
 

 

 

 
Comparative Analysis of Energy Saving and 

Comfort Strategies in Glass Façade Buildings 
System Modifications, Retrofitting, and Their Combination 

 

 

 

 

 

 

 

 

Thesis Report 
Building Technology Graduation Studio 

Alya Farah Taufiqoh | 5564379 

2024 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delft University of Technology 

Building Technology Graduation Studio 

Mentors: 

Dr. Regina M.J. Bokel, Dr. Telesilla Bristogianni, Dr. Chujie Lu  

External Delegate: 

Drs. D.J. Dubbeling 

P4 and P5 date: 

29th May 2024 and 25th June 2024  



 

 

Abstract 
 

Inefficiencies in HVAC control and poorly designed glass façades can significantly 
impact energy demand and thermal comfort in buildings with extensive glass façades. 
Two potential solutions are the implementation of smart systems and retrofitting the 
glass façade. However, when considering these options in building design, it is often 
unclear which strategy is more effective. This thesis investigates the performance of 
smart systems using grey-box model predictive control (MPC) and the effectiveness of 
glass façade retrofitting strategies concerning energy savings and occupant thermal 
comfort. The case study for this research is an educational building with a vast glass 
façade. The study commenced with a review of relevant literature, followed by the 
development of the MPC system and an evaluation of its performance against various 
retrofitting strategies. The MPC system utilized a grey-box model for predictions and 
local optimization algorithms for control. The retrofitting strategies included the 
addition of films and curtains on the interior side of the glass façade. Results indicated 
a trade-off regarding the energy saving and thermal comfort between the two 
approaches. Compared to MPC, curtains did not reduce energy demand as 
significantly, but they provided better indoor thermal comfort. The study also found 
that the lumped model used in the MPC system had limitations for summer calculations 
and that some algorithms tended to be aggressive. In terms of retrofitting strategies, 
the application of curtains enhanced thermal comfort more effectively than adding 
films to the glass.  

 

Keywords: Model Predictive Control, Grey-box Model, Glass Retrofitting Strategies, 
Glass Façade, Energy Efficient Buildings, Thermal comfort, Educational Buildings  
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1.1 Background 

According to the International Energy Agency’s report in 2023, building activities are 
responsible for 30% of global final energy consumption (with 8% of emissions coming 
directly from buildings and 18% from generating heat and electricity used in buildings) 
(IEA, 2023). Heating, ventilation, and air conditioning (HVAC) systems, among other 
energy-demand components within building infrastructures, contribute significantly to 
energy consumption at 40-60% (Solano et al., 2021). Inefficiencies in their operation or 
suboptimal thermostat settings can lead to considerable energy wastage. In addition, 
the façade, as the interface between indoor and outdoor climate, plays an important 
role in determining HVAC energy demand (Mărginean, 2019). Having a vast area of 
glass as a façade can be a problem when it generates a lot of heat transfer between 
the indoor and outdoor environment. Therefore, it is also important to consider the 
suitable façade properties and/or design to prevent energy waste. 

Apart from energy usage, thermal comfort is a crucial factor in building design, 
influencing both energy consumption and occupant comfort (Hensen & Centnerova, 
2001). The mean radiant temperature (MRT) plays a pivotal role in determining the 
operative temperature, a key metric for thermal comfort (Chaiyapinunt et al., 2005). 
When buildings use glass facades, MRT is significantly impacted due to the higher 
thermal radiation exchange between occupants and the building envelope and then 
to the outdoor environment. In addition, glass façades are also affected by solar 
radiation more than opaque elements. This thermal radiation exchange can lead to a 
decrease or increase in the perceived temperature, making occupants feel colder or 
warmer, respectively, and potentially leading to discomfort. This issue becomes 
particularly evident in buildings with large glass surfaces. 

To that end, two methods, among many others, became the focus of this research to 
reduce the energy demand and improve the thermal comfort of a building: improving 
the HVAC system and the façade. The former applies a smart control system, while the 
latter is retrofitting the existing façade. Recent research regarding smart control and 
façade solutions focuses on only one scope, no cross-comparison (Balali et al., 2023; 
Sarihi et al., 2021). When a building design considers these options, which strategy 
should be chosen? Should the system be changed, should retrofitting be added, or 
should both be done? 

1.2 Problem Statement 

Based on the background mentioned above, it is clear that there is a gap in knowledge 
on which strategy provides better performance. Therefore, the formulated problem 
statement is: 

There is a lack of understanding of how effective the application of Model Predictive 
Control (MPC), compared to glass retrofitting strategies, influences the energy demand 
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and thermal comfort of a glass facade building. 

1.3 Research Questions 

This thesis was driven by the curiosity of whether it is more effective to change the 
building’s system, implement retrofitting, or perhaps both, for glass façade buildings. 
Based on this and the problem statement, the main question of this research is: 

What is the optimal strategy for reducing energy demand and maintaining thermal 
comfort in glass façade buildings: modifying the existing building system, 

implementing retrofitting strategies, or employing a combination of both approaches? 

To answer that main question, several sub-research questions have been formulated 
to investigate various aspects concerning energy demand, thermal comfort, MPC, and 
retrofitting strategies. The formulated sub-research questions are: 

1. What are the aspects influencing energy demand? 
2. How is thermal comfort measured? What are the influencing parameters? 
3. How can a model be developed for model prediction, and what is the problem 
formulation for the control? 
4. How does the integration of MPC affect energy efficiency and occupant comfort? 
5. What are the retrofitting options, and how do they impact energy consumption and 
thermal comfort? 
6. What are the advantages and disadvantages of modifying building systems versus 
implementing retrofitting strategies (concerning energy demand and thermal comfort)? 
7. What is the effectiveness of combining building system modifications with retrofitting 
strategies in achieving optimal energy savings and comfort levels? 

1.4 Research Objectives 

The primary purpose of this thesis is to evaluate the energy and comfort performance 
of MPC and retrofitting strategies in glass façade buildings. To get there, this study 
aims to develop an MPC model that can operate a building to minimize energy 
consumption while maintaining optimal thermal comfort. Additionally, retrofitting 
strategies for glass façades will be selected and assessed using both the existing 
system and the MPC model. A case study will be employed to develop the model, as 
well as to test, calibrate, and evaluate its performance. 

1.5 Research Methods 

This study was conducted using simulations to achieve the main goal. First, the Pulse 
Building (Building 33, TU Delft Campus) was selected as the case study. Using that 
building, an RC-thermal network was constructed. This model served as the prediction 
model in MPC. The building model was then calibrated through parameter estimation 
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until validated. Next, a control strategy was designed, which involved optimization as 
the final part of the MPC process. This MPC was then applied to both the baseline and 
retrofitting strategies, which were selected based on their performance when applied 
to the baseline. Ultimately, the use of MPC in several alternatives was compared with 
alternatives using the existing system concerning the energy demand and thermal 
comfort. The illustration in Fig 1.1 depicts the research framework from the literature 
study to data analysis. 

 
Fig 1.1 Research framework. 
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2.1 Energy Demand in Buildings 

Operational Energy vs Embodied Energy 

Energy serves diverse functions within the built environment, including heating, 
cooling, ventilating, and cooking. However, it is crucial to recognize that the energy 
utilization of a building extends beyond its operational phase. The production of 
building materials and energy-related components also needs energy. Consequently, 
a building's energy consumption can be categorized into two main segments: 
"operational energy," which represents the energy consumed during the active use of 
the building, and "embodied energy" for the energy required for the production of its 
materials. Calculating embodied energy typically involves employing Life Cycle 
Analysis methodologies, as seen in Fig 2.1. This thesis will focus more on the 
operational energy. 

 
Fig 2.1 Building life cycle. Source: Hollenbeck & Naumann, 2023. 

Energy Supply Chain 

The energy cycle begins with the demand, often referred to as the energy "that is 
required." This demand represents the specific form of energy needed, whether it be 
heat, cold, light, or any other form, and it ultimately should be met using renewable 
resources as they are accessible on Earth. In the intermediate stages, various technical 
components come into play to convert, store, and/or distribute the energy into the 
appropriate form, ensuring it is available at the right time and in the right location. 

In the context of the built environment, the technical supply chain can be divided into 
distinct levels, namely energy demand, final energy, and primary energy. Fig 2.2 
illustrates this energy chain. It is crucial to have a clear understanding of these levels 
and their respective meanings to assess energy systems accurately. For example, when 
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discussing the energy consumption of a specific building, it is essential to specify 
whether we are referring to the energy demand, final energy, or primary energy, as 
each of these concepts has distinct implications and significance in the evaluation 
process. 

 
Fig 2.2 Energy supply chain: from energy demand to primary energy. Source: Jansen, 2020. 

This thesis defines energy consumption as the energy demand. It means the heat and 
cold that need to be supplied or removed from a conditioned space to keep the 
desired temperature. The energy demand functions as an indicator of the building's 
intrinsic characteristics, including insulation and air tightness, in combination with how 
the building is used, regardless of the specific technical systems or equipment utilized 
to satisfy this demand. 

Energy Needs in Building 

The energy balance serves as the initial step in determining a building's energy 
requirements. The energy balance of a room encompasses all the heat flows that either 
enter or exit that particular space. Various types of heat flows are involved in this 
calculation, as seen in Fig 2.3. 

 
Fig 2.3 Heat flows that enter and leave the room. Source: Jansen, 2020. 
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The heat transfer required to alter the temperature of the air is incorporated into the 
heat balance as either a heat loss or gain. In a steady state condition, equations 1 and 
2 can be applied as the heat flows are not dynamic. There are two main equations for 
analyzing the energy system, as shown in equations 3 and 4. From the equations, it can 
be concluded that when the energy balance is not 0 (zero), the building either has 
excess heat or needs more heat, which leads to a cooling and heating demand. 

𝑄!" = 𝑄#$% (1) 

𝑄%&'"( + 𝑄)*"% + 𝑄(#+ + 𝑄!"% + 𝑄,*- = 0 (2) 

𝑄%&'"( = 𝑈)'+$* × 𝐴 × ∆𝑇 (3) 

𝑄)*"% = 𝑚̇ × 𝐶. × ∆𝑇 (4) 

Here, 𝐴 is the surface area [m2], 𝑚̇ is the mass (air) flow rate [kg/m], and 𝐶. is specific 
heat capacity [kJ/kg/C]. The minimum airflow for a person in an educational building 
is 8.5l/s. 

2.2 Thermal Comfort 

High-performance buildings typically prioritize reducing energy consumption to 
achieve energy efficiency. However, the indoor quality, especially the occupant’s 
comfort, is often overlooked (Mousavi et al., 2023). Thus, including the comfort aspect 
when designing these buildings is also crucial. 

Thermal comfort is a condition where individuals do not feel compelled to adjust their 
surroundings through actions or behavior (Hensen, 1991). Another definition of 
comfort by ASHRAE in 1992 is “the condition of the mind in which satisfaction is 
expressed with the thermal environment. It can be expressed into observable 
parameters”. Six parameters that influence thermal comfort, which include physical 
and personal variables, were published by Machperson in 1962 and can be seen in Fig 
2.4 (Z. Lin & Deng, 2008). 

 
Fig 2.4 Six influencing parameters of thermal comfort. Source: Simion et al., 2016. 
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Current knowledge has two different approaches to defining thermal comfort, namely 
the static approach and the adaptive approach (Doherty & Arens, 1988). This section 
will review these two thermal comfort approaches. 

Static Model 

The static model is an approach where it uses the heat balance concept. The proposed 
method by Fanger centers on the six key parameters that impact thermal comfort: 
humidity, air velocity, mean radiant temperature, air temperature, occupants' 
metabolic rate, and clothes. Thermoregulation theory, which is the base of this 
approach, explains that humans exchange heat with the environment by sweating, 
shivering, and regulating blood flow to the skin to uphold a heat equilibrium (Charles, 
2003). 

Fanger combined several experimental investigations in climate chambers, which 
incorporated over a thousand participants, resulting in the predicted mean vote (PMV) 
index. The PMV index, which projects the average reaction of a large population, is 
associated with ASHRAE’s thermal sensation scale: -3 cold, -2 cool, -1 slightly cool, 0 
neutral, +1 slightly warm, +2 warm, and +3 hot. The integration of PMV led to the 
development of the predicted percentage of dissatisfied (PPD) index. The PPD 
anticipates the proportion of individuals who expressed dissatisfaction by rating 
outside the central range of three points on the ASHRAE scale (ratings of -3, -2, +2, +3). 
The relation between PPD and PMV values can be seen in Fig 2.5. 

 
Fig 2.5 Relation of PMV and PPD. Source: Djongyang et al., 2010. 

Adaptive Model 

While the heat balance approach considers occupants to act as passive recipients 
towards thermal conditions, the adaptive model of thermal comfort encompasses 
various strategies individuals employ within buildings to attain a comfortable thermal 
environment. These adjustments can be grouped into three distinct sets of responses: 
behavioral adaptation, physiological adaptation, and psychological adaptation (Kwok 
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& Rajkovich, 2010). Individuals typically respond in one to two categories, aligning with 
the three aforementioned categories (Roaf et al., 2010). 

Through the analysis of field survey data from various locations worldwide, there is a 
discovery of a strong correlation between the comfort temperature and the average 
indoor temperature (Nicol et al., 2012;M. Humphreys, 1976). Furthermore, it was 
observed that there exists a significant correlation between the indoor comfort 
temperature and the outdoor temperature (M. Humphreys, 1978). Equation 5 and Fig 
2.6 illustrate a linear equation to express the relationship between comfort 
temperature and monthly mean outdoor air temperature. 

𝑇" = 11.9 + 0.534	𝑇# (5) 

 
Fig 2.6 The relationship between preferred temperature and monthly mean outdoor temperature. Source: M. A. 

Humphreys et al., 2013. 

Here, 𝑇" is the preferred indoor temperature [C] and 𝑇# is the outdoor monthly mean 
temperature [C] for a specific region. As stated in ASHRAE 55, this approach also has 
a relationship with PMV and PPD, as seen in Fig 2.7. The figure below uses indoor 
operative temperature [C] as the y-axis, which includes surfaces temperatures, view 
factor, and indoor air temperature, instead of indoor air temperature only (see 
equations 6 and 7). In the mentioned equations, surfaces temperatures are 
represented as 𝑇( [K] and the view factors as 𝐹( in mean radiant temperature 𝑀𝑅𝑇. 
The relationship between 𝑀𝑅𝑇 and indoor temperature 𝑇!",##& can be seen in indoor 
operative temperature 𝑇#.  equation, where ℎ𝑟  is radiation coefficient and ℎ𝑐  is 
convection coefficient. 
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Fig 2.7 Relation with PMV and PPD. Source: ANSI/ASHRAE Standard, 2017. 

𝑇#. =
ℎ𝑟	𝑀𝑅𝑇 + ℎ𝑐	𝑇!",##&

ℎ𝑟 + ℎ𝑐
(6) 

𝑀𝑅𝑇	 = >?𝐹(! × 𝑇(!/
"

!01

@

1
/

(7) 

While the static approach is suitable for designing HVAC systems for modern buildings 
as it helps set the setpoint, the adaptive approach acknowledges the dynamic and 
interactive nature of thermal comfort. The adaptive one emphasizes real-world 
variability and individual adaptability, which makes it more suited to diverse and 
changing environments. Unlike the static model, this approach provides a range of 
setpoints in relation to outdoor temperature. 

Dutch Thermal Comfort Model 

The adaptive temperature limit value (ATG) method, an evolution of the Dutch thermal 
comfort metrics, was further refined in 2014, establishing the current guidelines for 
adaptive thermal comfort in the Netherlands (Boerstra et al., 2015). Aligned with 
international comfort standards such as NEN-EN 15251 and NEN-EN-ISO 7730, the 
revised ATG method employs Operative temperature to assess comfort limits. 
Buildings are categorized based on alpha or beta types and their classification level 
(Class A/B, C, D). The adaptive thermal comfort limits for each class are detailed in Fig 
2.8, while the relationship between comfort class limits and outdoor running mean 
temperature for alpha and beta buildings is depicted in Fig 2.9. 
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Fig 2.8 Buildings categorization and classification description. Source: Boerstra et al., 2015. 

 
Fig 2.9 The adaptive temperature limit value (ATG) model. Source: Boerstra et al., 2015. 

𝜃&- = (0.2). 𝜃*,21 + (0.8). 𝜃&-21		 (8) 

𝜃&- = 0.253. D
𝜃*,21 +	(0.8). 𝜃*,23 	+ 	 (0.8)3. 𝜃*,24
+	(0.8)4. 𝜃*,2/ +	(0.8)/. 𝜃*,25
+	(0.8)5. 𝜃*,26 	+ 	(0.8)6. 𝜃*,27

E		 (9) 

According to Boerstra et al., the RMOT or running mean outdoor temperature 𝜃&- can 
be calculated using equation 8. Here, the 𝜃&- and 𝜃&-21 are the RMOT for today and 
the day before, respectively. 𝜃*,21  denotes the DMOT or daily mean outdoor 
temperature for the previous day. In case of unavailable DMOT records, equation 9 
can be used. 
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2.3 Enhancing Existing Glass’ Performance 

As mentioned earlier, most of the heat transfer occurs at the building envelope. Glass 
plays a significant role as heat quickly passes through due to the low thermal mass of 
glass. Therefore, having a glass façade can pose challenges for energy demand and 
thermal comfort. This section will explore the impact of glass in buildings and discuss 
some retrofitting options to improve glass performance. 

Overcooling and Overheating 

The buildup of heat within the structure can lead to discomfort among occupants, 
which is defined as overheating. Sensitivity to temperature varies, but most individuals 
feel warm at 25 ºC and hot at 28 ºC, while temperatures exceeding 35 ºC can induce 
significant discomfort (Gupta & Gregg, 2018). Some research indicates that the efforts 
to enhance energy efficiency in winter through strategies like improved insulations and 
airtightness to reduce heat loss contribute significantly to overheating during summer 
months. The main factors contributing to overheating issues include external heat gain 
(heat accumulation from the building envelope), underestimate of internal heat gain 
(heat accumulated from occupants, lighting, appliances, and building services), and 
inadequate ventilation approaches (Barbosa et al., 2015;Gupta & Gregg, 2018;Kazanci 
& Olesen, 2016). 

On the other hand, the precise definition and quantification of overcooling concerning 
thermal comfort have yet to undergo systematic investigation. However, some 
literature, as stated in (Alnuaimi et al., 2022), often describes "overcooling" as the 
excessive use of active cooling systems within a space. The paper categorized three 
definitions of overcooling, at which one explains overcooling as the occurrence when 
the air temperature drops below a predetermined criterion, typically the setpoint 
temperature. Furthermore, alongside single temperature points and temperature 
ranges, the study also outlines degree-time interval metrics like overcooling degree 
days. These metrics compare designed comfortable air temperatures, factoring in 
seasonal temperature ranges and humidity, with external air temperatures to gauge 
the extent of overcooling.  

The other definition explains overcooling in terms of the thermal comfort metrics PMV 
and PPD where PMV below -0.5 is considered as too cold. In the adaptive approach, 
where the focus is on indoor operative temperatures, discomfort is not only assessed 
by looking at the air temperature itself but also by taking surface temperatures into 
account. Therefore, overcooling and overheating can occur not only when the indoor 
air temperature exceeds thermal comfort limits but also when the surface temperatures 
drop or increase, respectively. The phenomenon is especially common in buildings 
with full-glass façades. (Kontes et al., 2017). 
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Strategies to Enhance Glass Performance 

Enhancing the building envelope can prove advantageous in mitigating the potential 
for both overheating and overcooling (Chvatal & Corvacho, 2009). Thermal discomfort 
in glass façade buildings is related to glass surface temperature and solar radiation, 
where the intensity of transmitted diffuse solar radiation emerges as the primary factor 
influencing discomfort levels (Chaiyapinunt & Khamporn, 2021). Nonetheless, in the 
case of windows with low transmittance, the significance of discomfort is more linked 
to surface temperature fluctuation rather than to solar radiation (Khamporn & 
Chaiyapinunt, 2014). According to (Wahi, 2020;Sarihi et al., 2021), there are some 
potential strategies that can be done to improve glass façade buildings, see Table 2.1. 

Table 2.1 Potential strategies to improve glass façade building. Source: Wahi, 2020; Sarihi et al., 2021. 

Goals Actions Strategies Placement 
Minimize solar gain Reduce glazing ratios Change façade composition Façade 
Minimize solar gain Reduce SHGC values Change glass, add films, 

coatings 
Façade 

Sun protection Shade the glass Add shading, shutters, 
greenery 

External 

Sun protection Solar control Change glass, add films, 
coatings, enamels 

Façade 

Sun protection Prevent solar entering 
space 

Add blinds, curtains, paints External and internal 

Insulate Insulated glazing unit Change glass, add films, 
coatings, curtain 

Façade 

Insulate Triple glazing Change glass Façade 
Add thermal mass Exposed thermal mass Add PCM External and internal 

However, renovating the building by changing the glass or adding a new structure 
adds to the energy in the building life cycle or the material life cycle (Ardente et al., 
2011). This thesis tries to keep the glass in place, keep the embodied energy as 
minimal as possible, and maintain the façade's appearance. Therefore, not all 
retrofitting strategies are suitable. Façade composition, changing glass, and adding 
shade are no longer considered. An option like enamel requires a high temperature 
for the firing (minimum of 590 ℃) (Beltrán et al., 2020). This option may not be suitable 
for all glass types, especially for existing glass, for which an assessment of the glass 
and the surrounding materials is needed. Therefore, adding enamel is also no longer 
considered an option.  

From the explanations above and the strategies comparison matrix in Fig 2.10, 
strategies that remain mostly involve modifying the glass surfaces and adding blinds. 
The latter is to improve solar heat gain and add resistance between the indoor air and 
outdoor air (Wright et al., 2009;D. Wang et al., 2015). One approach for the glass 
surfaces’ modification is adding a coating to the glass, while another is applying a film. 
Coating is a process where a very thin layer of liquid is applied to the original glass 
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surface, which can be done in controlled and uncontrolled environments using a 
spraying machine (controlled) or manual brushing (uncontrolled). This method 
requires curing to make the coating durable, which can be accomplished through 
either firing or UV curing (Trier & Ranke, 2007). However, coating that is applied 
directly to an existing window can lead to oxidation because of the direct contact 
between the silver and air. Wrong application can lead to ineffective performance. 
Direct spray coating improves the glass's performance (S. Lin et al., 2019), but it is 
better to keep the coating layer in sealed air also to improve its lifespan (Van Den 
Bergh et al., 2013). 

As for filming, the process is less complex. It does not require special appliance 
treatment and no curing for finishing. Films can be placed inside or outside the 
windowpane (Yin et al., 2012), depending on the purpose and product requirements. 
However, placing an additional layer of film on the indoor surface is preferable to 
prevent it from being affected by the weather (EPD, 2024). 

 Retrofitting Strategies Comparison Matrix 

 Low Score  High Score 

C
om

pa
ri

so
n 

Pa
ra

m
et

er
s 

 
Installed in 

uncontrolled-env 

 

         

 
Keep the existing 

glass in place 

 

         

 
Quick installation 

time 

 

         

 
No special 

maintenance 

 

         

 
No additional 

structure 

 

         

 
Keep the façade 

look 

 

         

  
 Change 

façade 
composition 

Add shading 
Change 

glass 
Add enamels Add films Add coatings Add paints Add PCM Add curtains 

   Strategies 
Fig 2.10 Retrofitting strategies comparison matrix. 
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2.4 Building Energy Modeling Approach 

To assess the building’s energy demand and thermal balance, various modeling 
techniques are developed. These models fall into three categories: white-box (physics-
based), black-box (data-driven), and grey-box (hybrid) (Delcroix et al., 2021). The 
objective of these models is to create a digital twin of the actual building or the building 
that is under construction. 

The model can be static or dynamic. The static or steady-state models are 
characterized by constant or unchanging parameters over time, whereas dynamic or 
unsteady-state models involve parameters that vary with time. Dynamic modeling 
addresses a range of issues associated with transient operations, which are essential 
for system startup, shutdown, and responses to disturbances (P. Li et al., 2014). 
Disruptions in HVAC systems can occur as a result of fluctuations in heating and cooling 
loads, human activities, or control interventions (Bendapudi, 2002). This section will 
discuss the three models and their characteristics. 

White-box approach 

In white-box technique, the buildings’ thermal modeling can be approached by 
developing the physical properties of the materials within the structures through the 
application of either thermal dynamic equations or resistance-capacitance (RC) 
modeling (X. Zhang et al., 2020). These models are predominantly employed during 
the design phase, where the objective is to forecast and assess the performance of 
HVAC system components via simulation with tools, as seen in Fig 2.11 (Afroz et al., 
2018). 

 
Fig 2.11 Building energy simulation tools used in white-box modeling approach. Source: Kim et al., 2022. 

The white-box model is based on the concept of energy balance in the building, which 
influences energy demand if there is any imbalance. Cooling loads arise when the 
building accumulates excessive heat, necessitating cooling measures to restore 
equilibrium (indicated by a positive outcome in the heat balance equation). In contrast, 
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heating loads manifest when the building encounters heat deficiencies, causing a drop 
in temperature and requiring heating interventions to rectify the situation (indicated by 
a negative outcome from the heat balance equation) (Chwieduk, 2014;Stephens, 
2019). 

Black-box approach 

Black-box or data-driven models are constructed by collecting real-world system 
performance data while also taking into account the prerequisites for measured 
chronologically ordered data, alongside considerations of accuracy and complexity 
levels (S. Zhang et al., 2021). Unlike the white-box method, this method is used when 
there’s no physical data of the building, but there are sensors monitoring the building’s 
behavior which often found in modern or smart buildings. Therefore, this approach 
neglects the physics phenomenon in the buildings (Lu et al., 2022). Subsequently, 
mathematical relationships between input and output variables are established using 
methods such as statistical regression or artificial neural networks (ANN) (Vaughn, 
2014). A standard workflow of this data-driven modeling technique can be seen in Fig 
2.12. 

 
Fig 2.12 Diagram illustrating a standard black-box model approach using machine learning. Source: Kim et al., 

2022. 

While a white-box model simulates the energy balance conditions of a space, a black-
box model focuses on predicting how future data (output) will appear based on 
historical data. The output can be electricity, heating or cooling demand, or hot water. 
Although the black-box approach does not need a physical formula, it still needs 
logical input data to help make a correlation with the output, such as weather data, 
occupancy data, indoor environment information, and building characteristic data (Lu 
et al., 2022). The details can be seen in Fig 2.13. 



 

  18 

 
Fig 2.13 Inputs, outputs, and data-driven methods for black-box modeling. Source: Lu et al., 2022.  

Grey-box approach 

The gray-box category combines the white-box and black-box approach which 
includes simplified physical relationships and requires parameter estimation based on 
measured data (Shamsi et al., 2021). This approach is selected when both physical data 
and measured data are accessible, but there is discrepancy between the calculations 
derived from the physical data and the measured data. A diagram illustrating a 
standard grey-box model approach can be seen on Fig 2.14. Typically, gray-box 
models start by simplifying physics by reducing state-space dimensionality or 
linearizing them using RC analogy (similar to an electrical circuits). The RC is then 
combined and calibrated with measured data from the real building condition (Ljung, 
2001). The process aims to get a physically logical model that resembles the real 
condition. 

 
Fig 2.14 Diagram illustrating a standard grey-box model approach. Source: Kim et al., 2022. 
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White-box sub-modeling 

As mentioned before, the grey-box approach starts with white-box modeling. This step 
does not have to be as complicated as pure white-box model. In fact, most grey-box 
models use RC-model, where a model is defined based on its similarity to an electrical 
circuit with resistors and capacitors, as illustrated in Fig 2.15. Just like white-box 
modeling, the input of this RC-model is the building material information, where R 
being the resistance value and C being the capacitance. In this simple example, it 
represents the model of a building’s envelope, where 𝐶"  represents the thermal 
capacity of the zone (the ability to store thermal energy) and 𝑅"  represents the 
building walls separating the ambient temperature 𝑇#$%,##&  from the zone’s 
temperature 𝑇!"  (Boodi et al., 2022). In another example, there are also𝑄8  and 
𝑔𝐴𝑄($" which represent thermal power from the building’s heating system and solar 
irradiation, respectively (Y. Li et al., 2021). 

 
Fig 2.15 Example of RC-model of a building envelope. Source: Boodi et al., 2022. 

There are some assumptions that need to be considered when making RC-model: 
natural ventilation and all three heat transfer coefficients (radiation, convection, and 
conduction) are constant (Z. Wang et al., 2019). Based on those assumptions, 
relationship between resistance and capacitance can be seen in equation 10. 

𝐶1
𝑑𝑇91
𝑑𝑡

	= 	
𝑇#$%,##& − 𝑇91

𝑅1
+	
𝑇93 − 𝑇91

𝑅3
	 (10) 

The equation above takes the second example of RC-model (3R2C) at node 1. Here, 
𝐶1  denotes thermal capacitance, 𝑇91  and 𝑇93  represents nodes temperatures, 𝑅1 
and 𝑅3 are the thermal resistance between the temperatures. This equation is then 
converted into matrix form. Another example of RC-model, the equations, and the 
matrix can be seen on Fig 2.16. 
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Fig 2.16. RC-model, differential equations, and the matrix. Source: Z. Wang et al., 2019. 

Black-box sub-modeling 

In the dynamic simulation, parameters such as 𝑇', 𝑇:, 𝑄8, and 𝑄($" will vary from time 
to time and are commonly referred to time-series data. Depending on availability, 
those parameters are historical data that can be gathered from field measurements, 
sensors, or weather stations (Berthou et al., 2014). The involvement of historical data 
marks when the black-box modeling first comes into play. The simulation will still use 
the physical formulation from the white-box modeling, but specific parameters are 
sourced from historical data, as seen in the parametric formulation phase in Fig 2.14. 

Black-box calibration 

Depending on the model output, validation with measured data is crucial, as seen in 
the validation phase on Fig 2.14. For instance, if the model’s output is energy demand, 
this calculated energy demand must be compared to the actual energy demand to 
identify discrepancies. If discrepancies occur, a calibration needs to be made (S. Wang 
& Xu, 2006). 

Various approaches can be employed to compare the calculated and measured 
datasets, including sum-squared error, mean-squared error, mean-bias error, and 
others (Holst et al., 1992). ASHRAE provides guidelines for calibrating energy models 
using monthly and hourly data (Ruiz & Bandera, 2017;Leitão, 2017). Key metrics for this 
evaluation include the Mean Bias Error (MBE) and the Coefficient of Variation of the 
Root Mean Square Error (CV(RMSE)) as seen in Table 2.2. The calculation for both 
metrics can be found in equations 11 and 12. 
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Table 2.2 Calibration criteria for simulation model. Source: Ruiz & Bandera, 2017. 

 Calibration Matrix 
Time-series data CV(RMSE) MBE 

Monthly calibration <15% <5% 
Hourly calibration <30% <10% 

 

𝐶𝑉(𝑅𝑀𝑆𝐸) =

N∑ (𝑚! − 𝑠!)3"
!01
𝑛 − 𝑝 × 100%

𝑚T
(11)

 

𝑀𝐵𝐸 =
∑ (𝑚! − 𝑠!)"
!01
∑ 𝑚!
"
!01

(12) 

 
Fig 2.17 Diagram illustrating an example of parameter estimation workflow. Source: Wang & Xu, 2006. 
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The calibration process involves adjusting specific constant parameters, a procedure 
known as parameter estimation (Kristensen et al., 2004). This adjustment is carried out 
to align the calculated output with the measured data. The essence of this method lies 
in systematically testing new parameter sets to minimize the error matrix or maximize 
the accuracy, as seen in “calculate objective function” in Fig 2.17. The calibration 
algorithms are optimization algorithms. Therefore, the approach can be either 
derivative-based or non-derivative (Farag et al., 2024). Some well-known methods for 
selecting the next sets of parameters include genetic algorithms, first and second-
order derivatives, Bayesian optimization, and others. The choice depends on the 
nature of the data or the function. After the calibration, the new (validated) parameters 
will be used for the model instead of the initial parameters. 

2.5 Building Control Strategies 

BMS or building management system is a control system that regulates either the 
HVAC or electrical systems in the building (Joseph, 2018, p. 45). For HVAC system, 
BMS can control some variables such as air pressure, humidity, temperature, etc., 
which can vary over time. The general workflow of this control system can be seen in 
Fig 2.18. From the illustration, the function of this control system is to monitor or gather 
the building conditions, detecting discrepancies between the measured and the 
setpoint, and control the system to minimize the error or accessing alarm for manual 
tuning (Liu et al., 2023). 

 

Fig 2.18 General workflow of building control system. 

Conventional building control relies on rule-based feedback mechanisms, employing 
predetermined logic and schedules for the operation of building equipment. These 
control strategies are typically implemented using classical control techniques like 
on/off control and Proportional-Integral-Derivative (PID) control. However, the 
growing complexity of building control tasks, such as integration with the grid, 
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occupancy-based control, and prediction-based control, has presented challenges to 
these conventional approaches. Based on the current research, one of the popular 
advance control methods is model predictive control which can outperform the 
traditional PID control (Drgoňa et al., 2020;Salcan-Reyes et al., 2024). 

Model Predictive Control (MPC) 

MPC system is usually a closed loop system as seen in Fig 2.19. The workflow includes 
gathering the building current state and disturbances, forecasting the future behavior 
of the building, and optimizing the control input to meet certain objectives while 
satisfying the constraints (Drgoňa et al., 2020). 

 
Fig 2.19 Closed loop system of MPC. Source: Drgoňa et al., 2020. 

Objective 

A cost function or an objective function serves as the target of the MPC, which may 
involve minimizing or maximizing a certain variable (Drgoňa et al., 2020). The goals set 
for this method are not restricted to being singular or linear. In some cases, multi-
objective MPC involves opposing objective functions. The most popular trade-off case 
is minimizing energy consumption while maximizing occupant comfort. The 
formulation of the optimization will find a way to balance the two or more goals. 

Choosing the objective function for MPC depends on several things, one of them is the 
level of detail of the modeling. For instance, the objective of minimizing heat transfer 
is commonly used when the model captures only the building envelope. On the other 
case, where the HVAC system is modeled, the objective can be minimizing the energy 
consumption. However, the objectives are not limited to occupant comfort and energy 
consumption. Some research shows that monetary cost, greenhouse emissions, and 
energy storage can also be the objectives. 

In order to achieve the objective, as suggested in the system name, there will be 
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something that is controlled. Some MPCs are designed to control the HVAC 
component such as the temperature setpoint, the valve opening for air, or water flow 
rate. For the building model with only the façade, the control can be the heating or 
cooling amount delivered into the room or the setpoint for the supply air or water. In 
general, the objective and control are formulated according to how detailed the model 
is (Drgoňa et al., 2020). 

Constraints 

Unlike the objective function, constraints in MPC needs to be defined typically as a set 
of ranges and can be set on input, output, or any variables (Maciejowski & Huzmezan, 
1997). The purpose of constraints is to keep certain variable within specified limits. 
There are hard constraints that have to be satisfied by the system and soft constraints 
that can be more flexible as it only adds penalty. Examples of constraints include room 
temperature, comfort metrices, air flow rates, etc. Occasionally, constraints may need 
to be softened to prevent infeasibility during the optimization. In adaptive MPC, the 
constraints can also vary in time, requiring “if-else” statements in the formulation.     
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3.1 Case Study: Pulse (Building 33), TU Delft Campus 

Pulse (Fig 3.1) is the first energy-neutral edifice within the TU Delft campus, boasting 
an impressive energy label of A++++. The rooftop is equipped with 490 solar panels, 
covering an area of 750 square meters, and these panels generate an annual yield of 
150,000 kWh. This solar array is proficient in supplying all the building’s energy needs. 
Moreover, Pulse incorporates a system of heat and cold storage underground (ATES) 
and is fitted with high-grade insulating glass. The building is managed by active BMS, 
a sophisticated system that intelligently regulates renewable energy, ventilation, 
lighting, cooling, and heating at the level of individual rooms. The design of the façade 
openings maximizes the use of natural daylight, thereby reducing the reliance on 
artificial lighting and further diminishing energy consumption. 

 
Fig 3.1 Pulse (Building 33), TU Delft Campus. Source: ectorhoogstad.com 

Despite the impressive energy efficiency of the building, my personal experience 
highlights a significant issue with thermal comfort, particularly in study areas near the 
glass façade. Depending on the season, these areas can become uncomfortably cold 
or hot. This observation underlines the importance of not just focusing on energy 
efficiency but also paying close attention to thermal comfort within the building. 
Balancing these two aspects is crucial for creating a sustainable and comfortable 
environment for occupants. 

Building Façade 

This building adheres to passive-house regulations, boasting impressive R-values. 
Opaque elements on the facade and roof have an R-value of 7 m2K/W, while the 
ground floor and external floors have a value of 5 m2K/W. Internal walls, since they are 
not directly exposed to outdoor temperatures, possess a slightly lower resistance at 3 
m2K/W. In terms of transparent elements, which dominate the facade, the buildings 
employ triple-glazing units with a U-value of 1.65 and a g-value of 0.4. Fig 3.2 provides 
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a visual depiction of the building façade. Appendix A provides the material details. 

 

 
Fig 3.2 Pulse façade. 

Building Management System 

Pulse Building stands as a sustainable and energy efficiency building. It uses the power 
of an Aquifer Thermal Energy Storage (ATES) system to regulate its internal 
temperature. With a coefficient of performance (COP) of 4.5 for heating and 30 for 
cooling, Pulse maximizes the efficiency of its energy usage. Its climate control 
infrastructure is comprehensive, including climate ceilings in lecture halls and study 
areas, as well as floor-based heating and cooling systems in corridors. Additionally, 
mechanical ventilation also plays a role in maintaining optimal indoor temperatures in 
summer, further enhancing the building's energy performance. 

The Pulse building uses active BMS, which means it is equipped with various sensors, 
including one that measures the CO2 levels in each room. This sensor is utilized to 
regulate the amount of ventilation required for the indoor space. The minimum 
ventilation rate per person is set at 30m3/h. The building also features operable 
windows that occupants can use for natural ventilation. However, this study does not 
take into account this feature; it only includes infiltration (0.5L/s/m2) as part of the 
ventilation system. 

The data obtained from Pulse's BMS includes energy demands, indoor temperatures, 
and outdoor temperatures for winter and summer. Since the case study involves 
numerous sensors, outdoor and indoor temperatures were gathered from them and 
averaged. The available dataset is hourly data and spans from 2019 to 2022. 
Compared to other years, 2019 does not represent the actual energy demand 
behavior (the flat lines); therefore, this particular year was not considered. The graph 
of 2020’s energy consumption is relatively flat, indicating that the weather was not too 
extreme. Energy consumption in 2021 and 2022 was significantly more fluctuating. 
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However, looking at the peak winter and summer periods, 2022 had higher energy 
consumption. Therefore, this study uses the building and weather conditions from 
winter (January) and summer (July) of 2022. The periods were chosen to determine 
whether the proposed alternatives can withstand extreme weather based on the 
available data. A comparison of energy consumption across the four years can be seen 
in Fig 3.3. 

 
Fig 3.3 Pulse’s energy consumption from 2019 to 2022. 

 
Fig 3.4 Pulse’s energy consumption in winter, January 2022. 

 
Fig 3.5 Pulse’s energy consumption in summer, July 2022. 

As seen in Fig 3.4 and Fig 3.5, there are several extreme drops in both winter and 
summer. Since these drops appear extreme, it is assumed there was either a reset or 
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an error in the sensor. Therefore, drops resulting in negative values during summer are 
assumed to be equal to those at the previous timestep. Since the drops do not reach 
negative values for winter, they need to be chosen manually. It appears that there are 
six drops in the winter. Those drops are also assumed to be equal to the value at the 
previous timestep. 

Occupancy Schedule 

This facility serves not only as a classroom but also as a study space for students. 
Teaching activities are scheduled from 8:00 to 16:00, while the building remains open 
from 8:00 to 24:00 to accommodate student needs. Although few students typically 
stay late, it is common for them to remain until closing time during exam weeks. There 
are approximately 13 classrooms with capacities ranging from 40 to 130 seats. Study 
areas are situated on the intermediate floor (mezzanine), first floor, and second floor, 
mainly near the large glass façade. The combined capacity of these study areas totals 
approximately 150. Additionally, on the ground floor, there is a horeca space that 
functions as a cafeteria area at certain times on the day and can also serve as a study 
area. Since there are no sensors for occupancy counting, the occupancy schedule for 
2022 is obtained from TU Delft’s academic calendar, room capacitance, and personal 
experience. A comparison between winter and summer occupancy in January and July 
2022 can be seen in Fig 3.6 and Fig 3.7. The academic calendar and assumptions made 
for the occupant amounts can be seen in appendix B and C. 

 
Fig 3.6 Pulse’s occupancy estimations in January 2022. 

 
Fig 3.7 Pulse’s occupancy estimations in July 2022. 
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3.2 RC-modeling 

RC-thermal Network 

To accurately capture the dynamic effects of changing disturbances such as solar 
radiation and outside temperature, a dynamic simulation approach is employed. This 
simulation not only tracks the fluctuations in indoor temperature but also monitors the 
variations in surface temperatures, taking into account the thermal capacity of the 
materials. Such dynamic simulation proves to be more accurate in assessing the 
changes in climate and occupancy schedules of the building, offering an improvement 
over static models, particularly for time series analysis. This section discusses the 
workflow and matrices utilized for RC modeling to evaluate the accuracy of the models 
associated with different node quantities. 

RC-modeling workflow 

As outlined in the literature review, the RC-model serves as the initial stage in making 
an MPC to make a digital twin for the building. The selected case study was 
transformed into a matrix format in Python. This matrix facilitates the calculation of heat 
transfers over time, allowing for the computation of the energy demand and surface 
temperatures of all times. The simulations were conducted during January and June 
2022 at 1-hour intervals. The workflow for the dynamic simulation is presented visually 
in Fig 3.8. 

 
Fig 3.8 Workflow of the RC-modeling for dynamic simulation. 
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Matrix arrangement 

The matrix for RC-model in this thesis is based on the thermal networks and heat 
transfer equations, which can be seen in Table 3.1 and Table 3.2. 

Table 3.1 Thermal networks symbols and equations. 

Symbols Description Equations 

 

Absorbed solar radiation A! × A"# × Q$ 

 
Heating Q%&'( 

 
Advection ρ)*+ × V)*+ × C,)*+ × ∆T 

 
Convection ∝-./0× A1 × ∆T 

 
Radiation ∝+)2× F × A1 × ∆T 

 

Conduction and accumulation 
using response factor method 

A1 +,X* × T134*
5

*67

. 

N = 50	 ×	d1 

X7 = 2 π7 8
k × ρ × C,1
3600  

X/ = −X7=2√n − √n + 1 − √n − 1B	; n > 0 

X/!"# = X/ −
Error
N − 1	; n > 2 

Error =,X/

5

/67

 

Table 3.2 Matrix arrangement based on thermal networks. 
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The following matrix in equation 13 acts as the core calculation of the dynamic 
simulation. With n representing the number or sequence of the nodes, matrix T serves 
as a pivotal repository where all variables are yet to be determined. These variables 
include surface temperatures alongside the desired output variable, Q. Conversely, 
matrix B is designated to house known variables that go with solar radiation, Toutdoor, 
and Tindoor after the equation rearrangement. This matrix also contains the capacitance 
C of the materials, which will be updated during the simulation process. Matrix M plays 
a crucial role in conducting the heat transfer analysis, where most of the calculations of 
thermal balance are placed. Each row within matrix M delineates the nodes, thereby 
enabling examination of the thermodynamic phenomena occurring in the building. 

V

𝑇(1
⋮

𝑇("21
𝑄;'+;

X 	= 	

⎣
⎢
⎢
⎡
𝑀1,1 ⋯ 𝑀1,"21 0
⋮ ⋱ ⋮ ⋮

𝑀"21,1 ⋯ 𝑀"21,"21 0
𝑀",1 … 𝑀","21 1⎦

⎥
⎥
⎤
21

	V

𝐵1
⋮
⋮
𝐵"

X	 (13) 

Input parameters 

As stated in the literature study chapter, the input parameters for the matrix include 
material properties (envelope and thermal mass), building schedule, outdoor 
temperature, solar radiation, and indoor temperature. Building envelope and thermal 
mass data were obtained from detailed drawings and estimated for the lumped-model 
version. The complete parameters are detailed in Table 3.3, appendix D, and appendix 
E. 

Table 3.3 Input parameters for matrix calculation. 

Parameters Description Units 
𝑇9 Outdoor temperature ℃ 
𝑇D  Indoor temperature ℃ 
A Area of the building surfaces m2 

U-value Glass Reciprocal of resistance for glass W/m2K 
𝐴! Absorption value of glass; use g-value or Solar Heat 

Gain Coefficient (SHGC) 
- 

F View factor - 
∝89:;$  Outdoor convective coefficient W/m2K 
∝89:;% Indoor convective coefficient W/m2K 
∝?'@ Radiative coefficient W/m2K 

U-value Opaque Reciprocal of resistance for opaque element W/m2K 
𝐷! Absorption value for opaque surfaces - 
d Thickness for opaque element m 
R Thermal resistance for opaque element m2K/W 
k Thermal conductivity for opaque element W/mK 
𝜌H Density for opaque element Kg/m2 
𝐶E&  Specific heat capacity for opaque element J/kgK 
𝑄B Solar energy MJ/m2 

Vent Ventilation per person m3/s/person 
𝜌'D? Density of air Kg/m3 
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𝐶E'%(  Specific heat capacity of air J/kgK 
𝑄D:( Internal heat gain per person W/m2 

The mentioned parameters are utilized consistently across all model versions. The 
subsequent sections will explain the different model versions. Certain parameters 
undergo modifications due to alterations in the thermal networks, particularly in the 
lumped version. The parameters held constant throughout are 𝑇9 , 𝑇D , 𝑄B , vent, 𝜌'D? , 
𝐶E'D?, and 𝑄D:(.  

Different model versions 

Three different versions of the RC-model were employed in this study. The aim of these 
three models is to compare the simulation accuracy against the measured data and to 
get a model that can calculate quickly. The latter goal is considered because this model 
will be used by MPC to forecast in real-time. 

The first version of the RC-model is called V.1. This model only includes the building 
envelope, recognizing it as the primary place of heat transfer phenomena. Each 
element of the envelope, including walls, windows, roofs, and indoor air, is assigned 
as a unique node within the model. This configuration, which can be seen in the 
appendix F, results in a matrix of dimensions 20x20 corresponding to the 
approximately 20 nodes employed. Fig 3.9 illustrates the distribution of nodes in the 
building section. 

 
Fig 3.9 V.1 nodes distribution on Pulse’s section. 

The next version of the RC-model is called V.2. This model not only includes the 
building envelope, but also the inner walls and floors as internal mass. This model aims 
to see how accuracy increases or decreases with the presence of a thermal mass in the 
calculation. All internal walls or floors are assigned as one node within the model, as 
they have the same material properties on the surfaces. The additional nodes details 
can be seen in the appendix G. The glass walls inside Pulse are negligible due to their 
low thermal capacitance. The matrix configuration is the same as V.1 but with the 
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addition of 2 rows and columns for the internal mass. Fig 3.10 illustrates the distribution 
of nodes in the building section. 

 
 Fig 3.10 V.2 nodes distribution on Pulse’s section. 

The third version of the RC-model is called V.3. Compared to the last two versions, this 
model only has five lumped nodes: opaque envelope (including walls and roof), 
external windows, indoor floors, indoor walls, and indoor air (Fig 3.11). The nodes' 
details can be seen in the appendix H. This model is way more simplified than the other 
two. The objective of this model is to evaluate whether the simplification affects the 
calculation accuracy and to determine if the computational time can be reduced. 

 
Fig 3.11 V.3 nodes distribution on Pulse’s section. 

Model Calibration (Parameter Estimation) 

Calibration is performed by changing parameters (inputs) until the simulation results 
closely align with real-world scenarios. The calibration process can be accomplished 
through manual or black-box methods. Manual tuning, such as adjusting the building 
schedule and ventilation amount, is taken prior to the black-box process. The 
calibration using the black-box method is aimed to perceive CV(RMSE) and MBE values 
within the threshold, as stated in the literature study. The workflow for parameter 
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estimation is visually depicted in Fig 3.12. The problem formulation in this optimization 
process starts with initiating values of the parameters that will be estimated. These 
initial guesses can be depicted from technical drawings, the rule of thumb, and 
assumptions. Some parameter bounds need to be stated in order to avoid nonsensical 
estimations. The bounds estimation can be seen in equation 14. 

 
Fig 3.12 Workflow of the parameter estimation. 

𝑔𝑢𝑒𝑠𝑠
2 	≤ 𝑔𝑢𝑒𝑠𝑠	 ≤ (𝑔𝑢𝑒𝑠𝑠 × 2)	 (14) 

This study tries three different algorithms. Two of the algorithms are derivative-based, 
namely L-BFGS-B and SLSQP. The other one is non-derivative and is called Nelder-
Mead. These three algorithms are employed to evaluate the accuracy of the estimation 



 

  37 

and the convergence speed. 

3.3 Model Predictive Control 

The validated building model was then utilized as the predictive model in the Model 
Predictive Control (MPC) framework. The objective of this MPC was to reduce energy 
demand while adhering to thermal comfort constraints. In terms of control, it also 
employed optimization but with a different algorithm from that used in parameter 
estimation. The control algorithm needed to include constraints, whereas parameter 
estimation only required bounds. The input to the MPC consists of the current state of 
the building, and its output is the control input for the building over a predicted time 
horizon. 

MPC Workflow 

The inputs for the prediction model include 𝑇!",##&, ventilation, and weather data. The 
first two are obtained from building meters or sensors, while the latter is collected from 
the weather forecast from weather station. This predictive model will predict with a 
horizon length of 12 hours and a time step of 1 hour, predicting 12 hours into the 
future. Subsequently, the MPC model will optimize variable controls, which are the 
temperature setpoints, for each data within the horizon range. The model then takes 
the first state from the prediction, denoted as k+1 (where k is the current state), and 
uses it as input for the building. The entire workflow is visualized in Fig 3.13. 

 
Fig 3.13 Model predictive control (MPC) workflow. 

Problem Formulation and Algorithm 

The problem formulation for the control part of MPC is essentially the same as the 
optimization process conducted during parameter estimation. The objective of this 
control model is to minimize 𝑄 (Equation 18). The difference in this optimization lies 
in the inclusion of several constraints, not only bounds. The algorithms capable of 
accepting inequality constraints in the Python library Scipy are SLSQP and COBYLA, 
both of which will be used in this study. The two optimizers are known best as local 
optimizers, meaning they only find the best solutions near the first guess (Faílde et al., 
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2023). The local optimizers are chosen because the jump on the setpoint temperature 
cannot be too high. 

The constraints in this thesis are divided into three categories: constraints to limit the 
results of the objective function 𝑢=, constraints for the parameters 𝑇!",##&, and comfort 
constraints. The maximum allowable Q for summer is 217 kWh, while for winter, it is 
450 kWh. These values are derived from the maximum power used during peak 
moments in 2022. This MPC is aimed to reduce energy consumption; thus the energy 
produced by this smart system is not allowed to exceed the existing energy 
consumption, hence the maximum allowable Q. For indoor temperature constraints 
𝑥= , 𝑇!",##&  parameter is restricted to have a maximum difference of 2.2℃ from the 
𝑇!",##& at the previous timestep, considering thermal comfort (Mtibaa et al., 2021). The 
𝑥= is used as bounds as well. 

For comfort constraint 𝑧= , it adopts the Dutch Adaptive Thermal Comfort (ATG) 
considering the running mean outdoor temperature and indoor operative 
temperature; thus, this constraint considers indoor operative temperature 𝑇#.  and 
running mean outdoor temperature 𝑇#I. The f and g functions denote ATG’s upper and 
lower limits, respectively. The Pulse building falls into the Beta category and class limit 
B. Equations for MPC problem formulations can be found in equations 15-18. However, 
there is some flexibility if the optimization cannot find a condition that falls within class 
B's upper and lower limits. If the class B comfort limit cannot be satisfied, it can consider 
class C and then class D. Additionally, if the comfort constraints cannot be satisfied at 
all, the model will revert to 𝑢=. 

𝑢= = 𝑓>8*'%	h𝑇!J , 𝑇#J , 𝑄:Jj k
𝑆𝑢𝑚𝑚𝑒𝑟, 𝑢= ≤ 217	𝑘𝑊ℎ
𝑊𝑖𝑛𝑡𝑒𝑟, 𝑢= ≤ 450	𝑘𝑊ℎ	 (15) 

𝑥= = k
𝑇!",##&KLM − 𝑇!",##&K ≤ 2.2℃
𝑇!",##&K − 𝑇!",##&KLM ≤ 2.2℃	 (16) 

𝑧= =?𝑓h𝑇#Ij
"

!0=

−	?𝑔h𝑇#Ij
"

!0=

𝑓h𝑇#Ij = o

24℃, 10℃ ≤ 𝑇#I ≤ 16℃

ph0.2 × 𝑇#Ij + 18q + 4.8℃, 10℃ ≤ 𝑇#I ≤ 16℃
26℃, 𝑇#I > 16℃

𝑔h𝑇#Ij = s
20℃, 𝑇#I < 10℃

h0.2 × 𝑇#Ij + 18℃, 𝑇#I ≥ 10℃

𝑧= =

⎩
⎪
⎨

⎪
⎧ p𝑇#. − 𝑔h𝑇#Ijq , h𝑓h𝑇#Ij − 𝑇#.j

h𝑔h𝑇#Ij − 1j − 𝑓h𝑇#Ij, 𝑖𝑓	h𝑔h𝑇#Ij − 𝑇#.j < 0	𝑜𝑟	h𝑓h𝑇#Ij − 𝑇#.j < 0
h𝑔h𝑇#Ij − 2j − 𝑓h𝑇#Ij, 𝑖𝑓	h𝑔h𝑇#Ij − 2j − 𝑇#. < 0	𝑜𝑟	h𝑓h𝑇#Ij + 2j − 𝑇#. < 0

𝑢= , 𝑖𝑓	𝑛𝑜𝑛𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑡ℎ𝑟𝑒𝑒	𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑

(17) 



 

  39 

𝑚𝑖𝑛$J 			?𝑂𝑝𝑡𝑖𝑚	(𝑥= , 𝑢= , 𝑣= , 𝑧=)
"

!0=

	 (18) 

3.4 Glass Retrofitting Strategies 

The base window utilized in this study was a double-glazed Low-E glass. Retrofitting 
strategies added to the window include films, curtains, and air-pocket/bubble wrap 
curtains. Illustrations of the placement of the strategies can be seen in Fig 3.14. The 
details of these strategies can be found in Table 3.4 and appendix I. 

    
System 1-3 System 4 System 5-7 System 8 

Fig 3.14 Retrofitting strategies. 

Three strategies, namely phase-change material (PCM), electrochromic, and 
photochromic film, will not be considered in this study. PCM changes its material over 
time from solid to liquid and vice versa, leading to variations in thermal properties. 
Similarly, the two films change colors over time, resulting in changes in absorption 
properties depending on the environment. Due to the simplification of the model, 
simulating these materials' gradient values is challenging. 

Table 3.4 The features of the retrofitting strategies. 

System Window Glass Gap (m) Retrofitting Strategy Reference 
Base Low-E Double glazing - -  

1 Base - Low-E film (EPD, 2022) 
2 Base - Insulating film (SS, 2024) 
3 Base - Solar control film (inside) (Yin et al., 2012) 
4 Base - Solar control film (outside) (Yin et al., 2012) 
5 Base 0.07 Polyester thermal curtain, 

dark blue (0% openness) 
(Sotex, 2024) 

6 Base 0.07 Polyester thermal curtain, 
green (28% openness) 

(Sotex, 2024) 

7 Base 0.07 polyester sheer curtain, beige 
translucent (54% openness) 

(Sotex, 2024) 

8 Base 0.05 Transparent bubble wrap curtain (BIS, 2013) 

Those systems are evaluated regarding the impact on the window’s resistance and 
absorptance value, the heat loss/gain through the systems, and the impact on energy 
demand and comfort in building. 
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3.5 Comparison and Analysis 

The base case and the selected retrofitting strategies are tested using MPC. The 
obtained results, which are energy demand and thermal comfort, are then compared 
with those obtained using the existing system. This analysis began by examining the 
energy savings compared to the baseline. Subsequently, the analysis evaluated the 
comfort performance using the Dutch comfort matrix, ATG. From both factors, energy 
and comfort, conclusions and key lessons were drawn regarding the performance of 
MPC and retrofitting strategies for both summer and winter peaks. 
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Chapter 4 

Changing the Existing System into 
Model Predictive Control (MPC) 

4. Changing the Existing System into Model Predictive 
Control (MPC) 
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4.1 Building Model (RC-modeling) 

Different Models Evaluations 

Using the same constant-input values across all models, the following figures represent 
the results obtained from each model compared to the measured heating/cooling 
demand [kWh]: 

 
Fig 4.1 Comparison of measured and calculated heating demand in all models in 2022 climate scenario. 

 
Fig 4.2 Comparison of measured and calculated cooling demand in all models in 2022 climate scenario. 

All model versions display discrepancies with Q-measured, which was expected due 
to the simplifications inherent in the models. Additionally, several parameters not 
considered as inputs, such as hot water usage, wind, rain, differences in occupancy 
schedules, and other disturbances, can contribute to this disparity. The Q-measured 
graph also reveals noticeable extreme drops, indicating potential sensor, meter, or 
HVAC equipment resets. These instances imply human intervention in the control 
system, further complicating the alignment between Q-calculated and Q-measured 
values. 

Hence, it is apparent that creating a digital twin of a building poses challenges. 
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ASHRAE recommends evaluating the accuracy of Q-calculated using the calibration 
matrix CV(RMSE) and MBE. Table 4.1 presents the scores of each model for both 
summer and winter seasons. 

Table 4.1 Comparison of CV(RMSE), MBE, and execution time in all models using winter and summer months in 
2022 climate scenario. 

Rank 
  Calibration Matrix*   

Model Mode CV(RMSE) MBE Calibrated Execution Time 

3 V.1 
Winter 0.28 0.23 x 1h 1m 

Summer 0.66 0.33 x 1h 3m 9s 

2 V.2 
Winter 0.18 0.02 v 1h 13m 23s 

Summer 0.57 0.03 x 1h 11m 3s 

1 V.3 
Winter 0.17 0.01 v 50s 

Summer 0.56 0.01 x 51s 
*CV(RMSE) should be <30% and MBE should be <10% for hourly calibration.  

Model V.1 exhibits the poorest scores because of its sole consideration of the building 
envelope without any inner thermal mass. With the inclusion of thermal mass in V.2, 
scores decrease, indicating higher accuracy, with the winter score already falling within 
the acceptable range. Nonetheless, the CV(RMSE) for summer months still surpasses 
the permissible threshold. Despite Model V.3 outperforming the other two models in 
terms of accuracy and computing time, its CV(RMSE) for the summer month remains 
above the acceptable threshold. Consequently, further model calibration is needed, 
mainly due to the lumped parameters. 

Parameter Estimation 

The objective function of this parameter optimization is to minimize CV(RMSE) because 
the exceeding score for summer V.3 is that matrix. The allowable limit is 0.3; therefore, 
the objective function does not need to be minimized to 0. Instead, it is transformed 
into equation 19, ensuring that the resulting CV(RMSE) value is capped at 0.3. 

	𝑚𝑖𝑛	?𝐶𝑉?@AB(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) − 0.3
"

!0=

	 (19) 

1st attempt: Including only the absorption values 

The input for the parameter estimation function comprises the parameters to be 
estimated. As the first attempt, the parameters utilized are only 𝐴1 and 𝐷1 which are 
the absorption values of glass and opaque materials, respectively. The two parameters 
were chosen because of the model’s accuracy for the winter season, which implies that 
parameters related to heat transfer (conduction, convection, and radiation) are already 
precise. However, for the summer season, the total load is calculated not only from 
heat transfer but also from solar gain. Hence, in Model V.3, the solar absorption 
parameters become essential and need to be adjusted.  



 

  44 

Given that the estimation process can lead to wide fluctuations, giving bounds to the 
parameters is crucial as explained in the methodology chapter. The absorption of a 
material typically ranges from 0 to 1. Consequently, the upper bounds are set to 1. 
However, one parameter may increase significantly during the estimation process 
while the other decreases to a very low value. Therefore, the lower bounds are defined 
as half of the guessed values. The formulas for the objective function and bounds are 
provided in equation 20. 

𝐶𝑉?@AB(𝐴1, 𝐷1) = k𝐴1, (0.5 × 𝐴1) ≤ 𝐴1 ≤ (2 × 𝐴1)
𝐷1, (0.5 × 𝐷1) ≤ 𝐷1 ≤ (2 × 𝐷1)

	 (20) 

After formulating the objective function and parameter bounds, 𝐴1  and 𝐷1  were 
optimized to ensure 𝐶𝑉?@AB of Q-calculated falls within the threshold. The optimized 
parameter values, number of iterations, and convergence speed for each algorithm 
are provided in Table 4.2 and appendix J. 

Table 4.2 1st attempt: Comparison of performance for each algorithm. 

 𝐴1 𝐷1 𝐶𝑉?@AB  
Iteration at 

Convergence 
Convergence Speed 

Base 0.4 0.25 0.56 - - 
L-BFGS-B 0.4 0.25 0.56 3 2m 

SLSQP 0.4 0.25 0.56 3 3m 22s 
Nelder-Mead 0.4 0.25 0.56 16 1h 6m 58s 

The initial guess of 𝐴1 and 𝐷1 were taken from the previous graduation thesis and 
material specification, respectively. None of the three algorithms changed the initial 
guess, and the objective was not minimized. The derivative-based algorithms only 
reached three iterations and declared the convergence. While the non-derivative 
could reach 16 iterations, there were still no changes in the parameter values. This 
problem can occur because of the nature of the algorithm or an issue in the problem 
formulation.  

2nd attempt: Different guesses values 

For the second attempt, the same parameters were considered. However, the initial 
guesses were made differently to check if the issue was because of the guesses. Using 
the same bounds, the results showed that the parameters’ value changed as seen in 
Table 4.3 and appendix K. However, the CV(RMSE) still has not changed. From this 
attempt, it is clear that the algorithms are sensitive to the initial guess as the number of 
decimal places matters. However, the CV(RMSE) was still too high and did not reduce 
significantly, although the parameters changed significantly. To that end, it can be 
observed that the chosen parameters do not significantly impact the objective. 

Table 4.3 2nd attempt: Comparison of performance for each algorithm. 
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 𝐴1 𝐷1 𝐶𝑉?@AB  
Iteration at 

Convergence 
Convergence Speed 

Base 0.39 0.24 0.55 - - 
L-BFGS-B 0.389 0.239 0.55 6 2m 

SLSQP 0.39 0.24 0.55 3 3m 22s 
Nelder-Mead 0.20 0.125 0.55 22 1h 6m 58s 

3rd attempt: Including thermal mass 

The 3rd attempt was another effort to minimize the CV(RMSE) of the model. In this trial, 
the thermal masses are included with both 𝐴1 and 𝐷1. 𝑋C_𝑎, 𝑋C_𝑐, and 𝑋C_𝑑 denote 
the inner pane of the opaque envelopes, inner slabs, and inner walls. The additional 
parameters were chosen to analyze if the conduction and heat accumulation would 
impact the discrepancy between the calculated and measured Q. The bounds can be 
seen in equation 21. 

𝐶𝑉?@AB(𝐴1, 𝐷1) =

⎩
⎪
⎨

⎪
⎧

𝐴1, 0.2 ≤ 𝐴1 ≤ 1
𝐷1, 0.125 ≤ 𝐷1 ≤ 1

𝑋C_𝑎, (0.5 × 𝑋C_𝑎) ≤ 𝑋C_𝑎 ≤ (2 × 𝑋C_𝑎)
𝑋C_𝑐, (0.5 × 𝑋C_𝑐) ≤ 𝑋C_𝑐 ≤ (2 × 𝑋C_𝑐)
𝑋C_𝑑, (0.5 × 𝑋C_𝑑) ≤ 𝑋C_𝑑 ≤ (2 × 𝑋C_𝑑)

	 (21) 

Table 4.4 3rd attempt: Comparison of performance for each algorithm. 

 𝐴1 𝐷1 𝑋C_𝑎 𝑋C_𝑐 𝑋C_𝑑 𝐶𝑉?@AB  Iteration at 
Convergence 

Base 0.39 0.24 3.916 11.002 3.916 0.55 - 
L-BFGS-B 0.389 0.239 3.916 11.002 3.916 0.55 12 

SLSQP 0.39 0.24 3.916 11.002 3.916 0.55 6 
Nelder-Mead 0.2 0.125 7.832 18.335 7.832 0.55 198 

Table 4.4 and appendix L show that some parameters were altered but the CV(RMSE) 
remained constant. From this point, the doubt of the algorithms and the problem 
formulation increased. Therefore, it is essential to manually check whether the resulting 
CV(RMSE) corresponds with the parameter values. 

4th attempt: Monte-Carlo sampling 

This last attempt was conducted to manually check if the alteration of the parameters 
would impact the CV(RMSE). A Monte-Carlo approach was employed to perform that 
evaluation. One hundred iterations were conducted by combining random samples 
from the values within each parameter's bounds. The result showed that the 
distributions of CV(RMSE) were very low, as seen in Fig 4.3. The result indicates that 
the algorithms worked fine, and the problem formulation was also not the problem. It 
is safe to say that the RC-model has limitations for summer calculation. 
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Fig 4.3 4th attempt: Monte-Carlo simulation to check the CV(RMSE) distributions. 

Conclusions 

Even before the calibration, the simpler model is close enough to the measured data. 
Some discrepancies exist because the input data and parameters are simplified and 
will not reflect the actual conditions. It is evidence that using lumped parameters in 
model V.3 also works, although it is very sensitive to the time-series inputs. However, 
there is still a large discrepancy between the summer calculation and the historical 
data; the calibration was meant to minimize that. The calibrations using derivative-
based algorithms were not successful since the algorithms tended to look for local 
solutions and stopped when the objective did not change. The non-derivative 
algorithm was also unsuccessful, but it could explore more possibilities regarding the 
estimations. However, the Monte-Carlo simulation showed that the summer calculation 
could not be calibrated using parameter estimation. It is possible that the model is not 
sufficient because it considers the whole building as a single zone, while in reality, 
there are warmer areas due to the different amounts of sun radiation. These warmer 
areas might have different cooling behaviors, such as more mechanical or natural 
ventilation. The natural ventilation, which can be operated manually, is unpredictable 
and cannot be captured by this model as it only considers mechanical ventilation and 
infiltration. This ventilation problem does not occur in the winter calculation as the 
ventilation is only mechanical and more controlled. However, due to graduation time 
limitations, the RC-model cannot be calibrated further. Thus, the half-validated RC-
model V.3 will be used to predict and analyze energy demand, for the MPC and 
retrofitting strategies, because of the validation scores and calculation time that 
outperforms other models. The parameters were kept the same as the initial guess as 
they had already been validated in winter. 

4.2 Model Predictive Control 
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Some literature includes comfort aspects as objectives. However, in this study, comfort 
is solely utilized as constraints, allowing for violations if not satisfied. The results of both 
control algorithms for one loop can be observed in Fig 4.4. The loop only includes 
design days at peak winter and summer in January 2022 and June 2022. The 
simulation's length is chosen due to the graduation time limitation and the fact that the 
simulation took 4-hours just to loop through one design day. Details of the design days 
can be found in the appendix M. 

 
Fig 4.4 Energy demand and indoor temperature from both MPC algorithms. 

The results from both MPC algorithms differ from the base-system because the base-
system does not consider the comfort range and only uses non-adaptive setpoints. 
Both algorithms tend to start at around the same energy demand as the base-system 
in winter. COBYLA in winter experiences an extreme drop and reaches the lowest 
energy demand compared to the other two systems at the end of the timestep. When 
compared to SLSQP, COBYLA exhibits more aggressive and unstable energy changes. 
However, the indoor temperature produced by COBYLA tends to be more stable. For 
SLSQP, the indoor temperature fluctuates more than COBYLA, but these fluctuations 
are insignificant as they do not exceed 1°C. Additionally, SLSQP is the most stable of 
the two systems for energy demand. 

Results for the summer design day are smoother compared to winter. Temperatures 
from SLSQP tend to be higher than COBYLA, which is the opposite of what was 
observed in winter. The starting energy demand in summer from both MPC systems is 
almost the same, with SLSQP slightly higher, similar to winter. With a lower initial 
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demand, about half that of the base-system, the energy demand from both MPC 
systems gradually decreases and allows the temperature to rise, unlike the trends of 
the base-system. Towards the end of the timestep, COBYLA exhibits a small spike, 
making it slightly more aggressive compared to SLSQP, but the energy values are not 
significantly different. 

Overall, the base-system in summer has higher energy demand with an indoor 
temperature range of only 1 degree Celsius. However, both MPC systems strive to 
push the comfort and energy limits, resulting in lower energy demand with higher 
temperatures, but still within the acceptable threshold. For winter, the concept is 
similar to the energy produced by MPC, which is lower with lower temperatures 
compared to the base-system. SLSQP tends to push the indoor temperature as high 
and low as the comfort constraints allow, while COBYLA seems to prioritize pushing 
the energy limits. 

Conclusions 

MPC works as an optimizer. If there are no constraints, the algorithm will try to push the 
objective value to 0. However, with constraints, there are limitations. It is clear that MPC 
can reduce the energy demand and get as low as possible while also pushing the 
comfort boundaries. Optimization is about a trade-off or win-win solution, therefore it 
makes sense that MPC will sacrifice a bit of the comfort to get to a lower demand. 

As seen in the energy results, COBYLA is more aggressive because of its handling 
nature. It works by approximating the feasible region with linear constraints and tends 
to aggressively move toward the feasible region's boundaries to find the optimal 
solution (Powell, 1994). SLSQP, on the other hand, tends to be smoother as it uses the 
exact gradient and quadratic programming for the estimation (Kraft, 1988). 
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Chapter 5 

Retrofitting the Existing Glass 
5. Retrofitting the Existing Glass 
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5.1 Identifying the Impact on Window’s Resistance and Absorptance Value 

Table 5.1 Thermal properties of the systems (1). 

System 
R strategy 

[m2K/W] 
R total 

[m2K/W] 
U-value total 

[W/m2K] SHGC total 
Base - 0.606 1.65 0.4 

1 - 0.82 1.22 0.29 
2 0.23 0.84 1.19 0.28 
3 0.007 0.613 1.63 0.328 
4 0.0004 0.6064 1.65 0.236 

 

Table 5.2 Thermal properties of the systems (2). 

 Retrofitting Strategies  Window Glass 

System 
Thickness 

[m] 
U-value 
[W/m2K] Absorption 

R 
[m2K/W] 

U-value 
[W/m2K] SHGC 

5 0.003 0.01 0.44 0.606 1.65 0.4 
6 0.003 0.3 0.36 0.606 1.65 0.4 
7 0.001 0.54 0.3 0.606 1.65 0.4 
8 0.127 0.35 0.1 0.606 1.65 0.4 

The incorporation of films directly influences the window's thermal properties, 
specifically its heat resistance R and solar heat gain coefficient (SHGC), owing to their 
attachment to the glass surface. Solar control films exhibit a negligible impact on the 
window's heat resistance R, resulting in a slight reduction compared to the base glass. 
However, the impacts of the SHGC depend on the positioning of the solar control film. 
When applied to the inside pane, the SHGC reduction is the lowest among all films, at 
approximately 18%. Conversely, when positioned on the outside pane, the same film 
demonstrates the lowest SHGC value, exhibiting a reduction of 41% compared to the 
original glass. Additionally, Low-E and insulating films yield notable reductions in both 
thermal transmission and heat gain. Specifically, thermal transmission is reduced by 
26% and 28% for Low-E and insulating films, respectively. 

On the other hand, the addition of curtains does not immediately enhance the 
properties of the glass itself. The solar absorption values vary depending on factors 
such as thickness, density, opening size, and fabric material of the curtain. System 5 
exhibits the highest absorption due to its darker color, while transparent bubble wrap 
possesses the lowest absorption coefficient with its thin plastic surface. These material 
properties also impact the resistance of the curtains. Thermal curtains (system 5) 
exhibit the highest resistance, followed by system 6, which is also a thermal curtain but 
with a wider opening. The bubble wrap, containing air as insulation, follows, with the 
sheer curtain having the lowest resistance. 

However, it is essential to note that the thermal network, presented in Fig 5.1, indicates 
that the curtain itself is not the sole contributor to increased resistance. While the fabric 
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blocks solar radiation from entering the indoor space, the heat transfer between indoor 
and outdoor spaces is also reduced due to the air between the glass and the curtain, 
thereby adding further resistance. 

 
Fig 5.1 Thermal network of window, air in between, and curtain. 

5.2 Impact on heat loss/gain for winter and summer through window 

Merely examining thermal resistance is insufficient for assessing the behavior of a 
system, especially when the system involves glazing. This is because glazing also 
experiences heat gains from solar radiation. While in winter, it might suffice to assess 
only thermal transmission since solar radiation is less intense, the increased solar 
radiation significantly influences system performance in summer. Therefore, to 
evaluate how each system performs under different peak conditions (summer and 
winter), it is necessary to calculate total heat gain and heat loss through the system, 
including both transmission and solar gain. 

Heat gains are calculated in June 2022, representing peak summer conditions, while 
heat loss is assessed in January 2022, representing peak winter conditions. Heat 
gain/loss in both seasons takes into account both 𝑄%&'"(-!((!#"  and 𝑄(#+'&  utilizing 
𝑈)'+$* and 𝐴1 as the reciprocal of the system’s resistance and absorptance coefficient, 
respectively (equations 22 and 23). In addition to those equations, the calculations also 
consider convection with the outdoor and indoor air with ∝;#")2# and ∝;#")2! at 25 
and 2.5, respectively. These simulations are steady-state analyses during peak design 
hours, as detailed in Table 5.3, which are collected from building sensors and weather 
station data. 

𝑄%&'"( =	𝑈(D(%*- × 𝐴(D(%*- × (𝑇#$%,##& − 𝑇!",##&) (22) 

𝑄(#+ =	𝐴1NONKPQ × 𝐴(D(%*- × 𝑞(#+ (23) 

Table 5.3 Peak summer and winter design hours. 

Season T outdoor [C] Solar irradiation T indoor [C] 
Summer 37.7 634 23.053 
Winter 0.5 25 20.52 

As illustrated in Fig 5.2, in summer, without considering ventilation, the heat gain from 
thermal transmission for all films is nearly identical to that of the base glass, with 
minimal variations. In terms of reduction, films only marginally reduce thermal 
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transmission by approximately 0.07% to 1.73%. This suggests that while the films alter 
the resistance of the window, their impact is negligible. Similarly, in winter, systems 
with films exhibit similar thermal transmission reduction, with the insulating film having 
the lowest transmission due to its lower U-value compared to other films. 

Conversely, solar gains exhibit more significant variation as the solar heat gain 
coefficients (SHGCs) fluctuate more. Similar to summer, the trends in solar absorption 
during winter varied the same. The lowest solar absorption is observed for the film with 
the lowest absorption coefficient, namely the solar control film placed on the outside 
pane. All films demonstrate a more substantial reduction in solar gain, ranging from 
around 18% to 41% for both summer and winter. This evidence shows that films can 
effectively reduce solar gain especially during summer months. 

Conversely, Curtains experience higher total heat gain during summer peak due to 
additional solar gain on the fabrics, not only at the glass. The highest recorded gain is 
observed in system number 5, as it exhibits the highest solar absorption among the 
curtains. Bubble wrap, on the other hand, registers the lowest solar gain due to its 
transparent surface color. When compared to the use of films, curtains actually increase 
solar gain by approximately 29% to 180% when compared to the solar gain on the 
original glass, for both summer and winter conditions. However, regarding thermal 
transmission, curtains can reduce heat gain by approximately 40% to 55% during peak 
summer periods and heat loss by around 14%. 

 
Fig 5.2 Q transmission and Q solar in summer and winter. 

Comparing total gain for summer and winter is not as straightforward as adding 
𝑄%&'"(-!((!#"  and 𝑄(#+'& . For summer, the calculation simply involves adding 
𝑄%&'"(-!((!#"  and 𝑄(#+'&  because both are positive (both of them represent gains). 
However, for winter, 𝑄%&'"(-!((!#" is negative because the outside temperature is lower 
than the indoor temperature, resulting in heat loss, while 𝑄(#+'& remains positive (heat 



 

  53 

gain). Therefore, the total heat loss for winter is calculated as 𝑄(#+'& −	𝑄%&'"(-!((!#". 

The results, which can be seen in Fig 5.3, show that curtains result in more total heat 
gain during summer compared to films because they absorb more solar radiation. 
Meanwhile, for winter, curtains perform better due to the additional solar absorption 
and acting as a barrier to heat transfer from the inside to the outside of the building. 
Films, on the other hand, perform almost the same as the base window during winter 
due to the minimal difference in resistance between the base glass and the filmed 
glass. However, their performance varies during summer, considering that films impact 
the solar heat gain coefficient. 

 
Fig 5.3 Comparison of total heat gain/loss through window in summer and winter. 

Overall, for summer, the solar control film placed on the outside (system 4) performs 
the best at 307.67 kWh, which is only slightly different from bubble wrap (system 8) at 
308.92 kWh. The system with the worst performance is the thermal curtain with 0% 
openness (system 5) at 505.78%. Meanwhile, for winter, the curtain system 5 actually 
performs the best at 246.11%, and the worst is system 4 at 300.58 kWh. From this, it 
can be observed that systems with low total heat gain will have high total heat loss, so 
systems that work well for summer may perform poorly for winter, and vice versa. 

However, this initial calculation only considers thermal transfer and solar gain on the 
glass with films and curtains. In reality, there are more thermal transfers such as solar 
radiation absorbed by other surfaces, radiation between materials, advection involving 
ventilation, and internal heat gain from occupants. Therefore, further analysis is 
required for a more comprehensive understanding of thermal transfer. The thermal 
balance of the entire building is what constitutes the energy demand, which will be 
discussed in the next section. 
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5.3 Impact on energy demand and comfort in building 

Calculating the energy demand and comfort requires the whole building calculation. 
This sub-section explores the impacts of each retrofitting system on both base-system 
and MPC in summer and winter. From the last sub-section, it is clear that some system 
performs better only in one of the seasons. However, it is also essential to check with 
the whole building.  

Energy Demand 

Base-system 

The simulation is conducted using the validated RC-model V.3. For systems with films, 
the calculation matrix used is the same as the matrix used for baseline simulations. 
However, for systems with curtains, there is an addition to the calculation matrix, 
namely the presence of air between the curtains and glazing, as well as the curtains 
themselves. This simulation is run for the design months, namely January 2022 and 
July 2022, representing peak winter and summer. The results displayed in Table 5.4 
represent the total energy demand for each design month.  

Table 5.4 Total cooling and heating load [kWh] for peak months. 

 Total cooling and heating load [kWh] 
Season Base 1 2 3 4 5 6 7 8 

Summer 64,620.49 64,589.56 64,586.73 64,641.19 64,656.46 50,931.45 60,857.74 68,688.25 48,146.61 
Winter 226,173.85 225,850.08 225,826.94 226,166.92 226,186.77 168,866.71 180,485.15 211,142.93 137,911.12 

 

 
Fig 5.4 Cooling-load and heating-load comparison in existing control [kWh]. 
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From the results, it can be observed that various types of films do not significantly 
impact the energy demand, both in summer and winter. Meanwhile, curtains perform 
better than films in both months. This is contrary to the initial calculations conducted 
earlier. The superior performance of curtains is attributed to their role as transmission 
and solar gain blockers for indoor air and other materials within the building. The 
performance of curtains varies depending on the type of material used. The larger the 
opening of the curtains, the greater the total heat gain/loss. System 5, with the tiniest 
opening, works better for both summer and winter compared to other fabric curtains. 
Bubble wrap outperforms system 5 because it acts as insulation due to its air pockets. 

If sorted from the best performing for summer: system 8, 5, 6, 2, 1, base, 3, 4, 7. From 
this sequence, it can be seen that systems 3, 4, and 7 perform worse than the baseline, 
so they will not be considered for the next step. The reductions achieved using the 
remaining systems are 0.255%, 0.212%, 0.058%, 0.00052%, and 0.00048%, 
respectively. Systems 8 and 5 outperform the other systems regarding energy demand 
reduction, thus this study chooses these two systems for further analysis using the MPC 
system for the summer season. Additionally, the boxplot in Fig 5.4 indicates that both 
systems have a narrower quartile range compared to other systems. This suggests 
stability in energy demand at each timestep and peak, with peaks not significantly 
higher compared to other systems. 

For winter, the performance sequence is system 8, 5, 6, 7, 2, 1, 3, base, 4. System 4 
performs worse than the baseline again, so it will not be considered for the next step. 
The reductions achieved for the remaining systems are 0.39%, 0.253%, 0.202%, 
0.066%, 0.0015%, 0.0014%, and 3.06E-05%, respectively. Once again, the reduction 
values of systems 8 and 5 outperform the other systems. System 6 also has a relatively 
high reduction value compared to the next-ranked systems. However, because the 
lowest heating demand of system 6 is still higher than that of system 5, only systems 8 
and 5 will be further analyzed. 

MPC-system 

From the discussion on the base-system, it can be seen that systems 5 and 8, which are 
thermal curtain and bubble wrap, respectively, outperformed other systems in both 
summer and winter seasons. Therefore, it was decided that these two systems would 
be further analyzed using the MPC system. This simulation uses the validated RC-
model V.3 and the MPC system with the previously outlined two algorithms. The matrix 
used was the one that included the curtain. 

Similar to the previous MPC chapter, this simulation uses design days and only includes 
the opening hours of the Pulse building, from 8 AM to 12 midnight. This design day 
represents the peak winter and peak summer in 2022. Details for this design day can 
be found in appendix M. 
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Fig 5.5 Summer energy demand with MPC. 

 
Fig 5.6 Winter energy demand with MPC. 

Compared to the MPC for the base scenarios in summer, the two systems (systems 5 
and 8) exhibit lower energy demand starts using both MPC algorithms. SLSQP, as 
experienced in the base scenario, tends to experience an increase at the end of the 
timestep. When observed, indoor temperatures for all systems indicate that COBYLA 
results in lower temperatures compared to using SLSQP. The temperature differences 
between all summer alternatives are almost negligible as seen in Fig 5.5. Compared 
with the base MPC, using COBYLA, the total energy reduction obtained is 29% and 
33% for systems 5 and 8, respectively. Meanwhile, using SLSQP, the total energy 
demand generated is even greater than the base-MPC, with 69% and 58% increases 
for both systems, respectively. 

As seen in Fig 5.6, COBYLA in all systems starts at a lower energy amount than SLSQP 
for winter. Unlike the base MPC, COBYLA in systems with curtains shows a tendency to 
increase its energy demand towards the end of the timestep with spikes near the 
beginning. Similar to the base MPC, COBYLA is more aggressive than SLSQP. As for 
SLSQP at systems 5 and 8, their performances are more stable than the base MPC with 
some fluctuation, yet still more stable compared to COBYLA, which exhibits significant 
increases and drops. Compared to the base MPC, the use of SLSQP in systems 5 and 
8 actually increases by 2% and 2.8%, respectively. Meanwhile, with the use of COBYLA, 
the increases are larger, reaching 4.8% and 3.9%, respectively. 
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Base-system vs MPC-system 

To examine the overall energy performance of all alternatives, the entire difference in 
total energy demand (compared to the baseline) on the design day can be viewed in 
Table 5.5. The detailed values for each alternative can be seen in appendix N. 
Alternatives ending with "C" indicate the use of MPC-COBYLA, while those ending with 
"S" indicate the use of MPC-SLSQP. If there is no suffix, it means the base-system was 
used. 

Table 5.5 Energy demand reduction comparison for each alternative. 

 Cooling and heating load reduction compared to baseline 
Seasons B_C B_S sys5 sys5_C sys5_S sys8 sys8_C sys8_S 
Summer 82.87% 82.46% 49.72% 82.87% 82.49% 55.17% 82.87% 82.49% 
Winter 39.57% 7.73% 15.95% 42.15% 9.08% 37.37% 42.71% 14.92% 

For summer, the most effective alternatives are B_C, sys5_C, and sys8_C, which all have 
the same reduction value. They are followed by sys5_S and sys8_S, then B_S. The two 
lowest-performing alternatives are sys8 and sys5. This indicates that for all systems, 
COBYLA is superior in reducing energy demand for winter. Following COBYLA, 
systems that use SLSQP perform slightly less efficiently. Meanwhile, system 5 and 
system 8 using the base-system can only reduce about 50% from the baseline. 

For winter, the highest reduction is achieved by COBYLA systems, such as B_C, sys5_C, 
and sys8_C. In contrast to winter, systems using SLSQP have the lowest reduction 
values, reaching a maximum of only 15%. Finally, curtains (systems 5 and 8) are able to 
reduce energy demand by up to 37% from the baseline, better than SLSQP. 

Comfort on Base-system and MPC-system 

In addition to examining the energy demand from the baseline and the two strategies 
in the base-system and MPC-system, this study also considers thermal comfort, 
measured using the ATG metric. Surface temperature and indoor temperature 
information of the building are obtained from the calculations of the base-system and 
MPC-system. With this information, the mean radiant temperature and indoor 
operative temperature can be calculated. The results of each plotting of operative 
temperature at the day’s running mean outdoor temperature according to the ATG 
graph can be found in Fig 5.7. The gray dashed lines on the graph represent the lower 
and upper bounds of the indoor operative temperature for the running mean outdoor 
temperature on the design days (22.8 degrees for design days in summer and 4.2 
degrees for design days in winter). 
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Fig 5.7 Comfort measures for every alternative. 

On the summer design day, all alternatives have two hours of discomfort. These two 
hours occur during the night when the outdoor temperature drops, which naturally 
leads to a drop in the mean radiant temperature (MRT) as well. However, in alternatives 
using MPC, both in the base and curtain systems, the indoor operative temperature 
during discomfort tends to be higher. Systems with SLSQP have the highest peaks, 
followed by systems with COBYLA, and the lowest peaks are observed in systems with 
existing control. Looking at the temperature distribution, systems without MPC 
perform better in maintaining the stability of the operative temperature. Systems with 
curtains have a narrower temperature range compared to the baseline, as the MRT in 
both of these systems does not consider the glass temperature. For summer, 
occupants prefer cooler room temperatures (but not below the lower limit), so it can 
be said that systems with curtains perform better in terms of comfort, even though it is 
only a slight difference from the baseline. 

As for the winter design day, occupants prefer warmer room temperatures, so systems 
with curtains perform better. Systems with MPC tend to push the comfort boundary, 
resulting in indoor operative temperatures approaching the lower bound. Systems 
with SLSQP have higher discomfort compared to the baseline, while COBYLA has the 
lowest discomfort. In terms of the stability of indoor operative temperature, COBYLA 
performs the best but is very close to the lower bound. 

Conclusions 

Considering the results of energy demand reduction and comfort metrics, for summer, 
systems with MPC indeed can significantly reduce energy demand, but this also means 
that indoor air temperatures are higher, leading to increased temperatures of indoor 
materials. For the 2022 case, the indoor operative temperatures have not yet exceeded 
the upper comfort limit, but there is a potential for overheating if a heatwave occurs. 
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Systems with curtains are better at maintaining stability and preventing indoor 
operative temperatures from getting too hot, but their energy reduction is not as 
impressive as MPC. This also applies to winter, where systems with curtains can better 
"warm up" the room while still experiencing discomfort hours. SLSQP performs less 
effectively at reducing energy demand than it does in summer. Due to this anomaly 
(different from summer), systems with curtains seem like a win-win solution because 
they provide the best comfort and can reduce energy consumption more effectively, 
especially system 8.  
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6.1 Smart System vs Retrofitting 

From the previous chapter, it can be deduced that smart systems and retrofitting 
strategies can reduce energy demand and improve thermal comfort. However, smart 
systems tend to focus more on saving energy rather than enhancing comfort, whereas 
retrofitting strategies perform the opposite function. The decision between converting 
the current system into a smart one or implementing retrofitting should begin with 
assessing the building's conditions. 

The Pulse Building is a net-zero building, meaning that it generates sufficient energy 
from renewable sources to meet its demand. Consequently, energy saving is not a 
critical concern for this building. If a smart system is to be chosen, its purpose should 
shift from reducing energy demand to maximizing the effectiveness and efficiency of 
the existing renewable energy sources. Therefore, the preferred option is to proceed 
with retrofitting. 

6.2 Materiality 

Several criteria are considered when selecting materials. These criteria relate to the 
material's tactility, lifecycle, and performance concerning daylight and visual aspects. 
Fig 6.1 visualizes the criteria that are used. Each criterion has two considerations, for 
example, for color, the options are warm and cold. Fig 6.2 illustrates the criteria, 
options, and the chosen options. 

 
Feel 

 
Ambiance 

 
Color 

 
Recycle 

 
Daylight 
Control 

 
Adaptability 

Fig 6.1 Criteria for material selection. 

Not selected  Selected  In between  Both 

 
Fig 6.2 The criteria, options, and the chosen options for material selection. 
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Feel 

Students choose to study and complete assignments on campus because they feel 
demotivated and too relaxed at home. However, a very formal space can also make 
them feel pressured. Therefore, the curtain design will incorporate both homey and 
industrial concepts. These two concepts are expected to help occupants feel 
comfortable as if they were at home while maintaining a level of formality to avoid 
becoming too relaxed. These concepts can be represented through the texture and 
pattern of the materials. Homey is associated with warmth and comfort, characterized 
by soft-textured natural fabrics. In contrast, the industrial concept conveys an edgy and 
modern feel, resembling materials like metal or plastic. Fig 6.3 illustrates the mood 
boards selected to combine these two concepts. 

 
Fig 6.3 Feel concept mood boards. Source: Pinterest.com. 

Ambiance 

TU Delft's campus hosts various studies that require different learning environments. 
For instance, students from the Faculty of Architecture and the Built Environment need 
a study space that can stimulate creative thoughts, while students from the Faculty of 
Civil Engineering require a quiet and focused atmosphere. Considering that the Pulse 
Building is a shared space, its ambiance will combine serene and stimulating concepts 
to accommodate the needs of its occupants. The serene concept is characterized by 
neutral colors, calmness, and peace, whereas the stimulating concept is associated 
with varied textures, patterns, and focal points. Fig 6.4 presents the mood boards for 
both ambiance concepts. 

 
Fig 6.4 Ambiance concept mood boards. Source: Pinterest.com. 

 



 

  63 

Color 

The selection of colors, in addition to influencing solar absorption, can also affect a 
space's perceived warmth or coolness. The curtain design for the Pulse Building will 
use cool color tones during summer and warm color tones during winter. These 
choices will help ensure that the Pulse Building remains comfortable and conducive to 
various study needs throughout the year. Light shades will be chosen to support the 
previously explained ambiance concepts. Fig 6.5 illustrates the color mood board. 

 
Fig 6.5 Color concept mood board. Source: Pinterest.com. 

Recycle 

To reduce the waste generated in the TU Delft environment daily, the curtain material 
will utilize recycled materials from this waste. Additionally, the curtain material can be 
recycled again, making it more beneficial and reducing further waste. Some potential 
waste materials that can be used for the curtains include vegetables or fruit peels, 
paper, plastic, and cans. This approach not only promotes sustainability by 
repurposing waste but also aligns with the principles of a circular economy, ensuring 
that materials are kept in use for as long as possible and minimizing environmental 
impact. 

Daylight control 

In addition to serving as a temperature barrier between indoor air and window glass, 
curtains are also used to control the amount of daylight entering a space. Excessive 
light and focused light can cause glare, while a lack of sunlight can be detrimental to 
the well-being of occupants. Therefore, the concept for the curtain material is to allow 
sunlight to enter gently (translucent). Using translucent materials, the curtains will 
balance the need for natural light with the need to reduce glare, creating a comfortable 
and healthy indoor environment. Fig 6.6 is a mood board for translucent materials. 
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Fig 6.6 Translucent concept mood boards. Source: Pinterest.com. 

Adaptability 

Sunlight changes throughout the day, making static solutions either overkill or subject 
to trade-offs. Therefore, these curtains are designed to adapt to changing 
environmental conditions. Using adaptive concept, the curtains will provide a more 
effective and comfortable solution for managing daylight and temperature in the Pulse 
Building. 

The Chosen Material: Recycled Paper 

The chosen material is recycled paper, considering all the concepts, mood boards, and 
personal preferences. This material can create a homey feel with its texture and an 
industrial vibe with proper cutting and arrangement. The color of this paper can be 
made to follow the concepts of translucency, serenity, warmth, and coolness. The 
irregular pattern produced by recycled paper supports the stimulating concept. The 
drawback of this material is its lack of adaptability. This material's color, shape, and 
texture will remain constant regardless of the amount of sunlight or temperature 
differences. Therefore, the adaptive concept will be realized mechanically. Figure 9 
illustrates the recycled paper. 

In addition to the aforementioned reasons related to the concept, this material is 
chosen for its potential beyond design and performance aspects. Given that producing 
this material is not overly complex, there is potential to open a recycling paper 
workshop at X-TU Delft. This initiative can enhance environmental awareness and 
foster a sense of belonging among students, as the curtains used would be their own 
creations. Additionally, the colors and additional patterns on the recycled paper can 
be customized to match the events happening at TU Delft. 

6.3 Position 

The curtains made from recycled paper will be placed inside the glass façade of the 
Pulse Building. This glass façade area includes the horeca area on the ground floor, 
study areas from the first floor to the top floor, and classrooms.  
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One of the key concepts for the curtain design is daylight control and adaptability. As 
illustrated in Figure 6, sunlight changes throughout the seasons and times of day. 
During winter, daylight is needed because winter days tend to be dark, which is 
essential for warming the room. Therefore, the design of the curtain is based on the 
summer months, as sunlight in summer is harsher, although the curtain can still be used 
in winter to add resistance. These months are June, July, August, and September. 
According to (Moan et al., 2014), strong sunlight occurs between 10 am and 4 pm. 
During these months and times, the angles of sunlight incidence are 30, 40, 50, and 60 
degrees, as shown in Fig 6.7. 

 
Fig 6.7 The angles of sunlight incidence between 10 am and 4 pm in summer. 

The adaptability concept of these curtains is designed to address these angles, as 
shown in Figure 8. Instead of using a single curtain with adjustable height, this design 
employs three curtains of different heights. These curtains will automatically lower with 
the utilization of heat sensors and sun tracking sensors installed on the glass façade, as 
well as illuminance sensors placed on the desk surfaces near the glass façade. The heat 
sensor will detect the temperature of the glass façade, the sun tracking sensor will 
detect the angle of sunlight incidence, and the illuminance sensor will measure the 
amount of illuminance. The illuminance threshold for educational buildings is 300-400 
lux (IESNA, 2000). These three sensors are integrated with the model that is used for 
MPC, a responsive control system, and simple actuators such as Arduino and servo 
motors. 
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The first curtain will descend when the heat sensor detects the glass temperature and 
checks the comfort using the building model, or when the amount of illuminance on 
the desks exceeds the threshold, regardless of the angle of sunlight incidence. This 
curtain will fully cover the window and serve as a heat transfer resistance between the 
window glass and indoor air. Its translucent color will allow sunlight to enter the room. 
The second curtain will descend based on two conditions: when the illuminance sensor 
detects that the amount of illuminance on the desks exceeds the threshold after the 
first curtain has descended, and when the angle of sunlight incidence is between 30-
40 degrees. The third curtain will descend based on two conditions: when the 
illuminance sensor detects that the amount of illuminance on the desks exceeds the 
threshold after the second curtain has descended, and when the angle of sunlight 
incidence is between 50-60 degrees. Fig 6.8 illustrates the three curtains and their 
respective conditions. 

   
Curtain 1 Curtain 2 Curtain 3 

Fig 6.8 Curtains and their conditions. 

6.4 Composition 

One of the concepts of these curtains is about ambiance. A focused and distraction-
free environment is created through the uniform vertical lines of the curtain modules. 
These vertical lines also signify that the building is a formal building. To stimulate 
creative thinking, the curtains feature horizontal lines arranged in a wave-like pattern 
to introduce an organic and flexible feel. To emphasize the vertical lines and add an 
artistic view to refresh the occupants' minds at night, the curtains are equipped with 
strip lights at the bottom weights. Fig 6.9 illustrates the design process of the curtain 
compositions, Fig 6.10 illustrates the different curtain layers, Fig 6.11 illustrates the 
different appearances in summer and winter, and Fig 6.12 illustrates the curtains from 
the exterior at night. 

   
Step 1 Step 2 Step 3 

Fig 6.9 Schematic design process. 
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Layer 1 Layer 2 Layer 3 

Fig 6.10 Different curtain layers. 

 
Summer 

 
Winter 

Fig 6.11 Interior looks in summer and winter. 

 
Fig 6.12 Exterior looks at night. 
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Conclusions 

The study kicks off with a basic question: Which approach yields better energy savings 
and comfort in glass facade buildings—upgrading the HVAC system or retrofitting? To 
contribute to answering that main question, this study experiments with a smart BMS, 
specifically MPC, along with several retrofitting strategies, including glass films and 
curtains. 

From the experiments with three types of models, the results indicate that using a 
simpler model (V.3) is actually more accurate, although there are still discrepancies 
with measured data. This model also reduces computing time, allowing forecasts to 
work faster because the input and output time ranges to and from the actual building 
are only 1 hour. Of the two optimization algorithms tested, COBYLA proved to be more 
aggressive, while SLSQP was more stable, but both algorithms succeeded in reducing 
energy demand. A drawback of MPC in this study is that it can violate one or more 
constraints if disturbances are too high (convergence fails). This will likely occur if the 
formulated problem is too strict (especially regarding comfort) and the algorithm used 
does not allow for constraint priority. 

Retrofitting strategies cannot be assessed solely based on transmission and solar gain 
because their behavior can differ with the presence of ventilation and occupants. 
Compared to MPC, curtains may not reduce energy demand as dramatically as smart 
systems, but they can provide indoor thermal comfort. For summer, solar blockage is 
indeed crucial for thermal comfort. This is evident in how curtains can lower and 
stabilize the operative temperature. The same concept applies in winter, where 
curtains act as a barrier to block heat from escaping indoors. MPC is more suitable if 
the building is not predominantly glass and reducing energy demand is the main 
concern. However, if comfort is equally important, adding building features to block 
solar radiation in summer and prevent heat loss in winter would be better. 

As for the Pulse Building, energy demand is not a primary concern since it is already 
net-zero. Therefore, improvements can be made by retrofitting using recycled paper 
curtains with translucent colors to support sustainability. These curtains are not only 
used to improve thermal comfort but also to control sunlight. Additionally, the curtains 
are designed to support the well-being of the occupants. 

Limitations 

The case study utilized in this thesis involves a building with a glass façade containing 
multiple rooms, but only one thermal zone is considered. The single zone, combined 
with the lumped parameters, impacts the accuracy of the model especially for the 
summer calculation. Several aspects of this building can be controlled, but in this 
thesis, MPC only regulates the setpoints. The energy sources and delivery systems are 
not considered. The occupant schedule used is a representation of the academic 
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calendar and may not fully reflect real-world conditions. Only three optimization 
algorithms are analyzed for parameter optimization, and two optimization algorithms 
are used for control optimization. The investigated retrofitting strategies focus solely 
on indoor strategies, comprising films and curtains.  

Future Research Directions 

The study focuses on operational energy without considering its sources and delivery 
methods for heating and cooling. It would be interesting to differentiate between 
renewable and non-renewable energy sources and compare various heating and 
cooling methods like floor heating and climate ceilings. Exploring adaptive retrofitting 
strategies such as PCM, photochromic, and electrochromic materials would be 
intriguing if the modeling can accommodate them. The retrofitting strategies 
presented in this study also need validation for other building typologies. The 
optimization performance of this study still needs validation using other algorithms. 
Parameter estimation and smart building systems can employ various algorithms, 
including genetic algorithms, so future research could include them and compare 
them with retrofitting strategies. Faster algorithms also need to be explored. More 
variables to be included in MPC, such as CO2, wind pressure, and rain, are also desired 
to gain more accuracy. It would also be nice to validate the MPC loop using a real 
disturbance and assess the whole summer/winter month or even a year. Robustness 
and embodied energy should also be checked to make the selected alternatives more 
concrete. These considerations are aimed at achieving bigger sustainability goals for 
future research. 
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Reflections 
8. Reflections 
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This thesis combines building physics, design informatics, and retrofitting strategies 
for glass buildings to understand how smart systems and retrofitting strategies affect 
energy consumption and indoor thermal comfort in glass façade buildings. So far, the 
outcomes provide a good depiction of how both factors behave, but they also raise 
new "what if" questions that have the potential to deepen or broaden this research.  

Research and Design 

A broader inquiry drives the main question of this study: how can existing buildings be 
improved to achieve energy efficiency and occupant comfort? This research aims to 
influence the direction of building improvements, whether by transitioning to smart 
systems or implementing retrofitting measures. Furthermore, this study can provide 
guidance for future building projects, aiding in the selection of suitable strategies to 
optimize energy efficiency and enhance occupant comfort. 

Ethics 

In the context of energy reduction, it is clear that the more savings, the better. However, 
when comfort comes into play and optimization is necessary, the question "how 
comfortable is uncomfortable?" always arises, especially when the optimizer treats 
both objectives equally and tends to push towards the very end of comfort thresholds. 
The building chosen as the case study is a public and international campus facility, 
which means its users could come from various backgrounds and experience different 
climates, possibly even more extreme than those in the Netherlands. The question is, 
do the comfort boundaries used still apply to all users, including those from diverse 
environments? Additionally, internal heat gain calculations often overlook differences 
in heat production between individuals, such as between men and women or young 
and older people, which can also affect their thermal comfort levels. How can smart 
systems and retrofitting strategies address these issues? While humans can adapt, can 
buildings also be part of the solution? This would require sophisticated sensor and 
algorithm use, which ultimately can enhance control system performance. However, 
excessive building monitoring can also make occupants feel monitored or intimidated. 
All these considerations need to be taken into account when developing holistic and 
integrated solutions. 

Societal Impact 

The chosen case study for this research is a university building where occupants, mostly 
students, often spend extended hours, sometimes even into the night. Improving 
comfort in this building can significantly enhance the productivity of its occupants. 
Apart from boosting the performance of the university's students, a more comfortable 
building environment can bridge the gap between those with higher education and 
those who simply need a place to work briefly. This inclusivity is further enhanced as 
the building is open to the public and designed to make everyone feel welcome by 
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the thermal comfort. The indirect improvement in building performance, leading to 
enhanced student productivity, also fosters a brighter future, as these students will 
become the next generation of leaders. Imagine if they could not concentrate due to 
uncomfortable temperatures while studying in this building and then had to apply their 
knowledge later in life. 

Despite Pulse being an energy-efficient building, the aim of this study is to further 
reduce energy demand by implementing smart systems and retrofitting. This directly 
contributes to lowering primary energy consumption and can benefit the planet. Pulse 
is already a sustainable building equipped with numerous active sensors, so 
transitioning to an MPC system, which can enhance the sustainability, does not require 
extensive effort as it would in low performance buildings. The chosen retrofitting 
strategies are also selected to minimize additional structures or special treatments to 
keep costs down, enabling a shorter payback time and allowing more focus on 
enhancing building performance rather than just recovering investments. Many 
aspects are simplified in this study, so direct adoption into the building may not be 
straightforward. Future research should further validate how MPC and retrofitting 
strategies behave in real-world scenarios, where various disturbances occur, and 
human intervention is possible.  
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Appendix A 

Pulse materials (source: Wahi, 2020; Pulse’s manager; and Ector Hoogstad) 
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Appendix B 

Academic calendar 
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Appendix C 

Occupant assumption based on rooms capacitance 

Rooms capacitance can be found at https://spacefinder.tudelft.nl/en/spaces/  

Descriptions Occupant Count Assumptions 
Class (full) 1020 

Study (only the study area) 400 
Close 0 

 

Descriptions Hourly Occupant Count Assumptions 
Weekdays [close]*7 + [class+study]*5 + [study]*1 + [class+study]*4 + [study*0.5]*7 

Weekends (summer) [close]*7 + [study*0.3]*10 + [0]*7 
Weekends (winter) [close]*7 + [study*0.3]*10 + [study*0.5]*7 

Exam weekdays [close]*7 + [class+study]*5 + [study]*1 + [class+study]*4 + [study]*7 
Exam weekends [close]*7 + [study]*17 

 

Appendix D 

Static parameters 

Parameters Values Units 
𝑇9 Appendix E ℃ 
𝑇D  Appendix E ℃ 

𝐴<=4=RSE 6266.48 m2 
𝐴9E'TR&	&:;&=9E&4=RSE 1448.3 m2 
𝐴D::&?	C'==H4=RSE 1960 m2 
𝐴D::&?	V=99?H4=RSE 1775.2 m2 

U-value Glass-lump 1.65 W/m2K 
𝐴! 0.4 - 
F 0-1 - 

∝89:;$  25 W/m2K 
∝89:;% 2.5 W/m2K 
∝?'@ 5.1 W/m2K 

U-value Opaque-lump 0.14 W/m2K 
𝐷! 0.25 - 

𝑑'==	?&HE9:H&	V'8(9? 0.08 m 
𝑅D::&?	&:;&=9E&	WX  0.512 m2K/W 
𝑅D::&?	V=99?H	WX 0.1 m2K/W 
𝑅D::&?	C'==H	WX 0.512 m2K/W 

k d/R W/mK 
𝜌D::&?	&:;&=9E&	WX  800 Kg/m2 
𝜌D::&?	V=99?H	WX 1600 Kg/m2 
𝜌D::&?	C'==H	WX 800 Kg/m2 

https://spacefinder.tudelft.nl/en/spaces/
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𝐶E%))*(	*),*-$.*	/0  1090 J/kgK 

𝐶E%))*(	1-$$(&	0 840 J/kgK 

𝐶E%))*(	2'--&	/0 1090 J/kgK 
𝑄B Appendix E MJ/m2 

Vent 36/3600 m3/s/person 
𝜌'D? 1.2 Kg/m3 
𝐶E'%(  1000 J/kgK 
𝑄D:( 100 W/m2/person 

 

Appendix E 

Timeseries parameters 
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Appendix F 

Model version 1 

 



 

  96 

 



 

  97 

 



 

  98 

 



 

  99  



 

  100 

Appendix G 

Model version 2 
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Appendix H 

Model version 3 
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Appendix I 

3M - Thinsulate Climate Control 75 Low-E Film (system 1) 

 

Solar Screen – Solar 80C Insulating Film (system 2) 

 

Sotex Bolero Turquoise 53 (system 5) 
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Sotex M140 ALU Anis 62 (system 6) 

 

Sotex ETAMINE Champagne 02 (system 7) 
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Appendix J 

Parameter estimation 1st attempt 

L-BFGS-B 

 

SLSQP 

 

Nelder-Mead 
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Appendix K 

Parameter estimation 2nd attempt 

L-BFGS-B 

 

SLSQP 

 

Nelder-Mead 
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Appendix L 

Parameter estimation 3rd attempt 

L-BFGS-B 

 

SLSQP 

 

Nelder-Mead 
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Appendix M 

Design Days 

 

Appendix N 

Cooling and heating load comparison values (on design days) 

Base summer: 2,182.28 

Base winter: 5,941.62 

 Cooling and heating load reduction compared to baseline 
Seasons B_C B_S sys5 sys5_C sys5_S sys8 sys8_C sys8_S 
Summer 373.82 382.80 1,097.28 373.85 382.15 978.34 373.86 382.19 
Winter 3,590.63 5,482.61 4,993.94 3,437.42 5,402.41 3,721.01 3,404.08 5,055.29 

 


