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Abstract—This paper presents a Soar-based system for social
navigation in mobile robots, where the Soar cognitive architecture
serves as a high-level controller to dynamically adapt the navi-
gation behavior of a lower-level motion controller based on en-
vironmental and social cues. The navigation behavior configured
in this work is the maximum allowed speed, enabling safe and
socially appropriate navigation around humans. Soar’s symbolic
reasoning and procedural logic provide a scalable and flexible
framework for high-level control in complex environments.

The research focuses on human-following within social nav-
igation, with experimental results demonstrating the system’s
effectiveness and adherence to social norms. However, limitations
in navigation performance and simulation realism highlight
opportunities for future work to enhance Soar’s application in
complex, real-world scenarios.

Index Terms—Soar, Cognitive Architecture, Social Navigation,
High-level control

I. INTRODUCTION

In robotics, there is a growing need for systems that can
operate effectively in complex, dynamic environments [1].
These environments require robots to make decisions and
adjust their actions in real-time to complete specific tasks.
The complexity in these environments typically arises from
the varied and dynamic nature of the surroundings, making
modeling the environment and decision-making challenging.

One domain in which robots must handle such complex
environments is social navigation, which involves moving
through human-populated environments while adhering to
social norms [1]. The complexity of social navigation stems
from the inherent variability of human behavior. Unlike static
obstacles, humans exhibit diverse, context-dependent move-
ments influenced by individual goals, cultural norms, and
social interactions [1]. Furthermore, these environments are
inherently dynamic, with constantly changing interactions and
spatial configurations. This combination of variability and
rapid change poses significant challenges for robotic systems
attempting to navigate effectively while respecting social
norms.

To effectively operate in such environments, a robot must
possess a decision-making system capable of interpreting

complex social cues. It must then adapt its behavior in real-
time, balancing task objectives with the need to maintain
safety, comfort, and efficiency in human-robot interactions.
Without this ability to dynamically model and respond to its
surroundings, a robot’s actions risk being intrusive, inefficient,
or even hazardous in human-populated spaces.

Given the challenges posed by such environments in social
navigation, this paper explores the Soar Cognitive Architecture
as a potential decision-making system capable of addressing
these complexities. The Soar cognitive architecture is a general
cognitive framework designed to model human-like decision-
making [2]. It aims to model human cognition across various
tasks, integrating modules that model different cognitive pro-
cesses, such as short-term memory, inference, planning, and
decision-making [2]. It operates by representing knowledge
through symbolic logic and performing reasoning over this
knowledge using its decision cycle algorithm, which iteratively
updates the system’s state and selects the most appropriate
actions.

In robotics, one approach to decision-making in complex
and dynamic environments is to predefine specific actions and
behaviors for various anticipated scenarios within a system.
This system is then refined over time, gradually expanding
its ability to handle a wider range of situations and select
appropriate actions. However, as environments become more
complex and unpredictable, managing such a decision-making
system can become increasingly difficult. Adding new rules
can unexpectedly introduce contradictions, ambiguities, or
unintended interactions, leading to failures in reasoning or
inconsistencies in behavior. An example of this challenge is
the state explosion encountered by finite state machines as they
scale [3].

To address these challenges, Soar provides a structured
framework for organizing knowledge about both the environ-
ment and possible actions [2]. By utilizing symbolic logic in an
ontology, Soar represents information about the environment’s
state and uses procedural rules to model a wide range of
potential actions. This approach enhances the management
and scalability of predefined behaviors. An example of this



will be shown in the discussion. Soar’s structured represen-
tation makes it a promising candidate for decision-making in
complex and dynamic environments, such as social navigation,
where the robot must handle a diverse range of scenarios, as
demonstrated in this paper.

Given this potential, the overarching goal of this research
is to explore how the Soar cognitive architecture can be
applied to social navigation for robots. Specifically, this work
addresses the research question: How can the Soar cognitive
architecture be utilized to perform social navigation with a
mobile robot? To narrow the scope, the focus is on a particular
task within social navigation—human-following. The primary
objective is to examine how Soar can be leveraged to manage
the complexities and dynamics of such a social environment.
Moreover, experiments will be conducted to analyze the per-
formance of the proposed system and approach.

This research focuses on selecting appropriate robot speeds
for various social contexts in a human-following task. Social
navigation scenarios, such as navigating crowded areas or
maintaining a specific distance, require varying speeds to meet
social expectations [4] [5]. Soar is used as a decision-maker
to manage and select the appropriate speed in these situations,
organizing relevant information and evaluating actions based
on contextual factors. The action selected by Soar adjusts the
maximum allowable speed, which is then reconfigured in a
lower-level motion controller. This approach is referred to as
high-level control.

This paper makes two key contributions. First, it develops
a Soar-based system that encodes social norms, specifically
socially acceptable velocities, and uses these norms to deter-
mine the appropriate behavior for a given situation. Soar acts
as a high-level controller, adjusting a lower-level controller
to execute the selected behavior. Second, the paper evaluates
the system’s performance in a simulation environment for a
human-following task. The results demonstrate that using Soar
as a high-level controller enhances both task performance—by
improving the robot’s ability to stay on target—and social
appropriateness—by adjusting the robot’s speed to fit the
context—compared to baseline systems that do not utilize
Soar.

The paper is structured as follows: the background section
explores ”high-level control” and relevant Soar literature. This
is followed by a discussion of the Soar-based system design
and implementation, then the experimental setup and results.
Finally, the paper concludes with a reflection on the findings
and approach.

II. BACKGROUND

This section provides background on the Soar cognitive
architecture and its role in decision-making for robotics. It
outlines Soar’s main functionalities, past applications in robot
navigation, and its potential use in high-level control for this
work.

A. Soar cognitive architecture
The Soar cognitive architecture is a framework for intel-

ligent decision-making, integrating modules such as short-

term and long-term memory, learning mechanisms, and in-
terfaces for communication [2]. Its core component, called
symbolic working memory, represents the agent’s situational
awareness as a symbolic graph, capturing objects, properties,
and relations. This memory contains perceptual inputs, goals,
reasoning outcomes, and interactions with other Soar modules
not utilized in this paper.

Knowledge in Soar is represented in working memory and
procedural memory. Working memory provides a dynamic,
real-time model of the environment, guiding decisions by
maintaining the agent’s current understanding of its state.
Procedural knowledge is encoded as operators in if-then rules,
representing actions that can be taken internally (e.g., memory
retrieval, goal-setting) or externally (e.g., motor commands).
Preferences stored in preferential memory rank operators
based on their suitability, enabling the system to select one
when multiple operators are applicable.

Soar’s reasoning process is governed by its decision cycle,
which iteratively updates working memory and selects actions.
In each cycle, operators are proposed based on relevance to
the agent’s goals, evaluated using preferences of operators, and
applied to modify the state or perform an external action. This
real-time cycle allows Soar to dynamically perform actions
based on new information, supporting flexible and adaptive
behavior [6] [7].

B. Soar in Robotics

This research seeks to improve upon previous work in
which Soar is applied in robotics. A notable example is the
development of a robotic system that uses the Soar cognitive
architecture to control unmanned vehicles, as described in
Hanford et al. [6]. This project spans four papers [6], [8], [9]
and [10], along with related work involving a hexapod robot
navigating rough terrain [11] [12] and the use of Soar as a
controller of a local motion controller [13], [14].

In these papers, the Soar system is integrated into a robot,
referred to as the ”Cognitive Robotic System” (CRS), which
is used to navigate using GPS while avoiding obstacles. Soar
acts as the high-level decision-maker, determining actions
such as the direction to move based on procedural rules.
The CRS obtains information about the environment through
”specialized algorithms” (as defined by Kurup et al. [15]) for
state estimation and perception, with later enhancements such
as improved perception through occupancy grid mapping [8]
and additional sensors [9]. Another related project explored
implementing Soar on a hexapod robot, providing better
mobility for navigating uneven terrain. Here, Soar controlled
the robot’s gait based on sensor input, enabling it to reach its
target while avoiding obstacles [11], [12].

In a similar implementation, Dang et al. [13] [14] introduced
a Soar-based system for a human-following robot. The system
integrates an obstacle avoidance algorithm, the dynamic win-
dow approach (DWA), to control a mobile robot during human-
following tasks. Soar analyzes the robot’s current situation
and decides on movements such as turning left or right,
while the DWA computes optimal velocities for the robot’s



motors. The system’s effectiveness was evaluated in three
scenarios: following a target in a corridor, avoiding obstacles
while pursuing the target, and adapting to target loss at an
intersection.

C. High-level control

Dang et al. [13], [14] present an approach that uses Soar as
a high-level controller to manage a lower-level local motion
controller, effectively implementing a ”control of control”
framework. This methodology leverages a specialized algo-
rithm (the local motion controller) while delegating decision-
making responsibilities to a higher-level process. Specifically,
in Dang et al.’s work, Soar oversees the local motion controller
(DWA), determining whether the robot should turn left, right,
or move straight based on the current situation.

This concept of high-level control extends beyond robotics
and appears in other disciplines. In neuroscience, Eppinger
et al. [16] describe a similar mechanism called metacontrol,
which involves monitoring and adjusting control parameters
based on task goals and internal or external constraints, as
illustrated in Figure 1. Likewise, Pler et al. [17] discuss meta-
control in autonomous systems, where an additional control
layer manipulates and combines regular controllers.

Fig. 1. Components of meta-control. Meta-control involves the monitoring
of control parameters, behavioral outcomes and/or environmental features to
guide the regulation of control processes (the target of meta-control) in the
service of some objective function. A meta-control itself may be guided by
the regulation of another meta-control process. Description quoted and figure
adapted from Eppinger et al. [16].

To avoid confusion with terminology from other fields,
this paper adopts the term high-level control to describe
the approach used by Dang et al. Here, high-level control
is defined as a framework in which a supervisory process
oversees and manages a subordinate process. In both Dang et
al.’s work and the system presented in this paper, the lower-
level process is a local motion controller, while the higher-level
control is implemented using Soar. In this work, Soar makes
high-level decisions while leveraging its symbolic working

memory to maintain situational awareness, enabling effective
and contextually appropriate robot behavior.

D. Relevance to Work

This paper builds on the high-level control approach from
Dang et al. [14]. While their system uses Soar to issue
explicit navigation commands (e.g., turning left or right), this
work integrates Nav2, a more elaborate navigation framework.
Nav2 provides a flexible environmental representation through
costmaps and can plan entire paths executed by a local motion
controller [18].

A key limitation of Dang et al.’s approach is its inability
to consider past actions or anticipate future outcomes, leading
to less fluid movement. By leveraging Nav2’s planning and
execution capabilities, this work addresses these shortcomings
while ensuring navigation aligns with social norms. Instead of
using Soar for low-level directional control, it functions as a
high-level supervisor, adjusting Nav2’s local motion planner
to regulate velocity based on social context. Specifically, Soar
configures the maximum velocity of Nav2’s controller to pro-
mote safe and comfortable movement in human environments.

III. SOCIAL NAVIGATION USING SOAR

The high-level control system presented in this paper fo-
cuses on context-based navigation, meaning that Soar eval-
uates the robot’s current situation to determine the most
appropriate action.

The rationale for adopting a high-level control approach lies
in its ability to address limitations in existing social navigation
robotic systems [1]. While systems such as motion controllers
excel at solving specific problems, they may not be optimally
configured for varying social contexts. For instance, a robot’s
maximum speed should adapt to the environment—slowing
down in crowded areas and speeding up in open spaces. High-
level control leverages the capabilities of these specialized sys-
tems while dynamically adjusting parameters (like maximum
speed) based on the situation.

This approach improves upon the method used in Dang et
al. [14], where the high-level control system directly decided
specific motion actions (e.g., turning left or right). Such
direct intervention in the lower-level controller reduced its
effectiveness, preventing smooth and continuous movement. In
contrast, the high-level control system in this work focuses on
adaptive reconfiguration, ensuring that the lower-level system
performs optimally across diverse scenarios.

This research focuses on a key aspect of social navigation:
selecting appropriate speeds based on social context, which
is essential for both safety and perceived comfort [5]. There
are various social expectations and norms that influence how
robots should move in different contexts. Consider, for exam-
ple, how humans are often uncomfortable when robots travel
at speeds around 1 m/s [4]. Paradoxically, this is also the
speed at which humans tend to walk comfortably [19]. In a
human-following task, this discomfort can lead to frustration
when the robot moves too slowly, forcing the human to either
slow down or wait for the robot to catch up. However, even



when the robot can safely increase its speed—such as when
maintaining a large following distance—it must still consider
other factors in the environment. For instance, navigating
through a crowded area or over an intersection might require
slower, more cautious movements regardless of distance to the
human.

Ultimately, different scenarios demand different speed adap-
tations. Managing situational information and adjusting be-
havior accordingly is where Soar can be valuable. In this im-
plementation, Soar’s working memory symbolically encodes
relevant context, while behaviors and social norms related to
speed (e.g., slowing down in crowds or accelerating to reduce
distance) are represented as actions that Soar can evaluate
and select. The implementation positions Soar as a high-
level controller, abstracting social situations and norms into
symbolic representations and reconfiguring a lower-level mo-
tion controller by dynamically adjusting its maximum velocity
based on the selected action to ensure behavior aligns with the
context.

This method offers advantages over conventional ”baseline”
approaches, where a baseline system merely continuously
updates the position of a human to follow without accounting
for contextual factors.

System Description

The system comprises several components that collectively
form the robot’s architecture, including perception, decision-
making using Soar, and navigation control, as illustrated in
Figure 2. This section outlines the system’s rules, preferences,
possible states, and the integration between Soar and the
navigation stack (Nav2).

It is important to note that the system presented here is, in
many respects, a conceptual prototype. The specific choices
made regarding perception, decision-making rules, output, and
state representation are not definitive; other configurations
could be equally valid. The approach was designed to reflect
commonly observed social norms and to provide a symbolic
representation of these norms. However, this paper does not
assert that the chosen configuration is the most optimal or
effective. Rather, it serves as a proof of concept, demonstrating
how the Soar cognitive architecture can be applied to social
navigation tasks.

The specific social norms and quantitative values used in
this system were derived from social navigation research by
Butler et al. [4], Gao et al. [20] and Samarakoon et al. [21].
These values provide a foundation for further exploration but
are not intended as final. Developing a truly optimal system
would require more extensive research to identify which be-
haviors and types of information are critical for making deci-
sions in social navigation. For example, further investigation is
needed to determine which social norms regarding speed—or
other parameters not addressed in this paper—are relevant and
under what circumstances they apply. Once identified, these
norms could be systematically encoded into Soar, enabling its
use as a high-level controller in a more refined and effective
manner.

Fig. 2. System Architecture. With the various modules in the boxes, such
as the perception module, the Soar system, Nav2 and the robot simulation
in gazebo alongside pedsim ros. The arrows map information and control
data, such as the decisions Soar makes, the move commands from Nav2 and
simulation and perception information.

A. Perception
The perception system gathers data from the environment

and converts it into structured input for Soar, as illustrated in
purple in Figure 2. The input is represented using the following
key elements, which are put in the state graph, as represented
in figure 3.

1) Topology of the Environment (T ) The robot’s location
is classified into discrete categories:

T ∈ {open space, corridor,

nearing intersection, on intersection}

These regions are predefined (hardcoded) since model-
ing the spatial layout dynamically is outside the scope
of this paper.

2) Density of the Environment (D) The density of humans
around the robot is calculated within a radius of R =
5m. The density classification is given by:

D =

{
crowded, if nhumans > 2

sparse, otherwise

where nhumans is the number of humans within the radius
R.

3) Agent Information (Ai) Each agent i in the environment
is tracked with the following attributes:

Ai = {distance to robot di, interaction type Ii}

The interaction type Ii is classified as:

Ii ∈ {following, arrived, crossing}

B. Soar System
As shown in Figure 2, the detection results from the

perception module are mapped to the Soar system using the
Soar Python interface. The Soar system then determines the
appropriate action, which is subsequently sent to Nav2 via the
same interface.



1) State Representation: In Soar, perception information
is represented symbolically within working memory using a
graph-based ontology. This ontology allows for the structured
definition and organization of information. In this work, it is
used to represent the robot’s current state, which is updated
during each decision cycle. The system tracks and utilizes
multiple types of information, including details about the
environment and the agents within it, as illustrated in Figure
3. This information is derived from the perception detections
described in the previous section. Using the Soar Python
interface (pysoarlib), these detections are mapped into the
graph structure, ensuring they are available for decision-
making within Soar.

Fig. 3. State representation of Soar system, with options enumerated in the
blocks for certain relations, displaying the information present with which
decisions are made

• Environment Representation: The environment’s state, re-
ferring to the real material world the robot is in, is repre-
sented through the relation ”has-environment-semantics,”
which links to an object that holds information about the
density and topology of the environment. For example,
the state represents whether the robot is in a crowded
area or in a corridor.

• Agents detected in the environment are tracked using
the relation ”has-agent.” Each agent object contains: 1.
Distance to the robot, 2. Interaction type (e.g., following,
crossing) and 3. The agent’s assigned ID. Even though
they are also technically part of the environment, each
agent receives a separate node linked to the state root
node, as can be seen in figure 3, for a more user-friendly
interface for procedural rule creation (next subsection).

2) Procedural memory: In Soar, procedural memory en-
codes the possible behaviors the robot can exhibit. These
behaviors are defined using if-then rules, enabling the system
to dynamically select appropriate actions based on the current
environmental context. This ensures that the robot’s behavior
aligns with social norms.

Each if-then rule specifies an action, or operator, to execute
when certain conditions are met. The if part evaluates the
robot’s state, as described in the State Representation section,
and incorporates general sociability rules [20]. For instance,
proxemic distances—such as the boundary between the social
and public zones at 4 meters—shape rules about when the
robot should adjust its speed.

The then part of the rule generates two outputs:
1) Waypoint: The target location for the robot to navigate

to.
2) Speed Behavior: The speed the robot should maintain

while navigating.
An overview of the possible operators is provided in Table

I, alongside which social norm it represents.
This work primarily focuses on speed behavior, with pro-

cedural rules based on research on human comfort and prox-
emics. According to Butler et al. [4], humans perceive a robot
moving at 0.4 m/s as comfortable, while speeds exceeding
1 m/s are often considered uncomfortable. However, Gian-
noulaki et al. [19] notes that humans themselves tend to walk
at speeds exceeding 1 m/s. To balance these considerations,
the system employs the following speed rules:

• In situations requiring human comfort, the speed is lim-
ited to 0.4 m/s.

• In less socially sensitive contexts, the robot is allowed to
move at a maximum speed of 1 m/s.

Waypoint selection is guided by proxemic principles [21].
During normal operation, the robot maintains a distance of 1.2
meters behind the human—on the border between personal
and social space. This ensures the robot stays close enough to
follow effectively without invading personal space.

Special cases include:
• Queueing: The robot follows at a closer distance of

0.8 meters to align with social norms about spacing in
queues.

• Arriving: When the human stops, the robot moves to
a position in front of the human, allowing it to pause
operations.

The system supports four distinct operational modes, as
depicted in the actions in Table I:

1) Normal Operations: The waypoint is set 1.2 meters
behind the human, and the maximum speed is 1 m/s.

2) Slowed Operations: The waypoint remains 1.2 meters
behind the human, but the maximum speed is reduced
to 0.4 m/s.

3) Queueing: The waypoint is set 0.8 meters behind the
human, with a maximum speed of 0.4 m/s.

4) Paused: The waypoint shifts to a position in front of the
human, and the robot moves at 0.4 m/s until it reaches
the waypoint, at which point it pauses.

Preferential memory: When multiple actions (operators) are
available for a given state, the system must decide which
operator to execute. This decision is made by comparing the
preferences between operators. In preferential memory, each
action is ranked based on predefined priorities to ensure that



TABLE I
OVERVIEW OF SOAR OPERATORS FOR SOCIAL NAVIGATION

Operator Name Prerequisite (Condition) Action (Behaviour) Explanation (Social norm)

pursuit agent distance > 4; topology = open Normal operations Increase speed to close the gap when the human is
far away in an open area.

follow agent distance < 4; topology = open Slowed operations Reduce speed when close to the human in an open
area.

corridor-pursuit agent distance > 4; topology = corridor Normal operations Increase speed when the human is far away in a
corridor.

corridor-follow agent distance < 4; topology = corridor Slowed operations Reduce speed when close to the human in a corridor.
intersection topology = intersection Slowed operations Slow down when approaching an intersection.

intersection-human topology = in-intersection Slowed operations Reduce speed if a human is crossing at an intersec-
tion.

arrived Agent interaction = arrived Paused Move slowly toward the human after arrival.
crowded-environment environment density = crowded Slowed operations Reduce speed in a crowded environment.
queueing Interaction = in queue Queueing Line up behind the human in a queue.

This table provides an overview of the possible operators in the Soar system. Each row includes:
• Operator Name: The action the robot can take.
• Prerequisite (if condition): The condition in the current state that must be true for the operator to be considered.
• Action (Behaviour): The output that defines how the robot will behave in response to the condition.

the most suitable behavior is chosen for the robot’s context.
Each of these preferences must be specified by the creator
of the system. The preferences for this system are based on
whether an action is more socially appropriate. For example,
it is more socially appropriate for a robot to drive slowly in a
crowded environment rather than speed up.

In table I all possible actions are compared against one
another, with the desired preferences depicted by 1. > meaning
it prefers the operator in the first column over the one in the
other column 2. < for the other way around 3. = when it is
indifferent.

The table also includes numerous X’s, indicating pairs of
operators that cannot be proposed simultaneously due to the
structure of the state representation. As the number of oper-
ators grows, manually defining preferences for each possible
combination can become labor-intensive. The table highlights
how exhaustive this process can be, with the amount of entries
that needs be looked at growing with

∑
n=1(n − 1) for n

operators. Which is a limitation of the approach presented in
this paper.

C. Nav2

The final component of the system is Nav2, which is
responsible for executing the robot’s navigation commands.
By utilizing the Nav2 Python API, The Soar python interface
and ROS2, the robot receives commands from Soar regarding:

• Where to navigate: The target waypoint determined by
the Soar system.

• Maximum allowable speed: The speed at which the robot
should navigate based on the current context.

Which are then fed to Nav2. Nav2 then handles the rest of the
navigation process, such as localization, costmap representa-
tion and local motion control. The costmap includes a social
costmap plugin, which accounts for the proxemics of nearby
people to ensure safe and comfortable navigation around them.
The local motion control is managed by the Model Predictive

Path Integral Control (MPPI), a variant of model predictive
control (MPC). MPPI is particularly advantageous because
it optimizes the robot’s path by considering future trajectory
costs, enabling smoother, more predictive motion that adjusts
to dynamic environments [22].

IV. EXPERIMENT AND RESULTS

A. Test Description

The primary objective of the experiments is to evaluate
whether using Soar as a high-level controller enhances social
navigation. This is investigated through a human-following
task conducted in simulation. To measure the system perfor-
mance, various social navigation metrics will be analyzed, in-
cluding the robot’s ability to maintain proximity to the human
and whether it adjusts its velocity appropriately during the
task. To provide a basis for comparison, a baseline system is
included in the tests. This baseline consists of the default Nav2
system using the dynamic object follower plugin, configured
only to receive waypoints leading to the human’s location. The
baseline operates with a single pre-defined maximum speed,
serving as a straightforward alternative to the Soar-controlled
system.

Simulation Environment: The Pedestrian Simulator (ped-
sim ros) is used as the simulation environment to evaluate the
navigation performance of the Soar agent [23]. This simulator
provides a variety of realistic scenarios, such as office or
café settings, populated by a limited number of pedestrians.
The pedestrian behavior is modeled using the Social Force
Model, which simulates their movement based on attractive
forces guiding them toward their goals and repulsive forces
keeping them away from obstacles and other agents [24]. By
calculating the net forces acting on each pedestrian, the model
determines their movement direction and velocity.

The mobile robot used in the simulation is Tiago, developed
by PAL Robotics. Tiago is equipped with a LiDAR sensor,
which is utilized for localization tasks. This setup ensures that



TABLE II
DECISION MATRIX FOR ROBOT BEHAVIOR
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Pursuit - X X X X X X < X
Follow - X X X X X = X
Corridor-Pursuit - X X X X < X
Corridor-Follow - X X X = X
Intersection - X X = X
Intersection-Human - X = X
Arrived - > X
Crowded-
Environment - X

This table illustrates the preferences between operators in Soar’s decision-making process. These preferences are necessary when multiple operators are
proposed during a decision cycle. For instance, if the robot’s current state indicates a large distance and a crowded environment, Soar may propose two

operators: ”Pursuit” and ”Crowded-environment.” To resolve this, Soar relies on the table, which specifies that ”Pursuit” < (worse than)
”Crowded-environment.” Consequently, Soar selects the ”Crowded-environment” operator.

The table also contains many ”X” entries, indicating combinations of operators that cannot occur simultaneously (e.g., ”Pursuit” implies a large distance to
the human, whereas ”Follow” implies a small distance, and thus can’t be proposed at the same time). Additionally, ”-” denotes trivial comparisons, such as

comparing an operator with itself (e.g., ”Pursuit” against ”Pursuit”).

the simulation provides a realistic testbed for evaluating the
robot’s social navigation capabilities.

Scenario: This study focuses on a human-following task
in an office environment, where the robot must navigate
between different areas while interacting with human agents.
The goal is to navigate effectively, defined as successfully
reaching the destination while adhering to social norms, such
as maintaining appropriate speeds based on the context. Figure
4 illustrates the map used in the experiments, depicting the
predefined topology of the environment (e.g., intersections and
corridors) and the paths taken by both the human agent and
the robot. The map is divided into four distinct sections, each
representing a specific scenario:

1) Queuing Zone: In the first section, the robot navigates
a zone where humans are queuing. The robot must
queue behind the human while maintaining a socially
appropriate distance.

2) Corridor and Intersection Navigation: In the second
section, the robot follows the human through a corridor,
navigating intersections along the way.

3) Path Interference: The third section involves the robot
following a human whose path intersects with stationary
humans. The robot must navigate around these stationary
agents while maintaining its path.

4) Open Area: The final section is an open area populated
with moving human agents. These agents may cross
paths with the robot, walk in the same direction, or
approach from the opposite side. Two variations of this
scenario are tested:

a) Scenario 4: Five humans are present in the area.
b) Scenario 5: Two humans are present in the area.

For each section, the human follows a predefined path
(indicated by the blue line on the map in figure 4), while
the robot is tasked with following the human. Additionally,
an experiment is conducted across the entire map, referred to
as Scenario 0, to assess the performance of the systems in
a more complex, longer-duration scenario. This setup allows
for evaluating the robot’s behavior under varying conditions
and complexities, providing insights into its social navigation
capabilities.

Systems: To evaluate the effectiveness of the Soar system,
a baseline comparison is used. The Soar system is designed to
dynamically adjust the robot’s maximum speed based on the
social context, ensuring that the robot maintains appropriate
behavior in different situations. In contrast, the baseline sys-
tems will operate with a fixed maximum speed configuration,
providing a meaningful comparison between dynamic and
static maximum speed settings.

Given that the Soar system alternates between two maxi-
mum speed configurations—1.0 m/s for faster navigation and
0.4 m/s for socially sensitive navigation—two baseline systems
are defined, each using one of these fixed configurations. This
results in three systems for the experiments:

1) Nav2 Baseline (Adhering to Social Norms): The robot
operates with a fixed maximum speed of 0.4 m/s,
prioritizing social sensitivity and human comfort.

2) Nav2 Baseline (High-Speed Configuration): The robot
operates with a fixed maximum speed of 1.0 m/s,
focusing on effective navigation and maintaining pace
with the human.

3) Soar High-Level Control: The robot dynamically adjusts
its maximum speed, selecting between 0.4 m/s and 1.0
m/s based on the social situation.



Fig. 4. Map of the office environment, including the scenario with predefined
topology and where the agents are moving

Each system will be tested across all scenarios described
previously. By analyzing the performance metrics, the differ-
ences between the systems can be assessed, providing insights
into the benefits and limitations of dynamic speed adjustment
versus fixed configurations.

Metrics: The evaluation of the systems will involve three
categories of metrics: effectiveness, ”socialness”, and effi-
ciency [25]. Each category focuses on a specific aspect of
the robot’s behavior and performance, as outlined below:

1) Effectiveness measures how well the robot performs its
task of following the human to their destination. This
will be assessed using the following metrics:

• Distance to Target: The average distance at which
the robot maintains its position relative to the human
throughout the task. A smaller, consistent distance
indicates better performance.

• Time to Complete the Run: The total time taken for
the human to reach their target and for the robot to
settle into its final position in front of the human.
Faster completion times indicate better navigation
efficiency, provided that social norms are respected.

2) ”Socialness” evaluates whether the robot adheres to
socially acceptable behaviors, particularly speed norms.
These metrics include:

• Magnitude of Speed Violations: Measures the extent
to which the robot’s speed exceeds or falls below

the socially appropriate speed. For example, if the
expected speed is 0.4 m/s and the robot drives at an
average speed of 0.6 m/s, the violation magnitude
is 0.2 m/s.

• Relative Duration of Speed Violations: The percent-
age of time the robot spends violating the speed
norms relative to the total duration during which it
is expected to adhere to those norms.

3) Efficiency examines the smoothness and control effort
of the robot’s movements, focusing on its acceleration
and jerk (rate of change of acceleration). The metrics
are as follows:

• Energy of the Signal: Calculated as the squared sum
of acceleration and jerk over the duration of the task.
This metric reflects the intensity of the robot’s con-
trol effort and movement smoothness. Lower energy
values indicate smoother, more efficient movements.

The rationale for using energy rather than averages is
to emphasize the impact of sudden, large changes in
movement (jerkiness). Excessive jerk not only implies
inefficiency but also negatively affects perceived social-
ness, as humans tend to find unpredictable movements
uncomfortable.

Results

To begin, examples of the baseline experiments are pre-
sented to provide an initial understanding of how these systems
perform. Later, the quantified metrics will be analyzed in
detail. Figures 5, 6, 7, and 8 illustrate the performance of the
baseline systems for the scenario in which the robot navigates
through all sections of the map (i.e., the entire environment).

In Figure 5, the robot’s distance to the human and its speed
are shown for the baseline system configured with a socially
sensitive maximum speed. The graph shows that the robot
consistently maintains a velocity below the maximum speed.
This system exhibits ”social” behavior, as the robot adheres to
a speed considered comfortable by humans. Similarly, the ac-
celeration and jerk of the robot are relatively low and smooth,
as demonstrated in Figure 6, contributing to a predictable and
less erratic movement.

However, the distance-to-human graph reveals a significant
limitation: the robot struggles to keep up with the human. In a
real-world scenario, this would likely result in the robot losing
track of the human, or the human having to frequently stop and
wait for the robot to catch up. Notably, the human is already
walking at a relatively slow speed of 0.3 m/s—a pace that
most humans find inconveniently slow for sustained walking,
with a preferred walking speed closer to 1 m/s.

The second baseline system allows the robot to drive at a
maximum speed of 1 m/s. Figure 7 illustrates a different type
of performance compared to the socially sensitive baseline.
The graph shows that Nav2 is relatively effective in maintain-
ing a close distance to the human, with an average distance
of approximately 3 m ± 1.0 m, as verified by two additional
runs with similar results. This distance keeps the robot within



Fig. 5. Baseline run in Simulation with low maximum speed of robot (0.4
m/s), showing the robot’s speed and the distance to the human

the ”social zone” as defined by proxemics (1.2 m < distance
< 3.6 m), which is considered an appropriate and comfortable
range for interaction [26].

However, this configuration sacrifices adherence to social
speed norms, as the robot’s speed often exceeds the socially
appropriate maximum of 0.4 m/s. Additionally, Figure 8
reveals that the robot’s acceleration and jerk are more erratic,
indicating less smooth and predictable movement compared to
the socially sensitive baseline.

In all the figures, the desired speed configurations as de-
termined by Soar are also shown. While these configurations
do not influence the baseline Nav2 systems, they serve as a
reference to compare how Soar would have acted under the
same circumstances. The color coding corresponds to specific
speed configurations: ”Normal” for a high maximum speed of
1 m/s, ”Slowed” for a low maximum speed of 0.4 m/s, and
”Paused” for the scenario where the human has arrived, and
the robot is navigating to a waypoint in front of the human.

Figures 9 and 10 illustrate runs where Soar’s decisions
actively influence the system. In these figures, the regions
where Soar makes decisions are highlighted, showing its
adjustments through reconfiguration of the maximum speed.
These adjustments are reflected in the graphs: the robot’s speed
decreases in response to situations requiring safer behavior.
For instance, the robot slows down when it gets too close
to the human (”follow” decision) or when it approaches

Fig. 6. Baseline run in Simulation with low maximum speed of robot (0.4
m/s), showing the robot’s acceleration and jerk

an intersection with poor visibility (”intersection” decision).
Soar translates these decisions into reconfiguration actions,
selecting the ”slowed” configuration, which enforces a lower
maximum speed of 0.4 m/s.

One noticeable difference in the Soar-controlled system is
that the distance between the robot and the human tends to
be greater compared to the high-speed baseline system. In the
high-speed baseline, Nav2 operates without speed constraints,
allowing it to close the distance to the human more effectively.
Conversely, in the Soar system, the robot occasionally closes
the distance, but only when the situation permits. This trade-
off highlights the Soar system’s ability to adhere to socially
appropriate speeds when required, even though it sacrifices
some effectiveness in maintaining proximity.

Another key observation is the abrupt speed changes seen
in the Soar system. Within a single decision cycle, the robot’s
speed can increase from around 0.4 m/s to 0.8 m/s when
Soar permits a higher speed. This behavior results in signif-
icant peaks in acceleration and jerk, which are undesirable
from both an efficiency and socialness perspective. High
acceleration and jerky movements not only demand greater
energy but also make the robot’s behavior less predictable and
comfortable for humans interacting with it.

Metrics Results: In Table III, the performance metrics for
each scenario and system are presented. Scenario 0 refers to
the complete run over the entire map, while Scenarios 1 to



Fig. 7. Baseline run in Simulation with high maximum speed of robot (1.0
m/s), showing the robot’s speed and the distance to the human

4 correspond to the sections of the map described earlier,
as shown in Figure 4. The last scenario (Scenario 5) also
takes place in Section 4 but involves fewer people for the
robot to navigate around. The experiments are conducted
with three different systems: baseline slow, baseline fast, and
Soar. Each experiment consists of three runs, and the reported
metrics represent the average performance over those runs.

1) Distance on Target: This metric measures the robot’s
distance to the human. Both the Soar and baseline fast
systems perform similarly, maintaining a distance of
approximately 2.5 to 3.5 meters from the human. This
distance falls within the ”social zone” as defined by
proxemics [26]. The baseline slow system, however,
struggles to keep up with the human, particularly in
longer runs such as Scenario 0. This trend is consistent
across all scenarios, highlighting the difficulty of the
baseline slow configuration in maintaining proximity.

2) Task Completion Time: The time required to complete
tasks is significantly longer for the baseline slow con-
figuration due to its restricted speed. In contrast, both
the baseline fast and Soar systems complete tasks more
quickly, reducing the time the human needs to wait for
the robot. The completion times of these two configu-
rations are approximately the same, demonstrating their
efficiency compared to baseline slow.

Fig. 8. Baseline run in Simulation with high maximum speed of robot (1.0
m/s), showing the robot’s acceleration and jerk

3) Speed Violation: This metric measures how much the
robot exceeds the ”ideal social speed limit.” The base-
line slow system does not violate speed limits, as its
configuration prevents it from exceeding them. However,
the baseline fast system violates the limit by an average
of 0.2 m/s, with peaks reaching up to 0.4 m/s, as shown
in Figure 7. The Soar system exhibits similar average
violations, primarily due to transitional periods when
it adjusts its speed after reconfiguring the maximum
allowed speed. These adjustments are also visible in
Figure 7.

4) Duration of Speed Violations: This metric, expressed as
a percentage of the total duration, indicates how long the
robot exceeds the speed limit. The Soar system shows
minimal or no speed violations, with violations occur-
ring only during short transitional periods. In contrast,
the baseline fast system violates the speed limit for the
majority of the duration (over 60%), except in Scenario
1, where the robot is in a queue, reducing the need for
high speeds.

5) Acceleration Energy: This metric quantifies the intensity
of the robot’s accelerations. As shown in Table III, the
Soar and baseline fast systems exhibit similar levels of
acceleration energy, though this varies slightly across
specific scenarios. However, the Soar system has a lower



Fig. 9. Run where Soar reconfigures the maximum allowed speed, showing
the robot’s speed and the distance to the human

average velocity, indicating that despite similar energy
levels, the sources of this energy differ. The Soar system
experiences high acceleration energy due to intense ac-
celeration peaks during configuration changes, whereas
the baseline fast system maintains higher acceleration
energy because of its consistently higher velocity. This
suggests that the Soar system is likely less efficient than
the baseline fast system.

6) Jerk Energy: The jerk energy metric, which measures
the abruptness of motion, exhibits trends similar to the
acceleration energy. Figures 8 and 10 show that both
the baseline fast and Soar systems have moments of
abrupt and non-smooth motion. These jerky movements
can negatively impact the robot’s social acceptability by
making its behavior less comfortable for humans nearby.

V. DISCUSSION

A. Reflection Results

The results demonstrate that the Soar system operates as
intended, with Soar making decisions about the maximum
allowed speed and the robot adjusting its behavior accordingly.
This approach uses high-level control to dynamically recon-
figure the robot’s maximum speed based on contextual input,
unlike conventional navigation systems such as the baseline
system, where a single maximum allowed speed is predefined
and remains unchanged.

Fig. 10. Run where Soar reconfigures the maximum allowed speed, showing
the robot’s acceleration and jerk

As can be seen in the metrics results, the Soar system
addresses a gap that neither baseline system can resolve alone.
The baseline slow system, with the maximum allowed speed
set to a low value (0.4 m/s), is able to drive socially, restricting
its speed to a level that is considered comfortable by humans.
However, this system often struggles to keep up with the
human, requiring the human to either wait for the robot or
for the robot to get lost. On the other hand, the baseline fast
system, with a higher maximum speed (1 m/s), is better at
closing the distance more quickly. However, it does not take
the social aspect into account, mainly disregarding whether
humans are comfortable with the robot’s speed.

The Soar system, utilizing high-level control, combines the
advantages of both baseline systems. It allows for socially
appropriate speeds while also maintaining the ability to effec-
tively close the distance when necessary. However, there are
limitations. While the Soar system keeps up with the target
and finishes tasks more quickly compared to the baseline slow
system, it still lags slightly behind the baseline fast system in
terms of maintaining distance and completion time, which is
a trade-off for ensuring socially appropriate behavior.

Furthermore, there are limitations regarding the acceleration
and jerk, which tend to be quite intense when the maximum
speed configuration is abruptly changed. This erratic and
intense behavior is uncomfortable for humans, as it makes
the robot seem unpredictable, potentially endangering them.



TABLE III
PERFORMANCE RESULTS FOR EXPERIMENTS

experiment distance to target
(m)

duration run (s) speed violation
(m/s)

duration violation
(%)

acceleration
energy (m/s2)2

jerk energy
(m/s3)2

scenario 0, system
baseline slow 8.8 346 0.0 0 0.024 0.005

scenario 0, system
baseline fast 3.6 265 0.184 64 0.588 0.136

scenario 0, system
soar 3.4 272 0.141 4 0.434 0.102

scenario 1, system
baseline slow 3.3 86 0.0 0 0.005 0.001

scenario 1, system
baseline fast 2.7 77 0.162 25 0.17 0.039

scenario 1, system
soar 2.2 92 0.0 1 0.116 0.028

scenario 2, system
baseline slow 3.9 83 0.0 0 0.003 0.001

scenario 2, system
baseline fast 2.7 55 0.18 82 0.071 0.016

scenario 2, system
soar 2.9 64 0.0 6 0.046 0.011

scenario 3, system
baseline slow 4.0 84 0.0 0 0.001 0

scenario 3, system
baseline fast 2.8 58 0.161 87 0.071 0.016

scenario 3, system
soar 3.3 72 0.129 4 0.042 0.01

scenario 4, system
baseline slow 5.7 119 0.0 0 0.001 0

scenario 4,
experiment
baseline fast

2.9 77 0.148 92 0.074 0.017

scenario 4,
experiment soar 3.3 88 0.129 9 0.117 0.027

scenario 5,
experiment
baseline slow

4.6 104 0.0 0 0.005 0.001

scenario 5,
experiment
baseline fast

2.7 77 0.077 60 0.064 0.015

scenario 5,
experiment soar 3.2 87 0.183 5 0.091 0.021

Additionally, this type of behavior is energy inefficient, as
high acceleration peaks tend to lead to wasted energy. This
inefficiency could accumulate in more complex environments
where configuration changes occur more frequently.

Future work should focus on addressing these issues, either
by refining the Soar high-level controller to account for past
and future events to make smoother decisions or by improv-
ing the local motion controller to constrain the acceleration,
resulting in more predictable and energy-efficient motion.

Moreover, there are a few other limitations to consider. One
major limitation is the reliance on the simulation. In these
tests, the robot uses ground truth data to detect agents, directly
extracting their actual positions from the simulation. This
ensures perfect observability but is unrealistic for real-world
scenarios. For future work, it will be essential to implement
and evaluate the Soar system using a real detection system to
assess its performance when dealing with detection failures or
inaccuracies.

Additionally, the agent behavior in the simulation is less
dynamic than what might be expected in a real-world envi-

ronment. In practice, a human might slow down in crowded
or sensitive areas, and might also be more mindful of staying
close to the robot. In contrast, the simulated agent moves at
a constant pace, which do not reflect realistic interactions.
Therefore, another key area for future work will involve
validating this system in real-life settings. This will allow for
a thorough examination of the complexities of human-robot
interaction, providing insights into how the system performs
when interacting with real humans in more unpredictable and
dynamic environments.

Lastly, future work could refine the specific social norms
and contextual factors encoded into Soar. Determining which
aspects of social behavior are most relevant for high-level con-
trol remains an open question. Identifying additional parame-
ters that could be meaningfully controlled—such as following
distance in specific scenarios, acceleration rates, etc.—would
help improve adherence to human expectations. Addressing
these considerations would require deeper study of human-
robot interaction literature to ensure that the system aligns
with realistic social dynamics and enhances the robot’s ability



to operate effectively in human environments.

B. Reflection on System

Now that the high-level control concept and its implemen-
tation using Soar have been explained, along with results
evaluating the system’s performance, this section reflects on
the system as a whole and explores the reasoning behind
its design and implementation choices. Specifically, why was
Soar chosen for high-level control? How does Soar compare
to other systems, such as Finite State Machines (FSMs), in
this context?

Various systems can handle reconfiguration and decision-
making, but Soar distinguishes itself in one critical aspect:
its ability to store and organize the environmental information
and desired high-level control behaviors.

To understand these aspects better, let’s compare Soar with a
more traditional system like an FSM. While it may seem unfair
to compare a cognitive architecture like Soar with an FSM,
which is a simpler decision-making tool, this comparison
is useful because FSMs are a common choice for robotic
decision-making.

Knowledge Representation: Soar’s procedural rules offer a
flexible and scalable means of encoding human-like decision-
making logic. These rules can vary from highly specific
(for narrowly defined situations) to general (applicable across
different contexts), allowing for an expansive rule set that
remains organized and scalable. For instance, in Jones et
al. [27] Soar was used to develop an intelligent pilot for
combat flight simulation, using over 5,200 production rules
and 140 operators for managing complex aircraft maneuvers.
This example illustrated Soar’s ability to manage vast amounts
of knowledge while maintaining flexibility.

In contrast, an FSM is far more rigid in its structure. States
and transitions must be predefined, and as the system grows
in complexity, the FSM tends to suffer from state explosion,
where the number of states and transitions grows exponentially
[3]. Each new scenario or context-sensitive decision requires
additional states or more complex transitions, making the
system difficult to manage.

Moreover, FSMs lack a standardized way to store knowl-
edge. Their “knowledge” is implicit in the state transitions,
without an explicit mechanism for rules governing transitions.
Soar, on the other hand, separates knowledge (encoded in
the state representation and production rules) from the state
transitions (constrained by decision cycle). This allows Soar
to dynamically adapt to new contexts without adding more
states, giving it much more flexibility in decision-making.

When implementing high-level control using an FSM, its
lack of flexibility becomes evident. Context-sensitive decisions
require the FSM to introduce additional states and transitions
for every possible scenario. This results in a bloated state
diagram that is cumbersome to manage and prone to errors. In
contrast, Soar handles such reconfigurations more efficiently
by allowing the addition or modification of rules without
requiring a complete redefinition of the state structure.

An example of this is illustrated in Figure 11, which
compares the high-level control concept implemented in Soar
with its equivalent finite state machine (FSM). On the left, the
state representation and procedural rules of Soar are shown
in simplified form, utilizing only two rules. On the right, the
corresponding FSM is displayed, where transitions correspond
to the ”if” conditions in the production rules of Soar, and the
states represent the ”then” actions.

The FSM also incorporates numbered priorities for state-
ments that can be true simultaneously, with lower numbers
(starting at 0) indicating higher priority. Conversely, Soar
employs preferential memory to define preferences, enabling
deliberation over the best decision. The figure further high-
lights what happens when a new rule is added: in Soar, the
new rule is seamlessly integrated, whereas the FSM requires
additional transitions and possibly states, leading to significant
growth.

In the worst-case scenario, for n procedural rules, the
number of transitions in the FSM tends to grow quadratically
(n2), while the number of states grows linearly (n). This
demonstrates Soar’s scalability compared to the FSM, which
quickly becomes unwieldy due to the need to account for
transitions between all states. However, it is worth noting
that certain scenarios may still favor implementing the high-
level control concept in an FSM, depending on the specific
requirements.

In conclusion, Using Soar for high-level control in this sys-
tem enables scalable and flexible knowledge representation. Its
ability to handle dynamic, context-sensitive decisions makes
it particularly well-suited for complex robotic applications.

VI. CONCLUSION

This paper presented a Soar-based system for performing a
social navigation task, utilizing Soar as a high-level controller.
It demonstrated how high-level control can enhance social
navigation by dynamically reconfiguring a lower-level motion
controller to optimize behavior across varying contexts. The
optimized behavior focused on adjusting the robot’s speed to
ensure safe and socially appropriate interactions in different
scenarios. Soar facilitated this process by evaluating symbolic
inputs and applying knowledge of preferred actions to select
suitable configurations for maximum speed.

The results demonstrated that the system could effectively
control a robot navigating with the Nav2 stack. By adapt-
ing configurations based on context, the system successfully
achieved effective and socially compliant navigation. However,
some limitations were identified, such as inefficient accel-
eration, non-smooth movements, and the simplicity of the
simulation environment. Addressing these limitations in future
work can help enhance Soar’s effectiveness as a high-level
controller in social navigation tasks. Furthermore, a reflection
on the rationale for using Soar was provided, comparing it
to a finite state machine. This comparison highlighted the
advantages of Soar in its ability to organize environmental
information and desired behaviors, such as social norms, in a
more flexible and scalable manner.



Fig. 11. Example of high-level control concept implemented in Soar and an equavalent finite state machine
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APPENDIX

A. Soar cognitive architecture

The Soar cognitive architecture, illustrated in Figure 12,
comprises a collection of task-independent modules that work
together to enable intelligent decision-making. These include
short-term and long-term memory, processing modules, learn-
ing mechanisms, and various interfaces that facilitate com-
munication among components. The central feature of Soar
is its working memory, which maintains an agent’s current
state in the form of a symbolic graph, representing objects,
properties, and relations. This working memory reflects the
agent’s situational awareness, encompassing perceptual input,
intermediate reasoning outcomes, active goals, and interactions
with systems like semantic memory, episodic memory, the
spatial-visual system (SVS), and the motor system [2]. This
section explores the architecture’s Knowledge Representation
and Reasoning components in more depth.

Fig. 12. Soar Cognitive Architecture [2]

Knowledge representation, Working memory: Soar’s
knowledge representation is centered around working memory,
which holds information about the agent’s environment and
ongoing tasks. Knowledge in Soar is represented in two
primary ways: the symbolic working memory and procedural
knowledge. Additionally, preferences play a crucial role in
guiding decision-making by evaluating different options.

Soar uses a symbolic working memory structured as a
graph to represent the current situation. This graph-based
structure allows for the flexible representation of objects, their
properties, and their relationships. The contents of working
memory include real-time perceptual inputs, hypothetical
future states, knowledge retrieved from long-term memory,
active goals, and motor control outputs.

Working memory is a key part of the agent’s reasoning
process as it continuously updates to reflect the agent’s
current understanding of its environment. The situational

awareness encoded in working memory is crucial for guiding
decision-making, as it determines which actions (or operators)
should be considered for execution.

Knowledge representation, Procedural Knowledge: In Soar,
procedural knowledge is encoded in the form of operators,
which are stored as if-then rules in procedural memory. These
operators are responsible for defining actions the agent can
take. Operators can be of two types:

• Internal Operators: These handle actions like memory
retrieval, goal-setting, or generating hypothetical states
for reasoning.

• External Operators: These execute observable actions,
such as motor commands for a robot or communication
with external systems.

Unlike in traditional rule-based systems where only one rule
”fires” per decision cycle, Soar allows multiple operators
to be considered and processed in parallel. Each operator
represents a unit of knowledge that can be triggered based on
the current contents of working memory, allowing for more
flexible and dynamic behavior.

Knowledge representation, Preferential memory: Prefer-
ences provide a mechanism for evaluating and selecting be-
tween multiple operators. Preferences determine how operators
are ranked and chosen for execution. They are stored in
preferential memory, a specialized part of Soar that allows
operators to be compared either explicitly (e.g., operator A is
preferred over operator B) or through numeric evaluation.

Preferences help the system decide which operator is
best suited for the current situation. For example, multiple
operators may be proposed for a given state, but preferences
guide the decision-making process by comparing them and
assigning higher priority to the most appropriate operator.
The preferences can incorporate both general knowledge and
specific situational information, such as perceptual input or
data retrieved from long-term memory.

Fig. 13. Decision cycle of Soar [6]

Reasoning, Soar Decision cycle: The process of reasoning
in Soar is governed by the decision cycle (Figure 13). This
cycle describes how Soar evaluates and selects operators to
perform actions. The decision cycle can be broken down into
three main phases:



• Proposing Operators: In the first phase, Soar evaluates
the current situation in working memory and proposes
operators that are applicable. These operators are selected
based on their relevance to the agent’s current goals and
the state of the environment. For example, if the agent is
tasked with moving toward a target, a ”move” operator
might be proposed if the target is within range.
Operators are proposed based on production rules stored
in procedural memory, which define when a particular
operator should be considered. This phase generates a
set of potential actions that the agent could take.

• Evaluating Operators: Once operators are proposed, Soar
enters the evaluation phase. This involves comparing the
proposed operators using preferences to determine which
one is most suitable for the current situation. Preferences
can be either: Qualitative, specifying which operator is
better (e.g., operator A > operator B), or Quantitative,
assigning a numerical score to operators.

• Applying the Selected Operator: After evaluating the
proposed operators, Soar selects the best operator based
on the preference evaluation and applies it. The selected
operator modifies the current state in working memory,
either by changing the agent’s internal goals, retrieving
knowledge, or executing an action in the environment
(e.g., moving a robot or interacting with external sys-
tems).

The decision cycle then repeats, continuously updating
working memory and refining the agent’s actions as new
information is perceived or as goals change. This cycle allows
Soar to engage in real-time decision-making, where actions
are dynamically adjusted based on the agent’s evolving under-
standing of its environment. [7]

B. Example Soar Decision-making

In Figure 14, an example of the Soar decision cycle is
illustrated, showing how the state is represented in working
memory as the system progresses through three decision
cycles. The table is read from left to right, with each row
corresponding to a single decision cycle and the columns
representing different components of the decision cycle.

In the first cycle, Soar is initialized, and the state begins
empty. The ”initialize-social-navigation” operator (described
in Table I) is proposed, evaluated (without contest since it is
the only operator), and applied. This operator prepares Soar to
initialize the navigation graph using input from the next cycle.

In the second cycle, perception input defines the graph by
specifying detected elements in the environment. For instance,
it detects a human, who is the robot’s target to follow. A
new operator is proposed and evaluated. This time, the output
is external and sent to Nav2, instructing it to navigate to a
waypoint directly behind the human at normal speed.

In the third and final cycle, the input updates to reflect
a change in the environment—specifically, the density of
humans around the robot is now classified as ”crowded.” As a
result, two operators are proposed. Soar evaluates these options
based on preferential memory, which specifies that ”Pursuit” <
”Crowded-environment”. In natural language, this means the
”Crowded-environment” behavior is preferred over ”Pursuit.”
Consequently, the ”Crowded-environment” operator is selected
and applied, leading Nav2 to receive a command to navigate
to the waypoint behind the human but at a slower speed to
account for the increased density.



Fig. 14. Example of Soar decision-making



C. Simulation Description

1) Tiago: The robot used in the simulation is the Tiago,
developed by PAL Robotics, as shown in Figure 15. Tiago
features a differential drive mobile base, which supports the
robot’s body, an RGB-D camera, and a manipulator. The
mobile platform also includes a 2D LiDAR sensor for envi-
ronment mapping and localization. PAL Robotics provides the
ROS 2 stack, which is utilized in the simulation to interface
with the robot’s hardware and manage its operations.

Fig. 15. Tiago robot used in simulation

2) pedsim ros: The simulation is conducted in Gazebo
Classic, utilizing the pedsim ros package to simulate human
agents following the social force model [24]. Each agent
is assigned a route to traverse and maintains an average
speed of approximately 0.3 m/s. While most agents follow
conventional navigation patterns, focusing on reaching their
goals, some agents are designed to pass through queueing
zones, as shown in figure 4. The humans and robot navigate
through an office environment, which is free of objects but
contains corridors and intersections, as was depicted in figure
4. This environment is designed to model typical indoor
spaces, providing a controlled setting to assess the robot’s
social navigation performance.

Figure 16 provides an overhead view of the simulation
environment, where only the mobile robot base of Tiago is
visible, and the number of human agents is fewer than in the
full simulation scenario. In Figure 17, a closer view is shown,
with Tiago positioned at the top of the image. The blue rays
represent LiDAR scans, indicating the robot’s sensing range
within the environment.

Fig. 16. Simulation environment from above

Fig. 17. Simulation environment with Tiago
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