Report no : 2025.020

Coach : Dr. ir. J. Sijs

Professor : Dr. ir. H. Goosen, Dr. ir. E. J. Kober
Specialisation : Mechatronic System Design

Type of report : MSc Thesis

Date : July 1st, 2025

Delft
e t University of
Technology

_earning-Driven
Torgue Control for
OKId-Steer Ropots

Knowledge-Assisted Reinforcement Learning with
Curriculum-Based System Identification for
Trajectory Control

by

M. Jansen

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on July 1st, 2025.

Student number: 4564030

Project duration: January 10, 2024 — July 1, 2025

Thesis committee: Dr. ir. J. Sijs, Avular: Mobile Robotics
Dr. ir. E. J. Kober, TU Delft, supervisor
Dr. ir. H. Goosen, TU Delft, supervisor

This thesis is confidential and cannot be made public until July 1, 2025.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

Reinforcement Learning (RL) offers a promising data-driven approach to decision-making in complex
scenarios, but standard RL methods can struggle with the intricacies of terrain interaction and vehicle
dynamics. Key challenges addressed include defining a proper problem definition, designing a cur-
riculum learning strategy to gradually increase difficulty, and forms of imitation learning to overcome
initial learning struggles. A low-fidelity controller is employed as an expert model to guide initial policy
learning. The approach is validated in simulation experiments featuring progressively harder tasks to
evaluate learning stability, performance, and generalization. We demonstrate that torque-based ac-
tion formulations, enhanced by knowledge-assisted techniques, enable the agent to learn nuanced
wheel-ground interaction, achieving accurate trajectory control.

Beyond the technical content, this work reflects a broader belief: that marrying human expertise with
modern learning algorithms can accelerate progress in robotics. The knowledge-assisted frameworks
developed here, (KAMMA, and their curriculum-augmented variants) embody this principle, blending
structured guidance with autonomous learning. | hope that this thesis not only advances skid-steer
control but also serves as a blueprint for future efforts to integrate domain knowledge and machine
learning in other complex systems.

I would like to thank my supervisors for their guidance during this learning process and the many
sparring rounds we shared. Furthermore, | dedicate this work to my family and friends, whose encour-
agement kept me focused through late nights and debugging marathons. May this thesis inspire others
to tackle the intricate yet rewarding challenge of teaching machines to learn.

M. Jansen
Delft, June 2025

RL Reinforcement Learning

MDP Markov Decision Process

DDPG Deep Deterministic Policy Gradient
KA-DDPG Knowledge-Assisted DDPG
KAMMA Knowledge-Assisted Mixed Mode Actioning
IL Imitation Learning

LSTM Long Short-Term Memory

PID Proportional-Integral-Derivative controller
CG Center of Gravity

GPU Graphics Processing Unit

TE Tracking Error

SM Smoothness

GV Growing Variance

BD Bimodal Drift

FIFO First In First Out

EMA Exponential Moving Average

Abbreviations

1.1

2.1
2.2
2.3

3.1

3.2
3.3

3.4
3.5

3.6

4.1
4.2
4.3

5.1

5.2

53

54

5.5

5.6

5.7

5.8

5.9

List of Figures

Avulars’ Skid-steering Origin One vehicle 1
MDP components (Scomparinetal.,2024) 8
Framework of DDPG algorithm (Daietal.,2022) 9
Basic structure of the DDPG actor-critic agent (Liessneretal., 2018) 10

Increasing Mobility Difficulty of Vertically Challenging Terrain by Interpolating Start and

End with a Weight (Xu etal.,2024) 16
Heatmap of converged tracking error for curricular strategies (Margolis et al., 2022) . . 18
Agent-environment configuration for the flight guidance problem with RL and warm-

starting (Colettietal., 2023) 18
Framework of KA-DDPG (Daietal.,2022) 19

Here we illustrate the training process. On the left, the DDPG actor is trained to mimic
a given 7(t). In the center, the actor is updated over multiple episodes of DDPG, where
the target velocity function u'e(t) is changed between episodes according to the curricu-
lum, resulting in a fully-trained actor capable of simultaneous path and velocity tracking
(Chivkula etal., 2022) e 20
These two images show the results of the pre-traing phase on the left, and the curriculum
design and on the right. We see a slow convergence to the prescribed limit cycle in (1a)
and the prescribed actions in (1b). The training curriculum of phase 2 shows the target
velocity for each time interval. In (2a) the velocity is sampled from a normal distribution
u'(t) (1,0), where ¢ increases be-tween iterations. In (2b) the agent learns a policy to
track a sinusoidal u'(t) with increasing amplitude and frequency. In (2c) the agent learns
to track monotonically increasing velocities to a maximum of u'(t) = 10. (Chivkula et al.,

2022) . 21
Criteria action method (Daietal.,2022) 25
Criteria reward method (Daietal.,2022) 26
A schematic of the distributions belonging to the Growing Variance Curriculum (a), and

the Bimodal Drift Curriculum (b) 30
Rear Left and Rear Right torque profiles during training for 1D (blue), 2D (red), and 4D
(green) KA-DDPG variants (five seedseach). 34
Smoothness over velocity ramp for 1D and 2D KA-DDPG (five seeds each), with the
averageoverfiveseeds. L 35
Tracking error over velocity ramp for 1D and 2D KA-DDPG (five seeds each), with the
average overfiveseeds. L 36
Front Left training-run torque profiles for single baseline Controller seed, KAMMA, and

IL KAMMA ablation (five seedseach). L. 37
Smoothness over velocity ramp for KAMMA and KAMMA ablation (five seeds each), with

the average over five seeds and the expert Controller. 38
Tracking error over velocity ramp for single baseline Controller seed, KAMMA, and KAMMA
ablation (five seeds each), with the average over five seeds and the expert Controller. . 39
Front Right training-run torque profiles for Growing Variance (GV), and Bimodal Drift (BD)
compared tothe KAMMA base 41
Front Right training-run torque profiles for the FIFO Replay versions of Growing Variance

(GV), and Bimodal Drift (BD) compared to KAMMAbase 42

Smoothness over velocity ramp for Growing Variance (GV) and Bimodal Drift (BD) cur-
ricula (five seeds each). vs their FIFO counter parts compared to the KAMMA baseline 43

Vi

viii List of Figures

5.10 Tracking error over velocity ramp for curriculum variants: (a) GV, BD replay, (b) GV +

FIFO, (d) BD + FIFO replay (five seeds each). against KAMMA baseline 44
6.1 Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for 1D
(blue), 2D (red), and 4D (green) KA-DDPG variants (five seeds each). 53
6.2 Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for IL
(blue), KAMMA (red) variants (five seeds each), and the controller (green). 53
6.3 Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for GV
(blue), BD (red), and KAMMA (green) variants (five seedseach). 53

6.4 Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for FIFO
GV (blue), FIFO BD (red), and KAMMA (green) variants (five seeds each). 54

4.1
4.2

5.1

5.2

5.3

List of Tables

Key symbols from the thesis and their usage consistency. Xi
Vehicle dynamics parameters 31
Hyperparameters of the KA-DDPG algorithm 31
Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability
forSection 5.2 (1D vs 2D). e 37
Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability
for Section 5.3 (KAMMA vs ILvs Controller). 40
Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability
for Section 5.4 (GV, BD, FIFO GV, FIFOBD). 45

Symbol
S
a

r
l

Gt
T

S

14

u(s 16,)
Hy

Q(S, al GQ)
6, 8¢

T

Trnin: Tmax

eU’ e(l)
! !
e‘U’ ew
at, Be

7Texpert

Meaning

MDP state

MDP action

Reward

Next state

Discounted return

Discount factor

Policy

Actor (deterministic policy)

Friction coefficient

Critic / Q-function

Network parameters

Soft-update coefficient (target nets)
Torque bounds

Vehicle mass

Track width

Front/rear axle distance to CG
Wheel radius

Inertia about CG

Rotation moment of inetia for the wheels
Velocity and yaw-rate error

Time derivatives of those errors
Blending (action and reward) weights
Expert-action probability

Table 1: Key symbols from the thesis and their usage consistency.

Xi

List of Symbols

Contents

Preface
Abbreviations
List of Figures
List of Tables
List of Symbols

1 Introduction
1.1 Motivation and Problem Statement L Lo
1.2 Research Question. e
1.3 Contributions and Thesis Scope.
1.4 DocumentRoad-map.

2 General Background
2.1 Reinforcement Learning for Continuous Control
2.1.1 Markov Decision Processes e
2.1.2 Return and the Bellman Equation
2.1.3 Function Approximation and Actor—Critic Architectures
2.2 Deep Deterministic Policy Gradient (DDPG)
221 Off-Policy e
222 DDPG Framework
223 Considerations L
224 Conclusion e
2.3 Imitation Learning and Demonstration Guidance
2.4 Curriculum Learning Concepts.
2.4.1 Curriculum-Driven System Identification

3 Related Work
3.1 Reinforcement Learning for Nonholonomic Robotic Control
3.2 Curriculum Learningin Robotics.
3.3 Imitation Learningin RoboticRL.
3.4 Combining Imitation Learning and Curriculum Learning
3.5 SynthesisandResearchGap

4 Methodology: From KA-DDPG to KAMMA + Curriculum

4.1 Problem Formulation (Action, Observation, Reward).
4.2 KA-DDPG: Baseline Implementation and Limitations.

421 KA-DDPG: Limitations
4.3 KAMMA: Probabilistic Action-Selection Extension

4.3.1 Mechanicsof KAMMA:. e
4.4 KAMMA + Curriculum: Gradual Difficulty Scheduling.
4.5 Implementation Details and Hyperparameters

451 Hyperparameters. e e
4.6 SUMMANY o e e e e e

5 Experiments and Results
5.1 Evaluation Protocol. e
5.1.1 Protocol Overview e
5.2 Baseline: KA-DDPG Variants e
5.2.1 Training-Run Torque Profiles.

Xiv Contents
5.2.2 Evaluation-Run Smoothness and Tracking Error 35

5.2.3 Lessons on Action Dimensionality. oL oL 36

53 KAMMAvs. KAMMAIIL e 37
5.3.1 Training-Run Torque Profiles. 37

5.3.2 Evaluation-Run Smoothness and Tracking Error 38

5.3.3 LessonsonActionMixing L L 40

5.4 Curriculum-Enhanced Variants L L 41
5.4.1 Training-Run Torque Profiles. 41

5.4.2 Evaluation-Run Smoothness and TrackingError 43

5.4.3 Lessons on Memory, Curriculum, and Forgetting. 45

6 Discussion, Limitations, and Outlook 47
6.1 Key Empirical Insights 47
6.2 Methodological Surprises L 48
6.3 Limitations and Mitigation Strategies 48
6.4 Broader Research Opportunities 50
6.5 Conclusion e 51

Introduction

1.1. Motivation and Problem Statement

Robotic reinforcement learning (RL) has seen promising successes in recent years on complex loco-
motion and navigation tasks. For example, Hoeller et al. (2023) demonstrated that RL can enable a
quadrupedal robot (ANYmal) to perform parkour-like maneuvers, such as leaping over gaps and climb-
ing obstacles. These achievements underscore how training in simulation and large-scale learning
can push robot capabilities. Richard Sutton’s “bitter lesson” (Sutton, 2019) further argues that methods
scaling with compute and data tend to outperform those reliant on expert manual engineering. In other
words, general learning approaches eventually win out over task-specific methods as more experience
is gathered.

Applying this insight to wheeled mobile robots, we aim to leverage data-driven learning for dynamically
complex control problems. However, solely relying on data and RL algorithms to solve these challenges
is often impractical for robotics precisely due to a shortage in data and compute. Training an agent
from scratch to perform precise torque control can require prohibitively many trials and may expose the
robot to unsafe behaviors early on. A pragmatic middle ground is to incorporate expert knowledge in
the learning process as guidance rather than as a rigid control structure. By using structured training
curricula and expert demonstrations as flexible guides, the learning process can be accelerated while
still allowing the agent to ultimately discover an optimized policy on its own.

Figure 1.1: Avulars’ Skid-steering Origin One vehicle

2 1. Introduction

In this thesis, we focus on skid-steer mobile robots, differential-drive vehicles such as Avulars’ origin one
platform shown in Figure 1.1 (the focus platform of this research). We will focus on the task of learning
low-level torque control for accurate trajectory following. Skid-steer robots, often employed for rough-
terrain navigation and maneuverability in constrained spaces, represent a class of non-holonomic ve-
hicles whose dynamic behavior poses significant challenges for RL-based methods.

A critical problem encountered when employing RL for skid-steer robots is the phenomenon of wheel
slip. Skid-steer robots rely on slip to turn, and reaching different velocities means they experience
many different traction regimes while driving. Classic robot controllers often assume constant idealized
kinematics with negligible slip. However, slope angles and friction coefficients make those assumptions
nonviable when looking for deployment in the real world. With good traction the relationship between the
applied torque and the resulting movement is more predictable. However, as friction decreases, wheel
slip becomes more pronounced and the system’s dynamics become more non-linear and uncertain.
These challenges transfer to RL training where slip creates inconsistent data that undermines reliable
policy training. This inconsistency severely limits the effectiveness of conventional RL methods, as
policies trained on noisy or unreliable data struggle to converge to stable solutions.

Another crucial challenge is the dynamic coupling between the wheels, a characteristic of skid-steer
vehicles. Due to this coupling, each wheel’'s action directly impacts the other wheels, significantly
constraining the feasible control actions. This interconnectedness complicates action selection, reduc-
ing the action space’s effective dimensionality and making conventional RL approaches highly data-
inefficient.

Skid-steer robots are non-holonomic systems, meaning their orientation and forward motion are intrinsi-
cally linked and thus path- or history-dependent. This coupling intensifies the classic “credit assignment
problem” in RL: the difficulty of correctly attributing successful or unsuccessful outcomes to specific ac-
tions. When you task an agent with a long-horizon goal—say, driving ten meters to a target or climbing
over a step—it may receive reward only upon completion, leaving it unclear which individual actions ac-
tually mattered. The same ambiguity arises when we reward the robot for reaching a particular velocity.
That velocity results from many preceding control commands, yet most RL algorithms update their mod-
els using only the immediate state and action. This is typical under a Markov Decision Process (MDP)
assumption which states that the next best action depends solely on the current state. Because these
updates rely on very local, step-by-step differences, the agent has no built-in way to integrate evidence
over time. This makes it hard to understand the patterns of dynamic coupling and non-holonomic con-
straints. One could introduce memory mechanisms—Ilike Long Short-Term Memory (LSTM) layers—to
carry information across steps. But most RL algorithms lean solely on generalization—the ability to
take patterns learned in one situation and apply them to new but similar situations. This generalization
mechanism is capable of bridging the gap between a vague reward signal and action decisions. Unfor-
tunately data consistency is a key-problem for this understanding, and skid-steer vehicles also suffer
from nonlinear and uncertain traction conditions, which make it harder to form reliable generalizations.

In response to these challenges, this thesis adopts torque-based actions as a key design choice. Prior
work on skid-steer RL found that purely velocity-driven policies often demand wheel motions that the
physical system cannot realize, leading to excessive slip or instability (Dai et al., 2022). In contrast,
torque-based actions require the agent to learn the dynamics (friction, inertia) but ensure physical
consistency by design. The agent cannot “cheat” physics, it must discover how to generate appropriate
forces. This expressiveness comes at the cost of a harder exploration and generalization problem.
Although a detailed comparative justification between torque and velocity actions will be discussed in
Section 2, torque selection inherently tries to mitigates slip-related problems.

To make RL feasible for complex physical systems, researchers have increasingly integrated domain-
specific expert knowledge into the training process. Techniques such as curriculum learning, system
identification, and imitation learning (IL) have proven effective. Rather than fully specifying a model’s
dynamics or parameters upfront, these methods progressively guide the learning process, leveraging
prior knowledge to enhance efficiency and safety. Such approaches strive to achieve robust, inter-
pretable policies without necessitating massive “foundation” models trained on enormous, general-
purpose datasets (Hu et al., 2023).

This thesis addresses the above complexities by combining scalable RL algorithms with strategically

1.2. Research Question 3

injected domain expertise. The core idea is to guide the agent’s exploration with two key ingredients:
(1) a curriculum that gradually increases task difficulty, and (2) expert demonstrations that provide an
initial policy prior or assist the agent during early training. Our approach is to let the agent start learning
under easier conditions and under the tutelage of a low-fidelity expert controller. Then progressively
hand over control to the agent and increase the task demands. In doing so, we harness the best of both
worlds: the rapid initial progress from expert guidance and the asymptotic performance of autonomous
RL. By the end of training, the agent policy should be entirely self-driven (no expert input), capable of
robust trajectory tracking under full difficulty conditions.

1.2. Research Question
Based on the above motivation, the central research question of this thesis is:

“How can expert knowledge be systematically integrated—via RL task design, curricula, and demon-
stration priors—to enable robust and data-efficient torque control learning in nonholonomic mobile
robots?”

This question is broken into three specific sub-questions:

1. RL Problem Design: How do different problem formulations affect learning? In particular, how
does the action representation (torque-based vs. velocity-based, individual control vs differential
control) influence learning efficiency, terrain interaction, and overall control performance? What
role do other design aspects (observation inputs, reward shaping, control frequency) play?

2. Curriculum-Based Training: Can gradually increasing the task complexity — from simpler ma-
neuvers to the full difficult trajectory-following task — extend the low-fidelity control envelope?
What is the impact of curriculum scheduling on learning speed and final performance?

3. Expert-Assisted Learning:How effective is leveraging an expert policy to assist the RL agent?
Specifically, can using a low-fidelity controller to “warm-start” or guide the agent, result in faster
convergence and better final performance compared to learning entirely from scratch, or only
from imitation?

Underpinning these questions is the hypothesis that combining curriculum learning with expert-assisted
RL will significantly improve learning outcomes. We hypothesize that an agent trained with both staged
tasks and expert guidance will learn faster and achieve more reliable trajectory tracking than an agent
using either technique alone (or neither). By systematically investigating each component (problem
design, curricula, and demonstrations), we aim to validate this hypothesis and pinpoint the contributions
of each.

1.3. Contributions and Thesis Scope
The contributions of this research are summarized as follows:

1. Comparative Analysis of Action Spaces: We offer an in-depth empirical comparison of sev-
eral action-space formulations for skid-steer control. We briefly examine naive velocity-based
policies, which tend to command unrealizable wheel speeds and suffer from excessive slip and
poor traction (Dai et al., 2022). We go on to use torque-based commands that enforce physi-
cal consistency by forcing the agent to learn true friction and inertia dynamics. This yields more
accurate control at the cost of a tougher exploration problem. Then we examine the problem
of dynamic coupling with differently dimensioned torque-based action spaces. We consider in-
dividual wheel control, a differential-drive approximation that groups wheels into left-and-right
actuators, and a single global torque profile: this simplification reduces the action dimension and
eases training, but restricts the robot to standard curvature and pivot motions. Altogether, our
analysis shows that richer action spaces boost control fidelity while amplifying exploration diffi-
culty, whereas lower-dimensional schemes streamline learning by trading off expressive capacity
(ERer et al., 2024).

2. Knowledge-Assisted Mixed Mode Actioning (KAMMA): We introduce a novel knowledge-
assisted RL strategy called KAMMA. Building on the baseline Knowledge-Assisted DDPG frame-
work of Dai et al. (2022), KAMMA replaces continuous action blending with a probabilistic switch-

4 1. Introduction

ing mechanism reminiscent of e-greedy methods. At each time step, either the expert’s action
or the agent’s action is executed in its entirety, with a decaying probability of choosing the ex-
pert. This mixed-mode action selection preserves training stability (thanks to expert oversight
early on) while avoiding the interference and torque saturation issues observed with continuous
action blending. KAMMA simplifies the learning signal for the agent and leads to smoother policy
development as one of our key innovations.

3. Curriculum Design for IL Training: We develop multiple curriculum learning schemes tailored to
the skid-steer trajectory tracking task. In each curriculum, the agent begins with easier scenarios
— for instance, following slow-speed trajectories — and progressively moves to harder conditions
(higher speeds). We explore two variants of curricula to identify what scheduling works best.
These curricula are informed by existing frameworks in curriculum RL (e.g., the incremental ap-
proach of Margolis et al. (2022)) and are customized to our torque-control domain. Through a
systematic evaluation, we demonstrate that curriculum learning can improve training stability, and
final tracking accuracy.

4. Integrated IL+RL Training (KAMMA + Curriculum): We present a unified training approach
that combines expert demonstrations with curriculum learning. To our knowledge, this work is
the first to systematically evaluate the integration of multiple curricula in an expert-guided RL
setting (addressing a gap in skid-steer literature identified in Section 3.4). By incorporating expert
guidance (via KAMMA) across a staged curriculum, we enable the agent to master fundamental
skills under expert supervision and then exceed the expert’s capabilities as the difficulty increases.
Our results show that this integrated approach yields a larger control envelope of more robust
final performance than using either expert assistance or curricula alone. In essence, we extend
the ideas of Margolis et al. (2022) (who compared curricula) by adding the dimension of expert
assistance, and extend Dai et al. (2022) (who used knowledge assistance) by applying it across
a curriculum of tasks.

5. Comprehensive Experimental Validation: We implement and rigorously evaluate all proposed
methods in a high-fidelity physics simulation environment, NVIDIA Isaac Sim (Salimpour et al.,
2025). The experimentation includes ablation studies and baseline comparisons. We measure
quantitative metrics such as trajectory tracking error and policy smoothness. The evaluation cov-
ers multiple action space settings and training strategies to provide robust evidence for each
contribution. All comparisons are run across multiple random seeds to ensure statistical signif-
icance. The end result is a set of robust baselines and insights for skid-steer robotic learning
under realistic conditions, which can inform and accelerate future research in this domain.

Overall, the scope of this thesis spans from foundational design decisions (state and action represen-
tations, reward shaping) to high-level training strategies (curriculum and demonstration integration),
unified under the goal of reliable skid-steer control. We emphasize the novel KAMMA mechanism
and its extension with curriculum learning as the primary contributions, with comparative analyzes and
experimental insights supporting these main innovations.

1.4. Document Road-map
The remainder of this thesis is organized as follows:

» Chapter 2 — General Background: Introduces the necessary background on RL for continuous
control, imitation learning, and curriculum learning. These sections provide theoretical context for
our approach, clarifying concepts like actor—critic RL, expert demonstration, and staged training
in robotics.

» Chapter 3 — Related Work: Reviews relevant literature in four areas: (3.1) RL applied to non-
holonomic vehicle control, (3.2) the use of curriculum learning in robotic training, (3.3) demonstration-
enhanced and knowledge-assisted RL methods, and (3.4) Combining IL and curriculum learning.
We highlight key findings from prior studies and identify a gap — namely, the lack of studies com-
bining expert guidance with curricula in one framework. Section 3.5 synthesizes the related works
and positions our research contributions in relation to this gap.

* Chapter 4 — Methodology: From KA-DDPG to KAMMA + Curriculum: Details our approach.

1.4. Document Road-map 5

We begin in Section 4.1 with the problem formulation, defining the state observation, and action
spaces, and the reward function for our skid-steer RL problem. Section 4.2 describes the baseline
knowledge-assisted RL implementation (KA-DDPG) and discusses its limitations. Building on
this, Section 4.3 introduces the KAMMA strategy as an improved action selection mechanism.
Section 4.4 then integrates KAMMA with curriculum learning, outlining the design of the training
phases and performance-based progression criteria.

« Chapter 5 — Experiments and Results: Presents the experimental setup and empirical results.
Section 5.1 covers the used metrics. Section 5.2 covers the baseline experiments analyzing
different action space configurations (4D, 2D, and 1D torque control). Section 5.3 evaluates
our KAMMA method against the baseline KA-DDPG (and other ablations) in the full 4D torque
control task. And Section 5.4 reports the performance of the combined KAMMA + Curriculum
approach, including comparisons between two curriculum variants. Throughout this chapter we
report tracking error, and other metrics, with commentary on the observed behaviors.

» Chapter 6 — Discussion: This chapter synthesizes the experimental findings and critically re-
flects on the design decisions, empirical trade-offs, and open challenges encountered. Section
6.1 consolidates the key empirical insights across all experimental configurations, highlighting
how action dimensionality, curriculum scheduling, and expert blending impacted performance.
Section 6.2 examines unexpected observations and methodological implications—such as the
influence of probabilistic versus blended action selection and the role of curriculum in mitigat-
ing catastrophic forgetting. Section 6.3 outlines core limitations of the current approach, includ-
ing data bias, exploration constraints, and transferability concerns, alongside possible mitigation
strategies. Section 6.4 extends the discussion to broader research implications, identifying future
avenues in curriculum design, replay strategy, and model-based extensions. Finally, Section 6.5
summarizes the high-level conclusions drawn from the study.

By following this document road-map, the reader is first grounded in background and literature, then
guided through our methodological innovations, and finally presented with a thorough evaluation and
reflection on the outcomes.

General Background

2.1. Reinforcement Learning for Continuous Control

Torque-based robotic control presents a unique challenge for reinforcement learning. Unlike position
or velocity control, torque commands affect system dynamics directly through acceleration, requiring
agents to model latent physical relationships such as friction, inertia, and slip. This makes the credit
assignment problem particularly difficult, especially in long-horizon tasks.

We frame this control problem as a Markov Decision Process (MDP), which assumes that the system’s
dynamics depend only on the current state and action. While this simplification enables theoretical
guarantees and algorithmic tractability, it clashes with the physical reality of many non-holonomic sys-
tems. In such cases, actions have delayed and entangled effects—a fact that exacerbates learning
instability when regular RL methods are used.

To handle continuous control, we model the response to the environment through function approxima-
tion with neural networks and rely on actor—critic architectures to manage high-dimensional state and
action spaces. All these components and their relationship to the temporal credit assignment problem
will be explained in detail in the following subsections.

2.1.1. Markov Decision Processes

RL problems are typically formalized as MDPs (Sutton & Barto, 2018). An MDP is defined by a set of
states §, a set of actions A, and a transition model p(s’,r | s,a) giving the probability of next state s’
and reward r given current state s and action a. At each timestep t, an agent observes state s;, takes
action a; according to its policy, and receives a reward r; from the interpreter, like shown in Figure 2.1.
The goal is to find a policy (a mapping from states to actions) that maximizes the cumulative reward
over time. Typically this is done by maximizing the expected return, defined in equation 2.1 below. The
Markov property ensures that p(s’,r | s,a) depends only on the current state and action, not the full
history.

2.1.2. Return and the Bellman Equation
The return G; at time t is the cumulative (discounted) future reward from that point:

[e0)
Ge = Tep1 T Vlew2 T V?Teq3 + o0 = Z YTtk (2.1)
k=0

Where 0 < y < 1 is a discount factor that ensures convergence (Sutton & Barto, 2018). The value
function of a policy r is the expected return: v™(s) = E,[G; | s; = s]. Similarly, the action-value function
(or Q-function) is q™(s,a) = E.[G; | s; = s,a; = a]. These functions satisfy recursive relationships
known as the Bellman equations. This enables recursive updates. In particular, under policy « the

7

8 2. General Background

ﬂviranment
ij R@Wa ra
Interpreter

Action

Figure 2.1: MDP components (Scomparin et al., 2024)

state-value and action-value functions obey:
vi(s) =E[r +yv™(s) Is], q"(s,a) =E[r+yq™(s’,a’) |s,a)l, (2.2)

where the expectation is over the transition s’ and the next action a’ ~ (- | s").

2.1.3. Function Approximation and Actor-Critic Architectures

For complex or continuous state/action spaces, it is infeasible to represent value functions or policies
in a lookup table. Instead, function approximators (typically neural networks) are used to estimate
v(s), q(s,a), or the policy m(a | s). However, large nonlinear approximators can make learning unsta-
ble (Lillicrap et al., 2015). To cope with this, modern methods often use actor—critic architectures. An
actor—critic method maintains two models: an actor, which parametrizes the policy u(s | 6#) (deter-
ministically mapping states to actions), and a critic, which estimates a value function Q(s,a | 89). The
critic evaluates how good the actor’s actions are, and the actor is updated to improve its performance
according to the critic’s feedback.

2.2. Deep Deterministic Policy Gradient (DDPG)

We make use of DDPG ((Lillicrap et al., 2015)) as this is a model-free, off-policy reinforcement learn-
ing algorithm well-suited for continuous action spaces like torque control. It leverages an actor—critic
architecture and experience replay to learn deterministic policies from previously collected data (See
sction 2.2.2 for details). This architecture is advantageous in simulation-heavy tasks where real-time
feedback is costly or unsafe. It extends the Deterministic Policy Gradient (DPG) approach (Silver et
al., 2015) by using deep networks. In DDPG, both the actor u(s | 6#) and the critic Q(s,a | 689) are
represented by neural networks. Learning proceeds by repeatedly sampling transitions (s, a,7,s’) and
updating both networks through the Bellman equations.

2.2.1. Off-Policy

DDPG is called an off-policy algorithm because its critic network directly takes a state—action pair (s, a)
as input and learns their value independently of the current transition. The input-output structure of the
Actor and Critic networks are shown in Figure 2.3. You can see how the actions are used as input for
the Critic while this action does not have to come directly from the Actor.

Because the critic does not actually require a to come from the current actor 7y, we can inject arbitrary
actions into the buffer—whether from random exploration, older policies, or expert demonstrations—

2.2. Deep Deterministic Policy Gradient (DDPG) 9

and immediately learn their values. This flexibility allows us to influence the data distribution by adding
new (s,a) examples, which accelerates learning and can help steer the agent away from unsafe or
uninformative regions. This is crucial for the problem of skid-steer where the usable part of the action
space is very narrow and difficult to find as briefly summed up in the Introduduction.

In contrast, on-policy methods restrict updates to actions sampled from the current policy, tightly cou-
pling data collection with policy optimization. DDPG’s off-policy design decouples these steps, enabling
far greater flexibility and data efficiency when training torque-based controllers in complex, expensive
simulators.

2.2.2. DDPG Framework
Figure 2.2 shows the basic framework of a DDPG algorithm with its components described below:

e

Environment —— Actor Network Critic Network
random
noise gradient
a, {, u(s,) _ updare i
<+ Pre Ouline Actor Network [¥ Quline Critic Network
- » a = u(s,)
(CEaiT) e | 3
soft update Vil |scft update
_] U(S,
Target Actor Network (51) (Target Critic Network

4

= —

N*Goat7;8,,)

(s..a s,,)| Replay }l{emuly]
Save(s,,a,.%.8, & i-batel
b A 1 | sl Sample Mini-batcl

Figure 2.2: Framework of DDPG algorithm (Dai et al., 2022)

Experience Replay Memory DDPG stores experienced transitions (s¢, as, 1141, S¢+1) in areplay buffer.
During learning, minibatches of transitions are sampled uniformly from this buffer to update the net-
works. This breaks the temporal correlations between consecutive samples and improves data ef-
ficiency by reusing past experiences. DDPG’s off-policy replay buffer treats all past transitions as
equally valid training samples, implicitly assuming that the state-action distributions under older poli-
cies remain representative of the current policy’s dynamics. Yet as weights evolve, the learned policy
explores new regions of state—action space that may never have been visited under earlier behaviors.
Conversely, data from very early training—when exploration noise dominates—may become irrelevant
or even misleading. This distribution mismatch can bias the critic toward outdated or off-distribution
values and misguide the actor’s updates. In extreme cases, the agent may unlearn effective behaviors
because the replay buffer is flooded with low-quality transitions from early exploratory noise phases.
Managing the replay buffer can be an important aspect to off-policy algorithms.

Target Networks Two additional “target” networks ¢’ and Q' are maintained as delayed copies of the
actor and critic. The target networks have parameters o#" and 09’ that are updated slowly for stability
reasons towards the main network parameters:

o 10k + (1—1)0*, 09 <109+ (1-1)62. (2.3)

Target values for the Bellman update are computed as y = r + yQ'(s’, ¢’ (s")). This is the bootstrap
estimate of the expected return. Bootstrapping refers to the practice of estimating the value of a state
(or state-action pair) using another estimate, in this case using the target network to determine the
Q-value. Bootstrapping can introduce instability because the target value depends on another function
approximator — and both the network doing the learning (main critic) and the one providing the target
(target critic) are updated frequently, leading to moving targets. Hence the introduction of a slowly
updated target.

10 2. General Background

Bellman Error Loss (Critic Update) The critic network is trained by minimizing the mean-squared
Bellman error:

£(69) = Esarsnn [(Qs,a 169 =)°], y=r+yQ(s",us") 1 69). (2.4)

In practice, y is computed using the target networks, i.e., y = r + yQ'(s’,u'(s")). This is where the
stability is strengthened with target networks in DDPG, since otherwise the Loss would be chasing a
moving target.

Deterministic Policy Gradient (Actor Update) Following the critic update via the bootstrapped tar-
get described earlier, the actor network is optimized to improve the expected return by directly lever-
aging the critic’'s estimates. Specifically, the Deterministic Policy Gradient (DPG) Theorem is applied,
which allows the agent to compute the gradient of the expected return with respect to the actor param-
eters 6. The objective is to adjust the policy such that it outputs actions which the critic estimates as
having high value. Mathematically, the actor update seeks to maximize the Q-value of the state-action
pair under the current policy. To compute the gradient for this objective, the chain rule is applied via:

Vou) (0") = En|VaQ(5:@ 1 09)|,_,, 1o, Vou 1ls 1 69)]. (25)

Here, the critic provides the action-value gradient, indicating in which direction the action should move
to increase expected return, and the actor adjusts its parameters to shift its output policy in that direction.
This effectively aligns the actor with the critic’'s assessment of optimal behavior, treating the critic as a
differentiable objective function over actions.

This update process is depicted in 2.3 and relies on the assumption that the critic is reasonably accurate
which, as discussed in the previous section, is made more stable through the use of target networks
and bootstrapped targets. By ensuring that the critic’s predictions are smooth and slowly varying over
time (thanks to the soft update mechanism of the target networks), the actor can learn from consistent
gradients, reducing the risk of policy oscillation or divergence during training.

Critic

u(s|o®) = a Q(s,al6?)

Policy Gradient: Voup = E,[VouQ (s, u(s16")|169)] = E,[V,Q(s,al6?) - Vguu(s|6*)]

Figure 2.3: Basic structure of the DDPG actor-critic agent (Liessner et al., 2018)

Exploration Noise Since u(s | 6#) is deterministic, DDPG injects exploration noise during data col-
lection, often by adding temporally correlated Ornstein—Uhlenbeck noise or Gaussian noise:

ar = u(se) + N (2.6)

Ergodicity in RL is about ensuring that your exploration policy can, over time, sample the full breadth
of behaviors you care about. In continuous or non-holonomic settings, true ergodicity is impossible—
but being aware of which regions your policy never visits helps you diagnose blind spots and design

2.3. Imitation Learning and Demonstration Guidance 11

exploration or replay strategies that mitigate them. One can only hope to densely sample small neigh-
borhoods around frequently visited states because the Ornstein—Uhlenbeck noise only injects local
perturbations around the deterministic policy. If crucial regions, such as high-slip or extreme steering
configurations, are never sampled, the critic will have no basis to evaluate them accurately, and the
actor can never learn the correct corrective torques for those regimes.

2.2.3. Considerations

These mechanisms collectively allow DDPG to learn continuous-domain policies in high-dimensional
problems. The replay buffer and target networks stabilize the learning process, the Bellman loss trains
the critic, and the deterministic policy gradient updates the actor. Despite these tools, DDPG remains
vulnerable to sample inefficiency in long-horizon tasks with sparse rewards. When slip occurs at high
torque, reward spikes, or noise, can mislead the critic for dozens of timesteps. Sparse rewards (e.g.
reaching a target position) delay feedback, making it unclear which early actions contributed to the
failure. Dense rewards (e.g. penalizing velocity error or heading deviation at each timestep) alleviate
this by offering more frequent training signals. However, they can also bias the agent toward locally
optimal behaviors if not carefully designed. A good solutions warrants both dense and sparse rewards.

RL on Torque-Controlled Systems Applying RL to torque control tasks introduces challenges spe-
cific to the physics of the system. Torque corresponds to acceleration, meaning that the agent must
learn the cumulative effect of torque over time to achieve velocity or positional objectives. However,
standard RL policies are stateless with respect to time: they produce actions based only on the current
observation.

For example, a policy 4 (s) that outputs a torque command at time ¢ does so, based only on s;. This
state can include state observations from a number of steps back, but these additions are useless
without a precise and stable integration mechanism, like available with ordinairy differential equations.
Then the past torques could be used to form velocity or position generalizations. But because ac-
celerations are some of the noisiest state signals in this setup, temporal credit assignment becomes
nontrivial: if success is measured at the positional level, the agent must infer which torque sequences
were responsible.

This is exacerbated by the nonholonomic nature and dynamic coupling of skid-steer robots: their con-
straints couple the rotational and translational dynamics in a way that makes certain paths infeasible
or state dependent. Moreover, slip between wheels and terrain adds noise to state transitions, compli-
cating the learning process by introducing stochasticity in P(s’|s, a). Separately learning a dynamics
model P(s’|s,a) can reduce sample stochasticity, but incurs bias if the model is imperfect, potentially
affecting long-term planning and credit assignment.

2.2.4. Conclusion

RL-particularly off-policy actor-critic methods like DDPG-offers a promising route to train torque-level
controllers for skid-steer robots. However, the memoryless nature of MDP-based RL, combined with
the physics of non-holonomic systems, makes temporal credit assignment and reward design essential
challenges. Understanding these mechanisms lays the foundation for the subsequent contributions of
this thesis, where expert-informed guidance and curriculum shaping will be introduced to address these
structural limitations.

2.3. Imitation Learning and Demonstration Guidance

Imitation Learning (IL) is a paradigm where an agent learns to mimic expert behavior from demonstra-
tions, rather than learning purely from its own trial-and-error. In robotics, IL often takes the form of
behavior cloning (BC), where a dataset of state-action examples from an expert (human operator or
a heuristic controller) is used to supervise the training of a policy network. In its pure form, behavior
cloning minimizes the mean squared error (MSE) between the expert’'s and learner’s actions:

Lgc = Es-p [lIm(s) — me (%], (2.7)

where is a dataset of state-action pairs collected from the expert. The appeal of imitation is that it can
provide an excellent initial policy offline, jump-starting the agent near a good solution and avoiding the

12 2. General Background

random exploration that a fresh RL agent might exhibit.

In RL contexts, this concept can be translated into a reward-shaping mechanism. Rather than explicitly
minimizing a loss in a supervised setting, the agent receives high reward when its action is close to the
expert’s action. For instance, a reward function for imitation can be defined as:

R(s,a) = =lla —mg(s)ll2, (2.8)

where a smaller distance (higher similarity to the expert action) yields a higher reward. This formulation
turns the imitation objective into a RL signal, enabling its integration with standard RL algorithms such
as DDPG.

However, pure IL has limitations. A policy trained only by cloning an expert will at best replicate the ex-
pert’s performance; it may not improve beyond the expert and could be brittle if it encounters states not
covered in the demonstrations. If the agent encounters novel states it can drift into compounding errors
(the covariate shift problem), since it has no informed feedback for those unseen situations (Cimurs &
Merchan-Cruz, 2022). In our context, we have access to a low-fidelity expert controller for skid-steer
trajectory following (for example, a simplified P controller that tries to track velocities). We expect this
expert to be suboptimal — perhaps it can handle only low-slip conditions well, or it follows trajectories
somewhat imprecisely. If we rely solely on imitation, the agent would inherit these deficiencies and
plateau at the expert’s level. Sutton (2019) emphasizes the importance of allowing the agent to con-
tinue learning from real experience to discover strategies that even a human or heuristic might not have
considered. In practice, this means using imitation to initialize or guide the agent, but not letting it stunt
the agent’s growth.

Incorporating demonstrations into RL can be done in several ways. One way is pre-training: first trains
the policy network on demonstrations (supervised learning) to obtain a reasonable policy, then switch
to RL to further improve it. Another way, which we adopt, is off-policy guidance: during RL training,
occasionally leverage the expert’s action or feedback to keep the agent on track. This could be as
simple as starting each training episode with the expert policy for a few steps (to put the agent in a good
state), or more continuous forms of guidance like blending expert actions with the agent’s actions. The
approach by Han et al. (2025) is illustrative: they pre-trained a policy on simulation demonstrations and
later fine-tuned it on the real robot with a few real-world demonstrations as anchors. This significantly
improved learning efficiency and success rate compared to pure RL.

When using imitation in training, an important consideration is when to rely on the expert and when
to let the agent try its own actions. If the expert’s influence is too strong for too long, the agent may
never discover better strategies than the expert’s. On the other hand, if the expert is removed too early,
the agent can flounder and converge to a poor policy. A common solution is to schedule the expert’s
involvement to decay over time — heavily guide the agent initially, and gradually reduce assistance as
the agent gains competence. This ensures a smooth transition from apprenticeship to autonomous
learning. Another practical consideration is the cost of obtaining demonstrations. In some cases,
demonstration data might come from a human teleoperating the robot or from running a computationally
expensive optimal controller. These can be costly, so we want to use the expert data efficiently. Ideally,
a small number of demonstrations can yield a large benefit in jump-starting learning.

To summarize, IL provides a powerful kickstart for RL in robotics by addressing the exploration cold-
start problem — the agent is less likely to take utterly random (and unsafe) actions if it has an expert to
imitate initially. It also offers some safety guardrails: the expert can prevent catastrophic failures early
in training. However, imitation should be combined with RL so that the agent can continue improving.
Our approach will integrate IL in a way that the agent is warm-started but not constrained by the expert
in the long run. We will monitor and control the agent’s reliance on the expert to ensure it eventually
becomes fully independent and surpasses the expert’'s performance.

2.4. Curriculum Learning Concepts

Curriculum learning involves training an agent on a series of tasks that increase in difficulty, rather than
throwing the hardest task at the agent from the beginning. The concept is inspired by human education
—we learn simpler skills first and build up to more complex ones. In RL, curriculum learning has proven
effective in domains where direct learning on the hardest task fails or is very slow. By solving easier

2.4. Curriculum Learning Concepts 13

sub-tasks first, the agent acquires foundational skills and confidence that can later help in mastering
the final task.

Formally, Narvekar et al. (2020) provide a comprehensive framework and survey for curriculum learning
in RL. They categorize curricula into task-based curricula, where the agent is trained on a sequence
of entirely different tasks (each task building on skills from prior ones), and domain-based curricula,
where the task remains the same but some environment parameters are varied to adjust difficulty. In
both cases, the idea is to present the agent with learning experiences that are appropriate to its current
skill level. Narvekar et al. (2020) also distinguish between manually designed curricula and automated
curriculum generation algorithms. In automated curricula, the sequence of tasks is generated by an
algorithm (often by formulating a meta-learning or two-player formulation where one agent proposes
tasks and the other learns), whereas in manual curricula, the researcher defines the progression based
on domain knowledge.

In curriculum design, an important aspect is defining stage transition criteria. Rather than switching
phases after a fixed number of episodes, it is often effective to use performance thresholds. For ex-
ample, we might say the agent can advance to the next stage after it achieves, say, 5 consecutive
successful episodes at the current stage (where success could mean tracking error below a certain
threshold). This ensures the agent does not move on without sufficiently learning the current task.

This principle has been validated in prior work. Rudin et al. (2021), for example, demonstrated a pow-
erful adaptive curriculum where a quadruped was trained to walk on challenging terrains “"in minutes”
by automatically increasing terrain difficulty whenever the agent achieved a certain proficiency. This
ensured the agent was always training at the edge of its capability, maximizing learning efficiency.

Building on these insights, the curriculum in this thesis is not based on a two-phase setup but instead
follows a continuously increasing difficulty scheme. Rather than distinguishing tasks as simply “easy”
or “hard” based on speed, we define task difficulty in terms of proximity to the operational envelope of
a low-fidelity expert controller. Tasks close to the expert controller’s capabilities are considered easier,
while those requiring actions at or beyond the limits of the expert’'s performance are considered more
difficult. This framing is particularly appropriate in torque-based control, where physically plausible
action sequences are critical and dangerous behaviors must be avoided.

Studies show that curricula not only improve training stability and convergence speed, but also gener-
alize better to unseen states—an area where pure IL can be brittle. By introducing structure into the
agent’s exposure to complex tasks, curriculum learning complements the role of expert demonstrations.

In summary, curriculum learning is a powerful technique to shape the learning process for difficult
tasks. It addresses the exploration problem by initially limiting the scope (the agent is less likely to
encounter states it can’'t handle early on) and provides a form of shaping for the state-space and re-
ward landscape. In this thesis, curriculum learning will be used in conjunction with expert guidance as
complementary tools: the curriculum tackles the task complexity aspect, while expert demonstrations
tackle the exploration initialization aspect. By the end of training, we aim for an agent that has learned
to handle the full task complexity entirely on its own, thanks to having a proper stepping stone path to
get there.

2.4.1. Curriculum-Driven System Identification

Beyond easing exploration, structured curricula can also serve a deeper role: enabling the agent to
uncover patterns in the system’s basic dynamics. In our setup, the early curriculum stages — charac-
terized by low speeds and minimal accelerations — expose the agent to clear, simplified relationships
between torque inputs and resulting motion. Rather than estimating friction coefficients or inertia ma-
trices explicitly, our curriculum uses staged exposure to reveal these dynamics to the agent:

» Stage 1: Low-speed. Torque commands are restricted to a narrow band around the expert’s
nominal working point. Here, the agent learns the friction threshold required to initiate motion—
akin to measuring static friction in classical system ID.

» Stage 2: Mid-range velocities. We gradually move away from the controllers working point
and start experiencing more uncontrolled slip. The agent learns how torque maps to slip and

14 2. General Background

traction loss. This mirrors how a system-ID experiment would sweep an input to measure slip
characteristics.

» Stage 3: Edge-of-expert domain. Commands approach the expert’s operational limits, forcing
the agent to infer complex, speed-dependent friction, and wheel-coupling effects. At this point, the
curriculum has likely helped the agent approximate key dynamics (friction, mass) by progressively
exposing them. This would be akin to having found explicit values in system identification.

This implicit system identification via curriculum ensures the agent’s internal representations progres-
sively build fidelity, without ever fitting a parametric model. This process echoes, in spirit, ideas from
system identification. The curriculum acts as a scaffold for building intuitive control before the agent
faces more challenging dynamics.

Related Work

3.1. Reinforcement Learning for Nonholonomic Robotic Control

RL has been applied to a variety of non-holonomic mobile robots (which include skid-steer and wheeled
vehicles that cannot move sideways) with promising results, especially when combined with other tech-
niques. However early work demonstrated that even without other techniques model-free RL can han-
dle the complex wheel-ground interaction and nonholonomic constraints of a skid-steer system. As long
as the learning process is properly setup. Srikonda et al. (2022) used deep RL (specifically DDPG) to
learn control of a skid-steer robot for trajectory tracking. In their setup, the agent controlled the robot’s
angular velocity to follow reference trajectories. With appropriate state representation and reward shap-
ing, the learned policy was able to achieve accurate path following — within roughly half the vehicle’s
width of error — on a variety of test paths. The problem used angular velocity for the action space and
an always applied constant linear velocity. Therefor the solution has intelligently abstracted away the
dynamics and minimized the action space to one dimension. This greatly simplified the exploration
problem and made a solution feasible without guidance.

In the specific case of skid-steer vehicles (differential drive or tracked vehicles), another key work is by
Dai et al. (2022). While we cover it in more detail in Section 3.3 (as it involves expert knowledge inte-
gration), it's worth noting here that Dai et al. tackled exactly the problem of learning an optimal torque
distribution for skid-steer velocity tracking. They used an RL agent (DDPG-based) to map state errors
to wheel torques. Crucially, they identified that training this agent from scratch was extremely slow
and unstable due to the reasons discussed earlier (complex dynamics, need for precise coordination
between wheels). This motivates their knowledge-assisted approach (KA-DDPG) where they injected
a form of expert policy into the learning loop. The success of Dai et al. (2022)'s agent in eventually
achieving accurate velocity tracking on a skid-steer platform demonstrates that, given the right support,
RL can handle non-holonomic torque control tasks. Their results showed near-optimal tracking after
training, bridging towards classical control performance but achieved through learned policy.

Beyond skid-steer, non-holonomic vehicles such as car-like robots (Ackermann steering) and quadrupeds
have been studied with RL. Many have found that some assistance (be it demonstrations, or curricu-
lum) is needed to get reliable convergence. Han et al. (2025) and Datar et al. (2024) both tackle RL
for Ackermann-steered vehicles in complex environments, and they report that a naive end-to-end RL
agent achieved almost no success on the task without additional help. In their experiments, a RL agent
attempting to learn high-level driving in cluttered or rough terrains failed to converge to a reasonable
policy when starting from random exploration. Both papers show that imitation-style learning from of-
fline datasets is necessary to be successful.

Similarly, Wiberg et al. (2021) showed that a 16-ton forestry machine with six wheels, a steering mech-
anism, and active suspensions could learn to drive through challenging outdoor terrain. This proves
even high degree of freedom nonholonomic vehicles can be trained via RL. In their setup, the agent’s
task was to reach target waypoints in a rough forest environment. Notably, they found it critical to use
a combination of sparse and dense rewards along with a carefully structured training regime to handle

15

16 3. Related Work

the vast state space. The agent was eventually able to handle mud, slopes, and obstacles, indicating
that model-free RL can handle non-holonomic dynamics given enough training and a thoughtful reward
design.

A recurring theme is that task design and additional training structure are crucial for success in these
systems. Wiberg et al. incorporated domain knowledge by progressively exposing the agent to more
difficult terrains (effectively an integrated curriculum, discussed in Section 3.2) and by penalizing unsafe
behavior.

Other studies have addressed non-holonomic control by simplifying the learning problem or using hybrid
approaches. An early example is the work of Ostafew et al. (2014), who blended learning with classical
control for skid-steer path tracking. They used a nonlinear model-predictive controller (NMPC) as an
expert policy and allowed the robot to learn corrections to this controller from experience. After each
trial, the deviation between the expected and actual trajectory (caused by unmodeled slip and terrain
effects) was used to update a learned offset in the controller. This can be seen as a form of iterative
learning control or residual RL, where the base policy is a physics model and the learning component
compensates for dynamics not captured by the model. Ostafew et al. (2014)’s approach highlights that
incorporating domain knowledge (here, a physics model/controller) can significantly improve learning
outcomes on nonholonomic robots — the learned policy improved the robot’s ability to follow paths
on outdoor terrain beyond what the NMPC alone could do. In summary, related work indicates that
RL for non-holonomic vehicles is feasible and can produce robust controllers, but typically only when
combined with strategies to mitigate the exploration difficulty. This sets the stage for approaches that
intentionally incorporate domain knowledge into the RL training process, which we explore in the next
sections.

3.2. Curriculum Learning in Robotics

Curriculum learning has been widely applied in robotics as a solution for tasks that are too difficult
to learn in one go. The concept is to start with simpler versions of the task and progressively in-
crease difficulty as the agent’s proficiency improves. The works of Wiberg et al. (2021) and Xu et al.
(2024) are illustrative case studies of curriculum learning, particularly relevant to our domain. As men-
tioned,Wiberg et al. (2021) trained a heavy skid-steer forestry vehicle using a staged approach. In their
training, early episodes featured mostly flat, nominal terrain and strong incentives in the reward to avoid
slip or instability. This allowed the agent to learn basic driving and not tip over. As training progressed,
the environment was made progressively harder: larger logs on the ground, steeper inclines, and more
uneven terrain were introduced. By the time the agent encountered these extreme conditions, it had
already mastered basic locomotion and balance. The gradual exposure functioned as a curriculum
that enabled the policy to eventually handle terrain that would have been impossible to learn on from
scratch. Notably, if they attempted to train the agent on the hardest terrain from the very beginning, it
failed consistently (the robot would tip or get stuck, yielding near-zero reward and no learning signal) .
Their results clearly show that the curriculum was necessary: it improved not just training stability but
also the final capability of the agent (which in the end could traverse obstacles that a non-curriculum
agent never managed).

Start == o mmmmmmmmmmmmm—a-d I nter !Il_e_d ate oo, End

Figure 3.1: Increasing Mobility Difficulty of Vertically Challenging Terrain by Interpolating Start and End with a Weight (Xu et al.,
2024)

Xu et al. (2024) provide another example. Xu et al. (2024) addressed autonomous off-road navigation
on very steep and bumpy terrain. They used an RL agent to control an Ackermann-steered vehicle
(action space: linear velocity and steering angle). Like Wiberg et al. (2021), they explicitly designed a
curriculum for the terrain difficulty. Initially, the agent was trained on gentle slopes and smooth surfaces.
Once it performed well there, the terrain difficulty was increased: slopes became steeper and obstacles

3.2. Curriculum Learning in Robotics 17

larger (Figure 3.1. This process continued until the agent was facing the most challenging terrain in
simulation. The reward function was crafted to encourage steady progress and heavily penalize unsafe
behavior (excessive roll/pitch indicating near-tip-over). By the end, the policy trained with this terrain
curriculum was capable of driving a real four-wheeled robot up slopes and over obstacles that would
have been far beyond its initial abilities. The curriculum was key to this success — it allowed the agent
to incrementally extend its competence. Xu et al. (2024) conclude that the curriculum yielded improved
learning stability and a higher final skill level than direct training.

Beyond these, numerous other works have leveraged curricula. Hoeller et al. (2023) for quadrupedal
parkour (discussed in Section 1.1) is a prime example in legged robots. Another example is the work by
Rudin et al. (2021), who trained a quadruped robot to traverse challenging terrains in a matter of minutes
by combining massively parallel simulations with an automatic curriculum strategy. They progressively
adjusted the difficulty of the terrain as the agent’s performance improved, ensuring that the agent was
always slightly challenged but not overwhelmed. This automatic curriculum, along with thousands of
parallel training instances, enabled rapid learning that would otherwise be unattainable.

Curricula have also been tailored to wheeled quadrupeds. Chamorro et al. (2024) extended curriculum
learning to a hybrid wheeled-legged robot tasked with climbing stairs. Instead of training directly on
full-sized stairs (which caused the agent to fail initially), they introduced the robot to smaller steps and
gradually increased the obstacle height. Dynamics were abstracted by using position for the leg joints
and velocities for the wheels. The policy learned how to approach and surmount steps incrementally,
ultimately succeeding on a standard staircase. This is a clear demonstration that curriculum learning
can be crucial for tasks involving discrete jumps in difficulty: by smoothing out the difficulty curve (in
this case, step height), the agent can make continual progress.

Margolis et al. (2022) provide an instructive study on curriculum design. They systematically evaluated
multiple curriculum strategies for an autonomous locomotion task, comparing how different sequences
of increasing difficulty affected learning outcomes. In one of their experiments, they gradually raised
the limits on linear and angular velocities that an RL agent was trained on, similarly to our approach.
The curricula that incrementally expanded the velocity range led to significantly improved stability in
training and higher final performance (See Figure 3.2), compared to trying to train on the full velocity
range from the start.Margolis et al. (2022)’s work is particularly important because it highlights that
not all curricula are equally. They demonstrate that a curriculum’s effectiveness hinges on modeling
multi-dimensional task parameters jointly rather than independently. Their Grid Adaptive approach
unlocks adjacent cells in the joint velocity—turning grid once a success threshold is met. It covers
the feasible command space more thoroughly and yields lower tracking errors than a simpler “Box”
curriculum. The “Box” curriculum grows the problem dimensions in isolation, meaning the linear and
angular commanded velocities while coupled in there complexity are explored seperately. Because high
linear speeds reduce feasible turning rates, modeling their interaction in one grid lets the curriculum
avoid impossible tasks and instead expand along the true feasible boundary. By aligning the sampling
distribution’s shape and growth rules with the true difficulty frontier of the robot’s dynamics, the Grid
Adaptive curriculum substantially outperforms a simpler Box-style schedule as nicely visualised in the
heatmap of Figure 3.2.

In summary, curriculum learning has proven to be a key enabler for training RL agents on complex
robotic tasks. By decomposing a hard problem into a sequence of achievable steps, curricula allow
the agent to build up competency gradually. The related work we surveyed, from legged locomotion
to wheeled navigation, shows a consistent trend: agents trained with a curriculum outperform those
trained on the hardest task from the outset, in terms of both learning speed and robustness of the final
policy. This justifies our incorporation of curriculum learning in training a skid-steer robot: we expect
that structuring the learning process (e.g., starting with low-speed trajectory tracking and ramping up
to high speeds) will yield better results than a one-shot learning attempt. Notably, while curricula and
demonstrations are often studied separately, there is growing interest in how they can be combined,
which we discuss in Section 3.4.

18 3. Related Work

>j No Curriculum Box Adaptive Grid Adaptive
=
o 51 | -2.5
= :
M :
.%0 01 -2.0
‘g :
2 ;
F"‘ -5 -1.5
S 10
=09 [
g 2 [

o] [
g g0 0.5
en T, i
g S l
e 21 T r T ; — L T T 0.0
s -5 0 5 5 0 5 5 0 5
= v, [m/sec]

Figure 3.2: Heatmap of converged tracking error for curricular strategies (Margolis et al., 2022)

3.3. Imitation Learning in Robotic RL

Integrating expert demonstrations or controllers into the RL process — what we refer to as knowledge-
assisted RL — has been explored in various forms. The core idea is that an expert (either a human op-
erator or a well-tuned autonomous policy) can provide examples of good behavior, which the learning
agent can use to bootstrap or guide its policy. This has been applied in various forms, from straightfor-
ward pre-training of a policy network on demonstration data to more integrated approaches where the
expert influences the agent during RL training through action injection (Xie et al., 2022). Several key
works illustrate different ways to combine imitation and RL.

The earlier example of Ostafew et al. (2014) is useful here to set the range of IL methods. This approach
can be seen as a form of iterative learning control or policy improvement where the expert provides a
strong initial policy and the learning refines it. This is a relatively conservative form of demonstration
integration: the expert is always active (no pure exploration by the agent), ensuring safety but limiting
the scope of changes to incremental improvements.

WS
- action .
g »| Aircraft observations (state)
£ _ | Dynamic
g o Model
5 d
g Reward rewards
[state Structure
-
55 PPO
£ & action | peep Reinforcement Learning: |
- Proximal Policy Optimizaton |-
g = state
= s
= = transfer
&8 learning
WS actor action Warm-Start
v Actor Network
S .
% = Warm-Start | gradient descent —
E 2 Actor Loss
]
= Warm-Start
Guidance Guidance Model
model action

Figure 3.3: Agent-environment configuration for the flight guidance problem with RL and warm-starting (Coletti et al., 2023)

3.3. Imitation Learning in Robotic RL 19

Another approach is to use IL for policy initialization. Instead of starting with a random policy, the agent
is first trained (via supervised learning) to imitate the expert, and then this pre-trained policy is used as
the starting point for RL fine-tuning. Coletti et al. (2023) provide a compelling example of the benefits of
this strategy. They addressed a challenging flight control task for a fixed-wing unmanned aerial vehicle
(a nonholonomic system with complex dynamics) by first cloning a classical guidance law through
imitation. After this imitation phase, they switched to RL for fine-tuning the policy (See Figure 3.3). The
difference in outcomes was dramatic: the RL agent initialized with the expert’s behavior achieved over
a 57% success rate in hitting waypoints, whereas an agent learning from scratch barely reached 2%
success. This warm-start via IL essentially solved the poor exploration problem — the agent began near
a good local policy and RL could then improve it further.

Likewise, in the context of ground robots, Han et al. (2025) demonstrated that pre-training a wheeled
robot’s policy on a dataset of human teleoperation and classical controller trajectories significantly im-
proved its performance when subsequently fine-tuned with RL. In their experiments on a low-cost robot
platform, policies that did not receive demonstration data failed to learn effective navigation, while those
that were warm-started with IL not only learned faster but also transferred better from simulation to the
real robot. These studies confirm that imitation learning can provide the agent with essential “driving
lessons,” so to speak, allowing it to handle the basics of control and thus giving RL a fighting chance
to succeed on complicated tasks. Their work is aligned with findings from Hu et al. (2023) that empha-
size combining model-based priors, large datasets, and RL as a recipe toward general-purpose robot
learning.

Another class of approaches blends IL and RL more continuously. Rather than a single pre-training
stage, the expert’s guidance is offered throughout the RL training process. Dai et al. (2022) introduced a
knowledge-assisted DDPG (KA-DDPG) algorithm for exactly our problem domain: learning an optimal
torque distribution for a skid-steer vehicle. Instead of providing full demonstration trajectories, their
method imbues the RL agent with expert knowledge in two ways: (1) blending the agent’s action with
an expert’s action (especially early in training) to prevent catastrophic exploration, and (2) augmenting
the reward with an extra term (a “guiding reward”) when the agent’s action aligns with what the expert
would do (see Figure 3.4). In theirimplementation, a low-fidelity classical controller is used as the expert
to suggest reasonable torques; with a certain ratio, this suggestion overrides part of the agent’s action,
and the agent also gets bonus rewards when it chooses a torque similar to the expert’'s suggestion.
This approach can be seen as a form of on-line imitation: the agent is still primarily doing RL, but the
expert nudges it away from bad regions of the action space and towards good actions. Dai et al. (2022)
reported that knowledge-assisted RL substantially accelerated convergence in the skid-steer velocity-
tracking task compared to standard RL, underlining the value of expert guidance even when it is not
used to initialize the policy outright.

Execution Action o Observed Reward and State
Environment
Criteria

_(1_4F i Action Knowledge | State
[a"*(1 y')xaty'xa s lAssistedMeu\odsJ

Guiding Reward | Observed Reward

Agent Action [R" =(l _ y') X R,, + J/' X Rg]

Updating Reward

Agent Action State
Agent

Figure 3.4: Framework of KA-DDPG (Dai et al., 2022)

In effect, early in training the agent is heavily incentivized to do exactly what the expert would do (both
via action blending and reward), and later in training these influences taper off, letting the agent optimize
the true task. The ratio changes over time to favour the policy actions more as time progresses. This
method is quite aligned with our proposed KAMMA approach (Section 4.3), the difference being that
KA-DDPG blends actions while we will propose a probabilistic switch. Dai et al. (2022) reported that KA-

20 3. Related Work

DDPG learned a near-optimal torque controller much faster than standard RL. The agent avoided the
random wandering phase and never exhibited the excessive wheel slip that a pure RL agent did at the
start. By the end, when the expert’s influence was gone, the agent had learned a policy that matched
the expert in easy conditions and even exceeded it in some cases (because the RL fine-tuning can, in
principle, discover better torque allocations than the simple expert controller). This demonstrates the
power of expert-guided exploration, it is a central inspiration for our baseline and method.

Yet another technique is to impose expert knowledge as constraints. Tsampazis et al. (2023) exemplify
this by using action masking based on heuristic rules during RL training. In their work, an autonomous
off-road vehicle’s policy was trained with certain actions forbidden if they were clearly unsafe or inef-
fective according to prior knowledge (for instance, the agent was not allowed to accelerate forward if
an obstacle was immediately in front of the robot). By disallowing obviously bad actions, the agent’s
exploration space was reduced to more plausible behaviors, effectively injecting human expertise in a
negative sense (preventing foolish actions rather than explicitly demonstrating good ones). This idea,
while not imitation in the classical sense, shares the same spirit: leveraging expert understanding to
shape the agent’s behavior. To synthesize, related work on demonstration-enhanced RL shows two
broad strategies:

» Concurrent guidance: expert intervention during training (like Ostafew’s residual learning or
Dai’'s KA-DDPG).

» Sequential bootstrapping: expert used in a pre-training phase or for initialization (like Han’s
and Coletti’s approaches).

Our work leans on the concurrent guidance strategy: we will use an expert policy during RL training
to influence the agent, rather than only pre-training and releasing. The novelty we seek is to refine
how this guidance is applied (via KAMMA's switching strategy) and to combine it with the curriculum
concept from Section ??.

3.4. Combining Imitation Learning and Curriculum Learning

Both imitation learning and curriculum learning have individually been shown to greatly benefit pol-
icy learning in robotics. A natural question is whether combining these two approaches can provide
complementary advantages. Intuitively, imitation learning addresses the initialization and early training
phase, while curriculum learning sustains progress by gradually increasing difficulty. If used together,
an agent could start with a good initial policy and always train on an appropriate level of challenge.
Some recent works have begun to explore this interplay, although it remains relatively underexplored
compared to the standalone use of IL or curricula. Chivkula et al. (2022) used the process show in
Figure 3.5 below to kickstart their curriculum.

Exploration:

I N(0,3) 1-€

He+1=
L He+1 €

/
|
|
! [)
State |1 GoAd] ‘”l]’
cansitions | =
besssa | Sp A +da) Critic Network (8,)
— | - J
- !
H |
i

Qasa Q
il

[ek 7,0 /l’ +a¥,0 Actor update Loss:
sradient:= V4 H ¢ = oV, . (1 — A2
min(le = (u = A')*)
Actor

Actor update Loss: \ Network (6
min(L = (1; = A))*) N

(5., A)=(u, wy, w5, 8,0,u’ (1))

7(t) = Asin 0t

Environment

S;

il

Actor Network

Environment

Critic update Loss:
min(Le = (Q — g%
o

Perturbed action i u(t) ~ e (t, 1)

He+1
Y T

Pre-training Task n of training

Figure 3.5: Here we illustrate the training process. On the left, the DDPG actor is trained to mimic a given t(t). In the center,
the actor is updated over multiple episodes of DDPG, where the target velocity function u'e(t) is changed between episodes
according to the curriculum, resulting in a fully-trained actor capable of simultaneous path and velocity tracking (Chivkula et al.,
2022)

3.5. Synthesis and Research Gap 21

Chivkula et al. (2022) also takes advantage of sequential bootstrapping and offers a clear example of
a two-stage training process that embodies both concepts. In their work, they focused on an under-
actuated nonholonomic system (a Chaplygin sleigh) and employed a form of self-imitation across a
curriculum of two tasks. In the first stage, they trained a policy through RL to perform a simple cyclic
movement (essentially driving the system in repetitive limit cycles). This first-stage policy was far from
the final objective but captured a basic gait for the robot (see Figure 3.6 (1a), and (1b)). In the second
stage, they tasked the agent with more complex trajectory tracking descriptions (see Figure 3.6 (2a),
(2b), and (2c)) and used the first policy as an expert demonstrator to guide the learning of the second
policy. In practice, the trajectories generated by the first policy (the simple cyclic motion) were treated
as demonstration data for the second stage, a technique sometimes called learning by bootstrapping.
Their results showed that the knowledge transferred from the initial policy significantly accelerated the
training of the final policy — even though the initial gait was suboptimal for the new task, it provided a
helpful scaffold for learning the more complex maneuver. This approach can be seen as a curriculum
(stage 1 was easier, stage 2 harder) combined with imitation (stage 2 imitates the policy from stage 1).
It validates the idea that a policy learned on a simpler task can serve as a form of expert for a related
harder task, thus combining the benefits of prior learning and task progression.

0.00 0.02 0.04
(®)

(2)

0 20 40 60 80 100
time 0 50 100
(b) time

Figure 3.6: These two images show the results of the pre-traing phase on the left, and the curriculum design and on the right.
We see a slow convergence to the prescribed limit cycle in (1a) and the prescribed actions in (1b). The training curriculum of
phase 2 shows the target velocity for each time interval. In (2a) the velocity is sampled from a normal distribution u'(t) (1, o),
where g increases be-tween iterations. In (2b) the agent learns a policy to track a sinusoidal u'(t) with increasing amplitude and
frequency. In (2c) the agent learns to track monotonically increasing velocities to a maximum of u'(t) = 10. (Chivkula et al., 2022)

In a sense, the method of Coletti et al. (2023) can also be explored differently: they first used IL on an
easier behavioral cloning task (imitate an existing controller), then used RL on the harder task (improve
beyond the expert), which is a sequential combination of IL and RL that resembles a curriculum of
training modes. However, in Coletti et al. (2023)’s case the “curriculum” was not about environment
difficulty but about learning method — nevertheless, it underscores that IL and RL can be arranged in
stages to yield better performance than either alone.

Despite these examples, there is still a lack of systematic studies on combining curricula with external
expert demonstrations in one unified framework. Most literature either focuses on curriculum learning
assuming the agent starts from scratch, or focuses on imitation learning and perhaps uses a ftrivial
task switch (from imitation phase to RL phase). Very few works explicitly design a multi-phase cur-
riculum and integrate expert demonstrations throughout those phases. The potential synergy is clear:
an expert-provided policy could be used at each curriculum step to guide the agent, or conversely, a
curriculum could be designed to maximally exploit a given set of demonstrations. In our view, this joint
approach is a promising yet underexplored direction.

3.5. Synthesis and Research Gap

From the above review, we can draw a few important conclusions. First, curriculum learning (Section
3.2) and expert-assisted RL (Section 3.3) have independently proven successful in tackling complex

22 3. Related Work

control problems. Curricula handle the task complexity by staging the challenges, and demonstrations
handle the exploration difficulty by providing initial policy knowledge or ongoing guidance. Both lead to
more efficient and stable learning processes.

However, there is a clear gap in combining these two dimensions. To our knowledge, no prior work has
systematically evaluated the impact of using curriculum learning and expert demonstrations together
in a unified framework for RL. In other words, we lack studies where an agent is simultaneously aided
by an expert and trained across multiple stages of increasing difficulty.Margolis et al. (2022) and others
have compared different curriculum strategies (without expert assistance), and works likeDai et al.
(2022) have demonstrated knowledge-assisted RL on a fixed task distribution (without curricula). But
we have not seen an analysis of whether expert guidance remains effective across curriculum stages
or how curricula might need to be designed differently when an expert is in the loop.

This is the niche our research aims to fill. The core research gap can be summarized as: How to best
integrate human/heuristic expertise with incremental curriculum learning for training deep RL agents
in complex control tasks. We hypothesize that these techniques are complementary and that together
they will yield superior results to either alone. For instance, an expert might help the agent clear early
curriculum stages faster or with less variance, and the curriculum might allow the expert’s influence to
be gradually reduced in a controlled manner as the agent proves competence at each stage.

In this thesis, we address the above gap by integrating curriculum learning with imitation/ expert guid-
ance for torque-based skid-steer control. We design and compare distinct curricula (different ways of
gradually increasing task difficulty) and evaluate each by comparing to an IL baseline. By comparing
across these scenarios, we can assess whether the combination (IL + curriculum) indeed provides
synergy in terms of data efficiency and final performance. Our expectation, based on the motivations
outlined, is that an agent trained with both techniques will learn faster and achieve more robust control
than an agent with either technique alone.

Moreover, our approach directly builds on insights from the related work. We extend the idea of Margolis
et al. (comparing curricula) by adding the dimension of expert assistance, and we extend Dai et al.’s
knowledge-assisted learning by applying it across a curriculum of tasks. In doing so, we aim to provide
a deeper understanding of how to best combine human expertise with curriculum learning in RL.

In summary, the literature suggests strong individual merits for using curricula and for using demon-
strations in RL. The intersection of these two — a curriculum-guided, expert-augmented RL training
regime — remains under-explored. This thesis seeks to contribute to that intersection, showing how a
knowledge-assisted RL agent can progress through staged tasks to master a problem that neither pure
curriculum nor pure expert-guided RL could solve as efficiently on their own.

Methodology: From KA-DDPG to
KAMMA + Curriculum

4.1. Problem Formulation (Action, Observation, Reward)

We consider a skid-steer mobile robot learning to follow a target velocity. For our research we have
focused the task of linear velocity only, so during all experiments the angular velocity command will
be set to zero. This simplifies the task by taking away one degree of freedom to explore and makes
the experiments more focused on the methods than the results. The typical skid-steer challenges also
remain the same. Formally, at each timestep the agent (the robot’s controller) observes the state, takes
an action (wheel torques), and receives a reward. We define these elements as follows:

1. Action Space: The agent’s action is the torque command to each of the robot’s four drive motors
(two on each side for a four-wheeled skid-steer). Thus, the natural action space is R*, where each
component is the torque for one wheel. This 4D individual wheel torque control gives the agent
full fine-grained control over all drive dynamics. As discussed, we will also evaluate reduced-
dimensional action spaces for comparison. In a 2D torque action space, the agent outputs two
values: one for the left-side wheels and one for the right-side wheels (each value is applied to both
wheels on that side). This grouping simplifies the action space by treating each side as a unit — it
removes the differential control between wheels on the same side, which might be acceptable if
those wheels experience similar conditions. In our simulation we test on flat ground and thus have
those similar conditions. We therefor expect the reduced dimensionality to perform better than
the 4D action space. To fully test this we also experiment with a 1D torque action space. For this
reduced action space we also expect better performance than the 2D variant. The primary action
space for our method remains 4D torques, as it provides the highest level of control expressivity
required for complex non-linear dynamic terrain interactions.

2. Observation Space: The agent’s observation is designed to capture the tracking error and sys-
tem state relevant to control. We include the longitudinal (forward) velocity error e, = Vgesired —
Vactual @Nd the yaw (angular) error e, = Wyesired — @Wactual- 1NeSe represent how far off the robot is
from the commanded trajectory at a given moment. In addition, we include the derivatives of these
errors, e, and e;,, which correspond to the robot’s longitudinal acceleration and yaw acceleration.
Including the rate of change of error helps the agent infer whether it is converging to or diverging
from the target velocity, which is useful for damping and stability. We deliberately omit lateral ve-
locity or slip measurements from the state, except insofar as they affect yaw dynamics; skid-steer
robots often exhibit lateral slip, but that is not directly controllable and can introduce noise. By
focusing the observation on longitudinal and yaw dynamics (which are the controllable degrees
of freedom), we align the state with the key control objectives and avoid distracting the agent
with variables it cannot directly regulate. In addition to errors, the observations also include the
current commanded velocity. This is important because without this commanded velocity state
aliasing can occur where different traction regimes can not be separated or inferred. If the ob-

23

24 4. Methodology: From KA-DDPG to KAMMA + Curriculum

servations only see a relative error, guiding the system through a curriculum based on absolute
speeds cannot learn anything meaningful as it will be generalizing a policy over the entire velocity
range. We use the commanded velocity and not the actual velocity as this is a noise free signal
and through the velocity errors the actual velocity is also part of the observations. In actuality
noise in the observations is inevitable, either the current velocity or the velocity error will create
noise in the signal. We further do not provide direct information about the terrain or friction; the
agent must infer those through trial and error or implicit system identification.

3. Reward Function: The reward is structured to strongly encourage accurate trajectory following
while discouraging excessive control effort or unstable motions. We design a dense reward with
multiple components:

* Velocity Tracking Reward: A primary term r4c that is high when the robot’s actual linear
and angular velocities match the desired values, and low when there is a large error. For
example, one can use 1y, = —(ley| + k - |ey,|) for some weight k, so the reward is the
negative of the sum of absolute errors (or squared errors) in forward and angular velocity.
This term continuously guides the agent to minimize tracking error.

+ Smoothness Penalty: To avoid erratic control, we add a penalty on abrupt changes in
action or on high accelerations. In practice, using the error derivatives, we include a term
like smooth = —(e{,2 +e(’uz) which penalizes rapid changes in velocity error equivalently large
accelerations. This term indirectly penalizes jerky torque commands and slip, because large
sudden torques would cause spikes in acceleration errors.

» Control Effort Penalty: We also penalize excessive wheel slip or torque usage. This can be
implemented as a penalty on the magnitude of applied wheel torques. This is implemented
as Tiorque = — (T + T + Tf, + T7) In our reward, this is partly covered by the smoothness
term on error derivatives and partly by the tracking reward. If slip is detected e.g., if the
linear velocity is not increasing despite torque, indicating slipping, the error remains high
which already yields low reward.

+ Success Bonus: Finally we include a sparse bonus rg,c.ess fOr excellent performance: if the
robot gets the velocity error within a tight bound, it gets an additional reward. Every time step
that e,| < €, and |e,| < €, (errors within acceptable limits), we give a small positive bonus
(e.g., +0.2). This incentivizes not just instantaneous error reduction but maintaining accurate
tracking over time. By setting this limit below the tracking performance of the controller you
also extra incentivize improving on the controller.

The total reward at time t can be formulated as: 7(t) = Tyack () +Tsmooth (t) + Ttorque (t) + Tsucces (),
where weightings can be applied to each component for reward shaping. This reward provides
continuous feedback guiding the agent to minimize tracking error smoothly. During training, the
agent thus learns to both be accurate and gentle: it gets highest reward for matching the com-
manded speeds with minimal oscillations or wheel spinning.

With the above formulation, the learning task is an MDP where the agent observes the velocity tracking
errors, applies motor torques, and is rewarded for minimizing those errors without excessive control.
The state-space is relatively low-dimensional, and the action-space is effort based, continuous, and
potentially high-dimensional (4D). This formulation is challenging due to the complex and nonlinear
dynamics linking actions to future states (torque to next velocity and position). But it is also well-defined
for applying actor—critic RL methods like DDPG.

4.2. KA-DDPG: Baseline Implementation and Limitations

As a baseline knowledge-assisted approach, we implement the Knowledge-Assisted Deep Determin-
istic Policy Gradient (KA-DDPG) algorithm inspired by Dai et al. (2022). The KA-DDPG framework
augments the standard DDPG agent with two forms of expert-derived assistance during training: ac-
tion guidance and reward shaping. Specifically, we incorporate a low-fidelity expert controller (providing
what will be called criteria actions) and an evaluation module (providing the guiding rewards) into the
training loop. The expert controller is a simplified or suboptimal policy that can generate reasonable
actions for the task, albeit with limited accuracy. In our application, the P-controller is defined as in

4.2. KA-DDPG: Baseline Implementation and Limitations 25

equation 4.1 below. Here J is the vehicle inertia around it's own center of gravity, m is the mass of the
vehicle (see Table 4.1) and K,, is the proportional constant.

Va wa
Vs o, (4.1)
Trf=Trr=Kp<m'E+]'E)'

A second motivation to go for sub-optimal pure—P rather than Pl control is: the integral term depends on
accumulated past errors, which conflicts with the Markov assumption in our RL setup (where updates
only see the current state), and it would further blur credit assignment by hiding which moments of
error drove the correction. By using a memoryless P controller, we ensure the expert’s outputs remain
compatible with the agent’'s MDP-based learning and keep the learning signal clear.

While the injected hand-crafted policy cannot perfectly track arbitrary trajectories, it performs signifi-
cantly better than random actions and thus can prevent the agent from floundering in the early learning
phase. The evaluation module encodes additional domain knowledge about what constitutes good per-
formance, beyond the basic environment reward. It produces an auxiliary reward signal that “guides”
the agent toward expert-desired behaviors. Together, these two knowledge-assisted elements modify
how actions are chosen and how rewards are computed during training, as described next.

1. Criteria Action Blending (Expert Action Injection): Figure 4.1 shows the KA-DDPG frame-
work, at each decision step the agent not only computes its action from the actor network, but
also receives an alternative action suggestion from the expert controller (Dai et al. (2022)). Rather
than executing the agent’s action directly, the algorithm combines the agent’s action with the cri-
teria action to determine the actual control input sent to the environment. The core idea is to let
the expert policy guide the agent, especially when the agent is still near-inexperienced. There are
multiple ways to realize this combination; a conceptually simple approach is to use a weighted
blend. The executed action is defined at time ¢t as:

Qexec = A(t) * Acrizic + (1 — a(t))aagent' (4.2)
Where a¢t is the expert’s criteria action and a®?°™ is the RL agent’s own action output at state
s¢. The factor a(t) € [0, 1] controls the influence of the expert. At the beginning of training,
we set a(t) high (near 1), meaning the agent largely follows the expert’s decisions (acting as
if it were imitating the expert). This ensures that the vehicle’s behavior stays in a reasonable
regime and achieves some minimal level of performance, thereby reducing the incidence of very
poor (random) actions early on. As training progresses, a(t) is gradually decayed toward 0 over
episodes. For example, a can be geometrically decayed, or scheduled to decrease in stages.
Eventually, a(t) ~ 0, and thus a.x..(t) = aggen:(t) — the agent acts according to its own policy
with no interference. In effect, this criteria action replacement strategy starts training in a teacher-
student mode, where the expert (teacher) heavily influences actions, and then transitions to full
autonomy as the student gains proficiency. By episode end, the agent has learned to select
reasonable actions learning from the augmented reward, but it got there with far more guidance

Low-Fidelity State
Controller

Criteria Action
_ i i Execution Action
I a, —(1—}/)xaﬂ+y xa(]i

Agent Action

Agent Environment
Observed Reward and State

Figure 4.1: Criteria action method (Dai et al., 2022)

26 4. Methodology: From KA-DDPG to KAMMA + Curriculum

than a conventional agent. This approach speeds up exploration by focusing on actions that are
known to be better than random, and it also contributes to safer learning since the agent is less
likely to take extreme actions that could cause instability or failure.

Ageut Aclion
. J Updating Reward.
R, =(1-7')xR, +7 ng]i

State I
Agent
Agent Action

2. Guiding Reward Augmentation (Reward Shaping with Expert): Figure 4.2 shows the sec-
ond knowledge-assisted mechanism addressing the reward signal. In a plain DDPG setup, the
agent updates its policy using the observed reward provided by the environment at each step (for
example, a reward might be a negative tracking error minus some torque penalty). KA-DDPG
instead computes an augmented reward for training by adding an extra term, the guiding reward,
derived from the expert’s evaluation. The purpose of this guiding reward is to “sharpen” or bias
the feedback such that actions more aligned with expert knowledge receive higher reinforcement.
A simple yet effective choice for the guiding reward is to use the discrepancy between the agent’s
action and the expert’s action as a basis. For instance, one can define the guiding reward 7,4
at time t as the negative distance between the agent’s torque command and the expert’s torque
command:

Evaluation Method

Guiding Reward

Observed Reward

Environment

Figure 4.2: Criteria reward method (Dai et al., 2022)

Tguide ® :”aagent(t) = Acricic (Ol (4.3)

(where the norm can be Euclidean or another suitable measure). This 7,4, is higher (less neg-
ative) when the agent’s chosen action is closer to the expert’s action, and it worsens (more neg-
ative) as the agent deviates from the expert. We then combine the environment’s reward 7, ,4(t)
and the guiding reward to form the update reward used for learning:

7”update (t) = .B(t) * rguide (t) + (1 - .B(t))robs (t)’ (4-4)

Here £(t) (analogous to a(t), and y from Dai et al. (2022)) controls the influence of the guiding
reward. Starting with 8(t) = 1, means that early in training the agent is almost entirely rewarded
based on how closely it mimics the expert. As training progresses f(t)is gradually decreased to
0, transitioning the agent’s objective back to the true environment reward. Eventually, the agent
is evaluated purely on the actual tracking task performance, once it has learned the basics from
the expert.

Using both mechanisms, the KA-DDPG framework “warm-starts” the learning process. Early on, the
agent’s actions are largely guided by the expert (through action injection) and its learning signal is
dominated by expert-based reward shaping. This approach provides heavy guidance initially: the agent
essentially operates in a coach-led mode and avoids the worst actions while it learns. As competence
increases, the guidance is tapered off, allowing the agent to fine-tune and even surpass the expert.
By training in this manner, the agent can achieve reasonable performance from the very first episodes
(due to expert actions) and improve steadily as it gains autonomy. In summary, the knowledge-assisted
framework integrates a low-fidelity expert’s actions and evaluations into the RL loop, aiming to improve
learning speed and stability compared to a naive RL agent.

4.2.1. KA-DDPG: Limitations
We implement the above KA-DDPG approach in our skid-steer RL task. Empirically, this baseline
drastically improves learning speed and stability compared to a naive RL agent. However, we identified

4.3. KAMMA: Probabilistic Action-Selection Extension 27

several limitations of the continuous blending strategy that motivate a refinement (like the instability
shown in Section 5.2.1 (where the naive 4D agent failed to converge):

» Blended Actions and Distorted Learning Signals: The continuous interpolation between ex-
pert and agent actions in KA-DDPG introduces a fundamental ambiguity into the learning pro-
cess. During early training, executed actions may be composed of, for example, 70% expert
and 30% agent contributions, with reward signals similarly blended between the guiding and ob-
served components. As a result, the agent is seldom exposed to the full consequences of its own
policy decisions, since the expert dominates both the behavior and the resulting rewards. This
skews the critic’s training distribution toward the expert’s control envelope and limits the agent’s
exposure to suboptimal regions of the action space—regions that would be informative for robust
value estimation. Furthermore, even when the agent selects poor actions, the expert’s corrective
influence may suppress negative outcomes, preventing the agent from learning appropriate credit
assignments. This persistent coupling compromises the agent’s ability to discern whether the re-
ward signal results from its own decisions or the expert’s influence. Consequently, the RL policy
may converge toward a distorted gradient signal, biased by the ever-present expert. While the
“soft landing” approach is designed to prevent catastrophic failures during early learning, it can
paradoxically impede the emergence of a well-calibrated policy. To still create a diverse data-set
the agent should focus learning on the edge of the IL schedule decreasing the expert influence
as fast as possible. This keeps the learning frontier as challenging as possible and allows using
the learning chaos to create diversity in the dataset. Thiswill enrich the critic generalization and
improve long-term policy robustness. Ideally, this fast learning would receive feedback grounded
in unfiltered consequences of its own actions for example through Action Mixing explained in
Section 4.3.

Replay Buffer Staleness: KA-DDPG stores every (s,a,r,s’) tuple—including those collected early
in training under untrained, suboptimal policies—in a large replay buffer. Remember that in early
training the reward signal is mainly based on the guiding reward which gives penalties for differ-
ences between the policy actions and expert actions. Over time, as the agent’s policy improves,
these outdated transitions (with their old misleading rewards) remain available and continue to
be sampled. They pollute the learning signal, because the critic is repeatedly trained on expe-
rience generated by now-superseded policies. This “recycling” of stale, low-quality data slows
convergence and can even push the agent back toward poor behaviors.

» Torque Saturation in Early Training: Despite the expert dampening the agent’s actions, we ob-
served that the standard blending approach often led to torque saturation in the early episodes.
Specifically in our high-dimensional 4D torque task, we often observe periods of policy satura-
tion: the agent’s network outputs extreme torques for many consecutive episodes. Because the
blending factor a; decays over time, the policy gradually contributes more to the final executed
action. When both expert and policy produce strong, conflicting torques, their blend can become
erratic, and the expert’s corrections themselves become “bad examples” as they start to compen-
sate for eachother. The agent then collects tuples whose “guiding reward” encourages following
a corrupted expert action. In effect, the very mechanism that was supposed to protect and teach
the agent begins to mislead it.

In summary, KA-DDPG'’s blending scheme, while effective, can be improved. The agent’s learning pro-
cess could benefit from a clearer separation between expert-driven experience and agent-driven ex-
perience. This realization led us to propose an alternative knowledge assistance mechanism, KAMMA
(Knowledge-Assisted Mixed Mode Actioning), which we introduce next. KAMMA addresses the above
issues by replacing continuous action interpolation with a probabilistic switching strategy, giving the
agent more distinct learning signals and eliminating the unintended side effects of blending.

4.3. KAMMA: Probabilistic Action-Selection Extension

To mitigate the drawbacks of continuous action blending identified above, we propose Knowledge-
Assisted Mixed Mode Actioning (KAMMA) as an improved action guidance mechanism. An overview
of how we approached this is shown in Algorithm 1. The core idea of KAMMA is to make the agent and
expert contributions mode-based rather than blended. In practice, instead of combining the actions

28 4. Methodology: From KA-DDPG to KAMMA + Curriculum

at every time step, we choose either the expert’s action or the agent’s action to execute at each time
step, based on a certain probability. This yields a clearer separation of control: at any given time,
either the expert is fully in charge or the agent is fully in charge. KAMMA can be viewed as introducing
an epsilon-greedy strategy in the action selection of the learning process. We define a time-varying
probability meypert (@nalogous to a; in KA-DDPG) such that:

* With probability mexpert(t), the expert’s action is applied: a(t) = aexpert(t)-
« With probability 1 — meypert, the agent’s action is applied: a(t) = aagent(t).

Early in training, meypert(0) is set close to 1 (e.g., 1.0 or 0.99), meaning almost all actions are from the
expert. Over the course of training, meypert is decayed toward 0, following a schedule similar in spirit to
that of a; before. For instance, we might exponentially decay me,pert SUCh that after a certain number
of episodes it drops to near 0. By the end of training, meypert 0 and thus the agent is acting on its
own in almost all time steps. Importantly, the decay of me,pert can be coordinated with the decay of the
reward shaping factor ;. In our implementation, we used the same decay schedule for §; as for meypert,
ensuring that both forms of guidance taper off together. This means early on we have both action and
reward dominated by the expert, and gradually both influences diminish. One of the problems with
KA-DDPG originated at the Replay Buffer (RB). This memory was large and kept tuples with expired
reward shapes in the buffer for updates. On solution to deal with this problem is the implementation of
a First In First Out (FIFO) RB. By limiting the available memory and deleting the oldest samples we can
mitigate the effect of recycling old reward shapes. This proved useful for the 1D, and 2D KA-DDPG
variants where it realised faster convergence. It did however not change the results for the 4D variant.
As the size of the FIFO RB brings variance and the performance boost is less pronounced in KAMMA,
we will not incorporate any FIFO RB until the curriculum experiments. And we only use it there in
order to illustrate the effects of catastrophic forgetting when using curriculum learning (elaborated on in
Section 4.4). Another solution is now that we can also change the guiding reward formulation to always
be defined with the applied action in stead of the policy action. That way the reward in a sample will
actually hold information on the action included in the tuple in stead of only the policy part of the blended
action in the tuple. This makes the earlier samples in KAMMA more truthful and further dispels the need
for the FIFO RB. Both the mixing mechanism and the reformulated guiding reward should result in a
more homogeneous reward evolution for KAMMA and further minimize the risk of instability.

4.3.1. Mechanics of KAMMA:

Although KAMMA's hard-switching cleanly separates expert and agent actions, it brings its own quirks
in the learning signal. In the very early episodes, almost every step uses the expert’s torque, so the
applied action and the expert action coincide exactly. Because our guiding reward is defined as the
negative norm between the applied and expert torques, it vanishes whenever the expert acts. What
remains is only a tiny fraction of the environment reward (since the mixing factor still heavily weights
imitation). As a result, those first few thousand tuples carry almost zero training signal. They are safe
examples of expert behavior, but with little to teach the critic. This is still more informative than the
blended signal from KA-DDPG however.

To prevent these low-information transitions from endlessly cluttering the replay buffer, we could im-
plement a cap on the size and employ the FIFO queue talked about earlier. As more informative,
agent-driven transitions arrive, the oldest expert-only tuples are dropped. This ensures that once the
agent begins to take control, the critic is trained largely on transitions that reflect real performance and
useful imitation feedback, rather than on a backlog of near-zero-reward demonstrations. The near-zero-
reward can also be turned into a more informative sample by also adding some gaussian exploration
noise to the expert action, instead of only to the policy actions. These changes can be a fruitful ad-
dition to KAMMA, however in practice we have noticed that keeping the earlier transitions in the RB
improves stability and convergence speed. To make a definitive choice a study should be done on the
relationship of performance and the FIFO RB size. This is however not inside the scope of this thesis.

Once KAMMA's imitation mechanism weight has decayed enough for the agent’s actions to be executed
regularly, each transition will carry both an environment reward (measuring true performance) and a
smaller guiding reward (nudging the agent toward expert behavior). This clear progression of expert-
only, agent-guided, then purely agent autonomous, makes credit assignment transparent and avoids

4.4. KAMMA + Curriculum: Gradual Difficulty Scheduling 29

Algorithm 1 KAMMA: Knowledge-Assisted Mixed Mode Actioning

Require: Critic network Qg, and actor network

Require: Target networks 774, Qg, replay buffer D

Require: Expert-mixing schedule {y;}_,, exploration noise process ;
1: for episode = 1to M do

2: Sp « env.reset()
3: fort =0to T do
4: u~7UDO,1)
5: if u <y, then
6: ay < mg(Se)
7 else
8: ar < gy (se) + N
9: end if
10: Execute a;, observe (renyts St41)
11 Tquide,t < —llar — ms(soll?
12: e < (1 =¥e) Tenvt + Ve Tquide t
13: Store (Sf’ at, Tt, St+1) |n D
14: Sample mini-batch {(s;, a;,7;, s}, from D
15: yi <11 +vQo(si, g (s)))
16: Update critic by minimizing
N
1 2
L) = N Z(Qe(si,ai) -)
i=1
17: Update actor using deterministic policy gradient:
1 N
Vol = ﬁZVﬂQ@(si'a)|a=n¢(si) Ve (si)
i=1
18: Soft-update targets:
0<10+(1-1)0, d—1p+(1—-1)0
19: Vi < Vi+1
20: end for
21: end for

the drawn-out, confusing middle phase that arises in KA-DDPG when expert and agent torques are
continuously blended.

Despite the nuances we expect KAMMA to address the issues identified with KA-DDPG. It should
preserve the benefits of expert guidance (fast initial learning, safety) while reducing the blending inter-
ference in the learning process. We hypothesize that KAMMA will achieve better final performance to
the standard KA-DDPG, and with improved training stability and possibly faster convergence. KAMMA
essentially provides a cleaner “knowledge assistance” modality and thus we adopt it as the default
guidance method in the rest of our methodology.

Before moving to the experimental validation, we integrate one more concept into the methodology:
curriculum learning. The next section describes how we incorporate two distinctly different gradual
curricula into the KAMMA training process to tackle the full complexity of the task.

4.4. KAMMA + Curriculum: Gradual Difficulty Scheduling

While KAMMA focuses on how the expert guidance is applied at each time step, curriculum learning
focuses on what tasks the agent is learning over the course of training. We define training curricula

30 4. Methodology: From KA-DDPG to KAMMA + Curriculum

that progressively increase the task difficulty. The difficulty is primarily characterized by the range
of velocities (linear and angular) that the agent must track, as well as the deviation from the expert
controller’s comfort zone. We implement and compare two distinct curricula:

1. Growing Variance (GV) Curriculum: In this curriculum, the distribution of target velocities begins
narrowly concentrated around a moderate speed (approximately 1.5 m/s, which is near the expert
controller’s nominal operating point) and then gradually broadens over the course of training (see
Figure 4.3). Specifically, early in training the agent is exposed to trajectories with speeds mostly
near 1.5 m/s (low variance around this value). As the agent masters these, the variance of the
speed distribution is increased in stages, allowing a wider range of speeds both below and above
1.5 m/s. Over time, the agent encounters both very low speeds (near 1 m/s) and higher speeds
(toward the controllers limits 2.0 m/s). This staged increase ensures that the agent first learns to
handle the moderate regime and then steadily generalizes to more extreme regimes. The growing
variance curriculum is designed to incrementally challenge the agent while still taking advantage
of the guiding examples early in training

2. Bimodal Drift (BD) Curriculum: In this curriculum, the training velocity distribution is intention-
ally bimodal, with two distinct peaks — one drifting below 1.5 m/s and one above 1.5 m/s (see
Figure 4.3)— and relatively fewer training scenarios at speeds around 1.5 m/s. For example, the
agent might frequently see tasks at 1.5 m/s, but once this is mastered we focus on improving
the envelope to 1.0 m/s and 2.0 m/s. This means the agent alternates between practicing on
easy, slow trajectories and very fast, challenging trajectories, with less exposure to the interme-
diate speeds. The idea is to force the agent to learn control at low and high extremes, thereby
covering a broad range of behaviors, and then later verify if it can still interpolate its knowledge
to the mid-range. This setup should be more sensitive to catastrophic forgetting, which should
influence the final performance. However this performance can also be influenced by another as-
pect of this curriculum. The sampling provides a non-monotonic progression later in training: the
task difficulty jumps between easier and harder regimes rather than smoothly increasing in both
directions. This also results in a non-homogeneous dataset and can be the cause for instability.

As discussed for our research we have focused the task on linear velocity only, so during the exper-
iments the angular velocity command will be set to zero. This setup should help observe the effect
of catastrophic forgetting by better isolating for that problem. By only commanding a linear velocity,
no extra difficulty will arise from combinations of the coupled linear and angular velocity space as was
experienced by Margolis et al. (2022).

Growing-Variance Curriculum Progression Bimodal-Drift Curriculum Progression

Initial 0=0.10 Initial p=1.5
— Mid 0=0.15 — Halfp=1.25
— Halfp=1.75

WA
v o
ability Density
NN WwoWw A
o U o o

b
-
w
b,
.
wn

Pr
Pr

—

=)
|
=)

o

%
o
5

o
[==d
o

0'%.0 0.5 1.0 15 2.0 25 3.0 0.5 1.0 15 2.0 25 3.0
Target Speed (m/s) Target Speed (m/s)

Figure 4.3: A schematic of the distributions belonging to the Growing Variance Curriculum (a), and the Bimodal Drift Curriculum

(b)

4.5. Implementation Details and Hyperparameters

All training and experiments are conducted in a high-fidelity simulation to allow safe, fast, and repeat-
able testing. We use NVIDIA Isaac Sim, a robotics simulation platform built on the PhysX physics
engine, as our simulated environment. Isaac Sim provides realistic physics, including rigid body dy-
namics and frictional contact, which are crucial for accurately modeling a skid-steer robot's behavior.
The key aspects of the environment setup are as follows:

The robot considered is a four-wheeled skid-steer vehicle with independent wheel drive. All four wheels

4.5. Implementation Details and Hyperparameters 31

Table 4.1: Vehicle dynamics parameters

Description Symbol Value
Vehicle mass m 25 kg
Track width B 0.5m
Distance from front axle to CG L¢ 0.2075m
Distance from rear axle to CG L, 0.2075m
Wheel radius R 0.1175m
Vehicle inertia around CG Ji 1.05 kg-m?
Friction coefficient Ky 0.85
Rotation moment of wheel 0.85 kg-m?

J
Max torque of wheel Tmax 3N-m
Min torque of wheel Tnin ONm

are identical and are mounted rigidly to the chassis (no active steering joints). The vehicle’s physical
parameters, such as mass and inertia, can be found in the Table 4.1. Each wheel has a certain radius
and mass; however, rather than simulate suspension, we assume cylindrical rigid bodies for each
wheel. The actuation is torque control at each wheel. We impose torque limits [T ,in, Tmax] O the action
outputs to reflect motor limitations — for instance, each wheel motor may be limited to 3Nm of torque (the
exact value depends on the specific robot’s actuators). If the agent’s policy outputs a torque beyond
this range, it is clipped to the nearest limit. These bounds not only keep the simulation stable but also
teach the agent to operate within physically feasible regimes, This can be seen as another form of expert
guidance by shrinking the action space in order to make exploration easier. In our simulations, the robot
operates on a flat horizontal surface with a uniform friction coefficient (e.g. u = 0.85, representative
of dry asphalt). This moderate friction value allows some wheel slip during aggressive maneuvers,
mimicking real skid-steering behavior. The physics integrator updates the vehicle’s pose (position and
orientation) and velocities at a frequency of 600 Hz in order to allow the simulator to calculate realistic
friction interactions for the current forces/torques. We chose a fixed control frequency of 10Hz for the
agent, meaning the agent outputs a torque action every 0.1s. The simulation internal physics step
can be smaller for accuracy of skid physics, but the agent’s decision and observation cycle is at 10Hz.
This is fast enough for the dynamics of typical straight driving with skid-steer vehicles. However this
assumption breaks when the skid-steer vehicle accomplishes rapid locomotion and enters a high-slip
regime. Unfortunately, this 0.1s is necessary to allow the consequences of the actions to develop,
expressive enough for a strong learning signal to develop. If the actions are given a much shorter
timestep to evoke a change in the state the observed reward might be to small to create a learning
signal.

Table 4.2: Hyperparameters of the KA-DDPG algorithm

Parameters Value
Random seed 20
Max episode 5000
Max steps per episode 100
Step size 0.1
Memory capacity 1,000,000
Batch size 512
Actor network learning rate 0.0003
Critic network learning rate 0.001
Exploration noise scale 0.1
Soft update rate 0.01
Discount factor 0.999

Proportional coefficient 0.035

32 4. Methodology: From KA-DDPG to KAMMA + Curriculum

4.5.1. Hyperparameters

All experiments are run on an NVIDIA's A40 GPU using Delft Artificial Intelligence Cluster. The training
framework (DDPG and KA-DDPG algorithms) is built using Python and PyTorch (for neural network
function approximation). The actor and critic networks in our agent are both feed-forward neural net-
works with three hidden layers (ELU activations) of sizes 512, 512, and of 128 neurons respectively
per layer, which is sufficient given the low-dimensional state and action spaces. The output layer of the
actor uses a sigmoid activation to limit actions between 0 and 1. These actions are scaled to the range
of allowed torques, ensuring the actions fed to the environment are within bounds. Figure 2.3 showed
the network structure. Notice how the actions of the policy network are used as observations by the
critic network. This illustrates the off-policy character that allows for easy action injection. Standard
DDPG hyperparameters are employed (replay buffer size, discount factor y = 0.99, soft target update
coefficient 7, etc.), as summarized in the Table 4.2 below. These settings are kept constant across all
experiments for consistency.

4.6. Summary

In summary, our methodology now consists of Knowledge-Assisted Mixed Mode Actioning (KAMMA)
combined with a curriculum schedule. In the next chapter, we will evaluate this approach experimen-
tally. We will compare variants including: baseline RL with various action spaces, the original KA-DDPG
(blending) method, the KAMMA method, and finally the KAMMA method with each of the two curricula.
This will allow us to quantify the contributions of both KAMMA and curriculum learning to the overall
performance.

Experiments and Results

5.1. Evaluation Protocol

The primary goal of the experimental evaluation is to assess the quality and consistency of trajectory-
following behavior learned by different reinforcement learning agents. Given the challenges posed
by non-holonomic constraints, dynamic coupling, and slip-dominated terrain, traditional performance
metrics such as episodic return or an arbitrary success rate are insufficient to characterize policy effec-
tiveness. We therefore introduce two complementary metrics: tracking error and torque smoothness.

Tracking Error To evaluate the accuracy of the learned policies, we define tracking error as the
absolute deviation between the commanded velocity v.nh4(t) and the actual velocity v, (t) observed
during an evaluation trajectory:

€(t) = [vemd () — Vact(B)]- (5.1)

This metric captures the agent’s ability to accurately follow a target velocity profile, which is critical for
safe and predictable control. Evaluation runs are conducted using an every episode increasing vemg (t).
We increase the v¢nq(t) for 50 episodes from 1.0 m/s to 2.0 m/s, to test policy generalization across a
range of operating regimes. Each agent is evaluated over five random seeds to assess consistency.

Smoothness (Jerk) Beyond tracking accuracy, we examine the internal control behavior using a
smoothness metric related to jerk (change in control inputs). Specifically, we measure the mean
squared difference between consecutive torque commands for each wheel:

1 T-1
S==— Z Itees — el (5.2)

where 1, is the vector of wheel torques at time step t. This metric reflects the temporal regularity
of the control signal: high-frequency oscillations or erratic torque changes result in large jerk (high
smoothness values), indicating poor smoothness. In the context of torque control, a lower smoothness
value (less jerk) signifies more coherent, stable behavior. We also use smoothness as a proxy for policy
convergence, a well-converged, high-performing agent is expected to exhibit low tracking error and
stable jerk. As training progresses, effective policies should evolve toward smoother torque changes
that still achieve the desired velocities. In this sense, smoothness provides insight into the maturity and
reliability of the learned control strategy, complementing the tracking error metric.

5.1.1. Protocol Overview

In addition to tracking error and torque smoothness—measured over a velocity ramp, we also report
the convergence episode to capture training efficiency, and assign a qualitative stability score (High,
Medium, Low) for each policy. This score reflects internal reliability based on: (1) convergence behavior
across seeds, including visual inspection of reward curves for divergence or oscillation; (2) post-training

33

34 5. Experiments and Results

torque smoothness as a proxy for physically coherent control and avoidance of erratic behavior; and
(3) robustness over dynamic changes, where sharp drops in tracking performance, particularly at the
working point of the controller (e.g., +1.5 m/s), signal instability or catastrophic forgetting. While these
indicators do not substitute for formal robustness tests, they allow a structured heuristic comparison.
We retain the term “stability” to emphasize consistent behavior across conditions, though it partially
overlaps with robustness in this setting. This evaluation framework is applied consistently in all exper-
iments throughout Sections 5.2-5.4.

5.2. Baseline: KA-DDPG Variants

This section presents the baseline results for the Knowledge-Assisted DDPG (KA-DDPG) approach
across varying action space dimensionalities: 1D (single combined torque), 2D (left/right differential
torque), and 4D (individual wheel torques). We evaluate both the training behavior (torque outputs
during training) and the final policy quality (trajectory smoothness and velocity tracking on the test ramp)
for each variant. The expectation is that reducing the action dimension simplifies the learning problem
(leading to faster convergence and smoother control), whereas higher-dimensional action spaces offer
more expressive control but are harder to train due to increased complexity.

Policy Torque Profiles - Rear Left Wheel (mean +10) Policy Torque Profiles - Rear Right Wheel (mean + 1 0)

\ i h
AT

l |
" ‘1‘\ Lk ‘W“ o

1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
pisode pisode

Figure 5.1: Rear Left and Rear Right torque profiles during training for 1D (blue), 2D (red), and 4D (green) KA-DDPG variants
(five seeds each).

5.2.1. Training-Run Torque Profiles

Figure 5.1 shows the evolution of wheel torque commands during training for the three KA-DDPG vari-
ants. As expected, the 1D and 2D policies learn a stable torque output very quickly. The 1D agent’s
torque profile is smooth and settles early in training, confirming the expectation that a low-dimensional
action space yields a simpler optimization landscape and rapid convergence. With only one control pa-
rameter, the 1D agent cannot induce wheel-specific oscillations, which effectively reduces exploration
noise. This simplicity comes at the cost of expressiveness, but it clearly leads to faster stabilization —
the agent finds a single torque signal that successfully drives the vehicle with minimal tuning.

In contrast, the 4D variant (independent wheel torques) was expected to face difficulty due to its high-
dimensional action space, and the observed training behavior confirms this. The 4D agent fails to pro-
duce coherent or convergent torque patterns: its outputs saturate and jitter wildly throughout training.
This unstable behavior indicates destructive interference between the four torque outputs — essentially,
the agent struggles with credit assignment when each wheel is controlled separately. This is recog-
nized in the torque profiles by having one wheel (Rear Left in Figure 5.1a) capable of stable torques
around 1.5 Nm, while the other three wheels of which Rear Right is taken as representative in Figure
5.1b saturates and never recovers. This is also illustrative for the results of dynamic coupling. Results
for all wheel torque profiles will be available in the Appendix. The result aligns with our expectation
that unrestricted 4D control is hard to learn: exploration noise in each wheel channel and conflicting
gradients from the critic prevent the policy from finding a stable solution. The continuous blending of
actions in this high-dimensional space muddles the feedback signal, so the agent receives mixed and
ambiguous reward contributions from each wheel’s torque. As predicted, the 4D variant does not con-
verge within a reasonable training time, highlighting severe training challenges when every wheel is
adjusted independently.

5.2. Baseline: KA-DDPG Variants 35

The 2D variant (differential torque control) represents an intermediate case. Initially, its torque outputs
are more chaotic than the 1D’s (reflecting the added degrees of freedom), but over time the 2D agent
manages to converge to a symmetric torque profile between the left and right wheel pairs. This suggests
the 2D policy learns to coordinate the two sides: torque commands for left and right wheels stabilize
into a pattern that is roughly mirror-symmetric, with structured temporal variations. We expected the 2D
agent to be more stable than 4D but perhaps slower to converge than 1D. Indeed, the observed behavior
confirms an intermediate outcome — the 2D agent does converge, albeit more gradually than 1D, and
ends up producing reasonable, interpretable torque trajectories. This pattern supports a fundamental
trade-off: finer control granularity (as in 4D) offers more expressive power in principle, but it greatly
complicates learning, whereas a moderate dimensionality like 2D strikes a practical balance between
expressiveness and trainability. In summary, the training-run results validate our expectations: simpler
action spaces converge faster and more smoothly, while overly complex action spaces (4D) can fail to
converge at all.

5.2.2. Evaluation-Run Smoothness and Tracking Error

Figures 5.2 and 5.3 present the evaluation results for each baseline policy in terms of trajectory smooth-
ness and velocity tracking error, respectively, over the stepped velocity ramp. Each policy was trained
five times; the shaded regions in the plots indicate the variability across seeds, providing a sense of
robustness.

Smoothness (Jerk) — 5.2: We initially expected the 1D policy to yield the smoothest control (lowest
jerk) because a single, shared torque command should discourage wheel-to-wheel mismatches. At
low speeds this expectation is met: the 1D agent shows very low jerk and highly stable outputs. Yet at
higher speeds the data reveal a different picture. Two complementary factors now dominate.

(1) Velocity-noise sensitivity. Because the 1D policy can correct the robot’s longitudinal velocity only
by raising or lowering the common torque level, it has fewer degrees of freedom to attenuate small
sensor or estimation errors in forward speed. When those errors grow with velocity, the 1D agent must
over-compensate, producing the burst of oscillatory torques we observe as a jerk spike in one of the
high-speed seeds.

(2) Expert-alignment advantage. The expert demonstrator inherently issues differential (2D) torque
commands, so the 2D policy’s action space is perfectly aligned with the expert’s strategy. That align-
ment lets the 2D agent harvest more reliable gradients during imitation learning, giving it a robust
initialization that persists into the high-speed regime.

In combination, these effects explain why the 2D variant ends up with consistently lower jerk and tighter
inter-seed variance across the full velocity ramp, while the 1D policy, despite quick convergence and
excellent smoothness at low speeds, occasionally destabilizes when velocity noise rises. As expected,
the 4D variant is omitted because it never produced a deployable policy, so its smoothness curve would

Smoothness across velocities 1D vs 2D

—— 1D average
25 2D average

Smoothness
= N
G S

=
=)

w

P ,-r,’”ll MU'“IF" 'I‘h'ﬁ"*'ﬂhr‘wm |, ,]

(i. 16 18 2.0
Velocity (m/s)

Figure 5.2: Smoothness over velocity ramp for 1D and 2D KA-DDPG (five seeds each), with the average over five seeds.

36 5. Experiments and Results

Tracking Error across velocities: 1D vs 2D

—— 1D TE average
2D TE average

0.8

O'q 0 1.2 14 16 18 2.0
Velocity (m/s)

Tracking Error
o
o

I
'S

Figure 5.3: Tracking error over velocity ramp for 1D and 2D KA-DDPG (five seeds each), with the average over five seeds.

not be meaningful. Overall, the 2D agent achieves the best smoothness (lowest jerk with tight seed
clustering) and superior high-speed stability, underscoring the twin importance of noise-robust action
flexibility and compatibility with the expert’s control signals.

Tracking Error — Figure 5.3: We anticipated that all agents would track best around the Controller’s
nominal operating speed (+1.5 m/s) and that tracking error would worsen (rise) at very low and very
high speeds where the task is more challenging. The results confirm this general trend for both 1D
and 2D policies. As shown in Figure 5.3, each curve exhibits a clear dip in error around 1.4-1.5 m/s
(the expert’s “working point”) and a steeper increase in error as the commanded velocity approaches
the extremes. Both agents thus met the expectation of good accuracy in the middle of the range and
decreasing accuracy toward the boundaries. Between the two, the 1D agent achieves low average
error with tight error bounds in the low-speed region, performing about as well as the 2D agent in that
regime. However, as the velocity increases beyond +1.5 m/s, the 1D policy’s error grows much more
rapidly than the 2D’s. Figure 5.3 shows that at the top of the velocity ramp (+2 m/s), the 2D agent’s
tracking error remains about half that of the 1D agent, confirming superior high-speed control. It also
confirms our expectation that the 1D agent’s limited action expressiveness and its slight misalignment
with the expert’s multi-wheel control would hurt its high-speed tracking. In fact, the 1D tracker’s error
becomes unacceptably large at the highest speeds, whereas the 2D agent maintains significantly lower
error in these high-speed conditions. The improved high-velocity tracking of the 2D policy is likely due
to its ability to differentially adjust left vs. right torque, giving it more control authority to counter slip and
maintain traction as speed increases. As before, the 4D agent’s tracking error is not plotted because
that variant never converged properly.

5.2.3. Lessons on Action Dimensionality

The results in Table 5.1 confirm that using a lower-dimensional action space greatly facilitated learning
for skid-steer control. The 1D action variant converged quickly (reaching its best performance by 2000
episodes) and excelled at low-speed tracking, but its limited actuation flexibility led to large errors at high
speeds (qualitative stability rated “Medium”). In contrast, the 2D action agent achieved a significantly
lower final tracking error (0.321 vs 0.425) and smoother control inputs (smoothness 3.89 vs 5.10) than
the 1D agent. The 2D policy maintained stability even during a challenging velocity-ramp test (stability
“High”), likely because differential wheel torque control helped counteract slippage at higher velocities.
Meanwhile, a fully expressive 4D action space proved too difficult to train (failing to converge), reinforc-
ing the need to avoid overly complex action dimensions. In summary, constraining the action space to
an appropriate dimensionality can streamline learning and improve high-speed robustness, so long as
it remains expressive enough to handle the vehicle’s operational range.

5.3. KAMMA vs. KAMMA IL 37

Variant Tracking Error (+) Smoothness (+) Conv. Ep. Stability
1D 0.425 + 0.374 5.10 + 4.89 2000 Medium
2D 0.321 £ 0.185 3.89 + 2.30 2000 High

Table 5.1: Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability for Section 5.2 (1D vs 2D).

5.3. KAMMA vs. KAMMA IL

Having established baseline behavior, we next evaluate our proposed Knowledge-Assisted Mixed
Mode Actioning (KAMMA) strategy and compare it against an ablated version and the original expert
controller. In this context, KAMMA refers to the agent that uses mixed guiding/observed rewards, and
expert/agent actions with a decaying probability of expert intervention (as described in Section 4.3),
and KAMMA IL ablation refers to a knowledge-assisted agent that uses only imitation learning (expert
guidance) without any subsequent reinforcement learning phase on the observed reward. In addition,
we include the expert’s own performance (the baseline Controller) for reference. The experiments here
focus on the 4D action setting (individual wheel torques) because KAMMA was designed to address
the challenges observed with the 4D baseline. We analyze training stability via torque profiles and then
assess the smoothness and tracking performance after training. Our expectation was that KAMMA's
discrete switching approach would avoid the instability seen in the 4D blending method, yielding more
stable training, and that after the expert is phased out, the RL component would allow the agent to
surpass the KAMMA IL agent’s performance, especially in regimes where the expert was weak.

Policy Torque Profiles - Front Left (IL vs KAMMA vs Controller)

— ILavg
—— KAMMA avg
—— Controller

3.0

2.5

2.0

1

w

Torque (Nm)

J%“ M"N‘ I 'dw IfM W W il ‘xl ol '.w !H"" IU o
10 Ht‘ \».“‘\\L\/NMWMM | \ 1’ i " i hl M

| W

0'DO 1000 2000 3000 4000 5000

Episode

Figure 5.4: Front Left training-run torque profiles for single baseline Controller seed, KAMMA, and IL KAMMA ablation (five
seeds each).

5.3.1. Training-Run Torque Profiles

Figure 5.4 represents the torque output during training for a representative run of the baseline Con-
troller (expert) and the average behavior of the KAMMA and KAMMA IL agents (with five seeds each).
As expected, the expert Controller’s torque commands (red curve) remain very stable and consistent
throughout training — the expert is a hand-crafted or previously tuned policy, so its control signals ex-
hibit steady amplitude and minimal noise by design. The KAMMA agent (blue curve) and the KAMMA
IL ablation (green curve) show similarly stable torque trajectories during training. This immediate sta-
bility confirms our expectation that KAMMA's mixed-mode strategy would preserve the early training
reliability provided by the expert. In fact, we observe that both KAMMA and KAMMA IL maintain tightly
grouped torque profiles across seeds, indicating that the learning process is well-behaved and pro-
duces consistent outputs (no wild oscillations) from the start. The absence of erratic torques stands in
stark contrast to the earlier 4D blending case (Section 5.2.1), demonstrating that discrete expert-agent
switching indeed leads to more interpretable and stable training behavior. By executing either the full
expert action or the full learned action at each step (instead of a blend), KAMMA ensures that the
agent’s updates are based on clear, attributable decisions. This allows the policy to refine its torque

38 5. Experiments and Results

outputs steadily over time without the interference issues seen in the continuous-blending approach.
We even observe a similar to even earlier emergence of sensible control structure in KAMMA's torque
traces than we saw in the “easier” low-dimensional KA-DDPG (1D/2D) baselines.

Interestingly, the KAMMA IL agent displays surprisingly competent torque patterns very early in training.
Essentially, even without any reward from environment interaction, the KAMMA IL agent is leveraging
the guiding reward (which imitates the expert’s action) to mimic the expert policy to a significant degree.
This was expected to some extent (since the KAMMA IL agent is designed to copy the expert while
conditions do not change), but the level of proficiency right from the start highlights how effective the
guiding reward is. Using the guide as a surrogate training signal will be a strong correction in later
episodes and realize robust exploration. The KAMMA IL agent’s torque outputs closely follow the
expert’s behavior in the initial stages, confirming that imitation alone can produce a reasonable policy
within the expert’'s performance envelope. However, we expect the KAMMA IL agent’'s progress to
plateau over time. Because it lacks any observed reward feedback, the IL agent has no incentive to
further improve beyond what it has learned from the expert. In theory, it should asymptotically approach
the expert’s policy and then stagnate. We anticipate that without reinforcement learning, the KAMMA IL
agent will not learn to correct the expert’s shortcomings in unfamiliar regimes (e.g. low speed, high slip,
or high speed) and will remain limited by the expert’'s suboptimal behaviors. This expectation will be
examined by comparing the IL agent’s tracking performance to the full KAMMA agent’s performance:
if KAMMA does not show clear improvements over KAMMA IL in those regimes, it would indicate that
the RL phase failed to refine the policy further (implying we might need to adjust the reward design
or training schedule). In summary, the training traces suggest that both KAMMA and the KAMMA L
agent achieve stable learning thanks to expert guidance, and KAMMA's approach avoids the chaotic
torque outputs seen in the 4D baseline. The key question remains whether KAMMA's additional RL
phase yields measurable gains over pure imitation; a purely IL agent should eventually stall (plateau)
at the expert’s level, never exceeding it, since it only learns “what the expert would do” but not why or
how to do better.

5.3.2. Evaluation-Run Smoothness and Tracking Error

After training, we evaluated the KAMMA and KAMMA IL policies on the standardized velocity ramp,
measuring smoothness and tracking error to compare their performance and convergence quality. The
expectation was that KAMMA, by incorporating an RL phase, would achieve equal or better smoothness
than the KAMMA IL agent and better tracking accuracy especially outside the expert’'s comfort zone
(low and high speeds). Figures 5.5 and 5.6 summarize the results alongside the baseline curves for
reference.

Smoothness — Figure 5.5: The KAMMA agent consistently achieves low jerk across the velocity
ramp, staying below a smoothness value of about 10 for all tested speeds. This level of smoothness
is a dramatic improvement over the unstable 4D KA-DDPG baseline (from Section 5.2) which showed

- Smoothness across velocities: IL vs KAMMA vs Controller (EMA)

—— IL average (EMA)
KAMMA average (EMA)

—— Controller
20

Smoothness
-
&

=
=)

W AT b s W

q.O 12 14 16 1.8 2.0
Velocity (m/s)

Figure 5.5: Smoothness over velocity ramp for KAMMA and KAMMA ablation (five seeds each), with the average over five seeds
and the expert Controller.

5.3. KAMMA vs. KAMMA IL 39

erratic, high-jerk behavior, and it is only slightly worse than the best-case smoothness we observed in
the 2D action-space variant. This outcome is in line with our expectations: by the end of training, the
KAMMA policy produces nearly as smooth control as the simpler 2D policy, despite operating in the
more challenging 4D action space. The small increase in jerk relative to 2D is expected because having
four independent torque outputs allows for some wheel-to-wheel differences (greater expressivity) and
thus can introduce minor high-frequency components. Importantly, the KAMMA smoothness curves for
all five seeds are tightly clustered and low-valued, indicating a high level of consistency and stability
in the learned behavior. In effect, KAMMA’s smoothness performance confirms that its policy not only
converged but did so without sacrificing control quality.

Perhaps the most revealing aspect is the comparison between KAMMA and the KAMMA IL agent.
We anticipated that KAMMA's RL phase might further smooth out the policy or at least not degrade
smoothness relative to the KAMMA IL agent. The results show that both KAMMA and KAMMA IL
achieve almost identical smoothness profiles over the entire velocity range. Both agents maintain low
jerk even at the highest speeds, which is encouraging, but it was unexpected to see such similarity. We
had presumed that without additional RL fine-tuning, the KAMMA IL agent might either have higher jerk
at the extremes or conversely that KAMMA might introduce a bit more jerk while searching for higher
performance. Neither happened: instead, the KAMMA IL policy is almost as smooth as KAMMA'’s.
This suggests that the imitation process alone already yielded a very smooth policy constrained by the
expert’s inherently smooth behavior at the working point and the formulation of the guiding rewarde. It
also raises the possibility that KAMMA's RL phase did not significantly improve (or worsen) smoothness,
perhaps because the observed reward weighting and curriculum were not tuned to explicitly optimize
smoothness further. In other words, the RL component focused more on reducing tracking error and
may have left the “smooth enough” policy largely unchanged in terms of jerk.

Another interpretation is that both KAMMA and KAMMA IL share the same mechanism (the guiding
reward and action suppression early on) that brings the policy to a certain smooth operating point
benefiting from the 2D controller. Improving smoothness in the 4D action space would inherently create
more individual jerk which makes deviating with the RL agent much harder. This outcome, while positive
in that smoothness remained low, is a bit paradoxical: we assumed smoothness might degrade at high
velocities without careful reward shaping, yet both agents remained smooth even when actual velocity
reached ranges where the expert itself tends to be less smooth. This indicates there may be subtle
effects of the guiding reward that inherently promote smooth control (for example, the guiding reward
penalizes wheel torque differences on a per-wheel basis, which could impose smoothness indirectly).
Regardless, the key takeaway is that KAMMA did not compromise smoothness: it managed to keep
jerk low, on par with pure IL, thus meeting the expectation of stable control quality.

Tracking Error — Figure 5.6: In terms of tracking accuracy, we expected KAMMA to outperform
both the KAMMA IL agent and the simpler baseline agents (1D/2D) at the edges of the performance

Lo Tracking Error across velocities: IL vs KAMMA vs Controller

—— IL average
KAMMA average
osl —— Controller

Tracking Error
o
o

o
IS

0.2

0'9[.0 1.2 1.4 1.6 1.8 2.0
Velocity (m/s)

Figure 5.6: Tracking error over velocity ramp for single baseline Controller seed, KAMMA, and KAMMA ablation (five seeds
each), with the average over five seeds and the expert Controller.

40 5. Experiments and Results

envelope (where the expert data was scarce or less reliable). The results support this expectation in
several ways. First, KAMMA achieves lower tracking error than the baseline KA-DDPG agents across
most of the ramp. In particular, compared to the 1D and 2D results from Section 5.2, the KAMMA
agent’s error curve stays lower in both the low-speed and high-speed regions. This demonstrates
that the expressiveness of the 4D action space can pay off when properly trained: with KAMMA, the
4D agent finally outperforms the constrained 1D/2D agents in terms of tracking error, validating the
idea that our method unlocks the potential of the higher-dimensional control. Second, focusing on the
KAMMA vs. KAMMA IL comparison, we see that the KAMMA IL agent actually has an edge around
the Controller’s working point (+1.4 m/s), whereas KAMMA shows better performance at the lower
and higher extremes. Specifically, near 1.4 m/s (the middle of the ramp), the KAMMA IL agent’s error
dips slightly below KAMMA's error. This makes sense: around that speed, the KAMMA IL agent is
essentially doing exactly what the expert would do, and since that is precisely the regime the expert is
tuned for, the IL agent excels there. KAMMA at the same mid-range speed performs nearly as well, but
the small discrepancy suggests that its additional exploration might not have improved performance in
the regime the expert was already good at, a minor trade-off for having more freedom elsewhere. At the
high-velocity end (£2 m/s) and low-velocity start (+1 m/s) of the ramp, however, KAMMA sporadically
achieves lower error than the KAMMA IL agent. This indicates that in those challenging regimes (high
slip in fast motions, or difficulties in very slow precise control), the RL phase tried to help KAMMA
refine the policy beyond what imitation alone provided. We do observe that KAMMA’s advantage at
the extremes comes with higher variance: some KAMMA runs greatly outperform the IL agent at high
speed, while others are on par or slightly worse, leading to larger error spread at the far right of the
plot. This variability was not entirely unexpected. Once the expert’s influence fades, the KAMMA
agents rely on pure RL in a tough part of the state space, which can result in instability for some seeds.
Indeed, the increasing variance of KAMMA’s error at high velocities points to occasional instability,
echoing the earlier concern that the agent might struggle once fully on its own in unseen conditions.
Nonetheless, the trend aligns with our hypothesis: the KAMMA IL agent cannot improve beyond the
expert’s capabilities, whereas KAMMA, through reinforcement learning, is able to push the performance
envelope (even if not uniformly across all seeds). KAMMA's ability to sometimes control the vehicle
more accurately in high-speed scenarios where the expert (and thus the IL agent) likely would struggle,
provides evidence that the RL phase is doing its job in principle, even if there is room to make it more
consistent.

5.3.3. Lessons on Action Mixing

Table 5.2 compares the proposed KAMMA agent with its KAMMA IL ablation and the expert controller.
The KAMMA imitation agent (KAMMA IL) quickly achieved expert-level performance, its final track-
ing error (0.300) essentially matched the hand-crafted controller (0.299), and it produced very smooth
actions, inheriting the expert’s stability in nominal conditions. However, as expected, the KAMMA IL
policy could not improve beyond the expert’s capabilities, struggling in regimes outside the expert’s ex-
perience (e.g. high and low speeds). By incorporating an RL phase, the full KAMMA agent maintained
comparably low error (0.320) while further reducing the smoothness metric (6.85 vs 8.60, indicating
smoother control than IL). More importantly, KAMMA expanded the operational envelope: it remained
stable under a demanding velocity ramp (stability “High”) and could sometimes control the vehicle at
extreme speeds where the expert controller generated very large smoothness values. The expert con-
troller tracks well in its intended operating range but falls apart at higher speeds, it was not designed
for the extremes of our task. Indeed, we observed the controller often saturating and losing stability
beyond + 1.5 m/s, hence its stability is rated Low in Table 5.2. In short, mixing expert guidance with
autonomous learning preserved early stability and smoothness while allowing the agent to surpass the
expert-based policy in challenging conditions, confirming the benefit of an RL fine-tuning stage after

Variant Tracking Error () Smoothness (+) Conv. Ep. Stability
KAMMA IL 0.300 + 0.136 8.60 + 6.80 2000 High
KAMMA 0.320 £ 0.143 6.85 £ 2.62 2000 High
Controller 0.299 + 0.093 13.11 £ 14.75 - Low

Table 5.2: Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability for Section 5.3 (KAMMA vs IL
vs Controller).

5.4. Curriculum-Enhanced Variants 41

imitation learning.

5.4. Curriculum-Enhanced Variants

Having established that KAMMA enables stable policy learning in the difficult 4D torque control setting,
we next investigate whether curriculum learning can further enhance training outcomes. The idea is to
shape the learning process by staging the difficulty of the task, potentially yielding better convergence or
final performance than a one-phase training. We evaluate two curriculum strategies, Growing Variance
(GV) and Bimodal Drift (BD), each applied to the KAMMA agent. In the GV curriculum, the distribution
of target velocities starts narrow (low variance around a base speed) and grows gradually, exposing
the agent to higher speeds and more slip only as it masters slower speeds. In the BD curriculum, easy
(low-speed) and hard (high-speed) tracking tasks alternate in a bimodal sampling scheme, forcing the
agent to continuously switch contexts (see Section 4.4). We test each curriculum both in isolation and
in combination with a FIFO replay buffer, which is a modified replay memory that always retains the
most recent experiences (discarding older ones) to emphasize recent training phases. This allows us
to study not only the effect of the curricula themselves but also the influence of a curriculum-sensitive
memory mechanism in prioritizing recent interactions. The expectation is that a well-designed curricu-
lum will improve training stability and final performance (especially at high speeds) compared to the
non-curriculum KAMMA, and that the FIFO replay buffer will help enhance convergence speed while
risking catastrophic forgetting of proficiency on already learned sub-tasks.

5.4.1. Training-Run Torque Profiles

Policy Torque Profiles - Front Right (GV vs BD vs KAMMA)

— GVavg
—— BD avg
—— KAMMA avg

3.0
25
2.0

10

Torque (Nm)

0.5

0.0

0 1000 2000 3000 4000 5000
Episode

Figure 5.7: Front Right training-run torque profiles for Growing Variance (GV), and Bimodal Drift (BD) compared to the KAMMA
base

During the initial IL-guided phase, both GV and BD agents converge to stable torque behaviors, as
expected. The expert’'s guidance ensures that early training (moderate speeds for GV, alternating
slower/faster for BD) yields coherent torque outputs. We anticipated that throughout training the GV
strategy might maintain more stable behavior than BD, due to its gentle difficulty progression. The
observations partly support this: both GV and BD show a similar overall trend initially, converging to
reasonable torque patterns under IL. However, as training progresses and the agent is exposed to
higher speeds (when the RL component starts dominating), all variants eventually begin to diverge
again toward the end of training. In Figure 5.7, we see that the torque profiles for both GV and BD
converge early (during the IL-heavy phase) but then diverge later in training, exhibiting growing variance
and oscillations in the final part of the learning curve. This late divergence was not fully expected.
Ideally, a curriculum would lead to sustained stability, but it indicates that once the agent is on its own
(relying mostly on RL in harder tasks), the challenges re-emerge. The GV curriculum’s profile appears
more stable than BD’s overall, but notably both curricula show this end-of-training uptick in instability
through high variance.

42 5. Experiments and Results

Policy Torque Profiles - Rear Right (FIFO_GV vs FIFO_BD vs KAMMA)

—— FIFO_GV avg
—— FIFO_BD avg
—— KAMMA avg

3.0

2.5

b . M
' l & “ M h “‘W "‘ r*l\ " Mm“ﬂ fM"w’ ‘

Torque (Nm)
-
w

h("ﬁ l

1.0

0.5

0'00 1000 2000 3000 4000 5000

Episode

Figure 5.8: Front Right training-run torque profiles for the FIFO Replay versions of Growing Variance (GV), and Bimodal Drift
(BD) compared to KAMMA base

Comparing GV vs. BD, we do observe that the BD curriculum induces more erratic torque fluctuations
during training than GV does. Especially in the latter half of training, the BD agent’s torque trace is
quite jagged and variable, whereas the GV agent’s torque, though diverging, is a bit more steady in
amplitude. This matches our expectation that frequent context-switching (BD) would inject additional
instability. The alternating easy/hard regime in BD exposes the agent to a broader range of states
early on, which is intended to improve generalization, but it also seems to hamper convergence: the
agent has to constantly re-adjust between slow and fast trajectories, which likely disrupts the learning
momentum. Without a proper mechanism to retain what was learned in one context while jumping to
another, the BD agent experiences something akin to task-switching instability.

Additionally it can be concluded that the IL phase did not sufficiently impart a general understanding of
the system’s dynamics, the agent likely didn’t fully learn the vehicle’s slip behavior using only imitation.
Gradual exposure to higher slip, when paired with a fast decay of IL influence, proved insufficient to
maintain stability later on. This system identification method was always implicit but seems to be more
effective using the observed reward as this better relates the complex system dynamics like velocity and
slip. Thus we have to conclude that these curricula sampling methods need a different, probably slower,
decay schedule to gain more exposure to the observed reward. This will create more opportunity to
instill that system understanding. The curriculum sampling methods did extend the agent’s operational
range, gradual exposure to both low and high speeds appeared to improve generalization to extreme
conditions, as the curriculum-trained agents handled high speeds better than the base KAMMA agent.
However, this benefit came with the caveat that performance at some intermediate regimes suffered
(indicating some forgetting or lack of retention of mid-speed proficiency). The early IL phase might
already create value anchors that are valuable during the later RL updates.

Now, looking at the FIFO replay buffer effect (Figure 5.8), the expectation was that FIFO would exacer-
bate some of the forgetting by always reinforcing recent tasks, but also cause faster convergence due
to a smaller and more focused data distribution. Consistent with this expectation, both FIFO-enhanced
variants (GV+FIFO and BD+FIFO) exhibit faster but less stable initial convergence than their standard
counterparts. In Figure 5.8, the torque profiles for GV+FIFO and BD+FIFO settle into a pattern more
quickly, but early-training variability is high compared to Figure 5.7. This suggests that prioritizing re-
cent experiences helps the agent focus on the current task difficulty and solidify those skills without
being constantly distracted by replay of old experiences. The FIFO variants also show a divergence
in torque outputs towards the end of training as expected. Interestingly, the oscillations are somewhat
less extreme than without FIFO). This outcome is a partial surprise: we expected the FIFO buffer to
exacerbate the late-training deterioration, but the results indicate it postpones or reduces it. The likely
reason is that while FIFO inherently discards older data that might still be valuable for maintaining per-
formance on earlier phases, it also emphasizes recent data which is good for the current phase and

5.4. Curriculum-Enhanced Variants 43

final performance. The agent might be losing some of the “lessons” from earlier speeds once those
samples are dropped from the buffer, thus a mild form of forgetting sets in — just later and less severely.
Another factor is that model capacity and training dynamics can also cause forgetting: as the distribu-
tion of tasks shifts, the neural network may reallocate its capacity to new situations at the expense of
older ones, especially if the buffer is very limited in size. In summary, FIFO improves speed of con-
vergence as expected, and it has a nuanced effect on stability and performance. Notably, even with
FIFO, BD’s torque profile remains more erratic than GV’s. The BD+FIFO agent benefits from recency
bias (less forgetting than BD alone), yet the inherent difficulty of switching between disparate tasks still
leads to visible torque oscillations (albeit somewhat muted). This reinforces the idea that curriculum
design (task order) plays a larger role in stability than the replay scheme: a chaotic curriculum like BD
yields chaotic training traces, while a memory tweak like FIFO can partly compensate for that.

5.4.2. Evaluation-Run Smoothness and Tracking Error

We now evaluate the final performance of the four curriculum-enhanced variants on the test velocity
ramp, focusing on smoothness (jerk) and tracking error metrics (Figures 5.9 and 5.10 respectively).
For ease of comparison, we discuss trends relative to what we observed with non-curriculum KAMMA.
Our expectations were that the GV curriculum would yield the smoothest, most accurate policy (due
to its structured learning progression), that the BD curriculum might show more variability (due to its
oscillating nature), and that the FIFO replay could destabilize these metrics by causing catastrophic
forgetting.

Smoothness — Figure 5.9: The GV curricula indeed produces the most stable (lowest jerk) policies
overall, which confirms our expectation about the benefit of a gradual curriculum. Across the com-
bined ten seeds, the GV agents achieve consistently low average smoothness values at most speeds.
The progressive exposure to higher speeds appears to have allowed the agent to refine its control in-
crementally, avoiding sudden jumps in policy that cause jerk. By contrast, the BD curricula results in
slightly higher jerk levels. The BD curves in Figure 5.9 show noticeably larger smoothness values. This
aligns with our prediction that the alternating task difficulty in BD would introduce control inconsistency.
The BD agents’ policies dosn’t settle as smoothly, likely because it never fully “finishes” learning one
regime before switching to another. In other words, the BD-trained policy is less smooth due to the
stop-and-go learning process.

It's worth noting that the GV smoothness results, while low on average, are not perfectly flat. The GV
agent’s jerk is generally low but shows some variation across the velocity range. In fact, somewhat un-
expectedly, the GV agent exhibits a few sporadic increases in smoothness at certain speeds (including
a slight uptick even around the mid-speed range of 1.4 m/s, where one would expect performance to be
best). These minor irregularities in the GV smoothness plot hint that even a gradual curriculum does
not entirely eliminate challenges; the agent might still experience some difficulty at transition points
in the curriculum (e.g., when moving from one stage to the next, there could be a brief rise in jerk).
Nonetheless, the key improvement with GV is seen at the low-velocity end: the GV-trained agents
maintain relatively low jerk even as speed approaches 1.0 m/s, whereas the non-curriculum KAMMA

Smoothness across velocities: BD vs GV vs KAMMA 2 Smoothness across velocities: FIFO_BD vs FIFO_GV vs KAMMA

—— BD average FIFO_BD avera ge
— GV average —— FIFO_GV average
—— KAMMA average —— KAMMA average

N N)
=) o
N
=)

Smoothness
=
G
Smoothness

J
15

«
«

q.O 1.2 1.4 1.6 18 2.0 q.O 1.2 1.4 1.6 1.8 2.0
Velocity (m/s) Velocity (m/s)

Figure 5.9: Smoothness over velocity ramp for Growing Variance (GV) and Bimodal Drift (BD) curricula (five seeds each). vs
their FIFO counter parts compared to the KAMMA baseline

44 5. Experiments and Results

(from Section 5.3) tended to have higher jerk by that point. This indicates the curriculum helped the
agent generalize its smooth control to the novel low-speed region better than one-shot training did.

The addition of FIFO replay further influences smoothness. Both GV+FIFO and BD+FIFO variants
show very low and consistent smoothness values across the ramp, seemingly outperforming their
counterparts without FIFO in terms of jerk stability. In particular, GV+FIFO achieves an extremely
flat smoothness curve (indicating uniformly smooth control at all speeds), and BD+FIFO, while still not
as good as GV+FIFO, is smoother than BD alone. This means that the FIFO mechanism helped the
agent maintain stable torque changes, likely by concentrating learning on the current speed range and
reinforcing those patterns. We expected FIFO to be counterproductive, and instead the FIFO variants
delivered the lowest jerk overall. This suggests that forgetting of earlier training (which might cause
relearning jitters) was reduced. Interestingly, the fact that BD+FIFO’s smoothness is improved over BD
means that FIFO memory retention can mitigate some negatives of a chaotic curriculum, but cannot
fully erase them. Overall, from a smoothness perspective, the best performer is GV+FIFO, followed by
BD+FIFO, then GV, and lastly BD. This ranking supports the idea that a well-structured curriculum (GV)
is more critical than the replay strategy for smooth control, but using FIFO on top of a good curriculum
can yield an extra boost in stability.

Tracking Error across velocities: BD vs GV vs KAMMA . 0Tracking Error across velocities: FIFO_BD vs FIFO_GV vs KAMMA

—— BD average FIFO_BD avera ge
— GV average —— FIFO_GV average
—— KAMMA average —— KAMMA average
0.8

o
@

0.6

o
o

o
IS

Tracking Error
Tracking Error

o
o
o
N

0.(1 0 12 1.4 1.6 18 2.0 0.(1.0 12 1.4 1.6 1.8 2.0
Velocity (m/s) Velocity (m/s)

Figure 5.10: Tracking error over velocity ramp for curriculum variants: (a) GV, BD replay, (b) GV + FIFO, (d) BD + FIFO replay
(five seeds each). against KAMMA baseline

Tracking Error — Figure 5.10: Turning to tracking accuracy, we observe a mix of expected outcomes
and a few surprises. Starting with the GV curriculum, the GV-trained agent demonstrates generally
strong tracking performance, especially at the high end of the speed range. As anticipated, GV yields
noticeably better tracking at high velocities compared to a non-curriculum agent, the GV error curve
rises more gently in the 1.8-2.0 m/s range, indicating improved high-speed control. This is a direct
benefit of the curriculum: by the time the GV agent faces the fastest speeds, it has been through a
smooth ramp-up of difficulty, so it can handle those conditions with less error. We also expected that
around the Controller’s working point (+1.4—-1.5 m/s), the curriculum agents should have low error
(since the early training and expert guidance heavily covered that range). However, an unexpected
result is that the GV agent shows large error peaks even near 1.4 m/s in Figure 5.10. In fact, all four
variants (GV, BD, and their FIFO versions) exhibit at least one seed with a spike of high error around the
mid-speed region. This is puzzling because we would normally expect the best tracking performance
at the mid-range speeds that were well represented in the training curriculum. The presence of error
spikes at 1.4 m/s suggests that some forgetting or regression occurred for that nominal regime. This
could be because once the curriculum moved beyond that speed, the agent focused on newer speeds
and partially forgot how to excel exactly at 1.4 m/s. It could also be an artifact of the finite replay buffer
(for FIFO cases) or simply variability across seeds. In any case, aside from these anomalies, GV’s
overall tracking error is lower and more stable than BD’s, which meets our original expectation that GV
would facilitate better tracking.

The BD curriculum shows slightly larger tracking performance relative to GV. The BD agents have
higher average error throughout the ramp and particularly erratic behavior in at least one of the runs
(reflected by wide error bands and spikes throughout the entire range). This was expected: the lack
of a smooth progression makes it harder for the agent to fine-tune its velocity tracking. The oscillating

5.4. Curriculum-Enhanced Variants 45

training regime seems to result in inconsistent policy behavior, as evidenced by occasional large errors.
For example, a BD-trained agent might do well on either low or high speeds in isolation, but when tested
on the continuous ramp (which covers the whole range), it can falter unexpectedly at some intermedi-
ate points. This confirms the intuition that task volatility in training translates to performance volatility
in execution. In summary, BD variants tend to have higher tracking error and more unpredictability,
whereas GV variants achieve lower error and smoother error curves, especially at the high end.

Incorporating the FIFO replay buffer had some nuanced effects on tracking. We expected FIFO to help
maintain low error on the latest trained tasks while sacrificing earlier ones, but the results suggest a
complicated trade-off. The GV+FIFO agent emerges as the best overall in tracking accuracy — it has the
lowest errors across most of the ramp (aside from the aforementioned mid-speed blip) and particularly
strong performance at high speeds. This indicates that combining GV with a recency-focused replay
yields the highest tracking precision, as one might hope. The BD+FIFO agent, however, does not show
a clear improvement over BD alone; in fact, BD+FIFO performed slightly worse in some portions of the
range (its variance is somewhat higher than BD’s at 1.3—1.6 m/s). This is an expected outcome: one
assumes prioritizing recent BD tasks would amplify forgetting of the alternating contexts, leading to even
poorer integration of the two task types (high vs. low commanded velocity). Essentially, because BD
already causes the agent to oscillate focus, the FIFO’s tendency to dump “old” data may have caused
the agent to overfit to whichever context was last seen and lose proficiency in the other. The result is
a slight degradation in overall BD tracking performance with FIFO, showing that memory schemes can
be counterproductive if they bias too hard towards recent data in a rapidly switching task scenario.

In order to verify and identify the true mechanism of forgetting more seeds, more decay schedules, and
other RB’s should be tested. Our FIFO was set to hold 10,000 transitions (about 20% of total training
data), this size might not have been optimal. Future tuning of the buffer size or sampling strategy could
potentially reduce those mid-range error spikes.

5.4.3. Lessons on Memory, Curriculum, and Forgetting

As shown in Table 5.4.3, curriculum learning produced the best overall outcomes when combined with
appropriate memory retention mechanisms. The GV curriculum led to improved final performance,
achieving a lower tracking error (0.301) than the BD schedule (0.328) and yielding smoother con-
trol (smoothness 6.84 vs 8.84). GV’s gradual task progression enabled the agent to converge dur-
ing training (2000 episodes) with only moderate instability (stability rated “Medium”), whereas the
more abrupt, alternating BD curriculum induced convergence failures (no clear convergence within the
training episodes) and pronounced instability at high speeds (stability “Low”). Incorporating a FIFO
replay buffer further enhanced the GV curriculum’s results. For instance, GV+FIFO attained the lowest
smoothness value (5.68) and maintained stability without regressing on earlier skills, by accelerating
early convergence and mitigating forgetting of recent tasks. However, even with FIFO, the BD vari-
ant remained fragile, highlighting that frequent context-switching can disrupt learning momentum and
cause the agent to forget previously mastered sub-tasks. Overall, these experiments show that a
well-structured curriculum (particularly GV) can expand the policy’s high-speed competence beyond
the base KAMMA training, but they also underscore the importance of memory-aware strategies to
preserve stability and consistency when staging learning tasks.

Variant Tracking Error () Smoothness (+) Conv. Ep. Stability

GV 0.301 £ 0.170 6.84 + 4.53 2000 Medium
BD 0.328 £ 0.148 8.84 + 3.49 - Low
FIFO GV 0.310 £ 0.136 5.68 + 2.88 2000 Medium
FIFO BD 0.312 £ 0.113 6.91 + 3.30 - Low

Table 5.3: Tracking Error and Smoothness (+ std), convergence episode, and qualitative stability for Section 5.4 (GV, BD, FIFO
GV, FIFO BD).

Discussion, Limitations, and Outlook

6.1. Key Empirical Insights

Our findings confirm several key empirical insights about integrating expert knowledge and curriculum
learning into reinforcement learning (RL) for skid-steer control. First, there is a clear trade-off between
control fidelity and learning difficulty when choosing the action space. Richer action representations
(e.g., full 4-dimensional independent wheel torques) offer finer control and capture more of the robot’s
true dynamics, but they proved significantly harder to train. In our experiments, a lower-dimensional
torque action space (e.g., 1D or 2D aggregated wheel torques) converged faster and more reliably,
whereas the full 4D action space often required substantially more training and occasionally failed
to converge under the baseline algorithm. This highlights the importance of thoughtfully selecting or
structuring the action space for efficient learning (in line with observations by ERer et al., 2024).

Second, the Knowledge-Assisted Mixed Mode Actioning (KAMMA) strategy significantly improved train-
ing stability and performance compared to the baseline Knowledge-Assisted DDPG method (Dai et al.,
2022). Instead of blending expert and learner actions continuously, KAMMA uses a probabilistic switch-
ing mechanism: at each time step either the expert’s action or the agent’s action is executed in full, with
a decaying probability of using the expert. This discrete expert injection preserved the benefits of ex-
pert guidance in early training (preventing the agent from entering irrecoverable states), while avoiding
the interference and torque saturation issues that continuous blending caused. Empirically, KAMMA
yielded smoother learning curves and higher final tracking accuracy than the original approach, espe-
cially in the challenging 4D action-space scenario. This confirms that strategically handing off control
from expert to learner (analogous to an e-greedy exploration aid) can boost the learning outcome.

Third, incorporating curriculum learning proved beneficial for both training stability and final perfor-
mance. We devised and tested multiple curricula that gradually increase task difficulty, notably a mono-
tonic Growing Variance (GV) curriculum (expanding the speed range in stages) versus a non-monotonic
Bimodal Drift (BD) curriculum (alternating between easy and hard regimes), with and without a modified
FIFO replay buffer to mitigate forgetting. The results showed that well-structured curricula lead to stable
learning and lower tracking errors at high speeds compared to training on the full task from scratch. In
particular, the progressively challenging GV curriculum enabled agents to achieve significantly better
high-velocity tracking by the end of training (validating the benefit of staged difficulty shaping), whereas
the oscillating BD schedule led to more erratic performance as expected. Curriculum-enhanced agents
overall outperformed those trained with no curriculum, underscoring that a staged training regime can
extend the effective control envelope of the learned policy.

Fourth, we found a strong synergy between expert guidance and curricula. The unified approach—
using KAMMA in conjunction with a curriculum—consistently outperformed using either expert demon-
strations or curricula alone. An agent that both received expert assistance and progressed through
staged tasks learned faster and attained higher final accuracy than agents with only one of those aids.
For example, a KAMMA-trained agent following the GV curriculum achieved better top-speed tracking
than a KAMMA agent trained on a non-curated mix of tasks. This demonstrates that expert knowledge

47

48 6. Discussion, Limitations, and Outlook

and curricula are complementary: early expert oversight provides a strong initial bias and prevents
catastrophic failures, while the curriculum ensures the agent is gradually challenged and learns to han-
dle the full range of operating conditions, albeit with some additional stability challenges that require
careful management (as later discussed in our results). Overall, our integrated training framework
yielded the best performance among all variants tested.

Finally, these insights were supported by a thorough experimental evaluation. We conducted side-by-
side comparisons against baselines and ablation cases (e.g. with and without KAMMA or curriculum) to
isolate each component’s contribution. We also tested the trained policies on unseen trajectory profiles
to assess generalization. The KAMMA-based policies notably surpassed pure imitation-learning agents
in challenging scenarios, and curriculum-trained agents maintained higher tracking precision at extreme
speeds than those without curricula. Taken together, our results validate the central hypothesis that
combining staged tasks with expert-assisted RL produces more robust and accurate control policies
than either approach on its own.

6.2. Methodological Surprises

Beyond the planned outcomes, the study revealed a few unexpected findings and nuances in our
methodology. One noteworthy surprise was an anomaly in the curriculum agent’s performance at mid-
range speeds. We had anticipated the lowest tracking errors in the speed range that was heavily
covered during early training. However, some curriculum-trained agents exhibited unexplained error
spikes around the expert controller’s nominal speed (approximately 1.4 m/s), even as their high-speed
tracking improved. This counter-intuitive dip in performance suggests a form of forgetting or regres-
sion: once the curriculum progressed beyond that medium-speed regime, the agent seemingly forgot
some of its proficiency at the earlier stage. Possible causes include the agent focusing on new, faster
regimes at the expense of mid-speed mastery, or limitations of the replay buffer (even in variants that
used a FIFO buffer to retain recent experience). Although overall performance was still better with the
curriculum than without, this finding highlights a subtle challenge in staged training—agents may tem-
porarily regress on earlier subtasks when those are no longer emphasized. Recognizing this helped us
identify the need for mechanisms to maintain performance on intermediate goals (e.g. revisiting earlier
tasks or using a more adaptive curriculum schedule).

Another unexpected issue was the sensitivity introduced by reward shaping and schedule tuning. In
our framework, the expert’s involvement and the curriculum progression are governed by hand-tuned
schedules (for fading out expert assistance and advancing task difficulty). We observed that if the
shaping (expert-assisted) reward component is not carefully balanced, it can mask the agent’s true
performance early in training. For instance, an agent might continue to receive high total rewards due
to the residual expert-driven reward, giving a false impression of improvement even if its own policy
has plateaued. Only once the expert influence diminishes would the underlying performance drop
become evident — at which point the sudden loss of the shaping reward can cause instability in learning.
This phenomenon, along with the general variability introduced by different schedule parameters, was
more pronounced than expected. It underlines the importance of careful schedule design: even small
adjustments to the expert decay rate or curriculum step criteria significantly affected convergence speed
and stability. In retrospect, this surprise reinforced the value of monitoring both shaped and true reward
signals during training, and motivated exploring more adaptive scheduling techniques to eliminate such
brittle behavior.

6.3. Limitations and Mitigation Strategies
While the results are encouraging, several limitations must be acknowledged, along with potential
strategies to mitigate them:

+ Sim-to—Real Gap: All training and evaluation in this study were conducted in high-fidelity sim-
ulation. Despite our efforts to use a realistic physics model, the learned policy has never been
exposed to real-world dynamics (e.g., exact friction variations, compliance, or unmodeled me-
chanical effects). This raises uncertainty about how well the policy would transfer to a physical
skid-steer robot, subtle factors like tire deformation or drivetrain backlash could degrade perfor-
mance. Furthermore, we ran the policy at 10 Hz, which was essential for obtaining consistent

6.3. Limitations and Mitigation Strategies 49

learning behavior. This relatively low control frequency provided stability by allowing the agent
to observe the longer-term effects of its actions, especially in relation to traction and slip. How-
ever, this setup also imposes a limit on the environments we can handle. If conditions become
more dynamic, such as lower friction coefficients, higher velocities, or abrupt terrain changes, a
faster control loop might be necessary to ensure stability and responsiveness. Even for expert
controllers. This suggests that while 10 Hz sufficed for our straight-line, flat-ground experiments,
different tasks or real-world implementations may demand adaptive control frequencies. Mitiga-
tion: Bridging this sim-to-real gap will require careful field trials and possibly additional system
identification. Techniques such as domain randomization (varying simulator parameters within
realistic bounds) and adding sensors or feedback for traction estimation can help the policy learn
to handle real-world variability. Ultimately, validating and fine-tuning the controller on physical
hardware is essential to ensure that the learned policy remains robust under real operating con-
ditions.

» Manual Schedule Sensitivity: Our approach relies on manually-designed curricula and expert
intervention schedules. As noted above, the performance can be sensitive to these scheduling
parameters — a curriculum broken into different stage lengths, or a slightly faster/slower expert
handoff, can lead to noticeably different outcomes in convergence speed or stability. The need
for extensive tuning not only increases development effort but also poses a reproducibility chal-
lenge: what works optimally in our setup might falter if the timing or thresholds are altered. Mit-
igation: A promising solution is to incorporate adaptive or automated schedule tuning. Future
implementations could use performance-based triggers or meta-learning to adjust the difficulty
progression and expert assistance in real time. For example, the agent’s recent error rate or
learning progress could dictate when to escalate task difficulty or reduce expert input, instead of
adhering to a fixed schedule. By making the curriculum and expert handover self-tuning, we can
improve the method’s robustness and reduce the burden of manual parameter tuning. This would
likely alleviate the schedule-sensitivity issue and make it easier for others to replicate our results
without exhaustive hand-tuning.

+ Domain Specificity: We intentionally constrained our experiments to a narrow domain — straight-
line trajectory tracking on flat terrain using a single skid-steer robot model. It remains uncertain
how well the learned policy and insights generalize to other scenarios. Real deployments may
involve uneven terrains (slopes, rough or deformable ground), different maneuvers (sharp turns,
obstacle avoidance), and varying vehicle configurations or weights. Our current results do not
guarantee success in those conditions. Mitigation: To broaden the applicability, the approach
should be tested and extended in more diverse settings. Incorporating terrain-aware features
(e.g. sensing inclines or surface friction) into the state could allow the policy to anticipate changing
conditions. Combining this with domain randomization during training (varying ground traction,
robot parameters, and environmental conditions) would expose the agent to a wider range of
situations, likely improving its generalization. Follow-up studies should evaluate the controller on
complex terrains and with different robot hardware to identify any failure modes and adjust the
method accordingly. Expanding the domain in this way will help map out the boundaries of our
approach’s validity and ensure it is not limited to just the nominal scenarios we studied.

» Sample Efficiency and Scalability: The computational cost of training our agents was high,
reflecting a limitation in sample efficiency. Each agent required many hours of simulated ex-
perience on a GPU to converge, and by extrapolation this would translate to several days of
real-world training per agent (which is impractical and would cause considerable wear on a real
robot). Moreover, our hyperparameters were largely adopted from prior work and not exhaus-
tively optimized for each variant; it is possible that with further tuning, performance could improve
or training time reduce, but finding those optimal settings itself is resource-intensive. This scala-
bility issue means that deploying the method in the field or on larger tasks would be challenging.
Mitigation: Future research should prioritize improving learning efficiency. Potential avenues in-
clude integrating model-based elements or simulators to guide exploration, using more advanced
replay buffer strategies (to reuse past experiences more effectively and prevent forgetting), and
parallel or meta-learning approaches to tune hyperparameters automatically. Reducing the train-
ing time by even an order of magnitude would greatly enhance the practicality of the approach,
both for simulation studies and real-world trials. In addition, techniques like hierarchical learning

50 6. Discussion, Limitations, and Outlook

(discussed below) could break the task into simpler subtasks, making learning more tractable. By
addressing the sample inefficiency and scaling limitations, we move closer to a framework that is
not only effective but also feasible to implement outside of controlled simulation environments.

6.4. Broader Research Opportunities

Building on this work, there are several broader research opportunities to explore. One important direc-
tion is automating the curriculum and expert scheduling. Developing agents that can learn to regulate
their own training schedule would make the approach more adaptive and reduce manual intervention.
For example, an meta-learning algorithm could adjust the progression of task difficulty or the reliance on
expert actions based on the agent’s performance in real time. Such adaptive curricula and self-tuning
expert guidance mechanisms would improve reproducibility and might yield even faster convergence
by continuously challenging the agent at an appropriate level.

A second avenue is to extend the framework to more complex tasks and environments. Future research
can introduce richer and more variable scenarios to push the limits of the learned controller. This in-
cludes testing on uneven or changing terrains (such as slopes, rough ground, or mixed-friction surfaces)
and handling more dynamic maneuvers (like curving paths or obstacle avoidance). To succeed in these
settings, the policy may need additional inputs or modules — for instance, incorporating exteroceptive
sensors (lidar, vision or inertial measurements) to perceive upcoming terrain features, or conditioning
the policy on estimated friction coefficients. Coupling these enhancements with extensive domain ran-
domization during training (randomly varying physical parameters, terrains, and disturbances) will help
the agent acquire a robustness to environmental changes. By broadening the training domain in this
way, we can assess how general the current approach is and adapt it for real-world complexity, thus
narrowing the gap between our simulation setup and practical field conditions.

Another promising research direction is Hierarchical Reinforcement Learning (HRL) for skid-steer con-
trol. Our current approach treats the task at a single level, but as we consider more complicated skills
or longer-horizon goals, a flat policy may struggle with the “curse of dimensionality.” HRL could intro-
duce multiple layers of controllers: a high-level policy could make strategic decisions or select subtasks
(for example, choosing between a “precision low-speed” mode vs. a “high-speed maneuvering” mode,
or setting intermediate waypoints), while low-level policies execute the fine-grained torque control to
achieve those sub-goals. Such a decomposition can simplify learning by allowing each policy to focus
on a narrower subproblem. The higher-level policy would handle abstract decision-making over longer
timescales, and the lower-level ones would specialize in short-term dynamics. This hierarchy not only
could improve learning efficiency (by reusing low-level skills across different contexts) but also manage
complexity better, as evidenced by the success of staged training in our work. Incorporating an HRL
framework builds on the intuition behind our curricula — breaking the challenge into stages — and could
enable the system to tackle more elaborate control tasks than a single monolithic policy could feasibly
learn.

Finally, a critical step forward is to validate and refine the approach on real robotic hardware. Deploying
the full KAMMA + curriculum framework on an actual skid-steer vehicle will test the true robustness of
the learned controller. Transitioning from simulation to reality will require addressing practical issues
such as sensor noise, state estimation errors, actuation latency, and the safety of exploration (to avoid
harming the robot). Additional safeguards and adaptations should be investigated to facilitate this
transfer. Possible strategies include on-line system identification (continually estimating parameters
like friction or slippage in real time and feeding that into the controller), using more uncertainty-aware
policies (e.g. Bayesian approaches or ensemble methods that can recognize when the robot is in
unfamiliar states), and leveraging a mixture of simulated and real data for fine-tuning (for example,
seeding the replay buffer with some real-world experiences to ground the learning). Techniques for
direct sim-to-real transfer, such as domain adaptation or adding a transfer loss in training, could also
be beneficial to minimize reality gap issues. Successfully running our learned policy on a physical
robot — reliably tracking aggressive trajectories under real-world conditions — would be the ultimate
proof of concept for this research. It would also provide invaluable feedback on failure modes that only
manifest on hardware, guiding further improvements. In summary, by pursuing these opportunities
(greater adaptivity in training, expansion to complex tasks, hierarchical control structures, and real-
world deployment), future work can build upon the foundations laid in this thesis and move closer to

6.5. Conclusion 51

agile, reliable learning-based control strategies for skid-steer robots operating outside of simulation.

6.5. Conclusion

In conclusion, this research has demonstrated the potential of combining curriculum learning with
expert-assisted reinforcement learning to improve the data-efficiency and performance of a torque-
controlled skid-steer robot. We presented a unified approach that integrates action-space design,
staged task curricula, and intermittent expert guidance, and we showed that each of these components
contributes to more robust learning and more precise trajectory tracking than standard RL baselines.
At the same time, we have identified key limitations — such as schedule sensitivity, domain specificity,
and sim-to-real transfer challenges — that temper these successes. The contributions of this work pro-
vide a solid foundation and proof-of-concept for learning-driven skid-steer control, but realizing their full
potential will require continued refinement and validation under real-world conditions. By addressing
the outlined limitations and exploring the proposed research directions, future investigators can further
generalize and strengthen this approach. Ultimately, we believe that such efforts will bring us closer
to deploying adaptive, high-performance RL-based controllers on skid-steer robots, enabling them to
reliably execute agile maneuvers in the field.

Policy Torque Profiles - Front Left Wheel (mean + 1 0)

Appendix

Policy Torque Profiles - Front Right Wheel (mean + 1 o)

Policy Torque Profiles - Rear Right Wheel

3.0 = 3.0
30 — 1D Average — 1D Average
— 20 Average — 20 Average
D D
25 25
20 20
|
E E E
£ £ 2
o 315 315
z z g
e e e
)
10 10
|
05 05 05
o 1000 2000 3000 000 5000 6000 7000 1000 2000 3000 000 5000 6000 7000 1000 2000 3000 4000
Episode Episode Episode

Figure 6.1: Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for 1D (blue), 2D (red), and 4D

(green) KA-DDPG variants (five seeds each).

Policy Torque Profiles - Front Left (IL vs KAMMA vs Controller)

— Lavg
— KAMMA avg
— Controller

3.0

Torque (Nm)

Torque (Nm)

3.0

05

Policy Torque Profiles - Front Right (IL vs KAMMA vs Controller)

— lLavg
— KAMMA avg
— Controller

Torque (Nm)

3.0

05

Policy Torque Profiles - Rear Right (IL vs KAM

Episode

o.

1000 2000 3000 2000

Episode

5000

o.

1000 2000 3000

Episode

Figure 6.2: Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for IL (blue), KAMMA (red) variants

(five seeds each), and the controller (green).

20 Policy Torque Profiles - Front Left (GV vs BD vs KAMMA)

Torque (Nm)

Torque (Nm)

3.0

Policy Torque Profiles - Front Right (GV vs BD vs KAMMA)

0 b

— KaMMA avg

|

i Iif
1|

e |
Wit

% (L

3.0

Policy Torque Profiles - Rear Right (GV vs |

o 1000

2000 3000
Episode

4000 5000

o

1000 2000 3000

Episode

2000

1000 2000 3000
Episode

Figure 6.3: Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for GV (blue), BD (red), and KAMMA

(green) variants (five seeds each).

54 6. Discussion, Limitations, and Outlook

30 Policy Torque Profiles - Front Left (FIFO_GV vs FIFO_BD vs KAMMA) 30 Policy Torque Profiles - Front Right (FIFO_GV vs FIFO_BD vs KAMMA) 30 Policy Torque Profiles - Rear Right
— FFo_GVavg — FIFO_GV avg
— FIFo_BD avg — FIFO_BD avg

— KAMMA avg

Torque (Nm)

1000 2000 3000 4000 s000 %% 1000 2000 3000 4000 s000 %% 1000 2000

Episode Episode Epis

Figure 6.4: Front Left, Front Right, Rear Left, and Rear Right torque profiles during training for FIFO GV (blue), FIFO BD (red),
and KAMMA (green) variants (five seeds each).

Bibliography

Chamorro, S., Klemm, V., Valls, M. d. I. I., Pal, C., & Siegwart, R. (2024). Reinforcement Learning for
Blind Stair Climbing with Legged and Wheeled-Legged Robots. http://arxiv.org/abs/2402.
06143

Chivkula, P., Rodwell, C., & Tallapragada, P. (2022). Curriculum-based reinforcement learning for path
tracking in an underactuated nonholonomic system. IFAC-PapersOnLine, 55(37), 339-344.
https://doi.org/10.1016/j.ifacol.2022.11.207

Cimurs, R., & Merchan-Cruz, E. A. (2022). Leveraging Expert Demonstration Features for Deep Rein-
forcement Learning in Floor Cleaning Robot Navigation. Sensors (Basel, Switzerland), 22(20).
https://doi.org/10.3390/s22207750

Coletti, C. T., Williams, K. A., Lehman, H. C., Kakish, Z. M., Whitten, D., & Parish, J. J. (2023). Ef-
fectiveness of Warm-Start PPO for Guidance with Highly Constrained Nonlinear Fixed-Wing
Dynamics. 2023 American Control Conference (ACC). https://doi.org/10.23919/ACC55779.
2023.10156267

Dai, H., Chen, P, & Yang, H. (2022). Driving Torque Distribution Strategy of Skid-Steering Vehicles with
Knowledge-Assisted Reinforcement Learning. Applied Sciences (Switzerland), 12(10). https:
//doi.org/10.3390/app12105171

Datar, A., Pan, C., Nazeri, M., & Xiao, X. (2024). Toward Wheeled Mobility on Vertically Challenging
Terrain: Platforms, Datasets, and Algorithms. Proceedings - IEEE International Conference on
Robotics and Automation, 16322—16329. https://doi.org/10.1109/ICRA57147.2024.10610079

ERer, J., Margolis, G. B., Urbann, O., Kerner, S., & Agrawal, P. (2024). Action Space Design in Rein-
forcement Learning for Robot Motor Skills. OpenReview.

Han, T., Shah, P, Rajagopal, S., Bao, Y., Jung, S., Talia, S., Guo, G., Xu, B., Mehta, B., Romig, E.,
Scalise, R., & Boots, B. (2025). Demonstrating Wheeled Lab: Modern Sim2Real for Low-cost,
Open-source Wheeled Robotics. http://arxiv.org/abs/2502.07380

Hoeller, D., Rudin, N., Sako, D., & Hutter, M. (2023). ANYmal Parkour: Learning Agile Navigation for
Quadrupedal Robots. Science Robotics. http://arxiv.org/abs/2306.14874

Hu, Y., Xie, Q., Jain, V., Francis, J., Patrikar, J., Keetha, N., Kim, S., Xie, Y., Zhang, T., Fang, H.-S.,
Zhao, S., Omidshafiei, S., Kim, D.-K., Agha-mohammadi, A.-a., Sycara, K., Johnson-Roberson,
M., Batra, D., Wang, X., Scherer, S., ... Bisk, Y. (2023). Toward General-Purpose Robots via
Foundation Models: A Survey and Meta-Analysis. http://arxiv.org/abs/2312.08782

Liessner, R., Schroer, C., Dietermann, A., & Baker, B. (2018). Deep reinforcement learning for ad-
vanced energy management of hybrid electric vehicles. ICAART 2018 - Proceedings of the
10th International Conference on Agents and Atrtificial Intelligence, 2, 61-72. https://doi.org/
10.5220/0006573000610072

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015).
Continuous control with deep reinforcement learning. http://arxiv.org/abs/1509.02971

Margolis, G. B., Yang, G., Paigwar, K., Chen, T., & Agrawal, P. (2022). Rapid Locomotion via Rein-
forcement Learning. http://arxiv.org/abs/2205.02824

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor, M. E., & Stone, P. (2020). Curriculum Learning
for Reinforcement Learning Domains: A Framework and Survey. http://arxiv.org/abs/2003.
04960

Ostafew, C. J., Schoellig, A. P., & Barfoot, T. D. (2014). Learning-Based Nonlinear Model Predictive
Control to Improve Vision-Based Mobile Robot Path-Tracking in Challenging Outdoor Environ-
ments. 2014 IEEE International Conference on Robotics & Automation (ICRA), 6822. https:
//doi.org/10.1109/ICRA.2014.6907444

Rudin, N., Hoeller, D., Reist, P., & Hutter, M. (2021). Learning to Walk in Minutes Using Massively
Parallel Deep Reinforcement Learning. arXiv. http://arxiv.org/abs/2109.11978

55

http://arxiv.org/abs/2402.06143
http://arxiv.org/abs/2402.06143
https://doi.org/10.1016/j.ifacol.2022.11.207
https://doi.org/10.3390/s22207750
https://doi.org/10.23919/ACC55779.2023.10156267
https://doi.org/10.23919/ACC55779.2023.10156267
https://doi.org/10.3390/app12105171
https://doi.org/10.3390/app12105171
https://doi.org/10.1109/ICRA57147.2024.10610079
http://arxiv.org/abs/2502.07380
http://arxiv.org/abs/2306.14874
http://arxiv.org/abs/2312.08782
https://doi.org/10.5220/0006573000610072
https://doi.org/10.5220/0006573000610072
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/2205.02824
http://arxiv.org/abs/2003.04960
http://arxiv.org/abs/2003.04960
https://doi.org/10.1109/ICRA.2014.6907444
https://doi.org/10.1109/ICRA.2014.6907444
http://arxiv.org/abs/2109.11978

56 Bibliography

Salimpour, S., Pefa-Queralta, J., Paez-Granados, D., Heikkonen, J., & Westerlund, T. (2025). Sim-
to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to
Gazebo and Real ROS 2 Robots. http://arxiv.org/abs/2501.02902

Scomparin, L., Becker, J., Blomley, E., Brindermann, E., Caselle, M., Dritschler, T., Kopmann, A,
Mdiller, A.-S., Santamaria Garcia, A., Steinmann, J. L., & Xu, C. (2024). Real-time Reinforce-
ment Learning on Al Engines with Online Training for Autonomous Accelerators (tech. rep.).
www.kit.edu

Silver, D., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2015). Deterministic Policy Gradient
Algorithms (tech. rep.).

Srikonda, S., Norris, W. R., Nottage, D., & Soylemezoglu, A. (2022). Deep Reinforcement Learning for
Autonomous Dynamic Skid Steer Vehicle Trajectory Tracking. Robotics, 11(5). https://doi.org/
10.3390/robotics11050095

Sutton, R. S. (2019). The bitter lesson. http://www.incompleteideas.net/Incldeas/BitterLesson.html

Sutton, R. S., & Barto, A. G. (2018). Policy Gradient Methods. In Reinforcement learning: An introduc-
tion (2nd ed., pp. 321-339). MIT Press.

Tsampazis, K., Kirtas, M., Tosidis, P., Passalis, N., & Tefas, A. (2023). Deep Reinforcement Learning
With Action Masking for Differential-Drive Robot Navigation Using Low-Cost Sensors. IEEE
International Workshop on Machine Learning for Signal Processing, MLSP, 2023-September.
https://doi.org/10.1109/MLSP55844.2023.10285997

Wiberg, V., Wallin, E., Servin, M., & Nordfjell, T. (2021). Control of rough terrain vehicles using deep
reinforcement learning. http://arxiv.org/abs/2107.01867

Xie, Z., Lin, Z., Li, J., Li, S., & Ye, D. (2022). Pretraining in Deep Reinforcement Learning: A Survey.
http://arxiv.org/abs/2211.03959

Xu, T, Pan, C., & Xiao, X. (2024). Reinforcement Learning for Wheeled Mobility on Vertically Challeng-
ing Terrain. http://arxiv.org/abs/2409.02383

http://arxiv.org/abs/2501.02902
www.kit.edu
https://doi.org/10.3390/robotics11050095
https://doi.org/10.3390/robotics11050095
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://doi.org/10.1109/MLSP55844.2023.10285997
http://arxiv.org/abs/2107.01867
http://arxiv.org/abs/2211.03959
http://arxiv.org/abs/2409.02383

	Preface
	Abbreviations
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivation and Problem Statement
	Research Question
	Contributions and Thesis Scope
	Document Road-map

	General Background
	Reinforcement Learning for Continuous Control
	Markov Decision Processes
	Return and the Bellman Equation
	Function Approximation and Actor–Critic Architectures

	Deep Deterministic Policy Gradient (DDPG)
	Off-Policy
	DDPG Framework
	Considerations
	Conclusion

	Imitation Learning and Demonstration Guidance
	Curriculum Learning Concepts
	Curriculum-Driven System Identification

	Related Work
	 Reinforcement Learning for Nonholonomic Robotic Control
	Curriculum Learning in Robotics
	Imitation Learning in Robotic RL
	Combining Imitation Learning and Curriculum Learning
	Synthesis and Research Gap

	Methodology: From KA-DDPG to KAMMA + Curriculum
	Problem Formulation (Action, Observation, Reward)
	KA-DDPG: Baseline Implementation and Limitations
	KA-DDPG: Limitations

	KAMMA: Probabilistic Action-Selection Extension
	Mechanics of KAMMA:

	KAMMA + Curriculum: Gradual Difficulty Scheduling
	Implementation Details and Hyperparameters
	Hyperparameters

	Summary

	Experiments and Results
	Evaluation Protocol
	Protocol Overview

	Baseline: KA-DDPG Variants
	Training-Run Torque Profiles
	Evaluation-Run Smoothness and Tracking Error
	Lessons on Action Dimensionality

	KAMMA vs. KAMMA IL
	Training-Run Torque Profiles
	Evaluation-Run Smoothness and Tracking Error
	Lessons on Action Mixing

	Curriculum-Enhanced Variants
	Training-Run Torque Profiles
	Evaluation-Run Smoothness and Tracking Error
	Lessons on Memory, Curriculum, and Forgetting

	Discussion, Limitations, and Outlook
	Key Empirical Insights
	Methodological Surprises
	Limitations and Mitigation Strategies
	Broader Research Opportunities
	Conclusion

