
Negotiation and Monitoring
in Open Environments

Kassidy Patrick CLARK
Technische Universiteit Delft



Copyright c© 2014 Kassidy Patrick CLARK
All rights reserved.
ISBN 978-94-6203-585-0



Meta-x Meta-write-thesis



iv

[This page intentionally left blank...ish.]



Negotiation and Monitoring
in Open Environments

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties

in het openbaar te verdedigen op 14 mei 2014 om 10:00 uur
door

Kassidy Patrick CLARK

Master of Science in de Informatica
geboren te Wiesbaden, Duitsland



vi

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. F.M.T. Brazier

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. F.M.T. Brazier Technische Universiteit Delft, promotor
Dr. M.E. Warnier Technische Universiteit Delft, copromotor
Prof. dr. A.S. Tanenbaum Vrije Universiteit Amsterdam
Prof. dr. G. Pierre Université de Rennes 1
Prof. dr. M.J.G. van Eeten Technische Universiteit Delft
Prof. dr. J.A. La Poutré Technische Universiteit Delft
Dr. T.B. Quillinan Thales Research
Prof. dr. C.M. Jonker Technische Universiteit Delft, reservelid

Typeset with LATEX2ε
Cover design by Zinnenprikkelend
Printed by CPi Koninklijke Wöhrmann

This research was funded by NLnet:
http://www.nlnet.nl

SIKS Dissertation Series No. 2014-21

The research reported in this thesis has been
carried out under the auspices of SIKS, the
Dutch Research School for Information and
Knowledge Systems.

All rights reserved. No part of the material protected by this copyright
notice may be reproduced or utilised in any form or by any means, electronic
or mechanical, including photocopying, recording or by any information
storage and retrieval system, without the prior permission of the author.

ISBN 978-94-6203-585-0

http://www.nlnet.nl


vii

Acknowledgements

It was a dark and stormy night in the fall of 2008, when a certain Irish-
man piqued my curiosity with tales of scientific pursuits. In hushed tones, he
described his adventure through the wastelands of decentralized Grid admin-
istration to reach a hidden realm, an elite enclave of learned doctors. Pursuing
a doctorate is an amazing experience, he told me, a unique opportunity to do
science! You are given the chance to devote yourself entirely to a single ques-
tion, with no limits, no rules and only a little guidance. You get to explore
the uncharted jungles of the scientific frontier. To boldly go where no one has
bothered to go before. Essentially, you are given a compass and a protractor,
but no map. Go! Do science!

Of course, now I know that there are trials and tribulations along the way.
Experiments may go wrong or produce unexpected, unexplainable results. You
will run into dead-ends and hidden forks in the road. You will make choices
and compromises, and you will make mistakes. There will be resistance and
conflict, and you may lose some blood along the way. You will also, occasion-
ally, lose your focus and may even succumb to the dreaded second year slump.
There will be snakes and spiders... and bachelor’s students! But, if you stay
focused and persevere, you will earn something eternal: the title of doctor.

No one makes this journey alone. You will need a team. You will need
heros that have trekked through the same jungle before. You will need jesters
to keep your spirits up with care-packages of levity. You will need counselors
to talk you off the ledge when an experiment fails, or when you reach a dead-
end or a false summit. Choose your team wisely, because they will make all
the difference in the world.

My team starts with my promotor, Frances. Without her guidance, encour-
agement, criticism and, above all else, patience, I would not be the researcher
that I am today. She made me better than I was before and, for that, I am
grateful.

If Frances was the General, then Martijn was my Captain. Without Mar-
tijn, this dissertation would not exist. Full stop. Martijn was my daily super-
visor. He kept a close eye on my progress and brandished both the carrot and
the stick, when necessary. Martijn was also my mentor, in the fullest meaning
of the word. I value his advice and his leadership by example. Not to mention,
his mastery of Nethack and Emacs!

Due to my choice of venue, my parents couldn’t be with me on this journey,
but they laid the foundation for this achievement. They understood the value
of education and encouraged me in my own pursuit. From the start of my
Bachelor’s degree to the finish of my Ph.D. my mother kept my spirits up
with encouraging words and the occasional care-package. My grandfather had



viii

only a highschool education. My father raised the bar with two Master’s
degrees. It hasn’t been an easy act to follow, but finally, I am able to raise
the bar even farther. For the lessons my parents taught me that prepared me
for this journey, I am grateful.

My team also included my in-laws, Rob and Inge. They supported and
encouraged me as if I were their own child. In fact, had it not been for a specific
conversation with my mother-in-law, I would never have continued studying
after receiving my Bachelor’s degree. She told me that I would have the rest of
my life to work and earn, but I only had these years to study and learn, before
my life was filled with distractions and responsibilities. It worked, I earned
my Master’s and, in doing so, met the group with which I would pursue my
Ph.D. For their encouragement, warm food and hours of good conversation, I
am grateful.

There were plenty of jesters in my team, including my officemates and
paranymphs: Jan-Paul and Michele. While they added absolutely nothing to
the content or quality of my dissertation... and sometimes even worked to
undermine and devalue my research... and as roommates deliberately created
conditions to distract me from my research... and on more than one occasion
insulted my intelligence and questioned the very relevance of my research...!
Despite all that, I appreciate them for some reason or another. After all,
without them, it would have been a pretty dull place.

Anyway, my team also included people who actually contributed something
useful to my research. Michel and Reinier helped me with my coding. Thomas
helped me with my writing. Many thanks to Vangelis, Yilin, Jordan, Çağri,
Sander and all my friends and colleagues for their part in creating a very
enjoyable working environment. I also thank Nick for evangelising the Ph.D.
life and introducing me to my cube obsession. Of course, I must acknowledge
the contribution of the Vrije Universiteit Amsterdam and the Delft University
of Technology for providing the incubator for this achievement.

Above and beyond all the other members of my team, there was also one
particular, secret ingredient: my wife, Lavinia. She is my rock, my drive, my
financier, my biggest fan, my sharpest critic, my guiding light and my inner
fire. This achievement is also her achievement. This title is also her title. This
day is also her day. For all she has done to make this possible, I am grateful.
Thank you.

Kassidy Patrick CLARK
May 2014

Delft



Contents

1 Introduction 1
1.1 Open Environments . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Research Objectives . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Research Approach . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Research Contributions . . . . . . . . . . . . . . . . . . 6

1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Research Positioning & Related Work 9
2.1 Distributed and Autonomic Computing . . . . . . . . . . . . . 9

2.1.1 Distributed Computing . . . . . . . . . . . . . . . . . . 10
2.1.2 Autonomic Computing . . . . . . . . . . . . . . . . . . . 15
2.1.3 Open Environments . . . . . . . . . . . . . . . . . . . . 18

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Negotiation Research . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Monitoring Research . . . . . . . . . . . . . . . . . . . . 23

2.3 Enabling Technologies . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 Software Agents . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 AgentScape Middleware . . . . . . . . . . . . . . . . . . 27

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Service Negotiation in Open Environments 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 Service Negotiation . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Service Level Agreements . . . . . . . . . . . . . . . . . 35
3.1.3 Automated Negotiation . . . . . . . . . . . . . . . . . . 36
3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Web Service Agreement . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1 Protocol Specification . . . . . . . . . . . . . . . . . . . 37
3.2.2 Object Specification . . . . . . . . . . . . . . . . . . . . 38



x Contents

3.2.3 Language Specification . . . . . . . . . . . . . . . . . . . 39
3.2.4 Single Round Negotiation . . . . . . . . . . . . . . . . . 39

3.3 Web Service Agreement Negotiation . . . . . . . . . . . . . . . 41
3.3.1 Protocol Specification . . . . . . . . . . . . . . . . . . . 42
3.3.2 Object Specification . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Negotiation State . . . . . . . . . . . . . . . . . . . . . . 44
3.3.4 Session Rollback . . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Dual State Machine Extension . . . . . . . . . . . . . . 46

3.4 Agent Negotiation in Open Environments . . . . . . . . . . . . 48
3.4.1 Session Identifier . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Interval Semantics . . . . . . . . . . . . . . . . . . . . . 52

3.5 Negotiation Protocol Implementation . . . . . . . . . . . . . . . 59
3.5.1 Overview of Negotiation Tools . . . . . . . . . . . . . . 61
3.5.2 Negotiation Modes . . . . . . . . . . . . . . . . . . . . . 62
3.5.3 Experimental Validation . . . . . . . . . . . . . . . . . . 64

3.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.1 Agreement Specification . . . . . . . . . . . . . . . . . . 67
3.6.2 Negotiation Protocol . . . . . . . . . . . . . . . . . . . . 69

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Service Monitoring in Open Environments 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Active Service Monitoring . . . . . . . . . . . . . . . . . 76
4.1.2 A Generic Monitor Design . . . . . . . . . . . . . . . . . 77
4.1.3 Security and Reliability . . . . . . . . . . . . . . . . . . 79
4.1.4 Distributed and Decentralized . . . . . . . . . . . . . . . 81
4.1.5 Dynamic and Adaptive . . . . . . . . . . . . . . . . . . 82
4.1.6 Auditing and Conflict Mediation . . . . . . . . . . . . . 83
4.1.7 Penalizing Violations . . . . . . . . . . . . . . . . . . . . 83
4.1.8 Policy Specification . . . . . . . . . . . . . . . . . . . . . 85
4.1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Passive Service Monitoring . . . . . . . . . . . . . . . . . . . . 86
4.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 Conflict Mediation . . . . . . . . . . . . . . . . . . . . . 89
4.2.3 Protocol Modification . . . . . . . . . . . . . . . . . . . 92

4.3 Self-adaptive Service Monitoring . . . . . . . . . . . . . . . . . 93
4.3.1 Adaptation Model . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 Risk Level . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.3.3 Monitoring Policy . . . . . . . . . . . . . . . . . . . . . 96
4.3.4 Conflict Mediation . . . . . . . . . . . . . . . . . . . . . 98
4.3.5 Use Case Scenario . . . . . . . . . . . . . . . . . . . . . 98



Contents xi

4.4 Framework Implementation . . . . . . . . . . . . . . . . . . . . 99
4.4.1 Framework deployment . . . . . . . . . . . . . . . . . . 100

4.5 Experimental Validation . . . . . . . . . . . . . . . . . . . . . . 102
4.5.1 Communication Overhead Experiments . . . . . . . . . 103
4.5.2 Scalability experiments . . . . . . . . . . . . . . . . . . 106
4.5.3 Self-adaption experiment . . . . . . . . . . . . . . . . . 110

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Use Cases: Smart Energy Grid & Cloud Computing 117
5.1 Dynamic Services in the Smart Energy Grid . . . . . . . . . . . 118

5.1.1 Future Energy Markets . . . . . . . . . . . . . . . . . . 119
5.1.2 Energy Market Automation . . . . . . . . . . . . . . . . 123
5.1.3 Energy Negotiation Scenario . . . . . . . . . . . . . . . 128
5.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Dynamic Services in the Cloud . . . . . . . . . . . . . . . . . . 137
5.2.1 Cloud Resource Allocation . . . . . . . . . . . . . . . . 139
5.2.2 Intelligent Cloud Resource Allocation . . . . . . . . . . 141
5.2.3 Cloud Negotiation Scenario . . . . . . . . . . . . . . . . 145
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6 Conclusion 151
6.1 Research Questions Revisited . . . . . . . . . . . . . . . . . . . 152
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2.1 Future Negotiation Research . . . . . . . . . . . . . . . 154
6.2.2 Future Monitoring Research . . . . . . . . . . . . . . . . 154

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Bibliography 157

A Supplemental Material of Chapter 5 173

List of Figures 187

List of Tables 189

Summary 193

Samenvatting (Dutch summary) 195

SIKS Dissertation Series 197



xii Contents

Publications 205

Curriculum Vitae 207



CHAPTER1
Introduction

The future brings opportunity. Large scale, distributed, digital environments
offer vast potential. Environments that are, in general, dynamic and un-
trusted. Within these environments, software systems will provide unprece-
dented support for daily life. Such systems will provide access to vast amounts
of knowledge and resources. They will support community-building, resource
sharing and enable wider participation of society, at large.

The Smart Energy Grid [61], for example, is being designed to increase
sustainability and decrease reliance on fossil fuels. Communities are taking
responsibility for their own production. The energy grid is a critical infras-
tructure on which networked society relies. Intermittent production, however,
not only introduces opportunities but also new challenges. Balancing energy
load, for example. Producers and consumers negotiate terms and conditions
on the basis of which energy is provided and consumed. Service Level Agree-
ments (SLAs) are the result. Conditions may include, for example, penaltes
for failure to comply with agreements. Determining that there is a failure
requires distributed monitoring.

Society depends on such systems: Systems that rely on technology that
is capable of negotiating SLAs and monitoring their success. Multi Agent
Systems (MAS) is one such technology. The MAS paradigm offers a straight-
forward analog for complex systems of autonomous entities. This paradigm is
based on the notion of autonomous agents and their interaction. Autonomous
software agents represent human actors (i.e. owner) and are capable of ne-
gotiating SLAs and coordinating processes with other agents when desirable.



1
2 Introduction

They know their owner’s preferences and needs. They are capable of negoti-
ating price, Quality of Service (QoS) characteristics and penalties. They also
monitor provisioning of services.

This dissertation presents a MAS framework for distributed negotiation
and monitoring of SLAs in large scale, distributed, open environments. This
framework enables secure discovery, negotiation and access to distributed re-
sources. Specifically, this dissertation focuses on open environments. In this
context, an open environment is a large-scale, distributed environment that is
also dynamic and untrusted. The following section elaborates on open envi-
ronments in the context of this dissertation.

1.1 Open Environments

This dissertation defines open environments as large-scale, distributed, dy-
namic and untrusted environments. A large-scale, distributed environment
connects many users, resources and services across many geographical and ad-
ministrative domains. A dynamic environment changes over time. Users spo-
radically enter, interact with and leave an environment. Resource availability
and attributes change over time. User requirements and activities change over
time. No single authority has complete control over an environment. Users
are autonomous and (partially) anonymous, i.e. the identity of a user is hidden
from other users. No strict rules govern user actions. An open environment
makes no guarantees regarding trustworthiness of users. A user may deceive
others about his/her identity or intentions.

An environment may encompass one or more systems. In this disserta-
tion, a system is defined as a (semi) formal construct that connects users and
resources. A system defines actions, rules, protocols, permissions, authority
and so forth. Operating within an environment, a system must take envi-
ronmental laws, risks and other influences into consideration. For instance, if
an environment is unreliable, a system must provide additional mechanisms
to provide reliability. For example, an energy grid is a system that operates
within the global weather environment. Changes in weather may affect the
system. Therefore, the system includes additional mechanisms (e.g. diversified
energy sources, storage, load balancing) to operate reliably.

Open - An open environment is open to users. A user enters an envi-
ronment, uses resources or interacts with other users at any time. Any users
may access an open environment. Multiple authorities may control subsets
of components of the environment, but no single authority determines which
users are permitted to enter the environment. The environment may grow by



1
1.1 Open Environments 3

adding new users or connecting to new resources. No single authority con-
trols, monitors or manages environment growth. To communicate and access
resources, users require standard rules, syntax and semantics.

Distributed - An open environment is distributed across multiple com-
puters, geographical areas and administrative domains. Large-scale distribu-
tion implies thousands or millions of users and resources. Users access re-
sources located in different countries, controlled by different organizations. To
operate in such an environment, distributed systems require specialized mech-
anisms that support user communication, resource discovery and consump-
tion. Distribution also presents challenges, including security and scalability.
Section 2.1.1 describes distributed systems and associated challenges in more
detail.

Dynamic - An open environment is dynamic and changes over time. Users
enter and leave sporadically. User identities are not fixed or permanent. User
roles adapt to changing circumstances. In a digital marketplace, for exam-
ple, sellers become buyers or competitors collaborate. Services and service
attributes change (e.g. prices, quality). Service availability (i.e. supply) and
consumer demand also change over time. Additionally, the structure of an
open environment itself can dynamically change [76]. Open environments of-
fer flexible protocols that enable users to react and adapt to changes.

Untrusted - An open environment is distributed across multiple admin-
istrative domains. Therefore, no single actor (e.g. organization or individual)
has complete control over an open environment. No single actor regulates
all user activity. Users are autonomous and self-interested. A malicious user
may lie, cheat and steal for personal gain. Agreements may be violated, rules
broken and trust betrayed. In this untrusted environment, protocols must
incorporate additional mechanisms to establish and maintain trust between
users. Cryptography (see Section 2.1.1), impartial monitoring authorities, au-
dit logs and policies for resolving conflicts between users encourage user trust
in the system.

Security and privacy of (sensitive) data is a concern for users. During
interactions (e.g. negotiation), users exchange data (e.g. desired price). How-
ever, users specifically keep sensitive data secret (e.g. negotiation strategy,
highest acceptable price). Mechanisms must support the exchange of certain
data while guaranteeing the privacy of other data.

An example of an open environment are future energy markets. In future
energy markets, consumers and providers negotiate the sale of energy ser-
vices. Service availability and price dynamically react to intermittent power
generation from green sources (e.g. wind, solar). Consumers dynamically shift



1
4 Introduction

demand in response to market changes. Consumers act to minimize costs and
maximize green energy utilization. Providers act to maximize profit and min-
imize energy waste (i.e. produced but not consumed). Chapter 5 describes
future energy markets in more detail.

Open environments present additional challenges to the complex process
of service negotiation. Negotiations quickly react to sporadic changes in avail-
ability or requirements. Users negotiate despite risks of agreement violation.
Design of negotiation protocols in such environments must manage these chal-
lenges.

1.2 Research Overview

This section presents an overview of the research presented in this disserta-
tion. Research objectives describe the overarching pursuits of this research.
Research questions formalize specific knowledge required to achieve the objec-
tives. An overview of the research approach explains the methods and means
applied in this dissertation. Finally, this section summarizes the contributions
of this dissertation.

1.2.1 Research Objectives

The overarching objective of this dissertation is to bring the benefits of au-
tomated negotiation technology to complex, untrusted environments. The
complex nature of such environments impedes manual negotiation and leads
to inefficiencies, such as overproduction or unmet demand. Automated negoti-
ation can reduce (human) workload and increase market efficiency. The main
objectives of this research are to (1) gain insight in the complexities of nego-
tiation in dynamic, distributed, open environments and (2) provide structure
(e.g. languages, protocols, techniques) that supports automated negotiation in
such environments.

The following research questions express the knowledge required to achieve
the research objectives. The general research question asks:

Can a Multi Agent System (MAS) framework be de-
signed to support automated negotiation and moni-
toring of services in dynamic, distributed, open envi-
ronments?

The general research question requires knowledge of negotiation protocols
and supporting mechanisms. Two sub-questions, RQ1 and RQ2, highlight spe-
cific knowledge requirements for negotiation.



1
1.2 Research Overview 5

RQ1 Can protocols be designed to support natural negotiation dialogue be-
tween agents?

RQ2 Can mechanisms be designed to facilitate reliable, secured negotiation?

The general research question requires knowledge of monitoring mecha-
nisms to support agreement compliance and promote trust. Two sub-questions,
RQ3 and RQ4, highlight specific knowledge requirements for monitoring.

RQ3 Can agreements be enforced in a transparent and trustworthy manner?

RQ4 Can trust be established and maintained between agents in untrusted
environments?

The remainder of this dissertation pursues knowledge to answer the above
research questions. Chapter 3 focuses on RQ1 and RQ2, while Chapter 4 focuses
on RQ3 and RQ4.

1.2.2 Research Approach

The research philosophy of this dissertation follows the post-positivist school
of thought [41]. In recent years, post-positivism emerges as an evolution of
positivism [70]. Positivists gather knowledge of the universe through care-
ful, empirical observation and measurement. The positivist school of thought
believes that the universe is comprised of immutable objects that exist inde-
pendent of an observer. Therefore, empirical knowledge (e.g. measurements,
observations) of these objects is objective fact. The values of the observer to
not influence the nature of the universe and facts are absolute truth.

Post-positivism builds on the foundations of positivism, but acknowledges
that objectivity of knowledge is not guaranteed when the subject matter in-
volves humans [41]. Humans innately “understand” meaning but cannot ob-
jectively measure or quantify it [70]. This dissertation presents research on
socio-technical systems that involve humans. Therefore, this research follows
the post-positivist approach to combine objective measurement with human
experience.

The research strategy of this dissertation follows the guidelines of design
science presented by Hevner et al. [68]. Design science focuses on solving a
specific (relevant) problem. Research acquires and applies knowledge from
theories and measurement to create problem solving artifacts, such as con-
structs, models, methods and instantiations. Rigorous evaluation of artifacts
leads to a cycle of improvement and reevaluation until an artifact adequately
solves the given problem. This dissertation presents three main artifacts: (1)



1
6 Introduction

an officially recognized negotiation protocol with extensions, (2) an implemen-
tation of a distributed negotiation framework and (3) an implementation of
an distributed monitoring framework.

Research instruments enable creation and evaluation of the artifacts [158].
This dissertation uses literature review, experimentation, evaluation and two
use cases.

Chapter 2 presents a review of literature from related fields and studies.
This review provides background knowledge of state of the art solutions and
assists evaluation by comparison of the artifacts.

Chapters 3 and 4 design and improve on the negotiation and monitoring
artifacts through experimentation and evaluation. Artifacts are implemented
and experimentally validated. After experimentation, results are analyzed and
evaluated. In addition, the negotiation protocol is evaluated by international
peers from an official standards organization.

Chapter 5 presents two use cases that demonstrate the implementation of
the research artifacts in two example open environments. Case studies provide
qualitative insight into real-world application of the artifacts.

1.2.3 Research Contributions

The main contribution of this dissertation is a framework for service negotia-
tion and monitoring in distributed, dynamic, open environments. The frame-
work consists of several protocols, algorithms and mechanisms to support se-
cure, reliable and enforceable multi agent negotiation. This dissertation de-
scribes the design, development, implementation and testing of the framework.
This contribution advances the state of the art in automated negotiation and
distributed computing. This dissertation also presents both theoretical and
practical contributions, including:

C1 An officially recognized negotiation protocol that supports bidirectional,
service negotiation between autonomous software agents. (See NPS-1 in
Section 3.)

C2 Extensions to the protocol to support symmetrical negotiation roles,
dual negotiation states and explicit negotiation semantics. (See NPS-2
in Section 3.)

C3 A novel, self-adaptive protocol to securely monitor service agreement
compliance in distributed environments and promote trust-building be-
tween providers and consumers.



1
1.3 Dissertation Outline 7

C4 Proof-of-concept implementations of negotiation and monitoring proto-
cols in a distributed, MAS environment offering practical examples to
guide future work.

1.3 Dissertation Outline

The structure of this dissertation is as follows:

Chapter 2 - presents an overview of the related fields of research and
practice. This overview includes a literature review of the state of art in
service negotiation and distributed monitoring.

Chapter 3 - introduces the concepts of service negotiation, service spec-
ification and negotiation protocols. This chapter first describes an existing
protocol, then a new protocol proposal [C1] with several extensions [C2] and,
finally, an implementation and evaluation of the new protocol [C4].

Chapter 4 - introduces the concepts and challenges of service monitoring
in distributed environments. This chapter presents several novel monitoring
techniques with respective benefits, including a new hybrid approach [C3].
Finally, the chapter describes an implementation and evaluation of the new
monitoring technique [C4].

Chapter 5 - presents two examples of distributed, dynamic, open envi-
ronments. This chapter applies the negotiation and monitoring framework
from the previous chapters [C4] to (1) the Smart Energy Grid and (2) Cloud
computing.

Chapter 6 - concludes this dissertation with a discussion of the broader
implications of this research and areas of future work.



8 Introduction



CHAPTER2
Research Positioning

This dissertation presents a new approach to automated negotiation and dis-
tributed monitoring in open environments. The research is positioned at the
intersection of the fields of distributed and autonomic computing (see Fig-
ure 2.1). This dissertation combines, extends and applies knowledge from these
fields to the challenges in open environments, such as trust and dynamism.
Automated negotiation and monitoring in such environments requires solu-
tions that are secure, robust, scalable and adaptive. Research in distributed
computing offers guidance for designing such solutions. Autonomic computing
principles offer insight into designing for adaptability. The autonomic moni-
toring loop and self-* properties support flexible and autonomous negotiation.

This chapter positions this dissertation within these related fields and
presents key concepts, terminology and challenges to which the remainder
of this dissertation refers. This chapter also discusses and compares selected
related research from these fields, in particular, on negotiation and monitoring.
This comparison identifies open issues this dissertation addresses. Finally, this
chapter discusses additional technologies that enable application of approaches
proposed by this dissertation. These technologies include software agents and
the AgentScape middleware.

2.1 Distributed and Autonomic Computing

As discussed in Section 1.1, negotiation in open environments presents several
challenges. Principles from the related fields of Distributed Computing [39,165]



2

10 Research Positioning & Related Work

Distributed
Computing

Autonomic
Computing

Open 
Environments

Figure 2.1: Positioning of this dissertation (shaded region) in the related fields.

and Autonomic Computing [60,82,126] offer insights and solutions to some of
these challenges. This section introduces these fields, including key concepts,
terminology and challenges.

2.1.1 Distributed Computing

In this dissertation, a distributed computing system is defined as “a collec-
tion of independent computers that appears to its users as a single coherent
system” [165]. Essentially, a distributed system connects multiple users to mul-
tiple resources while hiding the complexity of the underlying details. These
details include communication, failure, geographical distribution, varying ad-
ministrative domains and heterogeneity of components (e.g. different operating
systems).

An example of distributed computing in the Distributed ASCI Supercom-
puter [8] - version 4 (DAS-4)1. The DAS-4 consists of 198 computer nodes,
distributed across 6 locations in the Netherlands. Users are provided an in-
terface that enables concurrent use of one or more nodes.

Another example of distributed computing is the Internet (or more specifi-
cally, the World Wide Web). This distributed system enables access to remote
resources (e.g. web pages) through a simplified interface (e.g. a web browser).
When a user requests a certain remote resource, the request is routed across
multiple machines in multiple countries before reaching the target domain.
Depending on the size and popularity of a particular web page, the target

1http://www.cs.vu.nl/das4

http://www.cs.vu.nl/das4


2

2.1 Distributed and Autonomic Computing 11

WindowsOS XLinux

Distributed Middleware

Interface / 
Applications

Distributed Interface / 
Distributed Applications

Computer 1 Computer 2 Computer 3

Communication Network

Figure 2.2: A middleware layer distributed across three heterogeneous machines.
Adapted from [165].

domain may itself be distributed across several web servers. A web page is
returned to the user and displayed in his/her browser. The user’s machine, the
web servers and the routing machines in between may use different operating
systems. The complexity of the heterogeneous machines (e.g. routing proto-
cols, load-balancing mechanisms, fault-tolerant transport layer) is hidden from
the user.

Distributed computing systems often use a software layer called middle-
ware [165] to bridge the gap between the complex, heterogeneous hardware
and a simplified, user interface. Middleware lies between the various operating
systems of each machine and the user applications and interface. Figure 2.2
depicts a middleware layer distributed across three heterogeneous machines.
Users interact with this layer to access resources from other machines or run
distributed applications.

A well-known example of distributed middleware for Grid computing is
the Globus Toolkit [58]. The Globus Toolkit includes service libraries, defines
protocols and provides a reference implementation for building middleware
for Grid computing. Users may use predefined services or build custom ap-
plications. A well-defined security model is built into the Globus framework
that includes encrypted communication, authentication and nonrepudiation
mechanisms.

Another example of distributed middleware is the AgentScape distributed
agent middleware. Section 2.3.2 describes this middleware in more detail.

Distributed computing systems are designed using several communication
models. Two models relevant to this dissertation are (1) demand-response and
(2) message passing. The demand-response architecture forms the basis for
many distributed systems, including the World Wide Web. Essentially, all
components (e.g. machines, processes) are separated into two groups: clients
and servers. A client is active and initiates all communication. In contrast,



2

12 Research Positioning & Related Work

a server is reactive and waits for a message to arrive. The communication
model is limited to two actions: request and reply [165]. A client requests
resources (e.g. services, particular information) and then waits for the reply.
A server replies with the requested resource and then waits for a new request
to arrive. The static, passive nature of the client-server communication model
has several drawbacks. Chapter 3 discusses these drawbacks.

An alternative to the demand-response model is message passing [39]. In
contrast to the static roles of client and server, message passing systems enable
symmetrical participation. Two applications of message passing are peer-to-
peer (p2p) [39] and Multi Agent Systems (MAS) [185]. In these systems,
message are passed asynchronously between two ore more autonomous entities,
i.e. peers or agents. A peer or agent assumes different roles, depending on a
specific relationship with one another. In one relationship, a peer or agent
actively initiates communication. In another relationship, a peer or agent
responds to incoming requests. As such, each peer or agent supports the
capabilities of both client and server.

Designing distributed computing systems is an area of ongoing research
[48, 88, 125]. Distributed systems present unique challenges to designers as
these systems need to handle several issues, including heterogeneity, security,
scalability, fault tolerance, concurrency and transparency [39, 111, 165, 168].
Each of these issues is described below in more detail.

Heterogeneity

A heterogeneous environment is one that contains a degree of variation be-
tween components. Each computer may run a different operating system, use
a different CPU architecture, support different programming languages and
follow different protocols. It is the task of the middleware to accommodate
these differences. Middleware can accommodate heterogeneity by running on
a variety of architectures and using a “common tongue” to enable different
machines to communicate with each other. One specific technology using this
approach is a virtual machine. Section 5.2 discusses this technology in more
detail.

Security

Security often forms a triad of confidentiality (i.e. secrecy, privacy), integrity
and availability [105]. Confidentiality of a given resource (e.g. message, data,
file) is protected if no unauthorized access is possible. Integrity of a resource is
protected if no unauthorized modifications can occur. Availability is protected



2

2.1 Distributed and Autonomic Computing 13

Encryption
E(P) = C

Decryption
D(C) = P

plaintext (P) ciphertext (C) plaintext (P)

Figure 2.3: The process of encrypting and decrypting a message. Adapted from [154].

if a resource can be accessed, without significant delay, whenever needed. Each
of these three aspects is addressed by one or more technologies.

Cryptography is the science of disguising communication to hide its actual
content [154]. This includes multiple technologies for encryption and decryp-
tion that are often used to provide security. Figure 2.3 illustrates the processes
of encryption and decryption. An unencrypted message is referred to as plain
text. Once encrypted, the message is referred to as cipher text. Encryption
ensures that a message or other resource remains confidential.

In addition, certain cryptographic primitives can ensure integrity. One
method to ensure the integrity of a given message is through the use of digital
signatures [154]. A digital signature is a cryptographic “fingerprint” of a given
message. A signature is produced by inputting a message into a cryptographic
function. Each message produces a unique signature. If a message is modified,
the function produces a different signature. Integrity is ensured by comparing
signatures to detect modifications.

In addition, a signature also provides authentication and nonrepudiation.
A message is authentic if the sender is (cryptographically) known. A mes-
sage is nonrepudiable if the sender cannot (cryptographically) deny sending
the message. Section 4.2 discusses encryption techniques, including digital
signatures and nonrepudiation, in more detail.

Scalability

A system is scalable if it is able to grow and remain functional [39]. More
specifically, scalable systems can grow without noticeable effect on perfor-
mance or administrative complexity [182,183]. This dissertation considers sev-
eral dimensions of growth, including size, geography and administration [165].
First, system size increases as users or resources increase. For instance, a sys-
tem can handle one 1 user or 1000 users simultaneously. Secondly, a system
can scale across geographic distances. For instance, a system scales to include
resources in different regions of a country. Finally, a system can scale across
different administrative domains. For instance, a system can scale across dif-
ferent resources controlled by different (private) organizations.

Several issues must be resolved to allow a system to scale. One such
issue is centralization of resources [165]. If a particular resource is centralized
(e.g. there is only one instance on one server), it may become overloaded



2

14 Research Positioning & Related Work

when the number of users increases, creating a bottleneck preventing further
scaling. Several techniques are applied to reduce centralization, including
distribution or replication of resources (e.g. multiple copies of the instance
on multiple servers). Decentralization of resources or algorithms is also used
to increase system fault tolerance. For instance, all users share a certain
specialized resource (e.g. a print server). If that resource fails, their entire
system is affected. However, if the specialized resource is replicated across
several locations, a failure of a copy will have limited scope.

The scalability of applications in distributed computing systems can be es-
timated by measuring the overhead generated by applications. A distributed
version of a given application generates more overhead than a nondistributed
counterpart [135]. Overhead has multiple dimensions, including disk input/out-
put, processing and communication. Additional processing is required for syn-
chronization, security and redundancy. Machines communicate with one an-
other by passing messages across a communications network. The number and
sized of messages exchanged partially determines an application’s scalability.

Fault Tolerance

A distributed system is reliable if it can tolerate and recover from failures.
In distributed systems, it is often difficult to distinguish a slow resource (e.g.
overloaded) from a failed resource [165]. Failures may affect only parts of a
system and thus be difficult to detect. Special failure detection mechanisms
are required.

Redundancy often increases fault tolerance [165]. Essentially, each crucial
component has one or more back-up components to take over when the primary
component fails. Components for which redundancy is used, include physical
components (e.g. 2 power supplies, RAID mirrored hard disks) and software
components (e.g. 2 mail applications, 2 processes listening for incoming mes-
sages). Components may be large, complex components (e.g. a file server) or
small, refined components (e.g. a single process or file). Redundancy ensures
that data is persistent. Data is preserved and is not lost or corrupted during
failures.

Steps can be taken to mitigate or entirely hide failures from users or ap-
plications [39]. For instance, if a message is lost in transit, it may be auto-
matically retransmitted without notifying the user.

Concurrency

Multiple users access shared resources at the same time. Concurrent access
creates complex state transitions for these resources. If transitions occur in an



2

2.1 Distributed and Autonomic Computing 15

unintended order, the result may be invalid. For instance, if two users access
a shared integer (e.g. 10). One user decrements the integer. One user doubles
the integer. Depending on the order of the operations, the value of the integer
is either 18 (i.e. 10 − 1 = 9, 9 ∗ 2 = 18) or 19 (i.e. 10 ∗ 2 = 20, 20 − 1 = 19).
Concurrent access may also result in lost operations (i.e. operations whose
effects are undone or overwritten). For instance, if the first user reads the
current value of the integer, then decrements the value. However, before the
first user can save the new value to the integer, the second user reads, doubles
and saves a new value (i.e. 20) to the integer. Finally, the first user saves the
new value (i.e. 9) to the integer. The value of the integer reflects only the
operations of the first user and the actions of the second user are overwritten
and lost.

Race conditions arise when operations occur in an unintended order [113].
The challenge of concurrency is to ensure that resources remain in a valid
state. Mechanisms prevent lost operations by ensuring mutual exclusion to
such resources. Mutual exclusion mechanisms synchronize access to critical
resources. Note that synchronization in distributed systems presents a unique
challenge as no global clock can be assumed [39]. Two machines may dis-
agree on the exact time that a given message arrives. Therefore, additional
algorithms are required to determine the correct order of messages.

Transparency

Distributed computing systems require mechanisms to handle the complexi-
ties of heterogeneity, security, scalability, communication, fault tolerance, and
concurrency. In the example of the World Wide Web as a distributed system,
the complex inner workings of distributed systems are often invisible to the
user. A transparent system hides this inner complexity [165]. The end user
experiences a single, coherent machine. The level of transparency influences
other requirements, such as customizability, performance and usability [168].

2.1.2 Autonomic Computing

Computing systems are becoming more complex. Systems are becoming larger,
more heterogeneous and dynamic. At the same time, systems are becoming
more critical to today’s modern society. Large, complex systems underpin eco-
nomical infrastructure and daily life. For instance, complex systems control
vast numbers of banking transactions, communication and logistics. These



2

16 Research Positioning & Related Work

Autonomic Manager

Monitor Analyze Plan

Managed Element

Execute

sensor
channels

motor

channels

Figure 2.4: Common architectural approach to building autonomic element. Adapted
from [82].

systems must be installed, configured, maintained and upgraded. The com-
plexity of these management activities is reaching the limits of human admin-
istrators. In response, the field of autonomic computing emerges to create
systems capable of self-management [60,82,126].

Autonomic principles apply to both low level components (e.g. a single
process, a hard disk), collections of components (e.g. an application, a ma-
chine) and large scale systems, such as a distributed application or computer.
Each autonomic element requires (1) sensor channels to detect changes and
(2) motor channels to react to these changes [126].

Figure 2.4 illustrates a common architectural approach to building auto-
nomic elements [82]. An autonomic manager is responsible for each element
(e.g. hardware resource). The manager consists of four key processes: mon-
itor, analyze, plan and execute (MAPE). Via sensor channels, the manager
collects monitors data. This data is analyzed to detect changes (e.g. failures,
increased CPU load). Corrective action is planned (e.g. rebooting, modifying
a particular variable). Via motor channels, the manager executes the plan.

An autonomic system is characterized by several properties, referred to as
self-* properties. These properties include self-awareness, self-configuration,
self-optimization, self-healing and self-protection [60, 126].

An example web server illustrates these properties. A given organization
operates an internal web server that hosts a page showing a set of dynamically
computed statistics. These statistics reflect the current number of users logged
on to the organization’s network, the average users per hour, the average
duration of a user’s session and so forth. Each time the page is requested, the
server recomputes the statistics. This process involves retrieving several values
from one or more (remote) databases, calculating the averages and generating
the web page. Depending on the number of requests per second, this process
can generate significant network traffic and CPU load.



2

2.1 Distributed and Autonomic Computing 17

Self-awareness

A self-aware system is explicitly aware of itself and its environment. This
includes knowledge of internal state, behaviors, resources, policies and abilities.
A systems monitors key metrics, such as resource usage, performance statistics
and environmental variables. In the above example of a web server, the server
monitors network traffic and CPU load. Self-awareness also reflects knowledge
of possible actions. For instance, knowing which actions are possible and
what effect they have. Self-awareness is fundamental to the remaining self-*
properties.

Self-configuration

A self-configuring system automatically adapts to changes in the environment
by reconfiguring itself. In the case of the web server, the server responds to
high CPU load by caching the statistics page. This reduces CPU load by
giving users a static copy of the page rather than recomputing it for each
request.

Self-optimization

A self-optimizing system monitors itself and fine tunes various settings to
maximize a given goal. The web server from the example above fine tunes the
caching settings to maximize requests per second and minimize the age of a
given statistic. For instance, with 1000 requests per second, the statistics are
computed every 10 seconds. Therefore, a user may receive statistics that are
10 seconds outdated. As requests per second increases, the interval between
statistical computations gradually increases (e.g. 1 minute, 10 minutes).

Self-healing

A self-healing system automatically discovers, diagnoses and recovers from
failures. Failures occur at many levels, from a failed process to failed hardware.
A system detects disruptions, discovers the relevant process or component,
diagnoses the cause of failure and attempts recovery (e.g. restarting a process
or rebooting a machine). A self-healing web server automatically detects a
failure in a web service, determines and restarts the responsible module.

Self-protection

A self-protecting system automatically detects, identifies and defends itself
from attack. Monitoring detects unauthorized attempts to access or modify



2

18 Research Positioning & Related Work

resources. The example web server monitors login attempts. If suspicious
activity is detected (e.g. 100 failed attempts within 10 seconds), the offending
account (or IP address) is automatically blocked.

2.1.3 Open Environments

This dissertation defines open environments as large-scale, distributed, dy-
namic and untrusted environments. No single authority controls the entire
environment or governs the actions of all users. Users are autonomous and
(partially) anonymous. A user’s identity or location may be hidden. An open
environment does not specify or prevent “unacceptable” user actions. There-
fore, a user may deceive others about his/her identity or intentions. Lack of
trust between users requires additional security considerations when operating
in such environments (e.g. negotiating with other users). Open environments
require additional mechanisms to provide privacy of (sensitive) user data, man-
age risk and offer assurance. Section 1.1 above defines open environments in
more detail.

2.2 Related Work

This section provides an overview of research related to the contribution of
this dissertation. Related research is compared and categorized based on the
criteria of open environments. This research is related to two specific research
fields: negotiation and monitoring.

2.2.1 Negotiation Research

This section compares automated, distributed negotiation protocols for use in
open environments. The comparison uses two main criteria: symmetry and
multiround support. In this dissertation, a symmetric protocol enables all ne-
gotiation participants2 with equal access, action, privilege and responsibility,
regardless of role or function. Symmetry of roles (i.e. the consumer and pro-
vider are equals) allows for flexible protocols in open environments. In such
environments, roles are flexible and ambiguous. A “consumer” may resell an
object of negotiation, thus simultaneously becoming a “provider”. A change of
role should not require a change in the underlying protocol. For instance, if
a consumer wishes to become a provider, this change should not require addi-
tional libraries or request of additional methods or permissions. The change

2When engaged in negotiation, users are referred to as participants of a negotiation pro-
cess. Each participant may assume a specific role during negotiation, such as consumer or
provider.



2

2.2 Related Work 19

of roles should be fluid and instantaneous. Each role should have equal (i.e.
symmetric) abilities (e.g. initiate negotiation) and equal access to negotiation
data. The concept of role symmetry is not new. In fact, it is one of the design
conventions of automated negotiation proposed by Rosenschein and Zlotkin
in 1994 [147]. However, many protocols do not include symmetry as a design
goal.

Another criteria by which negotiation protocols are compared is whether
the protocol supports multiple rounds of negotiation. A single round of ne-
gotiation consists of a single request and a single response. For instance, a
consumer proposes a price and a provider accepts or rejects it. Within this
model of interaction, there is only a single chance to reach agreement. If a
price is rejected, a negotiation is completed without reaching successful agree-
ment. In contrast, multiple rounds of negotiation allow participants to explore
possibilities, improve offers and increase the chance of reaching agreement. For
instance, a consumer suggests a price, a provider rejects the price, the con-
sumer increases the price and the provider accepts the higher price. This model
of interaction is called multiround negotiation. The dynamic nature of open
environments leads to changing services, requirements and attributes (e.g. a
lower price, a higher quality). In dynamic environments, multiple rounds of
negotiation provide agents the possibility to together search through these
changes to find a mutually acceptable agreement.

Figure 2.5 positions automated, distributed negotiation protocols found
the literature in one of four quadrants, based on the above mentioned criteria.
Q1 contains monitors that are both symmetric and support multiround negoti-
ation. Q2 contains asymmetric protocols that support multiround negotiation.
Q3 contains asymmetric protocols that do not support multiround negotiation.
Q4 contains symmetric protocols that do not support multiround negotiation.

Q1 - This quadrant contains distributed negotiation protocols well-suited
to open environments. A protocol in this quadrant is designed with symmetric
negotiation roles. A consumer or a provider have equal abilities and equal
access to negotiation data. Both may change roles without requiring a change
of protocols, abilities, permissions or data.

Additionally, a protocol in this quadrant supports multiple rounds of ne-
gotiation. The negotiation process is a bidirectional dialogue. For instance,
a consumer proposes a price, a provider proposes a much higher price, the
consumer proposes a slightly lower price and so on. Chapter 3 presents a
negotiation protocol designed for this quadrant.

Q2 - This quadrant contains asymmetric negotiation protocols that sup-
port multiple rounds of negotiation. The Iterated Contract Net Interaction



2

20 Research Positioning & Related Work

asymmetric symmetric

m
ul

ti-
ro

un
d

si
ng

le
 ro

un
d

Q2 Q1

Q4Q3

Iterated CNP,
C-CNP,
ECNPro, IdP,
Mach et al.,
COPS-SLS

SNAP,
CNP, RNAP,
Aknine et al.,
Wang & Wang,
WS-Agreement

Chapter 3

Figure 2.5: Comparison of related negotiation research.

Protocol (Iterated CNP) is a FIPA3 standard that extends the Contract Net
Protocol (CNP) (see Q3) with multiple rounds [57]. A CNP negotiation round
consists of a consumer creating a request and one or more providers submitting
offers. The iterated variant of CNP allows the consumer to repeat this process
with slightly modified requests to guide the resulting offers (e.g. proposing a
lower price). Vokřínek et al. present Competitive CNP (C-CNP) that extends
Iterated CNP with additional explicit phases for decommitment and contract
termination, enforced with (monetary) penalties [171]. Another extension to
Iterated CNP is ECNPro presented by Wong and Fang [184]. ECNPro sup-
ports multilateral (i.e. one-to-many) negotiation between a single consumer
and multiple providers. Consumer requests can be divided into sub-requests
and concurrently negotiated with multiple providers. These extensions follow
the rules of Iterated CNP and thus support multiple rounds of negotiation but
lack symmetric roles.

Mach et al. propose a bilateral bargaining protocol in [100]. A high-level
overview of their negotiation pattern indicates support for multiple rounds
of negotiation (e.g. offer, counter-offer). The consumer and providers roles
appear symmetrical, except that only the consumer is able to accept or reject
an offer. The provider may only propose counter-offers or create agreements

3Foundation for Intelligent Physical Agents, http://www.fipa.org/

http://www.fipa.org/


2

2.2 Related Work 21

in response to offers. At the time of writing, this protocol is not implemented,
thus closer study is not possible.

Green et al. present the Intra-domain Protocol (IdP) for use in the Quality
of experience Delivery In New generation telecommunication networks with E-
negotiation (QDINE) negotiation framework [63]. The framework identifies 5
distinct roles, including consumer, provider and market agent (i.e. mediator
or broker). IdP supports direct negotiation between consumer and provider or
mediated negotiation through a market agent. IdP also supports negotiation
with multiple providers simultaneously. This negotiation protocol proceeds
as follows: (1) a consumer requests a service; (2) a provider accepts, rejects
or proposes a counter-offer; (3) the consumer accepts, rejects or proposes a
new counter-offer; (4) after one or more rounds of proposals, an agreement is
created or the session terminates.

Nguyen et al. propose the Common Open Policy Service protocol for Ser-
vice Level Specification (COPS-SLS) [114]. COPS-SLS extends the general
purpose COPS protocol [18] for negotiation of network level SLAs. Policy
Decision Points (i.e. provider) and Policy Enforcement Points (i.e. consumer)
negotiate quality of service for network services, such as bandwidth. Commu-
nication is initiated by the consumer and occurs in two phases: configuration
and negotiation. During configuration, a consumer and provider discover the
negotiation context, such as the maximum lifetime of an agreement and max-
imum values (e.g. maximum bandwidth available). The negotiation phase
proceeds as follows: (1) a consumer requests (REQ) a service configuration;
(2) a provider decides (DEC) to accept, reject or propose an alternative con-
figuration (e.g. counter-offer); (3) the consumer either reports (RPT) if the
offer is accepted or rejected, or the consumer requests (REQ) an alternative
configuration (e.g. counter-offer). The protocol supports multiple iterations
of requests and decisions. In addition to these steps, a provider may send an
unsolicited decision (DEC) to degrade the service, if necessary.

Q3 - This quadrant contains asymmetric negotiation protocols that do
not support multiple round of negotiation. The Service Negotiation and Ac-
quisition Protocol (SNAP) offers a high-level overview of operations for SLA
creation in distributed environments [43]. A clear distinction is made between
clients and resource owners. These roles have different actions and access. The
issue of multiround negotiation is less clear. The authors stress the importance
of multiphase negotiation as a tool to explore the negotiation space. However,
SNAP operations do not explicitly support multiround negotiation.

Another protocol for establishing agreements in distributed environments
is the Contract Net Protocol (CNP) defined by Smith and Davis [151, 159].



2

22 Research Positioning & Related Work

Two distinct roles are the manager (e.g. consumer) and contractor (e.g. pro-
vider). These roles have different abilities, operations and permissions. For
instance, negotiation is always initiated by a consumer. Providers submit
offers from which the consumer chooses the most acceptable. The protocol
terminates after this single round. Several extensions to CNP add features,
such as concurrent negotiation sessions proposed by Aknine et al. [1] or a bul-
letin board (publish-subscribe) communication model proposed by Wang and
Wang [175]. These extensions follow the rules of CNP and thus lack support
for multiple rounds of negotiation or symmetric roles.

The Web Service Agreement (WS-Agreement) specification defines a pro-
tocol for SLA creation [5]. Different operations are defined for consumer and
provider roles. Interaction is limited to a single round. A consumer makes
an offer and the provider accepts or rejects it. Section 3.2 describes WS-
Agreement in more detail.

Wang and Schulzrinne introduce the Resource Negotiation Protocol (RNAP)
in [176] for resource allocation in distributed environments. The protocol
supports message exchange between a Host Resource Negotiator (HRN) (i.e.
consumer) and a Network Resource Negotiator (NRN) (i.e. provider). The
message exchange is always initiated by the HRN and comprise the following
steps: (1) a consumer sends a query requesting current resource prices; (2)
a provider responds with a quotation containing pairs of services and current
prices; (3) the consumer chooses one or more services with a reserve message;
(4) the provider responds with a commit message stating that the reservation is
either accepted or rejected; (5) after service consumption, the consumer sends
a close message, and (6) the provider ends the service with a release mes-
sage. These steps constitute a single negotiation round. If negotiation does
not result in a successful agreement, the consumer has no option to suggest
an acceptable price (e.g. counter-offer).

Q4 - This quadrant contains symmetric negotiation protocols that do not
support multiple rounds of negotiation. The literature review does not in-
clude service negotiation protocols that incorporate symmetry as a design
goal. Rather than defining one set of actions for all negotiation participants,
regardless of role, the reviewed protocols assign different actions, privileges
and responsibilities to different roles (e.g. consumer, provider). To create
symmetric roles, ad hoc solutions assign multiple roles to each participant.
For example, WS-Agreement allows each participant to offer instances of both
the client and server Application Programming Interfaces (API).



2

2.2 Related Work 23

2.2.2 Monitoring Research

This section compares research on monitoring based on suitability to open
environments. This comparison uses two main criteria: trust and adaptation.
Trust considers whether a monitor is designed for trusted or untrusted envi-
ronments. Open environments make no guarantees that users are trustworthy.
Therefore, monitors in these environments are designed to protect against
malicious, deceitful users. Is the monitoring process transparent to all partic-
ipants? Can monitoring results be accessed and audited by all participants?

Adaptation considers whether a monitor adapts to changes, such as envi-
ronmental or policy changes. Can the monitor adapt itself to increased load or
a user’s changing requirements? Changing circumstances in dynamic, open
environments require adaptive solutions.

The selected monitoring research is limited to distributed, service monitors.
These monitors are designed for distributed environments and thus address the
issues of distributed computing discussed in Section 2.1.1, including scalability.

Figure 2.6 positions monitoring research found in the literature in one
of four quadrants, based on the above mentioned criteria. Q1 contains moni-
tors that are both adaptive and suited to untrusted environments. Q2 contains
adaptive monitors designed for closed, trusted environments. Q3 contains mon-
itors that cannot adapt to changing requirements and operate only in trusted
environments. Q4 contains monitors that cannot adapt, but are designed for
use in open, untrusted environments.

Q1 - This quadrant contains monitors well-suited to open environments.
A monitor in this quadrant adapts to the environment. It senses changes
in requirements or priorities and adjusts itself accordingly. A monitor in this
quadrant is designed for use in an untrusted environment. It includes processes
and mechanisms to guarantee objectivity of monitoring results. Mechanisms
prevent unauthorized, malicious modification of monitoring data. All partic-
ipants can access, audit and verify monitoring data. Chapter 4 presents a
monitor designed for this quadrant.

Q2 - This quadrant contains monitors able to adapt to changes, but not
suited to untrusted environments. Some monitoring frameworks are able to
dynamically adapt to changes in an environment or (internal) policy. Keung
et al. propose a self-adaptive, self-optimizing extension of the Monitoring and
Discovery System (MDS3), based on Globus Toolkit [83]. The monitoring
approach proposed for MDS3 collects measurements from distributed nodes.
The frequency of these measurements is dynamically adjusted in response to
changes in CPU load. For instance, higher load (e.g. more users in the system),
the lower the frequency of measurements.



2

24 Research Positioning & Related Work

trusted
environment

untrusted
environment

ad
ap
tiv
e

no
n-
ad
ap
tiv
e

Q2 Q1

Q4Q3

Chapter 4
MDS3,
Munawar et al.,
Katsaros et al.

LMF,
Comuzzi et al.,
Ferretti et al.,
Stantchev et al.,
Niehörster et al.,
Sahai et al.

QoS-MONaaS

Figure 2.6: Comparison of related monitoring research.

Munawar et al. describe another example of an adaptive monitor in [110].
This monitor reduces processing overhead by preselecting key metrics. During
normal operation, only these metrics are monitored. If an anomaly is detected,
the monitor adapts by increasing the number of related metrics that are mon-
itored. The increased number of monitored metrics offers higher monitoring
assurance that failures are detected at the cost of higher processing overhead.

Katsaros et al. present a self-adaptive, hierarchical monitoring mechanism
for Cloud environments [80]. The monitor is distributed across the Software-,
Infrastructure- and Platform-as-a-Service layers. The Software layer allows
users (i.e. Cloud consumers) to specify Key Performance Indicators (KPI),
choose monitoring metrics (i.e. the list of measured resources) and adjust
measurement intervals at run time, based on the requirements of a specific
application. The Infrastructure layer provides access to low-level metrics (e.g.
CPU, network latency). The Platform layer analyzes monitoring results and
takes corrective action if necessary. The consumer subscribes to the monitor-
ing service to receive periodic notifications. While the consumer is able to
specify and adjust metrics and intervals during runtime, the data collection
and storage is controlled by the Cloud Service Provider (CSP). The consumer
implicitly trusts that measurement data is not modified or deleted by the CSP.

Q3 - This quadrant contains monitors unable to adapt to changes and
not suited to untrusted environments. The Lattice Monitoring Framework



2

2.2 Related Work 25

(LMF) monitors resources in virtualized, distributed environments, such as
the Cloud [35]. This framework is designed for use in a closed, trusted envi-
ronment. LMF is designed from the perspective of the provider and is com-
pletely hidden from the consumer. The resource (e.g. Cloud) provider has
complete control over all aspects of the monitor. As such, the consumer can-
not access or verify monitoring results. This monitor is not suited to untrusted
environments in which a provider may deceive a consumer.

Comuzzi et al. present a monitoring framework that also focuses on mon-
itoring from the provider’s perspective [37]. Monitoring data is collected and
stored by the provider. No mechanisms ensure objectivity or integrity of mon-
itoring results. Consumers must trust the provider not to maliciously modify
results.

Ferretti et al. and Stantchev et al. present approaches for monitoring Qual-
ity of Service (QoS) in the Cloud [54,160]. Providers monitor certain metrics to
prevent over- or under provisioning of resources. In effect, these monitors act
as load-balancing mechanisms. These monitors are controlled by the resource
provider and transparency of the monitoring process is not considered.

Niehörster et al. present a mechanism for enforcing service agreements
for Grid computing is in [115]. This monitor uses software agents (see Sec-
tion 2.3.1) to monitor compute jobs: one agent per job. An agent assigns
resources to ensure that a job is completed in accordance with the agreement.
The monitoring process is controlled by the provider. The consumer has no
ability to verify agreement compliance. As with the other monitors intro-
duced in this section, consumers must implicitly trust providers. However, no
mechanisms are in place to prevent deceitful providers from secretly modifying
monitoring data.

Sahai et al. present an architecture for specifying and monitoring SLAs in
commercial Grids [149, 150]. Monitoring data is collected from relevant loca-
tions (e.g. provider components, consumer applications) and stored a central
repository for compliance analysis. The monitor cannot adapt to changes in
requirements. A commercial Grid is a controlled environment that assumes
trust between users.

Q4 - This quadrant contains monitors unable to adapt to changes, but
suited to untrusted environments. In contrast to the monitoring approaches
introduced above, Romano et al. introduce the QoS-MONaaS framework that
acknowledges and addresses the issue of trust [145]. This framework incorpo-
rates an anonymizing function that protects objectivity of monitoring results.
This function anonymizes requests made to the monitor. The monitor cannot
determine if a request is made by a provider or a consumer. As such, there is
no incentive to tamper with monitoring results. For instance, if the monitor



2

26 Research Positioning & Related Work

wishes to deceive the consumer about actual performance measurements. The
monitor is unable to supply the consumer with false results, while supplying
the provider with accurate results.

2.3 Enabling Technologies

This section introduces two technologies that enable the application of the dis-
tributed and autonomic principles discussed above. These technologies include
software agents and the AgentScape middleware. The Multi Agent System
(MAS) paradigm enables autonomous action (e.g. problem solving, decision
making) and social interaction (e.g. communication, negotiation) [22,74,185].
The AgentScape middleware enables distributed, multi agent applications.
AgentScape includes mechanisms for security and reliability. Together, Agent-
Scape and software agents enable autonomous activities in distributed, dy-
namic, open environments.

2.3.1 Software Agents

Jennings et al. define agents as software that is capable of flexible, autonomous
actions that allows an agent to adapt to given circumstances [75,76]. Flexible
autonomy is characterized by agents that are (1) responsive, (2) proactive
and (3) social. Responsive agents are aware of and react to environmental
changes. Proactive agents predict changes in the environment or situation
and take preemptive action. Social agents interact with other actors (e.g.
humans, other agents) in the environment to solve problems or achieve goals.
Social interaction between agents occurs through the passing of messages.

Software agents commonly automate activities, such as negotiation [11,
13, 21, 25, 76, 78, 85, 87, 136, 139, 152, 153, 173]. In such scenarios, software
agents represent participants (e.g. consumer, provider) in the process of ne-
gotiation. Agents encapsulate decision-making strategies and are able to act
autonomously to achieve a desired goal.

As stated in Section 1.1, open environments present challenges to nego-
tiation. Such environments are distributed, untrusted and highly dynamic.
The structure of the environment, resources, participants, requirements and
strategies change over time. Agents are well-suited to such open and complex
environments [76].



2

2.3 Enabling Technologies 27

Linux

AgentScape
Middleware

Windows

AgentScape
Middleware

OS X

AgentScape
Middleware

HM WSGAS HM AS HM LMAS

Location A

agent

service

Figure 2.7: AgentScape distributed middleware.

2.3.2 AgentScape Middleware

AgentScape4 is a distributed middleware framework that supports scalable, se-
cure, open, fault tolerant, heterogeneous, mobile, Multi Agent Systems (MAS)
[121]. The AgentScape middleware enables rapid prototyping and deployment
of MAS services in open environments. The technologies presented in this
dissertation are experimentally validated with this middleware.

Figure 2.7 depicts the conceptual structure of this middleware. An Agent-
Scape Location is an administrative domain that groups one or more machines
together. A Location may comprise several geographically distributed ma-
chines running different operating systems (e.g. Linux, OS X, Windows). Each
Location has a single Location Manager (LM) responsible for regulating access
to a Location and resources. Resources include Agent Servers (AS) that host
mobile agents for different programming languages (e.g. Java, C, Jason). Each
separate machine has a Host Manager (HM) responsible for regulating access
to a host and resources. A Web Service Gateway (WSG) provides access to
external web services. A collection of Locations that are aware of, and accessi-
ble to one another, is referred to as an AgentScape World. An external Lookup
Service is responsible for providing listings of known locations and services.

AgentScape supports agent migration between machines and locations. For
instance, an agent is created on a Linux machine. The agent searches the LS
for a desired service on a Windows machine. Once found, the agent requests
access to this service by contacting the HM of that particular machine. Once
access is granted, the agent migrates to that machine and consumes the ser-
vice. Migration between Locations works similarly. Agent migration enables

4More information, including source code available at: http://www.agentscape.org

http://www.agentscape.org


2

28 Research Positioning & Related Work

agents to offer and consume resources distributed geographical or administra-
tive domains.

2.4 Conclusion

This dissertation presents research on designing a framework for automated
negotiation and distributed monitoring in open environments. The research
draws on the related fields of distributed and autonomic computing. This
chapter positions this dissertation within these fields. The following chapters
refer to the principles and terminology of distributed and autonomic comput-
ing.

Within this context, this chapter compares and categorizes related re-
search. Some related negotiation research supports multiround negotiation,
but not symmetry of roles. Chapter 3 presents a multiround, symmetric ne-
gotiation protocol. Several approaches to distributed monitoring are dynamic
and able to adapt to changes in the environment. Other approaches are suited
to untrusted environments. Chapter 4 presents an approach that is both adap-
tive and suited to untrusted environments.



CHAPTER3
Service Negotiation
in Open Environments*

Negotiation is a bidirectional dialogue between two or more users, with pos-
sibly conflicting goals, that together search for a mutually acceptable agree-
ment [75]. When engaged in negotiation, these users are referred to as partic-
ipants of a negotiation process. Each participant may assume a specific role
during negotiation, such as consumer and provider. Consumers and providers
often negotiate access to resources and services. In energy marketplaces, for
example, consumers negotiate energy services with providers. During nego-
tiation, participants often exchange messages (e.g. offers, counter-offers). If
successful, negotiation results in an agreement that specifies the terms and
conditions of the service.

Negotiation is often a complex process as participants may pursue conflict-
ing goals. For instance, a provider often attempts to maximize the price of a
service, whereas a consumer often attempts to minimize this price. Negotia-
tion participants follow negotiation strategies to achieve negotiation goals. For
example, a provider may first decide upon a minimum price for a given service
and then initiate negotiation (e.g. first offer) with a price far above this mini-
mum. The provider predicts that the negotiation process will ultimately lead
to a compromise below this initial price, but still above the chosen minimum.
Negotiation strategies may also change during negotiation to adapt to new

*This chapter is based on three published papers [12,28,174].



3

30 Service Negotiation in Open Environments

information or requirements. The field of game theory [14,146] studies negoti-
ation strategies in depth (e.g. reaching a Nash Equilibrium or Pareto-efficient
outcome).

The complexity of negotiation limits the speed and efficiency of human
actors. To address these issues, (semi) autonomous, software agents (see Sec-
tion 2.3.1) are used to automate the negotiation process. Agents represent
(human) participants in the negotiation process. Agents act on behalf of re-
spective participants in accordance with defined preferences and goals. This
dissertation presents a Multi Agent Systems (MAS) approach in which a refer-
ence to a particular agent is a reference to the (human) participant that agent
represents.

The field of automated negotiation covers many issues, from defining nego-
tiation strategies to designing supporting frameworks. While other researchers
focus on the former [69,92,93,139], this dissertation focusses on the design of
a framework to support automated negotiation in open, distributed environ-
ments. Multiagent, automated negotiation in requires well-defined structures,
such as specification languages and negotiation protocols. An unambiguous
language specifies the resources and services to be negotiated. This includes
aspects of the services, such as names, locations, prices, sizes, amounts and
durations.

A negotiation protocol defines a frame of reference for negotiating agents.
A protocol defines how agents communicate, what terminology they use and
what actions they are able to perform. A protocol may also determine the or-
der of events; for example, which participant is allowed to initiate negotiation.
A protocol limits and controls the type of information (agent) participants
exchange. This determines whether negotiation involves a single issue (i.e.
a single service) or multiple issues (i.e. complex services). The design of a
negotiation protocol fundamentally influences the subsequent negotiation pro-
cess. Several negotiation protocols exist that support automated negotiation,
including CNP [159], COPS-SLS [114], SNAP [43] and WS-Agreement [5].

The WS-Agreement specification provides a basis for defining services with
Service Level Agreements (SLA). An SLA is an agreement between multiple
participants that specifies terms of service (e.g. price, quality). WS-Agreement
provides basic negotiation objects and a well-defined language for creating
SLAs. This specification, however, provides only a basic protocol for SLA
negotiation. This protocol supports only a single round of negotiation. For
instance, a consumer requests a service; a provider accepts or rejects the re-
quest. If the provider rejects the request, the consumer cannot propose a new



3

31

request1 or inquire the reason for rejection. This model of communication does
not satisfy a bidirectional negotiation dialogue, as defined by this dissertation.

To resolve these issues, this dissertation presents the WS-Agreement Ne-
gotiation [174] specification. This specification extends the WS-Agreement
specification with support for bidirectional, multiround negotiation with lim-
ited argumentation. WS-Agreement Negotiation defines two layers: negotia-
tion layer and agreement layer. The negotiation layer supports bidirectional,
multiround dialogue (e.g. offer, counter-offer). The agreement layer supports
creation of SLA using existing WS-Agreement objects.

The WS-Agreement Negotiation specification meets many of the require-
ments of multiagent negotiation in open environments. However, it does not
support symmetry of roles. This specification defines two main roles, server
and client, with different abilities and permissions. For instance, the server role
has greater access to negotiation data than the client role. The WS-Agreement
and WS-Agreement Negotiation specifications are designed specifically for web
services. Web services traditionally use client-server roles that are often asym-
metric (i.e. a server has more data, access and abilities than a client). These
services also traditionally follow a strict, asymmetric request-response model
of interaction (e.g. a server is always reactive, never proactive).

Negotiation in open environments requires negotiation protocols that sup-
port flexible, symmetric roles. Such protocols support scenarios in which
agents both consume and produce services. To address this issue, this dis-
sertation presents several extensions to WS-Agreement Negotiation to enable
negotiation in open environments.

For clarity, this dissertation will refer to the negotiation protocol specifi-
cations (NPS) in this chapter in the following way:

[NPS-0] The Web-Service Agreement (WS-Agreement or WSAG) specifica-
tion is an existing specification developed by the Grid Resource Allo-
cation Agreement Protocol (GRAAP) working group at the Open Grid
Forum (OGF). This specification provides the basis for the following two
specifications.

[NPS-1] The Web-Service Agreement Negotiation (WS-Agreement Negotia-
tion or WSAN) specification presented in this dissertation was developed
in collaboration with the GRAAP-WG at OGF. This specification ad-
dresses specific requirements for multiround negotiation. The research
presented in this dissertation contributed to this specification to make

1The consumer cannot propose a new request in the same negotiation session. To create
a new request, the consumer must create a new session and begin the negotiation process
from the beginning.



3

32 Service Negotiation in Open Environments

the protocol both stateless and asynchronous. This specification is now
an official OGF standard.

[NPS-2] This dissertation proposes several extensions to NPS-1. These exten-
sions provide (1) a dual state machine, (2) session identifiers that enable
data symmetry between participant roles and (3) explicit semantics to
clarify intervals.

This chapter proceeds as follows. First, an overview introduces the main
concepts of service negotiation. Secondly, this chapter provides an overview of
negotiation protocols, including WS-Agreement (NPS-0). Thirdly, this chapter
presents the WS-Agreement Negotiation protocol (NPS-1), including several
extensions (NPS-2) for negotiation in open environments. Fourthly, this chap-
ter describes an implementation of WS-Agreement Negotiation in the Agent-
Scape middleware, including experimental results. Finally, this protocol is
compared to related work.

3.1 Introduction

This section provides a detailed overview of service negotiation, starting with
the core concepts of negotiation. This overview introduces: (1) various forms
of negotiation, including auctions and bargaining; (2) the components of the
negotiation process, including roles and cardinality, and (3) the concept of
utility.

In addition, this section introduces Service Level Agreement (SLA). An
SLA is a digital document that formalizes the negotiation process by specifying
the terms of service between negotiating agents. SLAs are fundamental to the
negotiation protocols discussed in this chapter.

Finally, this section introduces the challenges and requirements of auto-
mated negotiation. Requirements include a well-defined negotiation protocol
and service specification language.

3.1.1 Service Negotiation

Negotiation is a bidirectional process by which one or more participants (e.g.
a provider and a consumer agent), with possibly conflicting goals, together
search for a mutually acceptable agreement [75]. In the simplest case, negoti-
ation is a one-to-one interaction between two participants: a service provider
and a service consumer. A single negotiation process, often referred to as
a single negotiation session, is characterized by proposals, counter-proposals,
trade-offs and concessions. Negotiation may focus on one or more issues, re-
ferred to as single or multiple issue negotiation [109]. Single issue negotiation,



3

3.1 Introduction 33

for example, most often focuses on price. In contrast, multiple issue negotia-
tion, focuses on more than one attribute, such as price, quantity and Quality
of Service (QoS) attributes.

Negotiation takes several forms, including auctions and bargaining [107].
Generally speaking, an auction uses a centralized auctioneer to accept bids
from all other negotiation participants, after which a winning bid is selected.
Auctions may follow one of several bidding protocols, such as English, Dutch
and Vickrey [14].

This dissertation focuses primarily on the second form of negotiation,
known as bargaining. In general terms, bargaining consists of two or more
participants exchanging offers. Each offer is evaluated using a set of personal
preferences (e.g. utility functions) to determine the offer’s value or score [137].
Various negotiation strategies are followed to increase the utility of an offer
(e.g. maximize quality or minimize costs). Most strategies are rooted in the
principles of game theory, which assumes that negotiation participants are
self-interested and rational [14,146].

A utility function is a method of adding up the relative weights of indi-
vidual issues [167]. For instance, a specific consumer may evaluate offers from
providers based on a combination of price, provider’s reputation and loca-
tion. For this particular consumer, price is the most important of these issues
and location is the least important. Equation 3.1 presents a corresponding
utility function. In this equation, the total utility (Utotal) is calculated by
summing the relative utilities of price (Uprice), reputation (Ureputation) and lo-
cation (Ulocation). Each issue is weighted according to the relative importance
to the consumer.

Utotal = (Uprice ∗ 50%) + (Ureputation ∗ 40%) + (Ulocation ∗ 10%) (3.1)

Several general steps of negotiation are identified, including (1) offer spec-
ification, (2) offer submission, (3) offer analysis, (4) offer matching, (5) offer
allocation and (6) offer acceptance [162]. In the first step, both negotiation
participants (i.e. consumer and provider) specify negotiation intentions (e.g.
range of services) and constraints (e.g. time limitations). In the second step,
one participant (i.e. provider) sends an offer to the other participant (i.e. con-
sumer). In the third step, the recipient analyzes the offer. This involves several
checks to both syntax and semantics of the offer. Questions are posed, such
as: Is the document structure valid?, Does it contain all required data?, Are
the requested services available?, Is the price reasonable?

In the fourth step, offers are compared. For example, consumers com-
pare available service offerings from a given provider to competing offers from



3

34 Service Negotiation in Open Environments

other providers. Each consumer attempts to find the “best” offer for the given
situation. Once an offer is chosen, the provider of the requested service allo-
cates the requested resources in the fifth step of the negotiation process. This
prevents over-provisioning of services and reduces the likelihood of SLA viola-
tion. In the final step, the offer is officially accepted by both participants. This
typically involves some formality to “sign” the document. In the digital do-
main, this is accomplished with nonrepudiable signing protocols, as discussed
in Chapter 4. If successful, negotiation results in an agreement between the
participants involved. This agreement takes the form of an SLA. The following
section discusses SLAs in more detail.

The cardinality of negotiation specifies the number of participants involved
in a particular negotiation session. A session may be one-to-one, one-to-many
or many-to-many. An example of a one-to-one session is one consumer and one
provider. Many-to-one or many-to-many sessions involve multiple providers
or multiple consumers. For instance, a coalition of consumers may negotiate
with a coalition of providers. Additionally, a single participant may be involved
with multiple negotiation sessions at the same time. For instance, a consumer
may negotiate with several providers in parallel, to compare offers.

Each participant assumes one or more roles during a negotiation session,
such as provider and consumer. A provider provides a service and a consumer
uses or consumes the service. In some environments, participants may assume
more than one role at the same time. For instance, a typical scenario in
Cloud computing is for a resource consumer to install private software and
resell Cloud infrastructure as a separate service. An example of this is the
Dropbox file hosting service2. Dropbox offers file hosting services to customers.
In this relationship, Dropbox fills the role of provider. However, Dropbox
has no private infrastructure, but rather combines hardware from Amazon
Web Services3 with proprietary software to fulfill customer needs. In this
relationship, Dropbox fills the role of consumer.

Additional roles include intermediaries, including Match-Maker, Broker
or Mediator [107]. These roles indirectly assist the negotiation process. The
intermediary may assist by introducing consumers to suitable providers, based
on matching consumer needs to provider offerings. The intermediary may
also negotiate on behalf of one or more participants. For instance, a single
intermediary represents a coalition of participants. Intermediaries may also
assist if a conflict arises as discussed in Section 4.1.6.

Figure 3.1 illustrates several possible negotiation scenarios involving differ-
ent cardinalities and roles. In the first scenario, a single consumer negotiates

2http://www.dropbox.com
3http://aws.amazon.com

http://www.dropbox.com
http://aws.amazon.com


3

3.1 Introduction 35

P P P

C

S1 S2 S3

(a)

P C/P

C

(b)

C C/M C

P

S1

(c)

C

S1

S2
S3

Figure 3.1: Cardinalities and roles of negotiation. (a) One consumer negotiates simul-
taneously with three providers. (b) A negotiation participant with both consumer and
provider roles in separate negotiation sessions. (c) A consumer with the dual-role of
mediator.

three separate sessions (S1, S2, S3) with three separate providers. In the sec-
ond scenario, a provider offer services (S1) to a consumer. The consumer, in
turn, resells these services to two separate consumers (S2, S3). In the final
scenario, a coalition is formed by three consumers, in which a single consumer
assumes the dual-role of mediator, representing the coalition. This single me-
diator negotiates a single session (S1) with a single provider.

3.1.2 Service Level Agreements

Service Level Agreements (SLA) are agreements between multiple participants
that specify terms of service. They involve at least one provider and at least
one consumer and specify the services that are provided. Traditionally, SLAs
are written and signed between legal entities (e.g. between lawyers or other
human actors), representing each of the participants involved. In recent years,
attention has been given to automating this process [81,94]. This dissertation
focuses on SLA negotiation between software agents (see Section 2.3.1).

Automated SLA creation requires additional legally binding frameworks
[20]. For the purpose of automation, several specifications exist to describe
and negotiate SLAs, including the WSLA [96] and WS-Agreement [5] specifi-
cations. Section 3.2 describes WS-Agreement in more detail.

As an example, two agents negotiate an SLA for web-hosting. One agent
provides access to a web-hosting service. Another agent is interested in this
service to host a website. An SLA contains an explicit description of the
service (e.g. name, URL). A period of validity may be negotiated in terms of
time (e.g. hours, months) or in terms of activities (e.g. after completion of a
specific task). In addition, the SLA contains the exact terms that comprise
the service (e.g. 10 GB of disk space, 1 GB of network traffic).



3

36 Service Negotiation in Open Environments

An SLA document also includes Quality of Service (QoS) guarantees. QoS
is expressed as a set of (name, value) pairs where name refers to a Service
Level Objective (SLO) and value represents the requested level of service.
An SLO specifies the particular characteristics of the service to measure, how
to carry out measurements and actions to take after measurement. In the
above mentioned example of a website hosting service, an SLA may contain
the following pairs: (uptime, greater than 99%) and (network response
time, less than 2 seconds). An expanded list of SLA terms for online
services is found in [2, 37].

An SLA also specifies what actions to take if an agreement is violated by
one or more of the agents. Actions taken in response to violation may include
cancellation of the service, monetary fines or demerits to an agent’s reputa-
tion [141]. Section 4.1.7 discusses detection and penalization of violations in
more detail.

3.1.3 Automated Negotiation

Automating the negotiation process reduces the amount of required input from
(human) participants, enabling the negotiation process to become (semi) au-
tonomous. Negotiation is often automated using software agents [11,13,21,25,
76,87,136,152,153,173]. To successfully negotiate in open environments, agents
require a well-defined framework to support the negotiation process [11, 108].
A framework provides agents the basic tools and mechanisms required to dis-
cover and communicate with other agents. A framework also offers agents
a well-defined negotiation protocol and service specification language. Fur-
thermore, a framework offers agents a shared ontology that provides a formal
definition of all terms of negotiation [52,164].

Agents require a shared and clear understanding of how negotiation pro-
ceeds and which actions are possible during each step of the negotiation pro-
cess. A negotiation protocol provides this understanding. A negotiation pro-
tocol explicitly states which actions are possible, the possible order of the
actions, the roles of the various agents, the states of negotiation (e.g. nonbind-
ing offer, binding agreement) and the acceptable transitions between states. A
service specification language defines the structure of negotiation objects (e.g.
offers, bids) such that all agents are able to fully describe and understand
the subject of negotiation (e.g. specific services and attributes). Several for-
mal standards exist that specify a particular negotiation protocol and service
specification language, including FIPA and WS-Agreement [5]. The latter of
these uses SLA as a core negotiation object. As this dissertation focuses on
SLA as the central object of negotiation, the remainder of this dissertation



3

3.2 Web Service Agreement 37

describes, extends and implements this specification. Section 3.2 describes
WS-Agreement in more detail.

3.1.4 Conclusion

The previous sections provide an overview of the core components, processes
and terminology of service negotiation. This includes the concept of SLA; a
document specifying terms of service. SLAs are fundamental to negotiation
processes.

Negotiation processes are automated with software agents. Automation
requires well-defined structure, including a negotiation protocol and service
specification language. The WS-Agreement specification provides a protocol
and language using SLA as a core negotiation object. The following section
discusses this specification in more detail. This dissertation extends this spec-
ification. Sections 3.3 and 3.4 discuss this extension in more detail.

3.2 Web Service Agreement

The Web Service Agreement specification (NPS-0) standardizes SLA creation
in distributed environments [5]. The Grid Resource Allocation and Agreement
Protocol (GRAAP)4 Working Group of the Compute Area of the Open Grid
Forum (OGF)5 develops and maintains WS-Agreement. WS-Agreement de-
fines (1) an SLA creation protocol, (2) the basic objects of negotiation and (3)
a language to express these objects.

3.2.1 Protocol Specification

The WS-Agreement protocol (NPS-0) is based on a single round, message ex-
change. The exchange of messages consists of three steps. Figure 3.2 illustrates
these steps. In the first step, a consumer requests from a provider an overview
of available services. Upon receipt of request, the provider sends an Agreement
Template object (as discussed in the following section) to the consumer. In
the second step, the consumer analyzes the available services and chooses one
or more options. The consumer then makes an offer to the provider to request
this choice of services. An offer describes the chosen services and relevant
attributes (e.g. price). In the final step, the provider analyzes the offer and
decides either to accept or reject. If the provider accepts the offer, an SLA is
created. If the provider rejects the offer, the protocol terminates.

4https://forge.ogf.org/sf/projects/graap-wg
5http://www.gridforum.org/

https://forge.ogf.org/sf/projects/graap-wg
http://www.gridforum.org/


3

38 Service Negotiation in Open Environments

C P

tim
e

Agreement

Offer(s)

Template(s)

Figure 3.2: WS-Agreement SLA creation protocol. Adapted from [108].

Mobach extends the basic protocol with an additional acceptance/rejection
phase [107]. In the original protocol, the responder (i.e. provider) accepts one
offer from the initiator (i.e. consumer) and sends an Agreement to the initiator.
The Agreement is finalized upon receipt. Mobach extends the protocol to
include an additional acceptance/rejection phase allows the initiator to first
consider the Agreement and then send an additional message to the responder
to accept or reject the offer. The agreement phase is therefore a two-way
exchange before an agreement is finalized.

3.2.2 Object Specification

WS-Agreement (NPS-0) specifies three basic objects of negotiation: Agreement
Templates, Agreement Offers and Agreements. An Agreement Template pro-
vides an overview of available services. Providers use Agreement Templates
to advertise available services and possible configurations for each service. For
instance, an Internet Service Provider may advertise several packages (e.g.
basic, medium, extreme) with different configurations of bandwidth, latency
speeds and price. Optionally, a template has Creation Constraints that define
the limits of offers based on the particular template. A constraint may be to
limit the choice of services to a particular set or range. For example, a service
may be limited to an enumeration of working days (e.g. Monday, Tuesday) or
to a range of values (e.g. more than 1, less than 10).

A consumer uses an Agreement Offer to request a set of services proposed
by a provider’s Agreement Template. The consumer indicates the services
and the attributes requested (e.g. preferred price, QoS). Continuing in the



3

3.2 Web Service Agreement 39

example above, a consumer selects a particular internet package from the
available choices.

An Agreement is created if both participants accept an Agreement Offer.
Figure 3.3 depicts the basic structure of an Agreement (i.e. an SLA). The
Context contains relevant information that defines a particular agreement,
including the initiator (e.g. a consumer), responder (e.g. a provider), the time
at which the agreement expires and the Template on which this particular
agreement is based. Agreement Terms consist of Service Description Terms
and optional Guarantee Terms.

A Service Description Term (SDT) defines a particular service with a name
and description. Continuing in the example above, an SDT defines an Inter-
net Connectivity package with 3 MB bandwidth for 50 euros per month. This
information also includes information regarding where the service accessed.
Guarantee Terms (GT) define optional information regarding the agreed qual-
ity objectives (QoS), the importance of a particular objective (Business Value)
and the penalties to enforce if an objective is not met. Section 4.1.7 discusses
penalties in more detail. In regard to the example above, a possible GT is
network latency below 2 seconds and connectivity uptime above 99%.

3.2.3 Language Specification

The WS-Agreement specification (NPS-0) describes the above mentioned ob-
jects using the eXtensible Markup Language (XML)6. Figure 3.4 provides an
XML version of the basic Agreement structure (introduced above). This ex-
ample depicts the markup terms (e.g. wsag:Terms, wsag:Penalty) representing
each component of a Template, Offer or Agreement. An XML document pro-
vides a machine readable rendering of each object. All automated analysis,
decision making and negotiation strategies rely on understanding and express-
ing negotiation intentions through this medium. In addition to the markup
terms defined in the official specification, WS-Agreement supports extensibil-
ity. Negotiation participants may add domain specific terms to objects, if
necessary.

3.2.4 Single Round Negotiation

The single round nature of WS-Agreement (NPS-0) limits the dialogue between
participants. The Agreement Initiator makes a proposal and the Agreement
Responder responds with ‘yes’ or ‘no’. If the proposal is rejected, no further
explanation is given. If the Initiator wishes to continue, a new proposal is

6http://www.w3.org/XML/

http://www.w3.org/XML/


3

40 Service Negotiation in Open Environments

Agreement
Name

Context
initiator, responder, expiration time, template

Terms

Service Description Terms

name, description

name, description

Guarantee Terms

name, service, objective (QoS), business value, penalties

name, service, objective (QoS), business value, penalties

Figure 3.3: WS-Agreement SLA structure. Adapted from [5].

made. However, the Initiator has no knowledge as to the reasons for rejection,
and thus, no guidance on creating a new proposal more likely of being accepted.

In multiround negotiation between participants, argumentation schemes
convey reasoning or explanation for a given decision [7, 142, 155]. Structured
argumentation allows participants (i.e. agents) to explicitly state the reasons
for certain decisions (e.g. offer rejected because price is too high). Argumen-
tation can also persuades a participant to accept a certain decision (e.g. a
competitor is offering a better price) [169]. Formalized argumentation thus
guides negotiation towards acceptable outcomes.

Combining formalized argumentation with a multiround negotiation pro-
tocol supports extensive negotiation discourse between participants. A series
of offers and counter-offers between participants provides them the ability to
iteratively reach an agreement. For example, during a particular negotiation
session, a provider receives an offer. The provider agrees with all but one of
the terms, namely, the term regarding price. The provider creates a counter-
offer consisting of the original terms along with a new price. The consumer



3

3.3 Web Service Agreement Negotiation 41

<wsag:Agreement AgreementID="xs:string">
<wsag:Name >xs:string </wsag:Name >
<wsag:Context >

<wsag:AgreementInitiator/>
<wsag:AgreementResponder/>
<wsag:ExpirationTime/>
<wsag:TemplateName/>

</wsag:Context >
<wsag:Terms >

<wsag:All >
<wsag:ServiceDescriptionTerm >

<wsag:Name/>
<wsag:Description/>

</wsag:ServiceDescriptionTerm >
...
<wsag:GuaranteeTerm >

<wsag:Name/>
<wsag:ServiceScope/>
<wsag:ServiceLevelObjective/>
<wsag:BusinessValueList >

<wsag:Penalty/>
<wsag:Reward/>

</wsag:BusinessValueList >
</wsag:GuaranteeTerm >
...

</wsag:All >
</wsag:Terms >

</wsag:Agreement >

Figure 3.4: WS-Agreement XML language representation.

implies from this counter-offer that the provider is satisfied with all terms ex-
cept price. If negotiation proceeds, the consumer focuses on this term (e.g.
propose a slightly higher price than the initial proposal).

3.3 Web Service Agreement Negotiation

The WS-Agreement Negotiation specification (NPS-1) is the result of collabo-
ration with and participation in the GRAAP working group of OGF. The re-
search presented in this dissertation contributed to this specification to make
the protocol both stateless and asynchronous. WS-Agreement Negotiation is a
protocol for negotiating agreements between two participants [12, 174]. After
passing rigorous review, this protocol is currently an official OGF standard7.

7Version 1.0 available at: http://www.gridforum.org/Public_Comment_Docs/
Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf

http://www.gridforum.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf


3

42 Service Negotiation in Open Environments

WS-Agreement Negotiation (NPS-1), presented in this dissertation, ex-
tends the existing WS-Agreement protocol (NPS-0)with an explicit negotiation
protocol. The combination of these specifications has two layers of interac-
tion: (1) negotiation layer and (2) agreement layer. Participants begin in the
agreement layer. This layer consists of three phases: Template(s), Offer(s)
and Agreement. These phases are depicted above in Figure 3.2.

If participants require multiround negotiation during the Offer phase, par-
ticipants proceed to the negotiation layer. The negotiation layer supports
multiround negotiation with limited argumentation. If negotiation results in
an acceptable offer, participants return to the agreement layer to enter the
Agreement phase.

WS-Agreement Negotiation defines (1) an SLA negotiation protocol, (2)
additional objects of negotiation and (3) a language to express these objects.
The language is based on and compatible with the WS-Agreement specifica-
tion.

3.3.1 Protocol Specification

Essentially, the negotiation layer specified by the WS-Agreement Negotiation
standard (NPS-1) defines the exchange of a series of offers during multiple
rounds of negotiation. A series of offers and counter-offers regarding the nego-
tiation of specific services between participants is referred to as a negotiation
session. A negotiation session begins with one participant (e.g. consumer)
making an offer to one or more participants (e.g. providers). A participant
may respond to this offer by accepting, rejecting or proposing a counter-offer.
The counter-offer is based on the previous offer, but may contain service terms
deemed more acceptable (e.g. a lower price) than the previous offer. If an of-
fer is accepted, the negotiation session terminates and the participants create
an agreement using the agreement layer provided by WS-Agreement (NPS-0).
An accepted negotiation offer is nonbinding. Binding of the agreement occurs
elsewhere. If an offer is rejected, the session either terminates or continues
with a new counter-offer with more acceptable terms.

Figure 3.5 illustrates negotiation. This figure portrays the interactions over
time between a single consumer C and a single provider P. Faded lines indicate
the existing agreement layer provided by WS-Agreement (NPS-0). The new
negotiation layer adds an optional phase to the agreement layer and supports
multiple rounds of sending, evaluating and responding to offers. Dotted lines
indicated the negotiation session which encapsulates the series of offers and
counter-offers between these two participants.



3

3.3 Web Service Agreement Negotiation 43

C P

tim
e Agreement

Offer(s)

Template(s)

N
eg

ot
ia

tio
n 

La
ye

r

Negotiation Session

send offer
Offer: {offerID="c1", counterOfferTo="T1", state="Advisory", content}

evaluate offer

Offer: {offerID="p1", counterOfferTo="c1", state="Advisory", content}

Offer: {offerID="c2", counterOfferTo="p1", state="Advisory", content}

Offer: {offerID="p2", counterOfferTo="c2", state="Rejected", content}

Offer: {offerID="c3", counterOfferTo="T1", state="Advisory", content}

Offer: {offerID="p3", counterOfferTo="c3", state="Acceptable", content}

evaluate offer send offer

send offer evaluate offer

evaluate offer send offer

send offer evaluate offer

evaluate offer send offer

Figure 3.5: WS-Agreement Negotiation (NPS-1) multiround negotiation protocol. The
existing agreement layer is depicted slightly faded. The new negotiation layer is indi-
cated with the large curly bracket on the left side of the figure.

3.3.2 Object Specification

The WS-Agreement Negotiation specification (NPS-1) uses the same specifica-
tion language as WS-Agreement (NPS-0), with several extensions to the offer
document. An offer contains (1) an offerID, (2) a counterOfferTo field, (3)
a negotiation state and (4) the offer content. The offerID uniquely identifies
an offer within a given session (e.g. c1, c2, p1, p2). The counterOfferTo field
contains the offerID of a previous offer in the session upon which the current
offer is based. For example, if a consumer creates an offer c2 in response to an
offer from a provider p1, then this relationship is recorded in the counterOf-
ferTo field. The negotiation state contains the current phase of negotiation.
Finally, the offer content includes the negotiable service terms, such as SDTs
and GTs.

As with WS-Agreement (NPS-0), the specification also allows for domain
specific extensions. For instance, if a specific offer is rejected, the document
may also contain a domain specific reason for rejection (e.g. price is too low).



3

44 Service Negotiation in Open Environments

Solicited

Rejected

Advisory Acceptable

Figure 3.6: WS-Agreement Negotiation (NPS-1) state machine. Adapted from [174].

3.3.3 Negotiation State

Each offer contains a field indicating the current negotiation state. Figure 3.6
illustrates the possible state values and valid state transitions. The Advisory
state indicates that the purpose of an offer is to gather information or test a
participant’s response. For instance, to explicitly elicit a provider’s acceptable
price range, an offer is sent containing a specified service, but no specified
price. An offer in this state is not necessarily fully instantiated and may
include empty terms or partially selected services.

If an offer is fully instantiated (e.g. no empty terms) and contains accept-
able terms, a participant may place this offer in the Acceptable state. This
state is nonbinding and only indicates that, if made, such an offer is likely
accepted in the agreement layer.

If a participant chooses to reject an offer, that participant returns the offer
after changing the state to Rejected. This indicates that future offers should
not refer (e.g. the counterOfferTo field) to this offer. For a specific offer, the
rejection state is terminal. However, negotiation may continue by creating a
new offer, based on some other previous offer.

If a participant wishes to converge a negotiation session, an offer is sent
in the Solicited state. This state essentially requests that the responding
participant provide a ‘yes’ or ‘no’ answer. Thus, counter-offers must be fully
instantiated and in either the acceptable or rejected state.

3.3.4 Session Rollback

During the course of a multiround negotiation session, many offers are ex-
changed. Each offer includes a record of the relationship with a previous offer
(e.g. counterOfferTo). This record of the relationships between offers serves to



3

3.3 Web Service Agreement Negotiation 45

offerID = "c1"
counterOfferTo = "T1"

state = "Advisory"
(content)

offerID = "c3"
counterOfferTo = "p1"

state = "Advisory"
(content)

offerID = "p1"
counterOfferTo = "c1"

state = "Advisory"
(content)

Template = "T1"
(content)

offerID = "c4"
counterOfferTo = "T1"

state = "Advisory"
(content)

offerID = "p4"
counterOfferTo = "c4"

state = "Rejected"
(content)

offerID = "c5"
counterOfferTo = "T1"

state = "Advisory"
(content)

offerID = "p5"
counterOfferTo = "c5"
state = "Acceptable"

(content)

Agreement
create agreement

on agreement layer

offerID = "c2"
counterOfferTo = "p1"

state = "Advisory"
(content)

offerID = "p2"
counterOfferTo = "c2"

state = "Rejected"
(content)

offerID = "p3"
counterOfferTo = "c3"

state = "Rejected"
(content)

Figure 3.7: Negotiation offers arranged in tree structure. Adapted from [174].

organize offers within a negotiation session. The record of offers and counter-
offers may be analyzed to learn from past interactions and improve negotiation
strategies.

One possible organization of offers is a tree structure. In terms of a tree,
the root is the Template upon which all subsequent offers are based. When an
offer is made based on a previous offer, the offer is referred to as a child and
the previous offer is referred to as its parent. A particular sequence of related
offers is grouped together as a branch. Offers to which no counter-offers are
made are referred to as leaves. Figure 3.7 illustrates this structure.

This figure provides an example interaction between a single consumer
and a single provider. Each offer contains a unique offerID that indicates the
author and order of that particular offer. For example, offer c1 is the first offer
created by the consumer and p4 is the fourth offer created by the provider.

If a particular offer is rejected, participants may choose to immediately
terminate the negotiation session. Alternatively, participants may choose to
rollback to a previous negotiation round and continue negotiation with a dif-
ferent offer. For example, a consumer makes offer c2 and a provider rejects
this offer. By doing so, the provider has indicated that this particular branch
of negotiation is unacceptable. The consumer responds by creating a new



3

46 Service Negotiation in Open Environments

branch. This occurs when the consumer performs a rollback to a previous
offer p1 and creates a new offer c3 with content that differs from the rejected
offer.

A rollback occurs again when offer c3 is rejected. The consumer then
performs a rollback to the original template T1 and creates a new offer c4.
When this offer is rejected, another rollback leads to the creation of c5. This
offer’s terms are acceptable to the provider and the negotiation session ends
so an agreement may be created in the agreement layer.

The ability to rollback allows for negotiation to continue despite the rejec-
tion of a particular offer or branch. Unique offerID and counterOfferTo fields
allows all participants to organize offers within a session. This organization,
in turn, makes it possible to identify (and ignore) previously rejected offers or
negotiation branches.

3.3.5 Dual State Machine Extension

Figure 3.6 depicts the current state machine of WS-Agreement Negotiation
(NPS-1). This single state machine models both the current negotiation offer
and, by proxy, the entire negotiation session. As such, this state machine has
several drawbacks. One drawback is that this state machine has no terminal
state. As such, negotiation is not terminated transparently and officially.
Rather, negotiation ends when one participant chooses to ignore new offers
from another participant.

This occurs because the most logical terminal state Rejected is only a
terminal state for the particular offer that has been rejected. The session
does not end, as the rejected participant is always permitted to perform a
rollback and create a new offer with different terms. The Solicited state forces
a negotiation to converge to a ‘yes’ or ‘no’ decision. If a negotiation session is
arranged in a tree structure, as in Figure 3.7, then the current state machine
only models a single negotiation branch, not the entire negotiation tree.

One solution is to maintain dual state machines. Figure 3.8(a) shows the
current WS-Agreement Negotiation (NPS-1) state machine. This first ma-
chine models the “local” state of the current offer and negotiation branch.
Figure 3.8(b) shows a proposed second state machine (NPS-2). This second
machine models the “global” state of the session or entire negotiation tree.

The session state machine contains four valid states: Negotiating, Request,
Demand and Finalized. As the negotiation session may always rollback and
explore different negotiation branches, it essentially remains in a single state.
This state is referred to as the Negotiating state. If a negotiation reaches
a stage that would likely result in an accepted agreement (e.g. an acceptable



3

3.3 Web Service Agreement Negotiation 47

Demand

Request

Negotiating Finalized

Solicited

Rejected

Advisory Acceptable

(a)

(b)

Figure 3.8: Dual state machines. (a) Original, offer state machine (from NPS-1). (b)
Extended, session state machine (from NPS-2).

offer), then the session state should reflect this by transitioning to the Finalized
state.

In the event that a participant wishes to force the session to converge to
a ‘yes/no’ scenario without the option of rollback, the session transitions to
the Request or Demand state. If a participant sends an offer in the Request
session state, the responding participant must reply with an offer that can
immediately be accepted or rejected without further negotiation (e.g. fully
instantiated). If a participant sends an offer in the Demand session state,
the responding participant must reply with an offer in the Request state.
The essentially requests to see the final offer before accepting or rejecting it.
The Request and Demand states allow for either the negotiation initiator or
responder to converge the negotiation tree to termination.

In summary, the Negotiating state is reflexive. The Finalized state is termi-
nal. The Request and Demand states force a negotiation session to convergence
to an explicit and final termination.

Offers contain both states: session state and offer state. Table 3.1 shows
the valid dual state combinations. Session (tree) state is listed along the



3

48 Service Negotiation in Open Environments

Table 3.1: Valid dual state combinations.

Advisory Solicited Acceptable Rejected

Negotiating X X X X

Request X X X X

Demand X

Finalized X X X X

vertical axis and offer (branch) state is listed along the horizontal axis. A few
of the state combinations have special significance:

Finalized & Acceptable - This dual state combination signifies the end
of the negotiation session with a high chance of an acceptable agreement in
the agreement layer. The negotiation session is successful.

Finalized & Advisory - This combination signifies the end of the nego-
tiation session with a low chance of an acceptable agreement. The offer may
not be acceptable or even fully instantiated (e.g. empty terms remain). The
negotiation session is unsuccessful.

Finalized & Rejected - This combination signifies the end of the nego-
tiation session with zero chance of an acceptable agreement. The negotiation
session is unsuccessful.

Negotiating & Rejected - The current negotiation branch is terminated,
but the negotiation session may continue with a rollback and new offer.

3.4 Agent Negotiation in Open Environments

The new WS-Agreement Negotiation specification (NPS-1) enables multiround
negotiation with limited argumentation. However, when agents represent par-
ticipants during negotiation in open environments, several specific challenges
arise that are not addressed in this specification. This dissertation proposes
several extensions (NPS-2) to the new protocol to address these challenges,
including symmetry and dynamism of multiagent negotiation.

As discussed in Section 1.1, open environments have additional consid-
erations regarding the availability and security of a negotiation framework.
A negotiation framework must be robust against malicious attacks from dis-
honest negotiation agents or other, external agents. These considerations are



3

3.4 Agent Negotiation in Open Environments 49

addressed, in part, with service monitoring, auditing, cryptographic primi-
tives and decentralization of negotiation components. Chapter 4 discusses
these topics in more detail.

Agent communication is modeled around asynchronous communication be-
tween autonomous systems, such as peer-to-peer (P2P) relationships [122].
Agents communicate via messages passing that is less strict than the request-
response paradigm of request-response (i.e. client-server) interaction. For ex-
ample, an agent may send more than one message to another agent before
receiving a response8. Multiagent negotiation requires flexible negotiation
protocols that support multiple interaction models, such as unsolicited offers
(i.e. response before request).

An additional challenge of negotiation in open environments is the dy-
namic nature of roles. In contrast to well-defined, static roles of traditional
web services (e.g. the client-server relationship), agents may change roles dy-
namically to adapt to a given situation (e.g. environmental or policy changes).
For instance, in energy markets, distributed generation of energy (e.g. a solar
panel on a roof) allows a consumer to sell overcapacity. Thus, a consumer
agent can also become a producer agent.

In these environments, negotiation protocols must allow dynamic roles
without requiring fundamental changes. Changing roles, therefore, should not
first require fundamental changes in permissions, additional data, methods,
libraries, etcetera. For instance, if all negotiation data is stored by a provider,
this data would need to first be transferred to a consumer before that consumer
may assume the role of provider. If a provider has additional permissions or
actions, time is needed to load additional libraries for a consumer to become
a provider. In open environments, changes in roles must occur seamlessly to
prevent disruption of the negotiation process.

One approach to supporting these changes is to design protocols with sym-
metry. A symmetric protocol grants all participants equal actions, permissions
and (data) access, regardless of negotiation role (e.g. consumer, provider). Ac-
tions, such as negotiation initiation and offer creation, are the same for con-
sumers and providers. Permissions and access to data are the same, regardless
of role. Negotiation data, including the history of messages (e.g. offers) and
current state should be symmetric between negotiating participants. Rather
than a single participant (e.g. the provider role) maintaining all data, data
should be maintained equally by all participants during a negotiation session.
Symmetric negotiation protocols allow participants to change roles without

8This is not possible following a request-response protocol as one agent must first wait
for a reply before sending a second request.



3

50 Service Negotiation in Open Environments

requiring fundamental changes (e.g. redistribution of data, new permissions,
new objects or methods).

Storing all data with a single participant, provides that participant with
a higher level of access and thus more power/control over that data. For
instance, a provider may change locally stored negotiation data to reach a
favorable outcome (e.g. delete or modify certain offers). Distributing the ne-
gotiation data across all participants removes this imbalance of power. Sec-
tion 3.4.1 discusses an approach to distributing negotiation data symmetrically
between negotiating participants using a Session Identifier.

Another challenge of open environments concerns shared ontologies, such
as those of the Agent Communication Language (ACL) specification from
FIPA [56]. Ontologies define the vocabulary of negotiation terms that are
shared between negotiation agents [50,77,166]. For instance, an ontology may
define precisely how a certain metric (e.g. bandwidth) is measured or what is
precisely meant by a ‘CPU’ Or ‘RAM’. Ontologies may also provide additional
clarification to negotiation issues otherwise left underspecified. Specifically,
service terms that comprise an interval of values (e.g. between 50 and 500)
are often underspecified during automated negotiation, as discussed in Sec-
tion 3.4.2.

This dissertation assumes that shared ontologies are inherently static and
unable to dynamically adapt to changes over time (e.g. new prices, new prod-
ucts). Therefore, shared ontologies must be fully defined before negotiation
begins. Furthermore, ontologies are commonly limited to a specific domain,
such as energy [49], e-commerce [164] or crisis management [131]. As such,
these are not well-suited to dynamic, open environments in which negotiable
objects and relationships may change often. Automated negotiation in such
environments requires a different approach.

One possible approach is ontology matching [157]. This process attempts
to find corresponding terms between two or more, independent ontologies.
For instance, a provider has one vocabulary containing the term ‘Internet
Provider’ and a consumer has a separate vocabulary containing the term
‘Internet Service Provider’. It is the task of ontology matching to link
these two syntactically different but semantically identical terms. Ontology
matching is a nontrivial challenge [156]. An alternative approach is to add
additional Interval Semantics to the negotiation protocol [28,97]. Section 3.4.2
discusses this approach in more detail.

3.4.1 Session Identifier

The new WS-Agreement Negotiation specification (NPS-1) defines a negotia-
tion instance object [174]. A negotiation instance is maintained by a provider



3

3.4 Agent Negotiation in Open Environments 51

and contains all information relevant to a given negotiation session, such as of-
fers and state information. Each negotiation instance is identified by a unique
Endpoint Reference (EPR) as defined by the WS-Addressing specification [64].
An EPR contains a Uniform Resource Identifier (URI) that explains how a re-
source is accessed (e.g. a URL accessed via HTTP). EPRs also identify specific
services and agreements (e.g. SLA documents). This approach to identifying
services is appropriate for the area of web services based on the static, asym-
metric roles of server and client. However, services for Multi Agent Systems
(MAS) require a different approach.

In the MAS approach, agents are equals (e.g. peers). Roles are dynamic.
Rather than a single role (e.g. a provider) maintaining all session data, the
negotiation instance is distributed across negotiation agents. This is similar
to the concept of replicated objects [165]. Each agent has a local copy of
the negotiation instance. Unique identifiers link two related, but separate
instances stored at different locations and controlled by different agents [165].
Instances are updated based on the information (e.g. state) stored in received
offers.

Each participant, represented by an agent, thus maintains a separate, but
equivalent, negotiation instance. Both consumers and providers have equal
access to the negotiation instance containing the history of offers and negotia-
tion state. As there is no single negotiation instance, an EPR is not necessary.
Instead of an EPR, this dissertation proposes (NPS-2) that each negotiation
message is labeled with an additional session identifier: a Session ID. This
identifier enables a receiving agent to associate a particular negotiation offer
to the correct negotiation instance.

Session IDs organize multiple, simultaneous negotiation sessions. Agents
exchange asynchronous messages. Messages are stored in message buffers until
the agent reads them and responds. Messages may arrive in the buffer out of
order. Messages from separate, concurrent negotiation sessions may arrive
simultaneously. This is in contrast to synchronous function calls associated
with traditional web services. Using the included Session ID, each message
(e.g. negotiation offer) is correctly organized by an agent itself. Figure 3.9(a)
illustrates the role of session identifiers in each negotiation message from three
separate negotiation sessions. This identifier is unique and is known by all
agents to a given negotiation session. The Session ID is agreed upon before
negotiation begins.

In some cases, multiple sessions are logically related. For instance, an agent
simultaneously negotiates the sale of one car and the purchase of another. Re-
garding the sale of the first car, the agent negotiates with two potential buyers.



3

52 Service Negotiation in Open Environments

P P P

C

(a) (b)

P P P

C

S1 S2 S3

MS1

...O1, 
S2

O1, 
S1

O2, 
S2

O1, 
S3

O3, 
S2

message buffer

Figure 3.9: An illustration of the application of session identifiers (from NPS-2): (a)
Three separate negotiation sessions with unique identifiers. (b) Logical grouping of
separate sessions.

The agent logically groups these separate, but related, negotiation sessions us-
ing a Multisession ID. The Multisession ID is unique to the agent and is not
necessarily known to the two potential buyers. Figure 3.9(b) illustrates the
application of a Multisession ID: MS1.

3.4.2 Interval Semantics

During automated negotiation of services, autonomous agents use utility func-
tions to evaluate the terms of negotiation, as discussed in Section 3.1.1. These
terms include discrete values, such as {Nuclear, Coal, Gas} for energy sup-
pliers or intervals of values, such as {between 50 and 500}. Evaluating util-
ity of a discrete value is well understood [137]; however, evaluating utility
of an interval of values is an area of ongoing research [167]. If unspecified,
agents can possibly interpret intervals of values incorrectly. If unspecified (or
underspecified), it may be unclear: (1) if the choices are exclusive or inclu-
sive; (2) if an interval embodies a continuum of real numbers or a subset
of natural numbers; (3) if one value may be chosen or multiple, or (4) if a
sub-interval may be chosen or multiple sub-intervals. Automated negotiation
requires clear semantics to correctly interpret intervals and compute utility.
Neither the WS-Agreement (NPS-0) nor WS-Agreement Negotiation (NPS-1)
specifications contain semantics to clarify intervals; therefore, this dissertation
proposes additional semantics (NPS-2).

Figure 3.10 demonstrates the ambiguity of intervals with an example ser-
vice offer. An offer lacking explicit interval semantics requires multiple as-
sumptions. The assumptions made in this example include that Provider is
an exclusive choice, as a contract in this scenario is either signed with one
provider or the other, but not both. Another assumption is that the Source is



3

3.4 Agent Negotiation in Open Environments 53

TEMPLATE

Base Rate = {0 - 100}
Quantity = {0 - 10000}
Provider = {A, B, C}
Sources = {Nuclear , Coal , Gas , Wind , Solar}
Green Percent = {0 - 100}
Availability = {75 - 100}
CO2 Compensation = {green investment}
Buy -back Rate Factor = {50 - 500}

Figure 3.10: Example resource offering with intervals. Adapted from [28].

not exclusive, as a contract may contain both solar energy during the day and
coal energy during the night. More underspecification becomes apparent with
the intervals Base Rate and Quantity. As Base Rate represents a monetary
price, the assumption is that this interval is continuous with a precision of
two or more digits. In contrast, the quantity of kilowatt hours is not typically
specified with such a level of precision and this interval may actually only
contain discrete choices in increments of 1000. These semantics, however, are
not explicit and could cause incorrect assumptions, leading to a suboptimal
or unacceptable negotiation offer.

Exclusive choices may describe some intervals. For instance, Base Rate
starts at zero, yet this is not a valid choice, but rather an exclusive lower
limit. The first valid choice may actually be 1 or 0.5 or some other positive
number. When multiple choices are presented, the order of the choices may
have meaning. For instance, Source may be ordered according to price, carbon
emission, or preference. In contrast, when there is no order, it may be useful
to express this fact explicitly, as well.

Often relationships and dependencies between choices require specification.
For instance, some options may be inclusive, such as Solar energy may only
be chosen in combination with a second energy source. Similarly, relationships
between terms are important. For instance, if Nuclear energy is chosen, then
only providers A and B are available. For intervals, the higher the Availability,
the higher the Price. While these relationships could conceivably be derived
from several rounds of negotiation, making them explicit could make for faster
negotiation.

3.4.2.1 Expressing Intervals

Table 3.2 summarizes several issues often underspecified in automated negoti-
ation. Each issue requires clear notation to convey the correct meaning. This



3

54 Service Negotiation in Open Environments

Table 3.2: Underspecified issues in automated negotiation.

Ordered
or Unordered

Are multiple values ordered or unordered? If ordered, what
is the meaning of the order?

Inclusive
or Exclusive

Are the limiting values of an interval inclusive or exclusive?

Continuous
or Discrete

Is an interval continuous or discrete? If continuous, to what
precision? If discrete, what are the increments?

Value
or Interval

Should choices be in the form of a single value or a sub-
interval? How many of each?

Preference Is there a preference for one choice above another?

Indifference Is an agent indifferent to the value of a certain term?

Relationships
of choices

Are there relationships between multiple choices?

Relationships
of terms

Are there relationships between different terms?

notation is added to service offers and subsequent responses to indicate the
exact meaning of a term to facilitate correct interpretation and evaluation.

Figure 3.11 shows the same resource template as before, but with added
semantics. To differentiate an ordered list from an unordered list, an ordered
list is surrounded by ‘<’ and ‘>’, whereas an unordered list is surrounded by
‘{’ and ‘}’. Standard mathematical notation indicates whether an interval’s
limits are inclusive or exclusive. This requires a ‘(’ or ‘)’ for inclusive and a ‘[’
or ‘]’ for exclusive. The symbol ‘∗ ∗ ∗’ indicates indifference. All other issues
use annotations that take predefined values.

Whether an interval is continuous or discrete is indicated with the annota-
tion ‘CD’ that takes a letter and number as its value. If continuous, the letter
‘C’ is followed by a number indicating the precision. If discrete, the letter ‘D’
is followed by a number indicating the size of the increments.

Whether an agent should choose a value or interval is indicated with the
annotation ‘VI’ that takes a letter and number as its value. If a value, the
letter ‘V’ is followed by the number of values that may be chosen. If an interval,
the letter ‘I’ is followed by the number of sub-intervals that may be chosen.

The ‘PC’ annotation indicates preference between choices. The order of
values conveys order of preference.



3

3.4 Agent Negotiation in Open Environments 55

TEMPLATE

Base Rate = (0 - 100] | CD:C5, VI:I1
Quantity = (0 - 10000] | CD:D100 , VI:V1
Provider = {A, B, C} | VI:V1
Sources = {Nuclear , Coal , Gas , Wind , Solar} | VI:V2 , RC:Wi:OR:So
Green Percent = [0 - 100] | CD:C0 , VI:I1, RT:DECREASES:Availability
Availability = [75 - 100) | CD:C0, VI=V1 , RT:DECREASES:Green Percent
CO2 Compensation = {green investment} | VI:V1, RT:ONLY:A
Buy -back Rate Factor = [0.1 - 4] | CD:C1, VI:I1

OFFER

Base Rate = [5.5 - 12]
Quantity = {5000}
Provider = {A}
Sources = <Solar , Gas > | PC:YES
Green Percent = [***]
Availability = {99}
CO2 Compensation = {green investment}
Buy -back Rate Factor = [1 - 2]

Figure 3.11: Resource offer and response with added semantics (NPS-2).

The ‘RC’ annotation indicates that a relationship exists between two choices.
This takes the value of ‘TERM:RELATIONSHIP:TERM’ where ‘RELATIONSHIP’ is a
predefined term, such as ‘INCREASES’ or ‘REQUIRES’. Similarly, the ‘RT’ anno-
tation indicates relationships between two terms. This takes the value of
‘RELATIONSHIP:TERM’ and uses a set of predefined relationships, such as ‘AND’
or ‘ONLY’.

Figure 3.11 is interpreted as follows: Base Rate is an interval that excludes
the lower limit and includes the upper limit. Furthermore, it is continuous to
five digits past the decimal point and one sub-interval may be chosen. Quantity
is also an interval that excludes the lower limit and includes the upper limit.
Furthermore, it is discrete with increments of 100 and a single value may be
chosen. Provider is an unordered list and only one value may be chosen.
Sources is an unordered list and two values may be chosen. Furthermore,
either Wind or Solar may be chosen, but not both. Green Percent is an
interval of continuous natural numbers with inclusive limits. A single sub-
interval may be chosen and as this value increases, Availability decreases.
Availability is an interval with an inclusive lower limit and an exclusive upper
limit. Furthermore, it is continuous with zero digits of precision and a single
value may be chosen. CO2 Compensation is only available from provider
“A”. Finally, Buy-back Factor is an interval with inclusive upper and lower



3

56 Service Negotiation in Open Environments

limits. Furthermore, it is continuous with one digit of precision and a single
sub-interval may be chosen.

The offer made based on the template also uses added semantics. Base
Rate contains an interval with inclusive limits. Sources is an ordered list
ordered by preference. Furthermore, the offer indicates indifference to the
value of Green Percent.

3.4.2.2 Expressing Intervals in WS-Agreement

Both WS-Agreement (NPS-0) and WS-Agreement Negotiation (NPS-1) specifi-
cations express negotiation objects, such as Templates and Offers, using XML,
as discussed in Section 3.2. The interval semantics this dissertation proposes
(NPS-2) are also expressed in XML. Continuing the earlier example of energy
provision, semantic annotations take the form of XML tags and are added
to the XML schema to resolve underspecified issues. Figure 3.12 and Fig-
ure 3.13 show the same service template and offer, respectively, using XML
structure based on WS-Agreement (NPS-0). Two agents negotiate the pro-
vision of energy. The provider advertises the available choices in a template
using additional semantic tags, as introduced above.

The min- and maxExclusive tags replace the ‘(’ and ‘)’ symbols. The
min- and maxInclusive tags replace the ‘[’ and ‘]’ symbols. The baseRate
and quantity items illustrate these tags. An additional ordering tag replaces
‘{’ and ‘<’ to express ordering. Additionally, each element in the list uses a
“rank” value with ascending order as XML does not natively support ordering
of elements. The sources item of the offer illustrates this value. When an
agent wishes to indicate preferential ordering, the agent modifies the value of
this tag in the offer.

3.4.2.3 Use case scenario

A use case scenario demonstrates the applicability of interval semantics in
a different domain. A single consumer C and a single provider P negotiate
the sale of an automobile. Figure 3.14 provides an overview of the negotiation
process. The consumer first requests a template T1 that advertises all possible
choices, including Make and Price. This template includes additional notation
that describes the semantics of each interval of options. This notation states
that only one value may be chosen for Object, Color and Make. Furthermore,
a single interval may be chosen for Price, starting at 1.1k. The template
lists all options, but describes exclusive options (e.g. diesel or petrol) using
the notation. Finally, the template explicitly states the relationship between
Power and Taxes (e.g. road tax, emissions tax).



3

3.4 Agent Negotiation in Open Environments 57

TEMPLATE

<wsag:Item wsag:name="baseRate" CD="C5" VI="I1">
<minExclusive="0"/>
<maxInclusive="100"/>

</wsag:Item >
<wsag:Item wsag:name="quantity" CD="D100" VI="V1">

<minExclusive="0"/>
<maxInclusive="10000"/>

</wsag:Item >
<wsag:Item wsag:name="provider" VI="V1">

<list ordering="NONE">
<enum value="A"/>
<enum value="B"/>
<enum value="C"/>

</list >
</wsag:Item >
<wsag:Item wsag:name="sources" VI="V2">

<list ordering="NONE">
<enum value="Nuclear"/>
<enum value="Coal"/>
<enum value="Gas"/>
<enum value="Wind"/>
<enum value="Solar"/>

</list >
<RC="Wi:OR:So">

</wsag:Item >
<wsag:Item wsag:name="greenPercent" CD="C0" VI="I1">

<minInclusive="0"/>
<maxInclusive="100"/>
<RT="DECREASES:availability"/>

</wsag:Item >
<wsag:Item wsag:name="availability" CD="C0" VI="V1">

<minInclusive="75"/>
<maxExclusive="100"/>
<RT="DECREASES:greenPercent"/>

</wsag:Item >
<wsag:Item wsag:name="co2Comp" VI="V1">

<enum value="green -investment"/>
<RT="ONLY:A"/>

</wsag:Item >
<wsag:Item wsag:name="buyBackFac" CD="C1" VI="I1">

<minInclusive="0.1"/>
<maxInclusive="4"/>

</wsag:Item >

Figure 3.12: WS-Agreement template with interval semantics (from NPS-2).



3

58 Service Negotiation in Open Environments

OFFER

<wsag:Item wsag:name="baseRate">
<minInclusive="5.5"/>
<maxInclusive="12"/>

</wsag:Item >
<wsag:Item wsag:name="quantity">

<enum value="5000"/>
</wsag:Item >
<wsag:Item wsag:name="provider">

<enum="A"/>
</wsag:Item >
<wsag:Item name="sources" PC="YES">

<list ordering="PREFERENCE">
<enum value="Solar" rank="0"/>
<enum value="Gas" rank="1"/>

</list >
</wsag:Item >
<wsag:Item name="greenPercent">

<enum value="***"/>
</wsag:Item >
<wsag:Item name="availability">

<enum="99"/>
</wsag:Item >
<wsag:Item wsag:name="co2comp">

<enum="green -investment"/>
</wsag:Item >
<wsag:Item wsag:name="buyBackFac">

<minInclusive="1"/>
<maxInclusive="2"/>

</wsag:Item >

Figure 3.13: WS-Agreement offer with interval semantics (from NPS-2).

After receiving the template, the consumer creates the first offer C1. As
the consumer is unconcerned with the Color, Options or Taxes, this indiffer-
ence is reflected by the ‘∗ ∗ ∗’ notation. Instead of choosing only one Make,
the consumer chooses three, but indicates that they are ordered according to
personal preference. This knowledge guides the provider to a more attractive
offer sooner and, thus, a quicker sale.

Once the provider receives C1, it creates a counter-offer P1. All choices
are now limited to the car Object. The consumer indicates that Make is
preferably ‘Audi’, but there are no Audis available for the given price range,
so the provider removes this from the counter-offer. This limits the Color
to blue and only the available Options, Power and Taxes are included in the
counter-offer.

The negotiation process continues with offers C2 and P2. Each offer be-
comes more instantiated and leaves fewer choices with each iteration. Using



3

3.5 Negotiation Protocol Implementation 59

C P

tim
e

Object  = {car}
Color    = {***}
Make    = <Audi, Saab, Volvo> 
                | PC:YES
Price     = (10k - 20k)
Options = {***}
Power = (200pk - 280pk)
Taxes = (***)

Offer C1

Object  = {car, van, truck} | VI:V1
Color    = {blue, red, green} | VI:V1
Make    = {BMW, VW, Saab, Volvo,
                 Audi} | VI:V1
Price     = [1k - 50k) | CD:C1, VI:I1
Options = {leather, 4x4, automatic,
                  GPS, diesel, petrol} |
                  RC:diesel:OR:petrol
Power   = (120pk - 280pk) |
                 CD:D10, VI:I1,  
                 RT:INCREASES:Taxes
Taxes    = (30e/m - 150e/m) | 
                 CD:C0, VI:I
                 RT:INCREASES:Power

Template T1

Object  = {car}
Color    = {blue}
Make    = {Saab, Volvo} 
Price     = (15k - 20k)
Options = {leather, GPS, diesel}
Power = (200pk - 220pk)
Taxes = (74e/m - 111e/m)

Offer P1

Object  = {car}
Color    = {blue}
Make    = {Volvo}
Price     = (15k - 20k)
Options = {***}
Power = (200pk - 220pk)
Taxes = (74e/m - 100e/m]

Offer C2

Object  = {car}
Color    = {blue}
Make    = {Volvo}
Price     = (18k)
Options = {GPS, diesel}
Power = (200pk)
Taxes = (95e/m)

Offer P2

T1

C1

P1

C2

P2

Figure 3.14: Interval semantic enhanced negotiation process.

notation to convey the semantics, the consumer searches through the possibil-
ities to discover the most preferred options (e.g. offer P2 ).

3.5 Negotiation Protocol Implementation

The new WS-Agreement Negotiation (NPS-1) specification is implemented in
the AgentScape [121] middleware. AgentScape is a distributed, Multi Agent
System (MAS) for development and deployment of distributed applications.
The framework offers a structured interface to shared services (e.g. directory
services). Section 2.3.2 discusses AgentScape in more detail.

Agents represent providers and consumers during service negotiation using
the WS-Agreement Negotiation protocol. The WSAN Service manages access
to the protocol. Agents register with this service to access a standardized
interface to relevant negotiation objects9 and methods. Section 3.5.1 discusses
selected objects and methods.

9The core objects (e.g. templates, offers and agreements) of this implementation are
slightly modified versions from the WS-Agreement Negotiation for Java (WSAG4J) API
written by Oliver Wäldrich of the Fraunhofer Institute for Algorithms and Scientific Com-
puting. Source code available at: http://wsag4j.sourceforge.net/

http://wsag4j.sourceforge.net/


3

60 Service Negotiation in Open Environments

AS Host/Location 3AS Host/Location 2AS Host/Location 1

PS CWSAN
tim

e

request "relevant" providers

return list of providers

make offer

make counter-offer
negotiation 
phase

request templates

return templates

create agreement

create agreement
agreement 
phase

store agreement

access service

Figure 3.15: WS-Agreement Negotiation (NPS-1) protocol deployment in AgentScape.

Consumers, providers and the WSAN Service can be deployed in a single
Location or distributed across separate Hosts or Locations. Figure 3.15 illus-
trates a negotiation process using the WSAN Service. A negotiation process
begins when a consumer requests a list of providers from the WSAN Service.
The consumer provides selected keywords to limit the list to only relevant
providers (e.g. energy, electricity, power). Once a list of relevant providers
is received, the consumer selects one or more providers and contacts them
directly using the negotiation methods provided by the WSAN Service. The
consumer requests and receives a list of Templates based on the selected key-
words. Then the consumer chooses one or more Templates and enters into the
negotiation phase. In the negotiation phase, the consumer uses the negotia-
tion methods to create, send and evaluate one or more (counter) offers until
an acceptable offer is reached. Once such an offer is reached, the consumer
enters the agreement phase. This phase consists of a three-way handshake to
confirm an Agreement. The Agreement is then stored at the WSAN Service.

Note that either agent (i.e. consumer or provider) may initiate the agree-
ment phase. For instance, if a provider reaches an acceptable offer in the
negotiation phase and wishes to end further negotiations, then it initiates the



3

3.5 Negotiation Protocol Implementation 61

agreement creation process. In addition, either agent may initiate the negoti-
ation phase. In many situations, the consumer will initiate negotiations with
a selected provider. However, if a provider has had past interactions with a
certain consumer and knows the consumers general service requirements, then
the provider sends an unsolicited offer to the consumer. The consumer may
either ignore or respond to this offer, thus entering the negotiation phase. The
ability of either agent, regardless of role, to initiate these phases is not often
supported in negotiation protocols (see Section 3.6.2).

3.5.1 Overview of Negotiation Tools

The WSAN Service provides the necessary tools for inter-agent negotiation.
Through this service, agents access a structured interface, including objects
and methods, that facilitates the negotiation process.

Table 3.3 provides an overview of relevant negotiation objects. Two im-
portant objects are SessionInfo and NegotiationPolicy. The SessionInfo object
allows agents to store, organize and analyze the ‘tree’ of offers and counter-
offers (see Figure 3.7). Analysis of the SessionInfo object allows agents to
learn the preferences of the counter-agent, discover trends or patterns in the
negotiation process and, in turn, improve negotiation strategies. The Negotia-
tionPolicy object provides agents the core components to create, evaluate and
respond to negotiation offers. Each policy is unique to its agent and contains
the specific preferences (e.g. utility functions) which guide offer evaluation and
(counter) offer creation.

Table 3.4 presents an overview of relevant methods. Methods are cat-
egorized by functionality. Complimentary Assistance offers tools for before
and after the negotiation session, including a method for selecting a unique
session identifier and storing the accepted Agreement. Directory Assistance
offers providers the ability to advertise services via a publicly available service
directory. Methods are also provided for consumers to find needed services
based on related keyword searches. For instance, a consumer searching for
“energy” will find a providers offering “power” or “electricity” as well. Mes-
sage Assistance contains methods for receiving both negotiation messages as
well as regular messages. A regular message is a message that is not part
of the negotiation protocol. Out-of-bounds messages (e.g. agent exiting the
marketplace) are sent via this channel.

The primary negotiation methods are grouped in the Negotiation Assis-
tance. This group provides methods to request a specific Template and process
such a request (e.g. find and return). This group also includes methods to cre-
ate and send negotiation offers and counter-offers. Finally, this group includes



3

62 Service Negotiation in Open Environments

Table 3.3: An overview of relevant negotiation objects.

SessionInfo Stores relevant information regarding a single negotiation
session, such as the session identifier, agents, roles, negoti-
ation state(s) and a message (e.g. offers) archive. Agents
analyze this archive of past interactions to improve negoti-
ation strategies.

NegotiationPolicy Encapsulates the preferences of each individual agent;
unique to each agent and domain dependent. Enables agents
to evaluate offers using personal utility functions.

NegotiationMessage Encapsulates various negotiation message types, including
(1) template request, (2) template response, (3) negotiation
offer, (4) agreement offer and (5) agreement. Includes rele-
vant metadata, such as agents and the session identifier.

Template A document advertising available services.

NegotiationOffer A document requesting a particular configuration (e.g. price,
quality) of a given service. Serves as offer and counter-offer
during multiround negotiation.

AgreementOffer A document requesting a particular configuration of a given
service. This document is the output of an acceptable ne-
gotiation offer and the input for agreement creation.

Agreement A document representing a successful agreement (e.g. SLA).

methods for the Agreement Layer, including sending an agreement offer and
an accepted agreement.

Providers use the Template Assistance group to create and organize multi-
ple Templates. In addition, methods are available to validate incoming offers
against respective creation constraints. For example, a selected value for a
service term must be within the range specified in the respective Template.

3.5.2 Negotiation Modes

The WSAN Service support two modes of negotiation: (1) independent and (2)
mediated. Independent mode allows agents to communicate directly with one
another using the provided objects and following the specified protocol. Agent
communication with the WSAN Service is limited to the Complementary As-
sistance methods (see Table 3.4). In mediated mode, all agent communication
is mediated by the WSAN Service. Essentially, all messages are sent to the
WSAN Service and are then forwarded to the respective agent. The WSAN



3

3.5 Negotiation Protocol Implementation 63

Table 3.4: An overview of relevant negotiation methods.

Complimentary
Assistance

Collection of methods to assist pre- and post-
negotiation.

requestNewSession Request a unique session identifier from the WSAN
Service.

storeActiveAgreement Store an accepted Agreement with the WSAN Ser-
vice for auditing and monitoring purposes.

Directory
Assistance

Collection of methods to assist discovery of service
offerings.

publishTemplates Publish keywords describing available services to a
publicly accessible service directory.

searchTemplates Search a publicly accessible service directory for all
providers with Templates matching given keywords
(e.g. energy, electricity).

Message
Assistance

Collection of methods to assist communication be-
tween agents.

getNegotiationMessage Retrieve an incoming negotiation message from the
message queue.

getRegularMessage Retrieve an incoming message outside of the fixed
negotiation protocol.

Negotiation
Assistance

Collection of methods to assist the Negotiation
Layer.

processTemplateRequest Search and return Templates matching the supplied
keywords.

requestTemplate Request all Templates matching given keywords
from a specific provider.

sendAgreement Send an acceptable or accepted Agreement in the
Agreement Layer.

sendAgreementOffer Send an offer in the Agreement Layer.

sendNegotiationOffer Send a (counter) offer in the Negotiation Layer.

Template
Assistance

Collection of methods to assist providers with Tem-
plate storage, organization and retrieval.

validateOffer Validate an agreement- or negotiation offer against
the creation constraints of the related Template.



3

64 Service Negotiation in Open Environments

Service stores a copy of each message but performs no additional analyses on
the content.

Each mode offers several advantages. In terms of scalability, independent
mode reduces communication load on a single WSAN Service. This mode al-
lows a given marketplace to support an increased number of negotiating agents,
compared to mediated mode. Agents use mediated mode if additional assur-
ance, monitoring or auditing is required. Centralizing and recording commu-
nication history lends itself to monitoring and auditing in the case of disputes
between agents.

3.5.3 Experimental Validation

Several experiments measure communication, CPU overhead and scalability
of the negotiation implementation. The first set of experiments measures
communication and CPU overhead with a limited number of agents. The
second set of experiments examines the scalability with an increased number
of agents.

Note that these experiments show relative communication and CPU load
for agents negotiating with the WSAN Service. However, these experiments
do not attempt to define what level of load is acceptable or unacceptable.
This is a subjective threshold that is highly dependent on the context and
application.

The experiments execute on a single machine. The machine is a SUN
SPARC Enterprise T5240 with 2 multicore 1.2GHz CPUs offering 128 hard-
ware threads and 64GB of RAM. This machine runs Solaris 10 and AgentScape
middleware with 1 AgentScape Location.

3.5.3.1 Description of Experiments

In total, 15 experiments investigate the CPU and communication overhead
of the WSAN Service. Consumers and provider agents negotiate energy ser-
vices10. Each experiment runs with a number of providers and a number of
consumers. Table 3.5 lists the combinations of providers and consumers. The
first experiment runs 1 provider and 1 consumer. The second experiment runs
1 provider and 10 consumers. Each experiment runs with a unique combina-
tion of providers and consumers. The final experiment runs 300 providers and
300 consumers.

All experiments proceed as follows. First, the experiment creates a sin-
gle AgentScape Location. Then, this Location loads the provider agents.
Providers publish Templates to the Directory Service of the Location. All

10Figure 5.2 in Chapter 5 gives the details of the energy services.



3

3.5 Negotiation Protocol Implementation 65

Table 3.5: Overview of WSAN Service experiments.

Providers Consumers

1 1, 10, 100, 200, 300

10 10, 100, 200, 300

100 100, 200, 300

200 200, 300

300 300

Templates offer identical services and providers follow identical negotiation
policies. Then, the Location loads the consumer agents. All consumers select
a random Template from the Directory Service and begin negotiations with
their respective provider. All consumers follow identical negotiation policies.
After creating an agreement, a consumer waits for a period of time. This
period of time is chosen randomly between a minimum of 20 seconds and a
maximum of 60 seconds. After this period, a consumer randomly selects a
new Template and the process repeats. After loading all agents, the experi-
ment logs CPU and message overhead every second for a period of 1 hour of
continuous negotiation. The average CPU load is computed.

3.5.3.2 Experimental Results

Figure 3.16 shows the experiments with 1 or 10 providers; 9 experiments in
total. These results indicate the average percentage CPU load of negotiation
between providers and consumers. A single provider and a single consumer (2
agents in total) generate 0.09% CPU load. A single provider and 10 consumers
(11 agents in total) generate 0.30% CPU load. A single provider and 100, 200
or 300 consumers generate approximately 0.90% CPU load. 10 providers and
10 consumers (20 agents in total) generate 0.31% CPU load. 10 providers
and 100, 200 or 300 consumers generate 2.30%, 4.45% and 6.40% CPU load,
respectively.

Figure 3.17 shows the experiments with 100, 200 or 300 providers; 6 ex-
periments in total. These results indicate the average percentage CPU load
of negotiation between providers and consumers. 100 providers and 100 con-
sumers (200 agents in total) generate 2.40% CPU load. 100 providers and
200 or 300 consumers generate 4.79% and 6.79% CPU load, respectively. 200
providers and 200 or 300 consumers generate 5.00% and 7.54% CPU load,



3

66 Service Negotiation in Open Environments

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  

1	   10	   100	   200	   300	  

av
er

ag
e 

%
 C

PU
 lo

ad
 

# consumer agents 

1	  provider	  

10	  providers	  

Figure 3.16: WSAN Service CPU load.

0	  
1	  
2	  
3	  
4	  
5	  
6	  
7	  
8	  
9	  
10	  

100	   200	   300	  

av
er

ag
e 

%
 C

PU
 lo

ad
 

# consumer agents 

100 providers 

200 providers 

300 providers 

Figure 3.17: WSAN Service CPU load.

respectively. 300 providers and 300 consumers (600 agents in total) generate
7.92% CPU load.

Communication measurements show message count and message size. In
this experimental setting (i.e. negotiation policy and strategy), a single nego-
tiation session produces 8 messages. A single messages is approximately 2.5
kilobytes (kB). Therefore, a single negotiation session is approximately 20kB.
This number does not change over time. If an agent negotiates 100 sessions
in one hour, then total communication is 800 messages and approximately
2,000kB. This number is independent of the number of providers. For instance,
1 provider and 10 consumers produces the same communication overhead as 10
providers and 10 consumers. In this experimental setting, consumers initiate
negotiation. Therefore, 10 consumers produce the same amount of overhead
whether they all negotiate with a single provider or with 10 separate providers.



3

3.6 Related Work 67

3.5.3.3 Discussion of Results

According to these experiments, the WSAN Service generates relatively low
overhead. Even with 600 agents negotiating simultaneously, average CPU load
is below 8%. In this experimental setting, CPU load is not affected by the
total number of agents, but rather by the number of consumer agents. For this
reason, CPU load is almost identical for 10 consumers and 1 provider or 10
providers. In both cases, the number of negotiation sessions (initiated by the
consumer) remains the same, and thus the CPU load also remains the same.

These experiments show identical CPU load for 1 provider and 100, 200
or 300 consumers. This indicates that the provider is overloaded and can only
process a certain number of the consumer messages within the given time.
Adding more providers allows the system to scale. These experiments reveal
that CPU load is not the main obstacle to scalability. In this case, the bottle-
neck preventing a provider from handling 200 or 300 consumers simultaneously
lies elsewhere (e.g. disk I/0). Further experimentation is required to identify
the exact bottleneck.

3.6 Related Work

The field of automated negotiation is large and active. The scope of this dis-
sertation is limited to the area of multiagent negotiation of SLAs. Even this
limited scope covers several alternative technologies and frameworks. Two
specific technologies relevant to this research are SLA specification and nego-
tiation protocols. A number of alternative approaches are available for each
of these technologies, The following sections discuss these alternatives.

3.6.1 Agreement Specification

The Web Service Level Agreement (WSLA) specification [96] from IBM11 is
part of an extensive framework [81] for creating and monitoring SLAs in the
web services domain. Tags are built into both the SDTs and GTs, using defined
metrics, functions, schedules, triggers, measurement directives and actions.
This framework defines five stages: (1) SLA negotiation and establishment;
(2) SLA deployment; (3) Service level measurement and reporting initiated
either by either the provider or the consumer; (4) Corrective management
actions including notification, termination or prioritization of certain tasks,
and (5) SLA termination. Steps 3 and 4 are the defining features of this
approach and are not found in the WS-Agreement (NPS-0) or WS-Agreement
Negotiation (NPS-1) specifications.

11International Business Machines: http://www.research.ibm.com/

http://www.research.ibm.com/


3

68 Service Negotiation in Open Environments

XML describes Agreements with a structure similar to those defined by
the WS-Agreement (NPS-0) specification. The three main elements are Par-
ticipants, Service Description and Obligations. These broadly correspond to
Context, Service Description Terms and Guarantee Terms of WS-Agreement.
However, the WSLA Service Description element contains additional informa-
tion regarding how services are measured and monitored This includes SLA
Parameters such as service availability, throughput or response time, as well
as, metrics and functions to compute these parameters. Each function also
has a schedule that determines when it is computed.

In contrast to WS-Agreement (NPS-0), the Obligations element specifies
guaranteed actions, in addition to service level objectives. This specifies the
actions taken if a violation is detected, such as notifications or corrective ac-
tions. Among the corrective actions is the ability to prioritize tasks such that
premium customers or time critical tasks are processed on time by pausing or
canceling other tasks.

While WSLA offers an extensive library for specifying QoS and monitor-
ing metrics, it offers no guidance for negotiation. No negotiation protocol is
specified. Agents may use a negotiation protocol so long as documents use
valid WSLA syntax.

Another approach to SLA specification is presented by [148, 149] from
HP12. This specification offers an SLA specification language that is both
precise and flexible. An XML structure is defined that contains many of
the elements found in WS-Agreement, including the agents involved, the ser-
vice terms and Service Level Objectives (SLO) (e.g. quality guarantees). In
addition, the SLA contains Service Level Indicators, such as availability,
performance and reliability with target levels to achieve. Furthermore,
the SLA contains Penalties that explain exactly what happens if an agent is
unable to meet the objectives in the SLA.

The SLO element contains a set of components to precisely explain how
to test for SLA violation. For instance, these components specify measure-
ments taken at the end of the month to test if availability was at least 99.9%.
The components include: measuredItem - the set of data that is measurable;
evalWhen - when the evaluation clause is triggered (or a fixed time); evalOn -
sample selection and computation (e.g. the five longest periods or the average);
evalFunc - the evaluation function applied to the sample set (e.g. a mathemat-
ical function), and evalAction - what action to take after the measurement.

As with WSLA, the specification from HP offers an extensive library of
functions for measuring SLA compliance. In addition, more consideration is

12Hewlett Packard Laboratories. http://www.hpl.hp.com/

http://www.hpl.hp.com/


3

3.6 Related Work 69

given to explicitly defining penalties in the event of violation. Also, as with
WSLA, no negotiation protocol is specified.

3.6.2 Negotiation Protocol

The Service Negotiation and Acquisition Protocol (SNAP) offers a high-level
overview of operations for SLA creation in distributed environments [43]. SLA
documents are categorized as Task Service Level Agreements (TSLAs), Re-
source Service Level Agreements (RSLAs) and Binding Service Level Agree-
ments (BSLAs). A TSLA specifies a specific task (e.g. compute job). An
RSLA defines the resources or set of resources (e.g. 5GB RAM, 3.0 GHz CPU).
A BSLA binds the task of a specific TSLA to the resources defined in a specific
RSLA.

No specific document language or syntax is defined by SNAP. Rather, a
high-level approach is presented for structuring SLA documents. A composi-
tional language should describe resources as compositions of other resources.
For example, a resource consists of hardware, software and network. Hardware
includes CPU, RAM, DISK, etcetera. SLA documents also include specific re-
source metrics (e.g. time, max, min) to describe specific properties of each
resource.

Resource offerings advertise available services. These offerings contain var-
ious constructions, such as sets or alternatives. A set is a combination of mul-
tiple resources that are all required together. In contrast, an alternative is a
combination of multiple resources of which only one is required. These con-
structions correspond to <ALL> and <CHOICE> descriptors in WS-Agreement.

As in WS-Agreement Negotiation (NPS-1), this protocol explicitly allows
renegotiation of existing SLAs. A client sends a new request for SLA that
uses the existing unique identifier of the existing SLA. The issue of multiround
negotiation capability is less clear. The authors stress the importance of mul-
tiphase negotiation as a tool for clients to explore the negotiation space and
discover optimal resource configurations. However, the operations described
by SNAP do not explicitly support multiround negotiation, in contrast to WS-
Agreement Negotiation. The client makes a request and the provider accepts
or rejects the request. The provider has no operations to explain the reason
for rejection or propose an acceptable offer. It may be assumed that upon
rejection, a client is permitted to alter the original request and try again.

In addition to the consumer and provider, a service manager is identi-
fied. This manager is responsible for complimentary services, such as creating
unique identifiers and setting expiration times for each SLA. The role of the
manager is somewhat similar to that of the WSAN Service (see Section 3.5).



3

70 Service Negotiation in Open Environments

SNAP assumes a trusted environment in which clients trust resource pro-
viders to act in good faith. As with WS-Agreement Negotiation, additional
security mechanisms must be provided by the underlying architecture.

Another protocol for establishing agreements in distributed environments
is the Contract Net protocol [159]. In contrast to WS-Agreement Negotiation
(NPS-1), Contract Net is always initiated by a resource consumer, referred
to in this protocol as a manager. The consumer advertises the specific task
(e.g. compute job) to process and resource providers (referred to as contrac-
tors) submit bids to process the task. Then the consumer chooses the most
acceptable bid. There is no support for multiround negotiation.

Agents use Contract Net to negotiate SLAs in Grid environments [120]. A
multitiered SLA negotiation layer matches resources to tasks. Each consumer
is presented with one or more resource bids from providers. A consumer
selects one and the SLA is created. The protocol does not support multiround
negotiation. Therefore, the consumer is not permitted to propose a different
resource bid. The protocol does not support argumentation. Therefore, the
consumer is unable to explain why a particular resource bid was rejected with
the intention of improving future bids.

As discussed in Section 2.2.1, symmetry between roles is not a common
design goal in this field. All of the work cited in this section use asymmetric
roles. Roles are static and support different access to data or actions (i.e.
methods). Managers (i.e. consumers) always initiate negotiation in the Con-
tract Net protocol [159] and derivatives [57, 120]. SNAP also distinguishes
between clients and resource owners. Different roles have different actions
and access to data. In contrast, this dissertation presents extensions to the
new WS-Agreement Negotiation (NPS-1) specification that support role sym-
metry. Agents have symmetrical negotiation data and actions (e.g. initiating
negotiation, accepting an offer), regardless of role.

3.7 Conclusions

Automated negotiation requires well-defined protocols. Protocols provide struc-
ture within which software agents communicate (e.g. exchange negotiation of-
fers). A protocol defines how agents communicate, what language they use
and what actions they are able to perform. However, a negotiation protocol
must also be flexible and allow agents to respond dynamically to environmental
changes. Agents may change roles or preferences. Environmental components
may change, such as prices, resources or even terminology.



3

3.7 Conclusions 71

The WS-Agreement (NPS-0) specification defines such a basic protocol for
SLA creation. A clear language is used to describe service offerings and qual-
ity guarantees. However, this specification does not support multiple rounds
of negotiation nor is the protocol symmetric. Symmetric protocols support
flexibility, by allowing roles to change without requiring changes to an agent’s
permissions (e.g. data access) or abilities (e.g. initiate, accept).

This dissertation presents the new WS-Agreement Negotiation (NPS-1)
specification. WS-Agreement Negotiation extends the previous specification
with support for multiround negotiation with limited argumentation. With
this new specification, agents enter a bidirectional, dialogue. If an offer is
unacceptable, rather than terminating negotiation, an agent may respond by
creating a counter-offer. In addition, the research presented in this disser-
tation contributed to this specification to make the protocol both stateless
and asynchronous. These attributes make the protocol better suited to MAS.
After rigorous review, WS-Agreement Negotiation (NPS-1) is an official OGF
standard.

In addition, this dissertation proposes several extensions (NPS-2) to WS-
Agreement Negotiation to (1) explicitly converge a negotiation session, (2)
increase symmetry of roles and (3) clarify intervals. This specification is im-
plemented and experimentally validated in AgentScape.



72 Service Negotiation in Open Environments



CHAPTER4
Service Monitoring
in Open Environments*

The previous chapter describes consumers and providers negotiating services.
A successful negotiation results in the creation of a Service Level Agreement
(SLA) (see Section 3.1.2). This document describes the negotiation partici-
pants involved (e.g. consumer and provider), the provisioned services and the
specific quality guarantees of those services. An SLA also specifies what ac-
tions to take if a participant violates the agreement. For instance, a consumer
negotiates access to hardware resources from an online provider. The resulting
SLA specifies the price the consumer must pay as well as the exact descrip-
tion of the resources (e.g. disk space, RAM). Additionally, the SLA guarantees
99% uptime and network latency lower than 1 second. If these guarantees are
violated, the SLA dictates a reduction in price of 10% per violation. Once
the SLA is finalized, the consumer uploads and runs private software on the
rented hardware.

It now becomes necessary for both the consumer and provider to know if,
when and by whom the agreement is violated. If the consumer claims an SLA
violation has occurred, the provider may lose revenue, unless the provider is
able to show that no violation actually has occurred. To offer participants as-
surance that violations are detected and nonviolations are ignored, services are
monitored. Relevant service metrics (e.g. response time) are measured at pe-
riodic intervals to offer assurance that a service is being provided as promised.

*This chapter is based on four published papers [29,33,34,132].



4

74 Service Monitoring in Open Environments

Either a participant (e.g. consumer or provider) or a separate monitoring ser-
vice performs these measurements.

If a participant suspects a violation has occurred, monitoring data are ana-
lyzed. This analysis reveals which, if any, specific service guarantee is violated
and which participant (e.g. consumer or provider) is responsible. In the exam-
ple above, the provider guarantees 99% uptime for its hardware. If monitoring
data reveals that the service crashed and was offline more than 1% of the time,
the provider is responsible for a violation of the SLA. However, the violation
may also be the responsibility of the consumer. For instance, if monitoring
data reveals that the crash was the result of a fault in the consumer’s own
software, the consumer is then responsible for the violation. In addition, there
could also be an external reason for the failure (e.g. force majeur: a light-
ning strike disables the connecting communication lines). Such insight into
violations and responsible participants requires service monitoring.

Service monitoring in open environments presents several challenges. One
challenge is that of trust. Participants are not implicitly trustworthy. Par-
ticipants may lie about the quality of the service they are either providing
or receiving. Therefore, monitoring measurements must be performed objec-
tively, and impartially. One possibility is to provide each participant with
access to the other’s internal monitoring sensors. However, a particular par-
ticipant may not wish to give external participants access to local resources
and (sensitive) data that are required to perform monitoring measurements.
One possible solution to this conundrum is the use of a Trusted Third Party
(TTP) as a separate monitoring service. The TTP offers additional assurance
and performs measurements impartially so monitoring results are trustworthy.

An additional challenge in open environments is that of scalability. A
monitoring solution must be able to scale across multiple machines and han-
dle multiple participants, distributed across multiple administrative domains.
Centralized approaches often become a processing bottleneck. Therefore, mon-
itoring in open systems requires inherently decentralized solutions. Generally
speaking, the transition from centralized to decentralized solutions is a trade-
off of processing overhead for communication overhead. This trade-off must
be taken into consideration when monitoring services.

Another challenge is that of dynamism. Open systems are subject to con-
stant change: changing participants, roles, resources, availability and demand.
A monitoring service must be able to (automatically) adapt to these changes.
A participant’s resource requirements may also change over time. The impor-
tance of certain resources may change as may a particular participant’s rep-
utation. These factors affect a participant’s perceived level of risk. The level
of perceived risk for a specific participant reflects the likelihood and impact of



4

4.1 Introduction 75

violation of a particular service transaction. Changing levels of perceived risk
should be reflected in monitoring policy.

This chapter proceeds as follows. First, an overview introduces the main
concepts of distributed service monitoring, including traditional monitoring
techniques. Secondly, this chapter describes an alternative monitoring tech-
nique known as passive monitoring. Thirdly, this chapter proposes self-adaptive
monitoring that combines traditional and passive monitoring techniques. Four-
thly, this chapter describes an implementation of this monitoring technique in
the AgentScape middleware, including experimental results. Finally, the re-
search in this chapter is compared to related work.

4.1 Introduction

This section provides an overview of the various aspects of service monitoring,
starting with examples from literature of the traditional approach to service
monitoring. The overview also highlights several drawbacks of this approach.
A generic monitor design with an overview of monitoring components provides
insight into the inner workings of service monitors.

After this general overview, this section discusses several specific aspects of
service monitoring design. This includes (1) security and reliability; (2) distri-
bution and decentralization, and (3) dynamism and adaptation. Security and
reliability aspects address possible attacks on monitoring integrity and sug-
gested countermeasures to prevent such attacks. One particular countermea-
sure is the use of a Trusted Third Party (TTP). A TTP performs monitoring
measurements such that results remain objective and trustworthy.

Another important aspect of monitor design is distribution associated with
open systems. As discussed in Section 1.1, open systems are large environ-
ments that are distributed across multiple hosts that span geographical and
administrative borders. In such environments, highly centralized monitoring
processes become bottlenecks that prevent adequate scaling. A successful ser-
vice monitor is designed such that it scales and functions effectively in such
environments.

Service monitors must also be capable of adapting to the highly dynamic
nature of open environments. Factors of adaptation include the overhead
created by the monitoring process, such as communication, processing and
additional costs. Additional costs are associated with certain monitoring ac-
tivities that require additional (hardware) resources or external (paid) services.
Another factor of adaptation is that of perceived risk.



4

76 Service Monitoring in Open Environments

Following the discussion of monitor design, several additional aspects are
presented regarding SLA enforcement. This includes (1) auditing and con-
flict mediation; (2) penalizing violations, and (3) policy specification. Conflict
mediation is the process of determining whether or not an SLA violation has
occurred, which specific term is violated and which participant (e.g. consumer
or provider) is responsible. Once the responsible participant is identified,
penalties are enforced following a defined policy. One approach to specifying
policies is to negotiate and include them directly in the SLA. Policy informa-
tion includes what penalties to enforce, how and when to enforce them.

4.1.1 Active Service Monitoring

Most traditional monitoring services periodically test various metrics at speci-
fied intervals (e.g. 5 seconds) to determine if a system is operating as expected.
For instance, distributed computer systems often use “heartbeat” monitoring
to detect if a node (i.e. a computer or component) has failed [67]. Nodes
are periodically contacted and asked to respond. Failure to respond indicates
that a node (or an intermediate network) has failed and corrective action is re-
quired. This mode of monitoring is sometimes referred to as online, continuous
monitoring or active monitoring. For clarity, the remainder of this disserta-
tion refers to this mode solely as active monitoring. Using this technique, an
impartial monitoring service (e.g. TTP) takes measurements on behalf of the
consumer and provider. If a violation is detected, the monitoring service takes
action. Such action could be to cancel the service or penalize the offending
participant. The chosen action depends on the policy agreed upon by the par-
ticipants during service negotiation. Section 4.1.7 discusses penalties in more
detail.

SLAs are also actively monitored [95, 132]. A service is monitored by
periodically testing whether the terms of an SLA are violated. This may
require measuring a single variable or a complex aggregation of variables. For
instance, ‘Host is reachable.’ may be measured by a single request/response
action. In contrast, ‘Host uptime is greater than 99%.’ is measured by polling
a host multiple times and calculating the average rate of success.

If an SLA violation occurs, measurements collected with active monitoring
identify the responsible participant. In some cases, monitoring data may also
exonerate a participant suspected of violation. For instance, most SLAs assign
no penalties in the case of force majeur (e.g. natural disaster). If a lightning
strike disables the communication lines between a consumer and a provider,
the consumer may incorrectly conclude that the provider is responsible for the
SLA violation. Monitoring data shows that the provider is not responsible for
this particular violation.



4

4.1 Introduction 77

An external, impartial service performing active monitoring offers high
assurance that SLA violations are detected and offending participants are
identified. However, the assurance offered by active monitoring comes at a
cost. This mode of monitoring may require substantial resources, including
monetary, hard- and software. Furthermore, this mode of monitoring relies on
an external service for its impartiality. External services add both additional
complexity and additional costs.

One drawback of active monitoring is the difficulty and importance of
choosing a measurement interval. The interval between measurements ranges
from a few seconds to hourly or daily measurements, depending on the nature
of an SLA. The accuracy of active monitoring depends directly on the cho-
sen interval. The shorter the interval, the more accurate and comprehensive
the results, and vice versa. For instance, if a sporadic service failure lasts for
30 seconds, testing every 5 seconds will be more likely to detect this failure
than testing every 5 minutes. The chosen measurement interval also directly
impacts processing and communication overhead. Overhead is a result of the
tests, messages and analysis generated by a monitoring process. The shorter
the interval, the higher the overhead, and vice versa. The choice of a spe-
cific measurement interval is therefore often a trade-off between accuracy and
overhead. Many optimizations may lower overhead, such as dynamically de-
creasing the frequency [83] or lowering the complexity [110] of measurements.
Section 4.1.5 discusses these optimizations in more detail.

Another drawback of active monitoring is dependence on an external ser-
vice. In some cases, consumers and providers may not prefer to provide ex-
ternal parties (e.g. a TTP) with access to local resources and (sensitive) data.
However, the TTP requires this access to perform accurate measurements. In
other cases, dependence on a TTP forms an obstacle to scalability of a sys-
tem. For instance, if a provider relies on a single TTP and this TTP becomes
overloaded or suffers a severe failure, the provider is affected and is unable to
provide monitoring for existing consumers or accept new consumers. A TTP
may also incur additional costs thus making active monitoring more expensive
in terms of monetary payment or additional overhead. Section 4.2 discusses
an alternative monitoring technique that reduces dependence on a TTP.

4.1.2 A Generic Monitor Design

Two main conceptual components of a service monitor are Monitor Sensors
and Monitor Processes. Monitor Sensors are positioned within strategic lo-
cations to measure services. These sensors must have direct access to local
metrics of host machines of a provider, as well as a direct connection to a
consumer’s machine and all communication in between. Sensors are passive



4

78 Service Monitoring in Open Environments

Monitor Sensor

Monitor Sensor

Measurement Formulae

Sensor
Interface

Monitor Sensor

Monitor Sensor

Measurement Formulae

Sensor
Interface

Monitor Sensor

Monitor Sensor

Measurement Formulae

Sensor
Interface

Management 
Engine

Measurement 
Engine

Violation
Engine

Output
Engine

Monitoring Data

Monitor
Interface

Monitor Process

Measurement Requests
Violation
NotificationMeasurement Results

Figure 4.1: A generic monitor design.

in the regard that they should not take action or affect the local system until
they receive a request from a Monitor Process. When a request is received, a
sensor becomes active, performs a measurement, returns the results and then
becomes inactive again.

The bulk of monitoring logic is defined in a separate Monitor Process.
The responsibilities of the Monitor Process are: (1) identify which SLA terms
require monitoring; (2) request measurements from Monitor Sensors; (3) check
results for violations, and (4) take appropriate action if a violation is detected.
Figure 4.1 illustrates the design of the Monitor Sensor and Monitor Process.

Each Monitor Sensor provides an interface for communication with a Mon-
itor Process and a local library of measurement formulae. This contents of this
library are standardized or otherwise agreed upon (e.g. during negotiation). A
Monitor Sensor listens for measurement requests, retrieves measurement for-
mulae from a local library, performs the measurement and returns the results.

A Monitor Process has an interface component and four engines: a Man-
agement Engine, a Measurement Engine, a Violation Engine and an Output
Engine. An interface component receives new SLAs, sends measurement re-
quests and receives results. A single Management Engine module coordinates
and stores the SLAs, measurement results and recorded violations. This mod-
ule creates a new Measurement Engine for each active SLA. The Measurement
Engine checks if one or more of the SLA terms require monitoring and, where
appropriate, begins monitoring these items by communicating with sensors.
Results are tested for violations based on a (negotiated) violation policy. If
a violation is detected, the Violation Engine is notified. This module takes
action as specified by a violation policy, such as contacting the Output Engine
to inform one or more participants.

Measurements may include static facts, such as the presence or absence
of a required item (for example, a boolean value, such as ‘host is reachable’).



4

4.1 Introduction 79

These measurements also include dynamic items that require aggregated data
to calculate the average, minimum, maximum or complex functions (for ex-
ample, that return a real number, such as ‘average uptime greater than 99% ’).
If a violation is detected during active monitoring, action is taken, as speci-
fied by the SLA. When the SLA ends, the results are stored, along with the
communications log, in encrypted form for possible later auditing or conflict
mediation. Additional mechanisms are available to secure these data, such as
append-only storage [179].

4.1.3 Security and Reliability

An important aspect of monitoring in open environments is safeguarding ob-
jectivity of monitoring results. A participant may decide to manipulate the
results to its advantage. For instance, an SLA may stipulate that a consumer
receives financial compensation if a specified service is unreachable. Regardless
of the actual status of the service, that consumer may decide to manipulate
monitoring results to make the service appear to be unreachable to collect
financial compensation.

To provide reliable measurements, the monitoring process must therefore
be secure against malicious participants that attempt to violate agreements or
interfere with the provision of services to others. Thus, the data collected from
monitoring must be protected from deletion or modification by unauthorized
participants. A secure logging mechanism [65] accurately records and securely
preserve the record of communications and measurements. Protection of these
data is needed as stored data also serves as an audit trail to detect violations
offline, after service provisioning has ended.

Furthermore, monitoring should rely as little as possible on data provided
by participants and should attempt to rely solely on independent measure-
ments. The concern for independence determines the placement of a moni-
toring module. Rana et al. distinguish three possible locations for monitor-
ing [140]:

Trusted Third Party (TTP) - an independent module that monitors
(and logs) all communication between consumers and providers. Upon suc-
cessful creation of an SLA, both participants receive a signed certificate from
the TTP. This certificate serves as nonrepudiation and/or reputation building
of the provider. However, a TTP is unable to measure the internal state of
either a consumer or provider.

Trusted Monitoring Module (TMM) at provider - functionally
equivalent to a TTP but with access to the internal state of the service pro-
vider. However, a provider may not reveal all of the internal state or may
report incorrect information to the monitor. A module at this location may



4

80 Service Monitoring in Open Environments

TTP

TMM TMM

TMM

TMM

P

C

←
"m

ea
su

re
m

en
ts

re
su

lts
/lo

gs
 →

Figure 4.2: Combination of TTP and TMMs at consumer and provider locations.

prove that a provider attempted to avoid violations or took appropriate (i.e.
following official protocol) action when they occurred.

Trusted Monitoring Module (TMM) on the consumer site - func-
tionally equivalent to a TTP but it is difficult to distinguish between provider
delay and network delay. A module at this location is not only useful for
measurements, but also for establishing the trust level for certain providers.

Figure 4.2 depicts a combination of these possible locations. This combina-
tion results in both independence of measurements and access to the internal
state of both provider and consumer. In this figure, a TMM is installed on
each host within both consumer and provider locations. A TTP communicates
directly with each TMM to request measurements and collect results/logs. In-
dependence and objectivity of monitoring results is enforced by a Trusted
Third Party (TTP) [33, 132] that performs, analyzes and stores monitoring
measurements. To prevent participants from manipulating the measurement
results collected at respective locations, a TTP installs Trusted Monitoring
Modules (TMM) within each participant’s location. A TMM performs mea-
surements such that results are trustworthy. Results are objective because a
TMM is designed to resist malicious influence from unauthorized participants.
A TMM could use a secure hardware module (e.g. Trusted Computing Plat-
form [127]) to ensure that measurement sensors and data are protected from
tampering.

The use of TMMs allows participants to have equal access to the same
service metrics. For instance, a consumer may not allow a provider to access
sensitive client data directly. However, a TMM allows a TTP to access these
data securely. Thus, the provider has ‘indirect’ access to the data via the TTP



4

4.1 Introduction 81

and will be notified if it reveals SLA violations. Which TMMs are required to
access which service metrics depends on a specific SLA.

The monitor should also be reliable and robust to system failure and over-
load. In some cases, distribution of the monitoring process supports both of
these requirements. A distributed monitor removes the risk of a single point
of failure. The monitoring process should be self-healing. Firstly, workload
should be automatically balanced across monitors, preventing a single monitor
from becoming overloaded. Secondly, monitors should automatically recover
from failures and these failures should not affect the accuracy or integrity of
the data that has already been collected.

4.1.4 Distributed and Decentralized

Another aspect of open environments is the challenge presented by distribution
of participants and resources. As discussed in Section 1.1, open environments
may be spread across many geographical areas and administrative domains.
Participants from one domain or one area may access resources located far
away and administered by a different organization.

Monitoring services in such environments requires that a monitoring pro-
cess has certain characteristics. Firstly, the monitoring process must be able
to access relevant service metrics regardless of geographical or administra-
tive location. This is accomplished with the use of privileged sensors (e.g. a
TMM). Secondly, the monitoring process must be able to scale as the environ-
ment grows with more participants joining the system from various locations.
The monitor must continue to function even as processing and communication
overhead increases.

Designing monitoring systems for distributed environments is an area of
ongoing research. Grid and Cloud environments currently monitor a wide
spectrum of metrics, from low-level hardware health to high-level service com-
pliance [150]. Two well known monitoring systems are Nagios [112] and Gan-
glia [103]. These systems scale to monitor many system metrics distributed
across many hosts. However, both systems are designed for use within a single
administrative domain and rely on centralized components.

Centralization of components forms a possible roadblock that prevents
systems from scaling in open environments [165]. Centralization may lead to
bottlenecks in communication, processing or storage. For example, consider
the waiting time if a single operator is responsible for personally answering
all emergency telephone calls for an entire country. Several techniques are ap-
plied to reduce centralization, including replication or distribution of data and
processing. For instance, if several, identical monitoring services are available,
a consumer decides to choose the one with the least communication delay or



4

82 Service Monitoring in Open Environments

fewest current participants. Another option is to create monitoring protocols
that reduce interaction with centralized components. Section 4.2 describes one
such protocol.

Decentralization not only increases the scalability of a system but also
makes the system more robust to failure. For instance, the failure of a certain
monitoring component should not cause the entire system to become inoper-
able. A monitoring framework should be able to replace the failed component
without loss or corruption of monitoring data.

4.1.5 Dynamic and Adaptive

Open environments are subject to constant change. Resources, attributes and
availability, change over time. Participants join and leave systems. During in-
teraction with a system, participant needs, preferences, attributes, reputation
and even identity may change. Depending on the circumstances, a partici-
pant’s monitoring needs may also change. Some service interactions require
more assurance that guarantees are met and some interactions require less. A
service monitor should be able to adapt to these changes.

One area of adaptation concerns monitoring overhead. Monitors may auto-
matically reduce processing or communication overhead when possible. Some
monitoring services are currently able to dynamically adapt monitoring pol-
icy at run-time based on environmental limits or changes in priorities. For
instance, the monitor proposed in [83] collects system notifications from dis-
tributed nodes and dynamically adjusts the frequency of the notifications,
based on CPU load. The higher the load (e.g. more participants in the sys-
tem), the lower the frequency of notifications. [110] describes an adaptive
system monitor. This monitor attempts to reduce monitoring overhead by
pre-selecting and focusing on key metrics. Only when an anomaly is detected
in one of these key metrics, does the monitor adapt by increasing the number
of related metrics that are continuously monitored. Effectively, this monitor
is able to ‘zoom in and out’ of areas when problems are detected.

Another area of adaptation concerns a participant’s perceived risk. Per-
ceived risk is a combination of factors including the importance of a particular
service transaction (e.g. high financial value) and the perceived likelihood that
something may go wrong. A monitor that adapts automatically to perceived
risk offers participants a high level of monitoring assurance when participants
deem necessary. The monitor then also reduces monitoring assurance and its
associated costs (e.g. overhead or monetary charges) when participants deem
permissible. Thus a balance is struck between high assurance and low costs.
Section 4.3 discusses automatically adapting a monitor to the level of perceived
risk.



4

4.1 Introduction 83

4.1.6 Auditing and Conflict Mediation

The next several sections discuss SLA enforcement. Violation detection begins
with auditing. Audit logs are kept, regardless of monitor design or which par-
ticipant performs measurements. All relevant monitoring actions are logged,
including measurement results and relevant communications between partici-
pants. Before service provisioning begins, participants must agree what data
to store and the duration of storage. For example, store audit logs until all
participants acknowledge that the SLA is successfully completed.

When a participant suspects that a violation has occurred, the partici-
pant requests conflict mediation. Mediating conflicts is essentially a process
of auditing the monitoring logs to determine whether or not a violation has
actually occurred and who, if anyone, is responsible. To prevent malicious
manipulation of audit logs, several security measures are taken. These include
secure logging mechanisms [65] and the use of a TTP.

The process of conflict mediation begins with the TTP collecting moni-
toring logs from all relevant hosts (e.g. client, server). Once collected, the
TTP audits these logs by searching for results that violate the SLA. For in-
stance, the TTP may discover measured response times in the logs that exceed
a specific Service Level Objective (SLO). If possible, the TTP identifies the
responsible participant and enforces penalties.

Conflict mediation may also reveal that no participants are responsible for
a particular violation. For example, a provider contests its liability for failing
to meet a given SLO. The SLO is violated; however, the cause of the violation
is beyond the control of the provider. In this case, the violation was a result
of force majeure (e.g. a lightning strike) or even a malicious, targeted attack
by external forces, such as a Distributed Denial of Service (DDoS) [90, 106]
attack.

It is also necessary to determine how violations are recorded. Violations
are either stored in the TTP, added explicitly to the SLA document [123]
or included in usage records [99]. SLA status updates are either pushed to
participants at intervals or published to a secure site to allow participants
on-demand access.

4.1.7 Penalizing Violations

When a violation occurs, often a penalty is incurred. Penalties may be as
simple as terminating the current agreement and finding a different provider,
or more complex reputation or monetary based penalties [133]. Trust and
reputation systems commonly penalize violations in service provisioning [79].
In these systems, reputation is a community-wide metric of an participant’s



4

84 Service Monitoring in Open Environments

trustworthiness. This metric increases if the a participant completes trans-
actions without violating an agreement. Conversely, the metric decreases if
a term is violated. Reputation based penalties utilize the notion that con-
sumers prefer providers with a higher reputation and try to avoid providers
with a lower reputation. In contrast, monetary based penalties operate on
the assumption that consumers pay less for poor service and more for better
service.

Both of these mechanisms require additional infrastructure and security
measures [79]. A reputation based system requires a persistent record of all
transactions, both successful and violated. A monetary based system requires
a secure means of payment, whether in currency or credit, that has actual
value to the participants of the system. Both of these approaches require a
means of guaranteeing that identities are unique, persistent and legitimate.
For instance, underlying authentication mechanisms verify that participants
are indeed whom they claim to be.

One form of monetary-based penalty is the use of escrow. Essentially, an
agreed upon amount is deposited by both participants at a TTP. In the event
of violation, the deposit effectuates penalty payment. If no violation occurs,
the deposits return to respective participants.

Penalty terms must be both extensive and clear. Both participants must
agree upon several aspects, including what constitutes a violation, how viola-
tions are penalized and which specific TTP to use. The exact penalty terms
may be separately negotiated during SLA negotiation, as describe in the next
section, or follow known policies, such as the following [140]:

All-or-nothing provisioning - provisioning of a service must meet all
SLOs. ALL of the SLO constraints MUST be met to satisfy the SLA;

Partial provisioning - provisioning of a service must meet some SLOs.
SOME of the SLO constraints MUST be met to satisfy the SLA;

Weighted Partial provisioning - provision of a service meets SLOs that
have a weighting GREATER THAN a [participant specified] threshold.

Negotiation of the violation policy is also required to determine, for ex-
ample, the severity of a violation and appropriate action using the policies
introduced above. The violation policy may be negotiated as a separate SDT
during the negotiation phase. Policies are explained in more detail in Sec-
tion 4.1.8.

While current work focuses on penalizing violations of SLAs, one alterna-
tive approach is to renegotiate the SLA during enactment. For example, such
an approach would allow the producer and consumer to alter the SLA towards
providing a more realistic deadline for the consumer and potentially reducing
penalties that the producer would otherwise incur. Such a mechanism could



4

4.1 Introduction 85

<ServiceDescriptionTerm ServiceName="SLAMonitoring">
<Policies agen:type="policy">

<ViolationPolicy xs:type="string">ALLORNOTHING</ViolationPolicy>
<ViolationCount xs:type="int">3</ViolationCount>
<ViolationAction xs:type="string">NOTIFY</ViolationAction>

</Policies>
</ServiceDescriptionTerm>

Figure 4.3: Example monitoring policy Service Description Term.

take advantage of multiround sessions that are part of the original negotia-
tion. For example, if a previous round had a longer deadline, at a lower price,
the renegotiation might entail that both participants agree to select this SLA
session as a replacement. This, however, would require both participants to
store the entire set of negotiation sessions until after provisioning has been
completed.

4.1.8 Policy Specification

The existing WS-Agreement specification (NPS-0) [5] contains a BusinessVal-
ueList to express the importance of a certain SLO. The BusinessValueList
either declares a value explicitly or implies a value through a penalty or re-
ward type. For instance, a penalty or reward type may hold a monetary value
that indicates the importance of the SLO. Although this enables a basic mech-
anism for punishing poor performance and rewarding good performance, it is
possible to use a richer and more flexible method to specify violation policies.
As opposed to explicitly extending the WS-Agreement standard, it is possible
to add a separate SDT to the SLA to specify these policies. This includes the
ability to choose a violation policy, such as those mentioned in Section 4.1.7,
as well as the number of acceptable violations and the actions that to taken.

Figure 4.3 illustrates an example violation policy. The value of Violation-
Policy specifies the violation policy and takes the value of: none, allornothing,
partial or weighted. The value of ViolationCount specifies how many viola-
tions are detected before action is taken. This must be a positive integer. A
higher number allows the provider a chance to detect and correct the service
disruption before being penalized. The value of ViolationAction specifies the
action taken when a violation is detected and takes the value of: none, notify,
penalize or cancel. This allows for no action, notification of the participants,
penalty enforcement (as specified by existing penalty clause) or cancellation
of the service. Figure 4.3 illustrates an example in which the participants will
be notified after 3 violations to an SLO.



4

86 Service Monitoring in Open Environments

4.1.9 Conclusion

Designing monitors for open environments presents several challenges, includ-
ing security considerations, obstacles to scalability and a high level of dy-
namism. Security threats are substantially mitigated by the use of a TTP and
TMM. Decentralization of the monitoring process allows monitors to scale
in large scale, distributed environments. It is possible to design a monitor to
adapt to changes in the environment, such as overhead or the level of perceived
risk.

Several important aspects of SLA enforcement include maintaining au-
dit logs, mediating conflict and penalizing violations according to participant
specified policy. A monitor must record measurements in logs that are audited
during conflict mediation to identify violations and responsible participants. A
TTP performs conflict mediation to safeguard the objectivity of the mediation
process. If violations are detected, the responsible participant is penalized ac-
cording to policy. The specific policy terms must be agreed upon before service
provisioning begins.

Traditional active monitoring techniques have several drawbacks, includ-
ing overhead, external dependencies and centralized processes. Additional
decentralization and reduction of external dependencies is achieved with an
alternative monitoring technique. The following section presents this tech-
nique.

4.2 Passive Service Monitoring

An alternative to active monitoring (see Section 4.1.1) is passive monitor-
ing [84]. One advantage of this technique is reduced dependence on an exter-
nal monitoring service or Trusted Third Party (TTP). The assurance provided
by the TTP during active mode is provided in passive mode by the Service
Evidential Protocol (SEP). Essentially, passive monitoring uses cryptographic
primitives to build a secure, nonrepudiable audit log. Each participant must
simultaneously commit before adding an entry to the audit log. For instance,
all participants must be satisfied with the current level of service before an
entry is added. However, if one participant is not satisfied, no entry is added.
Therefore, this protocol is also referred to as a mutual commit monitoring
protocol. This section contains a general overview of the protocol.

The protocol is separated into two phases: data collection and conflict
mediation. During data collection, each participant is responsible for local
service measurements and does not use external monitoring service, such as a
Trusted Third Party (TTP). Service provisioning is divided into discrete inter-
vals. For provisioning to continue for the next interval, all participants of the



4

4.2 Passive Service Monitoring 87

agreement must agree that they are thus far satisfied with the service and have
not detected violations. Once all participants agree, a token (e.g. password) is
exchanged. Using cryptographic primitives, the token is encrypted and signed
to ensure that, once sent and received, no participant is able to deny sending
or receiving the token. These tokens are aggregated using other cryptographic
primitives to form an audit log of compliance.

The data collection phase uses cryptographic primitives to ensure con-
fidentiality and nonrepudiation of messages. Messages are encrypted using
asymmetric (e.g. RSA [144]) encryption to ensure that messages are only read
by intended recipients. Messages are signed using digital signatures. Digi-
tal signatures mathematically prove the authenticity and integrity of a single
message. A valid signature indicates that a message has actually been created
by the sender and has not been modified en route. The inverse is also true: if
a message bears the digital signature of a given participant, that participant
is unable to deny or repudiate sending that particular message. This property
is referred to as nonrepudiation. An aggregate signature is a specific type of
digital signature that combines multiple signatures into a single signature [15].
In contrast to a normal digital signature, an aggregate signature can verify a
collection of multiple messages in a single operation. Section 4.2.1 discusses
the data collection phase and the cryptography involved in more detail.

If no violations are detected, no intervention is needed. Tokens are ex-
changed directly between the participants, so no external monitoring services
are required. This reduces the costs associated with interaction with a sep-
arate monitoring service. However, if a participant suspects a violation has
occurred, conflict mediation is performed. There are several approaches to
conflict mediation. In the simplest approach, the service is immediately can-
celed. Another approach is for participants to work together to examine the
audit log to determine which participant is responsible for the violation. Op-
tionally, a TTP also examines the audit log. Section 4.2.2 describes the process
of conflict mediation in more detail.

The passive monitoring protocol presented in this dissertation is a mod-
ified version of the protocol introduced in [84]. Section 4.2.3 describes the
modifications of the protocol. This section also explains why modifications
are necessary and what benefits they offer.

4.2.1 Data Collection

The data collection phase of passive monitoring uses the Service Evidential
Protocol (SEP). This protocol builds a distributed audit log that serves as
evidence as to whether or not a service was correctly provided. This passive
monitoring approach uses several cryptographic primitives to collect evidence



4

88 Service Monitoring in Open Environments

E(M,pki(RSA)) = C Encrypt: Using the messageM and the public
key pki(RSA) as input, create the cipher text C.

D(C, pk−1
i(RSA)) = M Decrypt: Using the cipher text C and the pri-

vate key pk−1
i(RSA) as input, create the original

message M .

S(M,pk−1
i(BLS)) = σi Sign: Using the cipher text C and the private

key pk−1
i(BLS) as input, create the signature σi.

V (σi, C, pki(BLS)) Verify: Using the public key pki(BLS), the ci-
pher text C and the signature σi as input, ver-
ify the signature.

A(σ1, · · · , σn) = Σ Aggregate Signature: Having signatures
σ1, · · · , σn as inputs, create one short, aggre-
gate signature.

R(σ, pk1(BLS), · · · ,
pkn(BLS), C1, · · · , Cn)

Verify Aggregation: Having several pub-
lic keys pk1(BLS), · · · , pkn(BLS), several ci-
pher texts C1, · · · , Cn, the related signatures,
[σ1, · · · , σn] and one aggregate signature Σ,
verify the signature.

Table 4.1: Service Evidential Protocol functions.

of SLA compliance or violation. These primitives are: (1) asymmetric key
cryptography for encryption and decryption of messages (e.g. RSA [144]), (2) a
signing scheme to sign and verify messages (e.g. BLS [15]) and (3) aggregation
of signatures for verification of multiple signatures. Table 4.1 lists the functions
of SEP.

SEP uses a mediator (e.g. TTP) to resolve conflicts, such as SLA violation.
A TTP has a pair of keys for asymmetric cryptography: pkttp(RSA), pk

−1
ttp(RSA).

Section 4.3.4 describes conflict mediation in more detail.

Essentially, a single iteration of the protocol consists of the same message
being passed back and forth four times between the consumer and provider.
Each time a message is sent, it is encrypted or signed with a different key.
The encryption and signature scheme provides the required security. These
messages are added to an audit log that is later analyzed to prove that a cer-
tain message was indeed received by a certain participant. Figure 4.4 provides



4

4.2 Passive Service Monitoring 89

a high-level overview of the protocol. Figure 4.5 shows the actions and com-
putations of each step. The remainder of this section explains each step in
detail.

Step 1 - A provider encrypts a message (e.g. the access code) with the
TTP’s encryption key to create a cipher text. The provider then signs the
cipher text. The resulting signature is added to the aggregate signature.

Step 2 - The provider sends both the signature and the cipher text to the
consumer.

Step 3 - A consumer receives, but is unable to directly decrypt the cipher
text. First, the signature is verified to ensure that it came from the provider
and was not altered in transit. The consumer then signs the cipher text using
its signing key. Both the resulting signature and the received signature are
added to the aggregate signature.

Step 4 - The consumer sends the new signature back to the provider as
“proof of receipt.”

Step 5 - The provider receives and verifies the signature. The provider
then encrypts the original message again, but now uses the consumer’s encryp-
tion key. The provider signs this new cipher text. Both the resulting signature
and the received signature are added to the aggregate signature.

Step 6 - The provider sends both the new signature and the new cipher
text to the consumer.

Step 7 - The consumer receives and verifies the signature. The consumer
then decrypts the cipher text to reveal the original message. The consumer
then signs the cipher. Both the resulting signature and the received signature
are added to the aggregate signature.

Step 8 - The new signature is sent back to the provider.
Step 9 - The provider receives and verifies this last signature and adds it

to the aggregate signature.
At this point in the protocol, both participants have equivalent aggregate

signatures Σp and Σc. These signatures are can only be created if a participant
has access to the original messages, in the original order. Possession of an
aggregate signature implies possession of the original messages. In addition,
all participants are able to cryptographically show that all messages have been
received and contents have not been manipulated.

4.2.2 Conflict Mediation

When conflict mediation is requested, the mediator (e.g. TTP) uses the data
collected by each of the participants individually using the Service Evidential
Protocol (SEP). The TTP investigates these data to determine if an SLA has
been violated. To this purpose, the TTP first requests all data that has been



4

90 Service Monitoring in Open Environments

Pr. signed
Consumer

Co.
Provider

Pr.
TTP encrypted

access code

tim
e

Co. signed
TTP encrypted

access code

Pr. signed
Co. encrypted

access code

Co. signed
Co. encrypted

access code

Step 1Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Figure 4.4: High-level overview of Service Evidential Protocol.

collected by each participant (i.e. signatures and encrypted messages). The
TTP then performs cryptographic checks on the data to verify its integrity (i.e.
the data has not been maliciously tampered with). The TTP then determines
which, if any, participant has violated the SLA. This protocol is a modified
version of the protocol introduced in [84].

Essentially, the TTP collects the audit logs from both the consumer and
provider. The TTP then checks if these audit logs are equal or have been
falsified or modified. If a modified audit log is detected, that participant is
penalized. If both logs pass inspection, the TTP assumes that there was an
error in communication, such as a lost message. The TTP generates and
resends these missing messages. Figure 4.6 details the steps of this protocol.

Step 1 - First, the TTP requests the aggregate signatures and collections
of signatures from each participant. In addition, the TTP requests the received
messages (cipher texts) from the consumer.

Step 2 - Given this information, the TTP then tests the validity of the
first cipher text and corresponding signature. If verification fails, the provider
has provided a false message (e.g. access code). The protocol aborts and the
provider is penalized.

Step 3 - The TTP then tests the validity of the first cipher text and
the corresponding receipt signature. If verification fails, the consumer has
provided a false signature. The protocol aborts and the consumer is penalized.



4

4.2 Passive Service Monitoring 91

Step 1 Pr: C1 = E(M,pkttp(RSA))

σp1 = S(C1, pk
−1
p(BLS))

Σp = A(σp1)

Step 2 Pr → Co: message{C1, σp1}

Step 3 Co: V (σp1, C1, pkp(BLS)) = {pass,fail}
σc1 = S(C1, pk

−1
c(BLS))

Σc = A(σp1, σc1)

Step 4 Co → Pr: message{σc1}

Step 5 Pr: V (σc1, C1, pkc(BLS)) = {pass,fail}
C2 = E(M,pkc(RSA))

σp2 = S(C2, pk
−1
p(BLS))

Σp = A(σp1, σc1, σp2)

Step 6 Pr → Co: message{C2, σp2}

Step 7 Co: V (σp2, C2, pkp(BLS)) = {pass,fail}
D(C2, skb) = M

σc2 = S(C2, pk
−1
c(BLS))

Σc = A(σp1, σc1, σp2, σc2)

Step 8 Co → Pr: message{σc2}

Step 9 Pr: V (σc2, C1, pkc(BLS)) = {pass,fail}
Σp = A(σp1, σc1, σp2, σc2)

Figure 4.5: Single iteration of Service Evidential Protocol. Adapted from [84].

Step 4 - If both verification steps succeed, the TTP continues to recom-
pute and test if the original messages are equal. The provider could have
sent a valid first message, encrypted with the TTP’s key. The provider could
have then sent a false second message, encrypted with the consumer’s key.
To detect this, the TTP must compare the contents of the first and second
cipher text. As the TTP does not have access to the decryption key of the
consumer, the messages are compared as follows: First, the TTP decrypts the
first cipher text using its own decryption key. Then, the TTP encrypts this
message using the consumer’s encryption key. The TTP has now effectively
recreated the second cipher text without requiring access to the consumer’s
encryption key. If this newly created cipher text is not identical to the second
cipher text provided by the consumer, the provider has sent a false message.
The protocol aborts and the provider is penalized.



4

92 Service Monitoring in Open Environments

Step 1 Co → TTP: message{C1, C2,Σc, [σc1 · · ·σcn], [σp1 · · ·σpn]}
Pr → TTP: message{Σp, [σc1 · · ·σcn], [σp1 · · ·σpn]}

Step 2 TTP: IF [V (σp1, C1, pkp(BLS)) = fail ]
THEN abort protocol and penalize Pr

Step 3 TTP: IF [ V (σc, C1, pkc(BLS)) = fail ]
THEN abort protocol and penalize Co

Step 4 TTP: M̄ = D(C1, pk
−1
ttp(RSA))

IF [E(M̄, pkc(RSA)) 6= C2]
THEN abort protocol and penalize Pr

Step 5 TTP: IF [R(Σp, pk1(BLS), · · · , pkn(BLS), C1, ..., Cn) = fail ]
THEN abort protocol and penalize Pr

Step 6 TTP: IF [R(Σc, pk1(BLS), · · · , pkn(BLS), C1, ..., Cn) = fail ]
THEN abort protocol and penalize Co

Step 7 TTP → Pr: message{σc}
TTP → Co: message{C2}

Step 8 Pr: V (σc, C1, pkc(BLS)) = {pass,fail}

Step 9 Co: D(C2, pk
−1
c(RSA)) = M

Figure 4.6: Conflict mediation protocol. Adapted from [84].

Step 5 - If the cipher texts are identical, the TTP proceeds to verify the
aggregate signatures provided by each participant. If verification fails, the
protocol is aborted and the responsible participant is penalized.

Step 6 - If verification succeeds, the TTP concludes that no one has
(intentionally) violated the SLA. For example, perhaps messages were lost or
corrupted in transit. The TTP resends the second cipher text to the consumer
and the corresponding signature to the provider and the service continues.

Step 7 - The provider receives and verifies the final signature.
Step 8 - The consumer receives and decrypts the final message and is now

able to access the service.

4.2.3 Protocol Modification

This version of the protocol is slightly modified from the original, found in [84].
In the original protocol, the second cipher text (C2 in Step 6 in Figure 4.5)
was never signed by either participant, nor was the signature returned to the
provider. This made the protocol susceptible to two attacks: (1) the provider



4

4.3 Self-adaptive Service Monitoring 93

could provide a “fake” access code and (2) the consumer could falsely deny
receiving a correct access code.

In the first case, the attack would work as follows. The provider sends the
correct access code in the first message, signed by the public encryption key
of the mediator (e.g. TTP). Receipt of this message is acknowledged by the
consumer with a new signature. The provider then generates a new, “fake”
access code and encrypts this with the public encryption key of the consumer.
This is then sent to the consumer, who is then unable to access the service.
Conflict mediation is requested but the mediator is only able to decrypt and
test the first access code, which is correct and thus is unable to prove that the
second access code was “fake.” The provider may falsely claim that the service
was provided correctly and thus is not subject to penalty.

In the second case, the attack works as follows. The consumer receives
the second message containing the correct access code, but claims that it was
a “fake” code and requests mediation. The mediator is again only able to
test the first message and is unable to make claims about the authenticity of
the second message. The consumer may falsely claim that the provider has
violated the agreement and withhold payment or break a (long term) contract
without penalty.

In both cases, the apparent flaw in the original protocol is that without
the second signature (σc2 in Step 8 in Figure 4.5), the two messages C1 and
C2 are not linked. Furthermore, during mediation, the mediator is only able
to test the first message and thus is unable to verify that the two codes are
equal.

By adding the second signature, both participants are protected from these
two attacks. If conflict mediation is requested, the mediator verifies the second
message and corresponding signature to prove that this was indeed the message
sent by the provider and received by the consumer. This prevents the second
attack. Once verified, the mediator then decrypts the first message and re-
encrypt it using the public encryption key of the consumer (M̄ in Step 4
in Figure 4.6). At this point, the mediator compares the first and second
messages sent by the provider. This prevents the first attack.

4.3 Self-adaptive Service Monitoring

As discussed in Section 4.1.5, a monitor should automatically adapt to fit a
participant’s requirements. This section presents the self-adaptive monitoring
approach that attempts to combine the benefits of active (see Section 4.1.1)
and passive (see Section 4.2) monitoring modes. This offers high assurance
when needed and reduces overhead when possible. This approach is designed



4

94 Service Monitoring in Open Environments

around the notion that the level of monitoring required for a given service
transaction is a reflection of perceived risk. For instance, the importance of
detecting a violation in a mission critical service differs from that of detecting
a violation in a nonmission critical service. Violations ultimately have different
levels of impact (e.g. financial, operational).

The level of perceived risk of a service is the product of many factors. These
factors include level of trust between participants, likelihood of violation and
impact of violation. In this context, trust is defined as a combination of several
metrics in electronic markets [72, 102, 163]. These metrics include personal
metrics, such as transaction history, transaction cost and ability to verify
results. These also include community metrics, such as popularity, activity
and position of a participant in a community. These metrics change over
time. For instance, a successful transaction 10 years ago has less impact on
the level of trust than a successful transaction yesterday.

A participant’s reputation is an important factor in determining levels of
trust. For instance, reputation often determines the first service provider a
consumer chooses [143]. If a provider is well-known (e.g. Amazon Web Ser-
vices, Ebay), this increases a consumer’s initial trust. Once service provision-
ing has begun, a consumer dynamically adjusts his/her level of trust based on
factors such as the number of successful transactions completed.

Different services have different levels of perceived risk and, therefore, re-
quire different levels of assurance with monitoring. The ‘amount’ or ‘level’ of
monitoring may need to adapt accordingly. The term Self-adaptive monitoring
describes this adaptation.

4.3.1 Adaptation Model

The basic building blocks of the self-adaptive monitor are (1) modes (active
and passive) and (2) intervals. Active mode offers higher assurance than pas-
sive mode due to the continuous interaction with a TTP. Passive mode offers
reduced dependence on a TTP, thus reducing the associated costs (e.g. finan-
cial payments). Intervals may be reduced or increased. Regardless of the
chosen monitoring mode, shorter intervals (e.g. 10 seconds) offer higher assur-
ance than longer intervals (e.g. 1 day). Measurements at shorter intervals are
more likely to detect failures that occur sporadically.

The self-adaptive monitor chooses between these building blocks to offer a
monitoring configuration that best matches a participant’s perceived level of
risk. The higher the risk, the higher the level of monitoring and vice versa.
In this dissertation, high level monitoring equates to frequent active mea-
surements. In contrast, low level monitoring equates to less frequent active
measurements or passive measurements.



4

4.3 Self-adaptive Service Monitoring 95

The choice of which monitoring level to use for a particular service transac-
tion or service period is based on a self-adaptive monitoring function. On the
basis of a perceived risk level (RL) and a monitoring policy (P) this function
chooses an appropriate monitoring level. The monitoring level is the com-
bination of (1) a mode (active or passive) and (2) an interval (time between
measurements). Each participant to an agreement performs two actions before
a transaction or period of transactions. First, RL is calculated on the basis of
the risk factors. Based on the RL, a participant then selects an appropriate
monitoring level.

Self-adaptive monitoring requires that all participants use the same level
of monitoring for a given transaction. If participants select different levels of
monitoring, both participants ultimately use the highest level. For instance,
if a service provider selects active mode and a consumer selects passive mode,
then both participants use active mode. This guarantees that all participants
have at least the minimum level of assurance required.

4.3.2 Risk Level

The self-adaptive monitoring function uses the current level of perceived risk.
This level is calculated based partly on knowledge supplied by the service
environment. The environment supplies information about a particular par-
ticipant, including recent activity and popularity in the environment. An
example of environmental knowledge is a reputation authority [163].

In addition to environmental knowledge, local knowledge also influences
the level of perceived risk. This includes the price (or cost) of the current
transaction and history, if any, of transactions with the given participant.
These two factors influence levels of trust and perceived risk [102, 177, 178].
The transaction cost of a current transaction and the transaction history cor-
respond to a particular level of perceived risk. In short, the higher the cost
of a transaction, the higher the perceived risk. Conversely, the better the
transaction history, the lower the perceived risk. Figure 4.7 illustrates the
relationship between transaction cost and transaction history.

Transaction cost is an artificial value that reflects the negative impact
that would occur if a certain transaction were to fail (e.g. the other partici-
pant violates the agreement). This value is derived by first mapping levels of
transaction cost to ranges of actual price. As an example, transactions below
100 euro may correspond to a cost of 1. Whereas transactions between 100
and 200 euro may correspond to a cost of 2 and so on. This mapping dif-
fers between participants. Each participant may have his/her own mapping,
customized following individual policies.



4

96 Service Monitoring in Open Environments

Po
si

tiv
e 

tr
an

sa
ct

io
n 

hi
st

or
y

Transaction cost /
impact of violation

None or 
outdated 

Extensive
and recent

Low level of
perceived risk

None or
inexpensive

High or
expensive

Medium level of
perceived risk

High level of
perceived risk

Figure 4.7: Relationship between local knowledge and perceived level of trust. Adapted
from [102].

Transaction history is defined as a value that reflects the level of satisfac-
tion with a given participant, based on past interactions with that participant.
The higher the number of successful interactions in the past, the higher the
transaction history. This value also takes into consideration the effect of infor-
mation decay, as proposed in [163]. In this context, information decay means
that recent transactions influence transaction history more than transactions
that occurred long ago. Therefore, a weighting scheme assigns more weight
(i.e. importance) to the outcome of the most recent transaction and less weight
to older transactions.

4.3.3 Monitoring Policy

Each participant maintains a personal monitoring policy that specifies the
relationship between a level of perceived risk and a level of monitoring. A
monitoring level is defined as a monitoring mode (active or passive) and the
frequency of measurements. For instance, a participant P decides that a risk
level of 1 corresponds to a low level of monitoring. P thus defines a low level
of monitoring as passive mode with an interval of 90 seconds. This participant
decides that a risk level of 10 corresponds to a high level of monitoring. A high
level of monitoring is then defined as active mode with an interval of 5 seconds.
Each and every participant creates his/her own customized mapping between
the level of perceived risk and the level of monitoring. A policy may change
over time, based on lessons learned through interactions in the marketplace.



4

4.3 Self-adaptive Service Monitoring 97

# context #
PolicyName=paranoid
ReactionThreshold =1

# age weighting #
10 MostRecentTransactions =0.8
100 MostRecentTransactions =0.1
...

# type weighting #
TransactionHistory =0.2
TransactionCost =0.8

# risk level mapping #
RiskLevel1Mode=passive
RiskLevel1Interval =90
...
RiskLevel10Mode=active
RiskLevel10Interval =5

(a) Paranoid

# context #
PolicyName=optimistic
ReactionThreshold =3

# age weighting #
10 MostRecentTransactions =0.3
100 MostRecentTransactions =0.5
...

# type weighting #
TransactionHistory =0.8
TransactionCost =0.2

# risk level mapping #
RiskLevel1Mode=passive
RiskLevel1Interval =90
...
RiskLevel10Mode=active
RiskLevel10Interval =20

(b) Optimistic

Figure 4.8: Examples of (a) paranoid and (b) optimistic monitoring policies.

In addition, a policy specifies that weights may be added to specific pieces
of information. Weights indicate relative importance of information, based on
age or type. For instance, the 10 most recent transactions may be twice as im-
portant as all past transactions. A policy also contains a value to indicate how
quickly a monitoring process should react to changes in the level of perceived
risk. This value prevents a monitoring process from constantly adapting to
slight fluctuations in risk levels. A policy may contain additional metadata,
such as a policy name.

Figures 4.8a and 4.8b illustrate two example policies: A Paranoid policy
and an Optimistic policy. The paranoid policy has a low reaction threshold
and thus quickly adapts its monitoring process to changes in the risk level.
This policy also specifies a larger weight to the most recent 10 transactions
and is more sensitive to transaction cost than history. In contrast, the opti-
mistic policy has a higher reaction threshold and thus allows more variation
in the perceived risk level before adapting the monitoring process. This policy
balances the weight of most recent transactions with older transactions and
considers history of transactions as more important than cost of a particular
transaction.



4

98 Service Monitoring in Open Environments

4.3.4 Conflict Mediation

During service provisioning, if one of the participants suspects an SLA vi-
olation, conflict mediation is requested. Conflict mediation is handled by a
Trusted Third Party (TTP). The actions taken by a TTP depend on the cur-
rent monitoring mode. If the participants are currently using the active mode,
the TTP consults the measurement results it has stored locally. If the par-
ticipants are currently using the passive mode, the TTP performs a conflict
mediation protocol. Section 4.2.2 describes the details of this protocol.

If no violation is detected, the service continues without change. If and
when a violation is detected, the responsible participant is penalized. At this
point, the participants decide how to proceed on the basis of the monitor-
ing policies specified in the agreed SLA. For example, an SLA may dictate
that the responsible participant is penalized with a monetary fine and the
service continues, but the monitoring process is switched to active mode with
a short measurement interval to reflect the heightened level of perceived risk,
as proposed in the example in Section 4.3.5.

Figure 4.9 shows the possible state transitions when conflict mediation
is requested. Monitoring starts either in active or passive mode. Monitor-
ing policies dictate when to switch between modes (e.g. after a period without
violation). If no violations occur, monitoring finishes normally when the agree-
ment expires. If a suspected violation is detected, conflict mediation begins.
If the TTP determines that a violation has occurred, multiple actions are pos-
sible, depending on the given monitoring policies. One possibility is that the
offending participant is penalized and the service terminated. Another possi-
bility is that service continues under a renegotiated SLA (see Section 4.1.7).
For instance, the consumer receives a reduction in price for a reduction in the
Quality of Service (QoS).

4.3.5 Use Case Scenario

This section describes a use case scenario that illustrates self-adaptive SLA
monitoring with a provider P, a consumer C and a TTP.

P and C agree upon an SLA for a set of services. As part of this SLA, P
and C agree to use self-adaptive monitoring mediated by a chosen TTP. At
this point in the lifetime of service provisioning, both participants have little
knowledge about one another, so the perceived risk level is high. According
to individual policies, both participants begin service monitoring in the active
mode, with an interval of 10 seconds.



4

4.4 Framework Implementation 99

START FINISH

CONFLICT
MEDIATION

ACTIVE
MODE

PASSIVE
MODE

sta
rt

start

m
ode

sw
itching

dispute

dis
pu
te

renegotiate

ren
eg
oti
ate penalize

finish

finish

Figure 4.9: State diagram of self-adaptive monitor (adapted from [84]).

After a period of 5 minutes without violation, the monitoring policy auto-
matically decreases the perceived risk level, as trust grows between the par-
ticipants. This change in risk level is reflected in the monitoring process with
a decrease the measurement interval to 20 seconds.

After another period of 5 minutes of successful interaction, the monitoring
policy automatically decreases the perceived risk level again. The change in
risk is reflected, according to the monitoring policy, in a switch to a passive
mode with an interval of 60 seconds.

After 5 more minutes without violation, trust increases, risk decreases and
the measurement interval is extended to 90 seconds. However, during the next
period of 5 minutes, C detects that an SLA violation has occurred. The TTP
is contacted to perform conflict mediation (see Section 4.3.4) as agreed upon
in the SLA. The TTP discovers that P has violated the terms of the SLA and
P is penalized. Both participants nevertheless decide to reinstate the SLA.
The perceived level of risk is affected by the violation, therefore the monitoring
policy automatically switches to an active mode of monitoring with an interval
of 10 seconds.

Section 4.5 describes an implementation of this use case scenario. Fig-
ure 4.16 illustrates the results of experimentation with the same use case sce-
nario.

4.4 Framework Implementation

The self-adaptive monitoring framework is implemented in the AgentScape
middleware (see Section 2.3.2). Participants (e.g. consumers and providers)
are represented by autonomous, software agents. This middleware is chosen for



4

100 Service Monitoring in Open Environments

implementation and experimentation because it provides a high level program-
ming framework for developing distributed applications. AgentScape offers a
programming interface and communication framework that is well suited for
rapid prototyping the distributed monitoring framework.

Moreover, the AgentScape architecture fulfills the requirements for a Trust-
ed Computing Base [89], including clearly defined and enforceable security
policies, role-based access controls, identification and authentication mecha-
nisms and audit trails [134]. These features make it possible to serve as the
TTP. In this implementation, asymmetric cryptography is accomplished us-
ing the Rivest-Shamir-Adleman (RSA) [144] algorithm. The signing scheme
is based on the Boneh-Lynn-Shacham (BLS) [15] algorithm1.

4.4.1 Framework deployment

The main monitoring components discussed in Section 4.1.2 are integrated into
AgentScape. The monitoring process is contained in an autonomous software
agent that performs the role of TTP. Monitoring sensors (TMM) are inserted in
each Host Manager, Service and Web Service (WS) Gateway. These strategic
locations are chosen for access to relevant monitoring metrics. Host Managers
control access to local (hardware) resources, such as CPU and memory. In-
tegrated TMMs report on usage of these resources. Services control access
to local (web) services (e.g. currency converter service). An integrated TMM
monitors bandwidth, network throughput volume, response time and other
relevant QoS metrics. Similarly, a TMM located in a WS Gateway measures
metrics relevant to external (web) services regulated by that particular WS
Gateway.

Figure 4.10 provides an overview of the monitoring framework in Agent-
Scape. The Location Manager first collects resource availability data from
all Host Managers and conveys this to the provider agent (see step 1). The
provider agent P representing the given service, in turn, collects these data
from the Location Manager. This information is required before services may
be offered to the consumer agent C during the SLA negotiation (see step 3).
Additionally, this information could affect QoS guarantees. For instance, if
a certain service is available but currently in use by several other consumers,
the provider may choose to offer the service for a lower price with lower QoS
guarantees.

1The BLS implementation uses existing code provided by Dalia Khader and the Java
Pairing Based Cryptography Library (jPBC) provided by Angelo de Caro (http://gas.
dia.unisa.it/projects/jpbc/). Source code is available upon request.

http: //gas.dia.unisa.it/projects/jpbc/
http: //gas.dia.unisa.it/projects/jpbc/


4

4.4 Framework Implementation 101

Location

C

Host
Manager

Host
Manager

Host
Managersensor (TMM)

Location 
Manager

TTP

Service
WS

Gateway

External
Web

Service

←
"m

ea
su

re
m

en
ts

re
su

lts
 →

SLA Negotiation

migration

Resource availability

communication

P

R
es

ou
rc

e 
av

ai
la

bi
lit

y

(2)

(1)

(3)

(4)

(5)

Figure 4.10: Monitoring framework deployment in AgentScape.

After negotiation, the consumer agent optionally migrates to this Location
to access the chosen service (see step 4). Depending on the chosen monitor-
ing policy, services are monitored either actively or passively. An autonomous
TTP agent performs active monitoring and periodically communicates directly
with TMMs relevant to the chosen service. The TTP requests measurements
and collects results (see step 5). These results are analyzed and violations
are detected. The inner workings of the TTP resemble the Monitoring Pro-
cess depicted in Figure 4.1. Consumer and provider agents perform passive
monitoring directly with one another, with no additional TTP.

To improve scalability, the TTP supports several modes of decentraliza-
tion. Figure 4.11 shows the different lines of communication for the different
modes. In the simplest mode, a single TTP agent is responsible for all Loca-
tions in a given World. This single TTP agent (see Location A) communicates
with all TMMs in all Locations to monitor services. This mode is highly cen-
tralized and better suited to small deployments. An additional mode creates a
single TTP agent per Location. All TMMs in a given Location are controlled
by this TTP (see Locations A, B and C). This is better suited to medium
deployments. The final mode creates multiple TTP agents per Location based
on demand (see Location X). If the number of active SLAs increases beyond a
given threshold, an additional TTP agent is created. Current SLAs are mon-
itored by the first TTP and new SLAs are monitored by the newly created
TTP until both TTPs are equally loaded. Once both TTPs are responsible for
the same number of SLAs, new SLA monitoring responsibilities are divided
evenly across them following a round-robin strategy. If the number of active
SLAs increases beyond the given threshold for both TTPs, an additional TTP
is created.



4

102 Service Monitoring in Open Environments

Location A Location CLocation B

TTP
agent

TMMs
(sensor)

TTP
agent

TTP
agent

TMMs
(sensor)

TMMs
(sensor)

Location X

TTP
agent

TTP
agent

TMMs
(sensor)

TTP
agent

centralized component
or communication
decentralized component
or communication

Figure 4.11: Centralized and decentralized TTP modes.

Experiment Mode Agents Interval Mediation %

MessagesA Active 2 10, 20, ..., 120 N/A
MessagesP Passive 2 10, 20, ..., 120 0%, 10%, 30%, 50%
BytesA Active 2 10, 20, ..., 120 N/A
BytesP Passive 2 10, 20, ..., 120 0%, 10%, 30%,50%

ScalingMsgsA Active 2-100 30 N/A
ScalingMsgsP Passive 2-100 60 0%
ScalingCPUA Active 64 - 4096 10 N/A
ScalingCPUP Passive 64 - 4096 60 0%

Self-Adaptive Active & Passive 2 10, 20, 60, 90 N/A

Table 4.2: Overview of experiments.

Monitoring agents (TTP) are robust against failures. These agents are
automatically restarted with current data if they crash unintentionally. Data
persistence is achieved by routinely writing crucial information, such as the
state of the SLA, to the agent container on disk. Active SLAs and monitoring
data are recovered from the persistent container file and monitoring continues
with minimal disruption.

4.5 Experimental Validation

Several experiments measure communication, CPU overhead and scalability.
The first set of experiments measures communication overhead. The second
set of experiments examines the scalability of each monitoring mode. The final
set illustrates using modes together as a self-adapting monitor, as proposed in
this dissertation. Table 4.2 provides an overview of these experiments.



4

4.5 Experimental Validation 103

Note that these experiments show the difference in overhead between active
and passive modes. However, these experiments do not attempt to define what
level of CPU or network overhead is acceptable or unacceptable. This is a
subjective threshold that is highly dependent on the context and application.
For instance, if resources are cheap and abundant, an agent might find it
acceptable if the monitor uses 99% of the CPU. However, in an environment
with limited network bandwidth, an agent may find it unacceptable if the
monitor uses more than 5% of the bandwidth. An agent customizes his/her
monitoring policy to fit a specific context and application.

4.5.1 Communication Overhead Experiments

The communication overhead experiments include MessagesA, MessagesP , Byt-
esA and BytesP . These experiments compare active and passive modes in
terms of the number of messages per minute and the amount of network traf-
fic in bytes per minute. All experiments run for 30 minutes. All monitoring
related messages are counted and measured (size in bytes). The total count
and size are then divided by 30 to produce the results per minute. Each exper-
iment is repeated with measurement intervals ranging from 10 to 120 seconds,
in increments of 10.

In the MessagesA and BytesA experiments, one consumer and one provider
create an agreement that uses active monitoring with a constant, specified
interval. The experiment uses one TTP and two measurement sensors.

In the MessagesP and BytesP experiments, one consumer and one provider
create an agreement that uses passive monitoring with a constant, specified in-
terval. The experiment uses one TTP. Both of these experiments are repeated
with an additional variable to measure the impact of mediation on commu-
nication overhead. Each round of experimentation uses a different mediation
percentage (0%, 10%, 30% and 50%). A mediation percentage of 10 indicates
that, on average, conflict mediation will be requested 10 percent of the time.

4.5.1.1 Experimental Environment

The communication experiments execute on a single machine. The machine
is a SUN SPARC Enterprise T5240 with 2 multicore 1.2GHz CPUs offering
128 hardware threads and 64GB of RAM. This machine runs Solaris 10 and
AgentScape middleware. Two AgentScape Locations are created: C and P. A
single Consumer agent is hosted at Location C and a single Provider agent is
hosted at Location P. A single TTP is hosted at Location P. This set of exper-
iments uses exactly one Consumer and one Producer agent. Active monitoring
mode uses two sensors (i.e. Trusted Monitoring Modules).



4

104 Service Monitoring in Open Environments

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

10 20 30 40 50 60 70 80 90 100 110 120 

M
es

sa
ge

s p
er

 m
in

ut
e 

Measurement Interval 

Active 

Mediation 50% 

Mediation 30% 

Mediation 10% 

Mediation 0% 

Figure 4.12: Monitoring messages per minute with 2 agents.

4.5.1.2 Experimental Results

The solid, black line in Figure 4.12 depicts the results of the MessagesA ex-
periment. This line indicates the number of messages per minute for active
monitoring mode. When the measurement interval is 10 seconds, the moni-
tor uses 48 messages per minute. As the measurement interval increases, the
number of messages per minute drops. The number of messages per minute
drops below 10 when the measurement interval is greater than or equal to 50
seconds.

The MessagesP experiment results in Figure 4.12 show the number of mes-
sages per minute for passive monitoring mode. The baseline (Mediation 0%)
shows that when the measurement interval is 10 seconds, monitoring uses 22
messages per minute. The average number of messages per minute drops below
10 when the measurement interval is 30 seconds or more.

Several variations of the experiments have varying percentages of conflict
mediation (Mediation 10%, Mediation 30%, Mediation 50%). While there is a
significant difference between no mediation at all and 10% or more mediation,
there is little difference between the frequency of mediation. When the mea-
surement interval is 10 seconds, the ascending mediation scenarios require an
average of 34.6, 35.6 and 37.7 messages per minute, respectively. For all sce-
narios, this number drops below 10 when the measurement interval is greater
than or equal to 50 seconds.

The solid, black line in Figure 4.13 depicts the results of the BytesA ex-
periment. This line indicates the network traffic of active monitoring mode
in bytes per minute. When the measurement interval is 10 seconds, network



4

4.5 Experimental Validation 105

0 k 

200 k 

400 k 

600 k 

800 k 

1000 k 

1200 k 

1400 k 

1600 k 

10 20 30 40 50 60 70 80 90 100 110 120 

B
yt

es
 p

er
 m

in
ut

e 

Measurement Interval 

Mediation 50% 

Mediation 30% 

Mediation 10% 

Mediation 0%  

Active 

Figure 4.13: Monitoring bytes per minute with 2 agents.

traffic is 16k. Traffic drops below 4k when the measurement interval is greater
than 40 seconds.

The BytesP experiment results in Figure 4.13 show the network traffic
of passive monitoring mode in bytes per minute. The baseline (Mediation
0%) shows the scenario when there is no conflict mediation requested (i.e.
participants do not detect violations). When the measurement interval is 10
seconds, monitoring generates 348k bytes per minute of network traffic. Traffic
drops below 100k when the measurement interval is 40 seconds or greater.

Several variations of the experiment have varying percentages of conflict
mediation (Mediation 10%, Mediation 30%, Mediation 50%). These scenarios
generate significantly more bytes per minute on average than the baseline
scenario. While there is a significant difference between no mediation at all
and 10% or more mediation, there is little difference between the frequencies
of mediation. When the measurement interval is 10 seconds, the mediation
scenarios generate an average network traffic of 1,243k, 1,328k and 1,479k,
respectively. For all scenarios, traffic drops below 400k when the measurement
interval is 40 seconds or greater.

Tables 4.3 and 4.4 summarize the results. These tables show the aver-
age (AVG) values after the experiments were repeated 10 times. The relative
standard deviation (RSD) indicates the variation of values across the 10 rep-
etitions.



4

106 Service Monitoring in Open Environments

Table 4.3: Summary of messages per minute results.

Messages per minute

Interval 10 20 30 40 50 60 70 80 90 100 110 120

Active
AVG 48.0 24.0 16.0 12.8 10.1 8.3 6.9 6.1 5.3 4.3 4.3 4.0
RSD 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.3 0.1 0.0

Passive
Med 0%

AVG 22.7 12.3 8.5 6.7 5.6 4.8 4.3 3.7 3.5 3.2 3.2 2.9
RSD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Passive
Med 10%

AVG 34.6 19.9 14.2 10.8 8.5 7.3 6.5 5.9 5.6 5.4 4.6 4.5
RSD 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.1 0.1 0.0 0.1 0.2

Passive
Med 30%

AVG 35.6 20.9 14.9 11.6 9.5 8.6 7.3 6.6 5.9 5.6 5.2 4.8
RSD 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1

Passive
Med 50%

AVG 37.7 22.3 15.7 12.1 10.4 8.9 8.0 6.9 6.6 5.8 5.4 4.9
RSD 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

4.5.1.3 Discussion of results

The communication overhead experiments indicate a significant difference be-
tween active and passive mode with regard number of messages per minute
and the total network traffic generated (see Figure 4.12). Passive mode clearly
uses fewer messages per minute than active mode. This difference is clarified
with an explanation of the inner workings of passive mode. When no conflict
mediation is requested, communication occurs directly between consumer and
provider. No TTP or TMM are involved. This results in fewer messages per
minute than the corresponding active mode.

Figure 4.13 illustrates the difference in the network traffic generated by
active and passive mode. Passive mode clearly generates significantly more
bytes per minute than active mode, especially when conflict mediation is re-
quested. If no conflict mediation is requested, consumer and provider exchange
encrypted portions of individual audit logs. These audit logs are much larger
than the simple metrics exchanged in active mode. If conflict mediation is
requested, all agents send the entire audit log to the TTP, resulting in a sub-
stantial increase in network traffic.

4.5.2 Scalability experiments

The scalability experiments include ScalingMsgsA, ScalingMsgsP , Scaling-
CPUA and ScalingCPUP . These experiments investigate the ability of each
monitoring mode to scale in distributed environments.

In the ScalingMsgsA and ScalingMsgsP experiments, consumers and pro-
viders create agreements that use either only the active monitoring mode with



4

4.5 Experimental Validation 107

Table 4.4: Summary of bytes per minute results.

Bytes per minute

Interval 10 20 30 40 50 60

Active
AVG 16.6k 8.3k 5.5k 4.4k 3.4k 2.8k
RSD 0.0 0.0 0.0 0.1 0.1

Passive
Med 0%

AVG 347.8k 185.7k 127.5k 98.4k 81.8k 69.4k
RSD 0.0 0.0 0.0 0.0 0.0 0.0

Passive
Med 10%

AVG 1,243.3k 700.4k 491.9k 357.6k 269.8k 217.5k
RSD 0.0 0.1 0.2 0.2 0.1 0.3

Passive
Med 30%

AVG 1,327.8k 782.8k 535.9k 407.1k 328.0k 296.8k
RSD 0.0 0.1 0.1 0.0 0.1 0.1

Passive
Med 50%

AVG 1,479.0k 856.6k 585.0k 433.1k 383.4k 321.8k
RSD 0.0 0.1 0.1 0.1 0.1 0.1

Bytes per minute (continued)

Interval 70 80 90 100 110 120

Active
AVG 2.4k 2.1k 1.8k 1.4k 1.4k 1.3k
RSD 0.0 0.0 0.0 0.2 0.1 0.0

Passive
Med 0%

AVG 61.0k 52.7k 48.6k 44.4k 44.4k 40.3k
RSD 0.0 0.0 0.0 0.0 0.0 0.0

Passive
Med 10%

AVG 192.2k 181.5k 173.8k 169.9k 138.2k 127.8k
RSD 0.1 0.3 0.3 0.1 0.1 0.3

Passive
Med 30%

AVG 243.5k 220.0k 193.9k 183.1k 171.4k 148.0k
RSD 0.2 0.2 0.3 0.3 0.2 0.2

Passive
Med 50%

AVG 285.3k 237.3k 234.7k 194.4k 180.7k 158.5k
RSD 0.1 0.1 0.1 0.2 0.1 0.1

a fixed interval of 30 seconds or only the passive monitoring mode with a fixed
interval of 10 seconds. These values were chosen based on the performance
of previous experiments. These experiments use one TTP and two TMMs.
As with the previous set of experiments, each of these experiments is run for
30 minutes and results are averaged. Each experiment is repeated with the
number of agents ranging from 2 to 100, in increments of 2.

In the ScalingCPUA and ScalingCPUP experiments, a consumer agent and
a provider agent are launched simultaneously on 32 separate Locations on 32
separate nodes. A consumer chooses a provider from amongst the Locations
using a random function with a uniform distribution. The chosen provider is



4

108 Service Monitoring in Open Environments

always located on a different node than the consumer. After choosing a pro-
vider, the consumer creates an agreement that uses monitoring. ScalingCPUA

uses active monitoring mode with an interval of 10 seconds. ScalingCPUP uses
passive mode with an interval of 60 seconds. These values are chosen based
on the performance of previous experiments.

A new consumer agent and provider agent are launched every 5 seconds
until the desired number is reached. For the first run, this number is 64 (2 per
node). The number of agents increases by 64 on each consecutive run until
reaching 4096 (128 per node). The entire process is repeated 5 times and the
CPU load results for all 32 participating nodes are averaged.

4.5.2.1 Experimental environment

The first set of scalability experiments (ScalingMsgsA, ScalingMsgsP ) use the
same machine and configuration as the communication overhead experiments.

The second set of scalability experiments (ScalingCPUA, ScalingCPUP )
use the Distributed ASCI Supercomputer [8] - version 4 (DAS-4)2. A single
AgentScape World combines 33 independent nodes of the DAS-4 grid. Each
node has a 2.4 GHz processor, 24GB of memory and runs CentOS Linux.
Gigabit ethernet connects the machines. One node runs only a single Agent-
Scape Lookup Service that provides listings of all known Locations. On the
remaining 32 nodes, a single AgentScape Location runs with a single TTP
Agent. Thus, there are 32 TTP Agents in the World.

4.5.2.2 Experimental results

Figure 4.14 shows the ScalingMsgsA and ScalingMsgsP experiment results.
These results indicate the messages per minute of the two monitoring modes
as the system scales to 100 agents. Both modes scale linearly, but passive
mode requires fewer messages, overall.

Figure 4.15 presents the results of the ScalingCPUA and ScalingCPUP

experiment results. These results demonstrate the scalability of both modes
of monitoring in a highly distributed environment. Active mode performs
better than passive mode. Even with 4096 agents in the system, each being
monitored at 10 second intervals, the average CPU load remains below 0.5%.
The passive mode approaches 4% with 4096 agents being monitored at 60
second intervals.

2http://www.cs.vu.nl/das4/

http://www.cs.vu.nl/das4/


4

4.5 Experimental Validation 109

0 
100 
200 
300 
400 
500 
600 
700 
800 
900 

2 16 30 44 58 72 86 100 

M
es

sa
ge

s p
er

 m
in

ut
e 

Total number of agents (consumers & providers) 

Active 30 

Passive 60 

Figure 4.14: Message overhead with increased scalability

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

64
 

25
6 

44
8 

64
0 

83
2 

10
24

 
12

16
 

14
08

 
16

00
 

17
92

 
19

84
 

21
76

 
23

68
 

25
60

 
27

52
 

29
44

 
31

36
 

33
28

 
35

20
 

37
12

 
39

04
 

40
96

 

Av
er

ag
e 

C
PU

 lo
ad

 %
 

Total number of agents (consumers & producers) 

Passive 60 

Active 10 

Figure 4.15: Average CPU load of large scale monitoring on DAS-4.

4.5.2.3 Discussion of results

Figure 4.14 indicates that both monitoring modes scale linearly, in terms of
communication overhead. Doubling the number of agents doubles the number
of messages. Figure 4.15 indicates that both monitoring modes scale in large,
distributed systems with only minimal computational overhead. In active
mode, CPU load is affected by the interval of measurement. In passive mode,
CPU load is determined by both the interval of measurement and the frequency
with which mediation is requested.

The passive mode has a higher average CPU load than the active mode.
The CPU-intensive cryptographic computations account for this difference3.
Active mode requires no cryptography, as security is guaranteed by the TTP.

3In particular, the BLS implementation is chosen only for its functionality. This code is
not optimized for production level systems.



4

110 Service Monitoring in Open Environments

What is not visible in these particular figures is the level of interaction
with the TTP. In passive mode, there is only a minimal amount of interaction
with the TTP (e.g. exchanging cryptographic keys). The consumer and pro-
vider perform all computations, including measurements and cryptography. In
contrast, active mode relies on the TTP to perform all measurements. With
this in mind, the active mode (see Figure 4.15) essentially depicts the CPU
load at the TTP. The corresponding CPU load at the consumer and provider
is insignificant. In contrast, the passive mode essentially depicts the average
CPU load at the consumer and provider. The corresponding CPU load at the
TTP is insignificant.

4.5.3 Self-adaption experiment

The Self-Adaptive experiment combines both modes and provides an example
of the self-adaptive monitoring approach proposed in this dissertation. This
experiment shows the changes overhead as the monitoring process dynamically
switches between intervals and modes.

One consumer and one provider create an agreement that begins with an
active monitoring mode with an interval of 10 seconds. Both agents use the
same monitoring policy that specifies that after 5 minutes without violations,
the Risk Level decreases. This decrease is reflected by increasing the moni-
toring interval or changing modes. When an agent detects an SLA violation,
mediation is requested. The result of mediation is to increase the Risk Level.
This increase is reflected in the monitoring level by resetting to the initial
configuration of active mode with an interval of 10 seconds. The self-adaptive
experiment is repeated 10 times and the CPU load results are averaged.

4.5.3.1 Experimental environment

The Self-Adaptive experiment runs on a network of two machines connected
across gigabit ethernet. The first machine has a 2.0GHz dual core CPU and
1GB of RAM. The second machine has a 2.0GHz dual core CPU and 2GB of
RAM. Both machines run Ubuntu Linux and AgentScape middleware. Two
AgentScape Locations are created, one on each machine: C and P. A consumer
agent is hosted at Location C and a Producer agent is hosted at Location P.
A single TTP is hosted at Location P.

4.5.3.2 Experimental results

The Self-Adaptive experiment results in Figure 4.16, provide an overview of
the self-adaptive monitoring process. Average CPU usage is indicated by the
solid, black line. Average messages per minute is indicated with shaded, grey



4

4.5 Experimental Validation 111

0 

10 

20 

30 

40 

50 

60 

0 

10 

20 

30 

40 

50 

60 

70 

80 

0 200 400 600 800 1000 1200 

M
es

sa
ge

s p
er

 m
in

ut
e 

C
PU

 lo
ad

 %
 

Time in seconds 

Messages/minute CPU load 

Figure 4.16: Overhead of self-adaptive monitoring with two agents.

bars. In active modes, CPU usage has a consistent pattern reflecting the 10
and 20 second monitoring interval, respectively. The number of messages per
minute is relatively high. In passive modes, consistent CPU usage reflects the
60 and 90 second monitoring interval, respectively. The number of messages
per minute is substantially lower. CPU usage surges when conflict mediation
is requested. This surge reflects the additional cryptography required to verify
the messages and aggregate signatures in the audit logs.

4.5.3.3 Discussion of results

This experiment demonstrates how monitoring overhead is reduced when agents
feel there is little threat of violation. This experiment uses a self-adaptive mon-
itoring policy that starts with a high level of perceived risk. After a period of
time without incident, the level of perceived risk lowers. This is reflected by
increasing the measurement interval and thus reducing overhead. Eventually,
this leads to a switch to passive mode, which reduces dependence on a TTP.

If a violation is detected, mediation is requested. This may result in a
higher level of perceived risk and a correspondingly high level of monitoring.
This significantly increases the message and CPU overhead but offers higher
assurance. By adjusting the monitor to match the level of perceived risk,
overhead is substantially reduced when possible.



4

112 Service Monitoring in Open Environments

4.6 Related Work

There is growing interest in the monitoring of SLAs in distributed environ-
ments. The Lattice Monitoring Framework (LMF) detailed in [35] has been
designed as a resource monitor for virtualized environments, such as the Cloud.
This framework makes a clear separation of roles between service providers
and infrastructure providers. For instance, Dropbox4 is a service provider and
Amazon S35 is the infrastructure provider. LMF aims to monitor services
across multiple infrastructure providers (e.g. across different administrative
domains). However, it is not clear which participant has access to the actual
measurements, and therefore, could potentially tamper with measurement re-
sults. In contrast to the approach presented in this dissertation, LMF is
designed specifically as a tool for the provider and is thus hidden from the
consumer. No Trusted Third Party (TTP) is employed to ensure that mon-
itoring results are correct. Thus, the consumer must trust that the provider
performs measurements correctly and does not tamper with the results.

The SLA@SOI project6 incorporates the monitoring framework presented
in [37]. This approach also focuses on the provider’s perspective. The frame-
work collects and stores historical monitoring data during negotiation to eval-
uate the SLA offers made by a customer. Furthermore, the system checks the
SLA at runtime to determine if the terms are capable of being monitored at
all. This is referred to as the monitorability of the SLA. Each service provider
has a list of terms for which the required measurement logic and sensors are
available. If a new SLA has terms that are not compatible with this list and
therefore not monitorable by this particular provider, the SLA is rejected. The
system is completely controlled by the provider and is opaque to the consumer.
The system has no objective party (e.g. TTP), thus consumers must implicitly
trust that the provider does not manipulate monitoring results.

[54] proposes an SLA framework using SLA as a mechanism for service
providers to keep track of QoS commitments. Providers monitor system met-
rics to determine if QoS commitments are being met and then dynamically
provision resources to prevent over- or under provisioning. [160] describes a
similar framework. The service provider monitors SLAs internally for pos-
sible violations. If necessary, the system automatically replicates services to
meet obligations, such as response time and transaction rate. In effect, both
of these systems are SLA driven load-balancing systems. They provide tools
for the provider to optimize system load while meeting SLA obligations. In

4Dropbox is a file hosting service that, in turn, uses the Amazon S3 storage service:
http://www.dropbox.com/

5Amazon S3 is an online file storage service: http://aws.amazon.com/s3/
6http://sla-at-soi.eu/

http://www.dropbox.com/
http://aws.amazon.com/s3/
http://sla-at-soi.eu/


4

4.6 Related Work 113

contrast to the approach presented in this dissertation, there is no TTP and
the systems are only designed for internal QoS monitoring at the provider.
Fairness towards the consumer and transparency of the monitoring process
are not considered.

A mechanism for enforcing SLAs for scientific computing is presented
in [115]. This mechanism is tailored to deadline-driven batch jobs, such as
in scientific compute grids. At runtime, a fuzzy prediction algorithm esti-
mates the amount of resources needed for each job. Using this estimation, the
system determines if an SLA can be met and accepts or rejects a job accord-
ingly. If a job is accepted, it is assigned a software agent. This agent monitors
a job during its lifetime and dynamically increases resources to ensure that its
SLA is not violated. Similar to some of the frameworks described above, this
system is not designed to ensure transparency of the monitoring process for
consumers. Consumers must implicitly trust the monitoring results from the
provider.

The self-adaptive SLA monitoring framework proposed in this dissertation
differs from the frameworks described above. First, the approach proposed in
this dissertation explicitly establishes the role of a dedicated TTP. This ensures
that monitoring results are accurate and neither agent is able to manipulate
the outcome.

Using a TTP to guarantee the objectivity of monitoring results also affects
the relationship between consumer and provider. The monitoring framework
views the consumer and the provider as equal participants. As such, the
monitoring framework is equally transparent to both participants. This allows
both participants, not just the provider, to trust the monitoring results. Both
participants have equal access and equal influence on the monitoring data.
This equality balances the power between participants. In the frameworks
described above, the provider holds a more powerful position as sole controller
of monitoring data. The consumer is placed in a weaker position and must
assume the provider is honest and does not secretly manipulate monitoring
data.

In contrast to the monitoring approaches discussed thus far, an approach
that acknowledges and addresses the issue of trust is the QoS-MONaaS frame-
work presented by [145]. This is an extension to the SRT-15 middleware7.
This system is specifically designed to support trustworthiness of monitor-
ing results. This system uses an anonymizer function to ensure fairness in
measurement. Essentially, the anonymizer strips identifying information from
measurement requests. The claim is that because the monitoring framework
does not know the identity of an agent that requests measurement results,

7http://www.srt-15.eu

http://www.srt-15.eu


4

114 Service Monitoring in Open Environments

there is no incentive to tamper with these results. For example, in a sce-
nario where both a consumer and a provider request monitoring results, the
monitoring framework is unable to intentionally provide correct results to the
provider and tampered results to the consumer. The framework would have
no way of knowing which agent would receive which set of results. While this
monitoring approach addresses the issue of trust, it does not address the issue
of adaptation.

In contrast to the monitoring frameworks described above, some monitor-
ing techniques are able to dynamically adapt monitoring policy at run-time
based on environmental limits or changes in priorities. For instance the moni-
toring approach proposed in [83] collects system notifications from distributed
nodes and dynamically adjusts the frequency of notifications, based on CPU
load. The higher the load (e.g. more agents in the system), the lower the
frequency of notifications. [110] describes another example of dynamic mon-
itoring in the form of an adaptive system monitor. This monitoring process
attempts to reduce monitoring overhead by pre-selecting and focusing on key
metrics. Only when an anomaly is detected in one of these key metrics, does
the monitoring process adapt by increasing the number of related metrics that
are continuously monitored. Effectively, this monitoring process is able to
‘zoom in and out’ of areas when problems are detected.

The self-adaptive SLA monitoring framework proposed in this dissertation
differs from these two approaches. First, not only does the approach proposed
in this dissertation react to changes in system overhead, but also to changes
in the level of perceived risk. Secondly, rather than only adjusting the mea-
surement interval, the monitoring process is able to switch between two major
modes of monitoring: active and passive. In the passive mode, dependence
on the TTP is significantly reduced. This dependency reduction results in a
reduction in costs and an increase in the ability of the system to scale.

4.7 Conclusions

Services are monitored to ensure that SLA obligations are being met by all
participants. Monitoring offers assurance that SLA violations are detected and
the responsible participant is identified. This makes it possible to penalize the
offending participant or take corrective action.

Service monitoring in open environments presents several challenges, in-
cluding trust, scalability and dynamism. Participants are not implicitly trust-
worthy and may wish to deceive other participants. To prevent a partici-
pant from influencing monitoring results this dissertation proposes the use
of an external, impartial monitoring service. An example of such a service



4

4.7 Conclusions 115

is a Trusted Third Party (TTP). A TTP uses Trusted Monitoring Modules
(TMM) to perform measurements securely such that results are trustworthy
to all participants.

Open environments are inherently distributed across many geographical ar-
eas and administrative domains. In such environments, centralized monitoring
approaches is a possible bottleneck. Therefore, this dissertation proposes dis-
tributing monitoring activities and data across multiple participants. This is
accomplished by the use an alternative monitoring technique, referred to as
passive monitoring. Passive monitoring distributes monitoring responsibilities
across the consumer and provider. This reduces interactions with the TTP
and thus allows the TTP to handle more clients concurrently. The issue of
trust is addressed using several cryptographic primitives.

Another challenge of open environments is that of dynamism. Open sys-
tems are subject to contestant change, including participant reputation and
the relative importance of a particular service transaction. These changes may
affect a participant’s perceived level of risk. This is a function of the likelihood
of failure and the impact of such a failure. This directly affects a participant’s
monitoring needs. This dissertation proposes that a monitor should adapt
itself to those monitoring needs.

A self-adaptive monitor proposed in this dissertation dynamically switches
between the traditional active mode and the cryptographic passive mode. Fur-
ther adaptation is possible by fine-tuning the measurement interval. The mon-
itor increases the level of monitoring when participant’s perceived level of risk
increases, and vice versa. This results in high monitoring assurance when
needed and reduced monitoring overhead when possible. The self-adaptive
monitor is implemented and experimentally validated in the AgentScape mid-
dleware.



116 Service Monitoring in Open Environments



CHAPTER5
Use Cases:
Smart Energy Grid
& Cloud Computing

The automated negotiation and monitoring techniques presented in the pre-
vious two chapters form an important part of an integrated framework. This
framework supports marketplace agents throughout the lifecycle of SLAs, in-
cluding service discovery, agreement negotiation, provisioning and monitoring.
The framework provides a structured and trusted platform for agents to pro-
vide or consume services in dynamic, open environments.

The applicability of the negotiation and monitoring framework is demon-
strated in this chapter for two use case scenarios: (1) the Smart Energy Grid
and (2) Cloud computing. These two scenarios are chosen as they repre-
sent socio-technical systems [181], involving both technical aspects (e.g. soft-
ware, hardware) and social aspects (e.g. usability, user participation and ac-
ceptance). These scenarios contain technical challenges, including highly dy-
namic resources and open, untrusted networks. In addition, these scenarios
must accommodate human users, enable human participation and encourage
human acceptance. Achieving full potential of socio-technical systems requires
addressing both social and technical challenges.

In the case of the Smart Energy Grid, climate and pollution considera-
tions drive adoption of renewable resources. (Semi) autonomous, automated

This chapter is based on three published papers [30–32].



5

118 Use Cases: Smart Energy Grid & Cloud Computing

technologies, such as proposed in this dissertation, enable more efficient use
of renewable resources and reduce wasted energy. In the case of Cloud com-
puting, both companies and private citizens increasingly rely on Cloud-based
solutions. (Semi) autonomous, automated technologies reduce costs and in-
crease efficiency.

This chapter proceeds as follows. First, an overview introduces the main
concepts of future energy markets, including challenges and solutions. Sec-
ondly, this chapter presents an multiagent solution to automate an energy
market. Thirdly, a use case scenario demonstrates the applicability of the tech-
niques proposed by this dissertation to energy markets. Fourthly, an overview
introduces the main concepts of Cloud computing, including the challenges of
standardization. Fifthly, this chapter presents the Intelligent Cloud Resource
Allocation Service (ICRAS) that combines the negotiation and monitoring
techniques proposed by this dissertation. Sixthly, a use case scenario demon-
strates the applicability of ICRAS to the Cloud services market.

5.1 Dynamic Services in the Smart Energy Grid

Global investment in renewable energy has grown by more than 600% since
2004 [104]. Growing concerns for the environmental impact of fossil fuels (e.g.
CO2 emissions) fuel this trend. Many countries are investing in renewable
(or ‘green’) energy sources and new, advanced infrastructure. The European
Union has set a goal for its member countries to use renewable sources for
at least 20% of total energy consumption by 2020 [36]. In Germany, the
government recently unveiled plans to invest 20 billion euro in a new energy
network to support a goal of 80% energy from renewable resources [98]. In the
Netherlands, the percentage of total energy production from renewable sources
has quadrupled in the past decade1. The energy landscape of the future is
becoming ‘greener’, but the influx of renewable energy presents a challenge to
the current energy grid. Automated, coordination mechanisms and incentives
meet these challenges, by reducing wasted overcapacity for producers, lowering
prices for consumers and increasing overall utilization of green energy sources.
The following sections describe the characteristics and technologies of this
green energy future.

1Centraal Bureau voor de Statistiek. http://www.cbs.nl/nl-NL/menu/themas/
industrie-energie/publicaties/artikelen/archief/2010/2010-3105-wm.htm. Ac-
cessed: September 2012

http://www.cbs.nl/nl-NL/menu/themas/industrie-energie/publicaties/artikelen/archief/2010/2010-3105-wm.htm
http://www.cbs.nl/nl-NL/menu/themas/industrie-energie/publicaties/artikelen/archief/2010/2010-3105-wm.htm


5

5.1 Dynamic Services in the Smart Energy Grid 119

5.1.1 Future Energy Markets

As more green energy sources are harnessed, it becomes more difficult for
future energy markets to utilize them efficiently. The energy market attempts
to match energy production and consumption (i.e. supply and demand). The
balance of energy generation and production is a substantial challenge even
when using traditional, continuous energy sources, such as coal power. Green
energy sources, such as wind power, further complicate this balance as they
are intermittent and unpredictable.

Intermittent production complicates power generation and transmission
planning. This, in turn, complicates the process of matching supply and de-
mand, leading to market inefficiency. For instance, energy demand at the office
rarely coincides with weather conditions at the wind park. It is estimated that
most wind farms have an effective capacity of 10% of full potential [129]. This
means that only 10% of full potential power reaches consumers, when con-
sumers need it, due to planning and coordination difficulties. Such mismatches
between supply and demand result in an inefficient market with substantial
wasted potential energy.

The challenge of intermittent generation is exacerbated by a lack of inex-
pensive, abundant energy storage technologies. Traditional chemical batteries
are too small and too expensive to handle the current storage needs. Demand
is increasing for wider application of alternative technologies, including me-
chanical flywheels [91], new battery construction (e.g. liquid metal batteries2),
pumped hydroelectric energy storage (PHES)3 and the use of electric vehicles
for energy storage [128]. However, at present no cost-effective techniques exist
to store electrical energy on a large-scale. Therefore, energy is either consumed
at virtually the same moment it is generated or it is wasted.

Distribution of energy generation will also change with the influx of green
technologies. Rather than the current paradigm of centralized power stations,
a larger percentage of power will be generated by distributed resources. For
instance, consumers install solar panels and micro combined heat and power
(micro CHP) stations4. Currently, overcapacity generated by these distributed

2Clean Technica. http://cleantechnica.com/2012/02/20/mit-liquid-batteries-
for-utilities-could-make-renewables-competitive-and-it-is-not-lithium-ion/.
Accessed: June 2012.

3PHES stores energy using electric powered pumps to push water uphill when electricity
(e.g. from a wind farm) is plentiful and demand is low. When demand is high and electricity
is scarce, water is released to flow downhill, through turbines to generate electricity [38].

4Micro CHP is a small gas powered turbine installed in a residential area, near the end
customers, that converts gas into both electricity and heat. Performing the conversion near
the end users reduces transmission losses and allows efficient use of heat produced as a
by-product of conversion [45].

http://cleantechnica.com/2012/02/20/mit-liquid-batteries-for-utilities-could-make-renewables-competitive-and-it-is-not-lithium-ion/
http://cleantechnica.com/2012/02/20/mit-liquid-batteries-for-utilities-could-make-renewables-competitive-and-it-is-not-lithium-ion/


5

120 Use Cases: Smart Energy Grid & Cloud Computing

resources is sold back to a single retailer. This retailer is then confronted with
the complex task of reselling and redistributing this sporadically generated
energy. To reduce the complexity on centralized management (i.e. retailer),
groups of small-scale producers and consumers form microgrids or Virtual
Power Plants (VPPs) that supply each others’ energy demands, independently
from the rest of the energy grid [66,138].

To cope with the added complexity of intermittent energy sources and
distribution of production, a new energy management approach has been pro-
posed: the Smart Grid [61,138]. Two key attributes of the Smart Grid are (1)
bi-directional flow of information and (2) demand-side management. Informa-
tion flow includes real-time metering of user consumption (e.g. smart meters5)
such that producers quickly detect and respond to changes in demand. In-
formation flow also includes providing consumers with real-time data about
energy availability (e.g. current production levels at the local wind farm) and
price (e.g. demand is low, thus the current price is reduced). Information flow
is critical to enabling consumer participation.

The following sections introduce two techniques for improving efficiency
of future energy markets, increasing green utilization and reducing wasted
energy.

5.1.1.1 Demand Side Management

One possible solution to market inefficiency, caused by intermittent genera-
tion, is Demand Side Management (DSM). DSM is a technique of dealing
with fluctuations in energy production by modifying demand to match sup-
ply [62, 124, 161]. As production of energy cannot be shifted in some cases
(e.g. wind power), DSM attempts instead to shift demand at the consumer
end. Demand shifting occurs when an energy consumer reacts to changes in
the energy market (e.g. price, availability and so on) by increasing or decreas-
ing consumption.

Traditionally, the complex task of matching supply to demand is handled
entirely by the producers of energy. DSM enables end consumers to partic-
ipate in this task by temporally shifting energy consumption in response to
signals from the market, such as price. Typically, economical incentives en-
courage consumers to reduce consumption during peak periods, when energy
is scarce and expensive. One form of DSM is time-of-use schemes that of-
fer different energy prices based on time of day. Typically, nighttime prices
are substantially lower than daytime prices due to the demand of businesses
during working hours. A consumer is thus economically rewarded for running

5A smart meter is a device to measure electricity usage and communicate usage informa-
tion to the consumer and/or energy provider in (semi) real-time [170].



5

5.1 Dynamic Services in the Smart Energy Grid 121

washing- and drying machines during the night rather than during the day.
Unfortunately, time-of-use schemes have unwanted side-effects that result in
significant usage peaks as soon as the lower tariff period begins [138]. A more
dynamic approach is required.

DSM offers many benefits, including the reduction of overcapacity. Cur-
rently, energy producers generate approximately 20% more energy than is
required at a given moment [161]. This overcapacity is needed to handle
unforeseen peaks in demand or problems with production. DSM encourages
consumers to avoid creating such peaks and thus the margin of overcapacity
is reduced. In some cases, this reduces wasted energy and costs [138].

Another benefit of DSM is the increased utilization of intermittent sources.
Renewable sources of energy, such as wind power, produce power intermit-
tently, as opposed to the consistent power provided by traditional sources,
such as coal. Intermittent production means that energy is not produced to
match consumption patterns, but rather is produced sporadically (e.g. de-
pending on the weather). Due to the unpredictable production schedule of
intermittent sources, large amounts of potential energy are wasted [129].

DSM requires communication, incentive and action mechanisms. First, the
market must communicate with consumers to inform them of changes in price
or (green) availability. Secondly, consumers require an incentive to react to
these market signals. One possible incentive mechanism is Real-Time Pricing
(RTP) which informs consumers of price changes, in real-time, that reflect
current energy availability.

5.1.1.2 Real-Time Pricing

Most often, consumers sign long-term contracts with energy providers for a
fixed price per kilowatt hour (kWh). This approach stabilizes prices for con-
sumers, but lacks the incentives necessary for consumer initiated demand shift-
ing. An alternative to this approach is real-time pricing (RTP). Under this
scheme, consumers pay the current price of energy as determined by conven-
tional market forces (e.g. supply and demand). When demand is high, the
price of energy increases and vice versa. RTP thus offers a tangible incentive
to reduce consumption during peak demand periods and shift this consump-
tion to low demand periods. The intended results of RTP are (1) increase
market efficiency (i.e. matching supply and demand) (2) reduce overall en-
ergy production and (3) empower consumers to take an active role in reducing
energy costs.

In some cases, research shows that real-time pricing is effective at increas-
ing market efficiency [16,40]. Simulations show that real-time pricing is more
than five times as efficient as time-of-use schemes [17]. If consumers are aware



5

122 Use Cases: Smart Energy Grid & Cloud Computing

of the current price of electricity (e.g. hourly feedback), they reduce consump-
tion when electricity is expensive and shift usage to periods when prices are
cheap [3]. If these prices reflect the current market conditions, such as current
production capacity and consumer demand, then the result is that consumers
reduce demand when supply is limited and increase when supply is abundant.
Matching supply to demand reduces wasted energy (i.e. produced but uncon-
sumed) and increases overall market efficiency.

Several energy providers offered RTP to customers on a voluntary basis
with varying results [10]. In general, the goals of reducing price and overall
production load were met. On average, RTP schemes reduced energy load
between 12% and 33%. However, most customers failed to respond to hourly
changes in price, unless the price rose above a certain threshold. In most cases,
the shortcomings of the RTP scheme are traced to implementation faults rather
than a fundamental problem with the theory. For instance, many consumers
lacked user-friendly feedback mechanisms (e.g. smart meter) or felt that the
correlation between prices and usage was not transparent and therefore lacked
trust in the scheme.

An often cited failure of RTP was the California energy crisis of 2000 [16].
This application of RTP led to extreme price volatility with disastrous con-
sequences. Researchers conclude that crisis was the result of a poor market
design that allowed producers to exercise market power by artificially reducing
supply to increase prices [16].

When applied efficiently, RTP (1) stabilizes demand which simplifies the
task of production management and (2) increases market efficiency, thus al-
lowing waste reduction (e.g. supply overcapacity) [17]. In this case, RTP is
five times as efficient as time-of-use schemes (e.g. day- and nighttime tariffs).
Price volatility is mitigated using a combination of long-term contracts be-
tween wholesalers and RTP for end users [16] or a two-part rate scheme that
combines an energy quota at a fixed price with RTP for deviations from that
quota [10].

Automation technologies currently exist to coordinate information flows
and assist consumers with DSM. Modern smart meters combined with intelli-
gent agent technology automates the tasks of (1) monitoring energy prices, (2)
negotiating (e.g. double auctions) and (3) coordinating demand shifting [46].
This alleviates the burden of manually reacting to RTP to efficiently reduce
costs and better utilize green energy. The following section discusses these
automation techniques.



5

5.1 Dynamic Services in the Smart Energy Grid 123

5.1.2 Energy Market Automation

Online markets exist for many areas of commerce, including Web- [26], Grid-
[23], Cloud Services [24] and (industrial) Energy Auctions. An online market-
place is essentially a location where providers electronically advertise services
and consumers discover and access those services. A marketplace offers addi-
tional services and structure, such as an explicit ontology, terminology, proto-
cols and facilitation. Facilitation may include assistance discovering services,
negotiating prices or resolving conflicts.

Online markets are organized such that consumers are able to compare
services and choose between competing providers. A standardized language
is defines (compositional) services. Standardized protocols make it possible
to switch seamlessly between providers. A marketplace typically offers some
type of directory service, where providers publish available services. Option-
ally, third-party brokers actively match customers to appropriate providers.
Agreements reached between participants are formalized using Service Level
Agreements (SLA).

Many market processes are (partially) automated with technologies, such
as software agents. Agents are proposed to model and manage complex, dis-
tributed systems, such as the energy market [19,51,71,86,173]. Separate agents
represent each unique role of the energy market, including energy consumer,
producer, mediator, broker and so on. In some cases, agents take on dual-
roles. For instance, a residential consumer becomes a producer if solar panels
are installed on his/her roof. Additional agents are represent transmission
companies, distribution companies and independent system operators.

An important prerequisite for user acceptance is that users trust the Multi
Agent System (MAS), especially with regard to critical tasks [72, 73, 101].
Transparency enhancements, auditing mechanisms and third-party certifica-
tion, are built into the system to promote trust and acceptance.

Agent technology is applied to the energy market to assist human actors
with monitoring and responding to real-time information quickly and effi-
ciently. Removing the need for constant human interaction makes it possible
to increase the speed and frequency of market interactions. In addition, in-
telligent automation is often able to react faster than humans in complex,
dynamic systems that may be difficult for humans to understand and follow.
Another crucial market process is negotiation. After a consumer discovers a
provider with a particular service (e.g. wind energy), the two participants at-
tempt reach an agreement regarding the terms and conditions of the service,
including price and Quality of Service (QoS) (e.g. uptime, time to repair an
outage, minimum green percentage).



5

124 Use Cases: Smart Energy Grid & Cloud Computing

5.1.2.1 Multiagent Energy Market

This dissertation assumes that agents represent consumers and providers in
future energy markets. A residential consumer is represented by an agent.
This agent requires (access to) a consumer’s personal preferences, such as favor
local producers or priority lists such as solar, wind, biomass, nuclear. Internal
decision rules allow this agent to access a given situation (e.g. evaluate an
offer) and take action (e.g. reject the offer). An important instance of decision
rules is negotiation strategy. This strategy guides the negotiation process and
determines when to accept, reject or counter an offer. The agent also requires
(access to) information regarding the consumer’s historical energy usage. This
information influences negotiation strategy.

In addition, this agent has (limited) control of energy consumption in the
home. For instance, access to ‘smart’ appliances such as refrigerators or clothes
dryers. At a minimum, the agent must be able to monitor energy usage, turn
on and turn off the appliance via some type of network. Additional intelli-
gence indicates priorities and special requirements of individual appliances.
For instance, a refrigerator may safely be turned off for a short period of
time without serious consequences. However, it may be unacceptable if the
television were to turn off in the middle of a show.

A consumer agent finds the best deal among energy providers, given a set
of preferences. An example of preferences could be (1) minimize price and (2)
maximize green energy. The consumer agent surveys the marketplace to find
providers offering suitable services. If one or more suitable providers are found,
the agent negotiates the terms and conditions of service with the selected
provider(s). If an agreement is reached an SLA is created. The provider then
begins service provisioning. During the lifetime of the agreement, the agent
monitors the service to ensure that the terms and conditions are met. The
monitoring process builds a secure audit log of all transactions. If a violation
is detected, penalties are applied. In the case of a dispute, the audit log is
consulted to resolve the conflict and advise appropriate action. The entire
process is repeated regularly (e.g. every hour) to ensure a consumer has the
best price and service.

A consumer agent acts as a smart energy gateway for each end user (e.g.
home or office building). This agent interacts directly with agents that repre-
sent producers of energy. For instance, one agent represents a company con-
trolling a coal power plant and another agent represents a wind farm. These
agents have access to all internal producer data, including current production
capacity, profit margins and current demand. The producer agents negoti-
ate sales to consumers based on this local data and negotiation strategy (e.g.
maximize usage, maximize profit).



5

5.1 Dynamic Services in the Smart Energy Grid 125

Energy market automation is essential to respond effectively to changes in
the market, such as lower prices or abundant green energy, as these changes
occur often and without accurate prediction. Automation supports effective
DSM in real-time. For instance, based on market conditions, an agent may
choose to postpone energy consumption (e.g. clothes dryer). Thus, green en-
ergy production better finds green energy demand.

5.1.2.2 Micro-Agreements

To facilitate RTP and DSM, this dissertation proposes micro-agreements (or
micro-SLAs). Traditional SLAs (see Section 3.1.2) in the energy domain
are negotiated for periods of time ranging from 1 month to several years.
For example, most energy providers offer a minimum period of 1 year and
incentives (e.g. price reduction per unit) to extend the period to several years.
Long-term agreements have the benefit of reducing uncertainty in respective
marketplaces [17]. Consumers are offered a fixed price for a given length
of time, thus reducing exposure to drastic fluctuations in actual supply and
demand. Producers are offered a guaranteed revenue stream that justifies
investment in new infrastructure.

Despite the benefits, long-term agreements also prevent participants from
reacting in real time to market signals. For instance, increased availability
lowers the market price of certain resources offered from a competing provider.
However, a consumer with an active, long-term agreement is unable to break
the agreement to switch to another provider to take advantage of lower costs.
Market signals include price, but also availability of certain, desired resources.
For example, an increase in wind energy production lowers the price of ‘green’
energy from a competing provider. A consumer may prefer green energy, but
is unable to break a long-term contract to make use of this resource. In some
cases, this results in wasted energy [17,138].

In contrast to these long-term SLAs, micro-agreements are negotiated for
significantly shorter periods, such as 1 hour or 1 day. The shorter period
enables consumers to react in real time to market signals. Each period, a
consumer (re)evaluates its energy needs, surveys the energy prices from com-
peting providers and negotiates a new micro-SLA for the next period. When
this agreement expires, the process is repeated. The consumer selects preferred
resources from a provider and takes advantage of lower prices or certain, de-
sired resources (e.g. green energy). For instance, when weather conditions
provide for high availability of green energy, consumers are able to quickly
migrate energy demand to providers offering this preferred resource. In addi-
tion, if a consumer considers all current energy offers to be too expensive, the
consumer may consider shifting his/her energy demand.



5

126 Use Cases: Smart Energy Grid & Cloud Computing

Micro-SLAs are a useful mechanism that allows both consumers and pro-
viders to quickly react to changes in dynamic, open environments. Consumers
actively favor green energy resources over other resources and may utilize as
much green power as possible by maximizing demand during green peak peri-
ods. A secondary effect is the financial rewarding of additional investment by
producers in green energy resources. For instance, micro agreements increase
effective capacity at a wind farm by enabling consumers to immediately react
to increased wind energy production by purchasing energy directly from that
wind farm at the time of production. Higher utilization creates higher revenue.

Micro-SLAs also increase resilience in markets by reducing logical distance
between consumers and providers. This approach brings (small-scale) stake-
holders directly in contact to meet each other’s needs. This reduces logical
fragmentation and increases resilience of the market to naturally respond to
changing conditions [44].

5.1.2.3 Benefits to the Consumer

In this context, a consumer is defined as the end user of electricity in the tra-
ditional market configuration. This includes residential homes and industrial
buildings.

Elimination of static, long-term agreements with a single provider allows
consumers to freely choose the best offer for energy. This creates true market
competition between providers offering the lowest price or best quality product
(e.g. highest renewable percentage). Micro-SLAs increase the buying power of
a single consumer by obliging providers to respond to consumer preferences.
For instance, a small, independent energy provider produces 100% green en-
ergy. Consumers choose to immediately migrate to this provider. This sends
a signal that consumers prefer this energy option. Other providers are obliged
to offer similar products to entice consumers to return.

Micro-SLA also increases the selling power of consumers with local energy
production (e.g. solar panels on a residential roof). Instead of the current,
obligation to sell overcapacity back to a single provider for a fixed price6, pro-
sumers (i.e. consumers who may also produce) offer energy to the marketplace
at large. Pro-sumers may sell overcapacity to a selection of providers or even
to other (local) consumers. In this context, the consumer assumes the role of
provider and attempts to find the highest bidder. The possibility of reselling
energy may further motivate consumers to reduce consumption during peak
periods, because energy sales during these periods are likely to fetch a higher
price.

6In the Netherlands, it is currently neither technically nor administratively possible to
sell self-generated energy to more than one energy provider [116].



5

5.1 Dynamic Services in the Smart Energy Grid 127

Producing consumers (pro-sumers) may also form groups to satisfy energy
needs independently of large, commercial producers. Such groups form a Vir-
tual Power Plant (VPP). A VPP is a collection of small-scale energy providers
and consumers that satisfy each others’ energy needs, independent of the rest
of the energy grid [47,118].

5.1.2.4 Benefits to the Producer

In this context, a producer is defined as the generator of electricity in the tra-
ditional market configuration. This includes, centralized power plants such as
coal, gas and nuclear plants, as well as off-shore wind farms and concentrated
solar farms.

One benefit to the producer is reduction of overcapacity. When consumers
are able to react to price fluctuations, consumption during peak periods is
reduced and less overcapacity is required [17,138]. This reduces wasted energy
resources and increases profit margins.

An additional long-term benefit that stems from reduction of overcapac-
ity is a decrease in capital expenditure and operating expense [161]. Con-
sistent, long-term reduction of overcapacity requirements equates to reduced
investment in production capability. For instance, an additional turbine that
produces 20% of total capacity will not be built and an existing one may be
decommissioned earlier than expected.

Smaller producers with 100% green, intermittent sources compete in a
market place with short-term contracts. In the traditional market, an energy
producer with intermittent sources (e.g. wind) also requires a portfolio of stable
energy sources (e.g. coal) to guarantee its consumers continuous power [129].
This requires significant investment and thus smaller producers sell to other
retailers rather than directly to the end consumer. With micro-agreements
the owner of a wind farm sells directly to customers dependent on how much
energy is being produced due to weather conditions. When production is high,
the client base is increased dynamically and vice versa. This increases revenue
and reduces wasted potential energy. Furthermore, allowing consumers to
react to changes in energy prices provides small, specialized producers with
more market power [40].

Another benefit to producers is direct access to user preferences. With
micro-agreements, consumers ‘vote’ (i.e. with pocketbooks) for energy prefer-
ences in real-time. Producers follow consumer trends and react by investing
accordingly. Typically such data are collected through limited surveys or an-
alyzing trends over longer periods, such as years or decades.



5

128 Use Cases: Smart Energy Grid & Cloud Computing

Coal Power Plant
Wind Turbine Farm

Virtual Power Plant

(Residential) Energy 
Consumer

(Residential) Energy 
Consumer / Provider

micro-SLA
negotiation

Figure 5.1: A future energy market with multiple providers and consumers.

5.1.3 Energy Negotiation Scenario

This section illustrates an implementation of an energy negotiation scenario
using the negotiation and monitoring framework discussed in Chapters 3 and 4.
This scenario is positioned within the context of the future energy market in-
troduced above. Figure 5.1 illustrates the relationship between multiple energy
providers and consumers in an example future energy market. In this figure, a
(residential) energy consumer negotiates micro-SLAs with multiple providers.
Providers include a centralized, coal power plant, a centralized, wind turbine
farm and several decentralized (residential) producers (e.g. small wind tur-
bines or solar panels). Optionally, small-scale providers and consumers group
together to form a Virtual Power Plant (VPP).

In this scenario, a single energy provider and a single energy consumer ne-
gotiate a micro-SLA. Both participants are represented by their own individ-
ual software agents in the AgentScape middleware, presented in Chapter 2.3.2.
The WSAN Service provides service discovery, negotiation, agreement creation
and, usage monitoring. Source code is found in the Appendix and is available
upon request.



5

5.1 Dynamic Services in the Smart Energy Grid 129

5.1.3.1 Energy Provider Agent

The energy provider agent presents available services in a template, using WS-
Agreement XML. Figure 5.2 illustrates this template. The template begins
with context information, including the name of the template and provider
agent. In addition, this template lists the available services: EnergyService.
This service has two description terms: EnergySource and EnergyPrice.

This template also includes Creation Constraints (see Section 3.2.2). These
constraints define the acceptable values of each negotiable term. In this in-
stance, the value of EnergySource is constrained to those discrete values listed
in the enumeration type. These values include NUCLEAR, COAL, GAS, WIND,
SOLAR, HYDRO, BIOFUELS and GEOTHERMAL. The value of EnergyPrice must be
a double (e.g. real number) that is greater than or equal to zero (e.g. no neg-
ative values allowed).

In addition to one or more service templates, the energy provider agent
requires a negotiation policy. The policy provides the agent with enough
information to negotiate autonomously. Each policy is domain and context
dependent and is completely customizable to an individual agent. Policies
encapsulate both preferences (e.g. priorities, ideal price) and strategies (e.g. if
too high, decrease by 10%). Appendix A contains JAVA source detailing an
example policy (see Figures A.1 through A.5). Note that this example policy
is intentionally simplified for the purpose of illustration.

Figure A.1 in the Appendix indicates how a provider agent may specify
the minimum prices for each available energy source. These prices may be
based on current market prices or on historical data. In addition, a provider
agent may specify a range of values for each energy source. For example, in
addition to minimum prices, a provider also specifies ideal prices (e.g. 50%
higher than minimum prices). If an offer is under the minimum price, one
strategy is followed. If an offer is above the minimum but below the ideal
price, a different strategy is followed. A provider agent thus customizes its
response appropriately.

In addition to specifying personal preferences, a policy also includes several
obligatory methods for the negotiation process. One of these methods is a
boolean (e.g. acceptable or not) test for evaluating incoming negotiation offers:
evaluateNegotiationOffer(). An example of this method is presented in
Figure A.2 in the Appendix. First, all negotiation terms are extracted from
the offer. If the Energy Service is found, then each term is extracted and
evaluated, in turn. In this example, the WIND Energy Source is extracted
and the offered price is evaluated. If the price is acceptable, and all other
included terms are acceptable, then the method returns true. However, if the
price of WIND, or another term, is unacceptable, the method returns false



5

130 Use Cases: Smart Energy Grid & Cloud Computing

<Template TemplateId="4">
<Name>EnergyTemplate </Name>
<Context >

<ServiceProvider >AgreementResponder </ServiceProvider >
<TemplateId >4</TemplateId >
<TemplateName >EnergyTemplate </TemplateName >

</Context >
<Terms>

<All>
<ServiceDescriptionTerm Name="RESOURCE_SDT"

ServiceName="EnergyService">
<Energy >

<EnergySource/>
<EnergyPrice >0.0</EnergyPrice >

</Energy >
</ServiceDescriptionTerm >

</All>
</Terms >
<CreationConstraints >

<Item Name="EnergyService_EnergySource">
<Location >AgreementOffer/Terms/All/ServiceDescriptionTerm/

Energy/EnergySource </Location >
<ItemConstraint >

<simpleType >
<restriction base="string">

<enumeration value="NUCLEAR" />
<enumeration value="COAL" />
<enumeration value="GAS" />
<enumeration value="WIND" />
<enumeration value="SOLAR" />
<enumeration value="HYDRO" />
<enumeration value="BIOFUELS" />
<enumeration value="GEOTHERMAL" />

</restriction >
</simpleType >

</ItemConstraint >
</Item>
<Item Name="EnergyService_EnergyPrice">

<Location >AgreementOffer/Terms/All/ServiceDescriptionTerm/
Energy/EnergyPrice </Location >

<ItemConstraint >
<simpleType >

<restriction base="double">
<minInclusive value="0.0" />

</restriction >
</simpleType >

</ItemConstraint >
</Item>

</CreationConstraints >
</Template >

Figure 5.2: WSAN XML Template advertising energy services.



5

5.1 Dynamic Services in the Smart Energy Grid 131

and the offer is unacceptable. The result of this method does not necessarily
determine the outcome of negotiation. This method only evaluates if an offer
is currently acceptable or if further analysis and negotiation are required.

If an offer is not acceptable, the provider is able to take several actions. One
possible action is that the provider terminates negotiations. Another action
may be to reject the offer, optionally, providing a reason for rejection. This
rejection may prompt the consumer to propose a more acceptable offer. An
additional action the provider may choose to take is to create a counter-offer.

A method is included in the policy that specifies how counter-offers are
created: createCounterOffer(). An example of this method is presented in
Figure A.3 in the Appendix. First, all negotiable terms are extracted from the
offer. If the Energy Service is found, then each term is extracted and evaluated,
in turn. In this example, the unacceptable WIND Energy Source price is
detected. A new, acceptable value is calculated according to the provider
agent’s personal strategy. In this example, the strategy dictates that the
new WIND value is 10% above the minimum value (see Figure A.1 in the
Appendix). This new value is inserted into a new offer document and returned
to the consumer agent.

In addition to these two methods, several helper methods are provided
by the negotiation framework. These methods handle incoming offers, based
on the state of an offer. The state of an offer determines the possible ac-
tions that are taken in response. The four possible offer states specified by
WS-Agreement Negotiation (see Section 3.3.3) are: ACCEPTABLE, ADVISORY,
REJECTED and SOLICITED. The corresponding helper methods are: process-
AcceptableOffer(), processAdvisoryOffer(), processRejectedOffer()
and processSolicitedOffer(). Figures A.4 and A.5 in the Appendix pro-
vide an overview of these methods.

Agents handle incoming offers in the ACCEPTABLE or ADVISORY state
following similar processes. First, a response offer is created. Regardless of the
outcome, this document will carry the response message to the consumer agent.
Then the offer is evaluated using the evaluateNegotiationOffer() method
(see Figure A.2 in the Appendix). If acceptable, the offer is returned with-
out changes. However, if the offer is unacceptable, a counter-offer is created
using the createCounterOffer() method (see Figure A.3 in the Appendix).
Finally, the response is returned to the consumer agent.

Incoming offers in the REJECTED state are handled separately. All re-
sponses are possible, but the specific actions taken depend on an agent’s
personal strategy. For instance, a provider may terminate negotiation. In
contrast, a provider may exploit the rollback support of WS-Agreement Ne-
gotiation to create a new counter-offer with better terms.



5

132 Use Cases: Smart Energy Grid & Cloud Computing

Incoming offers in the SOLICITED state are an exceptional case. This
state limits the possible responses, as it is designed to illicit a ‘yes or no’
decision from the counter-agent. When an offer is received in this state no
counter-offer is possible. Figure A.5 in the Appendix illustrates a method for
handling such situations. First, a response offer is created. This document will
be identical to the incoming offer with the exception of the state. Depending on
the outcome of this method, the state will either be changed to ACCEPTABLE
or REJECTED. Then the offer is evaluated using the evaluateNegotiation-
Offer() method (see Figure A.2 in the Appendix). Based on the outcome
of this evaluation, the state is set accordingly to either ACCEPTABLE or
REJECTED. Finally, the response is returned to the consumer agent.

5.1.3.2 Energy Consumer Agent

The energy consumer agent uses the WSAN Service to discover suitable tem-
plates from energy providing agents. Once a template is found, the consumer
initiates negotiation with the provider. Similar to the provider agent described
in the previous section, decisions made by the consumer during negotiation are
governed by the consumer’s personal negotiation policy. The policy provides
the agent with enough information such that it is able to make negotiation
decisions autonomously. Each policy is domain and context dependent and
is completely customizable to an individual agent. Policies encapsulate both
preferences and strategies. Figures A.6 and A.7 in the Appendix illustrate an
example consumer policy.

Figure A.6 in the Appendix indicates how a consumer agent may specify
the maximum price it is willing to pay for a particular energy source. These
prices may be based on personal preferences. For example, one consumer may
be willing to pay more for renewable sources and less for nonrenewable sources.
Similar to the provider policy described in the previous section, a consumer
agent may specify ranges of values for each energy source.

In addition to personal preferences, a policy also includes several methods
for the negotiation process. These methods include those already discussed
in the previous section, including evaluateNegotiationOffer(), create-
CounterOffer() and methods to process all offer states. Depending on which
agent initiates negotiation, an additional method is required: createNego-
tiationOffer(). An example of this method is presented in Figure A.7 in
the Appendix.

This method creates an initial offer, based on a template. Offer creation
follows a personal strategy. For example, the initial offer begins with the
minimum price. Additionally, the initial offer, as with all subsequent offers, is
validated against the creation constraints of the relevant template. Figure 5.2



5

5.1 Dynamic Services in the Smart Energy Grid 133

provides an example of creation constraints. The chosen values of the initial
terms must comply with these creation constraints. For instance, the chosen
value of EnergySource must be equal to one of the values listed in the creation
constraints, such as NUCLEAR or COAL. If the creation constraints are violated,
the offer is rejected immediately, without further analysis.

If the creation constraints are not violated, then the createNegotiation-
Offer() method proceeds as follows. First, an empty offer document is cre-
ated. Then the unique session identifier (received from the WSAN Service) is
added to the new document. Then the negotiation context is prepared. This
includes setting the roles of each agent, setting the initial state (e.g. ADVI-
SORY) and setting the counterOfferTo field. The initial offer has no previous
offer on which it is based. Therefore, the counterOfferTo field refers to the
original template. In subsequent offers, this field is automatically set to the
chosen previous offer.

Once the context is set, the negotiation terms are filled in. The selection
of these terms follows a consumer agent’s personal negotiation strategy (e.g.
begin 10% of the maximum price). Once the terms are filled in and validated
against the creation constraints, the initial offer is sent to the provider agent.

Subsequent counter-offers are created using createCounterOffer(). The
consumer agent’s version of this method is similar to the provider agent’s
method (see Figure A.3 in the Appendix). The consumer responds to un-
acceptable negotiation terms following a personal strategy. For example, a
counter-offer contains terms 10% higher or lower than the unacceptable terms
from the previously received offer.

5.1.3.3 Energy Negotiation

The negotiation of energy services is a process of exchanging documents follow-
ing the WS-Agreement Negotiation specification (NPS-1). These documents
contain (counter) offers with various combinations of negotiation terms. Fig-
ure 5.3 presents an overview of the negotiation process. In this particular
scenario, the energy consumer agent initiates negotiation. Based on the en-
ergy template presented in Figure 5.2, the consumer agent creates the initial
negotiation offer. Appendix A contains JAVA source illustrating the mes-
sage exchange between agents, including this initial offer in Figure A.8 in the
Appendix. Source code is also available upon request.

The initial offer contains a unique identifier: initiator-1. This format
implies which agent created the offer and the number (and ordering) of the
offer. In addition, each offer carries the unique session identifier. As the
session identifier is not part of the official WS-Agreement Negotiation (NPS-1)
specification, it is not included in the offer document itself. Rather, the session



5

134 Use Cases: Smart Energy Grid & Cloud Computing

AS Host/Location 3AS Host/Location 2AS Host/Location 1

PEnergy
Service CWSAN

tim
e

request "relevant" providers

return provider "P"

createNegotiationOffer

evaluateNegotiationOffer 
= "price too low"

negotiation 
phase

request templates

return EnergyTemplate

createAgreement
createAgreement

agreement 
phase

store agreement

access service

initiator-1
WIND=0.01936

state = "Advisory"

createNegotiationOffer
responder-1

WIND=0.10648
state = "Advisory"

evaluateNegotiationOffer 
= "acceptable"

createNegotiationOffer
initiator-2

WIND=0.10648
state = "Acceptable"

evaluateNegotiationOffer 
= "acceptable"
createNegotiationOffer

responder-2
WIND=0.10648

state = "Acceptable"

Figure 5.3: Energy negotiation scenario using WS-Agreement Negotiation (NPS-1) pro-
tocol in AgentScape. Source code of all offers and evaluation methods is available in
the Appendix and upon request.

identifier (from NPS-2) is added to the encapsulating message file that is sent
between agents. The combination of a session identifier and offer identifier
makes it possible to uniquely identify each offer and its creator.

In addition to the identification information, the offer contains two context
sections: Context and NegotiationOfferContext. These sections correspond
to the Agreement Layer and the Negotiation Layer, respectively. The first
context section identifies the roles of each agent in the Agreement Layer and
the original template: EnergyTemplate. The provider uses this information to
assist validation of the included terms against the original creation constraints.

The second context section identifies the creator and state of this particular
offer. In addition, this section contains the identifier of the previous offer.



5

5.1 Dynamic Services in the Smart Energy Grid 135

This information assists possible rollbacks or building the negotiation tree
(see Figure 3.7). In this example, the previous offer is the original template.

The selected terms and corresponding values are listed in the Terms section
of the offer. The initial price for WIND is 0.01936, which is equal to the 10%
of the maximum price, as specified by the consumer agent’s personal policy.

Upon receiving the initial offer, initiator-1, the energy provider agent
evaluates the terms and responds with a counter-offer,responder-1. Fig-
ure A.9 in the Appendix depicts this counter-offer. This document contains
the same sections as the first offer with minor, but significant changes. First,
the OfferId is updated to reflect the creator and sequence. In the negotiation
context, the creator is updated and the CounterOfferTo is updated to reflect
the previous offer identifier.

The price of WIND is changed. The proposed price is below the energy
provider’s specified minium (0.0968). Following the energy provider’s strategy,
the new price is 10% above this minimum: 0.10648.

Upon receiving the provider’s first counter-offer, responder-1, the energy
consumer agent evaluates the terms. The proposed price of WIND is less than
the maximum value specified by the consumer’s personal policy. The offer is
therefore evaluated as acceptable. At this point, the consumer may propose
a new price, lower than the provider’s suggested price. Instead, the consumer
indicates that this price is acceptable returning the offer largely intact. Fig-
ure A.10 in the Appendix depicts this new document, initiator-2. The
terms do not change. The only changes that occur are an updated identifier
and context information, including a new state: Acceptable.

Upon receiving the consumer’s reply, initiator-2, the energy provider
agent evaluates the terms, once again. Although the terms are identical to
those proposed by the provider, itself, the provider’s policy may have changed
in the interim. For example, changes in actual supply may increase the price
dynamically. If the terms are still acceptable and the provider does not wish
to suggest (higher) prices, the provider accepts the offer. At this point, the
provider returns the identical offer, with only minor changes to the context
information. This new document, responder-2, is presented in Figure A.11
in the Appendix.

Receipt of this document indicates to the energy consumer agent that
an acceptable offer has been negotiated. The consumer may now exit the
Negotiation Layer and initiate agreement creation in the Agreement Layer.
As the offer is already acceptable to both agents, there is a high likelihood of
successful agreement creation. If successful, a copy of the agreement is stored
at the WSAN Service for administrative and monitoring purposes.



5

136 Use Cases: Smart Energy Grid & Cloud Computing

5.1.3.4 Energy Monitoring

In this scenario, monitoring is applied to several areas of the example future
energy market. First, passive monitoring monitors SLA compliance between
the energy consumer and provider. Section 4.2 discusses passive monitoring in
more detail. At regular intervals, both agents commit to continue the service
for the following interval. This commitment implies the satisfaction of both
agents with the quality of service.

In addition, monitoring is applied to energy usage within Virtual Power
Plants (VPPs). Monitoring is applied within this group to measure and record
energy production and usage between members. In this context, monitoring
serves dual purposes: (1) violation detection and (2) accounting. The mon-
itor detects SLA violations between consumers and providers. Agents store
monitoring data for accounting purposes. Accounting determines how much
energy is consumed by a particular member and which providers are (finan-
cially) compensated.

5.1.3.5 Energy Scenario Conclusion

The scenario presented in the previous sections illustrates how a multiagent
framework is applied to negotiate and monitor SLAs in the energy domain.
Agents representing an energy consumer and provider negotiate the terms of
an SLA. Each agent evaluates offers and proposes (counter) offers following a
personal negotiation policy. A policy specifies an individual user’s preferences,
priorities and actions in a given situation. In this particular implementation,
policies are specified using the Java programming language. However, the
structure and principles of the policy are language independent.

The negotiation process detailed in this scenario uses the WS-Agreement
Negotiation (NPS-1) protocol to structure the negotiation dialogue. Offers are
created, analyzed and responded to following this protocol. Each offer is for-
mulated in the WS-Agreement Negotiation language. This scenario shows how
this protocol encapsulates a given agent’s preferences and guides the negotia-
tion process to conclusion. In this scenario, several rounds of negotiation are
necessary before an acceptable offer is reached. In contrast to WS-Agreement
Negotiation, a protocol that does not support multiround negotiation would
fail to reach a successful agreement in this particular scenario.

This scenario depicts a single negotiation process. Note that this process
is repeated each time an active micro-SLA expires. In a future energy market
in which the lifetime of micro-SLAs is 1 hour, this process is thus repeated
hourly. The multiagent negotiation and monitoring framework enables users
to automatically manage this otherwise tedious process.



5

5.2 Dynamic Services in the Cloud 137

5.1.4 Discussion

In recent years, much has been invested in green energy sources. These re-
sources are significantly underutilized. Green energy supply does not efficiently
reach consumers when they need it. Future energy markets require several
changes to increase this efficiency using demand side management (DSM).
First, micro agreements replace long term contracts. Micro agreements allow
consumers to quickly react to changes in the market, such as price and avail-
ability. Second, real-time pricing (RTP) provides consumers with an incentive
to react to market signals by shifting demand. For instance, reducing con-
sumption when wind power generation is scarce and increasing consumption
when it is abundant.

Studies show the effect of RTP at encouraging DSM in energy markets.
In future energy markets, autonomous agents further increase this effective-
ness. Agents represent energy providers and consumers to negotiate micro-
agreements. This new market structure reduces wasted energy (e.g. overca-
pacity), lowers prices and increases utilization of green resources.

This market also enables consumer participation. Consumers can actively
favor green energy sources and reward investment in new renewable sources.
Groups of consumers can form independent VPPs to supply energy demand
with distributed sources, independent of the energy grid.

5.2 Dynamic Services in the Cloud

Cloud computing [6] provides the illusion of unbounded online resources, such
as CPU or storage capacity. Companies that offer these resources are referred
to as Cloud Service Providers (CSP). The Cloud is sometimes also called elastic
since customers are able to easily increase or decrease resource usage, such as
the amount of computing power, rented from a CSP.

Similar Cloud services are offered through a number of CSPs that compete
on price and service levels. Several of these CSPs also offer numerous options
to customers who customize services based on metrics such as price, Quality
of Service (QoS), reputation and location. Note that most of these metrics
are dynamic, i.e. they change continuously. For example, some CSPs, such as
Amazon Web Services spot pricing, offer dynamic pricing. This enables that
the price of resources changes constantly, which reflects underlying factors,
such as Cloud utilization, fluctuating energy prices or consumer demand [4,
130].

In this environment, a consumer of Cloud services faces several challenges.
First, to obtain the desired initial configuration of Cloud resources, a consumer
will evaluate prices and configuration options (QoS levels, location, etc.) of all



5

138 Use Cases: Smart Energy Grid & Cloud Computing

available CSPs. The task of finding the ideal configuration is further compli-
cated as more CSPs implement dynamic pricing. When a consumer chooses
the configuration that is currently the most appropriate, a better (cheaper)
configuration may become available soon thereafter. Therefore, a consumer
must periodically reevaluate configurations at all available CSPs. If a con-
sumer chooses to move from his/her current CSP to a different CSP with a
more suitable configuration, the consumer is then faced with the challenge of
migration. Due to a lack of interoperability of CSPs and the tendency towards
vendor lock-in, changing CSPs is not a trivial task. Finally, once a consumer
chooses a CSP, the consumer must continually monitor the service to detect
violations to the service agreement. Moreover, the consumer must also pro-
vide evidence, for example in the from of an audit trail, that a violation has
actually taken place.

To assist a consumer with these challenges, this section introduces an In-
telligent Cloud Resource Allocation Service (ICRAS). ICRAS supports the
consumer throughout the lifecycle of a Cloud service. This includes, (1) dis-
covering all available resource configurations, (2) choosing the desired config-
uration, (3) negotiating a service agreement with the CSP, (4) assisting in the
migration of services between CSPs and (5) securely monitoring the service
agreement for violations.

ICRAS aggregates information describing the available services from mul-
tiple CSPs, including current price, availability, Quality of Service guarantees,
location and reputation. When a consumer requires resources, it contacts
ICRAS with a description of the computing needs. ICRAS then matches
the resource request to the most appropriate configuration of Cloud resources
from the CSPs. ICRAS facilitates the negotiation of the necessary Service
Level Agreements (SLA) with the CSPs on behalf of the consumer and assists
in the migration process.

ICRAS then monitors the services during the lifetime of the SLA to ensure
that there are no agreement violations. If violations are detected, corrective
action is taken. Service monitoring uses secure modules at both the consumer
and provider. Further steps are taken to generate an audit log of service
message. Using several cryptographic protocols, this audit log guarantees
integrity and nonrepudiation of service messages.

The following sections describe the application of autonomous negotiation
and monitoring in the Cloud. First, Section 5.2.1 describes the core concepts
of Cloud resource allocation, including the challenges of standardization and
dynamic pricing. Then, Section 5.2.2 then describes ICRAS in more detail,
including an overview of the architecture and protocol. Finally, Section 5.2.3



5

5.2 Dynamic Services in the Cloud 139

demonstrates the applicability of ICRAS for a use case based on a prototype
implementation.

5.2.1 Cloud Resource Allocation

The Cloud refers to hardware and software resources available across the Inter-
net [6]. Cloud services are roughly categorized as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). This
categorization is based on the complexity of the service, from raw compute
resources, such as storage or processing power, to refined software services,
such as databases or other applications.

The following sections focus mainly on the first of these categories: IaaS.
An example of IaaS are the resources offered by AmazonWeb Services (AWS)7.
AWS offers consumers a computing ‘instance’ that includes customizable at-
tributes, such as processing power, memory and disk space and operating
system (e.g. Windows). Consumers create as many instances as needed. AWS
offers both a web interface for human access, as well as a scriptable, Java-based
Application Programming Interface (API) for automated access.

The Cloud computing model allows end users to rent computing infras-
tructure as needed, rather than requiring them to purchase resources out-
right. Moreover, consumers are able to quickly and simply adjust the size of
Cloud resources, depending on current computing requirements. Consumers
use these services following a pay-as-you-go model, only paying for the specific
amount of time or level of service they consume.

Much research into efficient use of Cloud resources focuses on increasing
utility of the CSP. For instance, techniques are proposed for load-balancing
techniques aimed at reducing energy costs [9] or dynamic pricing models that
maximize revenue [130]. In contrast, this section proposes a service to max-
imize utility from the perspective of the consumer. With this service, a con-
sumer finds the most appropriate balance between low cost and high quality.

In some cases, automation assists in the process of load-balancing or scale
resource allocation based on utilization8. For example, a Cloud consumer may
create an agreement that specifies the upper and lower bounds of resource
allocation (e.g. at least 5 instances, but no more than 100). When utilization
of these resources exceeds a given threshold (e.g. 90% CPU utilization), new
instances are automatically created. When utilization decreases, instances are
automatically terminated.

7http://aws.amazon.com
8Amazon Auto Scaling. https://aws.amazon.com/autoscaling/

http://aws.amazon.com
https://aws.amazon.com/autoscaling/


5

140 Use Cases: Smart Energy Grid & Cloud Computing

5.2.1.1 Standardization

Despite several exceptions, including those noted above, Cloud resource allo-
cation is currently largely a manual process. Consumers manually compare,
negotiate and allocate resources. This section proposes fully automating these
tasks to (1) empower consumers to effectively utilize resources and (2) increase
efficiency of resource allocation. However, several challenges limit automation
of these tasks.

One challenge to automated Cloud resource allocation is the lack of stan-
dardization. Cloud resource offerings rely on virtualization [59]. (Hardware)
virtualization simulates a computer environment on top of physical resources.
The virtualization layer provides an abstraction between underlying hardware
(e.g. processing and storage) and structured services (e.g. IaaS, PaaS or SaaS).
In practice, a single physical machine simulates multiple virtual machines or
multiple physical machines simulate a single virtual machine.

Offering Cloud resource consumers this abstraction from physical hardware
requires several virtualization components, including (1) platform/API (2)
hypervisor and (3) disk images. There are several alternatives for each of
these components and compatibility between alternatives remains a challenge.

A Cloud platform is a management and control layer that enables deploy-
ment of Cloud resources. Essentially, this layer creates a virtualized service
(e.g. a certain amount of processing and storage) and assigns this to physical
hardware. Consumers access this layer either via a web-based interface or an
automated API. Many competing platforms exist and are incompatible. Two
emerging standards are OpenStack [119] and Eucalyptus [117].

Each Cloud platform supports one or more hypervisors. A hypervisor is
software that simulates a virtual machine (e.g. a Cloud instance). This soft-
ware is responsible for providing the abstraction between virtualized services
and the underlying hardware. Many competing hypervisors exist, including
VMware’s ESX9, Citrix’s XenServer10, Microsoft’s Hyper-V11 and the open
source KVM12. In limited situations, it is possible to migrate virtual machines
from one hypervisor to another [27]. However, compatibility between hyper-
visors remains a challenge.

Each hypervisor supports one or more Virtual Disk Images (VDI). A VDI
is an encapsulation of a virtual machine’s data (e.g. disk storage). Many alter-
native VDI formats exist, such as VMware’s VMDK, Citrix’s Xen VHD and

9http://www.vmware.com/products/vsphere/esxi-and-esx/index.html
10http://www.citrix.com/products/xenserver/overview.html
11http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
12Kernel-based Virtual Machine. http://www.linux-kvm.org/

http://www.vmware.com/products/vsphere/esxi-and-esx/index.html
http://www.citrix.com/products/xenserver/overview.html
http://www.microsoft.com/en-us/server-cloud/hyper-v-server/default.aspx
http://www.linux-kvm.org/


5

5.2 Dynamic Services in the Cloud 141

Table 5.1: Limited import/export functionality among leading CSPs.

CSP AWS CloudSigma MS Azure Terremark

import VMware VMDK,
Xen VHD,
MS VHD

raw MS VHD OVF,
VMware VMDK

export AMI (snapshot) raw MS VHD none

Microsoft’s VHD. Most formats are only compatible with a single, specific hy-
pervisor. As with the Cloud platform, attempts are made to standardize VDI
format. One emerging standard is the Open Virtualization Format (OVF) [42].
This format includes both the user’s data (e.g. disk image) as well as addi-
tional metadata that describes the necessary hardware, such as the type and
number of processors or amount of memory.

Competing alternatives for Cloud platform, hypervisor and VDI and lack of
widespread adoption of the emerging standards impedes compatibility between
CSPs. This makes it challenging for a Cloud consumer to migrate services
from one CSP to another. Two general approaches to migration are possible:
online (i.e. live) and offline. Online migration of resources moves data from
one CSP to another while keeping the services running and accessible. This
form of migration is only possible in limited circumstances when both CSPs
are running the same hypervisor [27]. Offline migration stops all services
and preserves data and, optionally, additional state (e.g. running processes,
memory stack). These data are then transferred to the target CSP and the
services are started. Services may be unavailable for a period of time during
migration.

An obstacle to offline migration is incompatibility between VDIs supported
by each CSP. Table 5.1 shows the limited import/export functionality offered
by leading CSPs. AWS supports several import formats, but offers no export
format aside from a proprietary (and encrypted) disk image. MS Azure only
supports its own native VDI for import and export. Terremark supports the
emerging OVF standard for import, but offers no export options. Of these
leading CSPs, CloudSigma is the only leading CSP that offers a nonproprietary
export format. Other CSPs, including Rackspace, Go Grid, SoftLayer and
GreenQloud offer no import or export options.

5.2.2 Intelligent Cloud Resource Allocation

The Intelligent Cloud Resource Allocation Service (ICRAS) requires an under-
lying architecture, consisting of three major components: 1) a consumer, 2) a



5

142 Use Cases: Smart Energy Grid & Cloud Computing

TMM

A

MS

ICRAS (TTP)

Cloud Service Providerx Cloud Service Providery
ATMM TMM

A

concurrent negotiation with
  multiple CSPs using 
   WSAG protocol

A

Consumer

interaction with ICRAS for 
best price / QoS for given 

preferences

monitoring service 
periodically gathers 
monitoring data from 

Trusted Monitoring Modules

Figure 5.4: ICRAS architecture with a consumer negotiating with two competing CSPs

CSP and 3) an ICRAS agent. These elements represent the three roles in the
marketplace, which may contain multiple instances of each. Furthermore, this
architecture provides the mechanisms and protocols that enable these agents
to communicate with one another and autonomously negotiate micro-SLAs.
SLAs are negotiated and created following the WSAN specification. Figure 5.4
illustrates this architecture.

Consumer

Each consumer interacts directly with an ICRAS agent. A consumer specifies
his/her requirements in an SLA offer. This document allows a consumer to
specify 1) hard and 2) soft requirements, 3) priorities, 4) ranges of options,
and 5) dependencies between requirements. For instance, a consumer requires
10 virtual servers with a combined CPU power of 20 GHz and a combined
storage of 2 TB. Using the SLA notation, a consumer expresses that the CPU
and storage requirements are strict, however, for a reduced price, the actual
number or servers may change.

In addition to providing the initial resource requirements, a consumer is
also responsible for updating these requirements. If resource requirements
change, a consumer must inform an ICRAS agent of these changes. A change
in requirements may occur for several reasons. First, based on current events
or past experience, a consumer predicts increases or decreases in computing
needs. For instance, online retailers receive more traffic leading up to the



5

5.2 Dynamic Services in the Cloud 143

holidays. Second, a change in business needs prompts an immediate recon-
figuration of the resource requirements. For instance, a company decides to
remove some legacy applications. Finally, a company’s resource requirements
change due to developments in the market, such as increased competition or
lower consumer demand.

To enable such changes, a consumer monitors the level of activity on
his/her Cloud resources and informs the ICRAS agent if a threshold is crossed
and a new configuration is necessary.

The consumer must also host a Trusted Monitoring Module (TMM) (see
Chapter 4). This module provides the ICRAS agent, acting as the de facto
Trusted Third Party (TTP), access to relevant service metrics. The ICRAS
agent thus accurately assess the user experience of the service. Passive mon-
itoring is supported by extending the TMM to include the necessary crypto-
graphic protocols.

CSP

To enable participation in the ICRAS architecture, a CSP must offer a com-
patible interface that is accessed by the ICRAS agent. This interface must
support two main functions: negotiation and migration. For negotiation, a
CSP must generate SLA templates. For this, a CSP requires access to in-
ternal information of its Cloud. This includes realtime pricing data, Cloud
utilization and system health (QoS) information, if available. On the basis of
this information a CSP generates SLA templates describing the available re-
sources. Due to the dynamic nature of CSP resource availability and pricing,
these SLA templates are updated regularly.

Upon request, the SLA templates are delivered to the ICRAS agent. When
the ICRAS agent makes an offer, the CSP enters a negotiation session. The
strategy that drives this negotiation is determined by the CSP negotiation
policy. This policy includes functions for evaluating an offer, threshold values
for acceptance or rejection of an offer and rules governing the creation of
counter-offers.

To support data migration to and from its Cloud, the CSP interface must
support the import and export of virtual disk images. After creating an SLA
with a consumer, the CSP must support upload and import of the consumer’s
virtual disk images. Likewise, these virtual disk images are exported and
downloaded upon request.

To support monitoring, the CSP must also host a Trusted Monitoring
Module (TMM) that allows the ICRAS agent access to relevant service metrics,
such as network latency. The TMM also includes support for the cryptographic
protocols required for passive monitoring.



5

144 Use Cases: Smart Energy Grid & Cloud Computing

ICRAS agent

This section assumes that an ICRAS agent is maintained by an independent,
Trusted Third Party (TTP). This service has no loyalty to a particular CSP
and therefore operates fully on behalf of participating consumers. The ICRAS
agent has five major responsibilities: 1) discover CSP resource offerings, 2)
evaluate these offerings, 3) negotiate an SLA with a CSP on behalf of a con-
sumer, 4) monitor the provisioning of the new Cloud resources to detect SLA
violations and 5) assist in migration to the new CSP.

Discovery - The process begins when an ICRAS agent receives a resource
request from a consumer. The agent then queries all CSPs for one or more SLA
templates describing available resource offerings. This process is repeated at a
regular interval to discover more appropriate configurations even after an SLA
has been created. Depending on a consumer’s preferences, he/she is notified if
a new and more suitable configuration is discovered. Then the consumer can,
optionally, renegotiate a new SLA.

Evaluation - Once received, the agent compares the CSP templates to
the consumer’s request. If a CSP is unable to provide the requested resources,
this CSP is removed from consideration. The remaining templates are then
evaluated and ordered using the preferences of the consumer. For instance, if
a consumer specifies that price is the most important attribute, the remaining
templates are arranged by price. Depending on a consumer’s requirements,
templates from multiple CSPs are selected for separate resource requirements.
For instance, a consumer may allow two CSPs to handle processing and stor-
age, separately, if this meets the price and QoS needs.

Negotiation - Once the best template has been selected, the ICRAS agent
contacts the responsible CSP to begin negotiations. If multiple templates from
competing CSPs are acceptable, these CSPs are contacted for simultaneous
negotiations. If a negotiation session results in an offer that is acceptable by
both a CSP and the ICRAS agent (according to a consumer’s request), this is
sent to the consumer for final approval. If acceptable, the consumer contacts
the CSP directly to create a micro-SLA. A micro-SLA enables a consumer to
migrate to a new configuration or renegotiate the current configuration if the
opportunity arises.

Migration - Once a consumer decides to migrate, the consumer services
are migrated to the new CSP. In the most straightforward case, migration
involves stopping the cloud instances at the current CSP, converting these
instances (e.g. disk images) to the format of the new CSP, transferring them to
the new CSP and starting them again. The conversion process is not necessary
if CSPs adopt the same industry standard, such as the Open Virtualization
Format [42].



5

5.2 Dynamic Services in the Cloud 145

If services cannot be stopped during migration, live migration is required.
In limited circumstances, live migration of cloud instances is possible if both
CSPs are using the same virtualization layer [27]. However, the heterogeneity
of current CSPs complicates the migration process.

Monitoring - The task of the ICRAS agent does not stop after SLA
creation and service consumption. The ICRAS agent also assumes the role of
Trusted Third Party (TTP) and monitors the service to detect SLA violations
by either agent. Using TMMs at each agent, the ICRAS agent periodically
measures service performance at both the source (CSP) and end user. The
ICRAS agent uses a dedicated Monitor Service (MS) to monitor the SLA for
QoS violations, such as slow network response [33]. If a violation is detected,
agents are notified and corrective action is taken.

When using passive monitoring, the ICRAS agent acts as the mediator
for conflicts that occur. As mediator, the agent requests audit logs from all
agents. These logs are then analyzed to determine which, if any, agent has
violated the SLA. The full mediation process is explained in detail in [84].

5.2.3 Cloud Negotiation Scenario

This section provides an example scenario to demonstrate the process of
ICRAS mediated negotiation. This example involves two competing CSPs,
a single ICRAS agent and a single consumer. For reasons of readability, ser-
vice requests, SLA templates and offers are presented in generic format rather
than the WS-Agreement XML format.

The ICRAS architecture is implemented using the AgentScape distributed
middleware platform (see Section 2.3.2). Software (Java) agents represent the
three major components: Consumer, ICRAS agent and CSP. Negotiation uses
the WSAN Service that implements the WS-Agreement Negotiation specifica-
tion (NPS-1) detailed in Chapter 3.

Two CSPs are chosen that fulfill the minimum standards of interoperability
to support the example: Amazon Web Services13 and CloudSigma14. On each
of these CSPs, a server instance hosts a software agent running on AgentScape.
Each agent uses the respective API to query price information and generate
an SLA template describing each CSP’s resource offerings.

An ICRAS agent runs on an instance of AgentScape on a local server.
This agent collects templates from the agents running at each CSP. When
the ICRAS agent has found the most suitable configuration, it is sent to the
consumer agent, running on a separate instance of AgentScape on a separate
local server. If a new CSP is chosen by the consumer, migration is assisted

13http://aws.amazon.com/
14http://www.cloudsigma.com/

http://aws.amazon.com/
http://www.cloudsigma.com/


5

146 Use Cases: Smart Energy Grid & Cloud Computing

RESOURCE REQUEST
Num. of Servers = (10)
CPU GHz = (1.5 - 3.0) | CD:C1, VI:V1
Storage (GB) = (2000 - *) | CD:D100, VI:V1
Traffic (GB) = (1 - *) | CD:D1, VI:V1
Operating Sys. = <Windows, Linux> | PC:YES
Availability = [95 - 100) | CD:C2, VI:V1
Price (EUR) = [0 - 1000) | CD:D2, VI:V1

Figure 5.5: Consumer generated resource request.

SLA TEMPLATE CSPx SLA TEMPLATE CSPy
Num. of Servers = 100 Num. of Servers = 50
CPU GHz = 2.0 CPU GHz = 3.0
Storage (GB) = 8000 Storage (GB) = 4000
Traffic (GB) = 1000 Traffic (GB) = 500
Operating System = Linux Operating System = {Windows OR Linux}
Availability (%) = 90 Availability (%) = 99

Figure 5.6: SLA template from two competing CSPs.

by the ICRAS agent. Virtual disk images are downloaded from the old CSP,
converted to the target format using QEMU [53] and then uploaded to the
new CSP.15

Step 1 - A consumer requires Cloud resources. A consumer specifies these
needs using an SLA offer. Figure 5.5 summarizes this request. In this request,
a consumer indicates that it needs 10 servers with CPU power between 1.5.
and 3.0 GHz, at least 2 TB of storage and at least 1 GB of traffic. Furthermore,
the consumer prefers the Windows OS, requires an availability of between 95
and 100 percent and a price below 1000 euro. This resource request is sent to
the CSP.

Step 2 - The ICRAS agent receives the request of the consumer and
queries all participating CSPs for SLA templates.

Step 3 - Each CSP receives the query and responds by sending SLA tem-
plates that describe the current resource offering to the ICRAS agent. If the
templates have not yet been generated or are outdated, they are (re)generated
at this point. The SLA template is generated following the WSAG specifi-
cation. Figure 5.6 depicts example templates from two competing CSPs. In
these templates, each CSP displays the current resource offering.

15Note that due to lack of standardization, a separate ad hoc solution for disk image
migration is required for each unique pair of CSPs.



5

5.2 Dynamic Services in the Cloud 147

SLA OFFER
Num. of Servers = 10
CPU GHz = 3.0
Storage (GB) = 3000
Traffic (GB) = 10
Operating System = Windows
Availability (%) = 99
Price (EUR) = 500

Figure 5.7: ICRAS agent generated offer.

Step 4 - Upon receiving the templates, the ICRAS agent evaluates each
template using the consumer’s request. If a template is unable to meet the
requirements, it is immediately removed from consideration. In Figure 5.6, the
template from CSPx is removed because the availability offering is outside of
the range specified by the consumer. In the case that more than one template
remain after the first selection, the ICRAS agent evaluates them again to
determine the most appropriate option. This evaluation is done by comparing
key attributes, such as CPU or Availability.

Step 5 - At this point, the ICRAS agent has selected the best matching
CSP. The ICRAS agent generates an initial SLA offer (see Figure 5.7). The
ICRAS agent then contacts the selected CSP to begin negotiations. Follow-
ing the WSAN specification, the negotiation consists of rounds of offers and
counter-offers. If no mutually acceptable offer is found, negotiation terminates
and the ICRAS agent selects a different CSP. However, in the event that a
mutually acceptable offer is found, this offer is sent on to the consumer.

Step 6 - Once the consumer receives the offer, it re-evaluates the offering
and, if acceptable, contacts the CSP directly to create a micro-SLA. After the
SLA has been created, the service is accessed.

Step 7 - Upon successful creation of an SLA, the consumer migrates
his/her services to the new CSP. This involves converting the virtual disk
images to the format of new CSP and then transferring these images to the
new CSP.

Step 8 - Upon successful creation of an SLA, the ICRAS agent takes on
the new task of monitoring the service on behalf of the consumer. Monitoring
is done by periodically measuring key service metrics and storing the result. If
a violation is detected (e.g. Availability is less than promised), the consumer
is notified and corrective action (e.g. fines, credits) is taken. In addition to
SLA monitoring, the ICRAS agent also periodically requests and evaluates
SLA templates from all CSPs. If a new offering is more appropriate than the
current one, the consumer is notified and migration begins.



5

148 Use Cases: Smart Energy Grid & Cloud Computing

5.2.4 Discussion

The previous sections demonstrate automated negotiation and monitoring in
the Cloud environment. The Intelligent Cloud Resource Allocation Service
(ICRAS) (1) maximizes the utility of the consumer, (2) supports the consumer
throughout the lifecycle of a Cloud service, (3) utilizes micro agreements in
order to quickly react to changes in the Cloud service market (e.g. a lower
price from a competing CSP), and (4) provides monitoring of the SLA which
results in an audit trail that provides nonrepudiation and integrity.

The full potential of ICRAS is limited by lack of standardization between
CSPs. If widely adopted, the Cloud platform, hypervisor and VDI stan-
dards, such as OVF, will make data and service migration between CSPs
more straightforward. However, the main obstacle to adoption is vendor lock-
in [180]. CSPs have little incentive to make the process of service migration
possible, let alone straightforward; therefore, migrating away from a CSP re-
mains a difficult task. A consumer does not always have the option to export
or download a virtual disk images from a CSP. This means, once a consumer
has migrated to a particular CSP, the cost and hassle of leaving that CSP
prohibits them from doing so, even if a better configuration is found at a dif-
ferent CSP. Note that complete state-full migration, i.e., where a snapshot
of a running image is migrated and the state of the newly migrated image is
updated, is still an open research question. The discussed solution would only
preserve the state until the snapshot is made, so some state is lost (e.g. when
the image is migrating).

Finally, wider adoption of dynamic pricing in Clouds is needed to allow
users to react to changes in real market forces, including Cloud utilization.
Some providers offer dynamic pricing models to reflect the actual fluctuation of
resource supply and demand. Dynamic pricing is beneficial to both consumers
and providers of Cloud resources. Consumers shift demand to cheaper time
slots, such as evening or weekend processing, to save on costs. CSPs take
advantage of demand shifting to lower costs during peak periods. For instance,
a CSP reduces the cost of cooling a data center at noon on a hot day by making
it cheaper to use the data center at night.

Cloud computing was originally envisioned as a utility, similar to the elec-
tricity grid, where users simply plug in to meet computing needs. To enable
this vision, more standardization and openness is required in the Cloud inter-
face and data format.

The incompatibility of CSPs as discussed above greatly limits the ability
to evaluate ICRAS. Preferably, an (exhaustive) evaluation tests and compares
various metrics, such as migration delay and negotiation success rate. How-
ever, vendor lock-in of data formats prevents this. Section 5.2.3 describes



5

5.3 Conclusion 149

a scenario with two CSPs. These CSPs are specifically chosen for (limited)
interoperability. However, even with these two carefully chosen CSPs, the ex-
periment only functions in one direction. Migration is possible from CSP1 to
CSP2 but not in the other direction. CSPs must adopt open standards, as
discussed above, before more extensive evaluation of ICRAS is possible.

5.3 Conclusion

The use cases presented in this chapter demonstrate the applicability of the
integrated negotiation and monitoring framework. Consumers and providers
access framework mechanisms throughout the lifecycle of an SLA. These mech-
anisms assist users in service discovery, negotiation, agreement, provisioning
and monitoring. This framework provides a structured and trusted platform
for use in dynamic, open environments. This structure reduces the complexity
of such environments and presents users with an effective means to utilize the
underlying resources.

In the Smart Energy Grid, the automation framework enables users to
quickly react to changes in the environment, such as green resource availabil-
ity. Consumers are empowered to shift demand to increase green resource
utilization. Providers reduce overcapacity and the correlated costs thereof.

In the Cloud, the framework reduces the complexity of incompatible, com-
peting CSPs. The consumer is presented with a unified interface where re-
source preferences are entered and suitable Cloud resource configurations are
returned. The framework provides trust in the underlying resources by pro-
viding transparency in service compliance. SLA violations are detected and
penalized.

The two use cases are technically challenging and socially relevant. The
dynamic nature of the underlying resources may result in reduced efficiency.
Automation frameworks are needed to manage the underlying complexity and
increase usability of these environments. Increasing the usability of either of
these environments has direct social impact. For the Smart Energy Grid, in-
creasing the utilization of renewable resources leads to less waste and pollution.
For the Cloud, increasing the usability of resources enables wider adoption of
Cloud services, reduction of unnecessary costs and increased efficiency of Cloud
resource allocation.



150 Use Cases: Smart Energy Grid & Cloud Computing



CHAPTER6
Conclusion

The future brings opportunity. Large scale, distributed, digital environments
will provide access to vast amounts of knowledge and resources, creating
new possibilities. Such environments are inherently dynamic and untrusted.
Within these environments, software systems will provide unprecedented sup-
port for daily life. One such system is the Smart Energy Grid [61] that is being
designed to increase sustainability and decrease reliance on fossil fuels. This
system enables communities to take responsibility for their own production.
Producers and consumers negotiate SLAs that specify which energy is pro-
vided and consumed. Determining if an SLA is violated requires distributed
monitoring.

This dissertation presents a MAS framework for automated negotiation
and monitoring in dynamic, distributed, open environments. Software agents
represent (human) providers and consumers in a digital marketplace. Through
a process of exchanging messages (e.g. offers, counter-offers), agents together
search for a mutually acceptable agreement (e.g. service, price quality). A
negotiation protocol defines the negotiation objects (i.e. offers), language and
rules governing interaction. For multiagent negotiation in open environments,
in which agents dynamically change roles (e.g. pro-sumer), protocols must be



6

152 Conclusion

flexible and symmetric. This dissertation presents the WS-Agreement Ne-
gotiation protocol1 with extensions for open environments. This protocol is
experimentally validated in the AgentScape middleware.

Open environments present challenges regarding security, trust and pri-
vacy. No single authority has complete control over an open environment
and no single authority governs the actions of all participants (i.e. agents).
Therefore, additional mechanisms are required to ensure security, privacy and
promote trust between participants. Automated monitoring mechanisms us-
ing a Trusted Third Party (TTP) address issues of security and thus support
negotiation in open environments. This dissertation presents a self-adaptive
monitoring approach that (1) offers monitoring assurance that agreements are
honored, (2) builds a secure audit log of agreement compliance, (3) performs
measurements while safeguarding privacy of (sensitive) data, (4) dynamically
reacts to changes in risk and (5) enables trust-building between consumers
and providers. This monitoring approach is experimentally validated in the
AgentScape middleware.

6.1 Research Questions Revisited

The overarching goal of this research is bringing the benefits of automation
negotiation technology to open environments. The complex nature of open
environments impedes manual negotiation and leads to inefficiencies. Auto-
mated negotiation can reduce manual workload and increase efficiency (e.g.
matching supply and demand). The objectives of this research are first to
gain understanding of the challenges of negotiation in open environments, and
then to provide structure to support automated negotiation in these environ-
ments, such as languages, protocols and mechanisms.

Section 1.2.1 introduces the following research questions. Answering these
questions provides the knowledge required to achieve the research objectives.
This section addresses each question with the results of this research. First,
this section addresses the subquestions, RQ1 and RQ2, related to negotiation.
Then it addresses the subquestions, RQ3 and RQ4, related to monitoring. Fi-
nally, this section revisits the general research question.

RQ1 Can protocols be designed to support natural negotiation dialogue be-
tween agents?

RQ2 Can mechanisms be designed to facilitate reliable, secured negotiation?
1Now an official Open Grid Forum standard. Version 1.0 available at:

http://www.gridforum.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-
Negotiation+v1.0.pdf

http://www.gridforum.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf
http://www.gridforum.org/Public_Comment_Docs/Documents/2011-03/WS-Agreement-Negotiation+v1.0.pdf


6

6.1 Research Questions Revisited 153

Chapter 3 presents a negotiation protocol that supports natural negotia-
tion dialogue between agents. The protocol enables bidirectional exchange of
offers and counter-offers. Limited argumentation allows agents to provide a
reason for rejecting an offer and guide future offers to an acceptable agree-
ment. The protocol also supports symmetry of roles. The protocol affords
provider and consumer roles with the same abilities, permissions and (data)
access. Concurrent negotiation sessions enable agents to negotiate with mul-
tiple counter-agents simultaneously.

Additional mechanisms and design consideration ensure reliability and se-
curity of the negotiation protocol. First, the protocol is decentralized. Pro-
vider and consumer agents communicate directly with one another. The nego-
tiation protocol uses no centralized negotiation component, such as a broker.
Therefore, failure of any single component (e.g. a single crashed agent) does not
affect the other ongoing negotiation sessions. The underlying middleware (e.g.
AgentScape) provides additional mechanisms for fault tolerance, data persis-
tence and recovery. Confidentiality and integrity of negotiation messages and
(sensitive) data is assured with additional monitoring mechanism.

RQ3 Can agreements be enforced in a transparent and trustworthy manner?

RQ4 Can trust be established and maintained between agents in untrusted
environments?

Chapter 4 presents a self-adaptive monitoring approach that detects agree-
ment violations and penalizes offending agents. An impartial party (e.g. TTP)
performs and stores monitoring measurements. A TTP guarantees that all
agents are treated equally and no role (e.g. provider) receives special privileges,
such as special access to monitoring data. Monitoring is therefore transparent
to all participants and monitoring results are trustworthy.

Open environments lack a single authority to govern all agents and punish
malicious activity. Therefore, consumer and provider agents face a risk of
entering negotiation or exchanging services with potentially malicious agents.
The self-adaptive monitoring approach reacts to changes in levels of perceived
risk by increasing or decreasing the level of monitoring (i.e. passive or active
mode, interval length). Perceived levels of risk consider reputation (i.e. history
of transactions) of a given agent. Agreement compliance increases reputation
and builds trust between agents. The adaptive monitor responds to increased
levels of trust by reducing assurance and associated costs. Thus, the monitor
rewards agents for begin trustworthy.

The general research question of this dissertation asks:



6

154 Conclusion

Can a Multi Agent System (MAS) frameworks be de-
signed to support automated negotiation and moni-
toring of services in dynamic, distributed, open envi-
ronments?

This dissertation presents a negotiation protocol for MAS (Chapter 3)
and a self-adaptive monitoring approach (Chapter 4) for open environments.
Chapter 5 combines and applies this protocol and approach to example open
environments. Use cases in the Smart Energy Grid and Cloud environments
demonstrate the practical application of the contributions of this dissertation.

6.2 Future Work

This section provides an overview of possible future work building on the
research presented in this dissertation. This section broadly organizes future
work under negotiation research and monitoring research.

6.2.1 Future Negotiation Research

Creation of complex SLAs remains a challenge. For instance, a consumer re-
quires storage and compute power. One CSP offers the lowest price for storage,
while another the lowest price for compute power. This situation currently re-
quires at least two negotiation sessions and two, separate SLAs. Research on
compositional SLAs provides examples of incorporating two, separate SLAs
into a single SLA [43].

Expressing dynamic relationships and preferences in SLAs remains a chal-
lenge. For instance, as a deadline approaches, the need for a successful agree-
ment increases and the need for a particular attribute decreases. Future re-
search may also focus on the challenge of adapting negotiation strategies and
utility functions during dynamic negotiations.

6.2.2 Future Monitoring Research

Future work may investigate additional trust mechanisms, such as reputation
authorities [79]. Incorporating separate reputation authorities will aid the
problem faced when two agents negotiate for the first time and thus have
no previous experience or history of transactions. When negotiating with a
previously unknown agent, a reputation authority provides an estimation of
that agent’s reputation.



6

6.3 Conclusions 155

While the results of experimentation with the monitoring framework has
indicated the suitability of a decentralized approach for monitoring SLAs un-
der heavy load, further experimentation may investigate more security and
reliability issues, such as active attacks against monitors. While the current
implementation provides a working basis, more work may focus on standard-
ization of penalties and proof of violation.

The incorporation of secure hardware modules (e.g. Trusted Computing
Platform [127]), to support monitoring sensors, may be researched.

The feasibility of the self-adaptive monitoring approach in a real-world
setting partially depends on the cost structure of a CSP. Monitoring SLAs with
an external TTP has associated costs and performance overhead. Likewise,
implementing a self-adaptive monitoring framework also has associated costs,
but also offers benefits to both a CSP and their consumers. A CSP must
analyze these costs to determine if a self-adaptive monitoring framework, and
the benefits it offers, are economically appealing. Economic considerations are
left to future work.

The simulation of the energy marketplace may be improved with real-world
usage/consumption statistics and realistic economic models.

This dissertation incorporates transparency and symmetry (i.e. equality)
into the design of automated negotiation and monitoring systems to promote
trust. Future qualitative studies can measure the impact of these design
choices on social aspects, including usability and user acceptance of automated
negotiation systems.

6.3 Conclusions

Automation of complex tasks, such as negotiation, reduces manual burden,
increases efficiency and reduces (human) errors. Software agents encapsulate
human characteristics, such as coordination and adaptation. Agent technology
provides an intuitive interface for users to access the potential of automation.
This dissertation designs a Multi Agent System (MAS) framework to support
automated negotiation in dynamic, open environments, such as the Smart
Energy Grid and the Cloud.

In the case of the Smart Energy Grid, the looming complexity crisis of
intermittent generation, real-time pricing and consumer demand shifting re-
quires immediate attention. This domain presents not only technical (e.g.
smart-meters) but also social challenges (e.g. user acceptance). This disserta-
tion presents a MAS automation framework that addresses technical challenges
by reducing manual labor and increasing efficiency. Automation even enables
higher utilization of green resources and reduction of waste (e.g. produced,



6

156 Conclusion

but unconsumed energy). Transparent, trusted monitoring mechanisms ad-
dress social challenges by ensuring privacy of (sensitive) data and encouraging
user acceptance.

In the case of the Cloud, the model of elastic computing enables consumers
to access (and pay for) the exact amount of computing power required. Cloud
adoption promises many benefits, including reduced costs and environmental
pollution2. However, vendor lock-in prevents consumers from accessing the
full potential of Cloud services. Standardization of Cloud formats (e.g. plat-
form/API, hypervisor, disk images) allows free migration of services between
CSPs. The MAS solution presented in this dissertation assists consumers
discovering, choosing, negotiating, migrating and monitoring Cloud services.
Seamless, automated migration of data and services creates new possibilities.
For instance, data can follow cheap energy supply by migrating to follow night-
time tariffs.

Other domains also benefit from the automated negotiation technologies
proposed in this dissertation. For instance, agents may reduce vehicle traffic by
negotiating with agents representing other vehicles and choosing the optimal
route to destination [55]. Agents may also negotiate with airlines to lower
ticket cost [172]. The future brings opportunity.

2Green-powered data centers (e.g. GreenQloud) perform CPU intensive data processing
rather than in-house servers, ultimately powered by coal.



Bibliography

[1] Aknine, S., Pinson, S., and Shakun, M. F. An extended multi-agent
negotiation protocol. Autonomous Agents and Multi-Agent Systems 8, 1 (2004),
5–45.

[2] Alhamad, M., Dillon, T., and Chang, E. Conceptual sla framework for
cloud computing. In Digital Ecosystems and Technologies (DEST), 2010 4th
IEEE International Conference on (2010), IEEE, pp. 606–610.

[3] Allcott, H. Rethinking real-time electricity pricing. Resource and Energy
Economics 33, 4 (2011), 820–842.

[4] Anandasivam, A., and Premm, M. Bid Price Control and Dynamic Pricing
in Clouds. In 17th European Conference on Information Systems (ECIS 2009),
Verona, Italy (2009), pp. 328–341.

[5] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H.,
Nakata, T., Pruyne, J., Rofrano, J., Tuecke, S., and Xu, M. Web Ser-
vices Agreement Specification (WS-Agreement) GFD-R.192. Tech. rep., Global
Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP) WG,
2011.

[6] Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwin-
ski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., and Zaharia,
M. A view of cloud computing. Communications of the ACM 53, 4 (2010),
50–58.

[7] Atkinson, K., Bench-Capon, T., and Mcburney, P. A dialogue game pro-
tocol for multi-agent argument over proposals for action. Autonomous Agents
and Multi-Agent Systems 11, 2 (2005), 153–171.

[8] Bal, H., Bhoedjang, R., Hofman, R., Jacobs, C., Kielmann, T.,
Maassen, J., Van Nieuwpoort, R., Romein, J., Renambot, L., Rühl,
T., et al. The distributed asci supercomputer project. ACM SIGOPS Oper-
ating Systems Review 34, 4 (2000), 76–96.

[9] Baliga, J., Ayre, R., Hinton, K., and Tucker, R. Green cloud comput-
ing: Balancing energy in processing, storage, and transport. Proceedings of the
IEEE 99, 1 (2011), 149–167.



158 Bibliography

[10] Barbose, G., Goldman, C., and Neenan, B. A survey of utility experience
with real time pricing. Tech. rep., Ernest Orlando Lawrence Berkeley National
Laboratory, Berkeley, CA (US), 2004.

[11] Bartolini, C., Preist, C., and Jennings, N. A software framework for
automated negotiation. In Software Engineering for Multi-Agent Systems III,
R. Choren, A. Garcia, C. Lucena, and A. Romanovsky, Eds., vol. 3390 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 213–235.

[12] Battre, D., Brazier, F., Clark, K., Oey, M., Papaspyrou, A.,
Wäldrich, O., Wieder, P., and Ziegler, W. A proposal for ws-agreement
negotiation. In 11th IEEE/ACM International Conference on Grid Computing
(2010).

[13] Beam, C., and Segev, A. Automated negotiations: A survey of the state of
the art. Wirtschaftsinformatik 39, 3 (1997), 263–268.

[14] Binmore, K. Game theory: a very short introduction. Oxford University Press,
USA, 2007.

[15] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the Weil
pairing. Journal of Cryptology 17, 4 (2004), 297–319.

[16] Borenstein, S. The trouble with electricity markets: understanding califor-
nia’s restructuring disaster. The Journal of Economic Perspectives 16, 1 (2002),
191–211.

[17] Borenstein, S. The long-run efficiency of real-time electricity pricing. Energy
Journal 26, 3 (2005), 93–116.

[18] Boyle, J., Cohen, R., Herzog, S., Rajan, R., and Sastry, A. The cops
(common open policy service) protocol. Tech. rep., RFC Editor, 2000.

[19] Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C., Lindeberg,
O., Polak, B., and Treur, J. A multi-agent system performing one-to-many
negotiation for load balancing of electricity use. Electronic Commerce Research
and Applications 1, 2 (2002), 208–224.

[20] Brazier, F., Kubbe, O., Oskamp, A., Wijngaards, N., et al. Are law-
abiding agents realistic. In Proceedings of the workshop on the Law of Electronic
Agents (LEA02) (2002), pp. 151–155.

[21] Brazier, F., Ogston, E., and Warnier, M. The future of energy markets
and the challenge of decentralized self-management. In Agents and Peer-to-Peer
Computing. Springer, 2012, pp. 95–103.

[22] Brazier, F. M., Kephart, J. O., Van Dyke Parunak, H., and Huhns,
M. N. Agents and service-oriented computing for autonomic computing: A
research agenda. Internet Computing, IEEE 13, 3 (2009), 82–87.

[23] Buyya, R., and Vazhkudai, S. Compute power market: Towards a market-
oriented grid. In ccgrid (2001), Published by the IEEE Computer Society,
p. 574.



Bibliography 159

[24] Buyya, R., Yeo, C., and Venugopal, S. Market-oriented cloud comput-
ing: Vision, hype, and reality for delivering it services as computing utilities.
In High Performance Computing and Communications, 2008. HPCC’08. 10th
IEEE International Conference on (2008), Ieee, pp. 5–13.

[25] Chao, K., Anane, R., Chen, J., and Gatward, R. Negotiating agents
in a market-oriented grid. In Cluster Computing and the Grid, 2002. 2nd
IEEE/ACM International Symposium on (may 2002), p. 436.

[26] Cheng, S., Chang, C., Zhang, L., and Kim, T. Towards competitive
web service market. In Future Trends of Distributed Computing Systems, 2007.
FTDCS’07. 11th IEEE International Workshop on (2007), IEEE, pp. 213–219.

[27] Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E., Limpach,
C., Pratt, I., and Warfield, A. Live migration of virtual machines. In
Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation - Volume 2 (2005), NSDI’05, USENIX Association, pp. 273–
286.

[28] Clark, K., van Splunter, S., Warnier, M., and Brazier, F. Expressing
intervals in automated service negotiation. In Grids and Service-Oriented Archi-
tectures for Service Level Agreements, P. Wieder, R. Yahyapour, and W. Ziegler,
Eds., CoreGRID. Springer-Verlag, New York, NY, USA, 2010, pp. 67–76.

[29] Clark, K., Warnier, M., and Brazier, F. Self-adaptive service monitoring.
In proceedings of the 2011 International Conference on Adaptive and Intelligent
Systems (ICAIS 2011) (2011), Springer, pp. 119–130.

[30] Clark, K., Warnier, M., and Brazier, F. An intelligent cloud resource al-
location service - agent-based automated cloud resource allocation using micro-
agreements. In In the proceedings of the 2nd International Conference on Cloud
Computing and Services Science (CLOSER 2012) (2012), pp. 37–45.

[31] Clark, K., Warnier, M., and Brazier, F. Automated non-repudiable
cloud resource allocation. In Cloud Computing and Services Science. Springer,
2013, pp. 168–182.

[32] Clark, K., Warnier, M., and Brazier, F. Increasing green energy market
efficiency using micro agreements. In Green ICT & Energy: From Smart to Wise
Strategies, J. H. Appelman, A. Osseyran, and M. Warnier, Eds., Sustainable
Energy Developments. CRC Press, 2013, pp. 77–91.

[33] Clark, K., Warnier, M., Quillinan, T., and Brazier, F. Secure moni-
toring of service level agreements. In Fifth International Conference on Avail-
ability, Reliability and Security (ARES 2010) (March 2010), IEEE, pp. 454–461.

[34] Clark, K. P., Warnier, M., and Brazier, F. Self-Adaptive Service Level
Agreement Monitoring in Cloud Environments. Multiagent and Grid Systems
9 (2013).



160 Bibliography

[35] Clayman, S., Galis, A., Chapman, C., Toffetti, G., Rodero-Merino,
L., Vaquero, L., Nagin, K., and Rochwerger, B. Monitoring service
clouds in the future internet. In Towards the Future Internet-Emerging Trends
from European Research. IOS Press, 2010, pp. 115–126.

[36] Commission, E., et al. Investing in the development of low carbon technolo-
gies (set-plan). COM (2009) 519 (2009).

[37] Comuzzi, M., Kotsokalis, C., Spanoudakis, G., and Yahyapour, R.
Establishing and monitoring slas in complex service based systems. In Web
Services, 2009. ICWS 2009. IEEE International Conference on (2009), Ieee,
pp. 783–790.

[38] Connolly, D., Lund, H., Mathiesen, B. V., Pican, E., and Leahy, M.
The technical and economic implications of integrating fluctuating renewable
energy using energy storage. Renewable Energy 43 (2012), 47–60.

[39] Coulouris, G., J., D., and Kindberg, T. Distributed Systems: Concepts
and Design, vol. Fifth Edition. Addison-Wesley, 2012.

[40] Cramton, P. Electricity market design: The good, the bad, and the ugly.
In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on (2003), IEEE, pp. 8–pp.

[41] Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 2nd ed. SAGE Publications, 2003.

[42] Crosby, S., Doyle, R., Gering, M., Gionfriddo, M., et al. Open vir-
tualization format specification 1.1.0. Tech. rep., DSP0243, Distributed Man-
agement Task Force, Inc, 2010.

[43] Czajkowski, K., Foster, I., Kesselman, C., Sander, V., and Tuecke,
S. Snap: A protocol for negotiating service level agreements and coordinating
resource management in distributed systems. In Job scheduling strategies for
parallel processing (2002), Springer, pp. 153–183.

[44] De Bruijne, M., and Van Eeten, M. Systems that should have failed:
critical infrastructure protection in an institutionally fragmented environment.
Journal of Contingencies and Crisis Management 15, 1 (2007), 18–29.

[45] De Paepe, M., D’Herdt, P., and Mertens, D. Micro-chp systems for
residential applications. Energy conversion and management 47, 18 (2006),
3435–3446.

[46] Deindl, M., Block, C., Vahidov, R., and Neumann, D. Load shift-
ing agents for automated demand side management in micro energy grids. In
Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08. Second IEEE In-
ternational Conference on (oct. 2008), pp. 487 –488.

[47] Dielmann, K., and van der Velden, A. Virtual power plants (vpp)-a new
perspective for energy generation? In Modern Techniques and Technologies,
2003. MTT 2003. Proceedings of the 9th International Scientific and Practical



Bibliography 161

Conference of Students, Post-graduates and Young Scientists (2003), IEEE,
pp. 18–20.

[48] Dikaiakos, M. D., and Zeinalipour-Yazti, D. A distributed middle-
ware infrastructure for personalized services. Computer Communications 27,
15 (2004), 1464–1480.

[49] Dimeas, A., and Hatziargyriou, N. Control agents for real microgrids. In
Intelligent System Applications to Power Systems, 2009. ISAP’09. 15th Inter-
national Conference on (2009), IEEE, pp. 1–5.

[50] Dobson, G., and Sanchez-Macian, A. Towards unified QoS/SLA ontolo-
gies. IEEE Services Computing Workshops, 2006. SCW’06 (2006), 169–174.

[51] Duan, R., and Deconinck, G. Future electricity market interoperability of
a multi-agent model of the Smart Grid. In Networking, Sensing and Control
(ICNSC), 2010 International Conference on (2010), IEEE, pp. 625–630.

[52] Ermolayev, V., and Keberle, N. A generic ontology of rational negotiation.
In Information Systems Technology and its Applications. 5th Int. Conf. ISTA
(2006), pp. 30–31.

[53] Fabrice, B. Qemu, a fast and portable dynamic translator. In USENIX 2005
Annual Technical Conference, FREENIX Track (2005), pp. 41–46.

[54] Ferretti, S., Ghini, V., Panzieri, F., Pellegrini, M., and Turrini, E.
Qos-aware clouds. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on (july 2010), pp. 321 –328.

[55] Fiosins, M., Fiosina, J., Müller, J. P., and Görmer, J. Agent-based
integrated decision making for autonomous vehicles in urban traffic. In Advances
on Practical Applications of Agents and Multiagent Systems. Springer, 2011,
pp. 173–178.

[56] FIPA. Fipa acl message structure specification. Tech. rep., Foundation for
Intelligent Physical Agents, 2002.

[57] FIPA. Fipa iterated contract net interaction protocol specification. Tech. rep.,
Foundation for Intelligent Physical Agents, 2002.

[58] Foster, I. Globus Toolkit Version 4: Software for Service-Oriented Systems.
In International Conference on Network and Parallel Computing (IFIP) (2006),
vol. 3379 of LNCS, Springer-Verlag, pp. 2–13.

[59] Foster, I., Zhao, Y., Raicu, I., and Lu, S. Cloud computing and grid
computing 360-degree compared. In Grid Computing Environments Workshop,
2008. GCE’08 (2008), IEEE, pp. 1–10.

[60] Ganek, A., and Corbi, T. The dawning of the autonomic computing era.
IBM Systems Journal 42, 1 (2003), 5–18.

[61] Gellings, C. The smart grid: enabling energy efficiency and demand response.
CRC, 2009.



162 Bibliography

[62] Gottwalt, S., Ketter, W., Block, C., Collins, J., and Weinhardt, C.
Demand side management—a simulation of household behavior under variable
prices. Energy Policy (2011).

[63] Green, L., Mirchandani, V., Cergol, I., and Verchere, D. Design of a
dynamic sla negotiation protocol for grids. In Proceedings of the first interna-
tional conference on Networks for grid applications (2007), ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering),
p. 13.

[64] Gudgin, M., Hadley, M., and Rogers, T. Web services addressing 1.0-
core. Tech. rep., W3C Recommendation, May 2006.

[65] Gymnopoulos, L., Dritsas, S., Gritzalis, S., and Lambrinoudakis, C.
GRID security review. In Lecture Notes in Computer Science. Springer, 2003,
pp. 100–111.

[66] Hatziargyriou, N., Asano, H., Iravani, R., and Marnay, C. Microgrids.
Power and Energy Magazine, IEEE 5, 4 (july-aug. 2007), 78 –94.

[67] Hayashibara, N., Cherif, A., and Katayama, T. Failure detectors for
large-scale distributed systems. In Reliable Distributed Systems, 2002. Proceed-
ings. 21st IEEE Symposium on (2002), IEEE, pp. 404–409.

[68] Hevner, A. R., March, S. T., Park, J., and Ram, S. Design science in
information systems research. MIS Q. 28, 1 (Mar. 2004), 75–105.

[69] Hindriks, K., Jonker, C., and Tykhonov, D. Negotiation Dynamics:
Analysis, Concession Tactics, and Outcomes. In Proceedings of the 2007
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(2007), IEEE Computer Society Washington, DC, USA, pp. 427–433.

[70] Hirschheim, R. Information systems epistemology: An historical perspective.
In Information Systems Research: Issues, Methods and Practical Guidelines.
Blackwell Scientific Publications, London, U.K., 1992, pp. 28–60.

[71] Honing, N., and La Poutré, H. Reduction of market power and stabilisation
of outcomes in a novel and simplified two-settlement electricity market. In
Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences
on Web Intelligence and Intelligent Agent Technology - Volume 02 (Washington,
DC, USA, 2012), WI-IAT ’12, IEEE Computer Society, pp. 103–110.

[72] Hsu, C. Dominant factors for online trust. In Cyberworlds, 2008 International
Conference on (September 2008), pp. 165 –172.

[73] Huang, H., Zhu, G., and Jin, S. Revisiting Trust and Reputation in Multi-
agent Systems. In Computing, Communication, Control, and Management,
2008. CCCM’08. ISECS International Colloquium on (2008), vol. 1.

[74] Jennings, N. An agent-based approach for building complex software systems.
Communications of the ACM 44, 4 (2001), 35–41.



Bibliography 163

[75] Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Wooldridge,
M., and Sierra, C. Automated negotiation: prospects, methods and chal-
lenges. Group Decision and Negotiation 10, 2 (2001), 199–215.

[76] Jennings, N., and Wooldridge, M., Eds. Applications of Intelligent Agents.
Agent Technology: Foundations, Applications, and Markets. Springer, 1998,
ch. 1, pp. 3–28.

[77] Jin, H., and Wu, H. Semantic-enabled specification for Web Services agree-
ment. International Journal of Web Services Practices 1, 1-2 (2005), 13–20.

[78] Jonker, C., and Treur, J. An agent architecture for multi-attribute negoti-
ation. In International joint conference on artificial intelligence (2001), vol. 17,
LAWRENCE ERLBAUM ASSOCIATES LTD, pp. 1195–1201.

[79] Jøsang, A., Ismail, R., and Boyd, C. A survey of trust and reputation
systems for online service provision. Decision Support Systems 43, 2 (2007),
618–644.

[80] Katsaros, G., Kousiouris, G., Gogouvitis, S. V., Kyriazis, D., Meny-
chtas, A., and Varvarigou, T. A self-adaptive hierarchical monitoring
mechanism for clouds. Journal of Systems and Software 85, 5 (2012), 1029–
1041.

[81] Keller, A., and Ludwig, H. The WSLA Framework: Specifying and Mon-
itoring Service Level Agreements for Web Services. Journal of Network and
Systems Management 11, 1 (2003), 57–81.

[82] Kephart, J., and Chess, D. The vision of autonomic computing. Computer
36, 1 (2003), 41–50.

[83] Keung, H., Dyson, J., Jarvis, S., and Nudd, G. Self-adaptive and self-
optimising resource monitoring for dynamic grid environments. In Database and
Expert Systems Applications, 15th International Workshop on (August 2004),
pp. 689 – 693.

[84] Khader, D., Padget, J., and Warnier, M. Reactive monitoring of ser-
vice level agreements. In Grids and Service-Oriented Architectures for Service
Level Agreements, P. Wieder, R. Yahyapour, and W. Ziegler, Eds., CoreGRID.
Springer, 2010, pp. 13–22.

[85] Klos, T., Somefun, K., and La Poutré, H. Automated interactive sales
processes. IEEE Intelligent Systems 26, 4 (2011), 54–61.

[86] Koritarov, V. Real-world market representation with agents. Power and
Energy Magazine, IEEE 2, 4 (2004), 39–46.

[87] Kraus, S. Automated negotiation and decision making in multiagent en-
vironments. In Multi-Agent Systems and Applications, M. Luck, V. Mařík,
O. Štěpánková, and R. Trappl, Eds., vol. 2086 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2001, pp. 150–172.



164 Bibliography

[88] Krummenacher, R., Blunder, D., Simperl, E., and Fried, M. An open
distributed middleware for the semantic web. In International Conference on
Semantic Systems (I-SEMANTICS) (2009).

[89] Latham, D. Department of Defense Trusted Computer System Evaluation
Criteria. Department of Defense (1986).

[90] Lau, F., Rubin, S., Smith, M., and Trajkovic, L. Distributed denial of
service attacks. In 2000 IEEE International Conference on Systems, Man, and
Cybernetics (2000), vol. 3, pp. 2275–2280.

[91] Lazarewicz, M., and Rojas, A. Grid frequency regulation by recycling
electrical energy in flywheels. In Power Engineering Society General Meeting,
2004. IEEE (june 2004), pp. 2038 –2042 Vol.2.

[92] Lin, R., Kraus, S., Baarslag, T., Tykhonov, D., Hindriks, K., and
Jonker, C. Genius: An integrated environment for supporting the design of
generic automated negotiators. Computational Intelligence (2012).

[93] Lin, R., Kraus, S., Wilkenfeld, J., and Barry, J. Negotiating with
bounded rational agents in environments with incomplete information using an
automated agent. Artificial Intelligence 172, 6 (2008), 823–851.

[94] Ludwig, A., Braun, P., Kowalczyk, R., and Franczyk, B. A Framework
for Automated Negotiation of Service Level Agreements in Services Grids. In
Business Process Management Workshops (2006), vol. 3812 of Lecture Notes in
Computer Science, Springer, pp. 89–101.

[95] Ludwig, H., Dan, A., and Kearney, R. Cremona: an architecture and
library for creation and monitoring of WS-agreents. In Proceedings of the 2nd
international conference on Service oriented computing (2004), ACM New York,
NY, USA, pp. 65–74.

[96] Ludwig, H., Keller, A., Dan, A., King, R., and Franck, R. Web
Service Level Agreement (WSLA) Language Specification. Tech. rep., IBM
Corporation, 2003.

[97] Ludwig, H., Nakata, T., Wäldrich, O., Wieder, P., and Ziegler,
W. Reliable orchestration of resources using ws-agreement. Lecture Notes in
Computer Science 4208 (2006), 753.

[98] Luttikhuis, P. Duitsland verkijkt zich op stroom uit zon en wind. NRC
Handelsblad (June 2012).

[99] Mach, R., Lepro-Metz, R., Jackson, S., and McGinnis, L. Usage Record
Format Recommendation (GFD-RP 098). In Open Grid Forum Recommenda-
tion (2007).

[100] Mach, W., and Schikuta, E. A generic negotiation and re-negotiation frame-
work for consumer-provider contracting of web services. In Proceedings of the
14th International Conference on Information Integration and Web-based Ap-
plications & Services (2012), ACM, pp. 348–351.



Bibliography 165

[101] Manchala, D. Trust metrics, models and protocols for electronic commerce
transactions. In Distributed Computing Systems, 1998. Proceedings. 18th Inter-
national Conference on (1998), pp. 312–321.

[102] Manchala, D. E-commerce trust metrics and models. Internet Computing,
IEEE 4, 2 (March 2000), 36 –44.

[103] Massie, M., Chun, B., and Culler, D. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing 30, 7
(2004), 817–840.

[104] McCrone, A., Usher, E., Sonntag-O’Brien, V., Moslener, U., An-
dreas, J., and Gruening, C. Global trends in renewable energy invest-
ment 2011. Tech. rep., United Nations Environment Programme (UNEP) and
Bloomberg New Energy Finance, 2011.

[105] McCumber, J. Information systems security: A comprehensive model. In
Proceedings of the 14th NIST National Computer Security Conference (Wash-
ington, D.C., oct. 1991), pp. 328–337.

[106] Mirkovic, J., and Reiher, P. A taxonomy of DDoS attack and DDoS defense
mechanisms. ACM SIGCOMM Computer Communication Review 34, 2 (2004),
39–53.

[107] Mobach, D. Agent-Based Mediated Service Negotiation. PhD thesis, Computer
Science Department, Vrije Universiteit Amsterdam, May 2007.

[108] Mobach, D., Overeinder, B., and Brazier, F. A WS-Agreement Based
Resource Negotiation Framework for Mobile Agents. Scalable Computing: Prac-
tice and Experience 7, 1 (2006), 23–36.

[109] Mobach, D., Overeinder, B., Brazier, F., and Dignum, F. A two-tiered
model of negotiation based on web service agreements. In Proceedings of the
Third European Workshop on Multi-Agent Systems (EUMAS’05) (December
2005), pp. 202–213.

[110] Munawar, M., and Ward, P. Adaptive monitoring in enterprise software
systems. In First Workshop on Tackling Computer Systems Problems with Ma-
chine Learning (SysML) (June 2006).

[111] Nadiminti, K., De Assunção, M. D., and Buyya, R. Distributed systems
and recent innovations: Challenges and benefits. InfoNet Magazine 16, 3 (2006),
1–5.

[112] NagiosEnterprises. Nagios - the industry standard in it infrastructure mon-
itoring. http://nagios.org/, May 2011.

[113] Netzer, R. H. B., and Miller, B. P. What are race conditions?: Some
issues and formalizations. ACM Lett. Program. Lang. Syst. 1, 1 (Mar. 1992),
74–88.

[114] Nguyen, T. M. T., Boukhatem, N., Doudane, Y. G., and Pujolle, G.
Cops-sls: a service level negotiation protocol for the internet. Communications
Magazine, IEEE 40, 5 (2002), 158–165.

http://nagios.org/


166 Bibliography

[115] Niehörster, O., Brinkmann, A., Fels, G., Kruger, J., and Simon, J.
Enforcing slas in scientific clouds. In Cluster Computing (CLUSTER), 2010
IEEE International Conference on (2010), IEEE, pp. 178–187.

[116] NL, A. Zonnestroom en de nederlandse wetgeving (dutch).
Ministerie van Economische Zaken, Landbouw en Innovatie,
https://www.agentschapnl.nl/content/zonnestroom-en-de-nederlandse-
wetgeving, 2012.

[117] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., and Zagorodnov, D. The eucalyptus open-source cloud-
computing system. In Cluster Computing and the Grid, 2009. CCGRID’09.
9th IEEE/ACM International Symposium on (2009), IEEE, pp. 124–131.

[118] Ogston, E., and Brazier, F. Apportionment of control in virtual power
stations. In In the proceedings of the international conference on infrastructure
systems and services 2009: Developing 21st Century Infrastructure Networks
(2009).

[119] OpenStack. Openstack: Open source software for building private and public
clouds. http://www.openstack.org, 2011.

[120] Ouelhadj, D., Garibaldi, J., MacLaren, J., Sakellariou, R., and Kr-
ishnakumar, K. A Multi-agent Infrastructure and a Service Level Agreement
Negotiation Protocol for Robust Scheduling in Grid Computing. In Advances
in Grid Computing-EGC 2005 (2005), Springer, pp. 651–660.

[121] Overeinder, B., and Brazier, F. Scalable Middleware Environment for
Agent-Based Internet Applications. Applied Parallel Computing. State of the
Art in Scientific Computing 3732 (2005), 675–679.

[122] Overeinder, B. J., Posthumus, E., and Brazier, F. Integrating peer-to-
peer networking and computing in the agentscape framework. In Peer-to-Peer
Computing, 2002.(P2P 2002). Proceedings. Second International Conference on
(2002), IEEE, pp. 96–103.

[123] Padgett, J., Djemame, K., and Dew, P. Grid-Based SLA Management.
In Advances in Grid Computing (EGC 2005). Springer, 2005, pp. 1076–1085.

[124] Palensky, P., and Dietrich, D. Demand side management: Demand re-
sponse, intelligent energy systems, and smart loads. Industrial Informatics,
IEEE Transactions on 7, 3 (2011), 381–388.

[125] Pallickara, S., and Fox, G. Naradabrokering: a distributed middleware
framework and architecture for enabling durable peer-to-peer grids. In Middle-
ware 2003 (2003), Springer, pp. 41–61.

[126] Parashar, M., and Hariri, S. Autonomic computing: An overview. In
Unconventional Programming Paradigms. Springer, 2005, pp. 257–269.

[127] Pearson, S. Trusted computing platforms, the next security solution. Tech.
rep., HP Labs, 2002.

http://www.openstack.org


Bibliography 167

[128] Peterson, S. B., Whitacre, J., and Apt, J. The economics of using plug-in
hybrid electric vehicle battery packs for grid storage. Journal of Power Sources
195, 8 (2010), 2377 – 2384.

[129] Piwko, R., Osborn, D., Gramlich, R., Jordan, G., Hawkins, D., and
Porter, K. Wind energy delivery issues [transmission planning and compet-
itive electricity market operation]. Power and Energy Magazine, IEEE 3, 6
(2005), 47–56.

[130] Pueschel, T., Anandasivam, A., Buschek, S., and Neumann, D. Mak-
ing Money With Clouds: Revenue Optimization Through Automated Policy
Decisions. In 17th European Conference on Information Systems (ECIS 2009),
Verona, Italy (2009), pp. 355–367.

[131] Quillinan, T., Brazier, F., Aldewereld, H., Dignum, F., Dignum, V.,
Penserini, L., and Wijngaards, N. Developing agent-based organizational
models for crisis management. In Proc. of the 8th Int. Joint Conf. on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2009) (2009), pp. 45–51.

[132] Quillinan, T., Clark, K., Warnier, M., Brazier, F., and Rana, O.
Negotiation and monitoring of service level agreements. In Grids and Service-
Oriented Architectures for Service Level Agreements, P. Wieder, R. Yahyapour,
and W. Ziegler, Eds., CoreGRID. Springer-Verlag, New York, NY, USA, 2010,
pp. 167–176.

[133] Quillinan, T., Clayton, B., and Foley, S. GridAdmin: Decentralising
grid administration using trust management. In Parallel and Distributed Com-
puting, 2004. Third International Symposium on/Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks, 2004. Third International
Workshop on (2004), IEEE, pp. 184–192.

[134] Quillinan, T., Warnier, M., Oey, M., Timmer, R., and Brazier, F.
Enforcing Security in the AgentScape Middleware. In Proceedings of the 1st
International Workshop on Middleware Security (MidSec) (December 2008),
ACM.

[135] Quinn, M. Parallel computing: theory and practice. McGraw-Hill, Inc., 1994.

[136] Rahwan, I., Kowalczyk, R., and Pham, H. H. Intelligent agents for auto-
mated one-to-many e-commerce negotiation. Aust. Comput. Sci. Commun. 24,
1 (Jan. 2002), 197–204.

[137] Raiffa, H. The art and science of negotiation: How to resolve conflicts and
get the best out of bargaining. Belknap Press, 2002.

[138] Ramchurn, S., Vytelingum, P., Rogers, A., and Jennings, N. Putting
the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence.
Communications of the ACM (2012).

[139] Ramezani, S., Bosman, P., and La Poutré, H. Adaptive strategies for
dynamic pricing agents. In Web Intelligence and Intelligent Agent Technology
(WI-IAT), 2011 IEEE/WIC/ACM International Conference on (2011), vol. 2,
pp. 323–328.



168 Bibliography

[140] Rana, O., Warnier, M., Quillinan, T., and Brazier, F. Monitoring and
Reputation Mechanisms for Service Level Agreements. In Proceedings of the
5th International Workshop on Grid Economics and Business Models (GenCon)
(Las Palmas, Gran Canaria, Spain., August 2008), Springer Verlag.

[141] Rana, O., Warnier, M., Quillinan, T., Brazier, F., and Cojocarasu,
D. Managing violations in service level agreements. In Grid Middleware and
Services. Springer, 2008, pp. 349–358.

[142] Reed, C., and Walton, D. Towards a formal and implemented model of ar-
gumentation schemes in agent communication. Autonomous Agents and Multi-
Agent Systems 11, 2 (2005), 173–188.

[143] Resnick, P., Kuwabara, K., Zeckhauser, R., and Friedman, E. Repu-
tation systems. Communications of the ACM 43, 12 (2000), 45–48.

[144] Rivest, R., Shamir, A., and Adleman, L. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM 21, 2
(1978), 120–126.

[145] Romano, L., De Mari, D., Jerzak, Z., and Fetzer, C. A novel approach
to qos monitoring in the cloud. In Data Compression, Communications and
Processing (CCP), 2011 First International Conference on (june 2011), pp. 45
–51.

[146] Romp, G. Game theory: introduction and applications. Oxford university press,
1997.

[147] Rosenschein, J. S., and Zlotkin, G. Designing conventions for automated
negotiation. AI magazine 15, 3 (1994), 29.

[148] Sahai, A., Durante, A., and Machiraju, V. Towards automated sla man-
agement for web services. Tech. Rep. Research Report HPL-2001-310 (R. 1),
Hewlett-Packard, 2002.

[149] Sahai, A., Graupner, S., Machiraju, V., and van Moorsel, A. Speci-
fying and monitoring guarantees in commercial grids through SLA. In Cluster
Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM
International Symposium on (2003), pp. 292–299.

[150] Sahai, A., Machiraju, V., Sayal, M., Van Moorsel, A., and Casati,
F. Automated sla monitoring for web services. In Management Technologies
for E-Commerce and E-Business Applications. Springer, 2002, pp. 28–41.

[151] Sandholm, T. An implementation of the contract net protocol based on
marginal cost calculations. In AAAI (1993), vol. 93, pp. 256–262.

[152] Sandholm, T. Agents in electronic commerce: Component technologies for
automated negotiation and coalition formation. Autonomous Agents and Multi-
Agent Systems 3, 1 (2000), 73–96.

[153] Sandholm, T. W., and Lesser, V. R. Issues in automated negotiation and
electronic commerce: Extending the contract net framework. In Proceedings of
the 1st International Conference on Multiagent Systems (1995), pp. 328–335.



Bibliography 169

[154] Schneier, B. Applied Cryptography: protocols, algorithms, and source code in
C, 2nd ed. John Wiley and Sons, 1996.

[155] Schroeder, M. An efficient argumentation framework for negotiating au-
tonomous agents. In Multi-Agent System Engineering. Springer, 1999, pp. 140–
149.

[156] Shvaiko, P., and Euzenat, J. Ten challenges for ontology matching. In On
the Move to Meaningful Internet Systems: OTM 2008. Springer, 2008, pp. 1164–
1182.

[157] Shvaiko, P., and Euzenat, J. Ontology matching: state of the art and
future challenges. Knowledge and Data Engineering, IEEE Transactions on 25,
1 (2013), 158–176.

[158] Sjoberg, D. I., Dyba, T., and Jorgensen, M. The future of empirical
methods in software engineering research. In Future of Software Engineering,
2007. FOSE’07 (2007), IEEE, pp. 358–378.

[159] Smith, R. The contract net protocol: High-level communication and control in
a distributed problem solver. Computers, IEEE Transactions on 100, 12 (1980),
1104–1113.

[160] Stantchev, V., and Schröpfer, C. Negotiating and enforcing QoS and
SLAs in grid and cloud computing. In Advances in Grid and Pervasive Com-
puting. Springer, 2009, pp. 25–35.

[161] Strbac, G. Demand side management: Benefits and challenges. Energy Policy
36, 12 (2008), 4419–4426.

[162] Ströbel, M., and Weinhardt, C. The montreal taxonomy for electronic
negotiations. Group Decision and Negotiation 12, 2 (2003), 143–164.

[163] Tajeddine, A., Kayssi, A., Chehab, A., and Artail, H. A comprehensive
reputation-based trust model for distributed systems. In Security and Privacy
for Emerging Areas in Communication Networks, 2005. Workshop of the 1st
International Conference on (September 2005), pp. 116 – 125.

[164] Tamma, V., Phelps, S., Dickinson, I., and Wooldridge, M. Ontologies
for supporting negotiation in e-commerce. Engineering applications of artificial
intelligence 18, 2 (2005), 223–236.

[165] Tanenbaum, A. S., and Van Steen, M. Distributed systems, vol. 2. Prentice
Hall, 2002.

[166] Tondello, G., and Siqueira, F. The QoS-MO ontology for semantic QoS
modeling. In Proceedings of the 2008 ACM symposium on Applied computing
(2008), ACM New York, NY, USA, pp. 2336–2340.

[167] Van het Schip, R., van Splunter, S., and Brazier, F. Template eval-
uation and selection for ws-agreement. In Service Level Agreements in Grids
Workshop proceedings (2009).



170 Bibliography

[168] Van Steen, M., Pierre, G., and Voulgaris, S. Challenges in very large
distributed systems. Journal of Internet Services and Applications 3, 1 (2012),
59–66.

[169] Van Veenen, J., and Prakken, H. A protocol for arguing about rejections in
negotiation. In Argumentation in Multi-Agent Systems. Springer, 2006, pp. 138–
153.

[170] Venables, M. Smart meters make smart consumers. Engineering Technology
2, 4 (april 2007), 23.

[171] Vokřínek, J., Bíba, J., Hodík, J., Vybíhal, J., and Pěchouček, M.
Competitive contract net protocol. In SOFSEM 2007: Theory and Practice of
Computer Science. Springer, 2007, pp. 656–668.

[172] Vukmirovic, M., Ganzha, M., and Paprzycki, M. Developing a model
agent-based airline ticket auctioning system. In Intelligent Information Pro-
cessing and Web Mining. Springer, 2006, pp. 297–306.

[173] Vytelingum, P., Ramchurn, S., Voice, T., Rogers, A., and Jennings,
N. Agent-based modeling of smart-grid market operations. In Power and Energy
Society General Meeting, 2011 IEEE (2011), IEEE, pp. 1–8.

[174] Wäldrich, O., Battre, D., Brazier, F., Clark, K., Oey, M., Papaspy-
rou, A., Wieder, P., and Ziegler, W. WS-Agreement Negotiation: Version
1.0 (GFD-R-P.193). Tech. rep., Open Grid Forum, Grid Resource Allocation
Agreement Protocol (GRAAP) WG, 2011.

[175] Wang, H., and Wang, Y. Multi-agent system negotiation based on expanded
contract net protocol research. In Natural Language Processing and Knowledge
Engineering, 2005. IEEE NLP-KE’05. Proceedings of 2005 IEEE International
Conference on (2005), IEEE, pp. 472–478.

[176] Wang, X., and Schulzrinne, H. Rnap: A resource negotiation and pricing
protocol. Transit 6, B7 (1999), B8.

[177] Wang, Y., and Lin, F.-r. Trust and risk evaluation of transactions with
different amounts in peer-to-peer e-commerce environments. In e-Business En-
gineering, 2006. ICEBE’06. IEEE International Conference on (2006), IEEE,
pp. 102–109.

[178] Wang, Y., Wong, D. S., Lin, K.-J., and Varadharajan, V. Evaluat-
ing transaction trust and risk levels in peer-to-peer e-commerce environments.
Information Systems and E-Business Management 6, 1 (2008), 25–48.

[179] Wang, Y., and Zheng, Y. Fast and Secure Append-Only Storage with Infinite
Capacity. In Second IEEE International Security in Storage Workshop (2003),
IEEE, pp. 11–19.

[180] Weiss, A. Computing in the clouds. netWorker 11, 4 (2007), 16–25.

[181] Whitworth, B. Socio-technical systems. Encyclopedia of human computer
interaction (2006), 533–541.



Bibliography 171

[182] Wijngaards, N., Van Steen, M., and Brazier, F. On mas scalability. In
Proc. 2nd Int’l Workshop on Infrastructure for Agents, MAS and Scalable MAS
(2001).

[183] Wijngaards, N. J., Overeinder, B., van Steen, M., and Brazier, F. M.
Supporting internet-scale multi-agent systems. Data & Knowledge Engineering
41, 2 (2002), 229–245.

[184] Wong, T., and Fang, F. A multi-agent protocol for multilateral negotiations
in supply chain management. International Journal of Production Research 48,
1 (2010), 271–299.

[185] Wooldridge, M. An introduction to multiagent systems. Wiley, 2008.



172 Bibliography



APPENDIXA
Supplemental Material
of Chapter 5

/**
* Context specific fields (e.g. minimum prices p/KWh)
* src: Wikipedia , April 2013
*/

public enum EnergyPrice {

NUCLEAR (0.1127) ,
COAL (0.0996) ,
GAS (1.1053) ,
WIND (0.0968) ,
SOLAR (0.1569) ,
HYDRO (0.0899) ,
BIOFUELS (0.1202) ,
GEOTHERMAL (0.0996);
private Double value;
private EnergyPrice(Double d) {

value = d;
}

}

Figure A.1: Example energy provider minimum prices (in Java).



174 Supplemental Material of Chapter 5

/**
* Test if offered price of selected energy type is acceptable.
*/

public boolean evaluateNegotiationOffer(NegotiationOffer offer) {

ServiceDescriptionTermType [] terms = offer.getTerms (). getAll ().
getServiceDescriptionTermArray ();

for (ServiceDescriptionTermType sdt : terms) {

// Go through each EnergyService term and check the price
if (sdt.getServiceName (). equals("EnergyService")) {
EnergyDocument ed = EnergyDocument.Factory.parse(sdt.xmlText ());
EnergyType et = ed.getEnergy ();
if (et.getEnergySource (). matches(EnergyPrice.WIND.toString ())) {
if (et.getEnergyPrice () < EnergyPrice.WIND.value) {

// Suggested price for WIND is too low.
return false;

} else {

// Suggested price for WIND is acceptable.
return true;

}
...

}

Figure A.2: Example energy provider offer evaluation (in Java).



175

/**
* Create counter -offer however you choose
* following a personal strategy , such as:
* if too low , increase by 10%
* if too high , decrease by 10%
*/

public NegotiationOffer createCounterOffer(NegotiationOffer offer ,
SessionInfo sessionInfo) {

NegotiationOfferStateType state = NegotiationOfferStateType.Factory.
newInstance ();

NegotiationOffer response = new NegotiationOffer(offer );

// go through each term and , if unacceptable , propose something else
ServiceDescriptionTermType [] terms = response.getTerms (). getAll ().

getServiceDescriptionTermArray ();
for (ServiceDescriptionTermType sdt : terms) {
if (sdt.getServiceName (). equals("EnergyService")) {
EnergyDocument ed = EnergyDocument.Factory.parse(sdt.xmlText ());
EnergyType et = ed.getEnergy ();
if (et.getEnergySource (). matches(EnergyPrice.WIND.toString ())) {
if (et.getEnergyPrice () < EnergyPrice.WIND.value) {

// Suggested WIND price too low. Increase 10% above minimum.
double newPrice = EnergyPrice.WIND.value * 1.1;
et.setEnergyPrice(newPrice );

}
...

// Put new values , if any , back into xml
sdt.set(ed);
sdt.setServiceName("EnergyService");
...

// set the state to advisory or acceptable or solicited
state.addNewAdvisory ();
response.getNegotiationOfferContext (). setState(state);
return response;

}

Figure A.3: Example energy provider counter-offer creation (in Java).



176 Supplemental Material of Chapter 5

/**
* Process an ACCEPTABLE offer. ACCEPT or create counter -offer.
*/

public NegotiationOffer processAcceptableOffer(NegotiationOffer offer ,
SessionInfo sessionInfo) {

NegotiationOfferStateType state = NegotiationOfferStateType.Factory.
newInstance ();

NegotiationOffer response = new NegotiationOffer(offer );

// boolean test if offer is acceptable
if (evaluateNegotiationOffer(offer )) {

// Offer is acceptable.
state.addNewAcceptable ();
response.getNegotiationOfferContext (). setState(state);

} else {

// if offer is unacceptable , propose a counter -offer
response = createCounterOffer(offer , sessionInfo );

}
return response;

}

/**
* Process an ADVISORY offer. Essentially the same as processing an
* ACCEPTABLE offer , but you can change it.
*/

public NegotiationOffer processAdvisoryOffer(NegotiationOffer offer ,
SessionInfo sessionInfo) {

...
}

/**
* Process a REJECTED offer. If the counter -agent rejects your offer ,
* you can either end negotiation or rollback and create a new
* counter -offer with better terms.
*/

public NegotiationOffer processRejectedOffer(NegotiationOffer offer ,
SessionInfo sessionInfo) {

...
}

Figure A.4: Helper methods for handling ACCEPTABLE, ADVISORY and RE-
JECTED offers (in Java).



177

/**
* Process a SOLICITED offer. You must respond with ACCEPT or REJECT.
*/

public NegotiationOffer processSolicitedOffer(NegotiationOffer offer ,
SessionInfo sessionInfo) {

NegotiationOfferStateType state = NegotiationOfferStateType.Factory.
newInstance ();

NegotiationOffer response = new NegotiationOffer(offer );

// boolean test if offer is acceptable
if (evaluateNegotiationOffer(offer)) {

// Offer is acceptable. Set state to ACCEPTABLE.
state.addNewAcceptable ();
response.getNegotiationOfferContext (). setState(state);

} else {

// Offer is unacceptable! Set state to REJECTED.
state.addNewRejected ();
response.getNegotiationOfferContext (). setState(state);

}
return response;

}

Figure A.5: Helper method for handling SOLICITED offers (in Java).

/**
* Context specific fields (e.g. maximum prices)
* src: Wikipedia , April 2013
* Willing to pay more for renewables , less for others
*/

public enum EnergyPrice {

NUCLEAR (0.0564) ,
COAL (0.0498) ,
GAS (0.5527) ,
WIND (0.1936) ,
SOLAR (0.3138) ,
HYDRO (0.1798) ,
BIOFUELS (0.2404) ,
GEOTHERMAL (0.1992);
private Double value;
private EnergyPrice(Double d) {

value = d;
}

}

Figure A.6: Example energy consumer maximum prices (in Java).



178 Supplemental Material of Chapter 5

/**
* Create a new offer , based on a template.
* Follow a personal strategy. (e.g. low starting price)
* Don’t exceed creation constraints.
*/

public NegotiationOffer createNegotiationOffer(Template template ,
String sessionID) {

NegotiationOffer offer = new NegotiationOffer(template , sessionID );

// set session ID
offer.setSessionID(sessionID );

// prepare the negotiation context
NegotiationOfferContextType context = NegotiationOfferContextType.
Factory.newInstance ();

context.setCreator(NegotiationRoleType.NEGOTIATION_INITIATOR );
...

// set the default state: acceptable , rejected , solicited , advisory
NegotiationOfferStateType state = NegotiationOfferStateType.Factory.
newInstance ();

state.addNewAdvisory ();
context.setState(state);

// set counterOfferTo ID
String counterOfferID = "template -" + template.getTemplateId ();
context.setCounterOfferTo(counterOfferID );

// set the negotiation context
offer.setNegotiationOfferContext(context );

// use java to create the AgentScape specific XML terms
EnergyDocument ed = EnergyDocument.Factory.newInstance ();
EnergyType et = ed.addNewEnergy ();
et.setEnergySource(EnergyPrice.WIND.toString ());

// choose an ideal price (e.g. very low)
double idealPrice = EnergyPrice.WIND.value * 0.1;
et.setEnergyPrice(idealPrice );

// fill in all the terms
ServiceDescriptionTermType [] terms = offer.getTerms (). getAll ().

getServiceDescriptionTermArray ();
for (ServiceDescriptionTermType sdt : terms) {
if (sdt.getServiceName (). equals("EnergyService")) {
sdt.set(ed);
sdt.setName("RESOURCE_SDT");
sdt.setServiceName("EnergyService");

}
}

return offer;
}

Figure A.7: Example energy consumer initial offer creation (in Java).



179

<NegotiationOffer OfferId="initiator -1">
<Context >

<AgreementProvider >AgreementResponder </AgreementProvider >
<ServiceProvider >AgreementResponder </ServiceProvider >
<TemplateId >4</TemplateId >
<TemplateName >EnergyTemplate </TemplateName >

</Context >
<Terms>

<All>
<ServiceDescriptionTerm ServiceName="EnergyService">

<Energy >
<EnergySource >WIND</EnergySource >
<EnergyPrice >0.019360000000000002 </EnergyPrice >

</Energy >
</ServiceDescriptionTerm >

</All>
</Terms >
<NegotiationOfferContext >

<CounterOfferTo >template -4- EnergyTemplate </CounterOfferTo >
<Creator >NegotiationInitiator </Creator >
<State >

<Advisory/>
</State >

</NegotiationOfferContext >
</NegotiationOffer >

Figure A.8: Energy consumer’s initial negotiation offer: ‘initiator-1’



180 Supplemental Material of Chapter 5

<NegotiationOffer OfferId="responder -1">
<Context >

<AgreementProvider >AgreementResponder </AgreementProvider >
<ServiceProvider >AgreementResponder </ServiceProvider >
<TemplateId >4</TemplateId >
<TemplateName >EnergyTemplate </TemplateName >

</Context >
<Terms >

<All>
<ServiceDescriptionTerm ServiceName="EnergyService">

<Energy >
<EnergySource >WIND</EnergySource >
<EnergyPrice >0.10647999999999999 </EnergyPrice >

</Energy >
</ServiceDescriptionTerm >

</All>
</Terms >
<NegotiationOfferContext >

<CounterOfferTo >initiator -1</CounterOfferTo >
<Creator >NegotiationResponder </Creator >
<State>

<Advisory/>
</State >

</NegotiationOfferContext >
</NegotiationOffer >

Figure A.9: Energy provider’s first counter-offer: ‘responder-1’



181

<NegotiationOffer OfferId="initiator -2">
<Context >

<AgreementProvider >AgreementResponder </AgreementProvider >
<ServiceProvider >AgreementResponder </ServiceProvider >
<TemplateId >4</TemplateId >
<TemplateName >EnergyTemplate </TemplateName >

</Context >
<Terms >

<All>
<ServiceDescriptionTerm ServiceName="EnergyService">

<Energy >
<EnergySource >WIND</EnergySource >
<EnergyPrice >0.10647999999999999 </EnergyPrice >

</Energy >
</ServiceDescriptionTerm >

</All>
</Terms >
<NegotiationOfferContext >

<CounterOfferTo >responder -1</CounterOfferTo >
<Creator >NegotiationInitiator </Creator >
<State>

<Acceptable/>
</State >

</NegotiationOfferContext >
</NegotiationOffer >

Figure A.10: Energy consumer’s acceptable offer: ‘initiator-2’



182 Supplemental Material of Chapter 5

<NegotiationOffer OfferId="responder -2">
<Context >

<AgreementProvider >AgreementResponder </AgreementProvider >
<ServiceProvider >AgreementResponder </ServiceProvider >
<TemplateId >4</TemplateId >
<TemplateName >EnergyTemplate </TemplateName >

</Context >
<Terms >

<All>
<ServiceDescriptionTerm ServiceName="EnergyService">

<Energy >
<EnergySource >WIND</EnergySource >
<EnergyPrice >0.10647999999999999 </EnergyPrice >

</Energy >
</ServiceDescriptionTerm >

</All>
</Terms >
<NegotiationOfferContext >

<CounterOfferTo >initiator -2</CounterOfferTo >
<Creator >NegotiationResponder </Creator >
<State>

<Acceptable/>
</State >

</NegotiationOfferContext >
</NegotiationOffer >

Figure A.11: Energy provider’s acceptable offer: ‘responder-2’



Index

agents, 26, 30, 124
AgentScape middleware, 27, 59, 100,

145
auditing, 83, 89
autonomic, 15

computing, 15
principles, 16
self-awareness, 17
self-configuration, 17
self-healing, 17
self-optimization, 17
self-protection, 17

CHP, see combined heat and power
cloud computing, 137, 139

hypervisor, 140
platform, 140
standardization, 140
Virtual Disk Images, 140

Cloud Service Provider, 137
combined heat and power, 119
concurrency, 14
conflict mediation, 83, 89, 98
conflict resolution, see conflict media-

tion
cryptography, 13, 87

digital signatures, 13, 87
CSP, see Cloud Service Provider

Demand Side Management, 120
design science, 5
distributed environment, 3
distributed computing, 10

distributed generation, 119
distributed monitoring, 23
distributed systems, 3
DSM, see Demand Side Management
dynamic environment, 3
dynamic environment, 82
dynamism, 74

encryption, see cryptography

fault tolerance, 14
force majeur, 74
Future Energy Markets, 119

automation, 123, 124

Guarantee Terms, 39

heterogeneity, 12
heterogeneous, 12

ICRAS, see Intelligent Cloud Resource
Allocation Service

Intelligent Cloud Resource Allocation
Service, 138, 141

intermittent generation, 119, 121
interval semantics, 52

mediator, see Trusted Third Party
micro-agreement, see Service Level Agree-

ment
micro-SLA, see Service Level Agree-

ment
middleware, 11
monitoring



184 Index

active, 76
decentralized, 81
distributed, 23, 81
dynamic, 77, 82, 93
future energy market, 136
generic design, 77
measurement interval, 77
mutual commit protocol, see pas-

sive
overhead, 82, 93
passive, 86
policy, 96
processes, 77
self-adaptive, 93, 110
sensors, 77
service, SLA, 76

negotiation, 26, 29, 32
automated, 18, 36
bargaining, 33
cardinality, 34
definition, 32, 33
future energy market, 133
language, 39
objects, 38, 43
protocol, 18, 36, 37, 42
roles, 34
semantics, 52
session rollback, 44
single round, 39
specification, 37, 41
state machine, 44, 46
utility, 33

nonrepudiation, 87

ontologies, 50
open environments, 2, 18
Open Virtualization Format, 140
OVF, see Open Virtualization Format

perceived risk, 74, 82, 94
level, 95

transaction cost, 95
transaction history, 95

policy
monitoring, 96
violation, 85

privacy, 3, 12

Real-Time Pricing, 121
redundancy, 14
reputation, 83, 95
research

context, 1
contributions, 6
objectives, 4, 152
philosophy, 5
questions, 4, 152
strategy, 5

risk, see perceived risk
RTP, see Real-Time Pricing

scalability, 13, 74, 106
security, 3, 12, 79, 87
self-awareness, 17
self-configuration, 17
self-healing, 17
self-optimization, 17
self-protection, 17
semantics, 52
SEP, see Service Evidential Protocol
Service Description Term, 39
Service Evidential Protocol, 87
Service Level Agreement

enforcement, 83
Service Level Agreement, 35

micro, 125
penalties, 83
violation, 76, 83

session identifier, 50
SLA, see Service Level Agreement
Smart Energy Grid, 118, 120
Smart Grid, see Smart Energy Grid



Index 185

software agents, see agents
symmetry, 18, 31, 49

TMM, see Trusted Monitoring Mod-
ule

transparency, 15
trust, 74, 83, 94, 95, 123
Trusted Monitoring Module, 79, 143
Trusted Third Party, 76, 77, 79, 143,

144
TTP, see Trusted Third Party

untrusted environment, 3
utility function, 33

virtualization, 140

WS-Agreement, 30, 37
Agreement Offer, 38
Agreement Template, 38
Agreements, 38
Creation Constraints, 38

WS-Agreement Negotiation, 31, 41,
59

WSAG, see WS-Agreement
WSAN, see WS-Agreement Negotia-

tion



186 Index



List of Figures

2.1 Positioning of this dissertation (shaded region) in the related
fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 A middleware layer distributed across three heterogeneous ma-
chines. Adapted from [165]. . . . . . . . . . . . . . . . . . . . . 11

2.3 The process of encrypting and decrypting a message. Adapted
from [154]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Common architectural approach to building autonomic element.
Adapted from [82]. . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Comparison of related negotiation research. . . . . . . . . . . . 20
2.6 Comparison of related monitoring research. . . . . . . . . . . . 24
2.7 AgentScape distributed middleware. . . . . . . . . . . . . . . . 27

3.1 Cardinalities and roles of negotiation. (a) One consumer nego-
tiates simultaneously with three providers. (b) A negotiation
participant with both consumer and provider roles in separate
negotiation sessions. (c) A consumer with the dual-role of me-
diator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 WS-Agreement SLA creation protocol. Adapted from [108]. . . 38
3.3 WS-Agreement SLA structure. Adapted from [5]. . . . . . . . . 40
3.4 WS-Agreement XML language representation. . . . . . . . . . . 41
3.5 WS-Agreement Negotiation (NPS-1) multiround negotiation pro-

tocol. The existing agreement layer is depicted slightly faded.
The new negotiation layer is indicated with the large curly
bracket on the left side of the figure. . . . . . . . . . . . . . . . 43

3.6 WS-Agreement Negotiation (NPS-1) state machine. Adapted
from [174]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Negotiation offers arranged in tree structure. Adapted from [174]. 45
3.8 Dual state machines. (a) Original, offer state machine (from

NPS-1). (b) Extended, session state machine (from NPS-2). . . 47



188 List of Figures

3.9 An illustration of the application of session identifiers (from
NPS-2): (a) Three separate negotiation sessions with unique
identifiers. (b) Logical grouping of separate sessions. . . . . . . 52

3.10 Example resource offering with intervals. Adapted from [28]. . 53
3.11 Resource offer and response with added semantics (NPS-2). . . 55
3.12 WS-Agreement template with interval semantics (from NPS-2). 57
3.13 WS-Agreement offer with interval semantics (from NPS-2). . . . 58
3.14 Interval semantic enhanced negotiation process. . . . . . . . . . 59
3.15 WS-Agreement Negotiation (NPS-1) protocol deployment in Agent-

Scape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.16 WSAN Service CPU load. . . . . . . . . . . . . . . . . . . . . . 66
3.17 WSAN Service CPU load. . . . . . . . . . . . . . . . . . . . . . 66

4.1 A generic monitor design. . . . . . . . . . . . . . . . . . . . . . 78
4.2 Combination of TTP and TMMs at consumer and provider lo-

cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Example monitoring policy Service Description Term. . . . . . 85
4.4 High-level overview of Service Evidential Protocol. . . . . . . . 90
4.5 Single iteration of Service Evidential Protocol. Adapted from [84]. 91
4.6 Conflict mediation protocol. Adapted from [84]. . . . . . . . . . 92
4.7 Relationship between local knowledge and perceived level of

trust. Adapted from [102]. . . . . . . . . . . . . . . . . . . . . . 96
4.8 Examples of (a) paranoid and (b) optimistic monitoring policies. 97
4.9 State diagram of self-adaptive monitor (adapted from [84]). . . 99
4.10 Monitoring framework deployment in AgentScape. . . . . . . . 101
4.11 Centralized and decentralized TTP modes. . . . . . . . . . . . 102
4.12 Monitoring messages per minute with 2 agents. . . . . . . . . . 104
4.13 Monitoring bytes per minute with 2 agents. . . . . . . . . . . . 105
4.14 Message overhead with increased scalability . . . . . . . . . . . 109
4.15 Average CPU load of large scale monitoring on DAS-4. . . . . . 109
4.16 Overhead of self-adaptive monitoring with two agents. . . . . . 111

5.1 A future energy market with multiple providers and consumers. 128
5.2 WSAN XML Template advertising energy services. . . . . . . . 130
5.3 Energy negotiation scenario using WS-Agreement Negotiation

(NPS-1) protocol in AgentScape. Source code of all offers and
evaluation methods is available in the Appendix and upon request.134

5.4 ICRAS architecture with a consumer negotiating with two com-
peting CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.5 Consumer generated resource request. . . . . . . . . . . . . . . 146
5.6 SLA template from two competing CSPs. . . . . . . . . . . . . 146



List of Figures 189

5.7 ICRAS agent generated offer. . . . . . . . . . . . . . . . . . . . 147

A.1 Example energy provider minimum prices (in Java). . . . . . . 173
A.2 Example energy provider offer evaluation (in Java). . . . . . . . 174
A.3 Example energy provider counter-offer creation (in Java). . . . 175
A.4 Helper methods for handling ACCEPTABLE, ADVISORY and

REJECTED offers (in Java). . . . . . . . . . . . . . . . . . . . 176
A.5 Helper method for handling SOLICITED offers (in Java). . . . 177
A.6 Example energy consumer maximum prices (in Java). . . . . . 177
A.7 Example energy consumer initial offer creation (in Java). . . . . 178
A.8 Energy consumer’s initial negotiation offer: ‘initiator-1’ . . . . 179
A.9 Energy provider’s first counter-offer: ‘responder-1’ . . . . . . . 180
A.10 Energy consumer’s acceptable offer: ‘initiator-2’ . . . . . . . . . 181
A.11 Energy provider’s acceptable offer: ‘responder-2’ . . . . . . . . 182



190 List of Figures



List of Tables

3.1 Valid dual state combinations. . . . . . . . . . . . . . . . . . . 48
3.2 Underspecified issues in automated negotiation. . . . . . . . . . 54
3.3 An overview of relevant negotiation objects. . . . . . . . . . . . 62
3.4 An overview of relevant negotiation methods. . . . . . . . . . . 63
3.5 Overview of WSAN Service experiments. . . . . . . . . . . . . . 65

4.1 Service Evidential Protocol functions. . . . . . . . . . . . . . . 88
4.2 Overview of experiments. . . . . . . . . . . . . . . . . . . . . . 102
4.3 Summary of messages per minute results. . . . . . . . . . . . . 106
4.4 Summary of bytes per minute results. . . . . . . . . . . . . . . 107

5.1 Limited import/export functionality among leading CSPs. . . . 141



192 List of Tables



Summary

Large scale, distributed, digital environments offer vast potential. Within
these environments, software systems will provide unprecedented support for
daily life. Offering access to vast amounts of knowledge and resources, these
systems will enable wider participation of society, at large. An example is
the Smart Energy Grid that increases sustainability and decreases reliance on
fossil fuels.

Such systems require technology that is capable of negotiating Service
Level Agreements (SLAs) between consumers and providers. Multi Agent
Systems (MAS) is one such technology that offers a straightforward analog
for complex systems of autonomous parties. MAS is based on the notion of
autonomous agents that represent human actors (i.e. owners) and are capable
of negotiating SLAs and coordinating processes with other agents. They know
their owner’s preferences and needs. They are capable of negotiating price,
Quality of Service (QoS) characteristics and penalties. They also monitor
provisioning of services to detect and penalize service violations.

This dissertation presents a MAS framework for automated negotiation
and monitoring of SLAs in open environments. In this context, an open en-
vironment is a large-scale, distributed environment that is also dynamic and
untrusted. This framework enables secure discovery, negotiation and access to
distributed resources. Through a process of exchanging messages (e.g. offers,
counter-offers), agents together search for a mutually acceptable agreement
(e.g. service, price, quality). A negotiation protocol defines the negotiation
objects (i.e. offers), language and rules governing interaction. This disser-
tation presents the WS-Agreement Negotiation protocol with extensions for
open environments. This protocol is experimentally validated in the Agent-
Scape middleware.

Open environments also present challenges regarding security, trust and
privacy. No single authority has complete control over an open environment
and no single authority governs the actions of all participants (i.e. agents).
Therefore, additional mechanisms are required to ensure security, privacy and
promote trust between participants. Automated monitoring mechanisms using



194 Summary

a Trusted Third Party (TTP) address issues of security and thus support
negotiation in open environments. This dissertation presents a self-adaptive
monitoring approach that (1) offers monitoring assurance that agreements are
honored, (2) builds a secure audit log of agreement compliance, (3) performs
measurements while safeguarding privacy of (sensitive) data, (4) dynamically
reacts to changes in risk and (5) enables trust-building between consumers
and providers. This monitoring approach is experimentally validated in the
AgentScape middleware.

Automation of complex tasks, such as negotiation, can increase efficiency.
To illustrate these benefits, the framework is applied to two complex sys-
tems, including the Smart Energy Grid. In this case, the looming complex-
ity crisis of intermittent generation, real-time pricing and consumer demand
shifting requires immediate attention. This domain presents not only techni-
cal (e.g. smart-meters) but also social challenges (e.g. user acceptance). The
MAS automation framework presented in this dissertation addresses technical
challenges by reducing manual labor and increasing efficiency. Automation
even enables higher utilization of green resources and reduction of waste (e.g.
produced, but unconsumed energy). Transparent, trusted monitoring mech-
anisms address social challenges by ensuring privacy of (sensitive) data and
encouraging user acceptance. Software systems, such as those presented in
this dissertation, enable wider participation of society, at large, and offer vast
potential.



Samenvatting (Dutch summary)

Grootschalige, gedistribueerde, digitale omgevingen bieden veel mogelijkheden.
Binnen dergelijke omgevingen zullen software systemen ongekende steun leve-
ren aan het dagelijkse leven. Door toegang te bieden tot enorme hoeveelheden
aan kennis en middelen, zullen deze systemen een bredere participatie van de
samenleving mogelijk maken. Een voorbeeld van zo’n systeem is het slimme
energie netwerk, oftewel Smart Energy Grid, dat duurzaamheid vergroot en
afhankelijkheid van fossiele brandstoffen verminderd.

Dergelijke systemen vereisen technologie die in staat is serviceniveau over-
eenkomsten, oftewel Service Level Agreements (SLA), tussen consumenten en
leveranciers te onderhandelen. Multi Agent Systems (MAS) is een geschikte
technologie die een eenvoudige analogie biedt voor complexe systemen met
autonome deelnemers. MAS is gebaseerd op het concept van autonome agen-
ten die menselijke actoren (d.w.z. eigenaren) vertegenwoordigen en in staat zijn
om SLA’s te onderhandelen en processen met andere agenten te coördineren.
Zij kennen de voorkeuren en behoeften van hun eigenaar. Zij zijn in staat
om te onderhandelen over prijs, kwaliteit van diensten, attributen en sanc-
ties. Zij zijn ook in staat om dienstlevering te monitoren om overtredingen te
detecteren en bestraffen.

Dit proefschrift presenteert een MAS raamwerk voor geautomatiseerde
onderhandelen en monitoren van SLA’s in open omgevingen. In deze con-
text is een open omgeving een grootschalig, gedistribueerde omgeving, die
zowel dynamisch als onbetrouwbaar is. Dit raamwerk biedt beveiligde detec-
tie, onderhandeling en toegang tot gedistribueerde middelen. Door middel
van een proces waarin berichten worden uitgewisseld (d.w.z. bod, tegenbod)
zoeken agenten voor een wederzijds aanvaardbare overeenkomst (d.w.z. dien-
sten, prijs, kwaliteit). Een onderhandelingsprotocol definieert de onderhan-
delingsvoorwerpen (d.w.z. bod), taal en regels voor interactie. Dit proefschrift
presenteert het WS-Agreement Negotiation protocol met uitbreidingen voor
open omgevingen. Dit protocol wordt experimenteel gevalideerd in de Agent-
Scape middleware.



196 Samenvatting (Dutch summary)

Open omgevingen zorgen ook voor uitdagingen rondom veiligheid, vertrou-
wen en privacy. Geen enkele autoriteit heeft volledige controle over een open
omgeving en geen enkele autoriteit bepaalt welke acties deelnemers (d.w.z.
agenten) mogen uitvoeren. Daarom zijn aanvullende mechanismen nodig om
veiligheid en privacy te garanderen, en het vertrouwen tussen deelnemers te
bevorderen. Geautomatiseerde monitoring mechanismen, die gebruik maken
van een vertrouwde derde partij, richten zich op veiligheid en maken daardoor
onderhandeling in open omgevingen mogelijk. Dit proefschrift presenteert een
zelf-adaptieve monitoring aanpak welke (1) zekerheid biedt dat afspraken wor-
den nageleefd, (2) een veilige audit log bouwt, (3) metingen uitvoert zonder pri-
vacy van (gevoelige) data te schaden, (4) dynamisch reageert op veranderende
risico’s en (5) het opbouwen van het vertrouwen tussen consumenten en leve-
ranciers faciliteert. Deze monitoring aanpak wordt experimenteel gevalideerd
in de AgentScape middleware.

Het automatiseren van complexe taken, zoals onderhandelingen, kan effi-
ciëntie vergroten. Om deze voordelen te illustreren, wordt dit raamwerk
toegepast op twee complexe systemen, waaronder het slimme energie netwerk.
In dit geval, vereist de dreigende complexiteitscrisis van intermitterende ener-
giebronnen, actuele prijzen en consumenten vraagverschuiving onmiddellijke
aandacht. Dit domein presenteert niet alleen technisch (bijv. slimme elektri-
citeitsmeter) maar ook sociale uitdagingen (bijv. gebruikersacceptatie). Het
MAS raamwerk dat in dit proefschrift gepresenteerd wordt, richt zich op de
technische uitdagingen door het verminderen van handenarbeid en het ver-
groten van efficiëntie. Het automatiseren maakt zelfs hogere benutting van
groene energiebronnen en vermindering van verspilling mogelijk. Transparant,
vertrouwde monitoringmechanismen richten zich op de sociale uitdagingen
door privacy van (gevoelige) data te waarborgen en gebruikersacceptatie te
bemoedigen. Software systemen, zoals deze in dit proefschrift worden gepre-
senteerd, maken bredere participatie van de samenleving mogelijk en bieden
veel mogelijkheden.



SIKS Dissertation Series

2009-01 Rasa Jurgelenaite (RUN)

Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)

Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)

A Framework for Evidence-based Policy Making Using
IT

2009-04 Josephine Nabukenya (RUN)

Improving the Quality of Organisational Policy Mak-
ing using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)

Bridging Supply and Demand for Knowledge Intensive
Tasks - Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)

Understanding Classification

2009-07 Ronald Poppe (UT)

Discriminative Vision-Based Recovery and Recogni-
tion of Human Motion

2009-08 Volker Nannen (VU)

Evolutionary Agent-Based Policy Analysis in Dy-
namic Environments

2009-09 Benjamin Kanagwa (RUN)

Design, Discovery and Construction of Service-
oriented Systems

2009-10 Jan Wielemaker (UVA)

Logic programming for knowledge-intensive interac-
tive applications

2009-11 Alexander Boer (UVA)

Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet
zu Berlin)

Operating Guidelines for Services

2009-13 Steven de Jong (UM)

Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)

From ontology-enabled services to service-enabled on-
tologies (making ontologies work in e-science with
ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)

Ontology Representation - Design Patterns and On-
tologies that Make Sense

2009-16 Fritz Reul (UvT)

New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)

Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)

Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)

Modeling Preferences, Strategic Reasoning and Col-
laboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)

Adjustable Autonomy: Controling Influences on Deci-
sion Making

2009-21 Stijn Vanderlooy (UM)

Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)

Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)

Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)

Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)

RAM: Array Database Management through Rela-
tional Mapping

2009-26 Fernando Koch (UU)

An Agent-Based Model for the Development of Intel-
ligent Mobile Services

2009-27 Christian Glahn (OU)

Contextual Support of social Engagement and Reflec-
tion on the Web

2009-28 Sander Evers (UT)

Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)

Model-Driven Semantic Integration of Service-
Oriented Applications

2009-30 Marcin Zukowski (CWI)

Balancing vectorized query execution with bandwidth-
optimized storage

2009-31 Sofiya Katrenko (UVA)

A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)

Architectural Knowledge Management: Supporting
Architects and Auditors

2009-33 Khiet Truong (UT)

How Does Real Affect Affect Affect Recognition In
Speech?

2009-34 Inge van de Weerd (UU)



198 SIKS Dissertation Series

Advancing in Software Product Management: An In-
cremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)

Privacy en Politiegegevens; Over geautomatiseerde
normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)

Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)

Navigation Support for Learners in Informal Learning
Networks

2009-38 Riina Vuorikari (OU)

Tags and self-organisation: a metadata ecology for
learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet
zu Berlin)

Service Substitution – A Behavioral Approach Based
on Petri Nets

2009-40 Stephan Raaijmakers (UvT)

Multinomial Language Learning: Investigations into
the Geometry of Language

2009-41 Igor Berezhnyy (UvT)

Digital Analysis of Paintings

2009-42 Toine Bogers (UvT)

Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)

Finding Multi-step Attacks in Computer Networks us-
ing Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)

Assessing Business-IT Alignment in Networked Orga-
nizations

2009-45 Jilles Vreeken (UU)

Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)

Querying XML: Benchmarks and Recursion

2010
2010-01 Matthijs van Leeuwen (UU)

Patterns that Matter

2010-02 Ingo Wassink (UT)

Work flows in Life Science

2010-03 Joost Geurts (CWI)

A Document Engineering Model and Processing
Framework for Multimedia documents

2010-04 Olga Kulyk (UT)

Do You Know What I Know? Situational Awareness
of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)

Predicting the Effectiveness of Queries and Retrieval
Systems

2010-06 Sander Bakkes (UvT)

Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)

A Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)

Towards an Improved Regulatory Framework of Free
Software. Protecting user freedoms in a world of soft-
ware communities and eGovernments

2010-09 Hugo Kielman (UL)

A Politiele gegevensverwerking en Privacy, Naar een
effectieve waarborging

2010-10 Rebecca Ong (UL)

Mobile Communication and Protection of Children

2010-11 Adriaan Ter Mors (TUD)

The world according to MARP: Multi-Agent Route
Planning

2010-12 Susan van den Braak (UU)

Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)

High Performance Data Mining using Bio-inspired
techniques

2010-14 Sander van Splunter (VU)

Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)

Managing Dependency Relations in Inter-
Organizational Models

2010-16 Sicco Verwer (TUD)

Efficient Identification of Timed Automata, theory
and practice

2010-17 Spyros Kotoulas (VU)

Scalable Discovery of Networked Resources: Algo-
rithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)

Caught in the Act: Investigating Crime by Agent-
Based Simulation

2010-19 Henriette Cramer (UvA)

People’s Responses to Autonomous and Adaptive Sys-
tems

2010-20 Ivo Swartjes (UT)

Whose Story Is It Anyway? How Improv Informs
Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)

Privacy-aware data management by means of data
degradation

2010-22 Michiel Hildebrand (CWI)

End-user Support for Access to Heterogeneous Linked
Data

2010-23 Bas Steunebrink (UU)

The Logical Structure of Emotions

2010-24 Dmytro Tykhonov

Designing Generic and Efficient Negotiation Strate-
gies

2010-25 Zulfiqar Ali Memon (VU)

Modelling Human-Awareness for Ambient Agents: A
Human Mindreading Perspective

2010-26 Ying Zhang (CWI)

XRPC: Efficient Distributed Query Processing on
Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)

Automatisch contracteren

2010-28 Arne Koopman (UU)

Characteristic Relational Patterns

2010-29 Stratos Idreos (CWI)

Database Cracking: Towards Auto-tuning Database
Kernels

2010-30 Marieke van Erp (UvT)

Accessing Natural History - Discoveries in data clean-
ing, structuring, and retrieval

2010-31 Victor de Boer (UVA)



SIKS Dissertation Series 199

Ontology Enrichment from Heterogeneous Sources on
the Web

2010-32 Marcel Hiel (UvT)

An Adaptive Service Oriented Architecture: Automat-
ically solving Interoperability Problems

2010-33 Robin Aly (UT)

Modeling Representation Uncertainty in Concept-
Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)

Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)

Proof of Concept: Concept-based Biomedical Informa-
tion Retrieval

2010-36 Jose Janssen (OU)

Paving the Way for Lifelong Learning; Facilitating
competence development through a learning path spec-
ification

2010-37 Niels Lohmann (TUE)

Correctness of services and their composition

2010-38 Dirk Fahland (TUE)

From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)

Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)

Converting and Integrating Vocabularies for the Se-
mantic Web

2010-41 Guillaume Chaslot (UM)

Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)

Needs-driven service bundling in a multi-supplier set-
ting - the computational e3-service approach

2010-43 Peter van Kranenburg (UU)

A Computational Approach to Content-Based Re-
trieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)

An Approach towards Context-sensitive and User-
adapted Access to Heterogeneous Data Sources, Illus-
trated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)

A theory and model for the evolution of software ser-
vices

2010-46 Vincent Pijpers (VU)

e3alignment: Exploring Inter-Organizational
Business-ICT Alignment

2010-47 Chen Li (UT)

Mining Process Model Variants: Challenges, Tech-
niques, Examples

2010-48 Withdrawn

2010-49 Jahn-Takeshi Saito (UM)

Solving difficult game positions

2010-50 Bouke Huurnink (UVA)

Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)

Understanding and supporting information seeking
tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)

Adaptive Support for Human-Computer Teams: Ex-
ploring the Use of Cognitive Models of Trust and At-
tention

2010-53 Edgar Meij (UVA)

Combining Concepts and Language Models for Infor-
mation Access

2011
2011-01 Botond Cseke (RUN)

Variational Algorithms for Bayesian Inference in La-
tent Gaussian Models

2011-02 Nick Tinnemeier(UU)

Organizing Agent Organizations. Syntax and Oper-
ational Semantics of an Organization-Oriented Pro-
gramming Language

2011-03 Jan Martijn van der Werf (TUE)

Compositional Design and Verification of Component-
Based Information Systems

2011-04 Hado van Hasselt (UU)

Insights in Reinforcement Learning; Formal analysis
and empirical evaluation of temporal-difference learn-
ing algorithms

2011-05 Base van der Raadt (VU)

Enterprise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline

2011-06 Yiwen Wang (TUE)

Semantically-Enhanced Recommendations in Cultural
Heritage

2011-07 Yujia Cao (UT)

Multimodal Information Presentation for High Load
Human Computer Interaction

2011-08 Nieske Vergunst (UU)

BDI-based Generation of Robust Task-Oriented Dia-
logues

2011-09 Tim de Jong (OU)

Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)

Cloud Content Contention

2011-11 Dhaval Vyas (UT)

Designing for Awareness: An Experience-focused HCI
Perspective

2011-12 Carmen Bratosin (TUE)

Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)

Airport under Control. Multiagent Scheduling for Air-
port Ground Handling

2011-14 Milan Lovric (EUR)

Behavioral Finance and Agent-Based Artificial Mar-
kets

2011-15 Marijn Koolen (UvA)

The Meaning of Structure: the Value of Link Evidence
for Information Retrieval

2011-16 Maarten Schadd (UM)

Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)

Exploring Topic Structure: Coherence, Diversity and
Relatedness

2011-18 Mark Ponsen (UM)

Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)

The Mind’s Eye on Personal Profiles

2011-20 Qing Gu (VU)

Guiding service-oriented software engineering - A
view-based approach



200 SIKS Dissertation Series

2011-21 Linda Terlouw (TUD)

Modularization and Specification of Service-Oriented
Systems

2011-22 Junte Zhang (UVA)

System Evaluation of Archival Description and Access

2011-23 Wouter Weerkamp (UVA)

Finding People and their Utterances in Social Media

2011-24 Herwin van Welbergen (UT)

Behavior Generation for Interpersonal Coordination
with Virtual Humans On Specifying, Scheduling and
Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)

Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)

Virtual Agents for Human Communication - Emo-
tion Regulation and Involvement-Distance Trade-Offs
in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)

Dynamic website optimization through autonomous
management of design patterns

2011-28 Rianne Kaptein(UVA)

Effective Focused Retrieval by Exploiting Query Con-
text and Document Structure

2011-29 Faisal Kamiran (TUE)

Discrimination-aware Classification

2011-30 Egon van den Broek (UT)

Affective Signal Processing (ASP): Unraveling the
mystery of emotions

2011-31 Ludo Waltman (EUR)

Computational and Game-Theoretic Approaches for
Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)

Methodological Advances in Bibliometric Mapping of
Science

2011-33 Tom van der Weide (UU)

Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)

Strategic Reasoning in Interdependence: Logical and
Game-theoretical Investigations

2011-35 Maaike Harbers (UU)

Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)

Experiments in serious game design: a cognitive ap-
proach

2011-37 Adriana Burlutiu (RUN)

Machine Learning for Pairwise Data, Applications for
Preference Learning and Supervised Network Infer-
ence

2011-38 Nyree Lemmens (UM)

Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)

Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)

Architectural Knowledge Management in Global Soft-
ware Development

2011-41 Luan Ibraimi (UT)

Cryptographically Enforced Distributed Data Access
Control

2011-42 Michal Sindlar (UU)

Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)

Process Improvement through Software Operation
Knowledge

2011-44 Boris Reuderink (UT)

Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)

Statistical Language Models for Alternative Sequence
Selection

2011-46 Beibei Hu (TUD)

Towards Contextualized Information Delivery: A
Rule-based Architecture for the Domain of Mobile Po-
lice Work

2011-47 Azizi Bin Ab Aziz (VU)

Exploring Computational Models for Intelligent Sup-
port of Persons with Depression

2011-48 Mark Ter Maat (UT)

Response Selection and Turn-taking for a Sensitive
Artificial Listening Agent

2011-49 Andreea Niculescu (UT)

Conversational interfaces for task-oriented spoken di-
alogues: design aspects influencing interaction quality

2012
2012-01 Terry Kakeeto (UvT)

Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair (VU)

Adaptivity, emotion, and Rationality in Human and
Ambient Agent Models

2012-03 Adam Vanya (VU)

Supporting Architecture Evolution by Mining Software
Repositories

2012-04 Jurriaan Souer (UU)

Development of Content Management System-based
Web Applications

2012-05 Marijn Plomp (UU)

Maturing Interorganisational Information Systems

2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Re-
search Networks

2012-07 Rianne van Lambalgen (VU)

When the Going Gets Tough: Exploring Agent-based
Models of Human Performance under Demanding
Conditions

2012-08 Gerben de Vries (UVA)

Kernel Methods for Vessel Trajectories

2012-09 Ricardo Neisse (UT)

Trust and Privacy Management Support for Context-
Aware Service Platforms

2012-10 David Smits (TUE)

Towards a Generic Distributed Adaptive Hypermedia
Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)

Process Mining in the Large: Preprocessing, Discov-
ery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)



SIKS Dissertation Series 201

Model Driven Design and Data Integration in Seman-
tic Web Information Systems

2012-13 Suleman Shahid (UvT)

Fun and Face: Exploring non-verbal expressions of
emotion during playful interactions

2012-14 Evgeny Knutov (TUE)

Generic Adaptation Framework for Unifying Adaptive
Web-based Systems

2012-15 Natalie van der Wal (VU)

Social Agents. Agent-Based Modelling of Integrated
Internal and Social Dynamics of Cognitive and Affec-
tive Processes

2012-16 Fiemke Both (VU)

Helping people by understanding them - Ambient
Agents supporting task execution and depression treat-
ment

2012-17 Amal Elgammal (UvT)

Towards a Comprehensive Framework for Business
Process Compliance

2012-18 Eltjo Poort (VU)

Improving Solution Architecting Practices

2012-19 Helen Schonenberg (TUE)

What’s Next? Operational Support for Business Pro-
cess Execution

2012-20 Ali Bahramisharif (RUN)

Covert Visual Spatial Attention, a Robust Paradigm
for Brain-Computer Interfacing

2012-21 Roberto Cornacchia (TUD)

Querying Sparse Matrices for Information Retrieval

2012-22 Thijs Vis (UvT)

Intelligence, politie en veiligheidsdienst: verenigbare
grootheden?

2012-23 Christian Muehl (UT)

Toward Affective Brain-Computer Interfaces: Explor-
ing the Neurophysiology of Affect during Human Me-
dia Interaction

2012-24 Laurens van der Werff (UT)

Evaluation of Noisy Transcripts for Spoken Document
Retrieval

2012-25 Silja Eckartz (UT)

Managing the Business Case Development in Inter-
Organizational IT Projects: A Methodology and its
Application

2012-26 Emile de Maat (UVA)

Making Sense of Legal Text

2012-27 Hayrettin Gurkok (UT)

Mind the Sheep! User Experience Evaluation & Brain-
Computer Interface Games

2012-28 Nancy Pascall (UvT)

Engendering Technology Empowering Women

2012-29 Almer Tigelaar (UT)

Peer-to-Peer Information Retrieval

2012-30 Alina Pommeranz (TUD)

Designing Human-Centered Systems for Reflective
Decision Making

2012-31 Emily Bagarukayo (RUN)

A Learning by Construction Approach for Higher Or-
der Cognitive Skills Improvement, Building Capacity
and Infrastructure

2012-32 Wietske Visser (TUD)

Qualitative multi-criteria preference representation
and reasoning

2012-33 Rory Sie (OUN)

Coalitions in Cooperation Networks (COCOON)

2012-34 Pavol Jancura (RUN)

Evolutionary analysis in PPI networks and applica-
tions

2012-35 Evert Haasdijk (VU)

Never Too Old To Learn – On-line Evolution of Con-
trollers in Swarm- and Modular Robotics

2012-36 Denis Ssebugwawo (RUN)

Analysis and Evaluation of Collaborative Modeling
Processes

2012-37 Agnes Nakakawa (RUN)

A Collaboration Process for Enterprise Architecture
Creation

2012-38 Selmar Smit (VU)

Parameter Tuning and Scientific Testing in Evolu-
tionary Algorithms

2012-39 Hassan Fatemi (UT)

Risk-aware design of value and coordination networks

2012-40 Agus Gunawan (UvT)

Information Access for SMEs in Indonesia

2012-41 Sebastian Kelle (OU)

Game Design Patterns for Learning

2012-42 Dominique Verpoorten (OU)

Reflection Amplifiers in self-regulated Learning

2012-43 Withdrawn

2012-44 Anna Tordai (VU)

On Combining Alignment Techniques

2012-45 Benedikt Kratz (UvT)

A Model and Language for Business-aware Transac-
tions

2012-46 Simon Carter (UVA)

Exploration and Exploitation of Multilingual Data for
Statistical Machine Translation

2012-47 Manos Tsagkias (UVA)

Mining Social Media: Tracking Content and Predict-
ing Behavior

2012-48 Jorn Bakker (TUE)

Handling Abrupt Changes in Evolving Time-series
Data

2012-49 Michael Kaisers (UM)

Learning against Learning - Evolutionary dynamics of
reinforcement learning algorithms in strategic interac-
tions

2012-50 Steven van Kervel (TUD)

Ontologogy driven Enterprise Information Systems
Engineering

2012-51 Jeroen de Jong (TUD)

Heuristics in Dynamic Scheduling; a practical frame-
work with a case study in elevator dispatching

2013
2013-01 Viorel Milea (EUR)

News Analytics for Financial Decision Support

2013-02 Erietta Liarou (CWI)

MonetDB/DataCell: Leveraging the Column-store
Database Technology for Efficient and Scalable Stream
Processing



202 SIKS Dissertation Series

2013-03 Szymon Klarman (VU)

Reasoning with Contexts in Description Logics

2013-04 Chetan Yadati (TUD)

Coordinating autonomous planning and scheduling

2013-05 Dulce Pumareja (UT)

Groupware Requirements Evolutions Patterns

2013-06 Romulo Gonzalves (CWI)

The Data Cyclotron: Juggling Data and Queries for a
Data Warehouse Audience

2013-07 Giel van Lankveld (UT)

Quantifying Individual Player Differences

2013-08 Robbert-Jan Merk (VU)

Making enemies: cognitive modeling for opponent
agents in fighter pilot simulators

2013-09 Fabio Gori (RUN)

Metagenomic Data Analysis: Computational Methods
and Applications

2013-10 Jeewanie Jayasinghe Arachchige (UvT)

A Unified Modeling Framework for Service Design

2013-11 Evangelos Pournaras (TUD)

Multi-level Reconfigurable Self-organization in Over-
lay Services

2013-12 Marian Razavian (VU)

Knowledge-driven Migration to Services

2013-13 Mohammad Safiri (UT)

Service Tailoring: User-centric creation of inte-
grated IT-based homecare services to support inde-
pendent living of elderly

2013-14 Jafar Tanha (UVA)

Ensemble Approaches to Semi-Supervised Learning
Learning

2013-15 Daniel Hennes (UM)

Multiagent Learning - Dynamic Games and Applica-
tions

2013-16 Eric Kok (UU)

Exploring the practical benefits of argumentation in
multi-agent deliberation

2013-17 Koen Kok (VU)

The PowerMatcher: Smart Coordination for the
Smart Electricity Grid

2013-18 Jeroen Janssens (UvT)

Outlier Selection and One-Class Classification

2013-19 Renze Steenhuizen (TUD)

Coordinated Multi-Agent Planning and Scheduling

2013-20 Katja Hofmann (UvA)

Fast and Reliable Online Learning to Rank for Infor-
mation Retrieval

2013-21 Sander Wubben (UvT)

Text-to-text generation by monolingual machine trans-
lation

2013-22 Tom Claassen (RUN)

Causal Discovery and Logic

2013-23 Patricio de Alencar Silva (UvT)

Value Activity Monitoring

2013-24 Haitham Bou Ammar (UM)

Automated Transfer in Reinforcement Learning

2013-25 Agnieszka Anna Latoszek-Berendsen (UM)

Intention-based Decision Support. A new way of rep-
resenting and implementing clinical guidelines in a
Decision Support System

2013-26 Alireza Zarghami (UT)

Architectural Support for Dynamic Homecare Service
Provisioning

2013-27 Mohammad Huq (UT)

Inference-based Framework Managing Data Prove-
nance

2013-28 Frans van der Sluis (UT)

When Complexity becomes Interesting: An Inquiry
into the Information eXperience

2013-29 Iwan de Kok (UT)

Listening Heads

2013-30 Joyce Nakatumba (TUE)

Resource-Aware Business Process Management:
Analysis and Support

2013-31 Dinh Khoa Nguyen (UvT)

Blueprint Model and Language for Engineering Cloud
Applications

2013-32 Kamakshi Rajagopal (OUN)

Networking For Learning; The role of Networking in
a Lifelong Learner’s Professional Development

2013-33 Qi Gao (TUD)

User Modeling and Personalization in the Microblog-
ging Sphere

2013-34 Kien Tjin-Kam-Jet (UT)

Distributed Deep Web Search

2013-35 Abdallah El Ali (UvA)

Minimal Mobile Human Computer Interaction

2013-36 Than Lam Hoang (TUe)

Pattern Mining in Data Streams

2013-37 Dirk BÃűrner (OUN)

Ambient Learning Displays

2013-38 Eelco den Heijer (VU)

Autonomous Evolutionary Art

2013-39 Joop de Jong (TUD)

A Method for Enterprise Ontology based Design of En-
terprise Information Systems

2013-40 Pim Nijssen (UM)

Monte-Carlo Tree Search for Multi-Player Games

2013-41 Jochem Liem (UVA)

Supporting the Conceptual Modelling of Dynamic Sys-
tems: A Knowledge Engineering Perspective on Qual-
itative Reasoning

2013-42 LÃľon Planken (TUD)

Algorithms for Simple Temporal Reasoning

2013-43 Marc Bron (UVA)

Exploration and Contextualization through Interaction
and Concepts

2014
2014-01 Nicola Barile (UU)

Studies in Learning Monotone Models from Data

2014-02 Fiona Tuliyano (RUN)

Combining System Dynamics with a Domain Model-
ing Method

2014-03 Sergio Raul Duarte Torres (UT)

Information Retrieval for Children: Search Behavior
and Solutions

2014-04 Hanna Jochmann-Mannak (UT)



SIKS Dissertation Series 203

Websites for children: search strategies and interface
design - Three studies on children’s search perfor-
mance and evaluation

2014-05 Jurriaan van Reijsen (UU)

Knowledge Perspectives on Advancing Dynamic Ca-
pability

2014-06 Damian Tamburri (VU)

Supporting Networked Software Development

2014-07 Arya Adriansyah (TUE)

Aligning Observed and Modeled Behavior

2014-08 Samur Araujo (TUD)

Data Integration over Distributed and Heterogeneous
Data Endpoints

2014-09 Philip Jackson (UvT)

Toward Human-Level Artificial Intelligence: Repre-
sentation and Computation of Meaning in Natural
Language

2014-10 Ivan Salvador Razo Zapata (VU)

Service Value Networks

2014-11 Janneke van der Zwaan (TUD)

An Empathic Virtual Buddy for Social Support

2014-12 Willem van Willigen (VU)

Look Ma, No Hands: Aspects of Autonomous Vehicle
Control

2014-13 Arlette van Wissen (VU)

Agent-Based Support for Behavior Change: Models
and Applications in Health and Safety Domains

2014-14 Yangyang Shi (TUD)

Language Models With Meta-information

2014-15 Natalya Mogles (VU)

Agent-Based Analysis and Support of Human Func-
tioning in Complex Socio-Technical Systems: Appli-
cations in Safety and Healthcare

2014-16 Krystyna Milian (VU)

Supporting trial recruitment and design by automati-
cally interpreting eligibility criteria

2014-17 Kathrin Dentler (VU)

Computing healthcare quality indicators automati-
cally: Secondary Use of Patient Data and Semantic
Interoperability

2014-18 Mattijs Ghijsen (VU)

Methods and Models for the Design and Study of Dy-
namic Agent Organizations

2014-19 Vincius Ramos (TUE)

Adaptive Hypermedia Courses: Qualitative and Quan-
titative Evaluation and Tool Support

2014-20 Mena Habib (UT)

Named Entity Extraction and Disambiguation for In-
formal Text: The Missing Link

2014-21 Kassidy Clark (TUD)

Negotiation and Monitoring in Open Environments





Publications

Clark, K. P., Warnier, M., and Brazier, F. M. T. Automated non-
repudiable cloud resource allocation. In Cloud Computing and Services
Science. Springer, 2013, pp. 168–182.

Clark, K. P., Warnier, M., and Brazier, F. M. T. Self-Adaptive
Service Level Agreement Monitoring in Cloud Environments. Multiagent
and Grid Systems 9 (2013).

Clark, K. P., Warnier, M., and Brazier, F. M. T. Increasing green
energy market efficiency using micro agreements. In Green ICT & En-
ergy: From Smart to Wise Strategies, J. H. Appelman, A. Osseyran, and
M. Warnier, Eds., Sustainable Energy Developments. CRC Press, 2013,
pp. 77–91.

Clark, K. P., Warnier, M., and Brazier, F. M. T. An intelligent cloud
resource allocation service - agent-based automated cloud resource allo-
cation using micro-agreements. In In the proceedings of the 2nd Interna-
tional Conference on Cloud Computing and Services Science (CLOSER
2012) (2012), pp. 37–45.

Clark, K. P., Warnier, M., and Brazier, F. M. T. Self-adaptive
service monitoring. In proceedings of the 2011 International Confer-
ence on Adaptive and Intelligent Systems (ICAIS 2011) (2011), Springer,
pp. 119–130.

Wäldrich, O., Battre, D., Brazier, F. M. T., Clark, K. P., Oey,
M. A., Papaspyrou, A., Wieder, P., and Ziegler, W. WS-
Agreement Negotiation: Version 1.0 (GFD-R-P.193). Tech. rep., Open
Grid Forum, Grid Resource Allocation Agreement Protocol (GRAAP)
WG, 2011.

Clark, K. P., Warnier, M., Brazier, F. M. T. BOTCLOUDS - The
Future of Cloud-based Botnets?. In proceedings of the 1st International



206 Publications

Conference on Cloud Computing and Services Sciences (CLOSER 2011)
(2011), pp. 597–603.

Clark, K. P., Warnier, M., Quillinan, T. B., and Brazier, F. M. T.
Secure monitoring of service level agreements. In Fifth International
Conference on Availability, Reliability and Security (ARES 2010) (March
2010), IEEE, pp. 454–461.

Clark, K. P., van Splunter, S., Warnier, M., and Brazier, F. M. T.
Expressing intervals in automated service negotiation. In Grids and
Service-Oriented Architectures for Service Level Agreements, P. Wieder,
R. Yahyapour, and W. Ziegler, Eds., CoreGRID. Springer-Verlag, New
York, NY, USA, 2010, pp. 67–76.

Battre, D., Brazier, F. M. T., Clark, K. P., Oey, M. A., Papaspy-
rou, A., Wäldrich, O., Wieder, P., and Ziegler, W. A proposal
for WS-agreement negotiation. In 11th IEEE/ACM International Con-
ference on Grid Computing (2010).

Quillinan, T. B., Clark, K. P., Warnier, M., Brazier, F. M. T., and
Rana, O. Negotiation and monitoring of service level agreements. In
Grids and Service-Oriented Architectures for Service Level Agreements,
P. Wieder, R. Yahyapour, and W. Ziegler, Eds., CoreGRID. Springer-
Verlag, New York, NY, USA, 2010, pp. 167–176.

Clark, K. P. Automated security classification. Master’s thesis, Vrije
Universiteit Amsterdam, 2008.



Curriculum Vitae

Kassidy Patrick Clark was born in Wiesbaden, Germany on 24 June 1980.
He spent most of his youth in Europe before moving to the United States for
high school and university. He completed his Bachelor’s degree cum laude at
St. Edward’s University in Austin, Texas with a major in Computer Science.
His thesis focused on measuring the ‘diameter’ of the Internet. In addition, he
studied a dual minor of German and theology in collaboration with the Univer-
sity of Koblenz in Germany, where he spent the final year of his undergraduate
work.

In 2003, he moved to the Netherlands and continued his studies at the
Vrije Universiteit Amsterdam where he earned a Master’s degree in Computer
Science with an emphasis on networking and security. His thesis focused on
automated security classification, which applied techniques from Artificial In-
telligence to classify documents according to the security rating (i.e. sensi-
tivity) of their content. Through this research, he came into contact with
the Intelligent Interactive Distributed Systems (IIDS) group, led by Professor
Frances Brazier, where he started his Ph.D. research. In 2009, the IIDS group
moved to the Delft University of Technology to join the Systems Engineering
group at the Faculty of Technology, Policy and Management.

His Ph.D. research focused on designing and implementing protocols for
automated negotiation of services in large scale, dynamic, distributed environ-
ments. Furthermore, his work addressed issues of trust and security in these
environments through adaptive monitoring policies. This research has been
presented at international conferences in the Netherlands, Canada, Poland,
Germany, Austria, Portugal and Ireland. In addition, it has produced 11
peer-reviewed publications including an official Open Grid Forum standard
for automated negotiation of web services. This work has also been published
in several industry periodicals.


	Introduction
	Open Environments
	Research Overview
	Research Objectives
	Research Approach
	Research Contributions

	Dissertation Outline

	Research Positioning & Related Work
	Distributed and Autonomic Computing
	Distributed Computing
	Autonomic Computing
	Open Environments

	Related Work
	Negotiation Research
	Monitoring Research

	Enabling Technologies
	Software Agents
	AgentScape Middleware

	Conclusion

	Service Negotiation in Open Environments
	Introduction
	Service Negotiation
	Service Level Agreements
	Automated Negotiation
	Conclusion

	Web Service Agreement
	Protocol Specification
	Object Specification
	Language Specification
	Single Round Negotiation

	Web Service Agreement Negotiation
	Protocol Specification
	Object Specification
	Negotiation State
	Session Rollback
	Dual State Machine Extension

	Agent Negotiation in Open Environments
	Session Identifier
	Interval Semantics

	Negotiation Protocol Implementation
	Overview of Negotiation Tools
	Negotiation Modes
	Experimental Validation

	Related Work
	Agreement Specification
	Negotiation Protocol

	Conclusions

	Service Monitoring in Open Environments
	Introduction
	Active Service Monitoring
	A Generic Monitor Design
	Security and Reliability
	Distributed and Decentralized
	Dynamic and Adaptive
	Auditing and Conflict Mediation
	Penalizing Violations
	Policy Specification
	Conclusion

	Passive Service Monitoring
	Data Collection
	Conflict Mediation
	Protocol Modification

	Self-adaptive Service Monitoring
	Adaptation Model
	Risk Level
	Monitoring Policy
	Conflict Mediation
	Use Case Scenario

	Framework Implementation
	Framework deployment

	Experimental Validation
	Communication Overhead Experiments
	Scalability experiments
	Self-adaption experiment

	Related Work
	Conclusions

	Use Cases: Smart Energy Grid & Cloud Computing
	Dynamic Services in the Smart Energy Grid
	Future Energy Markets
	Energy Market Automation
	Energy Negotiation Scenario
	Discussion

	Dynamic Services in the Cloud
	Cloud Resource Allocation
	Intelligent Cloud Resource Allocation
	Cloud Negotiation Scenario
	Discussion

	Conclusion

	Conclusion
	Research Questions Revisited
	Future Work
	Future Negotiation Research
	Future Monitoring Research

	Conclusions

	Bibliography
	Supplemental Material of Chapter 5
	List of Figures
	List of Tables
	Summary
	Samenvatting (Dutch summary)
	SIKS Dissertation Series
	Publications
	Curriculum Vitae

