
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Web API Fragility: How Robust is Your
Web API Client

Tiago Espinha, Andy Zaidman and Hans-Gerhard Gross

Report TUD-SERG-2014-009

SERG



TUD-SERG-2014-009

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

c© copyright 2014, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Web API Fragility:
How Robust Is Your Web API Client?

Tiago Espinha
Delft University of Technology

The Netherlands
t.a.espinha@tudelft.nl

Andy Zaidman
Delft University of Technology

The Netherlands
a.e.zaidman@tudelft.nl

Hans-Gerhard Gross
Esslingen University

Germany
Hans-Gerhard.Gross@hs-esslingen.de

Abstract—Web APIs provide a systematic and extensible ap-
proach for application-to-application interaction. A large number
of mobile applications makes use of web APIs to integrate services
into apps. Each Web API’s evolution pace is determined by their
respective developer and mobile application developers are forced
to accompany the API providers in their software evolution
tasks. In this paper we investigate whether mobile application
developers understand and how they deal with the added distress
of web APIs evolving. In particular, we studied how robust 48
high profile mobile applications are when dealing with mutated
web API responses. Additionally, we interviewed three mobile
application developers to better understand their choices and
trade-offs regarding web API integration.

I. INTRODUCTION

Modern-day software development is inseparable from the
use of Application Programming Interfaces (APIs) [1]. Soft-
ware developers access APIs as interfaces for code libraries,
frameworks or sources of data, to free themselves from low-
level programming tasks and/or speed up development [2].
In contrast to statically linked APIs, a new breed of APIs,
so called web service APIs, offer a systematic and extensible
approach to integrate services into (existing) applications [3],
[4]. However, what happens when these web APIs start to
evolve? Lehman and Belady emphasize the importance of
evolution for software to stay successful [5], and updating
software to the latest version of its components, accessed
through APIs [6]. In the context of statically linked APIs, Dig
and Johnson state that breaking changes to interfaces can be
numerous [6], and Laitinen says that, unless there is a high
return-on-investment, developers will not migrate to a newer
version [7].

When integrating with a web API however, developers
can no longer afford the inertia that was noted by Laitinen.
The web API provider sets the pace for migrating to newer
versions (eventually removing older ones altogether) and client
developers are forced to migrate. In the statically linked API
context, developers could choose to stay with an older version
of e.g. libxml, which meets their needs, yet, with web service
APIs the provider can at any time unplug a specific version
(and functionality), thus forcing an upgrade.

Indeed, while Laitinen claims that client developers will
postpone migration to newer versions until there is a high
return-on-investment, in previous work [8] we found some web
API providers are eager to push breaking changes and force

client developers to migrate to a newer version within a period
as short as 4 months.

Through their loose coupling [9] and REST interfaces, web
APIs can easily be integrated into applications with a single
HTTP request [10]. However, as the integration becomes as
simple as exchanging HTTP requests, do client-side developers
consider the consequences of ever-evolving web APIs?

We choose to perform our investigation into web APIs in the
realm of mobile applications. This was a conscious decision
instigated on the one hand due to the linear growth of mobile
Internet usage1, and on the other hand because mobile apps
connected through web APIs are an integral part of the mobile
computing experience [11], thus ensuring relevance.

Being aware of the ever-growing importance of and reliance
on web APIs [12], particularly in the mobile computing
domain, we wonder how well-prepared some of the most
popular Android mobile applications are with regard to a
number of factors which include:
• changes in the web API response from the server due to

evolution of the web API
• interrupted HTTP requests due to e.g. loss of Internet

connectivity
• empty response messages due to server overload
In order to steer our research, our main research question is

how well-prepared are Android mobile applications with re-
gard to changes in response messages from the web API which
is then divided into the following sub-research questions:
[RQ1] How robust are mobile apps when the web APIs being

used return unexpected responses?
[RQ1.1] How can we simulate unexpected responses

from web APIs?
[RQ2] Have web API client developers developed resilience

against changes in the web API or failure of the web
API?.

To address these questions we performed a study on 48
Android mobile applications which make use of at least one
web API. In our study we perform a series of mutations
aimed at mimicking potential real-world scenarios where the

1Already in the United States of America, reports show that specifically
mobile applications’ Internet usage has in 2014 surpassed Internet usage on
desktop computers — http://money.cnn.com/2014/02/28/technology/mobile/
mobile-apps-internet/, last visited June 6th, 2014.

SERG Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client

TUD-SERG-2014-009 1



web API changed its behavior either through (communication)
failure or software evolution and observe how the different
mobile applications fare in dealing with such mutations.

The remainder of this paper is structured as follows: in Sec-
tion II we describe our approach, namely the details of using
mutation analysis for analyzing web API client robustness, in
Section III we describe our experimental setup including how
the mobile applications were selected, the added dimensions
we analyzed and details regarding the developer interviews,
Section IV describes the results of our experiment with
mutation analysis as well as the insights from the developer
interviews, Section V discusses potential threats to validity of
our work and lastly we present our conclusions and future
work in Section VII.

II. APPROACH

In order to investigate the robustness of Android mobile
applications with regards to possibly fragile web APIs, we
first start by explaining our approach to simulate unexpected
response messages from the web API, which is loosely based
on mutation analysis, also found in the area of software
testing [13]. In this section, we first introduce our mutation
analysis in Section II-A, after which we explain the technical
setup that we have used to apply the mutations in Section II-B.

A. Mutation Analysis — What to Mutate?

Our mutation analysis consists of changing the web API
response for a particular web API request sent by a mobile
application. While previous research by Bozkurt et al. [14]
touches upon the issue of XML and SOAP perturbations,
their approach and goal are focused on identifying faults on
the web service/API. While our research also makes use of
message perturbation, we apply such perturbations (referred in
this paper as mutations) in the response received from the web
API as to test the robustness of the mobile application which
initiated the conversation. To do so, we first start by selecting
a repeatable action within the application and capture a valid
response for that action using Charles 2, a web debugging
proxy. This response is then used as a basis for the mutations
which are also applied using Charles’ rewrite feature.

Xu et al. [15] set forward four perturbation primitive op-
erators for XML documents: two insertion operators and two
deletion operators where the difference is the position in the
XML tree where new nodes are added and deleted. One of
the addition operators which inserts nodes at the same level as
existing nodes is also included in our study. The other addition
operator relates to datatype insertion and since none of the
studied web API responses contain datatype definitions, was
excluded from our study. The same reasoning was applied to
the deletion operators.

Thus, we devise two operators from the aforementioned
work: addition of new unrelated nodes and deletion of existing
nodes (referred to in this paper as field addition and field
removal, respectively). We extend these operators with four
other operators: malforming a response, replying with an

2Charles Web Proxy — http://www.charlesproxy.com/

empty message, changing the implicit data type of a field and
disrupting the data formatting.

Malformed responses can happen for a number of reasons.
As an example, if the data encoder of the web API fails to
properly sanitize strings, it could lead to floating reserved
characters which in turn break the document’s data format.
This can happen while, for example, encoding a JSON string
which contains double quotes and these are not properly es-
caped (i.e. “foo”:“b“ar” as opposed to the valid “foo”:“b\“ar”).
In order to mimic these failures, our malformed response
mutation consists of mutating the web API response as to
make it malformed in its respective data format. In XML we
mutate the response by breaking an XML tag (e.g. ‘<data>’
becomes ‘<data’) and in JSON this is achieved by leaving
a dangling double-quote in a JSON string (e.g. “foo”:“bar”
becomes “foo”:“bar).

Empty responses can be a symptom of different types
of ailments on the web server. For instance, should the web
server be at the edge of its maximum capacity, some requests
may receive an empty response. Similarly, if the connection
is terminated due to communication issues, it could also lead
to empty responses being returned to the mobile application.
Our empty response mutation consists simply of replacing the
response with an empty-bodied HTTP response.

Whether using a structured approach such as semantic
versioning 3 where only major versions are allowed to bear
breaking changes, or using a more lenient approach, when
dealing with a web API it is possible that some fields are
removed. Indeed, even renaming a field will appear as an
addition plus a removal and would constitute a breaking
change. Breaking changes caused by the removal of fields can
be found in our previous work [8], in particular regarding the
Facebook web API 4. Also Li et al. [16] show that indeed more
providers rename parameters which also results in breaking
changes. In the context of our mutations, a field removal
mutation consists of removing one or more fields from the
web API response. In most cases only one field is removed
and, should the application still function normally, we take it
one step further by removing more fields until it crashes or no
more data is available to be removed. Of note is the fact that
despite removing fields, special care was taken to maintain
the web API response semantically valid (as opposed to the
aforementioned malformed response).

Also as a part of software evolution, web APIs may at some
point change the (implicit) data types of certain fields. For
instance, while the price field can be a string which includes
the currency symbol, at a later stage the price field can become
a purely numerical field. To address such cases, our mutation
of changing data types consists of two changes: replacing
an integer with a string and whenever possible, the reverse
operation. As all the mobile applications run on Java (by force
of the Android platform) and since Java is a statically typed
language, if special care is not had when parsing the web API

3Semantic Versioning — http://semver.org/
4Facebook Completed Changes — http://bit.ly/fb-completedchanges

Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client SERG

2 TUD-SERG-2014-009



response, type mismatches could occur.
Lastly, the field addition mutation consists of adding one

or more fields to the web API response which contain irrel-
evant data for the mobile application. The data formatting
disruption consists of adding line breaks and white space as an
attempt to verify whether the mobile applications are sensitive
to this type of changes.

B. Mutation Analysis — How to Mutate?

In order to mutate the responses from each mobile appli-
cation’s respective web API, we start by installing the chosen
applications for our study on a Google Nexus 7 tablet (running
Android KitKat 4.4.2) and configure the tablet to redirect all
the network traffic through a transparent proxy (Charles Web
Proxy) setup in a separate machine on the same network.

On a first instance, while using the transparent proxy, we
identify a reproducible action which causes a request and
response interaction with the web API. We then collect a
standard response (all the standard responses used are available
online 5) for that particular web API request made by the
application under study and configure the transparent proxy
to replace the response of all other similar requests (for the
purposes of the Charles web proxy, similar requests means re-
quests sent to the same endpoint) with a customized response.
The customized response is in fact the original web API
response although slightly modified. We modify the response
as to verify that the application executes as expected and that
the new data is being loaded into the mobile application.

The original web API response is then further disturbed with
a number of different types of mutations (explained in detail in
section II-A). For each mutation we observe how the Android
application reacts to such changes. Our observations are then
categorized into different types of behaviors (e.g. crashing or
indefinitely loading without a timeout) and turned into a report
(a sample is available online 6) which is two-fold in its content:
it starts with a statistical overview displaying how many
applications behave in each of the identified categories, and
culminates with a report specific to that particular application.

III. EXPERIMENTAL SETUP

For our experiment, we first need a body of mobile appli-
cations to be analyzed. How these applications were chosen
is described in detail on section III-A. We then introduce mu-
tations in web API responses through the use of a transparent
web proxy, described in subsection II-B. These mutations,
described in detail in subsection II-A, range from slight
deviations from what would otherwise be a valid response all
the way to making the responses malformed as an attempt to
emulate breaking changes and faults on the web API.

We also expand this quantitative view with a more qual-
itative approach. To do so we interviewed 3 developers,
each from a different application under study. More details
regarding these interviews are also in the subsections below.

5Web API Responses — http://bit.ly/figsharescam2014
6Sample status report — http://bit.ly/report-web-api

A. Application Selection

With our study we aim to understand what is the current
state of web API integration issues. We do so by analyzing
some of the most popular and widely used Android applica-
tions. All the applications under study were required to meet
two criteria.

The first criterion is that each application must use at least
one web API. Important to note is that our definition of web
API excludes mobile applications which simply load HTML
or RSS feeds. These exclusions are due to the fact that with
an HTML response, no processing is required on the mobile
application. With this we exclude also any mobile application
which may use screen-scraping techniques [17]. Similarly,
RSS feeds have a fixed structure which means they are not
susceptible to software evolution changes which make them
not applicable for our study.

The second criterion is related to how the mutation analysis
is applied in the web API response. Tampering with such web
API responses is only possible if the web API communication
happens over an insecure channel such as HTTP. Indeed, this is
particularly important as an encrypted protocol such as HTTPS
does not allow for changes to be made to the content of its
messages (as this is indeed its purpose).

For this study we picked candidate projects from the top
100 free applications available in the Google Play Store of
the Netherlands, United Kingdom, United States of Amer-
ica, Canada, Australia, Belgium, Brazil, Spain, Germany and
France. In total we installed 198 projects of which not all were
usable. For instance, 65 use HTTPS and a number of other
projects use proprietary binary data formats for the commu-
nication. Similarly, other projects which use compressed files
as a means to transfer the web API responses (e.g. ZIP files)
were not mutable using our approach as it would require the
response to be decompressed and recompressed on the fly,
which is not possible using Charles Web Proxy. Ultimately,
we were able to compile a list of 48 projects (Table I 7) which
were all analyzed and compose the corpus of our study.

Of note is the fact that all of these projects make use
of either XML or JSON as a data format for the web API
requests. This is particularly relevant as a data format like
XML requires an additional XSD schema document to enforce
data types. For this to happen, the XML document would
require references to the XSD 8 document which can be
used to validate it. Such cases have not been encountered
in this study which means no XML documents were being
(explicitly) validated against an XSD schema. During our
mutation analysis, changing data types was still attempted on
XML documents (i.e. changing a field with a numeric value
to a string) even though none of the fields were specifically
numeric as it happens with JSON where numeric fields can
be identified by the lack of quotation marks.

7The Buienalarm and Eurosport mobile applications make use of two
distinct web APIs and therefore appear twice on the list.

8XSD Schemas — http://www.w3.org/TR/xmlschema11-1/

SERG Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client

TUD-SERG-2014-009 3



B. Caching and Versioning

After beginning our experimental study, we found that for
some applications, after the “sample web API response” was
collected to be used as basis for the mutations, the mutated
data (even with a string for string mutation) would not be
loaded. This hinted at the usage of caching on some of
the mobile applications. As caching is of particular interest
for mobile applications where the Internet connectivity may
sometimes experience slow bandwidth and where the web API
may not respond due to high peaks of server load, we collected
data on whether each mobile application uses caching and
whenever possible, how is the caching used.

On what concerns versioning, in previous work [8] we
found that some of the high-profile state of the practice web
APIs (e.g. Twitter, Google Maps, Netflix) make use of some

Application Versioning Caching

NS.nl
√ √

yr.no
Skyscanner

√
Buienalarm (own API)

Buienalarm (OpenWeatherMap)
BBC News

IMDB
Daily Mail Online

√
WeatherBug

√
TheWeatherChannel

Reddit is fun
Ozsale

√
Wish

tramTracker
NRL - League Live

The Masters Gold
mobile.de

Onefootball
√

Wetter App
MeinProspekt

√

Wetter.de
√

TV Movie
√

Wetter.com
McDonald’s Deutschland

√
H&M

eltiempo.es
Liga de Futbol Professional

TecMundo
√

Trivago
√

Resultados Futbol

La Chaine Meteo
√ √

Resultats Foot en Direct
RATP

ViaMichelin
√

Le Figaro
√ √

Le Parisien
√

Eurosport (XML)
Eurosport (JSON)

√
Tele Loisirs

NU.nl (stocks)
√ √

Just Eat
Questionmark

√
Couverts

Trulia
√ √

24Kitchen
NL Treinen

√
Huizen

√ √
Kieskeurig

√
Jumbo FoodMarket

√ √
Pull&Bear

√

TABLE I
LIST OF MOBILE APPLICATIONS STUDIED

form of versioning. Still, we also found a major web API
provider (Facebook) which does not make use of any form of
versioning in their web API. Having studied these two different
approaches and how client developers perceive each of the
aforementioned web APIs, we also collect data on which web
APIs are versioned and which type of versioning is used.

C. Developer Interviews

While the empirical study described above provides inter-
esting insight on how a large body of mobile applications react
when web APIs experience different failures and changes, it
does not provide an explanation as to the choices of their
respective developers. As an attempt to shed some light on the
developer perspective of developing and testing an application
which integrates with a web API, we aimed at interviewing
the developers of some of the mobile applications under
study. These interviews took the format of a semi-structured
interview [18] using the questions in Table II as a basis to
stimulate the exploratory discussion.

We selected 14 applications which stood out either due
to a special versioning mechanism, because they crashed
or because of some particular behavior that other mobile
applications did not demonstrate. For these select applications
we composed an application-specific status report with our
findings. These reports were then sent to their respective de-
velopers along with an invitation to participate in an interview.

Ultimately we were able to interview three software devel-
opers: the mobile software architect for OZsale, the product
manager for the Trivago mobile application and lastly, the
third developer is the sole developer of the NS.nl Android
application. The interviews lasted 15 minutes on average.

The status report we compiled and sent to the developers
contains statistical information on all the projects under study.
We provide data on how many projects crash due to a mutation,
how many use versioning and the divide between JSON and
XML implementations. Also for each type of mutation we
provide statistics on the different observed behaviors. We also
present statistics on how many applications use caching and
complement the report with application-specific findings (e.g.
some applications still load malformed data). It is also these
outlier findings of behaviors that are not common which we
aim at clarifying with the developers through the interviews.

Q1 What was the design decision behind choosing HTTP over HTTPS?
Q2 Why are no caching mechanisms used?
Q3 Is versioning not used for a particular reason?
Q4 Is the web API used by other (third-party and or mobile) applications?
Q5 Is the mobile application native to Android or generated with a mobile

development framework?
Q6 Is the mobile application developed by the same team as the web API?
Q6.1 In particular when it is not developed by the same team, how does the

mobile application team learn about the web API changes?
Q7 How frequently are the web API and mobile application updated?
Q8 Have there been problems in the past with breaking changes causing

the mobile application to break?
Q9 Are there automated tests in either the mobile application or web API

(unit tests, integration tests, etc)?

TABLE II
QUESTIONS ASKED DURING THE DEVELOPER INTERVIEWS

Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client SERG

4 TUD-SERG-2014-009



IV. EXPERIMENT RESULTS

In this section we present our findings regarding each
observed behavior in the Android applications under study
upon applying the different mutations to the web API response.
Specifically, we report on four of the six initially proposed
mutations. Two of the mutations, the field addition and data
formatting, represented no problem for any of the studied
applications and are thus not further discussed in the results
below. We provide an analysis of the different behaviors dis-
played by the mobile applications under study and whenever
relevant, provide anecdotal examples.

We also expand upon the results of the mutation analysis
with data on the different types of data caching and web
API versioning encountered as well as developer input on
some of the choices used in web API integration. Of note
is that the results are valid for the respective versions studied,
current as of June 2014. As each of the mobile applications
and their respective web API may change, so may the mobile
applications’ reaction to web API mutations.

A. Reactions

1) Force Close: On the Android platform, uncaught excep-
tions will cause the application to crash and be immediately
closed (force closed). This is always caused by a Java runtime
exception, thrown in the context of that specific application,
which was not correctly handled.

In our study, each of the applied mutations caused at least
one application to force close. Table III shows an overview of
how many applications force close according to each mutation.

Malformed Response. The only application which demon-
strated this behavior (Wetter.com) will immediately crash as
soon as the malformed data is required in the user interface.
One other application (Le Parisien), despite not force closing,
would show a message upon loading the data that would force
the application to exit itself thus rendering the application
unusable. The reduced number of applications force closing
implies that for the majority of the applications, some validity
checking is being done to the web API response.

Empty Response. As a response which may happen in
the event of a server overload, it is surprising that not all
applications were able to deal with an empty message. Indeed,
the TecMundo application immediately crashes upon receiving
an empty response. In fact, when such a mutation was applied,
the application would become unusable by crashing on startup.

Field Removal. While the mobile applications were in
general resilient to malformed and empty responses, removing
fields from the web API response caused 10 applications to
force close. An interesting example is that of the NS.nl mobile
application. While the web API response does not specify
optional arguments, the removal of some arguments still allows
the application to load the response normally without crashing
or showing an error message. However, as further (potentially
non-optional) arguments were removed, the application would
crash every time we attempted to load the incomplete data.
Of note is the wide user-base of this particular application

which, according to the Google Play Store statistics, has been
installed between 1 million and 5 million times.

In our study we have also found another application which
makes use of the same web API as NS.nl, the NL Treinen 2 -
NS. An interesting finding regarding this third party application
is that when suffering the exact same mutations the official
NS.nl application had endured, it never crashed. This added
care when dealing with the web API may in fact be due to
the web API being provided by a third party (from the NL
Treinen 2 - NS developers’ point of view) as opposed to what
happens with the official NS.nl mobile application. Indeed,
upon interviewing the developer for the NS.nl application,
we learned that the interviewee is the same developer who
develops the web API. Unfortunately, the developer for NL
Treinen 2 did not react to our interview request and we can
thus not fully confirm our hypothesis.

Changing Data Type. Also a cause of force closes is
changing the data type of some fields in the web API response.
In particular, this caused 3 applications to crash. While we
were not able to investigate the exception being thrown, it is
possibly related to the parsing of the message and of a type
mismatch between Java’s statically typed variables and the
strings being parsed into different types.

In sum. With the exception of the field removal mutation,
less than 10% of the mobile applications crashed when facing
the different mutations. More worrying is the 10 applications
which force close upon the removal of fields from the web API
response. Indeed, field removal is a potential change which
evolving software faces through e.g. refactoring of the web
API response. Our results reveal that potentially there are no
negative tests scenarios being applied or the existing tests do
not cover scenarios such as a malformed response.

2) Error Message or Silent Failure: Showing an error
message is a graceful way of letting the end-user know that
something did not go as expected and what his or her course
of action should be (e.g. try again or check the Internet
connectivity). This behavior is, in all cases, preferred to letting
the application crash and close itself.

In our study we do not make a distinction as to which
approach may be better at notifying the end-user. Nonetheless,
the content of the error messages should be detailed in
explaining the cause of the issue and what should the end-
user do about it, indeed, in the dynamic domain of web APIs
where new versions are released regularly and often without
the knowledge of the client developers, versioning mechanisms
could help in delivering better advice to the end-user (e.g.
update the mobile application to the latest version or simply
retry). Our findings show that whenever the error message
exists at all, these are vague and do not offer insight about what

Mutation # of apps

Malformed Response 2 applications
Empty Response 1 application
Field Removal 10 applications

Changing Data Type 3 applications

TABLE III
MUTATIONS VERSUS FORCE CLOSE

SERG Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client

TUD-SERG-2014-009 5



went wrong. Anecdotal evidence of this is provided below.
Also, in our study, not all the mobile applications make use

of alerting mechanisms to inform of issues with the web API
response. In fact, we contrast the showing of an error message
with a silent failure. By not showing any reaction to the end-
user’s input, the mobile application may induce confusion.
More so than by showing a generic error message which will
at least let the end-user know something went wrong. Indeed,
when the application simply does not react, it is impossible for
the end-user to know whether the data is still being loaded (as
in these cases there was also no visual indication of loading)
or whether he or she should try again to refresh the data.
Table IV shows an overview of how many applications show
an error message or silently fail according to each mutation.

Malformed Response. An example of one of the native
error message mechanisms is shown by the NS.nl Android
application which reports that it “cannot retrieve data from
server”. This application’s error message, while better than
remaining mute about the failure (as can be seen in the next
paragraph), also serves as an example of a generic message
which offers no indication of how the end-user should proceed.
In fact, the data was retrieved from the server but an error
happened while processing it.

In contrast, some mobile applications under study did not
react upon facing a malformed response. Also in this type of
behavior, two different types arise. In some applications such
as IMDB and Daily Mail Online a “results screen” is shown
with zero results, which does at least hint that the loading has
stopped (even though no results are shown while the web API
response did contain results). In contrast, the Resultats Foot
en Direct application does not have a dedicated results screen
and thus simply a void is shown where the results should
appear. This will either leave the end-user waiting longer than
necessary or trying to repeat the action multiple times.

Empty Response. When dealing with an empty response,
16 applications of those under study did show an error
message. Of special note are 4 of these applications (mobile.de,
Resultados Futbol, Couverts and Trulia) which show a mes-
sage claiming that no results were found and that the end-user
should change his or her search criteria. This reveals that the
application did not recognize the empty response as a fault,
even though an empty set of results from the web API was in
neither of the applications an empty message (i.e. even when
no results were available, some boilerplate JSON or XML
encoding still should be returned). The remaining majority of
the 16 applications showed generic “network error” messages,
with special attention to the yr.no application. This was the
only one which actually reported an “empty response”. Still,
the most common behavior seen amongst the 48 mobile

Mutation # of apps ⇒ error message # of apps ⇒ silently fail

Malformed Response 14 applications 34 applications
Empty Response 11 applications 37 applications
Field Removal 6 applications 42 applications

Changing Data Type 5 applications 43 applications

TABLE IV
MUTATIONS VERSUS ERROR MESSAGES

Mutation # of apps w/timeout # of apps indefinitely loading

Malformed Response 40 applications 8 applications
Empty Response 39 applications 9 applications

TABLE V
TIMEOUT

applications and one that affects more than two thirds (28 out
of 48) of the applications under study is a silent failure. More
specifically, these mobile applications would stop loading and
never present the user with a message describing why the
loading had stopped and why no data was loaded.

Field Removal. Similar to what happens with an empty
response, 6 out of the 48 mobile applications under study
silently fail whenever one or more fields of the response
message are removed. A silent fail means that the application
does not show any of the remaining data still available in the
response, does not crash and does not show an error message
indicating what went wrong with the request.

The remaining applications which do show error messages,
just like in the malformed response mutation, show no spe-
cially tailored error message to cover the lack of certain data
in the web API response.

Changing Data Type. As with the other faults, some of
the mobile applications silently fail without informing the
end-user about the fault. In the case where data types were
changed, 5 out of the 48 applications did not report an error
even though the data would not load. The error messages that
did get shown were generic and did not pinpoint the problem.

In sum, a considerable number of mobile applications under
study do not make use of error messages to inform the end-
user of problems with the web API. Indeed, some of the
mobile applications simply silently fail and others react as if
no “search results” were found. Furthermore, with exceptions
such as the yr.no application which clearly points out which
was the fault at hand, most applications show the same generic
error message for all the different mutated web API responses.

3) Timeout: Timing out is an important part of reporting a
failure. Indeed, when presented with malformed and empty
responses, some of the applications under study (Table V)
do not time out. This means that these applications will
stay indefinitely “loading” (although nothing is really being
loaded) until the application is closed or the end-user touches
the screen. For the applications under study, only malformed
and empty responses caused applications to not time out. In
this event, the application does not force close (thus the end-
user does not know that something went wrong) nor does it
show an error message. It is then up to the end-user to decide
when to stop waiting and close the application.

Malformed Response. When dealing with malformed re-
sponses, 8 applications out of those under study do never
time out. In this case, the mobile application is left stuck
in a loading screen. While the absence of a force close
indicates that whatever exceptions which arise from processing
a malformed response are being handled (since the application
did not crash), the handling of the situation altogether is not
ideal as the applications never time out. If it is the case that the
document parser does not report whenever the documents are

Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client SERG

6 TUD-SERG-2014-009



damaged, then a different parser would be preferable. While
we cannot confirm either situation on the source code, it is
either handling and muffling the exception or it does not know
altogether that the message is damaged. In either case it never
closes the loading screen and fails to provide the end-user with
insight as to what happened.

Empty Response. One of the most common behaviors
experienced when replacing the web API response with an
empty message was the application hanging indefinitely, never
timing out or informing the end-user that the loading had
failed. While it is not possible to verify the reason for this
behavior in the applications’ source code due to their closed
source nature, it is likely the affected applications always
expect a reply with content. When the content is not present,
the applications hang until there is content (which would then
never happen). In fact, RESTful web APIs may indeed at
times reply with an empty message, for example with HTTP
status codes of 304 (Not Modified) or 204 (No Content) 9.
In our study we experienced web APIs which replied with an
empty HTTP message having a status code of 301 (moved
permanently) which indicates that a request should be made
to a different URL. In our study, 17 mobile applications out
of the 48 analyzed presented this behavior and would not stop
loading until the screen was touched or a key was pressed.

In sum, when dealing with a web API where a network
connection is involved, timeouts are of utmost importance. In
our study we found a number of applications which never time
out and indefinitely leave the end-user thinking something is
still being loaded when in fact the application simply did not
handle the mutated web API response correctly.

B. Data Caching

While applying the mutations to the web API responses,
some applications would not initially attempt to load the
mutated data. This was due to the fact that because the data
had just successfully been loaded (from our first execution,
probing for a testable action), the data would be stored in
cache. Until the cache timeout was met, new data would then
not be loaded. In some applications, even though caching was
used, a request would still be sent to the web API but the
response would be discarded. While this approach to caching
does not help with minimizing web API interaction and thus
network data usage, it may help as a backup whenever network
connectivity is not available.

The finding that some applications were indeed using
caching led us to investigate how many of the mobile applica-
tions under study were making use of it. Out of those that did
use caching, we tried to find out how was it performed. The
use of caching presents a trade-off between different factors:
while the end-user does not always have the most recent data
at his or her disposal, with caching the number of requests
being sent to the web API can be reduced. Also in the cases
where connectivity is temporarily lost, which is a potential risk
when using wireless networks, having a cache means that the

9REST Patterns, HTTP Status Codes — http://bit.ly/restpatterns

end-user can still access some data and have some degree of
interactivity with the application. With this in mind, caching
data does help to some degree in dealing with a web API
whose responses should not be taken for granted (as opposed
to what happens with a statically linked API).

Our results show that the majority (34 out of 48 appli-
cations) do not use caching. Amongst those that do, one
application in particular stands out (McDonalds Deutschland).
While from an external perspective we assume most of the
applications perform time-based caching where the cached
result times out after a set amount of time, the McDonalds
Deutschland mobile application implements caching by hash-
ing. Before invoking the web API method it requires, it first
queries the web API for a checksum hash of the web API
result. The hash, which is significantly smaller than the actual
response, is compared to the hash of the previously queried
data and if it matches, no new request is made. This type of
caching helps reduce mobile data usage and it improves the
response time of the mobile application.

For all the other applications which make use of caching,
quitting the application would not help in clearing the cache.
In fact, we had to manually clear all the data of the Android
application using the built-in Android data clearing function
which resets the application to the state as if it had just
been installed and never executed. We therefore assume these
applications implemented time-based caching where after a
fixed period of time the cached data would be marked dirty
and a new request could be issued to the web API.

In contrast, the cache for one other mobile application
studied (Huizen) times out as soon as the application is closed.

C. Versioning

An important aspect when dealing with libraries in general
is the usage of versioning. It is widely used by build tools like
Maven where a version of each library must be specified.

When it comes to web APIs, however, many web APIs still
do not make use of versioning. Indeed, our study shows that
only 16 out of 48 applications’ web APIs (less than half) make
use of some form of versioning.

In previous work [8] we highlighted the importance of
versions in the web API context. Especially when the client
developers have no control over when changes happen to
the web API behavior, versioning that behavior allows the
client developers to know what behavior to expect from a
particular web API. The most widely used versioning mech-
anism observed in web APIs used by the mobile applications
under study is of specifying the version in the URL (e.g.
www.weather.com/v1/report). This way, whenever migrating a
client’s integration from one version of the web API to another
(either as an attempt to use features provided in the new
version or merely pushed to do so by the web API provider),
the client developer knows some changes are to be expected.
Some applications take this practice further and make use
of semantic versioning. One of the applications under study
(OZsale) does use a variant of semantic versioning. Currently

SERG Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client

TUD-SERG-2014-009 7



at version 3.4, minor version increments (e.g. all the different
versions within 3.X release) should not in principle introduce
breaking changes and are thus safe to interchange.

What is then a surprise is how such a high percentage of
mobile applications make use of the web API without any form
of versioning. Ultimately when such a web API introduces
changes, all the clients which have not yet migrated to the
latest version will still be interacting with a changed web API,
which may not be compatible. Evidence of a scenario where
this would potentially happen would it not be for versioning
comes from one of the interviewed developers. The developer
interviewed in the context of the OZsale application claimed
that indeed, some end-users do not update their mobile appli-
cations and that 5% of their user-base (of 100.000∼500.000
users according to the Google Play Store) was still using their
mobile application’s very first version.

D. Developer Interviews

In this section we present the findings gathered from inter-
viewing the three participants in our study. In the paragraphs
below we refer to the questions shown in Table II.

Insecure HTTP. Referring to question Q1 regarding the
design decision of using HTTP over HTTPS, an intriguing
finding of our study is how such a large number of mobile
applications (indeed, all the 48 under study) still make use of
insecure HTTP. Data sent over HTTP allows for the data to
be both eavesdropped upon and, indeed, tampered with in the
same fashion as is performed in this study. When confronted
with this question, one of the developers claimed he did not
in fact know why their web API was using HTTP as the
application protocol because the web API is developed by a
different team. However, he mentioned the use of HTTP was
likely related to the Chief Technology Officer being “obsessed
about performance” where HTTPS does indeed show its
downside with an overhead on both processing (as each request
is encrypted server-side) and on network overhead (as the
encrypted request grows larger and has a lower compression
ratio of encrypted data). Furthermore the same developer
claimed that despite using HTTP for interactions which are not
sensitive from a security standpoint, their mobile application
does make use of HTTPS for login and payment interactions.

Caching. While all the interviewed developers perceive
caching (question Q2) as a useful mechanism to reduce
network usage, specifically the developer of the NS.nl appli-
cation raised a concern about the necessity for “fresh data”.
Indeed, this application provides information on the Dutch
train departure and arrival times which are at times susceptible
to delays. It is thus crucial to always display the latest data.

Another one of the interviewed developers (the mobile
software architect for OZSale) justified the lack of caching
as it being a lower priority requirement. While such a feature
is already present in the iOS version of the mobile application,
at the time the Android version started being developed “the
libraries available for caching in the Android platform were
not yet mature enough”. The iOS application goes a step
further and makes all of the data available for offline browsing.

Also the developer responsible for the web API at Trivago
claimed that caching would in fact stay in the way of the mo-
bile application’s performance for their specific case. Caching
would require the mobile application to keep track of which
data it has available and only request the delta between what
it already has and the results it still needs to fetch. To do
so with caching and without state would make for chatty
communications. The mobile application would have, with
every request, to report what it already has in cache and what it
requires. Trivago contains a more pragmatic approach where
sessions (i.e. stateful exchanges) are used which allows the
cache to be on the server-side and thus lower the chattiness
which is desirable for both performance and data usage.

Versioning. Two of the three interviewed developers (for
the Trivago and OZsale mobile applications) have versioning
mechanisms implemented in their respective web APIs.

For instance, the Trivago web API makes use of HA-
TEOAS 10 (Hypermedia as the Engine of Application State)
versioning approach. The HATEOAS approach makes use of
HTTP headers (Accept-Type and Content-Type) as a way to
handle versioning and description of the data and since it
stands central to being the way a RESTful web API should be
versioned, Liskin et al. [19] have in fact devised an approach
to “add HATEOAS support [to services] as an afterthought”.
When asked about why this particular versioning mechanism
was used, the answer was that even though the Trivago web
API is still in its first version, HATEOAS was purposefully
chosen as a way to future-proof the evolution of the web API.

The developer of the OZsale application also stressed the
importance of their versioning system. While the data itself
is not versioned (as it happens with HATEOAS), a version
number must be used in the URL to inform the server of which
version of the web API the mobile application requires.

An interesting divide between the two aforementioned de-
velopers is how old versions of the web API are handled. The
Trivago software architect underlined the fact that it is costly
to maintain different versions in parallel - which they try to
avoid at all costs, while the OZsale developer claimed that the
different versions were a core part of their different platforms.
More precisely, while the website was running on the latest
version of the web API, the different mobile platforms were
lagging at least 5 minor versions behind (all of which were
still available and fully functional). The reasoning for this was
the existing delay between submitting a new version of the
mobile application to the respective application store and the
application actually being available (e.g. the developer claimed
that in the iOS App Store this delay can be up to 1 week).

The developer of the NS.nl mobile application claims that
it was not necessary to have a versioning mechanism in place
for because not many changes are pushed to the web API. In
particular, over the course of four years of development, no
breaking changes have been applied to the web API.

Evolution & Communication fragility. Another interest-
ing finding is anecdotal evidence of communication issues

10Versioning REST Services — http://bit.ly/versioningrestservices

Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client SERG

8 TUD-SERG-2014-009



between the different teams involved in the development pro-
cess. Indeed, one of the developers claimed that at least twice
in their project, changes were pushed to the web API which
inadvertently broke backwards compatibility. The result was
having a mobile application which was crashing. This anecdote
raises an issue which is also supported by our analysis of the
48 mobile applications: not all mobile applications are built
with the consideration that the web API can change at any
time. This was especially relevant as in this very same project,
changes were being pushed daily with breaking changes taking
place every two months highlighting the need for excellent
communication between the mobile teams and the web API
team should these teams not be one and the same (questions
Q4, Q6 and Q6.1).

Integration Testing. While using a static library it is possi-
ble to test it and expect it to behave the same. However, when
using web APIs where the behavior can change due to a simple
patch which fixes what was buggy (but expected) behavior
can cause the mobile application to suddenly misbehave. This
highlights the importance of both positive and negative testing,
that is testing both scenarios which are part of the use cases
as well as unexpected but potential scenarios.

Our empirical data suggests that Çalıklı and Bener’s [20]
observation on confirmation bias regarding testing may indeed
affect some of the studied applications. Indeed, while some of
the applications may have automated tests (which we cannot
confirm due to their closed source nature), they may be
positive tests which “make their program work rather than
breaking the code” as would be the case with negative tests.
In our interviews, we questioned the participants on whether
their application makes use of any kind of testing (Q9). Our
results show that for some of these applications a simple
mutation such as malforming the web API response caused
a crash. Considering the OZsale application as an example,
the interviewed mobile software architect claimed they do
perform automated testing for some bad scenarios which may
potentially happen, this very same application would remain
loading indefinitely when faced with a malformed response.

V. THREATS TO VALIDITY

External validity. Our study, despite including data for
48 applications, is composed solely of Android applications.
Other mobile platforms which make use of web APIs such
as iOS or Windows Phone should also be explored. Perhaps
in some platforms it is more or less difficult to cause the
whole application to crash. Also in some cases it is the same
development team who develop for multiple platforms which
use different programming languages and third party libraries
for web API handling (e.g. HTTP libraries).

Similarly, our study can only be applied to mobile appli-
cations which make use of insecure HTTP to transport the
web API requests and responses. This both limits the number
of mobile applications which can be used as well as it may
influence the outcome of the mutations. Mobile developers
who intentionally chose to use HTTPS over HTTP are perhaps
more conscious regarding the differences which make web

APIs different from the non-web counterparts. Indeed, without
modifying the Android platform itself, nothing can be done to
mitigate this threat.
Reliability validity. While our study intercepts and mutates
web API responses and analyzes mobile applications’ reac-
tions to these mutations, we did not consider whether these
mobile applications send failure data back to the respective
software developers for further analysis. Such data, should it
exist, may compliment and aid the debugging task.

VI. RELATED WORK

Maintenance of service-based systems. Lewis and Smith
were among the first to recognize that maintenance of service-
based software systems is different from maintaining other
types of software systems [21]. In particular, they highlight
the importance of impact analysis for service providers as they
have to consider a potentially unknown set of users.

Espinha et al. address this lack of knowledge regarding the
user-base of services by tracking how different users use a
service-based system in different ways [22].

Maleshkova et al. study the state of the practice on what
concerns web API implementation and amongst the findings,
discovered that the majority of the web APIs are actually
underspecified [12].

Evolution of APIs. Li et al. [16] highlight the added
challenges of web APIs versus statically linked APIs and
provide a set of potential changes which web APIs may
implement. The authors perform a similar study on how web
service API evolution affects clients by analyzing what are
common changes applied to web APIs and what these changes
represent to client code in terms of API change patterns.
Ultimately the authors propose the creation of a tool for
automated migration.

Dig and Johnson try to understand the nature of changes
to APIs [6]. From the five case studies that they analyzed in
detail, they found that over 80% of the API-breaking changes
can be classified as being refactorings.

McDonnell et al. through a study on API stability and
adoption in the Android ecosystem have found that, despite
the added benefits of newer versions of APIs, developers tend
to be slow in adopting the newer versions [23], thus further
highlighting the awareness required when web API changes
are inevitable.

An interesting non-peer reviewed work in this field is a sur-
vey [24] conducted on the pains of web API integration which
presents many complaints from web API client developers.

Daigneau focuses on the brittleness of web APIs in his
book on service design patterns [25]. He proposes the Single
Message Argument pattern, which suggests to refrain from
creating signatures with long parameter lists. Daigneau further
states that long parameter lists “[...] signal the underlying
framework to impose a strict ordering of parameters which,
in turn, increases client-service coupling and makes it more
difficult to evolve the client and service at different rates.”

SERG Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client

TUD-SERG-2014-009 9



VII. CONCLUSION

In this paper we perform a study on the impact that changes
to web API behavior can have on mobile applications. Our
contributions are:
• An approach using mutation analysis for simulating un-

expected responses from web APIs.
• A study on how 48 high profile mobile applications react

to a set of predefined mutations in web API responses.
• Insight on caching and versioning approaches of some of

the web APIs under study.
• An interview with three developers of some of the studied

mobile applications.
Referring back to our research questions proposed in the

introduction, we set out to find how robust mobile applications
are when facing unexpected responses from web APIs. The
first question we answer is [RQ1.1] on “how can we simulate
unexpected responses from web APIs”. The mutation analysis
presents a structured approach to simulate web APIs afflicted
either by failure or by changes caused by software evolution.

Using mutation analysis we are then able to address [RQ1]
which asks “how robust are mobile apps when the web APIs
being used return unexpected responses?”. Our results present
a mixed answer to this question. Indeed, most of the mobile
applications studied are fairly robust to mutations in the web
API response as seen by only 25% of the applications studied
crashing through one of the mutations. Nonetheless, some of
the mobile applications are not as resilient, as some applica-
tions crashed or silently failed upon facing changes to the web
API. This behavior should be made more informative and user-
friendly, which can be achieved through better understanding
potential changes to web APIs.

Also [RQ2] which asks “have web API client developers
developed resilience against changes in the web API or failure
of the web API?” is answered with mixed results. Some of the
applications studied make use of state of the art approaches
(e.g. the HATEOAS versioning) to ensure a smooth evolution
of their web API client, where others do not use versioning
altogether (which as reported in previous work [8] may cause
long-term pains) and allow the application to crash. The need
for this resilience exists also outside of the source code. One
of the interviewed developers raised concerns with inter-team
communication, highlighting the need for clear and concise
documentation from web API providers to client developers.

Our main research question asks “how well-prepared are
Android mobile applications with regard to changes in re-
sponse messages from the web API”. We conclude that while
the majority of the studied applications are capable of dealing
with such changes without major issues, some applications still
use web APIs as if their behavior can be expected to never
change, which as we have seen does not always happen.

Future work. We aim to extend our investigation to both
paid mobile applications as well as iOS applications. The
underlying platform (Android) may provide more or less
support for web API integration, which we would like to
investigate in the future.

REFERENCES

[1] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in Proc. Int’l Conf.
on Software Maintenance (ICSM). IEEE CS, 2012, pp. 378–387.

[2] B. Dagenais and M. P. Robillard, “Recommending adaptive changes
for framework evolution,” in Proc. Int’l Conf. on Software Engineering
(ICSE). ACM, 2008, pp. 481–490.

[3] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the web services web: an introduction to SOAP,
WSDL, and UDDI,” Internet Computing, vol. 6, no. 2, pp. 86–93, 2002.

[4] S. Vinoski, “Restful web services development checklist,” IEEE Internet
Computing, vol. 12, no. 6, pp. 96–95, 2008.

[5] M. M. Lehman and L. A. Belady, Program Evolution: Processes of
Software Change. Academic Press, 1985.

[6] D. Dig and R. E. Johnson, “How do APIs evolve? A story of refactoring,”
Journal of Software Maintenance, vol. 18, no. 2, pp. 83–107, 2006.

[7] M. Laitinen, “Object-oriented application frameworks: Problems and
perspectives,” M. Fayad, D. Schmidt, and R. Johnson, Eds. Wiley,
1999, ch. Framework maintenance: Vendor viewpoint, p. 9.

[8] T. Espinha, A. Zaidman, and H.-G. Gross, “Web API growing pains:
Stories from client developers and their code,” in 2014 Software Evolu-
tion Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE CS, 2014, pp. 84–93.

[9] C. Pautasso and E. Wilde, “Why is the web loosely coupled? a multi-
faceted metric for service design,” in Proc. Int’l World Wide Web Conf.
(IW3C2). ACM, 2009, pp. 911–920.

[10] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. “big” web services: Making the right architectural decision,” in Proc.
Int’l Conf. on World Wide Web (WWW). ACM, 2008, pp. 805–814.

[11] J. H. Christensen, “Using RESTful web-services and cloud computing
to create next generation mobile applications,” in Proc. Conference
Companion on Object Oriented Programming Systems Languages and
Applications (OOPSLA-companion). ACM, 2009, pp. 627–634.

[12] M. Maleshkova, C. Pedrinaci, and J. Domingue, “Investigating web apis
on the world wide web,” in Proceedings of the European Conference on
Web Services (ECOWS). IEEE, Dec 2010, pp. 107–114.

[13] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649–678, 2011.

[14] M. Bozkurt, M. Harman, and Y. Hassoun, “Testing web services: A
survey,” Department of Computer Science, King’s College London,
Tech. Rep. TR-10-01, 2010.

[15] W. Xu, J. Offutt, and J. Luo, “Testing web services by XML pertur-
bation,” in Proc. Int’l Symp. Software Reliability Engineering (ISSRE).
IEEE CS, 2005, pp. 10 pp.–266.

[16] J. Li, Y. Xiong, X. Liu, and L. Zhang, “How does web service API
evolution affect clients?” in Int’l Conf. on Web Services (ICWS). IEEE,
2013, pp. 300–307.

[17] J. Martin, A. Arsanjani, P. Tarr, and B. Hailpern, “Web services:
Promises and compromises,” Queue, vol. 1, no. 1, pp. 48–58, 2003.

[18] E. Babbie, The practice of social research, 11th edn. Wadsworth
Belmont, 2007.

[19] O. Liskin, L. Singer, and K. Schneider, “Teaching old services new
tricks: Adding HATEOAS support as an afterthought,” in Proc. Int’l
Workshop on RESTful Design. ACM, 2011, pp. 3–10.

[20] G. Çalıklı and A. Bener, “Influence of confirmation biases of developers
on software quality: an empirical study,” Software Quality Journal,
vol. 21, no. 2, pp. 377–416, 2013.

[21] G. Lewis and D. Smith, “Service-oriented architecture and its implica-
tions for software maintenance and evolution,” in Proceedings Frontiers
of Software Maintenance. IEEE CS, 2008, pp. 1–10.

[22] T. Espinha, A. Zaidman, and H.-G. Gross, “Understanding the inter-
actions between users and versions in multi-tenant systems,” in Int’l
Workshop on Principles of Softw. Evol. ACM, 2013, pp. 53–62.

[23] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability
and adoption in the android ecosystem,” in Proc. Int’l Conf. on Software
Maintenance (ICSM). IEEE CS, 2013, pp. 70–79.

[24] S. Blank (YourTrove), “Api integration pain survey results,” 2011, web-
site last visited September 27, 2013. [Online]. Available: https://www.
yourtrove.com/blog/2011/08/11/api-integration-pain-survey-results/

[25] R. Daigneau, Service Design Patterns: Fundamental Design Solutions
for SOAP/WSDL and RESTful Web Services. Addison-Wesley, 2011.

Espinha, Zaidman & Gross – Web API Fragility: How Robust is Your Web API Client SERG

10 TUD-SERG-2014-009





TUD-SERG-2014-009
ISSN 1872-5392 SERG


