
τ−1
τ

)
I

]
; BAUV =

[
0
1
τ I

]
;

CAUV =
[
I 0

]
; MAUV =

[
0

1
τMx

]
;

Here, p(t) = [px(t), py(t), pα(t)]
T ∈ R

3 is the position vector including the coordinates of the
vehicle over the plane (x and y represent the distances from a fixed origin, α represents the
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orientation); s(t) ∈ R
3 is the corresponding velocity vector; u(t) ∈ R

3 contains the generalized
accelerations on the two directions and on the angle produced by the actuators; τ is a modeling
parameter (for which the model is stable if τ > 0.5). The uncontrollable inputs dx(t) ∈ R

3

and dy(t) ∈ R represent the force disturbances acting on the vehicle and the measurement
noise respectively. To model these disturbances in a realistic way, we consider them to be
produced as the outputs of the following Gaussian system.

⎧⎪⎪⎨
⎪⎪⎩
xd(t+ 1) = Adxd(t) +

[
Md 0

]
vd(t)[

dx(t)
dy(t)

]
= Cd

[
dx(t)
dy(t)

]
+

[
0 0
0 Dd

]
vd(t),

vd(t) ∈ R
6 being Gaussian white noise.

4-3-2 Coordination Control Problem

Since all the AUVs and the virtual coordinator (situated in the surface vessel) are dynamically
independent, we represent the global state-space system as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎣
xAUV 1(t+ 1)
xAUV 2(t+ 1)
xAUVM (t+ 1)
xV ESS(t+ 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
AAUV 0 0 0

0 AAUV 0 0
0 0 AAUV 0
0 0 0 AAUV

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xAUV 1(t)
xAUV 2(t)
xAUVM (t)
xV ESS(t)

⎤
⎥⎥⎥⎦ +

+

⎡
⎢⎢⎢⎣
BAUV 0 0 0

0 BAUV 0 0
0 0 BAUV 0
0 0 0 BAUV

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
uAUV 1(t)
uAUV 2(t)
uAUVM (t)
uV ESS(t)

⎤
⎥⎥⎥⎦+

+

⎡
⎢⎢⎢⎣
MAUV 0 0

0 MAUV 0
0 0 MAUV

0 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎣ vxAUV 1(t)
vxAUV 2(t)
vxAUVM (t)

⎤
⎥⎦ .

⎡
⎢⎢⎢⎣
yAUV 1(t+ 1)
yAUV 2(t+ 1)
yAUVM (t+ 1)
yV ESS(t+ 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
CAUV 0 0 0

0 CAUV 0 0
0 0 CAUV 0
0 0 0 CAUV

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
xAUV 1(t)
xAUV 2(t)
xAUVM (t)
xV ESS(t)

⎤
⎥⎥⎥⎦+

+

⎡
⎢⎢⎢⎣
NAUV 0 0 0

0 NAUV 0 0
0 0 NAUV 0
0 0 0 NAUV

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
vyAUV 1(t)
vyAUV 2(t)
vyAUVM (t)
vyV ESS(t)

⎤
⎥⎥⎥⎦ .

Notice that the state-space matrices of the virtual coordinator are designed to reproduce the
AUVs’ dynamics. The reason for this choice are explained in Section 4-4-2, where the virtual
coordination problem of steering the Master AUV is considered.
We assume the disturbances acting on the state and on the output to be uncorrelated. We
also assume that there is no correlation between the disturbances acting on two agents which
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are not in communication with each other.

vtot(t) =
[
vx(t)
vy(t)

]
; Vtot =

[
Vx 0
0 Vy

]
;

vx(t) =

⎡
⎣ vxAUV 1(t)
vxAUV 2(t)
vxAUVM (t)

⎤
⎦ ; Vx =

⎡
⎣ Vx,11 0 Vx,1M

0 Vx,22 Vx,2M
V Tx,1M V Tx,2M Vx,MM

⎤
⎦ ;

vy(t) =

⎡
⎢⎢⎣
vyAUV 1(t)
vyAUV 2(t)
vyAUVM (t)
vyV ESS(t)

⎤
⎥⎥⎦ ; Vy =

⎡
⎢⎢⎣
Vy,11 0 Vy,1M 0

0 Vy,22 Vy,2M 0
V Ty,1M V Ty,2M Vy,MM 0

0 0 0 Vy,V V

⎤
⎥⎥⎦ ;

The weighing matrices Q and R can be chosen as follows.

Q =

⎡
⎢⎢⎣
Q11 0 Q1M 0

0 Q22 Q2M 0
QT1M QT2M QMM QMV

0 0 QTMV QV V

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣
R11 0 0 0
0 R22 0 0
0 0 RMM 0
0 0 0 RV V

⎤
⎥⎥⎦ ,

The goal to be achieved is the tracking of the signal coming from the surface vessel by
the Master AUV, and the consequent tracking of the position of the Master AUV by the
two Followers. Therefore, the feedback gain F and the optimal observer gain K are to be
determined in the forms

F =

⎡
⎢⎢⎣
F11 0 F1M 0
0 F22 F2M 0
0 0 FMM FMV
0 0 0 FV V

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
K11 0 0 0

0 K22 0 0
0 0 KMM 0
0 0 0 0

⎤
⎥⎥⎦ .

The structure of the two gains are chosen to reflect the information constraints of the closed-
loop system. We assume in fact the two Follower AUVs not to communicate any data, and
the position of the Master AUV to be known to the two Followers. This could imply a
communication from the Master to the Followers, which we consider acceptable. Moreover,
we assume the surface vessel to communicate data with the Master AUV only.
The observed states needed for the state-feedback action are retrieved locally. Each Follower
estimates their own position and velocity, and those of the Master AUV, while the latter
estimates its own, and receives the state of the virtual coordinator as an input.

4-4 LQG Coordination Control for AUVs

After having defined a linear model for the whole system, we proceed by applying the theory
of LQG coordination control. Three separated problems are taken into account:

1. The decomposable problem of two Follower AUVs tracking the position of a Master
AUV.

2. The virtual coordination problem of the Master tracking the coordinator’s signal.

3. The disturbance rejection problem at the level of each AUV.

In the following pages, these three problems are solved.
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4-4-1 LQG Coordination Control for Master-Followers

We use the theory of LQG coordination control for the problem of two AUVs following a
Master AUVs having access to its position. As the two AUVs are autonomous, the state-
space system we consider is the following.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣ xAUV 1(t+ 1)
xAUV 2(t+ 1)
xAUVM (t+ 1)

⎤
⎦ =

⎡
⎣ AAUV 0 0

0 AAUV 0
0 0 AAUV

⎤
⎦
⎡
⎣ xAUV 1(t)
xAUV 2(t)
xAUVM (t)

⎤
⎦ +

+

⎡
⎣ BAUV 0 0

0 BAUV 0
0 0 BAUV

⎤
⎦
⎡
⎣ uAUV 1(t)
uAUV 2(t)
uAUVM (t)

⎤
⎦+

+

⎡
⎣ MAUV 0 0

0 MAUV 0
0 0 MAUV

⎤
⎦
⎡
⎣ vxAUV 1(t)
vxAUV 2(t)
vxAUVM (t)

⎤
⎦+

⎡
⎣ yAUV 1(t+ 1)
yAUV 2(t+ 1)
yAUVM (t+ 1)

⎤
⎦ =

⎡
⎣ CAUV 0 0

0 CAUV 0
0 0 CAUV

⎤
⎦
⎡
⎣ xAUV 1(t)
xAUV 2(t)
xAUVM (t)

⎤
⎦+

+

⎡
⎣ NAUV 0 0

0 NAUV 0
0 0 NAUV

⎤
⎦
⎡
⎣ vyAUV 1(t)
vyAUV 2(t)
vyAUVM (t)

⎤
⎦ .

The related weighing and covariance matrices are given by

Q =

[
Q11 0 Q1M

0 Q22 Q2M
QT1M QT2M QMM

]
; R =

[
R11 0 0

0 R22 0
0 0 RMM

]
;

Vx =

[
Vx,11 0 Vx,1M

0 Vx,22 Vx,2M
V Tx,1M V Tx,2M Vx,MM

]
; Vy =

[
Vy,11 0 Vy,1M

0 Vy,22 Vy,2M
V Ty,1M V Ty,2M Vy,MM

]
; Vtot =

[
Vx 0
0 Vy

]
.

Because of the structure of the above matrices, we are facing a decomposable problem, of
which the LQG coordination control solution was studied in Chapter 3. Therefore, we can
use Algorithm 3-3.9 to obtain the feedback gain F in the swallow form, after applying the
swallow state-space transformation

T =

⎡
⎢⎣ I 0 −I

0 I −I
0 0 I

⎤
⎥⎦

to the system, since we desire the Followers to track the Master’s position. We desire our
observer to reconstruct the original state of the system, and therefore the gain K is built by
using the original state-space matrices of the system, by means of Algorithm 3-3.18.

We obtain the optimal gains

FMasterFollowers =

⎡
⎢⎣ F11 0 F1M

0 F22 F2M
0 0 FMM

⎤
⎥⎦ ; KMasterFollowers =

⎡
⎢⎣ K11 0 0

0 K22 0
0 0 KMM

⎤
⎥⎦ .
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4-4-2 LQG Coordination Control for Vessel-Master

The state-space model for the Vessel-Master coordination problem is given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
xAUVM (t+ 1)
xV ESS(t+ 1)

]
=

[
AAUV 0

0 AAUV

][
xAUVM (t)
xV ESS(t)

]
+
[
BAUV 0

0 BAUV

][
uAUVM (t)
uV ESS(t)

]
+[

MAUV

0

]
vxAUVM (t)[

yAUVM (t+ 1)
yV ESS(t+ 1)

]
=

[
CAUV 0

0 CAUV

][
xAUVM (t)
xV ESS(t)

]
+
[
NAUV 0

0 NAUV

][
vyAUVM (t)
vyV ESS(t)

]
.

Weighing and covariance matrices for this problem are,

Q =
[
QMM QMV
QTMV QV V

]
; R =

[
RMM 0

0 RV V

]
;

Vtot =
[
Vx 0
0 Vy

]
; Vx =

[
Vx,MM 0

0 0

]
; Vy =

[
Vy,MM 0

0 Vy,V V

]
;

Since no noise acts on the coordinator’s state, this is a virtual coordination problem. For this
class of systems, we have proven in Section 3-4 that the global LQG optimal control gains F
and K can be computed locally at the level of the subsystems as if there was no coordinator.
Thus, we have

FMM = LQG (AAUV , BAUV , QMM , RMM ) ;
KMM =

[
LQG

(
ATAUV , C

T
AUV ,MAUV Vx,MMM

T
AUV , NAUV Vy,MMN

T
AUV

)]T
.

Notice that, because of the particular problem definition, these two gains result to be the
same as those computed in the previous section.

The gain KV V is not computed because, being virtual, the state xV ESS(t) is assumed to be
available. The gains FMV and FV V can be chosen arbitrarily, as they do not have an influence
on the cost function (see Proposition 3-4.2). The coordinator’s local gain FV V is chosen to
simulate the closed loop behavior of the Master AUV, while the gain FMV is selected to
guarantee the steady-state reference tracking of the surface vessel’s output by the Master
AUV. Therefore, we define

FV V = −FMV = FMM .

About the state of the virtual coordinator, to track the external reference it receives a steady-
state tracking gain is implemented,

GV =
[
CAUV (I −AAUV −BAUV FV V )−1BAUV

]†
,

where † indicates the pseudo-inverse of the matrix. In this way, the input to the vessel’s
virtual environment is defined as

uV ESS(t) = FMMxV ESS(t) +GV r(t),

r(t) being the external reference for the Master AUV.

In summary, in this section we retrieved the two gains

FV esselMaster =
[
FMM FMV

0 FV V

]
; KV esselMaster =

[
KMM 0

0 0

]
.
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4-4-3 Disturbance Rejection

In LQG control, the mean value of the disturbances acting on the system is assumed to be zero.
In AUVs coordination control, where the forces generated by water currents do not necessarily
behave as Gaussian white noises, this assumption is not usually verified. In this case study,
a realistic model for the disturbance is considered. Colored disturbances and modeling errors
translate into steady-state tracking errors. To tackle this problem, a disturbance rejection
filter is required. At this purpose, we build an observer of the disturbance acting on the
AUV. We do this for the case of a Follower AUV, but the same process can be repeated for
the other Follower and the Master AUV.

There are two different noises acting on the system: vx(t) plays the role of an external input
while vy(t) is a measurement error. Assuming that neither the disturbances, nor the states of
the AUV, are directly measurable, we analyze the effect of the disturbances over the output,

y1(t) = CAUV (zI −AAUV −BAUV F11)−1BAUV F1M x̂AUVM (t)+
+CAUV (zI −AAUV −BAUV F11)−1MAUV vxAUV 1(t) +NAUV vyAUV 1(t).

Now, let us define the generalized disturbance d1(t) which affects the output of the first
Follower as

d1(t) = CAUV (zI −AAUV −BAUV F11)M1vxAUV 1(t) +NAUV vyAUV 1(t).

The input to the system is

uAUV 1(t) = F11x̂AUV 1(t) + F1M x̂AUVM (t)

Let d̂1(t) indicate the estimate of the disturbance d1(t). Implementing an additional input to
the AUV, given by

udAUV 1(t) = GdAUV 1d̂1(t) = −B†AUV d̂1(t),

disturbance d1(t) is counteracted. Assuming the input udAUV 1(t) to balance the disturbance,
and assuming this disturbance to be constant over time, we can build an observer of di(t) as
follows,

d̂1(t+ 1) = d̂1(t) +KdAUV 1 [CAUV x̂AUV 1(t)− yAUV 1(t)] .

The disturbance will converge to the actual value of d(t) if and only if KdAUV 1 is chosen such
that the closed-loop system state matrix

[
x̂AUV 1(t+ 1)
d̂AUV 1(t+ 1)
xAUV 1(t+ 1)

]
=

[
AAUV +BAUV F11 +K11CAUV 0 −K11CAUV

KdAUV 1CAUV I −KdAUV 1CAUV
BAUV F11 −BAUV GdAUV 1 AAUV

][
x̂AUV 1(t)
d̂AUV 1(t)
xAUV 1(t)

]

is stable. The choice of this parameter is here done empirically. However, there might be a
way to compute it optimally by use of the LQG theory.
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4-4-4 Closed-Loop System

Implementing the controller obtained by this approach, the following closed-loop system is
obtained.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xAUV 1(t + 1)
x̂AUV 1(t + 1)
d̂AUV 1(t + 1)
xAUV 2(t + 1)
x̂AUV 2(t + 1)
d̂AUV 2(t + 1)
xAUVM (t + 1)
x̂AUVM (t + 1)
d̂AUVM (t + 1)
xV ESS(t + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

AAUV BAUV F11 −BAUV GdAUV 1
0 AAUV + BAUV F11 +K11CAUV 0
0 KdAUV 1CAUV I

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
xAUV 1(t)
x̂AUV 1(t)
d̂AUV 1(t)

]
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

AAUV BAUV F22 −BAUV GdAUV 2
0 AAUV + BAUV F22 +K22CAUV 0
0 KdAUV 2CAUV I

0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
xAUV 2(t)
x̂AUV 2(t)
d̂AUV 2(t)

]
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 BAUV F1M 0
0 K1MCAUV + BAUV F1M 0
0 0 0
0 BAUV F1M 0
0 K1MCAUV + BAUV F1M 0
0 0 0

AAUV BAUV FMM −BAUV GdAUVM
0 AAUV + BAUV FMM +KMMCAUV 0
0 KdAUVMCAUV I

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
xAUVM (t)
x̂AUVM (t)
d̂AUVM (t)

]
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

BAUV FMV
BAUV FMV

0
AAUV + BAUV FV V

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
xV ESS(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
−K11 0 0

−KdAUV 1 0 0
0 0 0
0 −K22 0
0 −KdAUV 2 0
0 0 0
0 0 −KMM
0 0 −KdAUVM
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
yAUV 1(t)
yAUV 2(t)
yAUVM (t)

]
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0
0
GV

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
r(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

MAUV 0 0
0 0 0
0 0 0
0 MAUV 0
0 0 0
0 0 0
0 0 MAUV
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
vxAUV 1(t)
vxAUV 2(t)
vxAUVM (t)

]

⎡
⎣ yAUV 1(t)
yAUV 2(t)
yAUVM (t)
yV ESS(t)

⎤
⎦ =

⎡
⎣ CAUV 0 0 0

0 CAUV 0 0
0 0 CAUV 0
0 0 0 CAUV

⎤
⎦
⎡
⎣ xAUV 1(t)
xAUV 2(t)
xAUVM (t)
xV ESS(t)

⎤
⎦+

+

⎡
⎣ NAUV 0 0 0

0 NAUV 0 0
0 0 NAUV 0
0 0 0 NAUV

⎤
⎦
⎡
⎣ vyAUV 1(t)
vyAUV 2(t)
vyAUVM (t)
vyV ESS(t)

⎤
⎦ .
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4-5 Simulation

The closed-loop system obtained in the previous section is simulated on MATLAB Simulink.
Since position and velocity on every axis and angle is modeled as independent, we only
simulate the movement over one degree of freedom. The following data is considered.

τ = 0.8; r(t) = 2 sin(0.01t) + 2; cAUV 1 = −3; cAUV 2 = −6;

where r(t) is the reference signal to be tracked by the Master AUV, cAUV 1,2 are the distances
to be kept between the Follower AUVs and the Master. The disturbance acting on the state
is modeled as a colored noise, given as the output of the Gaussian system

⎧⎪⎪⎨
⎪⎪⎩
xdx(t+ 1) =

[
0.5 1
0 0.9

]
xdx(t) +

[
0
1

]
vx(t)

dx(t) =
[

0.05 0
]
xdx(t) + 0.01vx(t).

The measurement disturbance dy(t) is also modeled as a colored noise, given by

dy(t) = 1 + vy(t),

with vx(t) and vy(t) Gaussian white noises with variances

Vx = 1; Vy = 0.01.

Considering the weighing matrices to be Q = I and R = I, the following gains are computed
through a collection of MATLAB functions.

F =

⎡
⎢⎣
−0.4629 −0.2134 0 0 0.4622 0.2133 0 0

0 0 −0.4629 −0.2134 0.4622 0.2133 0 0
0 0 0 0 −0.4629 −0.2134 0.4629 0.2134
0 0 0 0 0 0 −0.4629 −0.2134

⎤
⎥⎦ ;

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0938 0 0 0
−0.0015 0 0 0

0 −0.0938 0 0
0 −0.0015 0 0
0 0 −0.0938 0
0 0 −0.0015 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A simulation of the closed-loop system is given in Figure 4-5. There, it is possible to notice
how the variance of the position of the two Followers is higher than that of the Master. This
is due to the simple fact that the two Followers track the position of the Master AUV, whose
disturbances then propagate.
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Figure 4-5: Closed-loop simulation of three AUVs moving in formation. A Master AUV tracks
the output of a virtual coordinator situated in a surface vessel. Two other AUVs follow the Master.

The disturbances acting on the three AUVs with the respective observations are plotted in
Figure 4-6.

Figure 4-6: Stochastic disturbances acting on the three AUVs and their observed values.

The closed-loop behavior resulting from the LQG coordination control system shows how
the one-way communication between coordinator and subsystems is sufficient for the tracking
problem. Even if relatively strong, time-varying colored disturbances act on the three AUVs,
the resulting tracking errors behave almost as a Gaussian white noises. This is shown in Figure
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4-7. The slight sinusoidal behavior of the signal is due to a combination of the sinusoidal
behavior of the disturbances, which are assumed to be constant.

Figure 4-7: Tracking-error signals of the AUVs in the case of colored disturbances and sinusoidal
reference.

If we consider the case in which only Gaussian white noises (with the given variances) affect
the vehicles, and considering a constant reference to be tracked, the closed-loop tracking-errors
we obtain are given in Figure 4-8.

Figure 4-8: Tracking-error signals of the AUVs in the case of constant reference and Gaussian
white noise disturbances.

A comparison of the computed variances in the two cases for the Master and the Followers is
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given in Table 4-1.

Tracking-Error Variances Master AUV Followers AUV
Colored Case 0.0405m2 0.1006m2

White Case 0.0304m2 0.0746m2

Table 4-1: Comparison of tracking-error variances in the case of Colored disturbances and si-
nusoidal reference to be tracked, and the case of Gaussian white noises and constant reference
instead.

4-6 Comments

By means of the LQG coordination control theory, we have built a controller for the system
which fits the information constraints imposed. A few comments on the control system are
found below.

• Because of the nature of the developed LQG coordination control theory, the commu-
nication from the AUVs to their coordinator is not required for the closed-loop system
to be stable.

• In the eventuality the models of the systems are time-invariant (no re-estimation of
the model is necessary at each time-step) the control synthesis can be performed by
respecting the communication constraints given to the control system itself. Therefore,
no communication from AUVs to surface vessel would be required. See Section 3-3-5 for
more details.

• For a correct functioning of the control system, the initial states of the AUVs and
those of the disturbances should be estimated as well as possible. In fact, the observers
have been optimally-built to guarantee the best steady-state behavior. They were not
constructed to have a fast convergence to the real state of the system. In a sense, this is
something that has to be avoided since the system is affected by stochastic disturbances,
which we do not want to track.

• Setting Q = I and R = I, the value of the cost function J with feedback gain computed
by LQG coordination control is only 6% higher than that resulting from the classical
LQG control synthesis, which is the best result possibly achievable [4], representing
therefore the analytical minimum of the cost function. In Figure 4-9, we compare the
values of the cost function J by changing the weighing factor R = εI, for different values
of ε, both for the case of LQG coordination control and for the classical LQG control
theory (for which no communication constraints are set). By decreasing the parameter
ε, the difference between the results obtained with the two methods tends to reduce.

• The K gain computed by LQG coordination control is the same as that computed by
the classical theory. This is due to the particular problem statement.

• Neither of the cost functions J and H take into account the energetical cost of commu-
nication, but only that related to the use of engines. Even if the cost of the function

Master of Science Thesis



4-7 Suggestions for Future Work 69

Figure 4-9: Values of the cost function J depending on the parameter ε, given the weighing
matrices Q = I and R = εI. The costs obtained with our LQG coordination control approach
and those obtained with the classical LQG control theory are compared.

resulting from the implementation of classical LQG control is lower than that obtained
by our LQG coordination control (see Figure 4-9) it is very likely that the latter actually
implies a substantial reduction of energetic consumption.

• It is important to notice that, for those systems where no stringent time constraints are
set, and where the references are precomputed, the communication from the vessel to
the Master AUV may be sent in large packets. It is not necessary for them to be sent
in real-time.

• The precision of the observers is based on how well the position of the AUVs is mea-
sured (either on the vehicles themselves or by an external measuring system). This
precision is a crucial factor for the closed-loop system to work well, especially because
the disturbances are observed using this data.

4-7 Suggestions for Future Work

The implemented control system leaves space for some improvements that can be applied in
parallel. Some suggestions for future work are discussed in the following list.

1. A collision avoidance procedure could be implemented in every AUV. This could guaran-
tee the AUVs not to collide with obstacles or with other vehicles. A possible approaches
to collision avoidance is explained in [3, 39].

2. An event-based feedback can be implemented. By these we mean that where commu-
nication is avoided by the control system, this can still take place if particular event
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happen. For example, in the case an unexpected obstacle is found or in case of mal-
functioning.

3. Low-level non-linear controllers could be implemented in the AUVs for the actuation
system. In this way, possible non-linearities could be taken into account by maintaining
a linear model as a mask to the AUVs.

4. As the variance of the disturbance may vary, or the weights given to position errors
and inputs may be changed, the control synthesis procedure could be recomputed in
real-time in a distributed way. The procedure for doing so is explained in Section 3-3-5.

5. If the linear model describing the system is not accurate enough, a step-by-step lin-
earization can take place. The control synthesis has to be done at every time-step.
Unfortunately, in this occasion, the Follower AUVs will be required to share their model
information with the Master AUV, and viceversa, possibly imposing a data communi-
cation. However, this is not a strict requirement for the Vessel-Master problem. In fact,
in decomposable problems, such as the Master-Followers one, the model of the whole
system is to be known to compute the optimal feedback gain F . This is not the same
for virtual coordination problem (as it is the case of the Vessel-Master problem), where
the coordinator’s gains are chosen arbitrarily. Anyhow, for a good behavior of the whole
system, the dynamics of the Master AUVs should be known to the coordinator.

6. No study has been done on communication delays and packet losses. This problem has
not been treated in this thesis.

7. No optimal procedure has been studied to compute the disturbance observer gains
KdAUV . Knowing the properties of the disturbances, it is possible that these can be
computed in an optimal way exploiting the classical LQG control theory. No research
has been done in this direction.

8. Mechanical and safety constraints can be added to the control system. By the fact
that the virtual coordinator emulates the dynamics of the Master AUVs, untrackable
references are mediated by its action. Even if the external references change too fast, the
virtual coordinator sends to the Master AUVs its simulated states, which are trackable
if the model is correct.

4-8 Conclusions

In this chapter, we have implemented the theory of LQG coordination control developed in
the thesis to coordinate a group of AUVs. To do this, we have separated the coordination
problem in two parts.

The first part treated the coordination of Master AUVs by a surface vessel, that acts as coor-
dinator for the vehicles, producing trajectories to be tracked. This was a virtual coordination
problem. Optimal results were obtained in Section 3-4 for this class of problems, and therefore
its solution provided the optimal gains for the control system.
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The second part took into account the problem of a number of Follower AUVs tracking
the position of a Master AUV. For this purpose, the theoretical framework generated for
decomposable problems (proposed in Section 3-3) was used.

A comparison of the values of the costs resulting from our approach with the costs related to
classical LQG control theory (the analytical minimum obtainable) showed a very small cost
difference. Note that these costs did not include the energetical expenses coming from the
communication channels, but only those from the engine of the vehicles. It is likely that the
developed control system actually reduces, substantially, the energetic costs of the closed-loop
system.
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Chapter 5

Conclusions

In this chapter we delineate the conclusions about the theory of LQG coordination control
that we have developed. In Section 5-1 we highlight the main contributions given by this
thesis to the theory of linear coordination control. An objective analysis of the obtained
results is found in Section 5-2, where strengths and weaknesses of the approach are discussed.
At last, in Section 5-3 we present a list of suggestions for future work.

5-1 Contributions

A summary of all the contributions given by this thesis follows.

• The theory of LQG coordination control was developed for the class of decomposable
problems. A number of important results results have been achieved.

– By the results of Theorem 3-3.7, this category of problems is proved to be de-
composable into Ns subproblems, for which the separation property holds if the
parameters Fcc and Kii, for i = 1, . . . , Ns, are fixed.

– On the footsteps of previous results obtained by Kempker, Ran and van Schuppen
in [28], Theorem 3-3.8 was developed to obtain an optimal state-feedback gain
F in the swallow form once the parameter Fcc is fixed. In particular, the gains
Fii, i = 1, . . . , Ns, were proved to coincide with the solution to the local LQG
control problem. Based on this result, an optimization procedure was defined to
obtain a (locally) optimal swallow gain F varying the elements of the gain Fcc (see
Algorithm 3-3.9). This optimization procedure was conjectured to be convex.

– A similar, yet less trivial result was proved to hold, in Theorem 3-3.15, for the com-
putation of the optimal observer gain K by fixing the parameters Fcc and Kii, for
i = 1, . . . , Ns. In particular, the gain Kcc was proved to coincide with the solution
to the local LQG control problem. Also for this case, an optimization procedure to
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obtain a (locally) optimal swallow gain K was defined varying the elements of the
parameters Kii, for i = 1, . . . , Ns (Algorithm 3-3.18). This optimization procedure
was also conjectured to be convex.

– Based on the analytical solution of Sylvester’s equations, a procedure to obtain a
symbolic expressions for gradients and Hessians of the cost functions J (Fcc) and
H (Fcc,K11, . . . ,KNsNs), in terms of their optimization parameters, was provided
in Algorithm 3-3.13 and Algorithm 3-3.20.

– A decentralization of the control synthesis complying with the communication con-
straints was developed in Algorithm 3-3.23. The only communication needed for
the synthesis of the control gains goes from the coordinator to the subsystems.

• Particular results were obtained for the case of virtual coordination problems.

– The optimal control gains Fii and Kii, for i = 1, . . . , Ns, were proved to match
with the solution to the local classical LQG control problem in Proposition 3-4.2
and Proposition 3-4.3.

– All the rest of the gains were proven not have an influence on the cost functions J
and H. As a consequence, they can be selected arbitrarily as long as the resulting
closed-loop system is asymptotically stable.

• The theory was successfully implemented in a simulation environment to coordinate a
group of AUVs, in Chapter 4.

5-2 Evaluation

An evaluation is here made with regards to the theoretical results achieved for LQG coordina-
tion control. We limit our comments to the results obtained for decomposable problems, as no
achievements were presented for the general problem formulation. Strengths and weaknesses
of the framework are considered.

5-2-1 Strengths

Some known strengths of the results obtained for decomposable problems are listed below.

Communication Avoidance Due to the structure of the control system, no communication
is required from the subsystems to the coordinator. This represents the main strength of the
approach. This important feature is also respected in some cases in which the control gains
are to be recomputed on-line, as it is recalled in the next paragraph.

Decentralization of the Control Synthesis An important consequence of the problem de-
composition studied in the chapter is the decentralization of the computation of the optimal
gains F and K, which was described in Section 3-3-5. Whereas in more generic approaches
(as for example those in [23, 44]) the whole optimal controller is computed in one single op-
timization problem, our approach separates the synthesis procedure. Two comments follow.
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1. The more subsystems there are, the more useful this feature is, since Ns+1 optimization
problems (1 for the synthesis of F , Ns for the syntheses of Kii, for i = 1, . . . , Ns) are,
in this way, solved by Ns + 1 agents instead of 1 only.

2. Throughout the whole procedure, no communication is required from the subsystems to
the coordinator. Basically, this means that the information constraints imposed to the
control system are preserved in the control synthesis itself.

Similarities with the Classical LQG Control Theory The same strengths of the classical
LQG control theory reflect into LQG coordination control:

• the optimality of the control action;

• the possibility to select weights to define the importance of inputs and states.

Openness to Extensions Since we are working on linear systems, by merely defining optimal
gains for feedback loop and observer, the control system is relatively open to modifications
and additions. For instance, the following features can be implemented in parallel to our
control system:

• reference-tracking feedforward gains;

• disturbance observer system and disturbance-rejection gains;

• an event-based state-update feedback to allow communication from the subsystems to
the coordinator (in case, for example, of unpredicted behavior, malfunctioning or unex-
pected obstacles);

• limitations to inputs to avoid the mechanical systems to be harmed.

Some of the above parallel implementations were also considered in the case study.

Low Computational Burden Having the control gains computed separately, and in a decen-
tralized manner, we obtain control systems which only require a small computational power.
The most cumbersome operation which needs to be carried out is the minimization of a
(conjectured to be convex) function everytime the gains are to be recomputed.

5-2-2 Weaknesses

Known weaknesses of LQG coordination control are discussed in this section.

Absence of Results for the General Case The results obtained in this thesis do not cover
the general problem formulation, as it was defined in Section 3-2. For these problems, the
separation principle has not been proved to hold, and the only information available is that
the optimal control law has a linear form [24].
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Dependence on Assumptions Intrinsic restrictions of the approach lie in its assumptions.

• The system is supposed to be linear and time-invariant.

• The stochastic disturbances acting on the states and on the outputs of the system are
supposed to be white Gaussian noises, and their covariance matrix is required to be
known.

• The categories of problems for which results are achieved (i.e., decomposable problems
and virtual coordination problems) also require additional assumptions (see Section 3-4).

Whereas these requirements are not met, no optimality (not even local) can be inferred from
the implementation of LQG coordination control.

Dependence on Numerical Optimization Although the control synthesis procedures pro-
posed are conjectured to be convex, numerical optimization might fail to find the global
minimum of the cost functions. In fact, depending on the precision set for a numerical algo-
rithm to stop the computations, the results obtained may not be optimal. See Section 3-3-4
for more details about numerical problems.

A second problem introduced by numerical computation is related to the solution of discrete-
time algebraic Riccati equations, which are to be solved everytime the cost functions are
evaluated. Numerical problems occur when the poles of the system are too close to the
unitary circle, and therefore to the instability boundary. Empiric solutions to this problem
are given by the introduction of barrier functions and by the use of constrained optimization.

Local Optimality of the Solution to Decomposable Problems An entire section of this
thesis is dedicated to conjecture the convexity of the numerical optimization problems leading
to the control synthesis for decomposable problems (see Section 3-3-4). However, this proof
was not presented. Although convexity could be proved in the future, this result is now
missing, and it therefore represents a weakness of the theoretical framework. In fact, only
local optimality can be inferred from the implementation of the present approach.

Step-by-Step Linearization Issue One of the strong points of our approach is that no com-
munication is required from the subsystems to the coordinator. We also showed that this
communication is not only avoided for the operation of the control system, but also in its
eventual gains recomputation, which can be done in a decentralized way.

This is not ensured anymore when we are working with non-linear systems and we are ap-
proaching the problem with step-by-step linearizations, updating the state-space matrices at
every time-step. If we assume the linearization to happen locally, the new state-space ma-
trices have to be communicated to the coordinator for the computation of the gain F . The
information of the whole model is in fact necessary for this computation to take place.
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Prediction Inability The external reference to the coordinator is considered to be given. We
did not put any effort on thinking about what this reference could be, or how to generate it.
In the case this reference is known a-priori, our technique does not use any information of its
future values to improve the performance of the control system.

This represents a little weakness with respect to other control techniques, as model predictive
control, which instead uses this information to improve the closed-loop system’s behavior [12].

5-3 Suggestions for Future Work

We suggest a list of possible future steps that can be taken in order to improve the current
theoretical framework.

• The biggest piece missing to complete the mosaic of the present framework, is a proof
for the convexity of the cost functions J (Fcc) and Hi (Kii, Fcc), for i = 1, . . . , Ns, within
the stability region of the system. It is known that the two functions, which are rational
in their variables, are not convex in their whole domain, but we conjecture this property
within their stability region. Possibly, a proof could be constructed recursively by
showing the convexity of each element appearing in the cost functions recursively. More
detailed information regarding suggestions for proving the convexity of the functions are
available in Section 3-3-4.

• An important issue to be considered is the control synthesis for nested CLSs. In fact, a
CLS allows its subsystems to be CLSs themselves. However, the procedures developed in
this thesis assume a classical information pattern for each subsystem. A new procedure
to deal with nested CLSs is required. We indicate a possible direction to solve this
issue. Hierarchy levels are to be considered: the coordinator of the system and its
directly connected subsystems are considered the first level. All the other levels of
coordination follow until the last, nth level. The LQG coordination control problem
is solved for the first level. Everytime a gain for a subsystem has to be computed, a
new LQG coordination control problem is considered at the second level. This is done
until the nth level is reached, and the LQG coordination control problem is solved by
the known procedures. This whole algorithm is run at every step of the first level’s
procedure. Notice that no problem arises in the case the first level is represented by a
virtual coordination problem, as it was proved that the optimal controllers for this class
of systems are computed locally at the level of the subsystems. The proposed direction
is known to extend the computation time exponentially, and it was not explored well
enough to ensure its effectiveness.

• About the general problem formulation, for which no results have been achieved in this
thesis, the bottleneck is represented by the separation property. Proving its validity, or
invalidity, would imply an important theoretical advance.

• No study has been done on the propagation delays of information. An important exten-
sion of the theoretical framework could be that of considering delays in the control ac-
tion. Improvement in this direction can find valid foundations in the work of Rotkowitz,
Cogill and Lall [43, 44].
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• The performance of the LQG coordination control theory could be improved by allowing
the coordinator to observe the state of the subsystems, maintaining the nested informa-
tion pattern of the control system. The coordinator could, therefore, estimate the state
of the subsystems by emulating their evolution starting from their (known) initial state.
For this to happen, the coordinator must have access to the information of the models,
the variances and the weighing matrices of the whole system, so that the two gains F
and K can be computed. The observer system only has access to the coordinator’s
information. Therefore, the observed states would only converge to the real values if
the closed-loop system is stable. Notice that drifts from the real subsystems’ states and
those observed by the coordinator could take place. Only superficial studies were done
in this direction. Possible improvements of the control action could be achieved through
this approach.

• The approach of LQG coordination control could be extended to other classes of systems
than the CLSs. For examples, an extension of the theory could be thought for mam-
milary systems, which are defined in [50]. Basically, this class of systems is defined as
the CLSs, but the swallow matrices are substituted by arrow matrices. Therefore, in a
mammilary system the coordinator has access to the information coming from the sub-
systems, while the communication between subsystems is not allowed. This task might
require some effort, as the separation property cannot be proved to hold by the same
approach used in this thesis, and possibly it cannot be proved in general. Foundations
for this kind of problem can be found in [44].

The author remains available to solve eventual doubts and to help improve the theoretical
framework developed in this thesis.
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