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Abstract

In this thesis, we study Online Convex Optimization algorithms that exploit predictive and/or
dynamical information about a problem instance. These features are inspired by recent devel-
opments in the Online Mirror Decent literature. When the Player’s performance is compared
with the best fixed decision in hindsight, we show that it is possible to achieve constant regret
bounds under perfect gradient predictions and optimal minimax bounds in the worst-case,
generalizing previous results from the literature. For dynamic environments, we propose a
new algorithm, and show that it achieves dynamic regret bounds that exploit both gradient
predictions and knowledge about the dynamics of the action sequence that the Player’s per-
formance is being compared with. We present results for both convex and strongly convex
costs. Finally, we provide numerical experiments that corroborate our theoretical results.
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Chapter 1

Introduction

1-1 Online Convex Optimization

In real-time decision making problems, actions must be taken and updated at the same
time that new information about the problem is received. In this thesis, we will focus on
a specific framework to tackle suck problems, called Online Convex Optimization (OCO).
Abstractly, the standard OCO framework can be described as a game between a Player and
Nature, played over T rounds. Let A be the Player’s action space. Suppose that X ⊆ A is
a convex set representing the set of possible actions of the Player. Moreover, let F denote
a set of convex functions available to Nature. At each round t, the Player chooses an action
xt ∈ X . After the Player commits with an action, Nature reveals a convex cost ft : X → R
where ft ∈ F1. The Player suffers the loss ft(xt). The goal of the Player is to perform as
well as possible against the costs chosen by Nature. (The wonderful monographs [Haz16],
[CBL06] and [SS+12] provide an in-depth study of fundamentals theories of OCO and its
many applications). The protocol of the game is summarized as follows:

OCO Protocol

1. for t = 1, . . . , T

2. Player chooses an action xt ∈ X .

3. Nature chooses a cost ft ∈ F .

4. Player suffers the loss ft(xt).

5. end for
1See Appendix C for a discussion on adversary types.
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2 Introduction

A common metric to evaluate the performance of the Player is the so-called static regret,
defined as

RegsT :=
T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x). (1-1)

Intuitively, this metric quantifies how well the Player performs against the best fixed ac-
tion computed in hindsight. Based on this notion of regret, OCO algorithms are designed
such that the resulting action sequence {xt}Tt=1 guarantees a sub-linear regret w.r.t. T , i.e.,
limT→∞(RegsT /T ) = 0. In other words, such OCO strategies perform (on average) as well as
the best fixed action in hindsight.

1-2 Application Example: Portfolio Selection

In this section, we give a concrete example of how one can use the OCO framework to model
a real-world problem: the portfolio selection problem. For a more detailed description of this
problem, please refer to [Haz16, Chapter 4].

In this application, the Player can be interpreted as an investor, and Nature as the stock
market. At the beginning of day t, the Player chooses an action xt ∈ ∆n, where ∆n = {x ∈
Rn | x(i) ≥ 0,

∑n
i=1 x(i) = 1} is the n-dimensional simplex. This action corresponds to

choosing a probability distribution over n assets. That is, the action xt represents how the
investor distributes his/her wealth over n assets. Nature (the stock market), on the other
hand, chooses a strictly positive return vector rt ∈ Rn+, where each entry corresponds to the
return of an asset at day t, that is, the ratio of the value of the asset between days t and t+1.
The ratio of the wealth of the Player (investor) between rounds t and t+ 1 is r>t xt, thus, the
gain at round t can be defined as log(r>t xt). In a game of T rounds, the goal of the player is
to maximize

∑T
t=1 log(r>t xt) (equivalently, minimize

∑T
t=1− log(r>t xt)), which nicely fits into

the OCO framework. Below we rewrite the OCO protocol for this specific scenario.

OCO Protocol: Portfolio Selection

1. for (days) t = 1, . . . , T

2. Player (investor) chooses xt ∈ ∆n, that is, how he/she distributes his/her wealth over
n assets.

3. Nature (stock market) chooses rt ∈ Rn+, the return of each asset at the end of day t.

4. Player (investor) suffers loss ft(xt) = − log(r>t xt).

5. end for

In this application, using the static regret (1-1) as the Player’s performance metric, the
best fixed decision calculated in hindsight is called the Best Constant Rebalanced Portfolio
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1-3 Online Convex Optimization with Predictions 3

(BCRP), which is a powerful investing strategy2. Thus, if a sub-linear regret algorithm is
used for the portfolio selection problem, the average loss of investor will approach the one of
the BCRP, even though the investor chooses his/her actions “online”.

1-3 Online Convex Optimization with Predictions

In the classical OCO protocol, the Player chooses its actions xt based only on the information
available up to round t− 1. In other words, the Player uses only information about the past.
This is the case because in most of the OCO literature, in the same way the Player aims
to minimize its regret, Nature is assumed to choose the costs with the goal of maximizing
the Player’s regret (i.e. in a adversarial fashion). Therefore, it would not make sense to use
information about future costs when choosing xt.
However, in many real-world applications, it is natural assume that Nature would not be com-
pletely adversarial relative to the Player’s actions. For example, recall our portfolio selection
problem. In this scenario, it is reasonable to assume that Nature (the stock market) would
not choose the return of each stock in order to maximize the regret of the Investor. Instead,
the stock marked would follow its natural dynamics. Therefore, choosing the actions xt as if
Nature were completely adversarial can be, in many practical scenarios, overly pessimistic.
Thus, the main goal of this thesis is to tackle the following question: how can we exploit
the “niceness” of Nature in OCO problems? In other words, in cases where the behavior of
Nature is not completely adversarial, and the Player has some knowledge of this behavior,
how can it choose actions xt in order to exploit this knowledge? We call this approach
OCO with Predictions. In these scenarios, we assume access to prediction models about the
problem being studied, and we use OCO algorithms combined with these models in order
to achieve improved regret rates. This approach is partially inspired by the classical control
theory literature, in which dynamical models of the system being controlled are almost always
assumed to exist.

1-4 Organization and Mathematical Notation

The organization of the thesis is as follows. In the remainder of Chapter 1, we introduce the
mathematical definitions and notations that are used in the rest of the thesis. In Chapter 2,
we introduce some central concepts used in this thesis, and also give a concise review of related
works. The main results of this thesis are provided in Chapter 3. Numerical experiments are
presented in Chapter 4. Chapter 5 concludes the thesis by discussing several future research
directions. Technical proofs are provided in appendixes A and B.
We close this chapter by introducing several mathematical notions that are employed in the
rest of the thesis. Let the action set X ⊂ Rn. We denote by ‖ · ‖∗ the dual norm of ‖ · ‖. Also,
we denote [T ] = {1, 2, . . . , T}. Next, we define the Bregman Divergence, a central concept for
the algorithms studied in this thesis.

Definition 1 (Bregman divergence). Let h : X → R be a differentiable function. The Breg-
man divergence of x, y ∈ X , w.r.t. the function h is Bh(x, y) := h(x)− h(y)− 〈∇h(y), x− y〉.

2For more details about Constant Rebalancing Portfolios, see [Haz16, Chapter 4.1.3]
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4 Introduction

The Bregman divergence can be interpreted as a distance-like function. In fact, for specific
choices of h, the Bregman divergence is equivalent to well-known functions.

Example 1 (Euclidean setup). Let h(x) = 1
2‖x‖

2
2. Then, Bh(x, y) = 1

2‖x− y‖
2
2.

Example 2 (Simplex setup). Let X be the n-dimensional simplex ∆n = {x ∈ Rn | x ≥
0,
∑n
i=1 xi = 1} and h(x) =

∑n
i=1 xi log(xi), the negative entropy function. Then, Bh(x, y) =∑n

i=1 xi log(xi
yi

)−
∑n
i=1(xi − yi), also known as generalized Kullback-Leibler divergence.

Finally, we define two classes of functions.

Definition 2 (α-Strong convexity). A function f : X → R is α-strongly convex w.r.t. a
norm ‖ · ‖ if f(x)− f(y) ≤ 〈∇f(x), x− y〉 − α

2 ‖x− y‖
2, for all x, y ∈ X .

Definition 3 (β-Smoothness). A function f : X → R is β-smooth w.r.t. a norm ‖ · ‖ if it is
differentiable and ‖∇f(x)−∇f(y)‖∗ ≤ β‖x− y‖, for all x, y ∈ X .

Pedro Zattoni Scroccaro Master of Science Thesis



Chapter 2

Preliminaries

2-1 Online Mirror Descent

Returning to the discussion started in the beginning of Chapter 1, it was stated that a
desired property of OCO algorithms would be to achieve sub-linear static regret. This begs
the question: are there algorithms that achieve this regret rate for an arbitrary sequence of
convex costs {ft}Tt=1 chosen by Nature. Turns out, the answer is yes. A famous algorithm that
guarantees this regret rate is the so-called Online Mirror Descent (OMD) algorithm, which
can be interpreted as an online version of the Mirror Descent (MD) algorithm introduced
by Nemirovski and Yudin [NY83]. The following definition of this algorithm is based on the
formulation introduced in [BT03]1:

xt+1 = argmin
x∈X

{
ηt〈∇ft(xt), x〉+ Bh(x, xt)

}
, (OMD)

where ηt is called the step-size. Interestingly, Algorithm (OMD) generalizes many classical
algorithms from the literature, which are recovered for specific choices of h.

Example 1 (Euclidean setup - continued). In this case, the update step of Algorithm (OMD)
can be shown to be equivalent to the so-called Online Gradient Descent (OGD) algorithm

xt+1 = ΠX (xt − ηt∇ft(xt)),

where ΠX (x) is the euclidean projection of x onto X .

Example 2 (Simplex setup - continued). In this case, the update step of Algorithm (OMD)
can be shown to be equivalent to an online version of the so-called Exponentiated Gradient
Descent (EGD) algorithm

yt+1(i) = xt(i) exp(−ηt[∇ft(xt)]i), i ∈ [n]

xt+1 = yt+1
‖yt+1‖1

.

1With an abuse of notation, when ft is not differentiable, ∇ft(xt) denotes a subgradient of ft at xt.
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6 Preliminaries

By choosing ηt appropriately, Algorithm (OMD) guarantees RegsT ≤ O(
√
T ) [Bub11] or

RegsT ≤ O(log(T )) [SSS07], for convex and strongly convex costs, respectively. Moreover,
[ABRT08] showed that these regret rates are in fact optimal by the minimax formulation of
OCO problems.

Next, we formally define the concept of gradient predictions and also introduce the notion of
dynamic environments.

2-2 Gradient Predictions

The minimax regret bounds for OCO algorithms are derived assuming a worst-case (i.e. fully
adversarial) cost sequence {ft}Tt=1. The cost sequence is however not completely adversarial
in many practical OCO problems [RS13a]. In such problems, the Player can (partially) predict
the unseen cost ft at round t, before deciding its action xt.2 It is hence natural to expect
that one can possibly exploit the predictability of an OCO problem to achieve tighter regret
bounds.

A generic notion of the predictability of Nature’s moves can be stated as follows [RS13a]. At
the outset of each round t ∈ [T ], the Player has access to the value of a function

Mt : X t−1 ×F t−1 × It−1 → P,

where I denotes some information space provided to the Player via an exogenous source and P
is the space to which each predictable entity belongs to. In particular, a certain class of OCO
problems with predictability is the class of OCO problems with gradient predictions. Observe
that here P ⊆ A∗, where A∗ is the dual space of the action space A. To exploit gradient
predictions in OCO problems, [RS13a] proposed the Optimistic Mirror Descent (OptMD)
algorithm

xt = argmin
x∈X

{
ηt〈Mt, x〉+ Bh(x, yt−1)

}
yt = argmin

y∈X

{
ηt〈∇ft(xt), y〉+ Bh(y, yt−1)

}
,

(OptMD)

where {Mt}Tt=1 is a generic gradient prediction sequence3. In [RS13b], the authors further
provided an adaptive step-size rule for Algorithm (OptMD) such that RegsT ≤ O(1 +

√
DT ),

where

DT :=
T∑
t=1
‖∇ft(xt)−Mt‖2∗. (2-1)

When the Player has access to ∇ft(·) before choosing xt, we say that the Player has ac-
cess to perfect gradient predictions. In this scenario, [HNKK19] showed that by setting
Mt := ∇ft(yt−1) and when F represents β-smooth functions, Algorithm (OptMD) guarantees
RegsT ≤ O(1).

2This assumption deviates from the standard OCO protocol, where Nature reveals ft after the Player
chooses xt.

3Notice that Algorithm (OptMD) reduces to Algorithm (OMD) when Mt = 0.
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2-3 Dynamic Environments 7

2-3 Dynamic Environments

In the regret notion (1-1), the Player’s cumulative loss competes against the loss of the best
fixed action in hindsight. There are, on the other hand, many OCO problems that the best
fixed action is not accessible or does not exist [BGZ15]. Thus, in those cases, the use of the
regret (1-1) is not convenient anymore. The term OCO problems in dynamic environments
is used in the literature for such problems [HW15].

To “generalize” the standard regret notion in order to tackle these scenarios, [Zin03] proposed
to compare the Player’s performance against a general dynamical reference sequence {ut}Tt=1 ∈
X T . The resulting metric is called the dynamic regret, defined as

RegdT :=
T∑
t=1

ft(xt)−
T∑
t=1

ft(ut). (2-2)

Unfortunately, it is impossible to achieve a sub-linear dynamic regret for an arbitrarily chosen
{ut}Tt=1 [MSJR16]. Thus, in order to achieve meaningful dynamic regret bounds, it is common
to place extra regularity assumptions on the costs and/or the reference sequence. For example,
[HW13] consider the bounded variability of the reference sequence in terms of

CT :=
T∑
t=1
‖ut+1 − ut‖. (2-3)

For convex costs, the authors show that Algorithm (OMD) guarantees RegdT ≤ O(
√
T (1 + CT )).

[HW13] further consider that the Player has access to a (possibly approximate) dynamical
model Φt : X → X of the behavior of the reference sequence, that is, ut+1 ≈ Φt(ut). They
employ Φt(xt) instead of xt in Algorithm (OMD) and prove RegdT ≤ O(

√
T (1 +C ′T )), where

C ′T :=
T∑
t=1
‖ut+1 − Φt(ut)‖. (2-4)

This modified OMD algorithm is called Dynamic Mirror Descent (DMD) algorithm. When Φt

approximates the dynamics of the reference sequence well, we may have C ′T ≤ CT , which in
turn implies a tighter dynamic regret bound. Subsequently, [JRSS15] studied dynamical
environments to account for the cases with gradient predictions. The authors show that
Algorithm (OptMD) guarantees RegdT ≤ O

(√
1 +DT (1 + CT )

)
in such cases.

2-4 The Problem with DT

As already mentioned, [RS13b] and [JRSS15] use Algorithm (OptMD) to prove static and
dynamic regret bounds in terms of DT . In these works, it is argued that for “predictable
sequences”, external knowledge of the gradient sequence can be used to achieve tighter regret
bounds. For example, in [JRSS15], it is stated that: “...one can get a tighter bound for regret
once the learner advances a sequence of conjectures {Mt}Tt=1 well-aligned with the gradients”.
However, in what follows we argue that in practice, regret bounds given in terms of DT are
not suitable for exploiting gradient predictions.

Master of Science Thesis Pedro Zattoni Scroccaro



8 Preliminaries

Consider the following scenario: at the beginning of round t, the Player has access to a
prediction of ∇ft(·), namely ∇f̂t(·). Now, based on those regret bounds given in terms of
DT , how would one set Mt when using Algorithm (OptMD)? Naturally, we want to choose
Mt so that DT is as small as possible (recall that DT =

∑T
t=1 ‖∇ft(xt) −Mt‖2∗). However,

since xt is not available at the beginning of round t (see Algorithm (OptMD)), we cannot
set Mt = ∇f̂t(xt). Thus, from these regret bounds, it is not clear how one should choose
Mt in order to exploit this type of gradient prediction. Moreover, [HNKK19] showed that
when perfect gradient predictions are available (that is, ∇f̂t(·) = ∇ft(·)), constant static
regret is achievable. Still, this constant regret result is not recovered by the regret bound
RegsT ≤ O(1 +

√
DT ) given in [RS13b, Corollary 2], even when perfect gradient predictions

are available. In fact, since [RS13b, Corollary 2] does not assume smoothness of the cost
functions, if it was possible to chooseMt such that DT = 0 (i.e., such that RegsT ≤ O(1)), this
would contradict the lower bound from [Nes04, Theorem 3.2.1] for any first-order optimization
method (see Remark 1 in [YMJZ14]).
Therefore, we conclude that in order to exploit gradient predictions, a different approach must
be used. In the next chapter, we will show that by carefully choosing an adaptive step-size ηt
and assuming smoothness of the cost sequence is enough to achieve this goal.

2-5 Setup

In this thesis, we consider OCO problems with a certain of type gradient predictability, in
both static and dynamic environments. Recall that [HNKK19] observed that perfect gradient
predictability in the form of Mt = ∇ft(yt−1) implies that Algorithm (OptMD) guarantees a
constant static regret. Motivated by this observation and the discussion presented in section
2-4, we extend this idea to the case of an “imperfect” gradient predictability. To do so, we
employ the entity

D′t :=
t∑

τ=1
‖∇fτ (yτ−1)−Mτ‖2∗. (2-5)

Moreover, for dynamic environments, we further suppose that the Player has access to a
(possibly approximate) dynamical model Φt of the reference sequence {ut}Tt=1. This is a
useful assumption, which has been used in practical applications of OCO algorithms (see
[SJ17] and [WCSB19], for example).
We are now set to formally state the problem considered in this thesis.
Problem 1. Design and/or analyse OCO algorithms such that the corresponding regret
bounds exploit

• (possibly imperfect) gradient predictions of the cost sequence ft;

• (possibly approximate) dynamical models Φt of the reference sequence {ut}Tt=1.

2-6 Related Works

Other than the works already mentioned so far, several studies in the literature propose
algorithms that take advantage of the predictability of the cost sequence. [CCL+16], [LQL18]
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2-6 Related Works 9

and [LGW20] employ predictions in OCO problems with switching costs. In this scenario, at
round t, the Player suffers the loss ft(xt, xt−1) = ct(xt) + ‖xt − xt−1‖, where ct is a convex
function. Notice that ft is a function of both xt and xt−1. Thus, the results of these papers are
not directly comparable to this thesis’ results (here, we only consider the case where ft(xt)).
[DFHJ17] study Online Linear Optimization. The authors suppose that at the outset of each
round, the Player has access to a vector (or hint) that is correlated with the cost to be incurred
to the Player. If all hints are sufficiently good and the action set possesses certain geometrical
properties, the authors show RegsT ≤ O(log(T )). Recently, [BCKP20] extended this results to
the case when not all hints are correlated with the true cost vector. In dynamic environments,
[LLST20] show that tighter dynamic regret bounds can be achieved by only using predictions
that meet certain quality conditions. In [RCT19], the authors employ gradient predictions
in order to obtain possibly tighter dynamic regret bounds. However, the proposed approach
yields regret bounds that lack worst-case guarantees.
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Chapter 3

Main Results

In this section, we provide static and dynamic regret bounds that exploit gradient predictabil-
ity and/or dynamical models of the reference sequence. We present results for two classes of
costs: convex and strongly-convex. The corresponding proofs are postponed to Appendix B.
First, we collect several assumptions which we will employ in the results to follow.

Assumption 1 (Regularity assumptions). Let A be a Banach space equipped with the norm
‖ · ‖. Suppose that

• The set X is a convex subset of A;

• The map h : A → R is differentiable and 1-strongly convex on X ;

• Each member of the cost sequence {ft}Tt=1 is convex and β-smooth;

• For all x, y ∈ X , it holds that Bh(x, y) ≤ R2 where R > 0;

• For all t ∈ [T ], the gradient prediction Mt satisfies ‖∇ft(yt−1)−Mt‖∗ ≤ σ where σ ≥ 0.

3-1 Static Environments

Our first result concerns convex costs and static environments. In this case, we show that by
assuming that the cost sequence is β-smooth and appropriately choosing an adaptive step-size
ηt, we can use Algorithm (OptMD) to exploit gradient predictions.

Theorem 1 (Static regret: convex case). Suppose that Assumption 1 holds. Using the adap-
tive step-size η1 = 1

2β and ηt =
(
D′t−1 + 4β2)−1/2 for all t > 1, Algorithm (OptMD) guarantees

RegsT ≤
σ2

β
+
(
2R2 + 4

)√
D′T + 4β2. (3-1)

Master of Science Thesis Pedro Zattoni Scroccaro



12 Main Results

Recall the discussion of Section 2-4 and that D′T =
∑T
t=1 ‖∇ft(yt−1) −Mt‖2∗. Here we re-

emphasize that we present regret bounds in terms of D′T instead of DT . Doing so, we solve
the problem of how to choose Mt in order to exploit gradient predictions: simply set Mt =
∇f̂t(yt−1). This is possible because, differently from xt, yt−1 is available at the beginning of
round t (see Algorithm (OptMD)). Next, we discuss how the bound of Theorem 1 generalizes
known optimal bounds from the literature.

Remark 1 (Generality of static regret bound: convex case). The static regret inequality (3-1)
can be stated as RegsT ≤ O(1 +

√
D′T ). Notice that when perfect predictions are available,

setting Mt = ∇ft(yt−1) (and so D′T = 0), the regret inequality (3-1) reduces to RegsT ≤ O(1),
recovering the result of [HNKK19, Theorem 4]. On the other hand, in view of the last item
in Assumption 1, the regret inequality (3-1) also recovers the minimax static regret RegsT ≤
O(
√
T ) in the worst case, that is, even if the gradient predictions are completely uncorrelated

with the true gradients and D′T = O(T ).

Next, we state a static regret result for strongly convex costs. This stronger assumption on
the costs allows us to achieve tighter bounds. For this result, we also need the following
assumption.

Assumption 2 (Extra regularity assumption: Euclidean case). Consider that the hypotheses
in assumption 1 hold. We further suppose that the action space A is a Euclidean space equipped
with the 2-norm ‖ · ‖2 and the mapping h(x) is 1

2‖x‖
2
2. In this case, the Bregman divergence

Bh(x, y) = 1
2‖x− y‖

2
2.

Assumption 2 formalizes the euclidean setup of Example 1.

Theorem 2 (Static regret: strongly convex case). Suppose that assumptions 1 and 2 hold
and that the cost sequence {ft}Tt=1 is α-strongly convex w.r.t. ‖ · ‖2. Using the adaptive
step-size η1 = 1

2β and ηt =
(

α
2σ2D

′
t−1 + 2β

)−1
for all t > 1, Algorithm (OptMD) guarantees

RegsT ≤ 2βR2 + σ2

β
+ 4σ2

α
log

(
1 + α

4βσ2D
′
T

)
. (3-2)

Remark 2 (Generality of static regret bound: strongly convex case). Observe that the static
regret inequality (3-2) can be rewritten as RegsT ≤ O(1 + log(1 +D′T )). Employing a similar
line of arguments as in Remark 1, we now state two observations. With perfect gradient
predictions, the inequality (3-2) becomes RegsT ≤ O(1) [HNKK19, Theorem 4]. Moreover,
the minimax regret RegsT ≤ O(log(T )) is also recovered in the worst-case.

Table 3-1 shows a summary of our static regret bounds using gradient predictions, together
with their worst-case and perfect prediction counterparts.

3-2 Dynamic Environments

As previously mentioned, when working in dynamic environments, we would like to exploit
both gradient predictions and knowledge of reference sequence’s dynamics. Thus, we propose
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Worst-case This thesis Perfect prediction

Static regret
+

convex costs

[Bub11] Theorem 1 [HNKK19]

ηt = O(1/
√
t) ηt = 1/

√
D′t−1 + 4β2 ηt = η ≤ 1/β

RegsT ≤ O(
√
T ) RegsT ≤ O(1 +

√
D′T ) RegsT ≤ O(1)

Static regret
+

strongly
convex costs

[HAK07] Theorem 2 [HNKK19]

ηt = 1/(αt) ηt = O(1/(D′t−1 + 2β)) ηt = η ≤ 1/β

RegsT ≤ O(log(T )) RegsT ≤ O(1 + log(D′T + 1)) RegsT ≤ O(1)

Table 3-1: Summary of results presented in Section 3-1

the Optimistic Dynamic Mirror Descent (OptDMD) algorithm

xt = argmin
x∈X

{
ηt〈Mt, x〉+ Bh(x, yt−1)

}
ỹt = argmin

y∈X

{
ηt〈∇ft(xt), y〉+ Bh(y, yt−1)

}
yt = Φt(ỹt),

(OptDMD)

This algorithm can be viewed as a combination of Algorithm (OptMD) and the DMD algo-
rithm of [HW13]. To the best of our knowledge, no result in the literature has presented a
regret analysis of an algorithm that combines both gradient predictions and knowledge about
the dynamics of the reference sequence. In what follows, we assume that the Player has access
to dynamical models Φt of {ut}Tt=1. Let us further make the following assumptions.

Assumption 3 (Lipschitz-likeness of Bh). For all x, y, z ∈ X , there exist a scalar γ > 0
such that the Bregman divergence satisfies the Lipschitz-like condition Bh(x, z) − Bh(y, z) ≤
γ‖x− y‖.

Remark 3 (Mildness of Assumption 3). It follows that Assumption 3 holds when the map-
ping h is Lipschitz on X [JRSS15, Section 3.1].

Assumption 4 (Non-expansiveness of Φt). For all x, y ∈ X and Bh, the mapping Φt is
non-expansive, that is, Bh(Φt(x),Φt(y))− Bh(x, y) ≤ 0.

Remark 4 (Necessity of Assumption 4). Observe that Assumption 4 is a restriction on the
class of dynamical models Φt. The reason behind this assumption is to control the impact of a
possibly unreliable prediction (made at some step), as the online game progresses. It is worth
mentioning that this assumption has been used in the literature [HW15] [SJ17].

We now present a dynamic regret bound for the Algorithm (OptDMD).

Theorem 3 (Dynamic regret: convex case using (OptDMD)). Suppose that assumptions 1,
3 and 4 hold. Using the adaptive step-size η1 = 1

2β and ηt =
(
D′t−1 + 4β2)−1/2 for all t > 1,
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Algorithm (OptDMD) guarantees

RegdT ≤
σ2

β
+
(
4 + 2R2 + γC ′T

)√
D′T + 4β2. (3-3)

Notice that in static environments, C ′T = 0 and Theorem 3 recovers the bound of Theorem 1.

Remark 5 (Comparison with [JRSS15]). Let us first rewrite the regret inequality (3-3) in
the compact form RegdT ≤ O

(√
D′T + 1(C ′T + 1)

)
. Next, observe that when Φt approximates

the true dynamics of the comparator sequence {ut}Tt=1, we may have C ′T ≤ CT . Moreover,
we also recover C ′T = CT if we choose Φt as the identity map. Therefore, compared to the
bound RegdT ≤ O(

√
DT + 1(CT +1)) provided by [JRSS15], our result improves it in the sense

that it is given in terms of C ′T and D′T , instead of CT and DT (recall the discussion of Section
2-4).

Remark 6 (Comparison with [ZLZ18]). Recall that we have ‖∇ft(yt−1) − Mt‖∗ ≤ σ by
Assumption 1. Hence, it follows that O(

√
1 +D′T (1 + C ′T )) = O(

√
T (1 + C ′T )) in the worst-

case, and we recover the bound given in [HW13]. However, [ZLZ18] proposed an algorithm
called Ader, which achieves the optimal bound RegdT ≤ O

(√
T (1 + C ′T )

)
. Thus, in the worst-

case, our regret bound (3-3) does not recover the optimal one. Nonetheless, in Section 4-3
we present numerical results, which show that Algorithm (OptDMD) can outperform Ader
in practice. Moreover, Algorithm (OptDMD) uses general Mirror Descent updates, whereas
Ader is based on Online Gradient Descent (OGD) updates (i.e., Algorithm (OMD) restricted
by Assumption 2).

In what follows, we present a different dynamic regret bound for OCO problems with convex
costs. To do so, we introduce (i) a specific type of the reference sequence, (ii) an extra
assumption and (iii) a modification of Algorithm (OptDMD). We consider that the Player’s
performance is now compared against the reference sequence {x∗t }Tt=1, defined as

x∗t := argmin
x∈X

ft(x).

In this case, the notation RegdT (x∗1, . . . , x∗T ) indicates that the Player’s performance is com-
pared against {x∗t }Tt=1. For this particular reference sequence, the following assumption have
been used in the literature to prove tighter dynamic regret bounds.

Assumption 5 (Vanishing gradient [YZJY16]). For all t ≥ 1, x∗t belongs to the relative
interior of X , that is, ∇ft(x∗t ) = 0.

We now introduce amodification to the step-size with which ỹt is updated in Algorithm (OptDMD).
Fixing it to a constant value 1/ω, we get (in the Euclidean case)

xt = argmin
x∈X

{
ηt〈Mt, x〉+ 1

2‖x− yt−1‖22
}

ỹt = argmin
y∈X

{ 1
ω
〈∇ft(xt), y〉+ 1

2‖y − yt−1‖22
}

yt = Φt(ỹt).

(OptDMD-mod)

A dynamic regret bound of Algorithm (OptDMD-mod) for convex costs reads as follows.
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Theorem 4 (Dynamic regret: convex case using (OptDMD-mod)). Suppose that Assump-
tions 1-5 hold. Using the adaptive step-size η1 = 1

3β and ηt = (D′t−1 + 3β)−1 for all t > 1,
Algorithm (OptDMD-mod) with ω = 2β guarantees

RegdT (x∗1, . . . , x∗T ) ≤ σ2

3β + 4βR2 + log
(

1 + D′T
3β

)
+ 2γβ

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2.

Remark 7 (Comparison with literature). The upper-bound of Theorem 4 can be stated as
O(1 + log(1 + D′T ) +

∑T
t=1 ‖x∗t+1 − Φt(x∗t )‖2). In [YZJY16], the authors prove that using

Assumption 5, the OGD algorithm (that is, Algorithm (OMD) in the euclidean case) with
a constant step-size η = 0.5/β guarantees RegdT (x∗1, . . . , x∗T ) ≤ O(1 +

∑T
t=1 ‖x∗t+1 − x∗t ‖2).

Compared to our result, their bound does not exploit the dynamical models Φt, whereas our
bound has an extra logarithm additive term. In Section 4-4, we present numerical simula-
tions which show that Algorithm (OptDMD-mod) can outperform the OGD algorithm with a
constant step-size.

In our final theoretical result, we present a tighter dynamic regret bound for the special (but
popular) case of quadratic costs. Formally, we say that ft is quadratic if it is α-strongly
convex and β-smooth, with α = β.

Theorem 5 (Dynamic regret: quadratic case). Suppose that Assumptions 1-5 hold and that
the sequence {ft}Tt=1 consists of quadratic costs. Using the adaptive step-size η1 = 1

3β and ηt =
(D′t−1 + 3β)−1 for all t > 1, Algorithm (OptDMD-mod) ω = β guarantees

RegdT (x∗1, . . . , x∗T ) ≤σ
2

6β + βR2 + 1
2 log

(
1 + D′T

3β

)

+ βmin
{
γ

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2,

T∑
t=2
‖x∗t − Φ(x∗t−1)‖22

}
.

Remark 8 (Comparison with literature). [ZYY+17] also provides dynamic regret bounds in
terms of O(min

{∑T
t=1 ‖x∗t+1 − x∗t ‖2,

∑T
t=2 ‖x∗t − x∗t−1‖22

}
). Unlike the setup of Theorem 5,

they do not exploit dynamical models Φt of the reference sequence and their algorithm requires
many gradient descent iterations per round. On the other hand, their result is not restricted
to quadratic costs.

On a final note, we remark that a similar regret bound to the one of Theorem 5 can be proved
for the more general case when β ≤ 3α (instead of β = α). For the sake of simplicity, we
chose to present the result for quadratic costs.
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Chapter 4

Numerical Experiments

4-1 Portfolio Selection

In this Section, we apply the result of Theorem 1 in a portfolio selection problem. Even
though we already introduced this scenario in Section 1-2, for convenience, we repeat its
description below.
Suppose that an investor (or the Player) has n assets in a Market (or Nature). Let the
Player’s action x be a probability distribution over n assets. The action set X is thus ∆n :=
{x ∈ Rn : x(i) ≥ 0,

∑n
i=1 x(i) = 1}. Let the return of an asset at round t be the ratio of the

value of the asset between rounds t and t+ 1. At round t, Nature chooses a strictly positive
return vector rt ∈ Rn>0 such that each entry of rt corresponds to the return of an asset. The
Player’s wealth ratio between rounds t and t + 1 is 〈rt, xt〉. Let the Player’s gain at round t
be log(〈rt, xt〉). In a game of T rounds, the goal of the Player is to maximize

∑T
t=1 log(〈rt, xt〉)

or, equivalently, to minimize
∑T
t=1− log(〈rt, xt〉). Hence, we have ft(x) = − log(〈rt, x〉) and

∇ft(x) = −rt/〈rt, x〉, for all x ∈ X (See [Haz16, Chapter 4] for a more detailed description
of this problem.).
We assume that the Player has access to (possibly imperfect) prediction models of the return
vector rt, denoted by r̂t. Thus, in light of the approaches proposed in this thesis, we define

Mt = ∇f̂t(yt−1) := − r̂t
〈r̂t, yt−1〉

.

In what follows, we show that how the Player can employ Algorithm (OptMD) to decide its
action sequence {xt}Tt=1 considering the static regret (1-1). Since the costs are convex, the
Player uses the step-size rule of Theorem 1 in Algorithm (OptMD). By assuming 0.5 ≤ rt ≤ 2
for all t (entry-wise), we can set the smoothness parameter β = 16. Since ∆n is the n-
dimensional simplex, we let h(x) be the negative entropy function

∑n
i=1 x(i) log(x(i)). Observe

that the mapping h is 1-strongly convex w.r.t. ‖ · ‖1 (see [Bub15, Section 4.3]). We consider
the following four prediction models for the returns vector:

1. perfect: the perfect prediction model r̂t := rt;
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2. previous: a model that uses the previous return vector as its prediction r̂t := rt−1;

3. noisy: a noisy predictor model r̂t := max(rt + wt, 0), where wt ∼ N (0, I);

4. random: a random predictor where, the entries of r̂t are chosen uniformly between 0
and 2.

We use the NYSE dataset to simulate a stock market ([HSSW98], [AHKS06], [Cov91]). The
number of assets n is 36. As a benchmark, we employ the Constant Uniform Portfolio (CUP)
strategy, that is, a Player that chooses xt = [1/36, . . . , 1/36], for all t ∈ [T ]. For the dataset
considered in this experiment, the CUP strategy performed better than Algorithm (OMD),
for any ηt > 0 and x0 = [1/36, . . . , 1/36].

Figure 4-1: Regret difference between a Constant Uniform Portfolio (CUP) and Algo-
rithm (OptMD) using different prediction models of the returns vector rt.

Denote the regrets of Algorithm (OptMD) and CUP strategies by RegsT (OptMD) and RegsT (CUP),
respectively. Figure 4-1 depicts the difference Regst (OptMD)−Regst (CUP). The experiment
was repeated 20 times and the shaded areas correspond to one standard deviation. One can
observe that using the adaptive step-size defined in Theorem 1, Algorithm (OptMD) with
the perfect or noisy model achieves a smaller regret than the one achieved by the CUP
strategy. In simple words, using our adaptive step-size, we were able to exploit the predic-
tive information about the return vectors. On the other hand, when using the previous
or random models (i.e., gradient predictions which do not approximate the true gradients),
Algorithm (OptMD) performs almost as well as the benchmark strategy. This corroborates
with the worst-case guarantee of Theorem 1 (see Remark 1).

4-2 Tracking Dynamical Parameters

In this Section, we employ Algorithm (OptDMD-mod) in a parameter tracking problem. The
scenario presented in this Section is based on the numerical experiment of [SJ17]. Denote
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the parameters to be tracked by x∗t ∈ R2. These parameters have dynamics described by the
linear model x∗t+1 = Ax∗t + vt. For this experiment, we use

A =
[
1 ε
0 1

]
and Σ = 5

[
ε3

3
ε2

2
ε2

2 ε

]
,

where Σ is the covariance matrix of the Gaussian noise vt, and ε = 0.1 is the sampling interval.
The cost at time t is defined as ft(xt) = 1

2‖xt − x
∗
t ‖22, where xt is the output of our tracking

algorithm. The costs are quadratic, that is, ft is α-strongly convex and β-smooth w.r.t. ‖ ·‖2,
with α = β = 1. Moreover, we assume the Player has access to Φt(x) = Ax, which is an
approximate model of the dynamics of x∗t .
In what follows, we show how the Player can employ Algorithm (OptDMD-mod) to choose
its action sequence {xt}Tt=1. Notice that this parameter tracking problem fits the scenario
of Theorem 5. Thus, the Player uses Algorithm (OptDMD-mod) with ω = β and step-
size ηt =

(
0.01D′t−1 + 3β

)−1. Compared to the step-size defined in the Theorem 5, the
only difference is a positive constant multiplying D′t−1.1 We consider the following gradient
prediction models2:

1. perfect: the perfect prediction model Mt := ∇ft(yt−1);

2. noisy: a noisy prediction model Mt := ∇ft(yt−1) + wt;

3. noisy+bias: a noisy prediction model plus a bias term Mt := ∇ft(yt−1) + wt + 3;

4. previous: a prediction model that uses the previous cost gradient Mt := ∇ft−1(yt−1);

5. random: a random prediction model Mt := wt,

where wt ∼ N (0, I). As a benchmark, we use the following algorithm

x̃t+1 = argmin
x∈X

{
ηt〈∇ft(xt), x〉+ 1

2‖x− xt‖
2
2
}

xt+1 = Φt(x̃t+1),
(4-1)

which is a variation of Algorithm (DMD) of [HW13]. According to [MSJR16], we set the
step-size of the benchmark as ηt = η = 1/β.
Denote the regrets of Algorithm (OptDMD-mod) and Algorithm (4-1) by Regdt (OptDMD-
mod) and Regdt (DMD), respectively. Figure 4-2 depicts the difference Regdt (OptDMD-mod)-
Regdt (DMD). The experiment is repeated 100 times, and for each experiment, a new trajec-
tory {x∗t }Tt=1 was generated. The shaded areas correspond to one standard deviation. One
can observe that that all the models that use some kind of information about future gradients
(perfect, noisy, noisy+bias) were able to perform better than the benchmark. This shows
that indeed Algorithm (OptDMD-mod) was able to exploit predictive information about the
problem. On the other hand, even though the previous and random models did not per-
form as well as the benchmark, their performance show robustness against inaccurate gradient
predictions, which corroborates with the worst-case guarantee of Theorem 5.

1One can show that multiplying D′t−1 by a positive constant only changes the final regret bound up to
multiplicative constants.

2Although we could have used the same linear model (i.e. A) in order to construct gradient predictions Mt,
here we exemplify that these predictions may come from different sources.
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Figure 4-2: Regret difference between Algorithm (DMD) (benchmark) and Algo-
rithm (OptDMD-mod) using different gradient prediction models.

4-3 Algorithm (OptDMD) versus Ader

In this Section, we numerically compare the performance of Algorithm (OptDMD) and the
Ader algorithm of [ZLZ18] (see Remark 6 for a discussion on their theoretical guarantees).
We consider a 1-D scenario with costs defined as

ft(xt) :=
{

(xt − ut)2 if |xt − ut| ≤ 2
4|xt − ut| − 4 otherwise,

for some choice of ut. This function is known as Huber loss. In order to use Algorithm
(OptDMD), we use β = 2, set the adaptive step-size ηt according to Theorem 3 and consider
the following gradient prediction models:

1. perfect: the perfect prediction model Mt := ∇ft(yt−1);

2. noisy: a noisy prediction model Mt := ∇ft(yt−1) + wt;

3. noisy+bias: a noisy prediction model plus a bias term Mt := ∇ft(yt−1) + wt + 0.5;

4. previous: a prediction model that uses the previous cost gradient Mt := ∇ft−1(yt−1);

5. random: a random prediction model Mt := wt,

where wt ∼ N (0, 0.5). For simplicity, we will use Φt as the identity map, i.e., Φt(ut) = ut. In
this example, we will consider the scenario where ut = −κ−bt/5c, for two different choices of
κ:

• κ = 1: in this case, ut switches between −1 and 1 every 5 iterations;

• κ = 1.1: in this case, ut switches between positive and negative values every 5 iterations,
but now these values converge to zero as t increases.
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(a) T = 100. (b) T = 2500.

Figure 4-3: Comparison of Ader [ZLZ18], Online Gradient Descent (OGD) and Algorithm
(OptDMD) using different gradient prediction models, with κ = 1.

Figure 4-4: Comparison of Ader [ZLZ18], Online Gradient Descent (OGD) and Algorithm
(OptDMD) using different gradient prediction models, with κ = 1.1.

First, we compare the Ader algorithm [ZLZ18] and Algorithm (OptDMD) for the case where
κ = 1. For completeness, we also show the performance of the OGD algorithm using ηt =
1/t. Figure 4-3 depicts the numerical performance of these algorithms. The experiment
was repeated 100 times, and the shaded areas correspond to one standard deviation. In
Figure 4-3(a), we can see that Algorithm (OptDMD) with models that use some kind of
information about future gradients (perfect, noisy, noisy+bias) outperformed Ader and
OGD. However, as discussed in Remark 6, Ader has better asymptotically regret guarantees.
Thus, in Figure 4-3(b), we increase T from 100 to 2500. In this case, at T ≈ 1250 and
at T ≈ 2500, Ader starts to outperform the noisy+bias and noisy models, respectively.
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However, even though for κ = 1, Ader and the perfect model have the same regret rate
of O(T ), Algorithm (OptDMD) shows much better numerical performance. Finally, even
though the previous and random models did not perform as well as Ader, they showed
robustness against inaccurate gradient predictions, with performance compared to the one
using the OGD algorithm.

Figure 4-4 depicts the case of κ = 1.1, that is, when ut converges to 0 as t increases. In this
scenario, we see that the Ader algorithms shows poor performance compared to Algorithm
(OptDMD), for all prediction models expect the random one. This corroborates with the
observation drawn from Figure 4-3: even though Ader presents better asymptotic regret
bounds, it suffers from slow adaptability. Thus, by the time Ader “adapted” to the problem,
ut already converged to a small value, an it is not able to leverage its better asymptotic bounds
anymore. Overall, we conclude that, even though the Ader algorithm has better asymptotic
worst-case guarantees, it suffers from slow adaptability compared to Algorithm (OptDMD),
which may be prohibitive in practical applications.

4-4 Algorithm (OptDMD-mod) versus OGD with constant step-size

In this Section, we numerically compare the performance of the OGD algorithm (with constant
step size η = 0.5/β) [YZJY16] with the performance of Algorithm (OptDMD-mod), according
to Theorem 4 (see Remark 7 for comments on the theoretical guarantees of these algorithms).
We consider the same scenario as described in Section 4-3 with κ = 1, that is, ut switches
between −1 and 1 every 5 iterations. Figure 4-5 depicts their numerical performance. As
one can see, with the exception of the random model, Algorithm (OptDMD-mod) achieved
better results than the OGD with constant step-size. Moreover, the random model presented
performance very similar to the OGD algorithm, which again corroborates with the worst-case
theoretical guarantees of Algorithm (OptDMD-mod).
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Figure 4-5: Comparison between Online Gradient Descent (OGD) with constant step-size
[YZJY16] and Algorithm (OptDMD-mod) using different gradient prediction models.
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Chapter 5

Future Directions

There are several directions that one can follow to extend the results of this thesis. One
possible direction is to design meta-learning algorithms that learn predictive models of ∇ft
and/or dynamical models Φt of the reference sequence, while simultaneously playing the game.
In this regard, see for example [vEK16], [ZLZ18] and [RCT19]. Another direction is to extend
the results of this thesis to bandit (a.k.a. zeroth order) problems, where the Player receives
feedback in the form of function evaluations ft(·), instead of gradients ∇ft(·). Based on the
multi-point feedback idea proposed by [AD10], if one is allowed to query 2(n + 1) points
per round (n + 1 points to estimate each ∇ft(xt) and ∇ft(yt−1)), the regret bounds in this
thesis still hold up to multiplicative/additive constants. The question is then the possibility
of achieving similar results while using only 1-point or 2-point bandit feedback. Next, one
could extend the results of this thesis by relaxing the smoothness assumption on the costs.
For example, one can borrow the ideas from [YMJZ14, Section 3] to consider the class of costs
that each member function is a summation of a varying smooth part and a fixed non-smooth
part. Finally, it would be interesting to investigate the possibility of combining the ideas
presented in this thesis with other OCO algorithms, e.g., the Online Newton Step algorithm
of [HAK07].

Master of Science Thesis Pedro Zattoni Scroccaro



26 Future Directions

Pedro Zattoni Scroccaro Master of Science Thesis



Appendix A

Auxiliary Lemmas

In what follows, we collect several auxiliary lemmas that are used in the proofs of the results
presented in this thesis.

Lemma 1. Consider the Bregman divergence Bh as given in Definition 1. If the mapping h
is 1-strongly convex w.r.t. a norm ‖ · ‖, then,

−Bh(x, y) ≤ −1
2‖x− y‖

2.

Proof. Recall that by the definition of the Bregman divergence, we have

−Bh(x, y) = h(y)− h(x) + 〈∇h(y), x− y〉.

On the other hand, the 1-strong convexity of h implies that

h(y)− h(x) + 〈∇h(y), x− y〉 ≤ −1
2‖x− y‖

2.

The lemma’s claim is an immediate consequence of the above relations.

Lemma 2. Let h : X → R be differentiable 1-strongly convex w.r.t. ‖ · ‖. Given xt ∈ X ,
xt+1 = argminx∈X ηt〈x, gt〉+ Bh(x, xt) and any z ∈ X , we have

〈gt, xt − z〉 ≤
1
ηt

(Bh(z, xt)− Bh(z, xt+1)) + 1
2ηt‖gt‖

2
∗.

Proof. From the optimality of xt+1, we have [BBV04, Section 4.2.3]

〈ηtgt +∇h(xt+1)−∇h(xt), z − xt+1〉 ≥ 0,

for any z ∈ X . Manipulating this inequality, one can arrive at

ηt〈gt, xt − z〉 ≤ h(z)− h(xt)− 〈∇h(xt), z − xt〉
− h(z) + h(xt+1) + 〈∇h(xt+1), z − xt+1〉
− h(xt+1) + h(xt) + 〈∇h(xt), xt+1 − xt〉+ ηt〈gt, xt − xt+1〉.
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Using the definition of the Bregman divergence (Definition 1), we have

ηt〈gt, xt − z〉 ≤ Bh(z, xt)− Bh(z, xt+1)− Bh(xt+1, xt) + ηt〈gt, xt − xt+1〉

≤ Bh(z, xt)− Bh(z, xt+1)− 1
2‖xt+1 − xt‖2 + ηt〈gt, xt − xt+1〉 Lemma 1

≤ Bh(z, xt)− Bh(z, xt+1)− 1
2‖xt+1 − xt‖2 + ηt‖gt‖∗‖xt − xt+1‖

generalized Cauchy–Schwarz

≤ Bh(z, xt)− Bh(z, xt+1) + 1
2η

2
t ‖gt‖2∗. −a2 + 2ab ≤ b2

Lemma 3. Suppose that the mapping f : X → R is α-strongly convex w.r.t. a norm ‖ · ‖.
Then, for all x, y ∈ X ,

α‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉.

Proof. Since f is α-strongly convex, Definition 2 implies that for all x, y ∈ X ,

f(x)− f(y) ≤ 〈∇f(x), x− y〉 − α

2 ‖x− y‖
2

f(y)− f(x) ≤ 〈∇f(y), y − x〉 − α

2 ‖y − x‖
2.

The claim immediately follows by adding the above two inequalities.

Lemma 4. Suppose that X is a closed convex set in a Euclidean space E equipped with ‖ · ‖2.
Let w ∈ E, v ∈ X , and η > 0. Define

u := argmin
x∈X

‖(v − ηw)− x‖22 = argmin
x∈X

{
η〈w, x〉+ 1

2‖x− v‖
2
2

}
.

It then holds that, for all z ∈ X ,

〈w, v − z〉 ≤ 1
2η
(
‖v − z‖22 − ‖u− z‖22

)
+ η

2‖w‖
2
2.

Proof. By definition, u is the Euclidean projection of (v − ηw) onto X . It follows from the
Pythagorean theorem that, for all z ∈ X ,

‖u− z‖22 ≤ ‖v − ηw − z‖22,

and as a result,

‖u− z‖22 ≤ η2‖w‖22 − 2η〈w, v − z〉+ ‖v − z‖22.

Rearranging the above inequality concludes the proof.
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Lemma 5. Suppose that X is a closed convex set in a Banach space S. Let w ∈ S∗, v ∈ X ,
and η > 0. Define

u := argmin
x∈X

{
η〈w, x〉+ Bh(x, v)

}
.

It follows that, for all z ∈ X ,

〈w, u− z〉 ≤ 1
η

(
Bh(z, v)− Bh(z, u)− Bh(u, v)

)
.

Proof. Let g(x) := η〈w, x〉+ Bh(x, v) and observe that ∇g(x) = ηw +∇h(x)−∇h(v). Since
u is an optimal solution to the above problem, 〈∇g(u), z − u〉 ≥ 0 for all feasible z ∈ X , i.e.,

〈ηw +∇h(u)−∇h(v), z − u〉 ≥ 0, ∀z ∈ X ,

and as a result,

η〈w, u− z〉 ≤ 〈∇h(v)−∇h(u), u− z〉. (A-1)

In what follows, we properly reformulate the right-hand side of the above inequality, that is

〈∇h(v), u− z〉+ 〈∇h(u), z − u〉 =: a.

Notice that by the definition of the Bregman divergence (see Definition 1),

〈∇h(u), z − u〉 = h(z)− h(u)− Bh(z, u) =: a1.

Now observe that

〈∇h(v), u− z〉 = 〈∇h(v), u− z + v − v〉
= 〈∇h(v), u− v〉 − 〈∇h(v), z − v〉
=: a2 − a3.

We again employ Definition 1 and arrive at

a2 = h(u)− h(v)− Bh(u, v)
a3 = h(z)− h(v)− Bh(z, v).

Now, since a = a1 + a2 − a3 and in the light of inequality (A-1), the claim of the lemma
follows.

Lemma 6. Suppose that X is a closed convex set in a Banach space S equipped with a
norm ‖ · ‖. Let w1, w2 ∈ S∗, v ∈ X , and η > 0. Define

u1 := argmin
x1∈X

{
η〈w1, x1〉+ Bh(x1, v)

}
and u2 := argmin

x2∈X

{
η〈w2, x2〉+ Bh(x2, v)

}
.

Then, it holds that

‖u1 − u2‖ ≤ η‖w1 − w2‖∗.
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Proof. Let us first state two inequalities that are implied by equation (A-1) in the proof of
Lemma 5. In equation (A-1), set w = w1, u = u1, and z = u2. We thus have

η〈w1, u2 − u1〉 ≥ 〈∇h(u1)−∇h(v), u1 − u2〉.

Next, set w = w2, u = u2, and z = u1 in equation (A-1), we now get

η〈−w2, u2 − u1〉 ≥ 〈∇h(v)−∇h(u2), u1 − u2〉.

Adding the last two inequalities up, we arrive at

η〈w1 − w2, u2 − u1〉 ≥ 〈∇h(u1)−∇h(u2), u1 − u2〉. (A-2)

Since h is 1-strongly convex, it follows from Lemma 3 that

〈∇h(u1)−∇h(u2), u1 − u2〉 ≥ ‖u1 − u2‖2. (A-3)

Combining (A-2) and (A-3), and using the Cauchy-Schwarz inequality, we have

‖u1 − u2‖2 ≤ η‖w1 − w2‖∗‖u2 − u1‖.

As a result, the claim follows.

The next lemma is a generalization of [SM10, Lemma 1].

Lemma 7. Let c be a positive real and n be a positive integer. For all sequences of non-
negative reals {at}nt=1, it holds that

n∑
j=1

aj√
c+

∑j
i=1ai

≤ 2

√√√√c+
n∑
j=1

aj .

Proof. The proof is by induction. For n = 1, the claim holds trivially. Fix an integer n > 1.
Suppose now that the claim holds for n− 1. It follows that

n∑
j=1

aj√
c+

∑j
i=1ai

≤ 2

√√√√c+
n−1∑
j=1

aj + an√
c+

∑n
i=1 ai

=: 2
√
c+ Z − x+ x√

c+ Z
=: g(x),

where Z :=
∑n
i=1 ai and x := an. Observe that dg(x)/dx < 0, for all x > 0. (In simple words,

the function g(x) is strictly decreasing, for all x > 0.) As a result, we have

argmax
x≥0

g(x) = 0,

and g(x) ≤ 2
√
c+ Z. This concludes the proof.

Lemma 8. Given two positive reals a and b, it holds that

b

(1
b
− 1
a

)
≤ log

(
b−1

a−1

)
.
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Proof. Let us first recall the identity log(ξ) ≤ ξ − 1, for any ξ > 0. Set ξ = a−1/b−1. Notice
that

− log
(
b−1

a−1

)
= log

(
a−1

b−1

)
≤ a−1

b−1 − 1 = b

(1
a
− 1
b

)
.

Thus, the claim is an immediate consequence of the above relation.
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Appendix B

Technical Proofs

B-1 Proof of Theorem 1

In Theorem 3, set ut = argminx∈X
∑T
τ=1 fτ (x) and let Φt be the the identity mapping

(i.e., Φt(x) = x), for all t ∈ [T ]. The claim immediately follows. �

B-2 Proof of Theorem 2

In order to prove Theorem 2, first we will prove a version of this theorem for general Bregman
divergences (Lemma 9). This result is achieved by exploiting a certain technical assumption
(Assumption 6). Then, we will show that for the euclidean case (i.e. Bh(x, y) = 1

2‖x− y‖
2
2),

this technical assumption always holds and Theorem 2 follows.

Assumption 6 (Technical assumption). For ηt =
(
λ
σ2D

′
t−1 + 2β

)−1
and β ≥ α > 0, there

exists a constant λ > 0 such that λBh(x∗, yt)− 1
ηt
Bh(yt, xt)− α

2 ‖x
∗ − xt‖2 ≤ 0 for all t > 0.

Before stating the general version of Theorem 2, we make a short remark on Assumption 6.

Remark 9 (Mildness of Assumption 6). Notice that ηt, α, and Bh(x, y) are all non-negative,
for all t and x, y ∈ X . Moreover, {ηt}Tt=1 is a non-increasing sequence. Then, for a general
choice of h, one should be able to choose a small enough λ to ensure that the inequality in
Assumption 6 holds for all t > 0. In particular, when Bh(x, y) = 1

2‖x−y‖
2
2, we will show that

Assumption 6 holds for λ = α/2.

Lemma 9 (Static regret: Strongly convex case with general divergence). Suppose that As-
sumptions 1 and 6 hold and that the cost sequence {ft}Tt=1 is α-strongly convex. Using the
adaptive step-size η1 = 1

2β and ηt =
(
λ
σ2D

′
t−1 + 2β

)−1
for all t > 1, Algorithm (OptMD)

guarantees

RegsT ≤ 2βR2 + σ2

β
+ 2σ2

λ
log

(
1 + λ

2βσ2D
′
T

)
.
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Proof. Recall that x∗ = argminx∈X
∑T
t=1 ft(x) is the optimal action in hindsight. Since ft

is α-strongly convex, we have

ft(xt)− ft(x∗) ≤ 〈∇ft(xt), xt − x∗〉 −
α

2 ‖x
∗ − xt‖2.

We next follow the same steps taken in the proof of Theorem 3 to derive equation (B-6) and
arrive at

ft(xt)− ft(x∗) ≤ 〈∇ft(xt)−Mt, xt − yt〉 −
α

2 ‖x
∗ − xt‖2

+ 1
ηt

(
Bh(x∗, yt−1)− Bh(x∗, yt)− Bh(yt, xt)− Bh(xt, yt−1)

)
.

Define

At := 1
ηt

(Bh(x∗, yt−1)− Bh(x∗, yt)− Bh(yt, xt))−
α

2 ‖x
∗ − xt‖2

Bt := 〈∇ft(xt)−Mt, xt − yt〉 −
1
ηt
Bh(xt, yt−1).

With the above notations at hand, it follows that

RegsT =
T∑
t=1

(ft(xt)− ft(x∗)) ≤
T∑
t=1

At +
T∑
t=1

Bt. (B-1)

We proceed by bounding
∑T
t=1At and

∑T
t=1Bt, separately.

(Upper-bounding
∑T
t=1At) Observe that

T∑
t=1
At =

T∑
t=1

( 1
ηt

(Bh(x∗, yt−1)− Bh(x∗, yt))
)
−

T∑
t=1

( 1
ηt
Bh(yt, xt) + α

2 ‖x
∗ − xt‖2

)

≤ Bh(x∗, y0)
η1

+
T∑
t=1

(( 1
ηt+1

− 1
ηt

)
Bh(x∗, yt)

)
−

T∑
t=1

( 1
ηt
Bh(yt, xt) + α

2 ‖x
∗ − xt‖2

)
.

Recall that η1 = 1
2β in Theorem 2. The fourth item in Assumption 1 implies that

Bh(x∗, y0)
η1

≤ 2βR2. (B-2a)

Based on the definition of ηt in Theorem 2, we get

1
ηt+1

− 1
ηt

= λ

σ2 ‖∇ft(yt−1)−Mt‖2∗, (B-2b)

where scalars λ and σ are explained in Assumptions 6 and 1, respectively. Hence, we obtain

T∑
t=1

(( 1
ηt+1

− 1
ηt

)
Bh(x∗, yt)

)
= λ

T∑
t=1

(
‖∇ft(yt−1)−Mt‖2∗

σ2 Bh(x∗, yt)
)

≤ λ
T∑
t=1
Bh(x∗, yt),

(B-2c)
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where the inequality follows from the fifth item in Assumption 1. In light of the upper-bounds
derived in equation (B-2), we then infer that

T∑
t=1

At ≤ 2βR2 +
T∑
t=1

(
λBh(x∗, yt)−

1
ηt
Bh(yt, xt) + α

2 ‖x
∗ − xt‖2

)
≤ 2βR2, (B-3)

where the second inequality follows from Assumption 6.
(Upper-bounding

∑T
t=1Bt) Following the same steps taken in the proof of Theorem 3 to

obtain equation (B-10), we arrive at
T∑
t=1

Bt ≤
σ2

β
+ 2

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖2∗

)
.

Notice that by the definition of the adaptive step size in Theorem 2, we have

‖∇ft(yt−1)−Mt‖2∗ = σ2

λ

( 1
ηt+1

− 1
ηt

)
,

and as a result,
T∑
t=1

Bt ≤
σ2

β
+ 2σ2

λ

T∑
t=1

(
ηt+1

( 1
ηt+1

− 1
ηt

))
.

We next use Lemma 8 to upper-bound the right-hand side of the above inequality and arrive
at

T∑
t=1

Bt ≤
σ2

β
+ 2σ2

λ

T∑
t=1

log
(
η−1
t+1
η−1
t

)
= σ2

β
+ 2σ2

λ

(
log

( 1
ηT+1

)
− log

( 1
η1

))

= σ2

β
+ 2σ2

λ
log

(
η1
ηT+1

)
.

We now use use the step-size rule defined in Theorem 2 to upper-bound the right-hand side
of the last equality. By doing so, we get

T∑
t=1

Bt ≤
σ2

β
+ 2σ2

λ
log

(
1 + λ

2βσ2D
′
T

)
, (B-4)

where D′T is defined in (2-5).
(Regret upper-bound) In light of equations (B-1), (B-3) and (B-4), we get

RegsT ≤ 2βR2 + σ2

β
+ 2σ2

λ
log

(
1 + λ

2βσ2D
′
T

)
.

The claim immediately follows.

Finally, for the euclidean case (i.e. Bh(x, y) = 1
2‖x− y‖

2
2) and choosing λ = α/2, we have

λBh(x∗, yt)−
1
ηt
Bh(yt, xt)− αBh(x∗, xt) = α

4 ‖x
∗ − yt‖22 −

1
2ηt
‖yt − xt‖22 −

α

2 ‖x
∗ − xt‖

≤ α

2 ‖x
∗ − xt‖22 + α

2 ‖xt − yt‖
2
2 −

1
2ηt
‖yt − xt‖22 −

α

2 ‖x
∗ − xt‖22

≤ 0,
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where the second inequality follows from ‖a − b‖2 ≤ 2‖a − c‖2 + 2‖c − b‖2 and the third
inequality follows from η−1

t ≥ β ≥ α. Thus, we have shown that Assumption 6 holds for all
t, and Theorem 2 follows from Lemma 9. �

B-3 Proof of Theorem 3

Let ut ∈ X . Since ft is convex, it holds that

ft(xt)− ft(ut) ≤ 〈∇ft(xt), xt − ut〉.

We add ±〈∇ft(xt), ỹt〉 to the right-hand side of the above inequality. So,

ft(xt)− ft(ut) ≤ 〈∇ft(xt), xt − ỹt〉+ 〈∇ft(xt), ỹt − ut〉.

We next add ±〈Mt, xt − ỹt〉 to the right-hand side of the last inequality and arrive at

ft(xt)− ft(ut) ≤ 〈∇ft(xt)−Mt, xt − ỹt〉+ 〈Mt, xt − ỹt〉+ 〈∇ft(xt), ỹt − ut〉. (B-5)

In Algorithm (OptDMD), recall that

xt = argmin
x∈X

{
ηt〈Mt, x〉+ Bh(x, yt−1)

}
ỹt = argmin

y∈X

{
ηt〈∇ft(xt), y〉+ Bh(y, yt−1)

}
.

It follows from Lemma 5 with w = Mt, u = xt, z = ỹt, v = yt−1, and η = ηt that

〈Mt, xt − ỹt〉 ≤
1
ηt

(
Bh(ỹt, yt−1)− Bh(ỹt, xt)− Bh(xt, yt−1)

)
.

Similarly, Lemma 5 with w = ∇ft(xt), u = ỹt, z = ut, v = yt−1, and η = ηt implies that

〈∇ft(xt), ỹt − ut〉 ≤
1
ηt

(
Bh(ut, yt−1)− Bh(ut, ỹt)− Bh(ỹt, yt−1)

)
.

In light of the last two inequalities, the right-hand side of inequality (B-5) can be upper-
bounded as follows

ft(xt)− ft(ut)

≤ 〈∇ft(xt)−Mt, xt − ỹt〉+ 1
ηt

(
Bh(ut, yt−1)− Bh(ut, ỹt)− Bh(ỹt, xt)− Bh(xt, yt−1)

)
≤ 〈∇ft(xt)−Mt, xt − ỹt〉+ 1

ηt

(
Bh(ut, yt−1)− Bh(ut, ỹt)− Bh(xt, yt−1)

)
,

(B-6)

where we made use of the fact that Bh(ỹt, xt) ≥ 0 in the second inequality. Define now

At := 1
ηt

(Bh(ut, yt−1)− Bh(ut, ỹt))

Bt := 〈∇ft(xt)−Mt, xt − ỹt〉 −
1
ηt
Bh(xt, yt−1).

(B-7)
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Thus, we have

RegdT =
T∑
t=1

(ft(xt)− ft(ut)) ≤
T∑
t=1

At +
T∑
t=1

Bt. (B-8)

In what follows, we seek to upper-bound the terms
∑T
t=1At and

∑T
t=1Bt in order to prove

the theorem’s claim.

(Upper-bounding
∑T
t=1At) Adding ± 1

ηt
Bh(ut+1, yt) and ± 1

ηt
Bh(Φt(ut), yt) to At and sum-

ming the result over t = 1, . . . , T , we get
T∑
t=1

At =
T∑
t=1

( 1
ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt) + Bh(ut+1, yt)

− Bh(Φt(ut), yt) + Bh(Φt(ut),Φt(ỹt))− Bh(ut, ỹt)
))
,

where we made use of yt = Φt(ỹt) (see Algorithm (OptDMD)). By Assumption 3, it holds for
some positive real γ that

Bh(ut+1, yt)− Bh(Φt(ut), yt) ≤ γ‖ut+1 − Φt(ut)‖.

By Assumption 4, it further holds that

Bh(Φt(ut),Φt(ỹt))− Bh(ut, ỹt) ≤ 0.

By virtue of the last two inequalities, we arrive at
T∑
t=1

At ≤
T∑
t=1

( 1
ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt) + γ‖ut+1 − Φt(ut)‖

))
. (B-9)

Recall the definition of ηt in Theorem 3 and observe that
T∑
t=1

( 1
ηt

(
Bh(ut, yt−1)− Bh(ut+1, yt)

))

≤ 1
η1
Bh(u1, y0)− 1

ηT
Bh(uT+1, yT ) +

T∑
t=2

(
Bh(ut, yt−1)

( 1
ηt
− 1
ηt−1

))
(i)
≤ R2

ηT
+R2

T∑
t=2

( 1
ηt
− 1
ηt−1

)

= R2

ηT
+R2

( 1
ηT
− 1
η1

)
(ii)
≤ 2R2

ηT
,

where we made use of the facts that ηT ≤ η1, Bh(uT+1, yT ) ≥ 0, and of the fourth item in
Assumption 1 in the inequality (i), and the inequality (ii) is implied by η1 > 0, respectively.
Considering inequality (B-9), one can conclude based on the above arguments that

T∑
t=1

At ≤
2R2

ηT
+

T∑
t=1

(
γ

ηt
‖ut+1 − Φt(ut)‖

)
≤ 2R2

ηT
+ γ

ηT

T∑
t=1
‖ut+1−Φt(ut)‖ = 1

ηT
(2R2 + γC ′T ),
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where the second inequality follows from ηt ≥ ηt+1 and C ′T is defined in equation (2-4). Lastly,
we use the step-size ηT given in Theorem 3 to obtain

T∑
t=1

At ≤
(
2R2 + γC ′T

)√
D′T + 4β2, (B-10)

where D′T is defined in equation (2-5).
(Upper-bounding

∑T
t=1Bt) We proceed by bounding

∑T
t=1Bt in the sequel, where Bt is

given in (B-7). The Cauchy–Schwarz inequality implies that

Bt ≤ ‖∇ft(xt)−Mt‖∗‖xt − ỹt‖ −
1
ηt
Bh(xt, yt−1).

We now employ Lemma 6 to provide an upper-bound on ‖xt − ỹt‖. Recall that xt and ỹt are
constructed based on Algorithm (OptDMD). Take η = ηt, u1 = ỹt, w1 = ∇ft(xt), u2 = xt,
and w2 = Mt in Lemma 6. So, we arrive at

‖ỹt − xt‖ ≤ ηt‖∇ft(xt)−Mt‖∗,

and as a result,

Bt ≤ ηt‖∇ft(xt)−Mt‖2∗ −
1
ηt
Bh(xt, yt−1).

Notice that

Bt ≤ 2ηt‖∇ft(xt)−∇ft(yt−1)‖2∗ + 2ηt‖∇ft(yt−1)−Mt‖2∗ −
1
ηt
Bh(xt, yt−1)

≤ 2ηtβ2‖xt − yt−1‖2 + 2ηt‖∇ft(yt−1)−Mt‖2∗ −
1
ηt
Bh(xt, yt−1).

where we made use of the identity ‖a− b‖2 ≤ 2‖a− c‖2 + 2‖c− b‖2 in the first inequality, and
the β-smoothness of ft implies the second inequality. Recall now that h is 1-strongly convex
w.r.t. the norm ‖ · ‖ (see Assumption 1, second item). We employ Lemma 1 to conclude that

Bt ≤
(

2ηtβ2 − 1
2ηt

)
‖xt − yt−1‖2 + 2ηt‖∇ft(yt−1)−Mt‖2∗.

Based on the definition of ηt in Theorem 3, the sequence {ηt}Tt=1 is a non-increasing sequence.
Thus, we have ηt ≤ 1/(2β), and as a result,

2ηtβ2 − 1
2ηt
≤ 0, ∀t ≥ 1.

In view of this observation, we get

Bt ≤ 2ηt‖∇ft(yt−1)−Mt‖2∗.

Summing Bt over t = 1, . . . , T yields
T∑
t=1

Bt ≤ 2
T∑
t=1

(
ηt‖∇ft(yt−1)−Mt‖2∗

)

≤ 2
T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖2∗

)
+ 2

T∑
t=1

(
(ηt − ηt+1)‖∇ft(yt−1)−Mt‖2∗

)
.

Pedro Zattoni Scroccaro Master of Science Thesis



B-4 Proof of Theorem 4 39

Recall the definition of ηt in Theorem 3. Set n = T , at = ‖∇ft(yt−1)−Mt‖2∗, and c = 4β2 in
Lemma 7. Hence, we get

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖2∗

)
≤ 2

√
4β2 +D′T ,

where D′T is defined in (2-5). By virtue of the fifth item in Assumption 1, it also follows that

T∑
t=1

(
(ηt − ηt+1)‖∇ft(yt−1)−Mt‖2∗

)
≤ σ2

T∑
t=1

(ηt − ηt+1)

= σ2 (η1 − ηT+1) ≤ σ2η1 = σ2

2β .

Based on the above analyses, it is straightforward to see that
T∑
t=1

Bt ≤ 4
√
D′T + 4β2 + σ2

β
. (B-11)

(Regret upper-bound) Considering equations (B-8), (B-10), and (B-11), it holds that

RegdT ≤
(
2R2 + γC ′T

)√
D′T + 4β2 + 4

√
D′T + 4β2 + σ2

β
.

This concludes the proof. �

B-4 Proof of Theorem 4

Recall that x∗t = argminx∈X ft(x). Since ft is convex,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt), xt − x∗t 〉.

Adding ±〈∇ft(xt), yt−1〉 and ±〈Mt, xt − yt−1〉 to the right-hand side of the above inequality,
we get

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt)−Mt, xt − yt−1〉+ 〈Mt, xt − yt−1〉+ 〈∇ft(xt), yt−1 − x∗t 〉.

Let us now mention that B(p, q) = 1
2‖p − q‖

2
2, for all p, q ∈ X . Invoking Lemma 5 with η =

ηt, w = Mt, u = xt, and z = v = yt−1, we get

〈Mt, xt − yt−1〉 ≤ −
1
ηt
‖xt − yt−1‖22,

and so,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt)−Mt, xt − yt−1〉 −
1
ηt
‖xt − yt−1‖22 + 〈∇ft(xt), yt−1 − x∗t 〉.

In Algorithm (OptDMD-mod), recall that

ỹt = argmin
y∈X

{ 1
ω
〈∇ft(xt), y〉+ 1

2‖y − yt−1‖22
}
.
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We now use Lemma 4 with w = ∇ft(xt), v = yt−1, z = x∗t , η = 1/ω and u = ỹt to obtain

〈∇ft(xt), yt−1 − x∗t 〉 ≤
ω

2 ‖yt−1 − x∗t ‖22 −
ω

2 ‖ỹt − x
∗
t ‖22 + 1

2ω‖∇ft(xt)‖
2
2,

and as a result,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt)−Mt, xt − yt−1〉 −
1
ηt
‖xt − yt−1‖22

+ ω

2 ‖yt−1 − x∗t ‖22 −
ω

2 ‖ỹt − x
∗
t ‖22 + 1

2ω‖∇ft(xt)‖
2
2.

For the sake of notational simplicity, define

At := ω

2 ‖x
∗
t − yt−1‖22 −

ω

2 ‖x
∗
t − ỹt‖22

Bt := 〈∇ft(xt)−Mt, xt − yt−1〉 −
1
ηt
‖xt − yt−1‖22.

(B-12)

With the above notations in mind, we have

ft(xt)− ft(x∗t ) ≤ At +Bt + 1
2ω‖∇ft(xt)‖

2
2,

and so

RegdT =
T∑
t=1

(ft(xt)− ft(x∗t )) ≤
T∑
t=1

At +
T∑
t=1

Bt + 1
2ω

T∑
t=1
‖∇ft(xt)‖22. (B-13)

(Upper-bounding
∑T
t=1Bt) Let us now find an upper-bound on Bt. Add ±〈∇ft(yt−1), xt−

yt−1〉 to Bt. A straightforward application of the Cauchy-Schwartz inequality implies that

Bt ≤ ‖∇ft(xt)−∇ft(yt−1)‖2‖xt − yt−1‖2

+ ‖∇ft(yt−1)−Mt‖2‖xt − yt−1‖2 −
1
ηt
‖xt − yt−1‖22.

Since ft is β-smooth w.r.t. ‖ · ‖2, it holds that

Bt ≤
(
β − 1

2ηt

)
‖xt − yt−1‖22 + ‖∇ft(yt−1)−Mt‖2‖xt − yt−1‖2 −

1
2ηt
‖xt − yt−1‖22.

Using the identity 2ab− a2 ≤ b2 yields

‖∇ft(yt−1)−Mt‖2‖xt − yt−1‖2 −
1

2ηt
‖xt − yt−1‖22 ≤

ηt
2 ‖∇ft(yt−1)−Mt‖22,

and thus, it follows that

T∑
t=1

Bt ≤
T∑
t=1

((
β − 1

2ηt

)
‖xt − yt−1‖22

)
+ 1

2

T∑
t=1

(
ηt‖∇ft(yt−1)−Mt‖22

)
. (B-14a)
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Recall that η1 = 1/(3β). One can conclude that

1
2

T∑
t=1

(
ηt‖∇ft(yt−1)−Mt‖22

)

= 1
2

T∑
t=1

(
(ηt − ηt+1)‖∇ft(yt−1)−Mt‖22

)
+ 1

2

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖22

)
(i)
≤ σ2

2

T∑
t=1

(ηt − ηt+1) + 1
2

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖22

)

= σ2

2 (η1 − ηT+1) + 1
2

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖22

)
(ii)
≤ σ2

6β + 1
2

T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖22

)
,

(B-14b)

where the fifth item in Assumption 1 implies the inequality (i) and we used the fact that ηT+1 >
0 in the inequality (ii), respectively. By the definition of the adaptive step size in Theorem 4,
we have

‖∇ft(yt−1)−Mt‖22 = 1
ηt+1

− 1
ηt
,

and thus,
T∑
t=1

(
ηt+1‖∇ft(yt−1)−Mt‖22

)
=

T∑
t=1

ηt+1

( 1
ηt+1

− 1
ηt

)
.

Recall that D′t is defined in (2-5). Observe that
T∑
t=1

ηt+1

( 1
ηt+1

− 1
ηt

) (i)
≤

T∑
t=1

log
(
η−1
t+1
η−1
t

)
= log

(
η1
ηT+1

)
(ii)= log

(
1 + D′T

3β

)
,

where we used Lemma 8 in the inequality (i) and the definition of step-size in Theorem 4
equality (ii). In light of the relations in equation (B-14), we infer that

T∑
t=1

Bt ≤
T∑
t=1

((
β − 1

2ηt

)
‖xt − yt−1‖22

)
+ σ2

6β + 1
2 log

(
1 + D′T

2β

)
. (B-15)

In what follows, we proceed to upper-bound the term
∑T
t=1(At +Bt).

(Upper-bounding
∑T
t=1(At +Bt)) From equation (B-12), we have

T∑
t=1

At = ω

2

T∑
t=1

(‖x∗t − yt−1‖22 − ‖x∗t − ỹt‖22). (B-16)

Adding ±‖x∗t+1 − yt‖22 and ±‖Φt(x∗t )− yt‖22 to each At, we arrive at
T∑
t=1

At = ω

2

T∑
t=1

(
‖x∗t − yt−1‖22 − ‖x∗t+1 − yt‖22 + ‖x∗t+1 − yt‖22 − ‖Φt(x∗t )− yt‖22

+ ‖Φt(x∗t )− Φt(ỹt)‖22 − ‖x∗t − ỹt‖22
)
,
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where we used yt = Φt(ỹt). One can see that

T∑
t=1

(‖x∗t − yt−1‖22 − ‖x∗t+1 − yt‖22) = ‖x∗1 − y0‖22 − ‖x∗T+1 − yT ‖22 ≤ ‖x∗1 − y0‖22 ≤ 2R2,

(B-17a)

where the last inequality is implied by the fourth item in Assumption 1. Next, recall
that h(·) = 1

2‖ · ‖
2
2. Observe that there exists a positive real γ such that

‖x∗t+1 − yt‖22 − ‖Φt(x∗t )− yt‖22 ≤ γ‖x∗t+1 − Φt(x∗t )‖2, (B-17b)

where we made use of Assumptions 3 in the above inequality. Moreover, Assumption 4 implies
that

‖Φt(x∗t )− Φt(ỹt)‖22 − ‖x∗t − ỹt‖22 ≤ 0, ∀t ∈ [T ]. (B-17c)

By virtue of equations (B-16) and (B-17), we thus obtain

T∑
t=1

At ≤ ωR2 + γω

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2. (B-18)

It follows from equations (B-15) and (B-18) that

T∑
t=1

(At +Bt) ≤ ωR2 + γω

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2

+
T∑
t=1

((
β − 1

2ηt

)
‖xt − yt−1‖22

)
+ σ2

6β + 1
2 log

(
1 + D′T

3β

)

≤ ωR2 + γω

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2 + σ2

6β + 1
2 log

(
1 + D′T

3β

)
,

(B-19)

where in the last inequality we made use of the fact that β− 1
2ηt
≤ 0, implied by the definition

of ηt. Thus, we arrive at

RegdT ≤
σ2

6β +ωR2 + 1
2 log

(
1 + D′T

3β

)
+ 1

2ω

T∑
t=1
‖∇ft(xt)‖22 + γω

2

T∑
t=1
‖x∗t+1−Φt(x∗t )‖2. (B-20)

To finish the proof, we need to upper-bound ‖∇ft(xt)‖22. To do so, first notice that the
β-smoothness of ft imply that ft(u) ≤ ft(v) + 〈∇ft(v), u − v〉 + β

2 ‖u − v‖22. Setting u =
xt − 1

β∇ft(xt) and v = xt, we get

1
2β ‖∇ft(xt)‖

2
2 ≤ ft(xt)− ft(u). (B-21)

On the other hand, from the convexity of ft, we have

ft(x∗t )− ft(u) ≤ 〈∇ft(x∗t ), x∗t − u〉 =⇒ −ft(u) ≤ −ft(x∗t ), (B-22)
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where the implication follows from Assumption 5. Combining (B-21) and (B-22), we get

‖∇ft(xt)‖22 ≤ 2β(ft(xt)− ft(x∗t )). (B-23)

Substituting (B-23) in our regret bound, setting ω = 2β and rearranging, we finally arrive at

RegdT ≤
σ2

3β + 4βR2 + log
(

1 + D′T
3β

)
+ 2γβ

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2.

The claim of the theorem hence follows. �

B-5 Proof of Theorem 5

First, since for quadratic costs have α = β, we will use β for both the smoothness and
strong convexity parameters. In this section, we begin with providing an auxiliary results
that are used in the proof of Theorem 5. This result gives an upper-bound on the sum-
mation

∑T
t=1 ‖x∗t − yt−1‖22, where the sequences {xt}Tt=1 and {yt}T−1

t=0 are chosen based on
Algorithm (OptDMD-mod).

Lemma 10. Suppose that Assumptions 1 and 4 hold. Consider {ft}Tt=1 is a sequence of
quadratic costs w.r.t. ‖ · ‖2. Moreover, let

ỹt = argmin
y∈X

{
〈∇ft(xt), y − yt−1〉+ β

2 ‖y − yt−1‖22
}

and x∗t = argmin
x∈X

ft(x).

Then, it holds that

T∑
t=1
‖x∗t − yt−1‖22 ≤ 2R2 + 2

T∑
t=2
‖x∗t − Φt(x∗t−1)‖22 + 4

2β

T∑
t=1
〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉.

Let us mention that ỹt is the second iterate given in Algorithm (OptDMD-mod), where we
multiplied the corresponding objective function by scalar β. The proof is as follows.

Proof. We first use the identity ‖a− c‖22 ≤ 2‖a− b‖22 + 2‖b− c‖22 to arrive at

T∑
t=1
‖x∗t − yt−1‖22 = ‖x∗1 − y0‖22 +

T∑
t=2
‖x∗t − yt−1‖22

≤ ‖x∗1 − y0‖22 + 2
T∑
t=2
‖x∗t − Φt(x∗t−1)‖22 + 2

T∑
t=2
‖Φt(x∗t−1)− yt−1‖22.

Recall that yt−1 = Φt(ỹt−1) in Algorithm (OptDMD-mod). Since we have h = 1
2‖ ·‖

2, it holds
that Bh(p, q) = 1

2‖p− q‖
2
2, for all p, q ∈ X . Hence, Assumption 4 reads as

‖Φt(x∗t−1)− yt−1‖2 = ‖Φt(x∗t−1)− Φt(ỹt−1)‖2 ≤ ‖x∗t−1 − ỹt−1‖2.
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Based on the above fact, we have
T∑
t=1
‖x∗t − yt−1‖22 ≤ ‖x∗1 − y0‖22 + 2

T∑
t=2
‖x∗t − Φt(x∗t−1)‖22 + 2

T∑
t=2
‖x∗t−1 − ỹt−1‖22

≤ ‖x∗1 − y0‖22 + 2
T∑
t=2
‖x∗t − Φt(x∗t−1)‖22 + 2

T∑
t=1
‖x∗t − ỹt‖22.

Recalling again h(·) = 1
2‖ · ‖

2
2, the fourth item in Assumption 1 is equivalent to

‖x∗1 − y0‖22 ≤ 2R2,

and as a result,
T∑
t=1
‖x∗t − yt−1‖22 ≤ 2R2 + 2

T∑
t=2
‖x∗t − Φt(x∗t−1)‖22 + 2

T∑
t=1
‖x∗t − ỹt‖22. (B-24)

We next obtain an upper-bound on the term
∑T
t=1 ‖x∗t−ỹt‖22. Recall that Bh(p, q) = 1

2‖p−q‖
2
2,

for all p, q ∈ X . Take η = 1
β , w = ∇ft(xt), u = ỹt, z = x∗t , and v = yt−1 in Lemma 5. It thus

holds that

〈∇ft(xt), ỹt − x∗t 〉 ≤
β

2 ‖x
∗
t − yt−1‖22 −

β

2 ‖x
∗
t − ỹt‖22 −

β

2 ‖ỹt − yt−1‖22.

In view of the above inequality, we have

β

2 ‖ỹt − yt−1‖22 ≤ 〈∇ft(xt), x∗t − ỹt〉+ β

2 ‖x
∗
t − yt−1‖22 −

β

2 ‖x
∗
t − ỹt‖22. (B-25a)

On the other hand, the β-strong convexity of ft implies that

ft(yt−1) ≤ ft(x∗t ) + 〈∇ft(yt−1), yt−1 − x∗t 〉 −
β

2 ‖x
∗
t − yt−1‖22. (B-25b)

Moreover, recall that x∗t = argminx∈X ft(x), that is x∗ is an optimal decision. Coupled with
the β-strong convexity of ft, we hence have

ft(x∗t ) ≤ ft(ỹt)−
β

2 ‖x
∗
t − ỹt‖22. (B-25c)

Notice that

ft(ỹt) ≤ ft(yt−1) + 〈∇ft(yt−1), ỹt − yt−1〉+ β

2 ‖ỹt − yt−1‖22
(B-25a)
≤ ft(yt−1) + 〈∇ft(yt−1), ỹt − yt−1〉+ 〈∇ft(xt), x∗t − ỹt〉+ β

2 ‖x
∗
t − yt−1‖22 −

β

2 ‖x
∗
t − ỹt‖22

(B-25b)
≤ ft(x∗t ) + 〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉 −

β

2 ‖x
∗
t − ỹt‖22

(B-25c)
≤ ft(ỹt) + 〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉 − β‖x∗t − ỹt‖22,

where the first inequality follows from the β-smoothness of ft. Hence, we get

‖x∗t − ỹt‖22 ≤
1
β
〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉. (B-26)
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In light of inequality (B-26), one can infer from inequality (B-24) that
T∑
t=1
‖x∗t − yt−1‖22 ≤ 2R2 + 2

T∑
t=2
‖x∗t − Φ(x∗t−1)‖22 + 2

β

T∑
t=1
〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉.

The claim immediately follows.

Proof of Theorem 5
Recall that x∗t = argminx∈X ft(x). Since ft is β-strongly convex,

ft(xt)− ft(x∗t ) ≤ 〈∇ft(xt), xt − x∗t 〉 −
β

2 ‖xt − x
∗
t ‖22.

Notice that since quadratic costs are a special case of convex costs, we can proceed to bound
〈∇ft(xt), xt − x∗t 〉 the same way we did in the proof of Theorem 4. From Equation (B-20),
we get

RegdT ≤
σ2

6β + βR2 + 1
2 log

(
1 + D′T

3β

)
+ γβ

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2 +HT , (B-27)

where

HT :=
T∑
t=1

( 1
2β ‖∇ft(xt)‖

2
2 −

β

2 ‖xt − x
∗
t ‖22
)
.

In what follows, using the same notation/definitions of the proof of Theorem 4, we proceed to
upper-bound the term

∑T
t=1(At+Bt) using a different approach, exploiting the fact that α =

β. We then take the minimum of the upper bounds as the desired upper-bound on
∑T
t=1(At+

Bt).
(Upper-bounding

∑T
t=1(At + Bt) for quadratic costs) Recall again that At is defined

in (B-12). We invoke Lemma 10 and obtain
T∑
t=1

At = β

2

T∑
t=1
‖x∗t − yt−1‖22 −

β

2

T∑
t=1
‖x∗t − ỹt‖22

≤ βR2 + β
T∑
t=2
‖x∗t − Φ(x∗t−1)‖22 +

T∑
t=1
〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉 −

β

2

T∑
t=1
‖x∗t − ỹt‖22.

Notice that

〈∇ft(xt)−∇ft(yt−1), x∗t − ỹt〉 −
β

2 ‖x
∗
t − ỹt‖22

(i)
≤ ‖∇ft(xt)−∇ft(yt−1)‖2‖x∗t − ỹt‖2 −

β

2 ‖x
∗
t − ỹt‖22

(ii)
≤ β‖xt − yt−1‖2‖x∗t − ỹt‖2 −

β

2 ‖x
∗
t − ỹt‖22

(iii)
≤ β

2 ‖xt − yt−1‖22,

where the inequalities (i)-(iii) follow from the Cauchy-Schwartz inequality, the β-smoothness
of ft, and the identity 2ab − a2 ≤ b2, respectively. In view of the above two arguments, we
thus have

T∑
t=1

At ≤ βR2 + β
T∑
t=2
‖x∗t − Φ(x∗t−1)‖22 + β

2

T∑
t=1
‖xt − yt−1‖22. (B-28)
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One can deduce from equations (B-15) and (B-28) that

T∑
t=1

(At +Bt) ≤ βR2 + β
T∑
t=2
‖x∗t − Φ(x∗t−1)‖22

+
T∑
t=1

((
β − 1

2ηt
+ β

2

)
‖xt − yt−1‖22

)
+ σ2

3β + 1
2 log

(
1 + D′T

3β

)

≤ βR2 + β
T∑
t=2
‖x∗t − Φ(x∗t−1)‖22 + σ2

6β + 1
2 log

(
1 + D′T

3β

)
,

(B-29)

where the second inequality follows from the definition of ηt.

(Regret upper-bound) Considering the upper-bounds provided in equations (B-27) and
(B-29), we thus conclude that

RegdT ≤
σ2

6β+βR2+1
2 log

(
1 + D′T

3β

)
+HT+βmin

{
γ

2

T∑
t=1
‖x∗t+1 − Φt(x∗t )‖2,

T∑
t=2
‖x∗t − Φ(x∗t−1)‖22

}
.

Finally, we show that the fact that ∇ft(x∗t ) = 0 implies that HT ≤ 0.

HT = 1
2β

T∑
t=1
‖∇ft(xt)‖22 −

β

2

T∑
t=1
‖xt − x∗t ‖22

= 1
2β

T∑
t=1
‖∇ft(xt)−∇ft(x∗t )‖22 −

β

2

T∑
t=1
‖xt − x∗t ‖22

≤ β

2

T∑
t=1
‖xt − x∗t ‖22 −

β

2

T∑
t=1
‖xt − x∗t ‖22

≤ 0.

The claim of the theorem hence follows. �
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Appendix C

Adversary Types

In the standard OCO literature, the various flavors of adversaries (a.k.a. Nature) differ in
the amount of information they have access to, when choosing the cost ft ∈ F at round t.

C-1 Standard Definitions

• An Oblivious Adversary does not use the information of the Player’s actions (past
or present) when choosing the cost ft. That is, this adversary does not have access to
x1, . . . , xt at round t. This is equivalent to an adversary that chooses the cost sequence
{ft}Tt=0 before the game starts.

• An Adaptive Adversary can use all the information from the Player’s past actions
x0, . . . , xt−1 when choosing the cost ft. Alternative definitions allow the adversary to
also use information from the player’s current action xt.

C-2 The Problem with Adaptive Adversaries

When using the standard definition of regret (1-1) as a metric of performance against Adaptive
Adversaries, the meaning of this metric becomes difficult to interpret. The excerpt bellow is
taken from [CBL06], but adapted so the notation matches to one used in this thesis:

“It is important to point out that in the definition of the standard regret (1-1), the
cumulative loss

∑T
t=0 ft(x) associated with the “constant” action x corresponds

to the sequence of costs f0, . . . , fT of the Adversary. The costs chosen by the
Adversary may depend on the player’s actions, which, in this case, are x0, ..., xT .
Therefore, it is important to keep in mind that if the Adversary is adaptive, then∑T
t=0 ft(x) is not the same as the cumulative loss the Player would have suffered

had he played action xt = x for all t.”

Master of Science Thesis Pedro Zattoni Scroccaro



48 Adversary Types

The next excerpt is adapted from [ADT12], where the meaning of minx∈X
∑T
t=0 ft(x), (second

term of Eq. (1-1)) is discussed for Adaptive Adversaries:

“We can attempt to articulate the meaning of this term: it is the loss in the
peculiar situation where the Adversary reacts to the Player’s original sequence
(x0, . . . , xT ), but the Player somehow manages to secretly play the sequence xt = x
for all t. This is not a feasible situation and it is unclear why this quantity is an
interesting baseline for comparison.”

Therefore, we can conclude that the standard regret (1-1) is not a suitable metric to measure
the performance of the Player against Adaptive Adversaries, and only makes sense against
oblivious ones. In order to cope with this issue, the notion of policy-regret was introduced.
See [ADT12] and [AHM15] for further discussions on this topic.
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