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Bij het gebruik van maten afkomstig uit de fractaltheorie voor het
kwantificeren van textuur blijkt dat het veronderstelde lineaire
verband in de zogenaamde log-log ruimte inderdaad voor een
beperkte klasse van texturen gevonden wordt, maar voor een meer
algemene maat dient deze eis aangepast te worden.

Er bestaan twee soorten van initialisatie van de piramidale data-
structuur. Het eerste type is gebaseerd op de reductie van de varian-
tie, het tweede type beschrijft de beeldfenomenen op verschillende
niveaus van resolutie. Het praktisch nut van het eerste type is
beperkt, juist het tweede type is over het algemeen het argument om
te kiezen voor een piramidale datastructuur.

Ondanks dat in de literatuur het gebruik van de definitie van de
box-dimensie voor de bepaling van de dimensies conform het
algemene dimensie-model wordt gepropageerd voor signaalanalyse,
blijkt het voor twee-dimensionale beeldverwerkingstoepassingen als
lokale textuuranalyse en textuursegmentatie niet geschikt.

Met de massa-piramide is een snelle, op de de fractaltheorie ge-
inspireerde textuuranalyse-methode verkregen, die textuureigen-
schappen op verscheidene niveaus van resolutie kwantificeert.

De informatie-inhoud van een signaal zoals bepaald met de traditio-
nele informatiematen uit de informatietheorie, kan een overwaarde-
ring tonen in vergelijking met de informatie-inhoud zoals die gevon-
den wordt met technieken die binnen de chaostheorie gangbaar zijn.

In het bijzonder voor industriéle beeldverwerkingsapplicaties geldt
dat een goed gebruik van werktuigbouwkundige technieken tot een
reductie van de complexiteit van de beeldverwerkingsalgoritmen kan
leiden.
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Met de introductie van digitale fotografie, zoals die op dit moment
plaatsvindt, nemen niet alleen de mogelijkheden van data-acquisitie
en visualisatie voor de digitale beeldwerking toe, maar ook de
herkenbaarheid van mogelijke toepassingen van digitale beeldver-
werkingstechnieken door een groter publiek.

Als gevolg van de wens tot standaardisatie en het opkomen voor
nationale belangen verschuift de complexiteit van ontwikkelingen op
het gebied van consumentenelektronika van het technisch vlak naar
het internationaal politieke vlak.

Het toenemend aanbod aan wetenschappelijke tijdschriften sugge-
reert een stimulerende werking te hebben op de wetenschapsbeoefe-
ning. Door de verstikkende werking zal daarentegen een reductie
van het aantal een grotere stimulans betekenen.

Door studies aan te bieden waarvoor geldt dat na afloop het vinden
van passend werk nagenoeg uitgesloten is, gaat de onderwijsgever de
verantwoordelijkheid aan om het curriculum zodanig in te richten
dat de kans op werk alsnog verhoogd wordt.

De politieke en ethische discussie over aspecten van niet-traditioneel
Nederlandse religies wordt in Nederland makkelijker gevoerd, dan
die over aspecten van de traditioneel Nederlandse religies.
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Summary

With the development of computer systems that are able to process and
even understand digital images, one is often confronted with scenes
of which texture is part of. As texture is still undefined, attempts
can be undertaken to describe it, but often it is explained by giving
examples. Typical examples of textures are those of carpets, clouds,
textile, leather, and so on. Although one might be tempted to define
texture as a structure, it certainly does not have to be structured. It is
the fact that a texture does not have to be structured to be interpreted
by a human observer as being homogeneous that hampers the definition
and even the description of what is meant by texture. Consequently,
the design of an operator for the analysis of textures by a digital image
processing system is hampered by this lack of a definition. At the initial
stage of segmentation such an operator is already required. During
this stage, the image is segmented into regions that are considered as
homogeneous. This means that the texture operator is expected to
output a constant value if the underlying texture is considered to be
the same.

Some of the descriptions found in the literature explicitly mention
the aspect of scaling. It is true that the appearance of a texture may
change dramatically if the scale on which it is studied is changed. A
wide variety of texture operators are suggested in the literature. Some
of these operators have the ability to tune the level of scaling at which
the texture is to be quantified. However, this requires a priori knowl-
edge of the scale or the range of scaling in which the texture has to
be studied. In practice, this knowledge is not always available, and,
therefore, an analysis method is required that studies the texture on a
wide range of scaling. Such a method could be based on what is called

vil



viii Summary

a pyramidal data structure or pyramid. This structure consists of a
number of layers that describe the image on several levels of resolution.
A typical example of a pyramid is the Gaussian pyramid. If the sizes
of the original image are, for instance, 256 x 256, a pyramid is made
that consists of 9 layers with the dimensions: 256 x 256, 128 x 128,
64 x 64,32 x 32,16 x 16, 8 x 8, 4x4,2x 2 and 1 x 1. If we imagine
that these layers are placed above each other, the pyramidal structure
can be recognized. Now, the Gaussian pyramid is based on a resolution
reduction operator that consists of a Gaussian filter and a subsampling
stage. If the original input image is placed at the bottom level, the
next level is obtained by applying this resolution reduction operator.
In the end, we have obtained 9 low-pass filtered representations of the
original image.

As the concept of pyramidal data structures is in wide use for image
processing applications, a wide variety of pyramids can be found. This
variety is a result of the type of information which the pyramid contains
and the way that the resolution is reduced. Other examples are the
binary pyramid and the Laplacian pyramid. This latter one consists of
band-pass filtered representations of the original input image.

In the literature, two types of use of the pyramidal data structure
can be found. The first type of use aims at the reduction of the variance
in the data at the lowest level in the pyramid. This means that the
variance decreases with the height in the pyramid. In practice, this
is the easiest way to initialize the pyramid. The second type of use is
based on the idea that levels higher in the pyramid should correspond to
a coarser description of the image. In this thesis, we consider this type
of use to be more according to the concept of pyramidal data structures.
Generally, it appears that the design of a resolution reduction operator
for this type of use is not trivial. This is certainly the case for the
texture pyramid, which describes the image from a textural point of
view at several levels of scaling. It is the design of such a resolution
reduction operator that is the central theme of this thesis.

As we have mentioned before, some of the existing texture operators
do have the ability to select the level of scaling on which the texture is
studied. However, even with this ability, it is not garantueed that the
initialization of the texture pyramid is a trivial problem. In practice,
the border artefacts, as a result of the limited sizes of the layers with
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respect to the window sizes of the texture operator, will increase with
the height in the pyramid. The optimal initialization of the texture
pyramid should be such that the quantification of the texture properties
bubbles up in the pyramid and such that the level in the pyramid stands
for the level of scaling with which the texture is quantified. This new
operator should be based on a model of which scaling is an intrinsic
aspect. Such a model could be based on the fractal theory, central to
which is the description of phenomena on different levels of scaling.

The idea of fractal theory is often illustrated with the question:
"How long is the coastline of Britain?” It appears that the more ac-
curately one measures the length, the more accurately the coastline
is followed, and therefore the longer the coast length appears to be.
Therefore, it is not possible to answer this apparently simple question
consistently. To be able to answer this question, the fractal dimension
has been introduced. This fractal dimension might be considered as a
measure that quantifies the whimsicality of a phenomenon, a property
that seems to meet our need for quantifying texture.

The fractal dimension belongs to an infinite number of dimensions
that are defined by the generalized dimension model. This model has
a parameter that is used as a weighting mechanism, such that different
aspects of the phenomenon can be highlighted. Each value for the pa-
rameter corresponds to a dimension definition. Theoretically, it is rec-
ommended to supplement the fractal dimension with at least one other
dimension. It can be proved that signals might appear dissimilar to
the human observer, whereas the fractal dimensions are equal. By sup-
plementing the fractal dimension with another dimension, an increase
in the discriminability might be obtained. Therefore, the resolution
reduction operator to be designed should be based on the generalized
dimension model.

Now, for the design of the resolution reduction operator that is based
on the idea that higher levels should correspond to a coarser description,
it is required to weaken a constraint of the fractal theory regarding the
expected behavior in scale space. The theory strictly prescribes the
expected behavior over a wide interval. As the scale space is divided
up by the pyramidal data structure into small intervals, we measure
the dimensions only for these small intervals.

In this thesis, several attempts for the design of an operator are
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discussed. The final and most succesful one is based on the idea that
grey value may be considered as mass. By dividing the mass by the
total mass in the window of the operator, the mass density is obtained.
From the mass density distribution in the window, features similar to
those prescribed by the fractal theory are obtained.

Experiments have shown that the preformance in discriminatory
sense is good. For some texture pairs, the use of two dimensions is rec-
ommended (vector texture discrimination), however, also texture pairs
which need only one dimension (scalar discrimination) have been found.
Further, texture pairs where texture discrimination was only possible
at the lower levels of the pyramids have also been found, whereas other
texture pairs could only be discriminated at higher levels. With these
results, the benefit of this type of use of a pyramidal data structure
for texture analysis has been proved. By weakening the constraints
of the fractal theory, the operator has won in generality. Finally, it
should be stressed that the method requires limited processing time
and with some adaptions, the implementation into hardware could be
straightforward.




Chapter 1

Introduction

1.1 Digital Image Analysis

Nowadays, digital image analysis -of which the development started
in the sixties- has a considerable number of running applications in
a wide variety of disciplines. The architecture of the original digital
analysis systems could be considered to be rather rigid. The dataflow
was one-way directed. Today, the architecture of digital image analysis
sytems is based on the concepts of knowledge guided or knowledge based
systems, and therefore, the dataflow is more flexible. To explain the
functioning of a digital image analysis system, we can still make use of
the architecture of what might be called the first generation, which is
shown in Fig. 1.1. It must be stressed that for a number of applications,
this type of architecture might still be appropriate. Therefore, speaking
of generations of digital image analysis systems does not imply that the
architecture of the current generation of digital image analysis systems
supersedes the first generation of systems.

The analysis starts at the imaging module. This might be a video
camera coupled with a frame grabber . For this type of data acquisi-

1A frame grabber is a piece of hardware, which can be connected to the computer
bus. It consists of a A/D converter, which is connect to the video camera -or in
general the video source- and a large memory block in which the digitized image
is stored. This memory can be read by the CPU of the computer. Sometimes the
frame grabber has some computational power, so that image operations can be done
in this memory block.
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Figure 1.1: The architecture of the "first” generation digital image
analysis systems.
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tion, the images to be analysed have typically dimensions of 256 x 256,
512 x 512 or 1024 x 1024. The number of grey levels to be distinguished
are typically 256, where 0 represents black and 255 white. Now, the
term picture element (mostly abbreviated to pizel ?) is used to denote
a resolution cell in the image.

For some applications only single images are considered. Other ap-
plications require the analysis of a sequence of images. Such a sequence
might be a sequence in time, or a sequence in place. For the latter sit-
uation, one speaks of 3-dimensional ® image analysis. In this thesis we
will mainly study 2-D images with sizes of 256 x 256 and with 256 grey
levels.

Besides the video camera, other types of image sources are radars,
seismic sensors, Magnetic Resonance Imaging sensors, etc. Another
type of imaging unit which is sometimes forgotten are algorithms which
generate a 2-dimensional output. An example of such a case is the time-
varying spectrum of a 1-D signal.

After having acquired the image, a preprocessing step is mostly
required. This step might consist of a number of operations. One of
the first operations to think of is noise reduction. The more that is
known about the noise to be expected, the more the operator can be
adapted to it. Besides the reduction of noise, further enhancement of
the image quality might be required. The image could be distorted by
defocussing, relative motion between camera and object, lens artefacts,
etc. It is the image restoration that focusses on these types of problems.

The preprocessing module could also consist of a transformation of
the image into another domain. This might be the case if the image
contains textural regions. The best way to describe such regions in this
stage is as regions that are not homogeneous in grey value but in another
property, such that it appears to human observers as homogeneous. See,
for instance, Figs. 2.1 - 2.4 in Chapter 2 which show examples of such
textures. The transformation aims to give the same texture value for
all pixels in a homogeneous textural region, whereas dissimilar textural
regions should result in different texture values. The resulting image is
called a texture map. For discrimination purposes, the use of several of

2The 3-dimensional equivalent is vozel, which stands for volume element.
3Tn the sequel the abbreviation n-D is used for n-dimensional.
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these texture maps might be required, they are the result of different
texture operators or of one operator which has been used with different
tunings.

The preprocessing module is followed by a module which segments
the image in homogeneous regions. It is important that the homogene-
ity criterium is precisely defined. The input image might be the original
image which has been freed from noise and/or distortions. It might also
be one or more texture maps, which possibly might be complemented
with the grey value image.

First, after having segmented the image, the real analysis can start,
At this moment the representation of the image becomes more abstract.
It starts with determining the properties of the regions. One could think
of the average grey value, the average texture value, size, number of
holes, shape, etc. For some applications the analysis is now considered
to be finished.

However, the analysis might continue. Now, the relations between
the regions and the properties of the regions themselves are used for
recognizing objects in the image. Note that the data representation at
this stage is even more abstract. An example of an analysis system
for which the analysis stops at this module is a system which is used
for robot vision. The image data is used for the identification of the
parts to be assembled, their position on the conveyor belt, etc. The
information obtained by this system can be used for guiding the robot
during the assembly process.

In the final stage of the analysis the interrelationships between the
objects are studied. The output of this analysis stage can be a sentence
or a description. For instance, for medical application the sentence
might consists of a diagnosis. This diagnosis could possibly be supplied
with a certainty factor.

As mentioned before, the analysis system discussed is based on the
classical concept. The output of one module is used as an input for the
next module. The scheme is, therefore, considered to be rigid. There
is no flexibility and no optimizing to the image contents. For instance,
the preprocessing is based on general ideas of how the average image
should be preprocessed. After some analysis, more precise ideas could
come into being and be used to preprocess specific parts of the image
with a selected operator which is fine tuned to these specific parts. The

H
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same need for flexibility counts for the segmentation module. If such
feedback would exist, more precise analysis results might be obtained.
The drawback of such an approach is its complexity. This complex-
ity results in an increase in the complexity of the algorithms and an
increase in the computer power demands. These flexible systems are
often called knowledge guided or knowledge based, and their architecture
can be based on that of a blackboard system. To return to Fig. 1.1,
we may conclude that the architecture of the newest generation of im-
age analysis systems could be sketched as shown in Fig. 1.1, but where
feedback loops have been added between the several modules.

1.2 The Scope of this Thesis

In Section 1.1, we already mentioned the study of textures. The dis-
cussion was rather shallow. In the study of textures, it is important
to realize that "texture” is still undefined. Therefore, there is no im-
mediately obvious way to design an algorithm for analysis purposes.
However, despite the fact that texture is still undefined, we can make
many observations on it. In Chapter 2, we discuss more elaborately
texture as an image processing phenomenon. It appears that the ap-
pearance of a texture differs with scale. At greater distance, coarser
aspects of the texture dominate the perception; whereas on smaller
scales, the finer details dominate. It is this scaling aspect that justifies
the use of the pyramidal data structures.

A pyramidal data structure consists of a number of representations
of an image. Each representation corresponds to a scaling level. For
instance, if we start with an image of 256 x 256, the pyramidal data
structure consists of representations with sizes 256 x 256, 128 x 128,
64 x 64, 32 x 32, 16 x 16, 8 x 8, 4 x 4, 2 x 2, and 1 x 1. By placing
the representations above each other, the pyramidal structure can be
recognized. The name of pyramidal data structure is often abbreviated
to pyramid. The most elementary operator to obtain each next level
in the pyramid is based on Gaussian filtering and subsampling. In
Chapter 3, we discuss a number of applications of the pyramidal data
structures. We will show that the initialization of a pyramid for the
analysis of texture and the segmentation of images containing textural
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regions is not trivial. Preferably, one would start with a model in which
the scaling behavior is integrated. Such a model could be based on the
fractal theory.

The fractal theory is the subject of Chapter 4. Over the last few
years, the interest of its applicability for image analysis has been rapidly
growing. The strength of the fractal theory is its ability to describe
phenomena which appear very complex in a very simple fashion. The
description is based on a defined behavior of the phenomenon on differ-
ent scales. Thus, scaling is intrinsic to the fractal theory and its derived
models. Therefore, we study in this thesis the interrelations between
texture, pyramids and fractal theory. In Chapter 5, these interrelations
are discussed and the derived results examined. Finally, in Chapter 6
the reader will find the conclusions of the study underlying this thesis.



Chapter 2

Texture

2.1 Introduction

Texture plays an essential role in the visual world. Therefore, it has
been a research subject from almost the beginning of digital image
processing. Many images contain textural regions. Examples of such
images are: satellite images, medical images, microscopic images, and
images taken from an autonomous vehicle. What follows after the data
acquisition is dependent on the application. Sometimes one or more
preprocessing steps are required to reduce noise and distortions. If
the scene consists of one homogeneous textural region, the analysis
will be based on the complete image. For instance, in a microscopic
image which shows a product from the food industry in its final, or
in an intermediate stage, one could extract process parameters from
textural features. This can be done by applying a texture operator
on the image. This operator transforms the input image into an image
containing texture values, the texture map. A perfect (so a non existent)
operator would give a homogeneous output image for a homogeneous
textural input image. The choice of the operator is dependent on the
application. Considerations can be based on the hardware aspects, the
known physical laws underlying the applications, or the applicability
proven by an intensive empirical study.

In most cases one is confronted with images containing several re-
gions. This means that a segmentation step is required. After trans-
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forming the input image into one (or more) texture maps by applying
one (or more) texture operators, the image can be segmented. Recent
developments in image processing consider such segmentation results as
preliminary, because a better segmentation result might be obtained by
a segmentation module which is guided by knowledge. However, before
such a fine tuning of the segmentation can be carried out, a preliminary
segmentation result is required.

Sometimes one is not interested in the textural regions as such,
but one needs to find them for the analysis of the whole image. An
example of such a case is that of images taken from an airplane. Such
images might be used to map new roads. For such an application it is
not necessary to classify the type of texture. However, testing on the
presence of textured regions might help in the detection or localization
of roads. A similar type of use of texture information can be found
in medical applications, where the localization of (for instance) blood
vessels could partly be based on texture information.

Besides the use of texture information for segmentation purposes, it
can also be applied in classification. An example of such a study is the
classification of vegetation in radar images. In the literature, examples
are known where all kind of vegetation and even diseases of vegetation
are classified. Another example is the classification of tissue types in
medical images.

Texture analysis can also be applied for recognizing shapes. Several
types of approaches are in use in such studies. A detailed discussion on
this kind of use of texture information is given by Kanatani and Chou
in [61] and by Tomita and Tsuji in [112].

We have already mentioned the use of texture operators to trans-
form a textured image into a texture map. Such an operator would
function optimally if a homogeneous output image is obtained, given
a homogeneous texture image. Examples of homogeneous textures are
given in the Figures 2.1 - 2.4. These images are taken from Brodatz’s
book [14], which consists of a collection of 112 textures. This book was
originally meant for artists and designers, but has grown to be a stan-
dard library of textures for the image processing community as well.
The book consists of textures in the range of almost purely determin-
istic to almost purely stochastic.

To develop the perfect operator one needs to know what exactly is
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Figure 2.1: Pressed cork. Picture d4 from [14].

Figure 2.2: A reptile skin. Picture d22 from [14].

Figure 2.3: Raffia looped to a high pile. Picture d84 from [14].
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Figure 2.4: Ice crystals on an automobile. Picture d100 from [14].

meant by texture. This seems to be the essential problem of texture
research. We are not able to define exactly what is meant by texture.
Despite the fact that texture has been studied for a couple of decades
in the image processing community and in other scientific disciplines
as well as in arts, it is still undefined. A poor try at defining texture is
based on the idea that a homogeneous textural region is homogeneous
in a property other than grey value. However, this definition is too
general to be useful.

The central problem is that we still do not understand the function-
ing of the human visual system. The optimal texture operator would be
able to simulate the functioning of the human visual system in relation
to the classification and segmentation of textured images. The name
Julesz should be mentioned in conjunction with this research.

Originally, Julesz concluded that the human visual system was not
able to discriminate textures for which the first and the second order
statistics match. The appearance of counter examples, however, forced
Julesz to some minor adjustments to his theory, which he later aban-
doned. This means that he abandons the idea of discriminability based
on global statistics. In 1981, he introduced the texton theory. Textons
are visual events, which are assumed to play a role in texture discrim-
ination. Terminations, which are the end points of line segments or
corners, are examples of such events. Locations where differences in
textons occur, or where differences in the densities of textons occur,



Introduction 11

are used for segmentation purposes. More information on this subject
can be found in [97], [98], [72], and [113].

In another attempt to understand human visual perception, it is
assumed that it is based on spatial frequency analysis. Therefore, this
study is related to the wavelet theory. The algorithms for texture analy-
sis based on this idea are called multi-filtering algorithms, the discussion
of which is postponed till Section 2.3.7.

Despite the lack of a definition, a lot of research on texture anal-
ysis and synthesis has been carried out. It must be stressed that it
is not unusual in science to work with poorly defined phenomena. In
the literature, many texture operators have been developed. A more
elaborate discussion of these operators can be found in Section 2.3. A
detailed discussion of existing synthesis techniques is outside the scope
of this thesis. However, in Section 2.4 an enumeration of some impor-
tant techniques is given.

Studying the literature [49], [48], [40], [44], it can be concluded that
there is a certain consensus that there are two types of textures to be
distinguished. These types of textures can be combined into one more
general oriented "model”.

The first type of texture is based on primitive texture elements, also
called textels. The orientation of these elements with respect to each
other may be based on a functional, stochastical, or a deterministical
rule. An example of such a texture is a brick wall (see Fig. 2.5) or,
more extreme, a chessboard type of texture. A second example of such
a texture is the skin of a reptile as shown in Fig. 2.2. It is typical
of this concept that the texture is based on a repeating pattern, or
on repeating patterns. Analysis techniques which are based on the
detection of such a repeating pattern should be first considered. In this
case one could think of methods based on the frequency spectrum or
the correlation function. Within the context of these types of textures,
one also speaks of microtexture and macrotexture. By microtexture
one means the primitives of the textures, while macrotexture refers to
the orientation of the primitives with respect to each other.

The second type of texture is not built up of textural elements. This
is a purely stochastic type of texture. Examples of this type of texture
are: tissues, clouds, etc. In Fig. 2.4, ice crystals on an automobile
are shown as an example of this type of texture. The analysis of this
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Figure 2.5: A ceramic-coated brick wall. Picture d26 from [14].

type of texture is based on stochastic operators which determine some
probabilistic measures.

In [48], Haralick gives an elaborated discussion of the first type of
texture. He calls textural primitives tonal primitives. The tonal aspects
and the regional aspects of these primitives can be studied. Studying
the tonal aspects of the primitives implies that the primitivities are
described in terms of the average, minimum or maximum grey value.
The regional aspects refer to a description based on features like shape
or area.

Haralick’s discussion continues with the question as to whether or
not a distinction could be made between the tonal and the textural
features. It seems that this is impossible. Therefore, Haralick prefers
to speak of a fone-terture concept. This concept can be compared
with the particle-wave concept. Light can be supposed to be a wave
phenomenon for certain studies, but from another point of view it might
be considered as a particle phenomenon. The discussion about texture
and tonals may be regarded as comparable. If one studies only a very
small part of the images, the number of tonal primitives will be small
and therefore the dominant property of the part will be tone. When
studying a larger part, more tonal primitives are considered, and the
region will be dominated by the textural properties.

Gagalowicz [40] has based his work on a combination of the two
types of textures. In his opinion, a texture consists of at least two levels,
where each level is based on either the structured type of texture, or the
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purely stochastic type of texture. In his discussion, he introduces two
conceptions e.g. invariance under translation and textural resolution .
The concept invariance under translation is used to denote the property
whereby a texture leaves the same visual impression whatever part
of the texture is observed. The minimal window size of the operator
required to garantuee invariance under translation is called the textural
resolution. These definitions are crucial for texture analysis in general.
He continues his discussion and develops a synthesis routine based on
these aspects, which are outside the scope of this discussion.

In the following we discuss the duality of synthesis and the analysis
of textures. Thereafter, we discuss the most well-known techniques for
analysis and for synthesis. Finally, we conclude with some remarks
regarding trends in analysis. The discussion of techniques based on
fractal theory is postponed to Chapter 4.

2.2 Analysis versus Synthesis

The search for texture analysis operators is always based on a model.
However, some models can be so general that it is not possible to ver-
ify whether or not the texture under analysis behaves according to
the model, which means that such an analysis is, in general, not sup-
plemented with an error measure. Examples of such models are the
SGLDM!-approach and the grey level run-length approach, which are
discussed in Section 2.3.

Having a model means that we can develop an analysis operator as
well as a synthesis algorithm (see Fig. 2.6) which results in a duality
between analysis and synthesis. We can generate images according to
the model, with which we can verify the functioning of the analysis
tool. This garantuees conditioned experiments, where the noise and
the distortions to be expected in the real application can be simulated.
Following this approach, we are able to learn the functioning of the
analysis operator. It also means that if we have obtained the required
parameters during the analysis, we can generate textures which should
look like the texture under study. Or, more practically, knowing the
parameters, we can imagine how the texture would look. Thus, the

ISGLDM = Spatial Grey Level Dependence Method.
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synthesis

Figure 2.6: A model may be used for analysis as well as synthesis
techniques. The relationship between analysis and synthesis can be of
use for testing analysis operators.

parameters are interpretable. Image coding is a case where this duality
is vital, where regions might be modeled and where only the model
parameters are stored or transmitted. This duality may also result
in interaction with other scientific disciplines. The most related disci-
plines are psychology, in particularly Gestalt psychology, and computer
graphics.

These psychological studies aim to increase the understanding of
the human visual system. Part of that study is the understanding of
the discrimination and classification of textures. An example of such
work is that of Julesz [59], as we discused in Section 2.1. His work
is carried out on the edge between the world of image processing and
the world of psychology. Despite the partly overlapping goal between
the image processing community and the psychological studies of the
human visual system, the interaction seems to be limited.

Compared to the influence of the work of psychologists on texture
research for image processing, the influence of computer graphics is
possibly more limited. With the growing number of computer graphics
applications, the need for algorithms which generate natural looking
textures is steadily increasing. Medical training systems, simulators
for training defense personnel and computer games are examples of
such applications. The fact that the influence of computer graphics
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research on texture research for image processing is limited is caused
by the fact that one is only interested in an algorithm that will generate
a natural looking texture. Such algorithms do not necessarily need to
be applicable for texture analysis.

From this discussion it follows, that because of the complexity of
texture as an image processing phenomenon, the analysis approaches
of the image processing community are almost stand alone with respect
to other scientific disciplines that study texture as well.

2.3 Analysis

Most texture operators calculate the texture value for a window of
given dimensions. The minimal window sizes are dictated by the tex-
tural resolution as discussed on page 13. In practice, the window is
never smaller than 8 x 8. A larger window size, however, is preferable.
Although a much larger window could result in ill-defined edges for
scenes with more than one region. Now, suppose that the grey values
are in the range of [0,255] and we have a window of 8 x 8. Then there
exist 256%¢ =1340780792994259709957402499820584612747936582059-
23933777235614437217640300735469768018742981669034276900318-

58186486050853753882811946569946433649006084096 realizations. Of
course, there is no equality of probability in the occurrence of all realiza-
tions in natural fields. Further, this number should not be interpreted
as being the number of classes. It is the task of the texture operator to
cluster similar textures to almost equal values, while dissimilar textures
should result in dissimilar texture values. However, this number illus-
trates that it is hard to expect a good performance for a whole range
of applications from a single operator. In most practical situations, a
combination of different operators is used, or one operator is used with
different parameter values. An example of the latter situation is the
use of a directionally sensitive operator. Such an operator is especially
useful for textures which show a certain directionality. In such a case,
we could apply the operator twice, where the direction in which the
measurements take place is fitted to the direction of the texture. The
values could be combined to an average value, but we could also use
them separately during the analysis. In the following sections, we dis-
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cuss the most common type of texture operators and those operators
which are typical for a class of operators. However, we should stress
that for a certain type of texture the frequency domain should first be
considered. Some textures have characteristic properties in this domain
which might be used for the analysis. The study of the frequency do-
main will probably be based on the power spectrum. And because this
spectrum is related to the autocorrelation function according to the
Wiener-Khintchine theorem, we can consider this study to be based on
the autocorrelation function.

2.3.1 SGLDM: The Spatial Grey Level Depen-
dence Method

The Spatial Grey Level Dependence Method stands for a whole range
of texture measures which are based on the co-occurrence matrix.
Haralick has played an essential role in the development of the two-
dimensional co-occurrence matrices for texture discrimination purposes
[49], [48], [50]. He developed a technique which is based on the esti-
mation of the second order joint probability density function. The use
of this probability density function was based on research carried out
by Julesz, who argued that the second order statistics played an essen-
tial role in texture discrimination by man. As discussed in Section 2.1,
Julesz later abandoned the theory of discriminability which is based on
global statistics. This, however, does not exclude the usefulness of the
texture operators developed by Haralick for certain applications.

The co-occurrence matrix, which is also called the Gray-Tone
Spatial-Dependence Matrix, is essential for Haralick’s operators . The
number of rows and the number of columns of this matrix are equal to
the number of grey values one wishes to distinguish in the image. This
number does not need to be equal to the number of grey values which
can be distinguished in the image. Originally, the sizes of the matrix
were based on an optimalization between processing time, memory re-
quirements and the quality of the measurements obtained. However,
today’s computer power justifies the use of all available grey values.
The matrix is initialized to 0. Before filling the matrix, a vector has to
be defined with a certain length and a certain orientation. This vector
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is moved over the image, within the window of the texture operator and
the grey value at the tail of the vector and the head of the vector are
considered during the measurement. The elements in the co-occurrence
matrix correspond to pairs of grey values, the values of the elements
correspond to the frequency of occurrence of the particular combination
in the window. For example, if the grey value at the tail of the vector
is a and the grey value at the head of the vector is b, then the elements
(a,b), respectively (b, a) will be increased by one. Note that if the grey
values are equal, the value of the corresponding element is increased
by twol At the end, all matrix elements are normalized, which results
in an estimate of the joint second-order probability density function.
This matrix is used for the calculations of texture measures. Note that
the matrix is symmetrical and we could therefore reduce the memory
requirements by almost 50%.

The features which are based on the cooccurence matrix are a mea-
sure for the distribution of the counts over the matrix. For the normal-
ized co-occurrence matrices Haralick proposes a number of features. An
example of such a measure is the contrast, which is defined as follows:

N-1
Contrast = 3 n*{ ¥4, SN, p(i,7) ¢ (2.1)
w0 L li=jl=n
where N stands for the number of rows, and the number of columns.
The matrix element is designated by p(¢,j), where i corresponds to
the grey value at the tail of the vector and j to the grey value at the
head of the vector. The measure is called contrast, because 1t stresses
those elements that corresponds to pixel pairs with a large difference.
Bear in mind that elements in the neighborhood of the main diagonal
correspond to pixel pairs with a small difference, whereas elements more
remote from the main diagonal correspond to pixel pairs with a large
difference. The measures proposed can be divided into three classes,
viz.

o Measures that stress those elements that correspond to pixel pairs
with small differences.

e Measures that stress those elements that correspond to pixel pairs
with large differences.
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e Measures that treat all elements equally.

An example of the latter case is the entropy, which has been defined as
follows:

Entropy = —>_ > p(i,j)log (p (4, 5)) (2.2)

This measure will come back in Chapter 4.

As this method is based on measuring the grey values at the tail and
the head of a vector, we have to know how to choose the orientation
and the length of the vector. If the texture under study does not show a
directionality, the choice of the orientation of the vector is arbitrary. If,
however, the texture shows a certain directionality it is recommended
to apply several vectors with different orientations. The choice of the
length 2 of the vector is dependent on the type of texture. If the texture
under study appears to be a more stochastically oriented one, as for
instance the texture shown in Fig. 2.4, the influence of the length seems
-according to Besuijen [9]- to be limited. From a computational point
of view, smaller values for the length are to be prefered, because more
measurements are obtained within the window. For this type of texture,
one often uses a length of 1.

The choice of the length is more critical for textures which seem to
be built up of texture elements. An example of this case is shown in
Fig. 2.7. In this figure, we have shown that the vector can be chosen
too small in comparison to the size of the texture elements. We have
also shown the case where the vector has been chosen too large. The
right choice for the length is where the length is more or less equal to
the size of the texture elements. *

For a texture which appears to be built up of texture elements, we
see that there is an optimal "scale” on which the texture should be stud-
led. In this case scale is defined as the length of the vector. Choosing
a vector length which is not in correspondence to the texture elements
results in a decrease in the performance of the texture operator.

2Haralick uses the city-block distance metric for his definition of the length of
the vector.

30f course, the length could be chosen as an integer multiple of the size of the
texture elements. However, this will reduce the number of measurements that can
be carried out in the window and is therefore not preferable.

O
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Figure 2.7: A typical example of a texture (from [14]) which is built up
of texture elements. The three vectors shown correspond to the cases
where the vector for the SGLDM is chosen too small, too large and in
correspondence with the size of the texture elements.

The way the SGLDM operators deal with scale is limited. Scale,
as dicussed before, is for these operators defined as the length between
pixel pairs. Normally, by scale we mean the level of resolution. This
means that if we study a texture on a coarser scale, a larger area patch
is considered, rather than pixel pairs at increasing distance. The Max-
Min operator, which is discussed in Section 2.3.4, is an example of an
operator that studies textures on several levels of resolution.

The SGLDM has been extended by Davis et al. [29], such that the
co-occurence matrix is not based on grey levels, but on the spatial
distribution of textural features, like edge pixels. It originally came
from a synthesis approach where the texture was thought to be built
up of texture elements as discussed in Section 2.1. Another variant to
the SGLDM distinguishes the grey value at the tail and the head of
the vector. The grey value at the tail corresponds with the row-index
of the matrix and the grey value at the head of the vector corresponds
with the column-index.

2.3.2 GLDM: Grey Level Difference Method

The Grey Level Difference Method can be seen as a less time and mem-
ory consuming variant of the SGLDM approach. Instead of a matrix we
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use a vector. This vector represents the number of counts of possible
absolute grey level differences, measured over a given vector. Thus, if
we distinguish N grey levels, our grey level difference (in the sequel
abbreviated to GLD) vector will have N elements. The first element
corresponds with a grey level difference of 0, the second element cor-
responds with a grey level difference of 1, and so on. As for the co-
occurence matrices, we can normalize the resulting vector. Note that
the grey level difference vector can be obtained from the co-occurrence
method, by summing up the entries along axes parallel and symmetri-
cal with respect to the main diagonal of the matrix. An early variant
on this approach has been discussed by Bacus and Gose [7].

As for the SGLDM method, we can also define here a number of
features, which are based on this vector. The features in use for the
GLDM are similar to the SGLDM features. For instance, the GLDM
variant for contrast feature is defined as:

N
Contrast = »_°p(3). (2.3)

=1

In [121], Weska et al. describe a comparative study of texture mea-
sures. In this study, it is concluded that the SGLDM and GLDM
perform almost equally well. Therefore, from a computational point of
view, the GLDM might be prefered. Conners and Harlow [24] also made
a comparative study of texture measures. In their theoretical study it
is shown that the discriminable pairs of textures for the GLDM are
to be a subset of the discriminable pairs of the SGLDM. This means
that for applications, for which the performance of the GLDM appears
to be insufficient from a discriminating point of view, one should test
the SGLDM on its suitability. Of course, the way scale is treated by
the GLDM is not different from the way it is treated by the SGLDM.
Therefore, the choice of the vector length might be critical.

2.3.3 GLRLM: Grey Level Run Length

In 1975, Galloway [41] introduced the Grey Level Run Length Method.
In this technique, a matrix is filled with statistics of the run lengths.
Runs are defined as consecutive pixels which have the same grey value.
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Now, the length of a run is equal to the number of pixels of which it
consists. Of course, for each possible direction such a matrix can be
defined.

The matrices to be initialized are called the run length matrices.
The rows of these matrices correspond to the grey level, while the
columns correspond to the run lengths. Before the analysis, Galloway
groups the grey levels. She gives an example in which the original im-
age consists of 64 grey levels. This image is transformed to an image
where the grey values lie in the range of [0,7]. The transformation
used is linear. This rescaling prevents the situation that only small run
lengths will be found. For practical reasons, the possible run lengths
are also grouped. For the 64 x 64 image Galloway gave an example in
which she grouped the run lengths in the ranges: 1,2 —-3,4 -7, 8 — 15,
16 — 31, and 32 — 64. In these groupings, the resulting matrices were
of the size 8 x 6.

As for the texture measures discussed before, we can determine a
number of features. The features of this technique are not significantly
different from the discussed features of the SGLDM and the GLDM.

Although this method is well known in the image processing com-
munity, its use is rather limited, which is because of the strong noise
sensitivity. After a comparative study, Weszka et al. [121], and Con-
ners and Harlow [24], came to the conclusion that the Grey Level Run
Length Method should not in general be recommended. Further, we
must conclude that it is not possible to select the level of scaling on
which the texture has to be studied. In the next section, the Max-Min
measure is discussed as an example of a measure which is based on the
quantification of scaling behavior.

2.3.4 Max-Min Measure

In [85], Mitchell et al. propose a line-scan based texture measure which
counts extrema on different levels of scaling. Initially, the data is
smoothed in order to make the technique less sensitive to noise. Then,
the image is filtered by a non linear 1-D filter. Suppose that the original
line is denoted as I(z), where z is a position on the line and /(z) the
grey value on that position and let the resulting line be denoted by I'(z).
The filter is supplied with a threshold parameter 7', which determines
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Figure 2.8: An illustration of the filter operation which is used by
Mitchell [85]. The resulting curve is obtained where T = 2.

the level of scaling. A larger value for T corresponds to a measure-
ment on a larger scale. Now, the filterscheme is defined as follows:

| It [ Then |
I'ky<Ik+1)-1 I'k+1)=Ik+1)-Z
Ik+1) -2 <) <Ik+1)+ T | I'(k+1)=TI(k)
I(k+1)+ L <I'k) I'k+1)=Ik+1)+%

An example of this filter process where T' = 2 is shown in Fig. 2.8.
After filtering the data, the extrema (that means the minima and the
maxima) can be determined. It is this number that is determined on
several levels of scaling.

In order to make the algorithm insensitive to multiplicative illumi-
nation changes, the authors use the logarithm of the grey values. To
make the operator insensitive to the absolute number of extrema en-
countered, the ratio between the number of extrema at one threshold
to the number at the next threshold is determined. This ratio can be

o
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obtained from a curve where the logarithm of the number of extrema
is drawn against the threshold value. Now, the slope of the resulting
curve corresponds to the ratio. For each type of texture, a charateristic
curve is obtained. According to the authors, the classification results
obtained with this technique are comparable to the results obtained
with the SGLDM and GLDM. However, the method is less complex
and considerably faster.

2.3.5 Textural Edgeness

In [100], Rosenfeld and Thurston propose a texture measure which is
based on the textural edgeness. Before calculating the average edgeness
of a textural scene, one has to compute the edges within the region of
interest. The authors apply Robert’s cross operator. This discrete
difference operator is based on the following operation:

I'=|I(,§)—IG+1,j+ D)+ 7+ 1) = IGE+ 1,5,  (24)

where I’ denotes the resulting image and [ the original image. From
the resulting image the average edgeness per unit area is computed.

2.3.6 The Long-Correlation Model

The long-correlation model is a texture model en pure sang which has
been developed by Kashyap [64],[63]. Kashyap mentions the applicabil-
ity for analysis and synthesis. The name long-correlation model refers
to the main characteristic of the model. In the traditional stationary
autoregressive models, the correlation decays exponentially with the lag
(or a linear combination of the exponentials.) In contrast with these
traditional models, the correlation for the long-correlation model de-
creases with the lag & in a manner like k*. This property is related
to the fractional Brownian function which is discussed in Chapter 4.
Such a slowly decreasing correlation is typical for a number of natural
textures.

Suppose that {y(i,j)} is a sequence of intensities which fol-
lows a two-dimensional long-correlation model and {((7,7)} is a two-
dimensional white noise sequence with variance p. Then the 2-D long-
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correlation model is represented by the following equation:

y(i,7) = (1= 2717 (1 — z31)7% (i, 4), (2.5)

1 1

where z; " and z; ~ are unit delay operators in the i and j directions,
respectively. The parameters ¢ and d characterize the properties of this
model along with the variance of the noise. These parameters can be
estimated in the Fourier domain by the least squares method.

2.3.7 Multi-Channel Filtering

A tendency which is influenced by the development of the wavelet the-
ory is based on multi-channel filtering. This technique is justified by
the assumption that the human visual system makes use of spatial
frequency analysis. The idea is to filter the image with a range of
narrow-band filters. Studying the output of such a filter bank results
in a selection of filters on which one or more features might be based.
The selection of filters is based on the resolution required in the spa-
tial domain and the frequency domain. The resolution in the spatial
domain is of importance for the accuracy with which texture edges are
found. The resolution in the frequency domain is of importance for the
discrimination performance. An approach based on real-valued even-
symmetric Gabor filters is discussed by Farrokhnia and Jain in [37], and
by Jain and Farrokhnia in [57]. The impulse response of these filters is
given by:

2 2
h(z,y) = exp {—% lg—% + g—z} } cos (2mupr) , (2.6)
where ug is the frequency of a sinusoid plane wave along the z-axis (i.e.
the 0° orientation), and ¢, and o, determine the width of the Gaussian
envelope along the z and y axes. The impulse response in the Fourier
domain is given by:

1 . 2 2
H(u,v) = Aexp{—§ [Eu—ﬁu—o) +Z—}} +
v
o

1 [(u+ ug)? N

Aexp {—5

2
Oy
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v

where o, = #, Op = 5% and A = 27n0,0,. The Gabor filter opti-
x oy

mizes the resolution in the spatial domain as well as in the frequency

domain. A more detailed and general discussion by Bovik on the multi-

channel approach can be found in [13].

2.4 Synthesis

In Section 2.2, we mentioned that if there is a model available, this
model can be used for analysis purposes, as well as for synthesis pur-
poses. However, there are models that appear to be particularly suited
for analysis purposes, whereas other models can be more suited for
synthesis purposes. Because we already have discussed a number of
analysis techniques, we will now mention a few of the synthesis tech-
niques that are suggested for the study of textures. Techniques based
on fractal theory are discussed in Section 4.3.

The most well-known techniques are based on ARMA models. A
detailed discussion on the use of 2-D non-causal autoregressive models is
described by Chellapa and Kashyap in [22]. An elementary discussion
of this technique is also given by McCormick and Jayaramamurthy
in [83]. The use of the hidden Markov model has been described by
Gong and Huang in [43].

In 1976, Zucker [127] introduced a synthesis technique which is of
interest for textures which can be characterized by some textural prim-
itives. These primitives might be distorted in shape; and their ori-
entation to each other is based on a deterministical, functional or a
probabilistical rule. In [125], Yokoyama and Haralick introduce a syn-
thesis technique that takes into account the probabilistic aspects of
textures as well as the deterministic aspects. The technique consists
of two phases. The first phase starts with the creation of a symbolic
image. This symbolic image is initialized such that all values are set to
zero. The next step of the first phase consists of the distribution of seed
cells. This means that in a random or in a deterministic fashion the
values of the resolution cells are changed in a value that corresponds to
a symbol type. Cells that are non-zero are called seeds and after having
completed the distribution they will grow to structures. The growing
process on its turn can take place in a random fashion or in a determin-
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istic fashion. The second phase consists of the transformation of the
symbolic image to the final grey value image. This transformation can
again be random oriented as well as deterministc oriented. The elegance
of this synthesis technique is the consequent distinction made between
the deterministic aspects of textures and the probabilistic aspects.

2.5 Concluding Remarks

In the preceding discussion we have listed a number of texture analysis
operators. Some of them are to be considered as "real” model oriented.
Others are so general that the model aspects are hardly to be recog-
nized. It is, therefore, that operators of the latter type are considered
to be probabilistic measures. As a result of the limited applicability of
the available texture models, the general oriented texture operators are
still in wide use.

New texture models are introduced by, for instance, the fractal the-
ory. The fractal theory describes how the appearance of phenomena
changes by varying the scale. Scale is -as we have discussed in this
chapter- also of importance for the study of texture. The appearance
of a texture might dramatically change by varying the scale on which
it is observed. Studying an image processing phenomenon on different
levels of scaling is often carried out in a pyramidal data structure or
pyramid. In the next chapter we will discuss this datastructure and its
use for image processing tasks. In Chapter 4, the fractal theory will be
discussed and its use for the study of textures. Finally, in Chapter 5 an
analysis technique is developed that studies the underlying texture on
a number of scaling levels by using the pyramidal datastructure, and
which is based on ideas from the fractal theory.
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Pyramidal Data Structures

3.1 Introduction

The name pyramidal data structure (or pyramid) refers to the way this
structure can be visualized. It is a type of structure which is in wide
use for image processing purposes and which was introduced by Kelly
in 1971 [69]. The program where Kelly was working on aimed at the ex-
traction of the outline of human heads in digital pictures. This outline
could later be used for identification purposes. Kelly demanded that
the technique required only a minimum of processing time. Further
constraints were the reduced sensitivity to noise and distortions. In
order to fulfill the requirements he followed a method which was called
planning, and which originally came from artificial intelligence research
and was introduced by Minsky [84]. Planning consists of three steps,
V1Z.:

1. Simplify the problem.
2. Solve the simplified problem.

3. By using the solution to the simplified problem, try to solve the
original problem with the same solution method.

27
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apex <= level: 0

== level: 1

@ level: 2

level: 3

Figure 3.1: The pyramid as proposed by Kelly [69].

This concept is translated by Kelly in the following way:
1. Extract a new and smaller image from the original image.
2. Locate the desired edges in the smaller image.

3. Use the edges found in the smaller image for locating the edges
in the original image.

The smaller image was obtained by a combination of averaging and
subsampling. The sizes of the reduced image were reduced by a factor
of 8 by taking the average value of non overlapping windows of 8 x 8.
Although Kelly only used two resolution levels, in his discussion he
suggested applying more resolution levels. He suggested that for some
applications, it might be preferable to apply a sequence of reduction
factors, like, for instance: 2, 4, 8, etc. This suggestion was the intro-
duction of what would later be called the pyramidal data structure.
The structure is often visualized by putting the reduced images above
each other in such a way that the sizes decreases (see Fig. 3.1).

In the literature, two styles of numbering the levels within the pyra-
mid are in use. The first one starts at the top level of 1 x 1 (also called
the apex), which is given the index 0 and the index is incremented with
each level underneath. In this way the index is directly related to the
size of the level. For instance, a level with index i corresponds with
an image with sizes 2¢ x 2!, The other type of numbering starts at the
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bottom level and goes to the apex. It is the first type of numbering we
here apply.

In 1972, Uhr [114] applied the pyramidal datastructure in its full
extent, but called it a recognition cone, which refers to the human visual
system [115]. The term "cone”, however, suggest the use of a circular
type of image. Later the term pyramid or pyramidal datastructure has
been introduced which is more in accordance to the square type of
images to be studied.

The original pyramid is also called a grey value pyramid, because
the nodes (or pixels) in the pyramid are filled with grey value infor-
mation. A pyramid can also be filled with other information, which
requires another type of resolution reduction. Today, a whole range of
pyramids are known. In this chapter, we aim to give an impression of
the use of pyramidal data structures, what types of pyramids are in
use, and what should be taken into account when one is planning to
design a new type of pyramid, or a new type of initialization of the
pyramid. In the following section we give an overview of the pyramids
which can be found in literature, after which the use of the pyrami-
dal data structures for texture analysis and segmentation is discussed.
The discussion of implementations of the pyramidal datastructures into
hardware is outside the scope of this thesis.

3.2 Examples of Pyramids

3.2.1 The Grey Value Pyramid

The initialization of the grey value pyramid is a recursive process, which
starts at the bottom level. This level is a direct copy of the original
input image. Each level above is obtained by a combination of a low-
pass filtering step and a subsampling step. The operator that carries
out this process is called the resolution reduction operator. Each new
level is obtained by applying this operator on the level underneath. In
practice, the filtering and subsampling step will be combined, such that
a reduction in processing time is obtained. Besides the linear filtering
technique as discussed here, examples are to be found where non-linear
filters were used. For instance in [86], Morales and Acharya introduce
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Figure 3.2: Resolution reduction as a process built up in two phases.

what they call a morphological pyramid and in [105] the median filter
is used by Shneier to prevent that linear features in the pyramid are
blurred.

The Resolution Reduction Operator from a Frequency Point
of View

Because of the subsampling step in the resolution reduction, the choice
of the averaging filter is not trivial. Originally a 2 x 2 averaging filter
was proposed. That this filter is not optimal from a frequency point
of view can be seen if we describe the filter mathematically. Suppose
that I;, corresponds with the pyramid level k. Then, I (¢, j) denotes the
grey value of the pixel with coordinates (i, ). This level is supposed to
be the input for the level which is denoted by I,_;. For our analysis,
we suppose that there is an intermediate level I}, which has the same
sizes as Ij.(4, 7), but which contains the result of the filtering step (see
Fig. 3.2). We can now formulate how [}, can be obtained from Ij:

R9) = )+ LG+ L)) +
L(i,j+1) + L(i+1,5 + 1] (3.1)

Transforming this expression into the z-domain results in:
, 1
Ik(zl; 22) - Z(l + 21+ 29+ leQ)Ik(Zl, 22), (32)

where Z;, stands for the z-transform of I and Z for the z-transform of
I,. The z-domain can easily be transformed into the Fourier domain
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Figure 3.3: The magnitude of the transfer function of the 2 x 2 uniform

averaging filter.
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. This results in:
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By rewriting this, we find for the transfer function H(wq,ws)

(3.4)

1) cos

(

cos
The magnitude of this transfer function is shown in Fig. 3.3

H(W1>w2)

It is characteristic of this averaging filter that it still passes a signif-
icant amount of high frequency energy. These high frequency compo-
nents result after subsampling in aliasing. To prevent aliasing, the filter

<w; <mor § <wy <. Tani-
a more detailed discussion on this type

should reject frequencies for which 3

]

110], Tanimoto deals with several types of distortions

109

[

moto and Pavlidis give in

[

which might occur higher up in a pyramid.
Another type of filter which has also been applied in literature is

the uniform filter of sizes 4 x 4

of filtering. In

This filter suppresses the unwanted

high frequency components more strongly than the previously studied
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Figure 3.4: The magnitude of the transfer function of the 4 x 4 uniform
averaging filter.

filter. The analysis of this filter can be done in the same way, which
results in the following transfer function:

H(wy,wq) = COS(%) COS(%) cos(wy) cos(wg)ei;_lej% (3.5)

The magnitude of this function is shown in Fig. 3.4.

A better filter for the initialization of the grey value pyramid is
the Gaussian averaging filter. The use of this filter was proposed by
Koenderink [70] among others who came to this conclusion after an an-
alytical study of scale space, where one of the constraints was that the
filter should not introduce artefacts higher up in the pyramid. Scale
space means in our case a 3-dimensional space, where two of the three
dimensions correspond with the spatial domain of the image, and where
the third dimension corresponds to the resolution. The relation of pyra-
midal data structures with scale space is postponed to Section 3.3 In
Fig. 3.5 an illustration of a grey value pyramid is given, which is re-
alized with a Gaussian filter with sizes 5 x 5. The magnitude of the
transfer function of this filter is shown in Fig. 3.6.

Burt [15] [16] has given some rules for designing Gaussian-like filters.
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Gaussian-like, because the filters are not exactly Gaussian. However,
the difference is negligible. In his discussion he aims at the development
of a design algorithm for filters with equivalent shapes but different
widths. In order to ensure that the equivalent kernels are unimodal,
symmetric, and centered at (0,0), Burt adopts the following four con-
straints:

1. Normalization
m m

Z Z w(i,j) =1, (3.6)

t=—m j=—m

2. Symmetry
w(z’,j) = w(—z,]) = ’LU(i, -J) = ‘U)(-i, —'j)v (37)
3. Unimodal

w(i,7) = w(k, 1) forli| < |k[ and|j| < |I], (3.8)

4. Equal Contribution

m m

1
Yoo > wlitinj+jr) = ot (3.9)

i=—m j=—m
for0<2,7<r,

where the filter weights are denoted by w(i, j), with —m < 1,57 < m.
The last constraint ensures that each pixel in a pyramidal environment
contributes with equal weight to every level above. For the Gaussian
case the filter is separable, which means that:

w(i, j) = we(Dwy (), (3.10)

where w, and w, stand for the one-dimensional kernels. Now, suppose
we want to apply the Gaussian filter as a separable filter, so that we
filter the image first in the horizontal direction and afterwards in the
vertical direction, our problem is simplified to a one-dimensional prob-
lem. The constraints can be reformulated to the one-dimensional case.
Suppose we are interested in a one-dimensional Gaussian filter with five
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weighting coefficients. Let w,(0) = a,w,(1) = b and w,(2) = ¢. Then
we find according to the constraints:

w(=1) = w(l) = b
wE-Q% _ w(Qg _ . } Symmetry
a+2b+2c=1 Normalization
a>b>c>0 Unimodal
a+2c=2b Equal contribution

Burt shows that for a = 0.4 a Gaussian-like filter will be obtained. The
other coefficients are obtained by solving the equations. This results in
a=0.4,b6=10.25 and ¢ = 0.05.

Applications of the Grey Value Pyramid

Correlation matching is a typical application of this type of pyramid.
This type of application is described by Glazer in [42], by Hall et al.
n [46], and by Rosenfeld and Vandenbrug in [101]. By applying a
pyramidal data structure, a significant reduction of processing time
can be achieved, and dependent on the complexity of the scene, a more
precise result might be reached. The matching process starts at a high
level in the pyramid, and after having found the result for this level,
the process continues one level lower within the region of interest. This
region of interest can be compared with the band of edge pixels Kelly
processed after having found an initial outline of the face.

Another type of application is that of blob-detection as described by
Blanford and Tanimoto in [12], and by Shneier in [104]. Some applica-
tions require the localization of one or more bright blobs in the image.
In the first instance, one might consider the use of a mazimum operator.
However, the presence of noise makes this operator less appropriate, a
Gaussian resolution reduction operator or a uniform weighted operator
might be preferable for the initialization of the pyramid. With this
pyramid the search for the maximum value is started.

In [105], Shneier describes the use of a grey value pyramid for the
extraction of linear features. Such features can occur in aerial pho-
tographs and an algorithm for the detection of these features is of use
for the automatic mapping of roads. Shneier describes an algorithm,
where a line detector operates at each significant level of the pyramid.
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The output for each level is used to detect regions in the original image
that correspond to linear features. The threshold required to extract
the linear features in the original image is based on properties within
these regions. In contrast to the original grey value pyramid as de-
scribed earlier, the author used a median filter with a size of 2 x 2. For
this application, such a filter is preferable, because the linear features
would otherwise be blurred, and this would hamper the detection of
these features.

A completely different type of grey value pyramid is Peleg’s adaptive
pyramid [91]. Until now we have discussed pyramids with a uniform re-
sampling scheme. Peleg proposes a pyramid with an resampling scheme
which is adaptive to the contents of the underlying region. Therefore,
he defines a ”"busyness” measure. From an information theory point
of view this approach is of particular interest. Regions with more in-
formation will be more densely resampled than smooth regions. The
resulting image looks like images reflected in a carnival mirror.

3.2.2 The Laplacian Pyramid

The Laplacian pyramid is an extension to the Gaussian pyramid. It
was introduced by Burt in 1983 [17] [16]. A generalization of this type
of pyramid is also known as the DOLP (= Difference Of Low-Pass)
pyramid, and as the DOG (= Difference Of Gaussian) pyramid. The
initialization starts as the initialization of a Gaussian pyramid. There-
after, each level above the bottom level is expanded by interpolation
such that the sizes equal the sizes of the level underneath. The resulting
image is subtracted from the level underneath. The difference is stored
in the Laplacian pyramid (see Fig. 3.7). What remains in this resulting
image are the high frequency components which were suppressed dur-
ing the resolution reduction step. Thus, the resulting pyramid consists
of band-filtered versions of the original image. In Fig. 3.8, we show an
example of such a pyramid. In this figure, the grey scale has been nor-
malized and shifted, such that the values fall within the visual range.
This explains the average grey-tone. The initialization as described
above can be formulated as follows. Suppose that Iy is the bottom
level of the pyramid, which equals the original input image. Then, for
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Figure 3.8: An example of a Laplacian pyramid, where the values have
been scaled to the interval [0,255].
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Figure 3.9: The reduction process for the 1-dimensional case visualized.

0 <k < N we say:
It_1 = REDUCE|I}] (3.11)

According to the Gaussian reduction as discussed before, we write:

I 1(4,7) Z Z (m,n)Ix(2i4+,25 + n) , 0<ij<21-1

m=-2n=-2

(3.12)
where w stands for the Gaussian kernel. An illustration of this process
is shown in Fig. 3.9. Besides the REDUCEFE operator, we need for the
initialization of the Laplacian pyramid an EX PAN D operator. Now,
suppose that I is the expanded version of I;_;. The sizes of I} equal
the sizes of I;. Expansion is based on reversing the arrows in Fig. 3.9.
This results in:

z+m Jj+m
L(i,j) =4 Z Z (m,n) I ( 5 ,T) (3.13)

m=—2n=-2
It must be stressed that only those terms for which the index is an
integer contribute to the sum. Now, the Laplacian pyramid is obtained
by subtracting the images I; from the images I. Thus, the resolution
reduction operator of the Laplacian pyramid is characterized by the
difference of two Gaussian filter operators. This corresponds with the
Laplace operator, which is used for enhancing edges. Therefore, this
pyramid is given the name Laplacian pyramid. In the following section
we discuss some of the applications of this type of pyramid.
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Applications

For some applications one is interested in the zero-crossings of band-
pass filtered images. The Laplacian pyramid can be useful in this type
of approach. The zero-crossing analysis is related to the scale-space
study which is discussed in Section 3.3. An introduction by Marr to
this type of analysis and its relation to the human visual system can be
found in [82]. Burt [17] [16] suggests the use of the Laplacian pyramid
for image coding purposes. Burt also gives in [16] an example where the
Laplacian pyramid is used for texture analysis and segmentation. He
generates a Laplacian pyramid, based on a given input image, contain-
ing some textural regions. The values within the Laplacian pyramid
are squared. Thereafter the values are smoothed. The resulting values
might be considered as the local (power) spectral estimates which can
be used for texture segmentation purposes. An example of the use of
this approach can be found in [34]. In [19], Burt discusses a similar type
of use of the Laplacian pyramid for automated surveillance. This algo-
rithm should register if a movement is detected, where the movement
is detected by taking the differences of succeeding frames.

In [16] and [18], Burt also suggests the use of the Laplacian pyra-
mid for image fusion purposes and for the study on human binocular
perception. Image fusion is desirable within certain applications, where
one considers images from several sources. By fusing the information
from these sources, one could recognize information which is not visible
in the original images. The example of Burt is based on the fusion of
a left image and a right image. Burt starts his fusion scheme by the
initialization of two Laplacian pyramids (corresponding to two image
sources), which are denoted by LL and LR. The resulting binocular
pyramid is denoted by LB. The resulting fusing scheme is:

o ) LLi(i,5) i [LLi(d, 5) > [LRi(, §)]
LB(i,j) = {LRl(i,j) otherwise

The index [ denotes the level index of the pyramids.

In [111], Toet gives an alternative fusion scheme. Toet defines the
ROLP pyramid, which stands for Ratio Of Low-Pass pyramid. This
type of fusion scheme garantuees a better preserving behavior for visu-
ally important details. The initialization of the ROLP pyramid is given
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by the following scheme:

G,
- ! <i<N :
R; EXPAND[G,,] for 1 <i< (3.14)

RO = GO: (315)

where G; stands for the level 7 in the Gaussian pyramid and R; for the
i-th level in the ROLP pyramid. The merging scheme is similar to the
Burt’s merging scheme:

c o ) RLi(E ) i [RLi(i, §) — 1] > [RR(3, 5) — 1]
RBi1.7) = { RR(i,j) otherwise

The final-result image is obtained by expansion of the pyramid levels
and a multiply reconstruction procedure.

In the literature [25] [26] [28] [27], Crowley describes the use of
the Laplacian pyramid for the description of shapes. The algorithm
searches for peaks and ridges within the Laplacian pyramid. By link-
ing the adjacent peaks in the layers of the pyramid, one obtains a
multiresolution tree which describes shapes. This description can be
used for matching purposes.

In the following section, we discuss the binary pyramid, of which
the initialization could be based on the Laplacian pyramid, however it
could also be based on a logic operator.

3.2.3 The Binary Pyramid

When one starts from a binary image, the most useful operator is the
logical OR operator. This reduction process can be denoted by:

Lo 1(2,7) = I(26,25) V I, (20 + 1,27) V T (26,25 + 1) V [ (20 + 1,25 + 1),
(3.16)
where V stands for the logical OR operator. It is this operator that
garantuees that objects in the input image will still be connected higher
up in the pyramid. In Fig. 3.10 an illustration of this type of pyramid
is shown.
The logical OR-operator is also used for the initialization of the
binary PXY-pyramid as suggested by Backer et al. [6]. The PXY-
pyramid is a coded version of the binary pyramid using the PXY-table
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Figure 3.10: An example of a binary pyramid.

coding technique as suggested by Young et al. in [126]. This coding
technique starts with scanning row by row the image from the top
left corner to the bottom right corner. The table is filled in such a
way that the odd index elements of the PXY-table correspond to the
starting position of object runs, whereas the even elements correspond
to the starting points of the background runs. The element with index
0 gives the number of elements containing PXY table information. This
coding technique enables a fast extraction of object features, such that
in time critical applications a fast identification of the objects can be
achieved. The application mentioned by the authors is that of robot
vision.

The initialization of the binary pyramid could also be based on in-
formation of another type of pyramid that already is available. Such
an approach is discussed by Burt in [16]. His goal is the analysis of tex-
ture with a pyramidal data structure. He starts with the initialization
of a Gaussian pyramid. After which an edge detector is applied to each
level of the pyramid. This results in a binary pyramid. This binary
pyramid is used for the initialization of a pyramid which contains edge
density values. The edge density measure is obtained by applying a
local averaging operator to the binary pyramid. The output value of
the operator is used for the initialization of the edge-density pyramid.
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3.2.4 The Linked Pyramid

A completely different type of pyramid is the linked pyramid. This
pyramid was introduced by Burt et al. in 1981 [20]. It was developed
for segmentation purposes. According to the authors during the seg-
mentation stage of image processing one is confronted with two major
problems:

1. The goal of segmentation is to partition an image into regions
which have homogeneous properties. Horowitz [55] defined seg-
mentation more mathematically as follows:

The result of image segmentation is a partitioning of
the image X into disjoint subsets X, X,...,X, such

that:
(a)
N
Uxi=Xx (3.17)
=1
(b)
X;,i=1,2..,N (3.18)

is connected.

(c)
P(X;)=TRUE fori=1,2,.,N,  (3.19)

where P stands for a logical predicate.

(d)
P(X;|JX;) = FALSE for i # j (3.20)

where X; and X; are adjacent.

However, we can only determine whether or not a region is homo-
geneous if we already have a region. Therefore, the segmentation
could be characterized as a chicken-egg problem.

2. The second problem is that the sizes of the pattern elements and
segments are not known a priori, and different sizes are appropri-
ate for different areas of an image.
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Therefore, the authors develop an approach based on the following
strategies:

1. The segmentation is performed at several levels of resolution.

2. The segmentation and image properties are recomputed in a co-
operative, iterative fashion.

For this approach, the authors developed the linked pyramid. The
pyramids, as discussed so far, have fixed relations between the father
nodes ! and the son nodes. For instance, the node with coordinates (7, j)
at level £ — 1 (this level & should be above the bottom level) has the
following son nodes: (24,2j), (2¢+1,25), (2i,27+1), and (2i+1,25+1).
The linked pyramid, however, is not characterized by fixed relationships
and these may change during each iteration. Instead of speaking of son
nodes, within the linked pyramid we speak during the iteration process
of candidate son nodes. Similarly, we do not speak of father nodes, but
of candidate father nodes. For a node with index (i, 7) we distinguish
now 16 candidate son nodes with indices:

(201,25 —1) (20—1,25) (2i—1,2j4+1) (28 —1,2j+2)
(24,25 — 1) (24, 27) (24,25 + 1) (24,25 + 2)
(2i+1,25—1) (2i+1,25) (2i+1,25+1) (2+1,2j+2)
(2042,2j—1) (20+2,25) (20+2,25+1) (2+2,2j+2).

And a node with index (7, j) has four candidate father nodes, viz.:

(3
(5

—_

[~
|
—
S—
~—~

21y A i
ERAS R

where only integer values of the indices are considered.

The initialization of the linked pyramid starts in the same way as the
initialization of a grey value pyramid. After the initialization, each son
is linked to its most similar father. Similarity is measured by calculating
the difference in value. After setting the new links, the values of the
nodes are recomputed. This computation is done bottom up, where the
father node values are based on a weighting average of the momentary

!The term node may be read as pixel in this case.
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son nodes. The weighting function is based on the number of pixels
at the bottom level that correspond to each of the nodes. Thus, a son
node which corresponds with a larger region in the original image will
be given a higher weight in the averaging. After having recomputed
the node values, the relations should be evaluated again. This process
continues in an iterative fashion, and the convergence has been proven
by Kasif and Rosenfeld [65]. This proof is based on a comparison with
the ISODATA algorithm.

As soon as the linking process stabilizes, the segmentation result
can be extracted from the pyramid. Each node in the pyramid can
be seen as a starting point for a tree structure. (Although there may
be nodes without son nodes!) The value of a node can be given to
the corresponding pixels at the bottom level. Therefore, one should
select a level in the pyramid which contains a sufficient number of
nodes in relation to the number of segments to be expected. After the
selection of the level, a clustering of nodes might be required, otherwise
homogeneous regions might be divided up into several regions. This is
caused by the limited reach of nodes. This reach is fully determined by
the height of the node in the pyramid. Only the nodes of level 1 have a
reach such that the tree can contain all pixels of the image. Nodes lower
in the pyramid have a smaller reach, which result in a division of the
homogeneous segments. It should be stressed that this segmentation
algorithm does not necessarily result in connected regions.

In [3], Antonisse discusses two problems which can occur with a
segmentation based on the linked pyramid. The first problem is called
the Island Problem. This means that a small region is completely swal-
lowed up by a larger surrounding region. In his article he gave a one-
dimensional example (see Fig. 3.11). This figure shows the input signal
and the initialized pyramid, which is based on a weighted filter with
coefficients (0.1,0.4,0.4,0.1). The linking process finally results in that
shown in Fig. 3.12. From this illustration we see that the island con-
sisting of two zeroes is not recognized by the segmentation algorithm as
a separate segment and is swallowed up by the surrounding segment.

The second problem dealt by Antonisse -the checkerboard problem-
is a degeneration of the island problem. An illustration of the final
linked pyramid is shown in Fig. 3.13. Now we have no dominating
| region and the segmentation result is one complete segment, instead of

O
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0 00090505 1 1 1
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Figure 3.11: The initialized linked pyramid for illustrating the island
problem as discussed by Antonisse [3].

Figure 3.12: The final linked pyramid for illustrating the island problem
as discussed by Antonisse [3].
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AN

0.5 0.5 0.5 0.5

ANVANVANRVAN

AAAAA KA

0101010101010101

0.5

Figure 3.13: The final linked pyramid for illustrating the checkerboard
problem as discussed by Antonisse [3].

16 separate segments.

In the literature, a number of modifications to the original linked
pyramid approach have been proposed. Burt [20] suggests a few alter-
native refinements to the algorithm. One of these refinements suggests
that a node should not be forced to be linked with a father node, if there
is not enough similarity. This modification might prevent the occur-
rence of the two problems as previously discussed. Of course. the linked
pyramid approach is not limited to a 1-dimensional feature space. One
might also consider more features such as, for instance, color, texture,
etc. More variants are discussed by Hong et al. in [53].

Applications

In [53], Hong et al. describe an algorithm for the extraction of borders
of objects in a noisy image. For this purpose, he initializes a grey value
pyramid. The levels in the grey value pyramid are used as the input
for an edge detector, which results in an edge pyramid. Then the edges
in adjacent levels are linked in the same way as discussed above. This
is done bottom-up. (Note that if the linking process were done top-
down, a son might be linked to more than one father.) In contrast to
the initialization to the original linked pyramid approach, the links will
not be re-evaluated. A son is linked to a father if the difference in the
angles of the edges is small enough. Otherwise, the son becomes the
root of a tree.
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In [54], Hong et al. propose some alternatives to the weighting
scheme, with which the actual node values are computed. These
schemes are studied for the extraction of compact regions. In [52],
a technique is described by Hong et al. for the extraction of compact
objects which is based on the linked pyramid. The search is carried out
on several levels of resolution, so that compact regions of different sizes
can be detected. The algorithm starts with the initialization of a linked
pyramid, containing grey value information. From this grey level pyra-
mid a linked pyramid containing edge information is obtained. This
pyramid contains the edge direction as well as the magnitude. The
information in the edge pyramid is used for the calculation of what are
called the surroundedness scores. This measure represents how far a
node might be considered an interior point. With this measure and
these pyramids, the compact regions are extracted.

In [106], Spann et al. use a linked pyramid for the detection of thin
structures. The algorithm uses a local dynamic thresholding operator,
which successively reduces the object width until it has disappeared.
Since the object width can vary along its length, a multi-resolution
approach is preferable. Pietikiinen describes in [96] the use of a linked
pyramid for the segmentation of textured images. He also proposes
a variant to the original linked pyramid approach in which linking of
the nodes is done top-down as well as bottom-up. This refinement
leads, according to Pietikdinen, to a significant improvement. In this
approach, global information obtained from the upper pyramid levels
is used to locate the large homogeneous areas, while more accurate
boundary information about these areas is obtained by linking nodes
on lower levels to the nodes representing these major areas. Comments
on his initialization technique can be found in Section 3.4 of this thesis.

3.3 Pyramids and Scale Space

In a search for a technique to describe signals qualitatively, Witkin [123]
introduced a concept called scale space filtering. The description aimed
at is based on the extrema of a signal and the extrema of its first few
derivatives. The range of scale on which these extrema are still visible
is essential to the description. A set of images showing the phenom-
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ena within the image on different scales can be obtained by filtering
the image with a filter of which the sizes are varied. The disadvantage
of this approach is that we only possess a limited number of repre-
sentations of the original image on different scales. The relationships
between extrema on adjacent levels are not unambiguous. Therefore,
Witkin introduced a continous scale. This filtering process is called
scale-space filtering and an image representation on a certain scaling
level is called a scale-space image. For a number of reasons, such as
well-behavedness, Witkin chooses the Gaussian filter for the scale-space
filtering. For the 1-dimensional case, where the signal f(z) is convolved
with the Gaussian kernel g(z) we find:

1 _(@—w)?

F(z,0) = f(z)*g(z,0) = /_Z f(u)m/Q_ﬂe 27 du, (3.21)

where o is the parameter of scale and determines the width of the filter.
For the description, Witkin studies the zero-crossings of the second
derivative for which the third derivative is unequal to zero. A more
detailed discussion by Marr on the study of zero-crossings can be found
in [82].

In [70], Koenderink proves that if any feature higher in the scale
space is required to possess a "cause” at a lower level, the family of
Gaussian kernels is unique. Koenderink also proves that a logarithmic
spacing of the planes in a discrete scale space is required. Further, he
shows that the pyramidal data structures are too coarse from a math-
ematical point of view. However, because of the powerful algorithms
applied, the consequences of the coarseness are limited. By following
another theory, Babaud et al. have later also proven the uniqueness of
the Gaussian kernel [5].

3.4 Pyramids for the Study of Texture

To now, we have given a summary of existing pyramid types and some
corresponding applications. The discussion aimed to give an overview
of the work done with respect to the pyramidal data structures and the
aspects to be considered when such structures are to be applied. The
goal of this thesis is to study the usefulness of pyramidal data structures
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Figure 3.14: Initialization of a texture pyramid.

for texture analysis and segmentation. We already referred to the work
of Pietikiinen [96]. He divides the input image, which contains textural
regions, into blocks of 8 x 8, and determines for the blocks a texture
value. This results in a texture map with reduced sizes. As a result
of the small block size on which the texture values are determined,
the texture values show a significant variance. In order to smooth out
the variance, Pietikiinen suggests the use of a median filter to smooth
the resulting texture map. This map is used as the input for a linked
pyramid. The calculation of the node values is based on unweighted
averaging of the corresponding son nodes. The initialization of the
texture pyramid is illustrated in Fig. 3.14. Because of the type of
information in the pyramid, the pyramid is called a texture pyramid.
For this type of initialization we find that nodes higher in the pyramid
do not correspond with a coarser description of the phenomena. The
pyramidal data structure is only used as a mechanism for decreasing
the variance of the texture values. Therefore, the type of approach
might be compared with the Split-and-Merge segmentation algorithm.
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Figure 3.15: Segmentation result based on the first type of initialization.

Figure 3.16: Segmentation result based on the first type of initialization.

In [34], Eijlers shows segmentation results which are based on a
texture pyramid which has been initialized as discussed and segmented
with an alternative region growing procedure. Two typical segmenta-
tion results are shown in Figures 3.15 and 3.16. Besides this type of
initialization, we can distinguish two other types of initialization.

As stated above, we are interested in a technique such that nodes
at higher levels in the texture pyramid correspond to a quantification
of the texture aspects on a coarser scale. An example of such an ini-
tialization technique is the second type of initialization which is shown
in Fig. 3.17. The idea behind this initialization technique is that the
texture operator is applied on the original image, but the sizes of the
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grey value pyramid texture pyramid

<z

Figure 3.17: The second type of initialization of a texture pyramid.

texture operator depend on the level of the texture pyramid to be ini-
tialized. For instance, if we apply on level [ a window with sizes 2% x 29,
then on level | — 1 we should apply a window with sizes 24+ x 2¢+1,
However, resizing of the window is not always enough. For operators
based on the Spatial Grey Level Dependence Method (Section 2.3.1)
or the Grey Level Difference Method (Section 2.3.2) we should enlarge
the vector with a factor of two as well. In the figure we have shown a
grey value pyramid, of which only the bottom level -thus the original
image- is used. The complete grey value pyramid is shown for compar-
ison with the other types of initialization. The main disadvantage of
this method is that the higher the node in the pyramid the more inac-
curately it can be determined. After all, the ratio between the image
sizes and the window sizes changes with the level in the pyramid, which
means that the artefacts at the borders are more significant higher in
the pyramid. Because of this disadvantage, this type of initialization is
not recommended.

The third type of initialization is shown in Fig. 3.18. It is only
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grey value pyramid texture pyramid

<z <z
Figure 3.18: The third type of initialization of a texture pyramid.

this type of initialization which requires the existence of a grey value
pyramid. Texture values are now determined by applying the same
texture operator with the same window sizes to the corresponding level
of the grey level pyramid. Because of the border artefact, this type of
initialization is not recommendable either.

Based on the preceding considerations, one might conclude that the
usefulness of pyramidal structures for texture analysis and segmenta-
tion is limited. However, there is one type of initialization which has
not been discussed yet. This type of initialization is based on a tex-
ture model. The values in the texture pyramid now correspond to the
parameters of the texture model. An equivalent for this approach for
the segmentation based on motion information has been described by
Bierhuizen in [10].

To proceed, a texture model has to be chosen. Of course, from such a
model we expect a good performance in discriminatory sense. Further,
a model is to be preferred, in which scaling behavior is incorporated
in the model. This behaviour is not present explicitly in most of the
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models discussed in Chapter 2. However, models which are based on
the fractal theory explicitly quantify scaling behavior. This theory and
its use for texture analysis and segmentation is discussed in the next
chapter.
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Chapter 4

Fractal Theory

4.1 Introduction

In the preceding chapters we concluded that we are interested in a
theory that ables us to describe phenomena on a number of discrete
scaling values. Such a theory is the fractal theory. The study of the
applicability of this theory for image processing purposes started in
the early eighties. In other disciplines, it had already shown to be of
interest for the description of a range of natural phenomena. In this
thesis, we focus on the applicability of this theory for the analysis and
segmentation of textures in pyramidal data structures. Therefore, the
discussion of the fractal theory is limited to those aspects of fractal
theory that are of use within the focus of attention.

The name fractal theory originates from Mandelbrot. However, the
study of phenomena which showed fractal behavior started much ear-
lier, however, those studies lacked the ability to display the mathemat-
ical functions. When Mandelbrot started his study, display facilities
connected to digital computers had begun to appear. He made an in-
tensive study of functions showing fractal behavior and illustrated its
applicability in a broad range of disciplines. The interest in fractal
theory was given impetus by the beautiful illustrations found in [75],
which has later been replaced by [77].

The essence of fractal theory is often illustrated with the question:
How long is the coastline of Britain? (see Fig. 4.1). To answer this

95
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Figure 4.1: The coast of Britain.  Figure 4.2: Measuring method 1.

problem, Mandelbrot suggests four types of measuring techniques.

The first type of method suggested is the most obvious one. The
measurement is based on a yardstick of length €. During the measure-
ment the begin point of the yardstick is laid against the end point of
the preceding step. Now, the length can be found by multiplying the
length of the yardstick by the number of steps. As shown in Fig. 4.2
this types of measuring results in a simplification of the coastline as a
sequence of polygons. Note, that the coastline cannot be coverered by
an integer number of yardsticks.

With the second method the coastline is followed at a maximal
distance of €. The path to be followed should be the shortest. Again,
the length is measured with a yardstick. (see Fig. 4.3).

In contrast to the second method, the third method is based on
a symmetrically defined band around the coastline. This band has a
width of 2e. Now, the length is estimated by dividing the area by the
width (see Fig. 4.4).

The fourth type of method is based on the pointillist painting style.
The coastline is completely covered by the minimum number of circles
with radius e. The centres of the circles may lie in the sea, as well as
on the shore. The length can be estimated by dividing the total area
of the circles by 2e.

One might expect that all these methods would result in consistent
answers as to the length of the coastline. However, if we measure the
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Figure 4.3: Measuring method 2.  Figure 4.4: Measuring method 3.

Figure 4.5: Measuring method 4.



58 Fractal Theory

coast length with a smaller ¢, we will follow the coastline more accu-
rately, which results in an increase in the length. Although, the depen-
dency found between the length and the resolution of measurement is
not valid for each range of resolution, in general, we could define the
coast length L as a function of the resolution ¢, so L(¢). This finding
results from the irregularity of the coastline. The relation found has
been discussed earlier in the literature, and has been modeled as:

L(e) ~ Fe'™P, (4.1)

where F' stands for a constant and D for the fractal dimension. It
was Mandelbrot who suggested calling the parameter D the fractal
dimension. The fractal dimension is supposed to be real-valued. The
fact that the dimension is supposed to be real-valued underlies the
nomenclature. The term fractal originates from the Latin adjective
fractus. The corresponding Latin verb frangere means to break. This
fractal dimension exceeds the topological dimension of 1, and therefore
the coastline is defined as a fractal pattern.

We have seen that the coastline is very irregular, this implies com-
plex behavior. Complexity, however, does not exclude the possibility
of a certain degree of structure. If we take a part of the coastline and
we enlarge it to the size of a larger part, we will see that those parts
appear similar. This scaling behavior is called self-similarity. !

To proceed, we now introduce the Koch-curve as a model of the
coastline which is an example of an exactly self-similar fractal. This
model is based on an wnitiator and a generator. The initiator is in this
case is a straight interval of length 1. The generator consists of four line
segments of length % ordered as shown in Fig. 4.6. Now, the generator
is scaled such that it fits within the interval corresponding with the
initiator, then each straight line segment of the generator is considered
as a new initiator. All new initiators will be replaced by a scaled ver-
sion of the generator. This process proceeds recursively and will never
end. Note that the resulting curve is nowhere differentiable. The corre-
spondence with the coastline is limited because of its strong underlying

INote that classical information theory does not recognize such an underlying
structure. The information measures will, therefore, overestimate the information
contents.
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initiator

4/\—— generator
ﬁm Koch-curve after 3

iterations

Figure 4.6: The Koch-curve.

structure. However, the model is illustrative for the discussion of the
length of the coastline.

The length of the Koch-curve after the first iteration is equal to %
After the second iteration the length is increased by a factor % Thus,

for the Koch-curve we can write L(§) = 5L(¢). Equation 4.1 can now
be solved, which results in a fractal dimension of D = :2?;

To here, we have only mentioned the fractal dimension. However, a
whole range of dimension definitions exists. The choice of the dimension
definition to be used is most often based on practical considerations.
For a number of definitions, equal values might be obtained.

Before defining a fractal pattern, the topological dimension Dr has
to be explained. Suppose, we are studying objects in an Euclidean
space IR®. Then these objects have at least a topological dimension
of 0 and at most E. The topological dimension is always an integer.
Examples of objects are: a point (D7 = 0), a line (Dy = 1), a plane
(Dr = 2), etc. Now an object (or a set) is defined to be a fractal if:

D> Dy (4.2)

It must be stressed that objects which differ significantly in topology
cannot always be discriminated by their topological dimension, whereas
the fractal dimension might discriminate.

The Koch curve we have discussed is a well-known example of a fam-
ily of deterministic fractals. For the Koch-curve the initiator consists of
a straight interval of length 1. One could imagine that other initiators,
which are based on a polygonic curve might also result in an interest-
ing fractal. Of course, the shape of the generator can be changed, such
that a completely differently shaped fractal will be obtained. To make
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a more stochastic type of fractal, one could define more generators.
Each time that a part of the fractal has to be replaced by a smaller
generator, one of the generators is chosen at random.

In this section, we have given an example of a fractal. We have
seen that the fractal dimension is a sort of measure for the irregularity
of objects. The scaling behavior which is included in the definition of
self-similarity is essential to fractal theory. In the next section we will
discuss fractal Brownian motion, which is an extension to the original
Brownian motion, and which is a typical example of a stochastic fractal.

4.2 Fractal Brownian Motion

In the preceding section, we presented the Koch-curve as a fractal model
of the coast line. This type of fractal has two disadvantages. Firstly,
the fractal has too strong a topological similarity, which results in an
unnatural appearance. Secondly, the curves show self-similarity only
on discrete scaling steps. For the modeling of natural phenomena a
more stochastic type of model is desirable. The fractal Brownian mo-
tion is an example of a stochastic fractal model?, which is an extension
to the ordinary Brownian motion model B(t). The ordinary Brow-
nian motion is defined as a real random function with independent
Gaussian distributed increments such that B(t;) — B(;) has mean zero
and variance |ty — t1], and such that B(t2) — B(¢1) is independent of
B(ty) — B(ts) if the intervals (¢;,t2) and (t3,t4) do not overlap. The
fractal Brownian function is discussed in the following section .

4.2.1 Brownian Motion and Fractal Brownian
Motion

Suppose that the ordinary Brownian motion is denoted by B(t), where
t stands for the time.®> Now, the fractional Brownian function (fBm)

2The motion model is also called fractional Brownian motion.

3Mandelbrot uses in [81] the notation B(t,w), where B stands for the Brownian
motion, ¢t stands for the time and w designates the set of all values of a random
function. Therefore, his notation might be considered as more formal. However, in
this discussion w plays no role and is therefore omitted.
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is defined as an extension to the ordinary Brownian motion. For this
model, the spectral exponent H is introduced. Mandelbrot has proven
in [81] that H should satisfy 0 < H < 1. The fractal Brownian motion
of exponent H is a moving average of dB(t) in which the past increments
are weighted by the kernel (¢ — S)H_%. For the case that ¢ > 0, it is
called the reduced fractal Brownian motion. This function is denoted
by Bpy(t) and formulated as follows:

By(0) = b

Bult) = Bul0) = s (L [0 9" = (9] ao)

| " s dB(s)} (4.3)

The introduction of F(17{1+—l) is motivated by Mandelbrot as a coefficient
2
1

that garantuees that if H — 5 is an integer, the integral results in an
ordinary repeated integral. In the discussion of the fractional integrals,
which follows in the intermezzo on page 62, the introduction of this
factor will be made clearer. Note that for by = 0 and H = % we find
that the fractal Brownian motion is equal to the ordinary Brownian
motion. It is this value for H, which divides the behavior of the fractal
Brownian motion into two intervals. For the first interval of 0 < H < %
the increments are negatively correlated, which result in a more chaotic
behavior . For the second interval, the increments are positively corre-
lated, which result in more or less smooth behavior.? In the literature
one often states by = 0. Equation 4.3 can be written more symmetri-
cally as follows:

Bu(t2) — Bu(t1) = F(H;ﬂﬁ) {/_t;(t2 ~ 5)""2 dB(s)—
/ t;(tl S dB(s)} (44)

4Mandelbrot also introduced the term fractal Brownian noises, which is used for
successive differences between points of a fractal Brownian motion signal.
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Now, it can be proven® that the spectral exponent H of the fractal
Brownian motion is related to the fractal dimension as follows :

D=2-H. (4.5)

The model, as suggested, is one-dimensional. However, the extension
to more dimensions is trivial. As is discussed by Falconer in [36], the
extension to a more dimensional space is such that each component is
a fractal Brownian motion in itself.

Intermezzo

Before we continue we here make an excursion into the frac-
tional integrals as discussed by Weyl in [122]. These inte-
grals show a significant similarity with the fractal Brownian
motion. The theory of the fractional integrals is based on
iterative integration of functions. Suppose:

filz) = /0 f(z) de (4.6)
folz) = /0 fil(z) dz (4.7)
faw) = [ folw)da (48)

ful@) = [ far@)de (4.9)
This can be written more compactly as:

folz) = J"f(2), (4.10)

where J symbolizes the integration process. This results in:

7o) = - € 1O de (n=01,2..)  (@4.11)

This result is only valid for positive integer values of n. An
equivalent for positive real-values is:

Pi@ =g [ -0 fOd @)

5See for a clearly written proof [36].
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Instead of the parameter n, we now use the parameter c.
Note that I'-function generalizes the n!-normalization coef-
ficient.

The fractals we have discussed up to now were characterized by a
space of which the components were equal in meaning. The graph of
the 1-dimensional fractal Brownian motion, however, is characterized
by two different types of scale. The first one is the signal level, and
the other one is the time scale. This makes it theoretically® impossible
to speak in terms of distance, circular, or square. For the components,
the rescaling ratios of ¢ and By are different. Therefore, self-similarity
is not the right term to describe the scaling behavior. The term to
describe this behavior is called self-affinity. A more detailed discussion
by Mandelbrot on this subject can be found in [79].

4.2.2 Properties of the Fractal Brownian Motion
Model

Before we can study the use of the fractal Brownian motion as a model
for texture, we need to investigate the properties. Some of the prop-
erties we deal with are a direct consequence of its definition. Other
properties might be intuitively correct, but for the complete proof the
reader is referred to the corresponding article. The first three proper-
ties to be mentioned are a direct consequence of the definition and are
of less importance for quantifying texture properties.

1. One of the properties which are mentioned in the literature is
that increments of the fractal Brownian motion have zero mean.
This is because of the zero mean of the increments of the ordinary
Brownian motion. The weighting introduced by Mandelbrot for
the introduction of the fractal Brownian motion is of no influence
to this mean value.

2. From the definition it follows that the increments are stationary.

6Tn practice, we can define boxes in this space and determine the fractal dimen-
sion. This approach is discussed in Section 4.4.
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3. The fBm is almost nowhere differentiable. This property follows
from its definition.

The following properties are especially of interest for image processing
applications.

4. The increments of the fractal Brownian motion are self-similar.
This means:

Bu(t+T)— B(t) 2 v ¥ [By(t+Th) — Bg(t)],  (4.13)

where £ is used to denote identical in distribution function. The
proof can be based on a proof given by Weyl [122], where Weyl
proves a similar property.

5. For the standard deviation of the increments of the fBm a 77 -law
is valid. This means:

E[(Bu(t+T) - Bu(t))’] = T*"Vy, (4.14)

where

Vi = S 3 {/O [(1 —s)f - (—S)Hﬁ]? ds + “1—}
r(H+3) Yo 2H

(4.15)
This result can be found by writing out the left side of Eq. 4.14.
In [81], Mandelbrot discusses this proof as well. Keller and
Seo [68] have used Equation 4.14 for the determination of the
fractal dimension. The discussion of their results in comparison
to other techniques is postponed to Section 4.5.

6. In [81], Mandelbrot proves that the spectral density of a fBM
signal is proportional to f=2%~!. A more detailed discussion of
this property by Voss -with an extension to more dimensions and
the accent on synthesizing- can be found in [119] and in [120].
A general discussion of techniques for the generation of textures
which are based on the fractal theory is given in Section 4.3 of this
thesis. In Section 4.3 also examples of textures are given which
are based on this property. Pentland [93], [94] used this property
for the estimation of the fractal dimension of textural scenes. The
discussion of his technique is postponed to Section 4.5
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7. A property that directly follows from its definition, and the prop-
erties discussed so far, can be denoted as:

b {BH(|Z): jﬁ“” < y} = F(y), (4.16)

where F(y) is a cumulative distribution function of the random
variable y. This property is used by Pentland [94] for deriving
the following properties with respect to image transformations:

(a) Pentland proves in [94] that a linear transformation of a
fractional Brownian function results in a fractional Brownian
function with the same fractal dimension.

(b) In [94], Pentland proves that when a 3-D surface with a
spatially isotropic fractal Brownian shape is projected to an
image, the resulting intensity surface is fractal Brownian as
well, and the fractal dimension is identical to that of the
surface normal. The proposition is, however, restricted to
a Lambertian surface reflectance function and constant illu-
mination and albedo.

(¢) Pentland’s latter proposition is also valid vice versa as has
been proven by him in [94]. This means, that if an image in-
tensity surface is a two-dimensional fractional Brownian then
the image 3-D surface must be spatially-isotropic fractional
Brownian as well. For this proof it is also assumed that the
surface is Lambertian and the illumination and albedo are
constant.

4.3 Generation Techniques

To here, we have discussed the concept of fractal theory and the fractal
Brownian motion as an example of a fractal model. With this knowl-
edge we can develop generation techniques which enable us to generate
fractal signals based on the general fractal concept, or which are based
on the fractal Brownian motion model. In Section 2.2, we discussed
the advantage of possessing such tools. We concluded that we can test
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models on their appropriateness for certain classes of textures, and we
can test analysis tools on generated data. By the use of this approach,
fully conditioned experiments can be carried out. Noise behavior and
sensitivity to other distortions which are in agreement with the prac-
tical situation can be investigated independently. In this section we
discuss the most common types of generation techniques. Not all of
the techniques to be discussed result in a purely fractal-type signal.
However, these techniques might be sufficient for the applications for
which they were developed.

In [119], Voss discusses that generation can be based on the sum-
ming up of Gaussian bumps. This technique is adapted to a pyramidal
data structure by Pentland in [95]. The generation starts with filling
the levels in the pyramid with Gaussian distributed noise. The variance
at the apex is equal to . The variance of the noise at the level directly
beneath the apex is equal to 0?(1 — H)?. Level 2 is filled with noise
with variance o(1 — H)*, and so on. After having filled the complete
pyramid with noise, the levels are summed up. This technique is based
on the interpolation technique as discussed in Chapter 3. With this
generation technique each node manifests in the final result image as a
Gaussian bump. The image obtained is not a true fractal surface, but
might be considered to be a close approximation.

A technique suggested by Fournier et al. [39] is called the Midpoint
Displacement Method. This method has been critized by Mandelbrot
in [76], because the product of the method would not be sufficiently
fractal-like. A reply by the authors to Mandelbrot’s reaction can be
found at the end of [76]. The method starts with initializing the corner
values. Then a recursive process starts. Each midpoint is replaced by
the average value of its corner points, and this average value is per-
turbed by an amount which is related to the size of the square. The
main advantage of the method is its reduced processing time. Fur-
ther information on this type of generation technique is given by Voss
in [119]. Some alternative refinements are given by Jeffery in [58].

Because we know the correlation behavior of the increments of a
fBm process, it is also possible to develop a method which generates
a signal of which the correlation of the increments is in agreement
with the fBm model. This technique has been discussed by Lundahl
et al. [74] as well as by Ohley and Lundahl in [89]. The process starts
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with the initialization of the image, by filling it with a Gaussian random
generator. Then the image samples are correlated by a correlation step,
such that the correlation obtained is in agreement with the original fBm
process. The final image is obtained after an integration step. What
is interesting about their technique is the fact that it is based on a
discrete version of the fractal Brownian motion model.

In [119], Voss discusses a method to generate a Brownian relief. This
technique is based on summing up randomly placed randomly oriented
faults in the plane. The profile of the fault is that of a step function
and its amplitude is random. Because the method can only generate
signals for which H = % and because the method is computationally
expensive, it is of limited use.

A method which has been called the Cylindrical Integration Method
is mentioned by Dodd in [32] and [31]. Initialization starts with gen-
erating an image which is filled with a Gaussian random field. This
image is fitted on a cylinder, such that the two vertical borders are
connected. The result is obtained by integration over a path defined on
the cylinder. The disadvantage of this method that it can only generate
textures for which H = %

In Section 4.2.2, we mentioned that the magnitude of the spectrum
of a fractal Brownian motion signal is of the form f=2#-1. In [119],
Voss describes a technique which starts with an image which is filled
with white noise. This image is transformed to the Fourier domain.
In this domain the magnitude is forced to the correct value. The ran-
dom behavior remains in the phase image. By transforming back, the
resulting image is obtained. This is the type of technique we have
used. Examples of images with different fractal dimensions are shown
in Figs. 4.7 - 4.15. One can use such images for testing the performance
of man in estimating the fractal dimension. An extensive study carried
out by Dodd [31] shows that the minimum resolvable fractal dimension
was found to be 0.06. Pentland describes in [94] an experiment where
naive subjects were asked to estimate the roughness of fractal surfaces
on a scale of one to ten. There was a correlation of 0.98 between the
estimated roughness and the fractal dimension of the surface.

In this section we have discussed the generation of monochrome tex-
tures signals. The generation is, however, not limited to monochrome
textures. In [31], the technique of generating colored fractal textures
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Figure 4.7: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.1.

Figure 4.9: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.3.

Figure 4.8: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.2.

Figure 4.10: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.4.
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Figure 4.11: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.5.

Figure 4.13: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.7.

Figure 4.12: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.6.

Figure 4.14: A synthesized tex-
ture generated with the Fourier
filtering technique of Voss [119]
with a fractal dimension of 2.8.
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Figure 4.15: A synthesized texture generated with the Fourier filtering
technique of Voss [119] with a dimension of fractal 2.9.

is discussed by Dodd. Dodd is interested in generating natural looking
textures which are based on a given natural scene. This scene is ana-
lyzed before generation. First, the RGB components are decorrelated.
Techniques for decomposition which can be used are based on the eigen-
vectors, the principal component decomposition or the Karhunen-Loeve
transform. The fractal properties per component are determined, then
a fractal signal per component is generated. One of the techniques as
discussed in this section could be used. The resulting colored image is
obtained by transforming the components back to the RGB space.

4.4 The Box-Counting Dimension

To estimate the fractal dimension of a phenomenon (a set or a signal),
the box-counting dimension” is often recommended. Determining the
box-counting dimension is based on covering the phenomenon with a
mesh of boxes of size e. The variable € is the resolution parameter.
Now, for a whole range of values for ¢, the number of boxes N(¢) that
are filled with at least one point of the set is counted. (see Fig. 4.16)
The box-counting dimension Dp is defined by Mandelbrot as (see [78]):

"The name boz-counting dimension is often abbreviated to boz-dimension.

D
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Figure 4.16: Two resolution representations for the determination of
the box-counting dimension.

log N
Dy = — lim 122 (4.17)
—0 loge
which is based on the assumption that N(e) behaves like:
N(e) ox e P58, (4.18)

In practice, this means that the number of filled boxes is determined
for a sufficient number of resolution values. These results are plotted
in a log-log graph. Finally, the box-counting dimension is obtained by
determining the slope of the line through the points. By using linear
regression on the logarithmic values of ¢ and N(e) we can obtain the
box-counting dimension automatically. The applicability of Eq. 4.18 to
the underlying study can be verified by checking whether the points in
the log-log plot really have the required linear relation. Note that for
a coarser resolution range, the dimension of a signal tends towards 1.

A variant to the box-counting approach has been suggested by
Voss [120]. Suppose that P(m,¢) stands for the probability that there
are m points within an E-dimensional cube of size € centered about an
arbitrary point in the space S. As P(m,¢) is a probability function,
the following relation is valid:

N
> P(m,e) =1 for all e, (4.19)

m=1
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where N stands for the maximum number of possible points within a
box. The total number of points is supposed to be equal to M. Then,
the number of boxes with m points inside the box is £P(m,e€). To
answer the question of how many boxes are filled with m points, we
introduce Q)(m,¢), which stands for the number of boxes filled with
m points. Now, suppose we select an arbitrary chosen point. What
is the chance that it is in a box filled with m points? We know that
there are Q)(m, €) boxes filled with m points. Thus, there are mQ(m, ¢)
points in Q(m, €) boxes which are filled with m points. Therefore, the
probability for having a box filled with m points is equal to:

mQ(m, ¢) (4.20)

P(m,G) - T

Then, the expected total number of boxes N(€) needed to cover the set

is given by:

N
1
N(e)=M > —P(m,e). (4.21)
m=1 m
The constant M is not of importance to the discussion and therefore
the expression is simplified to:

N(e)= 3.

m=1

%P(m, e). (4.22)

This expression is proportional to €© and can be used for the estimation
of the fractal dimension. A related measure is called the lacunarity. It
is based on the moments M%(e) which are defined as followed:

Mi(e) = > miP(m,e). (4.23)

m=1

The lacunarity A(e) is defined as:

_ E{M*(e)} - E{M°(¢)}”
- E{M%()}’ '
It has been shown that textures with equal fractal dimension, which
appeared to the human observer as different, result in discriminating

values for the lacunarity. In the next section we discuss dimension
estimators as they have been proposed and studied in the literature.

Ae) (4.24)
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4.5 Texture Measures based on the Frac-
tal Dimension

The study of the use of the fractal dimension as a texture operator
is in the first instance related to two names, namely Pentland and
Peleg.® Both started at almost the same time with their studies and
are considered to be the pioneers in this field.

Pentland’s motivation to start this study was the natural appear-
ance of scenes generated according to a fractal model. In his study
as described in [93] [94], he focusses on the fractal Brownian motion
as a model for textures. The appropriateness of the model was tested
by evaluating Eq. 4.13. The dimension was measured from the Fourier
power spectrum of blocks with sizes 8 x 8. A technique which we have
discussed in Section 4.2.2. For the limited number and selected types
of textures chosen from the Brodatz texture collection [14], Pentland
considered the fractal model to be appropriate. He stresses that for
the natural textures, the scaling behavior should be divided into dis-
junct intervals. If the interval length is sufficiently large, the use of the
fractal Brownian motion model is justified. In his study he only de-
termines one fractal dimension, which corresponds to the interval with
the smallest scale. The use of the power spectrum for the estimation of
the fractal dimension has also been studied by Blackledge and Fowler
n [11]. Their study focused on the segmentation of Synthethic Aper-
ture Radar Images and showed that the algorithm may be of value for
target detection.

In [68], Keller and Seo describe an original use of Eq. 4.14 for tex-
ture discrimination purposes. The method is for practical reasons 1-
dimensional. This gives the opportunity to study a possible direction-
ality of the underlying texture. The authors, however, do not use the
relation in its usual way, but they determine the constant in the rela-
tion. According to the authors, this method is justified if the scales of
the regions of interest are approximately the same.

8Nguyen and Quinqueton published in 1982 an article [88] dealing with the use
of fractal theory for texture analysis as well. Their approach, however, was based
on a one-dimensional fractal. In contrast to their approach, Pentland and Peleg
perform a full two-dimensional analysis.
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In 1984, Peleg et al. [92] introduced the blanket method for the
estimation of the fractal dimension. The method was inspired by a
technique which was proposed by Mandelbrot for the determination of
the length of the coast of Britain. The coast line problem focuses on
the estimation of the length, but for the texture analysis problem we
are interested in measuring the surface area. The image under study
is considered as a surface. For the estimation of the fractal dimension,
the authors define a blanket that varies in thickness and that covers the
image surface. For reasons of symmetry, an upper and a lower blanket
are defined. The latter one covers the surface below. The thicker the
blanket (the lower the resolution €), the more smoothly will it follow
the image surface (see Fig. 4.17 for an example of the 1-dimensional
case). By measuring the volume of the blankets and dividing this value
by the thickness, an estimation of area A is obtained. As for the coast
line problem, the area estimation is dependent on the resolution. By
linear regression an estimation of the fractal dimension D can be found

from the formula:
Afe) = Fe&P. (4.25)

Note that we have now in the exponent a constant of 2, instead of the
constant 1 as mentioned in Equation 4.1. The value for this constant
is determined by the topological dimension of the object. The upper
blanket u. and the lower blanket b. are intially equal to the image
surface I: wuo(i,7) = bo(i,5) = 1(4,j) The upper blanket is defined as
follows:

max
[(m,n)—=(2.5)|<1

ue_l(m,n)} fore=1,2,3, ..

u(i, j) = max {ue_l(i,j) +1,
(4.26)

and the lower blanket is defined as:

min be_l(m,n)} fore=1,2,3,..
[(m,n)—(1.5)|<1

(4.27)

This definition guarantees that the surface of each new upper, respec-

tively lower blanket is placed above, respectively below the surface ob-

tained in the preceding iteration step. The volume v of the blanket can

R

bé(l‘]) = min {be—l(i:j) - 17
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Figure 4.17: Two iteration steps of the blanket method suggested by
Peleg et al. [92] as a technique to estimate the fractal dimension.

be obtained by:
Ve = Z (ue(l)]) - be(iJ)) (4'28)
i
The area could be obtained from . However, the authors prefer to
apply the following equation:
Ale) = szi (4.29)
This definition possesses the advantage that it isolates those features
that change from scale e—1 to e. For a pure fractal object, this definition
makes no difference. In practice, where a texture might be fractal-like,
this definition is to be prefered. Of course, it also possible to work
with just the upper blanket or the lower blanket. It is this blanket
technique that has still to be considered to be one of the most succesful
fractal dimension estimators. In their article, the authors suggest that
it might be interesting to extend the algorithm to the pyramidal data
structure, because of its multiresolution appearance. Such an approach
is discussed by Eijlers in [35], of which a more detailed discussion can
be found in Chapter 5 of this thesis. In Figs. 4.18 - 4.21 the plots of
A(e) against € are shown for the Figs 2.1 - 2.4. The plots are based on
four windows of 16 x 16 for each image.
Dellepiane et al. describe in [30] a preliminary investigation on the
methods suggested by Pentland and Peleg. The study shows that both



76 Fractal Theory
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Figure 4.18: This plot shows A(e) against € for the image shown in
Fig. 2.1.
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Figure 4.19: This plot shows A(e) against € for the image shown in
Fig. 2.2.
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Figure 4.20: This plot shows A(e) against e for the image shown in
Fig. 2.3.
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Figure 4.21: This plot shows A(e) against e for the image shown in
Fig. 2.4.
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techniques yielded interesting results for the medical application aimed
at. None of the methods seems to be superior in this stage of that
study. In [2], Albregtsen et al. describe an alternative elaboration
of the blanket algorithm. The algorithm is also based on MAX-MIN
operators. Stein introduces in [108] a blanket-like algorithm which is
based on morphological operations.

In [74], Lundahl et al. describes a Maximum Likelihood Estimator
which is based on the correlation matrix. This operator is derived from
a discrete version of the fractal Brownian motion model. A compar-
ison is made with an estimator which is based on the variance prop-
erty of the fractal Brownian motion. It appeared that results of the
Maximum Likelihood operator were better. However, because of the
computational complexity of this method, the variance method could
be preferable for certain types of application.

In [21], Caldwell et al. describe a method which is -just like the
blanket method- based on the surface area principle of fractals. The
image is considered as a collection of connected skycrapers. The area
is the sum of the areas of all the roofs and the sides of the skycrapers.
This gives:

Ale) = Zez + Ze {ABS[I(i,5) — I(i +1,5)] +
COABS[IG, ) = 1G4+ 1)1}, (4.30)

Varying the resolution, € is achieved by block-wise averaging. This
means that the average value for blocks of square sizes 4, 9, 16, 25 and
36 is calculated. It must be stressed that the number of resolution steps
considered by the authors is not too large, this might explain the fact
of a high score for the quality of fitting. However, the fact that the
number of steps in this method is not very great does not invalidate
the usefulness of the technique. The results obtained for the medical
application aimed at could be considered interesting, however, further
development is required.

In [33], Dubuc et al. describe a fast algorithm for the estimation
of the fractal dimension. The method is called the variation method.
Again a sort of volume is determined by the following formula:

Vi(i,j) = _  max I(s,t)—  min I(s,1), (4.31)
dist((i.4),(s.))<e dist((i.5),(s.t))<e
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where
dist((i, §), (s,t)) = max(|z — s|, [y — t]). (4.32)

The fractal dimension is again found by a linear fit in the log-log space.
The method has been evaluated on a limited number of generated im-
ages. For these images it showed an accurate estimation. However,
it must be stressed that the generated images were not distorted with
noise or artefacts. From the variation method it might be expected
that the technique is rather sensitive to shot noise.

In [67], Keller et al. describe results obtained with a fractal esti-
mator which has been developed by Voss and which is based on the
estimation of a probability function, a technique which we discussed in
Section 4.4. The authors show that the operator gives the right order
of values for synthetic images, but the range is strongly compressed.
For instance, for the image with a fractal dimension of 2.9, the authors
find a fractal dimension of 2.53. The explanation given by the authors
is based on the quantization effect. Images with a higher fractal dimen-
sion are highly irregular. However, due to the limited number of grey
values, a lowering of the estimated dimension is found. By extending
the original algorithm with a linear estimation, the authors succeed in
stretching the scale to its full extent, without influencing the ordering
of the dimensions found. Although, the estimation is more accurate
after the extension of the original algorithm, for automatic discrimina-
tion and classification purposes this adjustment to the original routine
is superfluous. The authors also implemented a measure similar to the
lacunarity measure, which was introduced in Section 4.4. According
to the authors, the segmentation based on the fractal dimension in
combination with the lacunarity measure performed well for the seg-
mentation of natural textures. This performance could not be achieved
by employment of the the fractal dimension only.

In [2], Albregtsen et al. test Voss' box-counting method, Keller’s
fractal dimension estimator and the blanket method of Peleg et al. on
synthetic images and TEM (= Transmission Electron Microscopy) im-
ages of mouse liver cell nuclei. It was shown that the blanket method re-
sulted in the best approximation of the fractal dimension and in the best
discrimination results. The second-best technique is Keller’s method.
The authors show also that it is possible to derive a fractal dimension
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Figure 4.22: Part of a coloured biological cell. The part shown has sizes
100 x 100.

related texture feature from the difference in grey level runs at two
different quantization widths.

In Fig. 4.22, we show an image which comes from a similar type of
biological application and which is the subject of Starink’s Ph.D. the-
sis [107]. The image shows a part of a cell which has been colored. To
test the suitability of the fractal model for this type of application, we
have determined the fractal dimension for € = 1,2..., 18 using the blan-
ket method. The window sizes were 32 x 32. We have plotted the area
of the window against € in Fig. 4.23 for five locations in the image. It
was shown that the fractal model might be considered as being suitable
if € is in the range of 2 to 9, a range that by some authors is considered
as being too small for accepting the fractal model. They prefer to have
a range of at least 10 succeeding € values before concluding that the
fractal model is appropriate for the underlying study. For some appli-
cations, however, the range found can be sufficient. However, it must
be stressed that the image shows a remarkable visual similarity to some
of the generated images shown in Figs. 4.7 - 4.15.

In the literature, some authors experience the fractal theory as being
too restricted. The application of a model based on the fractal theory
is only justified if the prescribed scaling behavior is valid for a suffi-
ciently large interval. In practical applications this constraint can be
too limited. It is therefore that Kaneko suggests in [62] to study what
he calls the local fractal dimension, an approach that has also been
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Figure 4.23: The relation of A(e) against e for five locations in the
image shown in Fig. 4.22.
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suggested by Dubuc et al. in [33]. This local fractal dimension does
not consider all the resolution values for fitting a straight line through
it; it only fits the line through 2 points. To proceed, Kaneko extends
the original scalar fractal relation to a two-dimensional equation. This
approach has the advantage that it distinguishes scaling behavior in
different directions. Therefore, this approach might be considered as
being more general. However, an objective study where this algorithm
is compared with the most common algorithms should be carried out
in the future.

In [102], Schepers et al. mention four methods for the estimation
of the fractal dimension for one-dimensional signals. One of the appli-
cations mentioned in the article is the velocity of blood cells passing
through a small artery. An interesting technique is based on the relative
dispersion analysis. This analysis compares the variance of a variable
as the measurement resolution increases. It is defined as the division of
the standard deviation by the mean. The analysis starts at the highest
resolution level. The variance for the whole signal is determined at
this level . Then the signal is averaged pairwise (compare the pyramid
intialization with uniform averaging on blocks of 2 x 2). Again the
variance is determined. This scheme is repeated a number of times.
Now, suppose that the signal is uncorrelated, then one expects that
after the first iteration the standard deviation is reduced by a factor of
2%. In the case of having averaged n consecutive values, the standard

deviation will be reduced by a factor of i% It should be stressed that
the mean value stays equal. For the fractal Brownian case the standard

deviation is proportional to nff~!. It is this property that can be used
for the derivation of the fractal dimension.

4.6 The Generalized Dimension Model

In Section 4.4, we discussed the box-dimension which has been defined

as: 1 N
Dp = i 108N (6

4.33
e—0 loge (433)

It is a topological measure which can be used as a measure for the
roughness of a set or a signal as we have seen. The box-dimension only

I



The Generalized Dimension Model 83

counts the number of boxes which are filled with at least one point.
We do not weight the count such that its value is determined by the
number of points in the box. With the introduction of the generalized
dimension concept, a weighting mechanism is obtained with which an
increase in performance in discriminatory sense can be obtained.

The generalized dimension model was introduced by Hentschel and
Procaccia [51]. Now, suppose that N; is the number of points in the
i-th box and N is the total number of points. Note that:

N=)N. (4.34)

Now, the generalized dimension with parameter « is defined as:

1 logd )
D, = lim (%) (4.35)
=0 — 1 loge
p=% . 1 logypf
m :
e—0a—1 loge

(4.36)

Hentschel showed that for each o/ > «, the following relation is valid:
Dy > Dy (4.37)

With the introduced parameter «, we are able to weight boxes which
are more dense, or which are less dense. This means that for small
values of o we stress the less dense regions, whereas we stress the more
dense regions with higher values for a. Note that for o = 0 we obtain
again the ordinary box-dimension. Two other values for a need more
attention, namely « = 1 which results in the information dimension
and « = 2 which results in the correlation dimension.

The information dimension is related to Renyi’s information mea-
sures. Renyi’s information measure, H, of order a for a > 0 and o # 1
is defined as (see [73], where van der Lubbe describes Renyi’s informa-
tion measures in conjunction with other information measures):

Hy(P) = % ?log [é p?} . (4.38)

9More information can be found in [45], [80], [99], [47], [38] and [36].
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Using the proposition of ‘1 Hospital, one obtains for &« — 1 Shannon’s
information measure, which is given by:

n

Hs(P) ==Y pi *log(p). (4.39)

=1

The correlation dimension is often rewritten, such that it can more
easily be determined. The correlation dimension Ds is given by:

log >, pf
m-—",

D
2 e—0 loge

(4.40)
In practice, determining the dimension with the box-counting approach
can be rather cumbersome. However, the term ¥, p? can be approxi-
mated by using the correlation integral C(e), which has been defined
as: .
C(0) = Jim 575 L0~ 15 — 7], (441)
ij

where 8 denotes the Heaviside function. The proof is given by Schuster
in [103].

That the generalized dimension model might be considered as be-
ing a rather recent development is founded on the limited number of
applications found in the image processing literature. The applications
found are discussed in the next section.

4.7 Texture Measures based on the Gen-
eralized Dimension Model

Vepsilainen and Ma describe in [118] the use of the fractal dimen-
sion and the correlation dimension for a number of applications. The
way the fractal dimension is determined is similar to that described by
Nguyen and Quinqueton in [88], i.e. that the window for which the frac-
tal dimension has to be calculated is transformed into a 1-dimensional
signal. Nguyen and Quinqueton use the Peano curve as a scanning
scheme. This curve is a deterministical fractal, which is also being used
for image coding purposes as discussed by Yang et al. in [124]. By scan-
ning the image (or window) according to the Peano curve, one tries to
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Figure 4.24: The Peano-curve.

transform the 2-dimensional signal such that the correlation behavior
of the 1-dimensional resulting signal reflects the correlation behavior of
its 2-dimensional origin. Therefore, the Peano curve scanning scheme
is interesting for a number of image processing tasks. Three steps of
the construction of a Peano curve are shown in Fig. 4.24. The scanning
scheme chosen by Vepsalainen and Ma appears to be more arbitrar-
ily shaped. The determination of the fractal dimension is based on the
length of the 1-dimensional curve. Because this determination can only
be done with a limited number of yardstick lengths, the authors suggest
a technique which is based on prediction. The calculation of the corre-
lation dimension is based on the correlation integral method discussed
in Section 4.6. Two of the applications mentioned by the authors are
the searching for cracks in ice from satellite images and the analysis of
cell images which are obtained with a confocal light microscope. The
first application is of importance for directing ice breakers. With the
dimensions one is able to classify the type of ice and to locate cracks
in the ice. The cell images were studied on the appearance of protein
fibers and small elliptical objects. The detection of the elliptical objects
delivered no problems. The extraction of the fibers, however, could not
be based on a simple thresholding operation on the dimension image. In
their article, the authors stress that the dimension operators were used
for the detection of edges (resulting in an increase of the dimension) as
well as for the classification of textures.

In [4], Arduini et al. use the distribution function approach as intro-
duced by Voss in [120] which we discussed in Section 4.4. One of their
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experiments showed that for the human observer, dissimilar textures
can have the same fractal dimension, but different other dimensions.
The authors applied a window size of 128 x 128. It should be stressed
that a large window is required for the estimation of the probability
function. Therefore, one could cast doubt on the applicability of this
approach for texture segmentation.

In [1], Ait-Kheddache and Rajala introduce a technique which is
based on Pseudo Fractal Matrices. Several of these matrices have to
be filled for each window. Each matrix corresponds to one value of e.
The matrices are filled with counts, which can be compared with the
number of points in the box-dimension concept. Because of the differ-
ence in meaning of the axis, the authors make a distinction between
the distance measured along the grey value axis and along the topo-
logical axis. From these matrices some features are determined which
are estimations of the dimensions. To prevent having too sparsely filled
Pseudo Fractal Matrices, the applied window sizes should be at least
32 x 32. Experiments carried out by Kamphuis [60] showed that the
algorithm was rather time-consuming and sensitive to the adjustment
of the parameter which determines the resolution along the grey value
axis. Although the algorithm does not calculate the dimensions fully
in correspondence with the theory, and despite the fact that the ap-
plicability of the algorithm in its actual form seems to be limited, the
solutions to some practical problems are certainly interesting.

4.8 Discussion

In this chapter we have dealt with the most important aspects of the
fractal theory from an image processing point of view. Further, an
overview has been given of the work carried out in this field. It appeared
that some authors seem to exaggerate the appropriateness of the fractal
model for their application. However, for certain types of applications
the fractal model must certainly be considered as being suitable. In any
case we may conclude that for applications for which the images under
study are similar to the synthetic images shown in the figures 4.7 - 4.15,
the fractal model might be of interest. For textures where the fractal
model appears to be less suited, splitting up the scaling behavior in
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Figure 4.25: Structures obtained with a Scanning Electron Microscope
after etching amorphous silicon (from [90]).

ranges for which the scaling behavior in the log-log space is linear could
sometimes be suggested. In this way a number of fractal dimensions
can be found.

A class of textures which have not been discussed yet, is that of
textures which might be considered as (nearly) binary. A typical ex-
ample of such a texture is shown in fig 4.25. This SEM (Scanning
Electron Microscope) image made by Oort [90] shows structures that
appeared after the etching of amorphous silicon. The whimsicality of
these structures can also be characterized by the fractal dimension. The
determination of the fractal dimension is in this case based on the cor-
relation behavior. A detailed study by Koorevaar for the image shown
can be found in [71]. Koorevaar evaluated fractal dimension estimators
on synthetic images of which an example is shown in Fig. 4.26. Further
information on the synthesis and analysis of these kinds of structures
is given by Kaye in [66].

A use of fractal theory in the field of image processing not men-
tioned vyet is that of fractal image coding, where two names should be
mentioned, viz. Barnsley [8] and Jacquin [56]. The applicability of the
methodology followed in this field seems still to be restricted to the field
of image coding. A first attempt to break through in the field of texture
coding and analysis is described by Vehel in [117]. The discussion of
this type of approach, however, is outside the scope of this thesis.
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Figure 4.26: A synthetic variant to the image shown in Fig. 4.25.

In this chapter, it has been mentioned that dissimilar textures to a
human observer might yield equal values for the fractal dimensions. In
these cases at least, the measurements should be complemented with
measures based on the generalization of the dimension model or mea-
sures such as the lacunarity. Regretfully, only a few articles have been
found in the literature where the authors use these concepts. In the
following chapter we attempt to combine the ideas about texture in
combination with the pyramid as a multi-resolution structure and the
fractal theory.



Chapter 5

Scaling and Texture:
Pyramids and Fractals

5.1 Introduction

In Chapter 2 we discussed texture and the scaling aspects of textures.
From this discussion it followed that there are two major arguments
to give, that the analysis of textures should be based on several levels
of resolution. Firstly, texture pairs might not be discriminable on a
certain level of scaling, whereas they might be discriminable on another
level of scaling. This behavior will be shown in Section 5.5. Secondly,
some textures have an optimal level of scaling on which they should be
studied, as for instance the texture shown in Fig. 2.7. This level does
not need to be known in advance, therefore a study on several levels is
recommended.

These arguments motivated the study of texture analysis within
pyramidal data structures, which -as we have seen in Chapter 3- is a
data structure which is especially designed for the study of signals on
several levels of resolution. The initialization of these structures for
texture analysis appeared to be not trivial. Considering the number
of articles that have appeared and dealing with the use of pyramids
in general, the number of published articles that deal with the use of
pyramids for the study of textures might be considered limited.

Burt [16] proposes two initialization schemes for the texture pyra-

89
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mid. The first initialization scheme, which makes elegant use of the
data structure, is called the local spectral estimator. After having ini-
tialized a Laplacian pyramid, the values are squared. Then for each
window, for which the texture value has to be determined, the average
value is calculated. This average value is assigned to the center pixel
of the window.

The second initialization scheme as proposed by Burt starts with
the initialization of a Gaussian pyramid. By applying an edge operator
to the layers of the pyramid, a binary pyramid is obtained. The true-
valued pixels in the pyramid correspond to pixels which lie on an edge
in the original image. Now, for each window, the fraction of true-
valued pixels is determined. The resulting values are called edge-density
values.

Both schemes calculate the texture value for a window with given
sizes. These sizes do not change for the layers higher in the pyramid
(see also Section 3.4). Therefore, the effect of border artefacts -which
means the effect where pixels of the window lie outside the borders of
the image- increases for levels higher in the pyramid. This limits the
practical use of such approaches. The reason for this disadvantage is
that the texture is quantified on a window basis for each level.

Another approach is described by Eijlers [34]. For this approach the
bottom level of the pyramid is filled with the texture data, which has
been obtained by applying a texture operator to the original data. The
other levels of the pyramid are initialized with the Gaussian reduction
operator. Thus, the initialization of this type of texture pyramid is
identical to that of a Gaussian grey level pyramid. Examples of seg-
mentation results which have been obtained are shown in Figs. 3.15
and 3.16. In this case, the pyramid is only used for the reduction of
the variance in the texture data. A similar kind of use of a pyramidal
data structure is described by Unser and Eden [116]. The disadvantage
of such an approach is that the higher levels in the pyramid do not
correspond to coarser aspects of the texture. Unser and Eden solve
this problem by initializing a number of pyramids, where each pyra-
mid is filled with data that highlights a certain aspect of the texture.
However, it is preferable that the lower resolution levels in the tex-
ture pyramid correspond to coarser aspects of the texture, whereas the
higher resolution levels correspond to the finer details of the texture.
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In case that the quantification is based on a model, the texture
features are derived from the model’s parameters. For each new level,
the parameters result from the parameters of the level underneath. A
similar type of approach is used by Bierhuizen [10] for the estimation of
motion parameters, which are used for the segmentation of images. We
expect that scaling behavior is an intrinsic aspect of the model to be
applied. Such a model, as we have seen in Chapter 4, can be a model
which is based on the fractal theory.

Fractal theory in conjunction with the study of textures is often
associated with the fractal dimension. As we have seen in Chapter 4,
the fractal dimension is used as a parameter for the whimsicality of the
signal. For the analysis of signals other dimension definitions as, for
instance, the information and correlation dimension are starting to be
considered as well. These dimension definitions follow from the gen-
eralized dimension definition. In contrast to the topologically oriented
fractal dimension, the other dimensions are more stochastic measures.
It appears from the literature that signals might have the same fractal
dimension whereas the other dimensions might deviate. Other, mea-
sures -as for instance the lacunarity (see Section 4.4)- are derived from
fractal theory as well.

One of the first attempts to determine the fractal dimension of tex-
tures is described by Peleg et al. [92] and is called the blanket method
(see Section 4.5). Despite the sensitivity to noise, this technique is -
because of its simplicity- in wide use for the determination of the fractal
dimension. In their article, the authors suggested the possiblility that
the technique might be implementable within a pyramid environment.

Such an approach has been followed by Eijlers [35] of which the
discussion is postponed to Section 5.3. Besides the approach of
Eijlers based on pyramids, a number of articles have been found that
are based on other types of multi-resolution techniques. Two types
of such approaches can be distinguished. The first type of approach
is based on scale space. An example of this approach is described by
Miissigmann [87]. He describes a method of determining the fractal
dimension which is based on the change in the behavior of the signal in
scale space (see Section 3.3). The determination is based on the same
ideas as that of the determination of the length of the coastline. This
is done for a number of scaling values (¢). The author mentions that
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the required behavior in the log-log space is found for a number of tex-
tures. The second type of approach as followed by Cohen and You [23]
is based on wavelet theory. Here the signal is studied with a number of
filters where different aspects of the spectrum are considered.

From the preceding discussion, it is concluded that an initialization
technique for the texture pyramid has to be developed. The intializa-
tion has to be based on a model, for which scaling is preferably an
intrinsic aspect. Such a model could possibly be derived from fractal
theory. In the next section we discuss a number of aspects with respect
to such an approach.

5.2 Thoughts on the Integration

In the following sections we describe three attempts at integration of
fractal concepts for the study of textures within pyramidal data struc-
tures. Before these attempts are discussed, some remarks should be
made with regard to the integration. For the texture operator, we
could give a list of requirements and desirable properties. Of course,
the operator should discriminate properly between the textures corre-
sponding to the application domain. If, as in our case, the application
domain is not given, its general ability to discriminate pairs of textures
should be satisfactory. The second requirement for the texture operator
is that it is insensitive to shot noise. Further, it is desirable that the
output of the operator is interpretable. This means that, for instance,
high values correspond to a texture patch which is finer, whereas lower
values correspond to patches with coarser textures. For certain appli-
cations, it can be desirable that the texture values can be estimated
by man as well. Further, it might be of interest that the operator is
sensitive in a certain direction. For a number of operators this behav-
ior is not intrinsic to its definition, but by adapting, for instance, the
window shape of the operator, its sensitivity to a certain orientation
can be facilitated. Finally, it might be desirable that the computation
time is restricted.

For the texture operator we aim at, we can add some further re-
quirements. First of all, the operator should be based on a model for
which scaling is an intrinsic aspect. Therefore, the operator might be
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based on concepts from fractal theory. It must be stressed that we do
not expect an operator which fully conforms to this theory, our only
objective is the design of a good texture operator that satifies the re-
quirements and demands as stated above. Further, the functioning of
the operator should be such that it can be integrated in the pyramidal
data structure. As we have seen in Chapter 3, a pyramid can be used
in two different ways. The first type of use is as a data structure to
reduce variance in the data. The second type of use is that levels higher
in the pyramid correspond to coarser aspects of the image. It is the
second type of use one should aim at when applying a pyramidal data
structure.

An elaboration of this concept is that in which only the changes
between two layers are considered. Thus the required linear relation
in the log-log space is left. Although the approach is not in agreement
with the fractal theory, it does not exclude the possibility of practical
use. As has been mentioned by a number of authors, the required linear
relation was not found for many textures, which restricted the use of
measures based on the fractal theory. If we divide the relations into log-
log space, a more general type of texture operator might be obtained.
An example of such an approach is also proposed by Albregtsen et
al. [2]. In Section 5.5 an attempt at integration is proposed where a
similar type of use of the log-log space is followed.

Finally, we should stress that if the concepts of the fractal theory are
used, it is desirable that the texture operator to be designed includes
the weighting abilities as prescribed by the generalized dimension model
(see Section 4.6). Further, it might be of interest to study the use of
such related measures as, for instance, the lacunarity.

In the next section we describe a first attempt at integration. This
attempt does not fulfill all the requirements we have stated above. The
method is based on the blanket algorithm, but extended to the pyramid
environment.

5.3 The Blanket Technique expanded

The algorithm is based on the blanket technique [92], described in Sec-
tion 4.5. This method calculates the area A(e) of the image with de-
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Figure 5.1: The transport of the sums required for linear regression.

creasing resolution €. The values obtained can be plotted in a log-log
graph as shown in Figs. 4.18 - 4.21, and 4.23. By fitting a line through
the points in the log-log space, the fractal dimension can be determined
from the slope of the line through these points. The slope of the line
for a fractal image is equal to 2 — D, where D stands for the fractal
dimension. In practice, this curve will only be drawn for testing the
appropriateness of the model for the texture under study. For the calcu-
lation of the fractal dimension, the linear regression algorithm is used,
which is based on the calculation of four sums, viz.: ¥ logelog A(e),
S loge, S log A(e), and 3 (loge)?.

The idea behind this initialization technique is to transport these
sums to the father nodes ! as shown in Fig. 5.1. Thus a sort of "super
sums” are obtained, such that the fractal dimension can be obtained for
each level in the pyramid. This approach has been described in [35].
In this article, determining the variance of the fitting has also been
suggested. A higher variance should possibly correspond to an edge in
the underlying region.

The accuracy of this measurement has been tested on images which
were generated according to the frequency filtering method as suggested
by Voss, discussed in Section 4.3. The dimensions of the images lay in
the range of 2.1 to 2.9 in steps of 0.1. For each dimension five realiza-
tions were generated. The resolution parameter ¢ was varied between
1 and 8 and the window sizes were set to 12 x 12. As discussed in
Chapter 2, larger window sizes would result in ill-defined edges. Larger

!Because of the contents of the elements, the term node is used rather than pizel.
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Figure 5.2: The average dimensions found for synthesized images with
increasing dimension.

window sizes also give problems for smaller textural regions. Smaller
window sizes result in a decrease of the statistical accuracy. For each
image, the average dimension has been determined, together with the
standard deviation. These values were averaged again per group of
five realizations. In Fig. 5.2, the average dimensions are shown. Be-
cause of the technique used, the average values for levels higher in the
pyramid do not differ from the values at the bottom level. Only the
standard deviation decreases with the resolution as is shown in Fig. 5.3.
These standard deviations appeared not to vary significantly within the
groups of five realizations.

To illustrate the practical use of the method, we have made two
images that are a composition of two Brodatz textures (see Figs. 5.4,
and 5.5). From theses images the corresponding texture pyramids were
initialized. The window sizes were fixed at 12 x 12 and the resolution
was varied between 1 and 8. The resulting pyramids are shown in
Figs. 5.6 and 5.7.  Purely for illustration purposes, the dimension
values are rescaled such that they lie in the range of [0, 255]. It appears
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Figure 5.3: The average of the standard deviations for each level in the
pyramid.

Figure 5.4: A composition of the Brodatz textures [14] d60 (European
marble) and d100 (ice crystals on an automobile).
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Figure 5.5: A composition of the Brodatz textures [14] d24 (pressed
calf leather) and d92 (pigskin).

Figure 5.6: The texture pyramid of the image shown in Fig. 5.4.
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Figure 5.7: The texture pyramid of the image shown in Fig. 5.5.

that the operator is not able to discriminate between the textures d60
and d100. Even at higher levels in the pyramid, no discrimination
could be obtained. Discrimination is possible for the texture pair d24
and d92. At the bottom level of the pyramid, the distributions of the
two types of textures are still overlapping, as shown in Fig. 5.8. But
from level 5, the distributions start to separate as is shown in Figs. 5.9,
5.10 and 5.11. In Figs. 5.12, 5.13 and 5.14, segmentation results are
shown that were obtained by thresholding the levels in the pyramid
at a threshold of 3.47. This choice of threshold value is based on the
histograms shown in Figs. 5.9, 5.10 and 5.11.

As we mentioned at the beginning of this section, this attempt does
not fulfill all the requirements that are given in Section 5.2. The main
disadvantage of this technique is that it determines the fractal dimen-
sion only on one level of scaling. This means that the pyramidal data
structure is only used as a technique to decrease the variance. Further,
the technique is based on the blanket technique, which is sensitive to
shot noise because of the way the MIN- and MAX-operators are used.
In Chapter 4, we mentioned the tendency of considering not only the
fractal dimension, but studying a whole range of dimensions which
followed from the generalized dimension definition. In the image pro-
cessing community this tendency has not begun yet; only a very few
articles deal with the information and correlation dimension, besides
the fractal dimension. Because of the expected increase in discrimi-
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Figure 5.8: The histogram of the texture map shown in Fig. 5.7 at level
8 of the pyramid.
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Figure 5.9: The histogram of the texture map shown in Fig. 5.7 at level
5 of the pyramid.
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Figure 5.10: The histogram of the texture map shown in Fig. 5.7 at
level 4 of the pyramid.
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Figure 5.11: The histogram of the texture map shown in Fig. 5.7 at
level 3 of the pyramid.




The Blanket Technique expanded 101

Figure 5.12: Thresholding result of level 5 in the pyramid shown in
Fig. 5.7

Figure 5.13: Thresholding result of level 4 in the pyramid shown in
Fig. 5.7
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Figure 5.14: Thresholding result of level 3 in the pyramid shown in
Fig. 5.7

natory power, an operator that can determine all these dimensions is
recommended. Finally, it must be stressed that the initialization tech-
nique as discussed in this section, only works for textures that fulfill the
requirement that there is a linear relation in the log-log space. As we
mentioned in Section 5.2, the behavior in the log-log space can be di-
vided up into a sequence of line segments. Although such an approach
departs from the fractal theory, and may only be called a technique
that uses fractal concepts, it might be of interest for application in a
more generally oriented texture operator.

5.4 The Box-Counting Techriique

The box-dimension approach is often recommended for the determina-
tion of the dimensions of a phenomenon in practical situations. This is
because the implementation is straightforward, and the method is able
to determine all dimensions of the generalized dimension model. A
more detailed discussion of this dimension can be found in Section 4.4.

It appears that the box-counting algorithm has a lot in common
with the pyramidal data structure (see Fig. 5.15). Consider a node
higher in the pyramid. To such a node there is a corresponding square
of 2 x 2 son nodes, which on its turn corresponds to a square of 4 x 4
at the next level. In general, we could say that for a pyramid that
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Figure 5.15: The similarity between the pyramidal data structure and
the box-dimension approach.
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consists of N + 1 levels, a node at level [ corresponds to an area patch
of 2V~ x 2¥=! which is studied on N —1{ levels of resolutions. Therefore
this study of scaling behavior appears to be similar to that of the box-
dimension approach. For the box-dimension approach, however, we
need to consider the intensity axis as well. Therefore, we do not consider
area patches, but cubes (see Fig. 4.16). Now, the possible number of
divisions of theses cubes depends on the level of the node. This means
that the dimension can be determined over a larger scaling range for
higher nodes. When more resolution levels are considered, the influence
of the individual resolution levels decreases. The pyramid which is
obtained by following such an approach is comparable to the pyramid
as discussed in the previous section, where the pyramidal data structure
is used only for smooting the data. As we have stated before, we
expect from a pyramidal data structure that higher levels correspond
to a lower resolution. This can be achieved by only considering the two
coarsest divisions of the corresponding cubes. Of course, the method is
no longer in agreement with the fractal theory, which assumes a study
which is based on an adequate range of resolution levels. We discuss
this approach in this section.

From a computational point of view, it might be preferable to work
with larger cubes, because there are more points within the cube, which
increases the accuracy of the measurement. This might be obtained by
working with cubes that overlap for 50% with cubes of neighboring
nodes.

Using this algorithm, a number of experiments were carried out with
the synthesized fractal images. The advantage of using these images is
that the extent to which the dimensions have to differ before discrimi-
nation can be obtained can be easily tested. In the experiments, several
values for the dimension parameter a have been used. From the result-
ing texture maps, a number of statistics have been determined. We
found that discrimination was only possible between the texture pair
with fractal dimension 2.1 and 2.9. Experiments have also been carried
out with variants of this approach, where a selection of the available
resolution steps could be made. The results obtained were similar.

Despite the general recommendation of the box-counting technique,
we found that the method is not suited for the type of application we
aim at. To obtain accurate results with the box-counting method, it is
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required that enough points be found in the resolution cells of the cube.
Bear in mind that the number of points in the cube is fully determined
by the sizes of the window, and not by the length of the intensity axis
of the cube; therefore large window sizes are required. But, as we have
mentioned in Chapter 2, window sizes which are too large are often
not desirable from a texture analysis point of view and conflict with
our search for a resolution reduction operator that is suited for the
initialization of a texture pyramid. A good choice of the sizes is further
hampered by the differences in the types of axes. For discrimination
purposes, it is required that the resolution with which the intensity
axis is studied is not too coarse, as is now the case. A finer resolution
along the intensity axes would require a number of divisions, which is
not always possible because of the limited dimensions of the window.
Therefore, it appears that an optimal window size for a locally oriented
texture study based on such an approach has not been found.

Despite the recommendations on fractal theory to estimate the di-
mensions of phenomena with a box-dimension type of approach found
in the literature, we have found that this method is not suitable in its
original definition for image processing applications. A conclusion that
has also been drawn by Dubuc et al. [33]. To make the method suitable
for image processing, it has to be altered substantially, which means
that it will lose the elegance of its original definition. Such an approach
has been followed by Ait-Kheddache and Rajala [1] and was discussed
in Section 4.7. Experiments carried out by Kamphuis [60] showed that
this method was time consuming and was rather sensitive to the choice
of the parameters.

In the next section a more succesful attempt is discussed where the
relationship with fractal theory is even further weakened.

5.5 The Mass Pyramid

In the previous section, we concluded that the cube was too sparsely
filled with points to give accurate results. Further, the dimensions of
cubes were such that the resolution along the intensity axis was too
coarse to discriminate between significantly differing textures. Because
of these disadvantages, it is interesting to think of a method that works
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Figure 5.16: Image data within a window of 16 x 16 of the upper left
corner of the image shown in Fig. 2.4.

in the image plane and which is not based on a 3-dimensional cube as is
the previous method. Of course, it makes no sense to count the number
of pixels in the window, for a variety of resolution values. Therefore,
another type of measure has to be defined: a measure that is related
to the texture aspects. Before such a measure is derived we first give
three possible interpretations of the 2-dimensional image data.

The first interpretation is that the image data represents photon-
densities. A high grey value corresponds to a high photon density. For a
lot of images this mechanism underlies the imaging process. The second
interpretation is based on the way images are printed. Grey values are
obtained by printing clusters of dots, where the density depends on
the grey value to be printed. The third interpretation is based on the
idea that an image can be considered as a mountain landscape (see
Fig. 5.16). Now, the grey value corresponds to a height in the image.
As the previous interpretations were based on densities, this can be
extended to this interpretation as well. Then, each pixel is considered
as a column of mass in the mountain landscape. The mass is now
defined as the height of the column. Density values are obtained by
dividing the mass by the total mass in the window.

The method discussed in this section is based on measuring differ-
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ences in the mass density values within a window. Now, suppose that
the grey value at position (¢, j) is given by I(z,y), then the total mass
M in a window is given as:

M =3 1(i.j), (5.1)

where the sum is taken over the whole window. Then the mass density
p at position (4, j) is given by:

(5.2)

Note that:

> omig =1 (5.3)
%3

a condition that has to be fulfilled to apply the generalized dimension
model. Within this method these density values are considered as being
the probability values of the generalized dimension model. Now, the
formula of the generalized dimension model can be applied again. This
means: | N
D, = lim L 082
—0a—1 loge

(5.4)

As we stated in Section 4.6 the exponent « is considered to be a weight-
ing coefficient. With this mechanism, an increase in the discriminating
performance might be obtained compared to techniques that are only
based on the determination of the fractal dimension.

The extension of this approach to the pyramidal data structure
is straightforward. In fact, this operator is especially suited for this
data structure. The initialization of the texture pyramid starts by a
summing process. FEach father node is given the total mass of the
corresponding son nodes. Density values are obtained by dividing the
son values by the value of the father node. As for the initialization
technique discussed in the previous section, 50%-overlapping windows
are applied. Bear in mind that the total sum value has to be corrected
on this extension. For the determination of the dimension values the
two levels underneath the level of the father node are considered.

Of course, initialization of the two lowest levels is not possible. This
is not really a disadvantage of this technique; actually, it is fully in
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Figure 5.17: Pressed calf leather. Picture d24 from [14].

agreement with the idea that the level in the pyramid corresponds with
the scale at which the texture is studied. Thus, the two lowest levels
correspond to scales where the recognition of the texture is impossible.
Segmentation on these levels can only be based on grey value informa-
tion. Already having a coarse segmentation result from at least one of
the levels higher in the pyramid, an adjustment on the borders of the
textural regions could take place at these lower levels. The grey values
of the border pixels are, for instance, compared with the local averages
of the neighboring regions. The segmentation results that are obtained
by following such an approach will probably be more irregular than
the obtained results as shown in Figs. 3.15, 3.16. However, the results
shown in these figures do not need to be better, because irregular region
borders can be smoothed out by the technique followed.

The experiments carried out using this algorithm are based on a
selection of five images taken from the Brodatz collection. The selection
consists of (for the human observer) similar types of textures and of
dissimilar types of textures. The average values of the resulting images
were equalized. The resulting images of the selection are shown in the
Figs. 5.17 - 5.21.

The Brodatz images have also been used to make composition im-
ages, where each composition consists of two textures taken from the
selection of Brodatz textures. The composition schemes are shown in
the Figs. 5.22, and 5.23. Based on these composition schemes, 20 com-
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Figure 5.18: Handmade paper. Picture d57 from [14].

Figure 5.19: Cotton canvas. Picture d77 from [14].

Figure 5.20: Grass lawn. Picture d9 from [14].
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Figure 5.21: Pigskin. Picture d92 from [14].

Figure 5.22: The block composition scheme.

position images were obtained. Two of them are shown in Figs. 5.24,
and 5.25. By applying these two composition schemes, the influence
of the shape and the positioning of the borders in the image could be
studied as well.

The evaluation of the performance of the mass pyramid technique is
characterized by two stages. First, a selection of values for o has to be
made with which a maximum discrimination performance is obtained.
Second, the performance on discrimination has to be tested.

Initially, the following values for a have been tested: o =
—10,-2,-1,1,2,10. Per single texture image (see Figs. 5.17 - 5.21)
we made a pyramid for each value of a. The histograms made were
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Figure 5.23: As Fig. 5.22, but now circular. The center of the circle is
at position (128,128) and the radius is 64.

Figure 5.24: An example of a block composition corresponding to
Fig. 5.22.
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Figure 5.25: An example of a circular composition corresponding to
Fig. 5.23.

for the levels 6, 5, and 4. Now, distances between the histograms had
to be determined per level and per value for a . The most interesting
values for o had to be selected from these distances . The distances
were measured with the Matusita distance, that is given by:

dyy — \/zu{l(z') (i), (5.5)

]

where h;(z) and hs(z) stand for the two histograms.

From the resulting 240 distance values, the average and standard
deviation were determined per level and per value for . The results
are shown in Table 5.1. It must be stressed that the distances between
the levels cannot be compared, because the histograms were made with
different lengths of intervals. From Table 5.1, it was concluded that the
values -1.0 and 1.0 for o appeared to be the most interesting values for
discrimination purposes. A selection of more values would significantly
increase the complexity of the analysis of this technique. In case where
only one value of « is selected, there is no longer any advantage anymore
over an approach that is based on the fractal dimension.

In order to evaluate the possible discrimination of the texture pairs
in the composition images, scatter plots were made. Therefore, the
data points are plotted in a space that has been spanned by axes that
correspond to a = —1.0, respectively @ = 1.0. These plots were made
for the levels 6, 5, and 4 of the pyramids.
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[level | measure [ -10.0 [ -20[ -1.0[ 1.0] 2.0] 10.0]
6

7 0.085 | 0.180 | 0.252 | 0.313 | 0.145 | 0.079
o 0.028 | 0.096 | 0.134 | 0.209 | 0.102 | 0.034
3 7 0.189 | 0.366 | 0.502 | 0.499 | 0.346 | 0.159
o 0.061 | 0.562 | 0.223 | 0.205 | 0.160 | 0.062
4 u 0.276 | 0.562 | 0.718 | 0.606 | 0.564 | 0.258
o 0.086 | 0.196 | 0.256 | 0.243 | 0.223 | 0.086

Table 5.1: The averages (u) and the standard deviations (o) of the
histogram distances.

From these plots it appeared that only the texture pair consisting
of the textures d24 and d9 (see Figs. 5.17, and 5.20) did not result in
separable clusters. The scatter plot for level 6 of this combination his
shown in Fig. 5.26. In the plot, only 50 data points per texture have
been plotted. The scatter plots for the levels 5 and 4 looked similar.
The other texture pairs did result in separable clusters. Discrimination
was for some texture pairs only possible at a specific level in the pyra-
mid. For instance, the combination d9 vs. d92 was only separable at
level 6 of the pyramid, whereas the combination d9 vs. d77 was only
separable at level 4 (see Figs. 5.27 - 5.29). It was this behavior we
were aiming at. By applying a texture operator in a single plane, one
might miss a scaling level that is significant for discrimination. The
pyramidal data structure ables us to study a whole range of scaling
levels simultaneously.

Other combinations -as for instance the combination d57 vs d92-
were almost completely separable at all levels, although a certain prefer-
able level was found for which the separability was maximum. The
texture pair d57 vs. d77 appeared to be separable at levels 6 and 5 by
using the combination of & = —1.0 and « = 1.0, whereas at level 4 only
one a was required.

The combination of d57 and d92 was rather well separable at all
levels with one value for . By manually thresholding, we obtained
some preliminary segmentation results, which are shown in Figs. 5.30 -
5.35. It must be stressed that a more advanced type of segmentation
procedure may result in an increase of the quality of the segmentation
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Figure 5.26: The scatter plot at level 6 for the textures d24 and d9. This
was the only combination which did not result in separable clusters.
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Figure 5.27: The scatter plot at level 6 for the textures d9 and d77.

This texture pair is only separable at level 4 of the pyramid.
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Figure 5.28: As Fig. 5.27 but then for level 5.
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Figure 5.30: Thresholding result of the block composition of texture
pair d57 and d92 at level 6 of the pyramid.

result. Further experiments carried out with composition images that
contain other textures than the five textures studied in this section
showed similar behavior.

Considering the fact that the method shows a good discrimination
performance, and the fact that separability for some texture pairs only
occurred at particular levels in the pyramid, it is concluded that we
have succeeded in the task of finding a resolution reduction operator
for the texture pyramid. Further, it must be stressed that despite the
straightforward implementation, the computation is fast. When run-
ning the algorithm on a SUN Sparc station IPC, where the algorithm
has been implemented in the SCIL image processing package, the com-
putation took about 30 seconds.

5.6 Discussion

With the mass pyramid, we have found a well-performing initialization
technique for the texture pyramid. The design of the initialization tech-
nique originates from the fractal theory, but finally only the concept of
quantifying scaling behaviour as prescribed by the fractal theory has
been used. The operator that has been developed has the weighting
mechanism as prescribed by the generalized dimension model. Because
of the distance that the initialization technique takes from the fractal
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Figure 5.31: As Fig. 5.30, but for level 5.

Figure 5.32: As Fig. 5.30, but for level 4.
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Figure 5.33: Thresholding result of the circle composition of texture
pair d57 and d92 at level 6 of the pyramid.

Figure 5.34: As Fig. 5.33, but for level 5.
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Figure 5.35: As Fig. 5.33, but for level 4.

theory, one might wonder if it makes sense to continue this relation-
ship. For practical reasons -for instance if the applications have to be
implemented into hardware-, it might be interesting to design a similar
type of algorithm that leaves the generalized dimension model. It is
important that the algorithm posseses a weighting mechanism as pre-
scribed by the generalized dimension model. Further, the idea that the
level of the pyramid corresponds to the scale at which the texture is
quantified should remain.

Until now, we have only made some remarks in Chapter 3 regard-
ing the suitability of the pyramidal data structure for segmentation.
Besides the linked pyramid approach as discussed in Section 3.2.4, ref-
erence has been made to an approach described by Eijlers [34], which is
based on an extension to the region-growing algorithm. The informa-
tion in a pyramid can be used in several ways for image segmentation
purposes. An advanced technique might integrate all information in the
pyramid(s) in a such way that a hierarchical segmentation is obtained.
This means that the segmentation algorithm starts at a higher level in
the pyramid on which a preliminary segmentation result is obtained.
At higher resolution levels, the positioning of the borders may be more
exact. Further, on these higher resolution levels, segmentation within
the regions might take place and in this way a hierarchical segmenta-
tion result be obtained. The attention paid in general to this kind of
use of the information in pyramids is still limited and, therefore, it is
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recommended that more attention be paid to this subject.



Chapter 6

Conclusions and
recommendations

Texture plays a significant role in the processing and analysis of images.
Despite the amount of research carried out on this subject, texture as
an image processing phenomenon is still an undefined phenomenon.
However, in the literature, several attempts at describing textures can
be found. Most attempts have in common the awareness that the ap-
pearance is most often dependent on the level of scaling at which the
texture is studied.

Studying image processing phenomena on several levels of resolution
is often done in the pyramidal data structure. Many applications of this
data structure are to be found in the literature. One of these is the use
of the pyramid for the analysis of textures. However, the number of
studies on this application is limited when compared to other types of
applications.

In general, we can distinguish two ways in which the pyramids are
used. The first type of use aims at the decrease in the variance of the
data. This means that the meaning of the data does not change with
the level in the pyramid, but only that the variance is averaged out.
The second type of use is based on the idea that the levels higher in
the pyramid should correspond to a more coarsely oriented description
of the original image.

Both types of use can be found in the literature. Regretfully, it is
the first type of use that is often (consciously or unconsciously) im-
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plemented. This usage can be explained by the fact that resolution
reduction for this type of use is straightforward. This reduction, how-
ever, does not match with the meaning of the data. In contrast to the
first type of use, the second type of use is in agreement with the concept
of pyramidal data structures. This means that for the design of the res-
olution reduction operator, one needs a description of the phenomenon,
of which scaling is an intrinsic aspect.

Both types of use are also found in the study of textures. Follow-
ing the second type of use meant originally that the effect of borders
increases with the height in the pyramid. By applying a model for
the initialization, the derived features might automatically bubble up
in the pyramid. As mentioned before, scaling should be an intrinsic
aspect of such a model. Such a model might be based on the fractal
theory, which describes phenomena on different levels of scaling.

Since the popularization of the fractal theory, articles have started
to appear on its use in image processing applications. Most of the
articles focus on the use of the fractal dimension, as a measure for the
whimsicality of signals. Fractal theory, however, describes also the use
of such derived measures as the lacunarity, and the information and the
correlation dimension. These latter types of dimension definitions are
based on the generalized dimension model. Using the fractal dimension
in conjunction with at least one of these other measures might increase
the discrimination performance.

Despite the fact that texture, pyramids and fractal theory have
scaling as a concept in common, the study on this relationship appears
to be a step-child. In this thesis, we have studied the applicability of
the fractal theory for the initialization of texture pyramids.

By making use of the above-mentioned relationship we succeeded in
the design of an initialization algorithm for the texture pyramid which
is based on the concept of the generalized dimension model. As the
fractal theory describes a phenomenon on a broad range of scaling,
for the pyramidal data structure we had to depart from this central
concept of fractal theory. Our method is based on the idea of dividing
the scaling range into a number of smaller intervals, where the number
of intervals is given by the number of layers in the pyramid. For each
interval, one or more dimension features from the generalized dimension
model are determined. Although this means that the relationship with
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the fractal theory is weakened, we win in generality. As the use of the
fractal theory en pure sang is restricted to a rather restricted class of
textures, our method is more general.

For our technique we have introduced the mass pyramid. The ini-
tialization of this pyramid is straightforward. In a discriminatory sense
the operator has shown to perform good. For some of the texture
pairs we have studied, we found that discrimination was only possible
at a higher level in the pyramid, whereas the discrimination between
other texture pairs was only possible at lower levels. Some other tex-
ture pairs could be discriminated on a number of layers. The scaling
behavior found was what we were aiming at, when starting with the
study of the use of pyramidal data structures for texture analysis and
segmentation. Further, the implementation of the method is -because
of its elegance- straightforward and only a limited processing time is
required.

Because of the weakened relationship with the fractal theory, it is
recommended to study whether a further weakening might lead to an
operator that performs equally well in discriminatory sense, but where
the methodology is even more simple. Such an algorithm would require
possibly even less processing time and its suitability for implementation
in a pyramidal hardware architecture is not excluded. It is of impor-
tance, however, to maintain a weighting mechanism as prescribed by
the generalized dimension model. A different type of approach could
be based on the integration of wavelet theory and fractal theory for
the study of textures. This relationship is already the subject of some
articles that can be found in the literature.
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Samenvatting

Bij de ontwikkeling van systemen voor digitale beeldverwerking en -
analyse wordt men geconfronteerd met de mogelijkheid dat er zich tex-
turele gebieden kunnen bevinden in de te verwerken beelden. Ondanks
de rol die textuur speelt binnen de beeldverwerking, is textuur als beeld-
verwerkings fenomeen nog steeds ongedefinieerd. Zelfs het beschrijven
van het begrip textuur blijkt een moeilijke zaak te zijn. Vaak wordt de
beschrijving aangevuld met voorbeelden om het te verduidelijken. Als
voorbeelden van texturen zijn te noemen: tapijt, wolken, textiel, leer,
enz. Het begrip textuur wordt nog weleens in verband gebracht met
structuur. Echter, een textuur hoeft zeker niet gestructureerd te zijn
om door de mens als homogeen ervaren te worden. Het is juist deze
eigenschap die de definitie van het begrip bemoeilijkt, en dientengevolge
de analyse.

Analyse vindt plaats met een zogenaamde textuuroperator. Meestal
kwantificeert een dergelijke operator de textuur binnen een venster
waarvan de afmetingen gegeven zijn. Het oorpronkelijke beeld wordt
getransformeerd door deze operator te schuiven over het gehele beeld-
vlak, waarbij de verkregen waarde meestal wordt toegekend aan het
centrale beeldelement. Reeds tijdens de segmentatiefase -één van de
eerste fasen binnen het hele beeldverwerkingsproces- bestaat er de be-
hoefte aan een dergelijke operator. Gedurende deze fase wordt het beeld
opgedeeld in gebieden die volgens een bepaald criterium homogeen zijn.
Dat betekent dat van een textuuroperator wordt verwacht dat deze een
konstante waarde afgeeft indien de onderliggende textuur gelijk is.

Een aantal van de omschrijvingen van textuur wijst op de scha-
lingsaspecten van textuur. De verschijningsvorm van een textuur kan
namelijk drastisch veranderen indien de waarnemingsschaal wordt ge-
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wijzigd. Van de vele textuuroperators die in de literatuur te vinden
zijn, zijn er een aantal die de direkte mogelijkheid bieden om het scha-
lingsniveau waarop de textuur wordt bestudeerd in te stellen. Echter,
een dergelijke mogelijkheid verwacht voorkennis van de schaal (of het
schalingsinterval) waarop de textuur bestudeerd dient te worden. In
de praktijk hoeft deze voorkennis niet aanwezig te zijn. Het is daarom
wenselijk om een analyse methode te volgen waarbij het beeld op een
breed schalingsinterval wordt bestudeerd. Bij het bestuderen van beeld-
aspecten op verschillende niveaus van schaling wordt binnen de beeld-
verwerking vaak gebruik gemaakt van de zogenaamde piramidale data-
structuur; ook wel aangeduid met piramide. Een dergelijke structuur
bestaat uit een aantal lagen die het beeld op verschillende niveaus
van resolutie beschrijven. Stel dat de afmetingen van het originele
beeld 256 x 256 bedragen, dan bestaat de piramide uit 9 lagen, met de
afmetingen: 256 x 256, 128 x 128, 64 x 64, 32 x 32, 16 x 16, 8 x 8, 4 x 4,
2 x 2, en 1 x 1. Indien we nu de lagen boven elkaar geplaatst denken,
herkennen we hierin de piramide vorm. Cruciaal bij de initialisatie
van een piramide is de resolutiereductie. In het geval van bijvoorbeeld
de Gaussische piramide bestaat deze uit een Gaussisch filter en een
herbemonsteringsstap. Met de Gaussische piramide beschikt men over
9 laag-doorlaat gefilterde versies van het oorspronkelijke beeld.

Het scala aan piramidesoorten binnen de beeldverwerking is groot.
Dit wordt zowel veroorzaakt door de aard van de informatie in de
piramide als de wijze waarop de resolutiereductie plaatsvindt. An-
dere voorbeelden van piramides zijn die van de binaire piramide en
de Laplace piramide. Deze laatste bestaat uit banddoorlaat gefilterde
versies van het oorspronkelijk beeld.

In de literatuur zijn twee soorten van gebruik van de piramide te
vinden. Bij het eerste type van gebruik wordt de structuur gebruikt om
de variantie in de data te reduceren. Dat wil zeggen dat de variantie
in de data afneemt met de hoogte in de piramide. In de praktijk blijkt
dat deze wijze van resolutiereductie meestal de eenvoudigste is. Het
tweede type van gebruik is gebaseerd op het idee dat hogere niveaus in
de piramide corresponderen met een beschrijving van de beeldaspecten
op een grover schalingsniveau. Dit type van gebruik wordt geacht meer
in overeenkomst te zijn met het concept van piramidale datastructuren.
Echter, het ontwerp van een resolutiereductie operator is voor dit type
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gebruik niet triviaal. Dit geldt zeker ook voor de textuurpiramide, die
de onderliggende textuur beschrijft op meerdere niveaus van schaling.
Het ontwerp van een resolutiereductie operator voor de textuurpiramide
staat daarom centraal binnen dit proefschrift.

Zoals we reeds hebben opgemerkt zijn er een aantal textuuropera-
tors, welke de mogelijkheid bieden om het schalingsniveau in te stellen
waarop de textuur wordt bestudeerd. Echter deze mogelijkheid garan-
deert nog niet dat de initialisatie van de textuurpiramide triviaal is.
Met name randeffecten als gevolg van de verhouding tussen de ven-
sterafmetingen en de afmetingen van de te initialiseren laag in de pi-
ramide gaan steeds meer overheersen naarmate men hoger in de pi-
ramide komt. Feitelijk is de optimale wijze van resolutiereductie, die
waarbij de textuureigenschappen opborrelen in de piramide, en wel zo-
danig dat naarmate de laag hoger in de piramide is, de beschrijving
een grover schalingsaspect van de textuur belicht. Fen dergelijke me-
thode dient gebaseerd te zijn op een model, waarbij het schalingsaspect
is verdisconteerd. Een dergelijk model zou gebaseerd kunnen zijn op
de fractal theorie. Centraal binnen deze theorie is de beschrijving van
fenomenen op verschillende niveaus van schaling.

Het idee van de fractaltheorie wordt vaak geillustreerd met de vraag:
"Hoe lang is de kustlijn van Engeland?” Het blijkt dat op deze vraag
geen consistent antwoord is te geven. Immers naarmate de kustlijn met
een kleinere meetlat wordt gemeten, zal de nauwkeurigheid waarmee
deze wordt gevolgd toenemen. Als gevolg hiervan zal de kustlengte
toenemen met de nauwkeurigheid waarop men meet. Om uiteindelijk
een consistent antwoord te kunnen geven op deze vraag, wordt de fractal
dimensie geintroduceerd. De fractal dimensie kan worden beschouwd
als een maat welke de grilligheid van een fenomeen kwantificeert. Een
eigenschap die dan ook overeenkomst vertoont met onze wens om tex-
tuur te kwantificeren.

De fractal dimensie maakt deel uit van een oneindig aantal dimen-
sies, welke zijn gedefinieerd in het algemene dimensiemodel. Dit model
heeft een parameter die wordt gebruikt als een wegingsmechanisme.
Voor elke waarde van de parameter wordt een nieuwe dimensiemaat
verkregen, welke een ander aspect benadrukt. De theorie beveelt dan
ook aan om naast de fractal dimensie nog tenminste één andere di-
mensiemaat in beschouwing te nemen. Het is bijvoorbeeld denkbaar
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dat twee duidelijk verschillende signalen een gelijke fractal dimensie
opleveren. Juist in die gevallen wordt het gebruik van een aanvullende
dimensiemaat aanbevolen. Bij het ontwerp van een resolutiereductie
operator dienen we daarom uit te gaan van dit wegingsmechanisme.

Uitgaande van de wens om een resolutiereductie operator te ontwer-
pen welke de textuur daadwerkelijk op verschillende schalingsniveaus
beschrijft, dient de relatie met de fractaltheorie verzwakt te worden. De
theorie schrijft een bepaald schalingsgedrag voor over een breed scha-
lingsinterval. Juist bij de piramide wordt de schalingsruimte opgedeeld
in kleine intervallen. Dit betekent dat we nu de fractalmaten zullen
loslaten op slechts zeer kleine intervallen.

In dit proefschrift worden een aantal pogingen beschreven voor het
ontwerp van een dergelijke operator. De uiteindelijke voorgestelde
operator is gebaseerd op het idee dat de grijswaarde wordt opgevat
als een massa. Door de massa te delen door de totale massa binnen
het venster wordt de massadichtheid verkregen. De afgeleide textuur-
maten zijn gebaseerd op het kwantificeren van de distributie van de
massa dichtheden, waarbij gebruik wordt gemaakt van concepten uit
de fractaltheorie.

Experimenten hebben aangetoond dat de methode goede resultaten
oplevert met betrekking tot discrimineerbaarheid. Het bleek dat voor
een aantal gevallen inderdaad twee dimensiematen nodig waren om te
kunnen discrimineren. Echter ook waren er gevallen waarbij slechts één
dimensiemaat voldoende was. Verder zijn er textuurparen gevonden,
welke slechts op hogere niveaus in de piramide te discrimineren waren.
Terwijl er tevens textuurparen waren die slechts op lagere niveaus in de
piramide te discrimineren waren. Met deze resultaten is het nut van het
gebruik van de piramide bij textuuranalyse aangetoond. Door de relatie
met de fractaltheorie te verzwakken heeft de methode in toepasbaarheid
gewonnen. Voorts bleek uit de experimenten dat slechts een beperkte
verwerkingstijd nodig was.
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