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In this paper, we present a fully pipelined and semi-parallel channel convolutional neural
network hardware accelerator structure. This structure can trade off the compute time
and the hardware utilization, allowing the accelerator to be layer pipelined without the
need for fully parallelizing the input and output channels. A parallel strategy is applied
to reduce the time gap in transferring the output results between different layers. The
parallelism can be decided based on the hardware resources on the target FPGA. We use
this structure to implement a binary ResNet18 based on the neural architecture search
strategy, which can increase the accuracy of manually designed binary convolutional
neural networks. Our optimized binary ResNet18 can achieve a Top-1 accuracy of 60.5%

*This paper was recommended by Regional Editor Emre Salman.
fCorresponding author.
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on the ImageNet dataset. We deploy this ResNetl18 hardware implementation on an
Alphadata 9H7 FPGA, connected with an OpenCAPI interface, to demonstrate the
hardware capabilities. Depending on the amount of parallelism used, the latency can
range from 1.12 to 6.33 ms, with a corresponding throughput of 4.56 to 0.71 TOPS for
different hardware utilization, with a 200 MHz clock frequency. Our best latency is 8x
lower and our best throughput is 1.9x higher compared to the best previous works.
The code for our implementation is open-source and publicly available on GitHub at
https://github.com/MFJI/NASBRESNET.

Keywords: FPGA accelerator; OpenCAPI; high throughput; low latency; fully pipelined;
flexible parallelism.

1. Introduction

Convolutional neural networks (CNNs) have many application scenarios in many
computer vision tasks in image recognition, image classification and object detection
because of their high accuracy.!™ FPGA accelerators enable CNNs to have better
performance in terms of low latency, low power consumption and high bandwidth to
be better applied to edge devices or other strict application scenarios. Binary con-
volutional neural networks (BNNs), which are convolutional neural networks with
binary weights and activations,* % are friendly to implement on FPGAs because
they will use fewer hardware resources.” However, this results in two challenges: (1)
low accuracy of BNNs and (2) complexity of hardware implementations.

With regard to the first challenge, the accuracy of BNNs is much lower than
the accuracy of their full-precision CNNs counterparts. Existing solutions focus on
software-based improvement of these models using multi-weight binary models® or
linear combinations of binary weights.® However, these methods only address the
low bit representation of the weights rather than improving the architecture of
the CNN. Neural architecture search (NAS) strategy!®!! is efficient in improving
the accuracy of CNNs by optimizing the CNN architecture itself. Applying neural
architecture search strategy to BNNs can improve their accuracy,'? thereby making
architecture search strategies suitable to implement on FPGAs because of their low
hardware utilization and higher accuracy.

With regard to the second challenge, many CNN accelerators have appeared
in recent years. One popular accelerator structure is the general CNN accelerator
based on the system-on-chip structure.!® These accelerators are suitable for a wide
range of different CNNs, but they are not able to achieve the maximum performance
possible for any specific neural network. Especially when the network is a multi-
branch network such as ResNet!'4 or other related networks,'® the data transmission
between the CPU and the hardware will take a large amount of time. Another
well-known structure is the pipeline structure.!® This structure is based on the
parallelism between channels, which consumes a lot of hardware resources that
could limit its practicality due to the limited FPGA resources available on chip.
When doing an FPGA design, the latency and the hardware resources are both
important to be considered.
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In this paper, we present a pipelined CNN FPGA structure with flexible par-
allelism, which allows the layers to be fully pipelined without the need for fully
parallel channels. The parallel strategy can deal with the gap in the transfer time
of results between different layers, which allows the system not to need to wait for
the results while operating to reduce latency. The pipelined structure makes the
latency of the network low, and flexible parallelism makes it suitable for FPGAs
with a reduced amount of hardware resources. We show an implementation of binary
ResNet 18 with a neural architecture search strategy to improve accuracy and quan-
tizing methods to reduce hardware utilization using this structure. Our system uses
the OpenCAPI interface to ensure high bandwidth communication with the host
processor and prevent data communication bottlenecks.

The contributions of this paper are as follows:

(1) We show a hardware accelerator model able to trade off compute time and
hardware utilization, which is layer-pipelined and has flexible-parallel channels.

(2) We further optimize the quantized binary ResNet18 network to reduce its hard-
ware utilization.

(3) We integrate the accelerator with the high-bandwidth OpenCAPI interface and
measure its performance.

The rest of the paper is organized as follows. In Sec. 2, we discuss related
background research work of CNN accelerators. In Sec. 3, we introduce the NASB
strategy and present the architecture of the CNN we implement. Section 4 intro-
duces a novel hardware structure and the way we implement the network on FPGA.
Section 5 provides an evaluation of the performance this design is able to achieve.
Section 6 concludes the paper.

2. Related Work

A large number of CNN accelerators have been designed to have better perfor-
mance using different technologies. Published work!™!® uses a systolic array archi-
tecture to improve the efficiency of DSPs and save LUTs. Some researchers!? take
advantage of FPGA dynamic reconfigurability to design circuits fully automati-
cally to get better performance. Other research??2! compresses the network using
pruning to reduce the size of the model and have a better power efficiency. How-
ever, all these publications do not use model quantization methods but focus on
other approaches to reduce model size. In contrast, instead of reducing model size,
other published work?? proposes using larger FPGAs in the cloud instead of local
FPGAs for deploying CNNs because of their larger resource availability. However,
this approach increases the inference latency significantly due to the delay in edge-
to-cloud communication.

Binarization, as an important method for model quantization, is also widely used
in the design of CNNs. A lot of FPGA designs with binary neural networks have
appeared in recent years. YodaNN?? uses binary weights to reduce the complexity
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of the computing unit and the bandwidth to transfer the weights to external mem-
ory. This means binary weights can reduce the complexity of the circuit, thereby
reducing power consumption and area. FP-BNN2* removes the bottleneck involving
multipliers by bit-level XNOR and shifting operations, and the bottleneck of param-
eter access by data quantization and optimized on-chip storage. Other research?®
proposes a scalable fully pipelined BNN architecture, which targets maximizing
throughput and reducing energy and resource efficiency in large FPGAs, in addition
to proposing a methodology to explore design space to ensure optimal configuration.
However, these efforts only focus on the performance of hardware implementation,
they do not work on increasing the accuracy of the models.

The related work shows that the trade-off between accuracy, compute time and
hardware utilization is still an open research topic that has not yet been addressed
by literature. In this paper, we propose using hardware-optimized models using
architecture search methods in combination with advanced binarization techniques
to minimize model size.

3. NASB-CNN Model

In this section, we introduce the NASB strategy and we present the NASB-ResNet18
model architecture we implement in this paper.

3.1. NASB strategy

The NASB strategy is implemented to apply network architecture search to binary
CNNs.!2 The NASB strategy consists of three main stages: the searching stage,
pretraining stage and finetuning stage.

In the searching stage, we search for an optimized architecture of BNN on a
small dataset. A NASB-convolutional cell is applied as an optimized architecture for
binarizing its full precision counterpart. The connections of the NASB-convolutional
cell in this stage are shown in Fig. 1. In Fig. 1(a), the left part is the backbone of

(a) (b) (c)

Fig. 1. Connections of the NASB-convolutional cell.
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Table 1. Operations for the NASB-
convolutional cell.

Operation Description

op0 Zero

opl 3x3 average pooling
op2 3% 3 max pooling

op3 Identity

op4 1x1 convolution

opb 3 %3 convolution

op6 5% 5 convolution

op7 1x1 dilated convolution
op8 3x3 dilated convolution
op9 5x5 dilated convolution

the NASB-convolutional cell, and the right part is a NAS-convolutional cell. The
beonv in the figure represents a binary convolutional layer and the ops represents
the operations that can be used for the architecture search. Figure 1(b) shows the
backbone and the NAS-convolutional cell after being searched. Figure 1(c) is the
final architecture of the whole NASB-convolutional cell using the NASB strategy.
The operations for the NASB-convolutional cell are listed in Table 1.

In the pretraining stage, we first use the architecture that is defined in the
searching stage to create a full-precision CNN model by replacing the bconv layers
with full-precision layers. Then, we train the full-precision CNN model using the
target dataset.

Finally, in the finetuning stage, we binarize the full precision CNN model to a
BNN model and train it on the target dataset. More information about the details
of the NASB strategy can be found in the literature.'?

3.2. Model architecture

In this paper, we use the NASB strategy to search-the architecture and train a
binary ResNet18.!2 The final architecture of the NASB-ResNet18 model is shown
in Fig. 2. The black-colored blocks are part of the original ResNet18, which is
the backbone of the NASB-convolutional cell, while the gray-colored blocks are the
branches we add to ResNet18 using the NASB strategy. The Bconv layer is a binary
convolutional layer. We do Sign activation before every binary convolutional layer,
and each binary convolutional layer is followed by a ReLU layer and a batch normal-
ization layer. Every max-pooling layer is followed by a batch normalization layer.
As this network is a binary ResNet18, the weights in binary convolutional layers
are 2-bit (bipolar: —1 or 1) and the activations are 1-bit. As shown in Fig. 2, we
can see that the non-binary parameters include the weight and bias in the batch-
normalization layers, the weight of the convolutional operations in downsample
layers and the weight of the fully connected layers. We use the rounding method
to quantize the decimal part of the non-binary parameters into 16 bits®?® and the
input images into 8 bits. According to the experimental results and our experience,
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Fig. 2. The architecture of the NASB-ResNet18 model.

the bandwidth of each output feature can be set to 26 bits, and this does not lead
to any accuracy loss. The Top-1 accuracy of the NASB-ResNet18 in this design on
the ImageNet dataset is 60.5%.

4. Hardware Implementation

In this section, we present the detailed hardware structure of each component.
We introduce a hardware structure that ensures a trade-off between the hardware
utilization and the compute time.

4.1. Overall hardware structure on OpenCAPI

In this paper, we integrate our design using the OpenCAPI interface, as shown in
Fig. 3. OpenCAPI provides an easy controlling platform with fast data transfer
from the host server to the accelerator. We transfer the parameters and the images
from the host side to the hardware side through a 512-bit AXI bus. A serializer and
a decoder will send these parameters to different layers. Then these parameters will
be stored on the chip to be used by the CNN following the order of kernel, input
channel and output channel.
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OC/AXI Bridge mode

Software Program Hardware Action

ofg NASB-ResNet18
Process
'mein : < AXWTie Serializer
A TLx
(?Snap //§ \\ DLx I—"—"‘i
library :\ OpenCAPI i data | Decoder
N /] jbridge; <AXI4-MM
snap ;

Software on Host Server Acceleration on FPGA

Fig. 3. OpenCAPI hardware architecture.

4.2. Hardware structure of NASB-ResNet18

To achieve high accuracy, CNNs are usually very deep and have a large number
of parameters. In the binary CNN, not all layers are binarized. The main layers
that are usually not binarized are the batch-normalization layers and downsample
layers, among others. This way, the accuracy can be kept at a high enough level.
However, this also results in high hardware utilization for the fully pipelined and
fully parallel structure of the network, also due to the fact that these fully parallel
structures contain many channels. To ensure a trade-off between the compute time
and the hardware utilization, we propose a layer pipeline and semi-parallel channel
hardware structure. In general, this represents a pipeline between layers, so this
structure makes efficient use of FPGA resources and results in a compute time that
is much shorter compared to CPUs. Apart from this, the amount of parallelism
between output layers can be decided depending on the available hardware resources
on the FPGA.

To better illustrate the trade-off this hardware structure ensures between hard-
ware utilization and compute time, we discuss our data flow design of each layer.
For all the layers in this network, the data flow between layers is based on the
row-channel structure, which means the pixels are scanned in row-by-row for all
different channels in that given row. Figure 4 presents the row-channel data struc-
ture. This data structure allows the hardware to start to operate on the next layer
before the former layer fully finishes, although the operation of the output channels
is not fully parallel.

Data 0-00-0 BE-B 0n-0--00-0 B0-0 -0

Rowl Ruvl Row! Row2 Row2 Row3 Row3 Row3

Channell Channel2 ChanneiN Channell Channel2 ChannelN Channell Channel2 ChanneiN

Fig. 4. Row-channel data structure.
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Given this data structure, we can introduce the hardware structure that is able
to trade off hardware utilization and compute time. The design of Layerl shown in
Fig. 2 can be regarded as the most important part of the network, which applies
a parallel strategy for output channels to reduce the time gap of transferring the
output results between different layers. Following the row-channel data structure, we
can see that the time that the input image needs to transfer its data is 224 x 224 x 3
clock cycles, since the image size is 224 x 224 with 3 channels. Furthermore, the time
that the image need to transfer its data after the 7 x 7 Convl convolutional block of
Layerl is 112 x 112 x 64 clock cycles. This means that there is a big increase in the
transfer time. However, after the 3 x 3 Maxpooll Layer, the transfer time decreases
to 56 x 56 x 64 clock cycles. The time to transfer the results of the Maxpooll
Layer is a quarter of the time to receive the results from the Convl Layer, which is
also the time to operate the max-pooling operations in the Maxpooll Layer. If we
fully follow the row-channel data structure, there will be a lot of time wasted while
transferring data. To solve this problem, we can use multiple threads to operate
the 7 x 7 Convl Convolutional Layer concurrently. The remaining time after the
Maxpooll Layer of one thread can be used to transfer the results of the other
threads. When we use two threads, each thread operates on 32 output channels,
and still half of the transfer time for the results after the Maxpooll Layer is vacant.
When we use four threads, the time for the results after the Maxpooll Layer fits the
operation time well, so there is no time gap to transfer the output of the Maxpooll
Layer. When we use eight threads or more, not only is there no time gap, but also
we need to use multiple wires to transfer the results to the next stage, which will
also cause higher parallelism for the operations in the following groups. The timing
diagram of the output after Maxpooll in Layerl of one thread to eight threads is
shown in Fig. 5.

However, when we use multiple threads, the data flow becomes faster, and
the hardware utilization will increase. We will analyze the hardware utilization
difference while using different threads later in the paper. The number of threads

to implement the network can be decided by the available resources on the target
FPGA.

One Thread ( Ist Row 56x64 | Blank X Blank X Blank X 2nd Row 56 X 64 >
Two Threads L Ist Row 56><641 Blank \ 2nd Row 56X 64 X Blank x 3rd Row 56 X 64 >

Four Threads L Ist Row 56xm2nd Row 56 X 64 X 3rd Row 56 X 64 X 4th Row 56 X 64 X 5th Row 56 X 64

( Ist Rowl {2nd Row1| 3rd RowI | 4th Row1 | 5th Row! | 6th Rowl \ 7th Row| 8th Row1 | 9th Row1 | 10th Row|
56x32 56x32 56x32 56x32 56x32 56%32 5632 56x32 56%32 56x32

Ist Row2 {2nd Row2|3rd Row2 | 4th Row2 \[5th Row2 | 6th Row2 \ 7th Row2 | 8th Row2 | 9th Row2 \|10th Row?2
56x32 56%32 56%32 56x32 56x32 56%32 56x32 56%32 56%32 56x32

Fig. 5. The timing diagram of the output after Maxpooll with different threads.

Eight Threads
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Fig. 6. Structure of Layerl.

When operating the Convl Layer, because this convolution is a 7x 7 convolution,
we use FIFOs to store the data of the first six rows, and when the seventh row flows
in, the convolutional operation can start. The usage of the FIFOs for the following
layers all follow the same rule. The results of the multiple threads are sent to
the Maxpooll Layer simultaneously. There are also multiple threads for the max-
pooling layer to handle the data from the Convl Layer. Then we store the results
of one row of the multiple threads in a data buffer and then transfer the results
to the next stage using the row-channel data structure. The structure of Layerl is
shown in Fig. 6.

The data structure in Group0 in Fig. 2 also follows the row-channel data struc-
ture. The convolutional layers in Group0 follow the layer-pipelined and fully parallel
output channel hardware structure. For 3 x 3 binary convolutional layers, we store
the first two rows of data with all input channels in FIFOs after doing the Sign
operation. We use this data to calculate the results of the first row of the first
input feature map. After this, we store the first row of results in a RAM. Then we
calculate the results of the same row of the second input feature map and add the
results of the first feature map simultaneously. With the same strategy, when we
finish calculating all input feature maps, we get the final results of the first row
of the output feature map. All the output channels are fully parallel when doing
the convolution operation, which means that we get the results of all output maps
simultaneously. We store the results of one row for all output channels in a buffer
and then send it to the next stage to do ReLU and batch-normalization follow-
ing the row-channel data structure. All the multiplications in binary convolutional
layers are based on Multiplexers instead of DSPs to save hardware resources. This
convolution operation is shown in Fig. 7. For the Downsample Layers, the procedure
is almost the same as the binary convolutional layers. However, the Downsample
Layers use DSPs to do multiplication. For max-pooling layers, we also use FIFOs
to store the first two rows, and we use this data to find the max and get the results
one by one.
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Convolution_Block
[ Buffer Weight = Buffer_Output

Convolutional Kernel :D [m] pIT_x]ci'l' oa Ecii O DE = [m]
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Fig. 7. Hardware structure of binary convolutional layers in groups.

From Fig. 2, we can see that there are multiple branches in this group that
need to be added together. We use a pipeline structure and add these branches
in a streamed pipelined fashion. We store the first several rows in FIFOs if they
need to wait for other operations. We get them out from FIFOs when the latest
operation of this node begins. We take Node 02 of Group0 for example. When the
input data of Group0 comes, it goes through both the first 3 x 3 convolutional
operation and the 3 x 3 max-pooling operation. At the same time, the first five
rows of the input are stored in a FIFO prepared to do the 1 x 1 convolution and
be added to Node 02. When we get the result of Node 01, we operate the 3 x 3
convolutional operation and store the first two lines of the result into another group
of FIFOs. By the time the first result of the second convolutional layer comes out,
the data input of this group is streamed to the sixth row, and the output of Node
01 is streamed to the third row. Then we get the data out from the first group of
FIFOs and do the 1 x 1 convolution. At the same time, we get out the data from the
second group of FIFOs and then add all these three branches together. With this
technology, multiple branches of data can be added simultaneously. The structure
of Group0 is shown in Fig. 8. The maxpool block shares the same input buffer with

Group 0

o_Layerl

— BconvO Block Group 01 { Bconvl_Block ]
Maxpool Block l Buffer GO1 }

I 4 Conv_Block } % Group 02 } -------- { Bconv2_BIock]
I

e Buffer_G02

{ Group 03

Bconv3 Block

Weight i -

o GroupO

Group 04

Fig. 8. Structure of Group0.
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the convolutional block and has its own output buffer. The Buffer_Conv, Buffer_G01
and Buffer_G02 are the FIFOs to store the data to wait to add on other branches.
The Group points are combined with adders to add the data from each branch. The
structure of Groupl-3 is similar to Group0, so we will not go into details here.

After Group0-3, an average pooling layer is used consisting of adders and a
divider. This layer receives an image of size 7 x 7. We add the 7 data points of
each row first and store them in a FIFO. After that, we add the 7 addition outputs
together. Then we use a divider to get the average. In the fully connected layer,
1000 output channels operate in parallel. The result of the 1000 outputs will be
stored in RAM. A comparator compares the 1000 results, and the number of the
largest one is marked as the final result.

4.3. Hardware utilization analysis

After introducing the implementation of the network, we analyze the hardware
utilization of the RAMs and DSPs of the whole network, which increases while
increasing the number of threads from one to eight.

DSPs are used in the convolutional layer in Layerl, the downsample layers in
Group0-3, and the fully connected layer. The usage of DSPs depends on the degree
of the parallelism of each layer. We can use Eq. (1) to describe the usage of DSPs.

Npsp = mNpsp_r,1 + nNpsp_g + nNpsp_r- (1)

In this equation, Npgp is the number of all the DSP resources used in this
network. Npgp_z,1 is the number of the DSPs used when the degree of the output
channel parallelism is 1 in Layerl. Npsp_¢ and Npgp_p are the numbers of the DSPs
used when the degree of the input channel parallelism is 1 in the Group0-3 and the
fully connected layer. In the equation, m represents the degree of parallelism of the
output channels in Layerl, while n represents the degree of parallelism of the input
channels in Group0-3 and the fully connected layer.

As we introduced in Sec. 4.2, the input channels of the convolutional layer in
Layerl and the output channels of the convolutional layers in Group0-3 are fully
parallel no matter how many threads we use. From one thread to four threads, only
the degree of the output channel parallelism in Layerl increases, while the degree
of the input channel parallelism stays the same in the layers of Group0-3 and the
fully connected layer. This means the number m increases from 1 to 4 while n
always stays 1 when the threads increase from 1 to 4. However, when the number
of threads increases from 4 to 8 or more, not only the degree of the output channel
parallelism in Layer1 but also the degree of the parallelism in Groups and the fully
connected layer increases. Therefore, m is 8, and n is 2 when using eight threads.
Every time the threads double after 8, m and n both double. From this, we can see
that from using one thread to four threads, only m increases, so the increase of the
DSPs remains low. When using eight threads or more, the total number of DSPs
doubles.
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The usage of RAMs in this paper is based on the buffers to store parameters,
the buffers to store the input image, and the buffers to store intermediate results
in Layerl and in Group0-3. The buffers in Layerl can be divided into the buffers
preparing for the convolutional and max pooling operation and the buffers for the
results. The buffers in Group0-3 include not only the former three kinds of buffers
but also the buffers preparing for the downsample layer and the buffers to store the
results to wait for the other branches. Equations (2) to (4) describe the usage of
the buffers.

Nput = Nug-P + Npug.r + Nug.L1 + NBug.G, (2)
Nug_r1 = Neui.Li.c + Nufi.p1.m + NBufi_L1_R» (3)
Npufi.c = Nug.c.c + Neui.c.m + NBu.c.D + NBug.c.B + Npug.c.r- (4)

When the threads increase from 1 to 2, only the number of the buffers for the
Convl Layer, the Maxpooll Layer and the results in Layerl increase, while others
stay the same. When the threads increase from 2 to 4, not only the buffers in
Layer1 increase but also the buffers for the first binary convolutional layers and the
downsample layers in Groupl-3 increase. In Groupl-3, the number of the output
channels in the first binary convolutional layer and the downsample layer is twice
that of the input channels, as shown in Fig. 2. In this way, the time consumption to
transfer the output data to the next stage is twice the time to do the convolution
operation, which is the same as the time that it takes for the input features to
flow in. Double buffers are needed to store these results to prevent the data in the
output buffers from being refreshed by the next row before it can be transferred
to the next stage. When the threads increase to 8 or more, one buffer needs to
be divided into two buffers in Layerl and Group0-3, which may cause the RAM
utilization to increase after synthesis. The buffers mentioned in this section are
usually synthesized into BRAMs. However, when the buffers are very small, the
EDA tools may synthesize them into LUTRAMs instead of BRAMs.

5. Experimental Results

In this section, we show the hardware implementation results of the NASB-
ResNet18. We also present the trade-off between hardware utilization and per-
formance. Finally, we compare our results with other state-of-the-art networks.

5.1. Results of NASB-ResNet18

The experimental setup used in this paper to perform the measurements consists of
an Inspur FP5290G2 system with a dual-socket POWER9 Lagrange 22-core CPU
and OpenCAPI interface to an Aphadata ADM-PCIE-9H7 FPGA board with a
Xilinx XCVU3T7P chip. Our network design runs at a 200 MHz clock frequency. We
use the ImageNet dataset for the inference measurements in this section.
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Fig. 9. The latency and throughput for different thread counts.

As discussed in Sec. 3, the Top-1 accuracy of this design on the ImageNet
dataset can achieve 60.5%, which is almost as high as the accuracy of the full
precision ResNet18.

In this paper, we investigate different levels of parallelization to implement the
network, using one, two, four and eight threads for Layerl, as illustrated in Sec. 4.2.
The latency dependence on parallelization is shown in Fig. 9(a), which is 6.33, 3.18,
1.87 and 1.12 ms for 1, 2, 4 and 8, respectively, with a 200 MHz clock frequency for
each ImageNet image. In addition, following the throughput calculation methods
in Ref. 27, the throughput of the four methods is 0.71, 1.42, 2.79 and 4.65 TOPS
(tera operations per second), as shown in Fig. 9(b). As shown in Fig. 9, the latency
decreases by about 50%, and the throughput almost doubles with every doubling
of the thread count.

The hardware utilization of the four different methods is shown in Fig. 10.
The dashed horizontal line highlighted with the label FPGA represents the avail-
able resources on the target FPGA. There is a significant increase in LUTs from
445K to 1318 K as we scale from one thread to eight threads. The same is true

it LuT et LUTRAM
T T T H
FPGA: 1303680 1317760 :

OpenCAPl  One Thread Two Threads Four Threads Eight Threads OpenCAPl  One Thread Two Threads Four Threads Eight Threads
(a) LUT Utilization (b) LUTRAM Utilization

Fig. 10. Hardware utilization of FPGA for the full design.
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Fig. 10. (Continued)

for LUTRAMs as they scale from 57K to 159K, though they do not represent
a resource bottleneck for the target FPGA. 1600 LUTRAMSs are used to store
parameters, and the rest are used in the downsample layers. For all thread counts,
44 BRAMs are used to load images, and 1072 BRAMs to store parameters, while
66.5, 69.5, 105.5 and 255 BRAMs are used to store intermediate results for Layerl
and Group0-3, respectively. For DSPs, as illustrated in Sec. 4.3, the results show
that the number of Npgp_r; is 148 DSP blocks, Npsp_¢ is 1353 and Npsp_r is 2000.
With this data and the data shown in Fig. 10(d), we can see that the usage of the
DSPs meets Eq. (1). Meanwhile, the OpenCAPI interface consumes 64,260 LUTs,
66,233 FF's and 250.5 BRAMs.

5.2. Hardware utilization versus performance tradeoffs

Using different number of threads to implement NASB-ResNet18 will impact the
latency and throughput performance results as well as the hardware utilization

14,8 10° Throughput & LUT/LUTRAM Utilization ~ . . Thmuthut & ERAM/D_SP Uﬂﬂfaﬁon
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(a) The throughput and LUT/LUTRAM uti- (b) The throughput and BRAM/DSP utiliza-
lization tion

Fig. 11. The throughput and hardware utilization for different threads.
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numbers. Figure 11 shows the throughput versus hardware utilization for the four
different thread number cases. The measurements on each line represent the results
of one thread, two threads, four threads and eight threads, respectively. Figure
11(a) shows the hardware utilization increase for the LUT and LUTRAM while
Fig. 11(b) shows the hardware utilization increase for the DSP and BRAM for
different throughput values. The figures show that by increasing the number of
threads from one to two, the throughput increases by a factor of 2, at the cost
of marginal increases in LUT utilization (0.3%), DSP utilization (4.2%), BRAM
utilization (0.3%) while the LUTRAM utilization stays the same. By increasing
the number of threads from two to four, the throughput increases by an additional
96.5%, while the LUT utilization increases by 48.0%, the LUTRAM utilization
increases by 40.4%, the DSP utilization increases by 8.1% and the BRAM utiliza-
tion increases by 3.0%. Going from four threads to eight threads, the throughput
increases by 66.6%, while the LUT utilization increases by 99.3%, the LUTRAM
utilization increases by 98.0%, the DSP utilization increases by 2 times and the
BRAM utilization increases by 12.2%.

This analysis shows that using two threads to implement the model has lim-
ited impact on hardware resources compared to one thread, but results in doubling
the throughput. This indicates that using two threads for input channels in Layerl
is more optimal than one thread for this fully pipelined and semi-parallel channel
hardware structure. In addition, we can get further benefit from implementing mul-
tiple threads for Layer1l. However, the increase in hardware utilization between eight
threads and four threads is more pronounced than between four threads and two
threads, while the increase in throughput between eight threads and four threads is
less pronounced than between four threads and two threads. However, the through-
put increase between eight threads and four threads is still large. So the number of
threads to use can be decided by the performance requirement and the hardware
resources available on the target FPGA.

5.3. Comparison with other solutions

We compare our results with other state-of-the-arts hardware implementations of
ResNet18. Table 2 shows the comparison of performances between published results
and this paper. Compared to Yang et al.?® our implementation with two threads
has one-third the latency, while our implementation only uses about two times
more hardware resources. Although Yang et al.?® achieve higher model accuracy,
this is done using 8-bit data precision (instead of 1 in our case). Further measure-
ments show that our method can achieve an accuracy of up to 67.4% using 8-bit
data precision (at the expense of more hardware utilization). Our highest through-
put is 7.3x higher than the result of 383.05 GOPS in Kala et al.* because we
pipeline between layers rather than pipeline only inside layers. At the same time,
our throughput using similar hardware resources is 3.7x higher than the throughput
in Kala et al.2% In comparison with Baskin et al.*® we achieved up to 14.4x lower
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Table 2.  Comparison with other ResNet18 hardware implementations.

Reference Yang et al.?®  Kala and Nalesh?® Baskin et al.3°  Qu et al.3!
Dataset ImageNet — ImageNet —
Data precision (bit) 8 2 1 16
Accuracy 66.78% — 57.5% -
FPGA platform ZCU102 Virtex Stratix KCU1500
TXCTVX690T 5SGSDS8
Frequency (MHz) 166 200 105 240
Latency (ms) 9 — 16.1 14.78
Throughput (TOPS) - 0.38 — 2.44
LUT 204496 468000 596081 212455
DSP 517 1436 — 5367
BRAM 739 1465 30854 Kbits 1860
Reference This work This work This work This work
Thread 1 2 4 8
Dataset ImageNet ImageNet ImageNet ImageNet
Data precision (bit) 1 1 1 1
Accuracy 60.5% 60.5% 60.5% 60.5%
FPGA platform Aphadata Aphadata Aphadata Aphadata
ADM-PCIE-9H ADM-PCIE-9H ADM-PCIE-9H ADM-PCIE-9H
Frequency (MHz) 200 200 200 200
Latency (ms) 6.33 3.18 1.87 1.12
Throughput (TOPS) 0.71 1.42 2.79 4.65
LUT 445086 446603 661102 1317760
DSP ) 3501 3648 3942 7784
BRAM 1182.5 1185.5 1221.5 1371

latency because of the row-channel data structure we proposed and the output
channel parallelization instead of the input channel parallelization they use, which
leads to a higher degree of parallelism. Our accuracy is also 3% higher than their
accuracy with the same bit width, which shows that the NASB strategy results
in increasing accuracy. Our implementation with four threads has a 16.3% higher
throughput and an eight times lower latency than Qu et al®! at the expense of
using more LUTSs but fewer DSPs and BRAMs. Compared to these solutions, our
proposed method also demonstrates better flexibility for the trade-off of latency or
throughput and hardware utilization.

6. Conclusion

In this paper, we present a low latency and high accuracy hardware implementation
for inference on a binarized ResNet18 network on FPGAs. The weights of the con-
volutional kernels of the main branches are binary, and a neural architecture search
strategy is applied to improve the accuracy of the network. A pipeline structure
is used between layers to enable parallel processing of multiple layers. A parallel
strategy is applied to reduce the transmission time difference of the output results
of different layers. In addition, the use of a row-channel data, structure prevents the
need to fully parallelize the layers for a pipeline between layers, which can achieve a
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trade-off between the latency and hardware utilization. The implementation lever-
ages the OpenCAPI data interface on a POWERSY system to an Alphadata 9H7
FPGA. For the ImageNet dataset, the inference latency varies from 1.12 to 6.33
ms, and the throughput varies from 4.56 to 0.71 TOPS based on different par-
allelization strategies, with a Top-1 accuracy of 60.5% and a clock frequency of
200 MHz. We achieve up to 8x reduction in latency and a 1.9x improvement in
throughput compared to the best previous work. The methods proposed in this
paper can also be used to improve the performance of other convolutional neural

networks. The code for our implementation is open-source and publicly available
on GitHub at https://github.com/MFJI/NASBRESNET.
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