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Abstract

We study the Laplace operator on domains subject to Dirichlet or Neumann boundary conditions. We
show that these operators admit a bounded H ®°-functional calculus on weighted Sobolev spaces, where
the weights are powers of the distance to the boundary. Our analysis applies to bounded C 1.2_domains
with A € [0, 1], revealing a crucial trade-off: lower domain regularity can be compensated by enlarging
the weight exponent. As a primary consequence, we establish maximal regularity for the corresponding
heat equation. This extends the well-posedness theory for parabolic equations to domains with minimal
smoothness, where classical methods are inapplicable.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

This paper contributes to the extensive study of the Laplace operator on domains with min-
imal boundary regularity (often referred to as rough domains), see, e.g., [37-39,86,90] and the
monographs [31,74] and references therein. In particular, we are interested in the H °°-functional
calculus for the Laplacian on inhomogeneous weighted Sobolev spaces. The H°°-functional cal-
culus provides a powerful framework for establishing well-posedness and regularity results for
(possibly nonlinear) partial and stochastic partial differential equations ((S)PDEs). Therefore,
the H°°-calculus for sectorial operators is widely studied, see for instance [17,35,36,67] and the
references therein. Applications to PDEs and SPDEs can, e.g., be found in [15,18,40,68,81,88]
and [1,2,78,79], respectively.

Given a bounded C2-domain O C RY, it is well known that the Laplacian with Dirichlet
boundary conditions on L”(Q) with p € (1,00) and domain W>7(O) N W(} "7 (0) generates
an analytic Cp-semigroup, has the maximal regularity property and admits a bounded H *°-
functional calculus. However, if the regularity of O is too low (say Lipschitz or C'), these
properties fail and explicit counterexamples can be constructed, see [10,74]. In such counterex-
amples, the derivatives of the solutions to the resolvent equation

A — Au = f,

ulpo =0,

can drastically blow up near the boundary d0. As a consequence, the canonical domain of the
Dirichlet Laplacian on L?(Q) is no longer a closed subspace of W2P (). Moreover, if one is
interested in higher-order Sobolev regularity of the solution #, then more smoothness of O is
needed (see [26,61]), and additional boundary conditions for the data f (compatibility condi-
tions) need to be imposed (see [16]). These additional boundary conditions for the data occur, in
particular, in the study of mixed-order systems (see [19]).

To set up a satisfying well-posedness and regularity theory for PDE without such additional
regularity or compatibility conditions, one can use a weighted function space for the solution
u. In particular, one can consider spatial weights of the form wgo(x) := dist(x, d0)Y for some
suitable ¥ € R, which compensate the blow-up of the derivatives of the solution near 9O and
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relax compatibility conditions. Partial differential equations on weighted spaces have already
been studied extensively, see for instance [20-22,49,54,59,60,76] for deterministic equations and
[45-47,57,62] for stochastic equations.

As stated, we are interested in the H°°-functional calculus for the Laplacian on inhomoge-
neous weighted Sobolev spaces of order k € Ny. This was studied in [70,72] for the Dirichlet and
Neumann Laplacian on the half-space Ri. In the present paper, we extend the results to bounded
domains O with minimal smoothness, while ensuring that the canonical domain of the Laplacian
is a closed subspace of a weighted Sobolev space of order k + 2.

Our main result for the Dirichlet Laplacian is as follows, see Theorems 6.2 and 6.4. For the
definition of the involved spaces, the reader is referred to Section 3.

Theorem 1.1 ( H*°-calculus for the Dirichlet Laplacian). Let p € (1, 00), k € Ng, A € [0, 1] and
y € (—1,2p — 1)\ {p — 1}. Furthermore, suppose that

A>1— VTTI or, equivalently y>(1-1p-—1
and O is a bounded C"*-domain. Then for all i > 0 the operator

¢ . k+2,
uw—Apir on WP, W) with  D(Api) = Wi 7(0, wiS, )

has a bounded H*-calculus of angle zero.

Theorem 1.1 generalises the result in [72, Theorem 6.1], which is restricted to the case k =0
and to bounded C?-domains. Theorem 1.1 allows for bounded C!-domainsify € (p—1,2p—1),
while for y € (—1, p — 1) we obtain that the smoothness of the domain may depend on the
weight: if the power of the weight is larger, then a rougher domain is allowed. The smoothness
parameter A is almost optimal. Indeed, solving the Dirichlet problem in the scale of weighted
Sobolev spaces with a gain of two derivatives for the solution requires the boundary of the domain
to have W2~ +1/P.P_smoothness, see [74, Theorem 15.6.1 applied to £ =2 — (y + 1)/p] and
[74, Section 14.6.1] for an explicit counterexample with C!-domains. Furthermore, for y = p—1
the domain characterisation in Theorem 1.1 in terms of spaces with vanishing traces fails, see
[70, Remark 4.3], and for this reason we omit this case.

Concerning the Neumann Laplacian on bounded domains, we prove the following result, see
Theorems 6.3 and 6.5.

Theorem 1.2 (H-calculus for the Neumann Laplacian). Let p € (1,00) and ) € (0, 1]. Fur-
thermore, suppose that either

(i) keNg, ye(p—1,2p—1), A >2 — VTH and O is a bounded C'*-domain, or,
(ii) keN,ye(-l,p—1), A>1— y7+1 and O is a bounded C**-domain.

Then for all > 0 the operator

= ANew on WRP(O,w?

, k+2,
y?—(k—l)p) with — D(ANew) = Wyey " (O, w)zi(-z(k—l)p)

3
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Fig. 1. The spaces Wk’p(O, wgo) where ¢ — Apjr and 4 — ANey as in Theorems 1.1 and 1.2 (with @ = y + kp and
a =7y + (k — 1) p, respectively) admit a bounded H*°-calculus.

has a bounded H°-calculus of angle zero. Moreover, using function spaces modulo constants
gives the result for all > 0.

Note that, compared to Theorem 1.1, the Sobolev spaces in Theorem 1.2 have a smaller weight
exponent, which is consistent with [70, Theorem 1.2]. Fig. 1 visualises the parameters of the
spaces in Theorem 1.1 and 1.2 where we obtain a bounded H *°-calculus. Similar to the case
of Dirichlet boundary conditions, we expect that the regularity of the domain in Theorem 1.2 is
almost optimal as well, see [74, Section 15.6] for some related results in this direction.

The main novelties of our results are the following.

®

(i)

We prove the boundedness of the H°°-calculus, which is, in general, much harder to prove
than maximal regularity and yields the boundedness of many singular integral operators
[42]. In particular, boundedness of the H®°-calculus implies (stochastic) maximal regu-
larity [36,78]. Maximal regularity and higher-order regularity results for the heat equation
with Dirichlet and Neumann boundary conditions are contained in Section 6.1. In partic-
ular, we recover some maximal regularity results for the Dirichlet Laplacian from [53]
(for bounded C'-domains) and [55] (for bounded C'*-domains and k = 0). For the latter
case, our results with k > 1 are new. The Neumann Laplacian on the half-space is studied
on weighted Sobolev spaces in [21,22] (for k = 0) and [70], but a systematic study on
bounded domains seems to be unavailable until now.

The smoothness of the domain O in Theorems 1.1 and 1.2 is independent of the smooth-
ness k of the Sobolev space. The reason for this is that we do not use the standard
localisation procedure from the half-space to domains (see, e.g., [17,26,61]). This stan-
dard localisation procedure typically works for C*¥*2-domains. Instead, we apply a more
sophisticated C!-diffeomorphism suitable for the weighted setting. We discuss this in more
detail below.

The key ingredient in the proofs of Theorems 1.1 and 1.2 is the perturbation of the H°°-
calculus on the half-space (obtained in [70]) to special domains, i.e. domains above the graph

4
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of a function with compact support. A common method is to relate the Laplacian on the half-
space and on a special domain via a diffeomorphism. However, due to the low regularity of
the domain, we cannot use the standard diffeomorphism as in, e.g., [17,26,61,89]. Instead, we
construct a variant of the Dahlberg—Kenig—Stein pullback, based on ideas in [53,44,89]. This
diffeomorphism straightens the boundary, preserves the distance to the boundary and leaves the
direction of the normal vector at the boundary invariant. Moreover, higher-order derivatives exist,
but blow up near the boundary of the domain. This blow-up is compensated by the weights in
our spaces.

With estimates on this diffeomorphism at hand, we can employ perturbation theorems for the
H°-calculus to extend the results to special domains. Another difficulty arising in this perturba-
tion argument is that, if the regularity of the domain is too low, then the perturbations are of the
same order as the Laplacian. It is known that the H°°-calculus is not stable under small perturba-
tions [75]. Additionally, we need the perturbations to be well behaved with respect to a fractional
power of the original operator. This requires the identification of certain complex interpolation
spaces and fractional domains to perform the perturbation argument. Finally, by another local-
isation argument, based on lower-order perturbations, the H°°-calculus on special domains is
transferred to bounded domains.

We comment on some related and open problems. Theorems 1.1 and 1.2 provide the bounded
H®-calculus on Sobolev spaces with integer smoothness, and with complex interpolation, the
bounded H*°-calculus can also be obtained on spaces with fractional smoothness. However, an
intrinsic characterisation of these complex interpolation spaces seems unavailable. Furthermore,
we expect that our results can be extended to spaces with negative smoothness via duality. Some
results for the weak (Dirichlet) Laplacian on weighted spaces are contained in [7,80].

An interesting question regarding the smoothness of the domain is whether for y € (p —
1,2p — 1) the assumption of C'-domains can be weakened to Lipschitz domains. In general,
the analysis for Lipschitz domains becomes much more involved and different techniques are
required than for C I_domains, see for instance [37-39,90] and the references therein. We believe
that our method should work for domains with a small Lipschitz character. The H°°-calculus on
Lipschitz domains could be important for studying SPDEs in the weighted setting, see [48,50—
52], where the range of weights is significantly smaller than y € (p — 1,2p — 1).

Outline

The outline of this paper is as follows. In Section 2 we introduce some preliminary concepts
and results needed throughout the paper. In Section 3 we study weighted Sobolev spaces on
domains and prove characterisations for these spaces. In Section 4 we prove results on the frac-
tional domains of the Laplacian on the half-space, which are required for perturbation of the
H®-calculus. In Section 5 we perturb the H°-calculus from the half-space to special domains,
and in Section 6 we perform a localisation procedure to obtain the H°°-calculus on bounded
domains. Moreover, as a consequence, we obtain maximal regularity for the heat equation and
boundedness of Riesz transforms. Finally, in Appendix A we provide localisation techniques on
rough domains.
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2. Preliminaries
2.1. Notation

We denote by Ng and N the set of natural numbers starting at 0 and 1, respectively. For
a € R, we use the notation (a)+ = a if @ > 0 and (a)+ = 0 otherwise.

For d € Ny, the half-space is given by RY =R, x R?~!, where R = (0, c0) and for x € Ri
we write x = (x1, X) with x; € R4 and ¥ € R4~ For y e R, © € R? open and x € O we define
the power weight wgo(x) = dist(x, 00)7.

For two topological vector spaces X and Y, the space of continuous linear operators is
L(X,Y) and L(X) := L(X, X). Unless specified otherwise, X will always denote a Banach
space with norm || - || x and the dual space is X' := L(X, C).

For a linear operator A : X 2 D(A) — X on a Banach space X we denote by o (A) and p(A)
the spectrum and resolvent set, respectively. For A € p(A), the resolvent operator is given by
RL, A =0 —A)"1eLX).

We write f < g (resp. f 2 g) if there exists a constant C > 0, possibly depending on param-
eters which will be clear from the context or will be specified in the text, such that f < Cg (resp.
f = Cg). Furthermore, f ~ g means f < gand g < f.

For an open and non-empty @ € R and ¢ € Ng U {oo}, the space C*(O; X) denotes the
space of ¢-times continuously differentiable functions from O to some Banach space X. In the
case £ = 0 we write C(O; X) for C%(©; X). Furthermore, we write C]f (O; X) for the space of
all functions f € C*(O; X) such that 8% f is bounded on O for all multi-indices o € N(‘)l with
laf < €.

Let C°(O; X) be the space of compactly supported smooth functions on O equipped with
its usual inductive limit topology. The space of X-valued distributions is given by D'(O; X) :=
L(CF(0); X). Moreover, C° (O; X) is the space of smooth functions with their support in a
compact set contained in O.

We denote the Schwartz space by S(R?; X) and S'(R?; X) := L(S(R%); X) is the space of
X -valued tempered distributions. For © € R? we define S(O; X) := {u|p : u € S(R%; X)}.

Finally, for 6 € (0, 1) and a compatible couple (X, Y) of Banach spaces, the complex interpo-
lation space is denoted by [X, Y]g.

2.2. Holomorphic functional calculus

In this section, we collect the required preliminaries on sectorial operators with a bounded
H°-calculus.

2.2.1. Definitions
For w € (0, ), let ¥, := {z € C \ {0} : | arg(z)| < w} be a sector in the complex plane.

Definition 2.1. An injective, closed linear operator (A, D(A)) with dense domain and de@
range on a Banach space X is called sectorial if there exists a w € (0, ) such that 6 (A) C X,
and

sup [[AR(A, A)| < oo.
reC\Z,,
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Furthermore, the angle of sectoriality @ (A) is defined as the infimum over all possible @ > 0.

To continue, we introduce the following Hardy spaces. Let w € (0, ), then H'(Z,,) is the
space of all holomorphic functions f : ¥, — C such that

11 () = sup 1> FEDI g, o < 0.
lv|<w !

Moreover, let H°(X,,) be the space of all bounded holomorphic functions on the sector with
norm

I f e (x,) == sup [f(2)].

ZEX,

Definition 2.2. Let A be a sectorial operator on a Banach space X and let w € (w(A), ), v €
(w(A),w) and f € H'(Z,). We define the operator

1
)= / FRG A)dz,
1

%,

where 9%, is oriented counterclockwise. The operator A has a bounded H°(Z,)-calculus if
there exists a C > 0 such that

lfAI=Cllfllaecs, forall fe H'(Z,) N H®(Z,).

Furthermore, the angle of the H*°-calculus wgye(A) is defined as the infimum over all possible
w > w(A).

For more details on the H*-calculus, the reader is referred to [33] and [35, Chapter 10].

2.2.2. Fractional domains

Let A be a sectorial operator and let « € C. To define fractional powers A%, we need a func-
tional calculus allowing for holomorphic functions of polynomial growth. This is known as the
extended functional calculus and the reader is referred to [36, Chapter 15] or [67, Appendix 15.C]
for a detailed study of extended functional calculi and fractional powers. In particular, A% is again
sectorial.

A sectorial operator A on a Banach space X has bounded imaginary powers (BIP) if Al
extends to a bounded operator on X for every s € R. The angle is given by

wpp(A) :=inf{w € R : sup e P A || < 00}.
seR

Moreover, a bounded H *°-calculus implies BIP and wpip(A) < wy~(A), see [36, Section 15.3].
We recall a result on the interpolation of fractional domains. For details on interpolation the-
ory, the reader is referred to [6] and [85].
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Proposition 2.3 ([36, Corollary 15.3.10]). Let A be a sectorial operator on a Banach space X
and assume that A has BIP. Then for all 0 € (0, 1) and 0 < o <  we have

D(AU=0+0B) [ D(A%), D(AP)),.

Moreover, by [36, Proposition 15.2.12] we have for a sectorial operator A that D((u+ A)*) =
D(A%) forall © >0 and @ > 0.

2.2.3. Perturbation of the H*°-calculus

We collect some known perturbation results for the H®-calculus. For further perturbation
results for the H*°-calculus, the reader is referred to [36,40,41,67]. We start with a result for
shifting the H*°-calculus.

Proposition 2.4 ([36, Proposition 16.2.6]). Let A be a sectorial operator on a Banach space X
and let w € (w(A), ).

(i) If A has a bounded H*(X,)-calculus, then u + A has a bounded H®°(X,)-calculus
for all i > 0. Moreover, the constant in the estimate for the H*-calculus can be taken
independent of L.

(it) If wo + A has a bounded H®°(X,,)-calculus for some g > 0, then u + A has a bounded
H®(Z,)-calculus for all i > 0.

In the case of a lower-order perturbation, we have the following result.

Theorem 2.5 ([36, Theorem 16.2.7]). Let A be a sectorial operator on a Banach space X. Let
w € (w(A), ) and assume that A has a bounded H*°(Z,)-calculus. Let a € (0, 1) and assume
that B is a linear operator on X such that D(B) 2 D(A%) and

[ Bulx < CllA%ullx, u € D(A), 2.1)

for some C > 0. Then there exists a u > 0 such that u + A+ B with D(u+ A+ B) = D(A) has
a bounded H* (Z,,)-calculus.

To extend the H°°-calculus of the Laplacian on Ri to domains in Sections 5 and 6, we need to
deal with perturbations that are not of lower order. Unfortunately, the H°°-calculus is not stable
under small perturbations, as shown in a counterexample by Mclntosh and Yagi [75]. Instead,
for the H*°-calculus, one has statements of the following type, in which the perturbation is in
addition required to be well behaved with respect to a fractional power of the original operator.

Theorem 2.6 ([36, Theorem 16.2.8]). Let A be a sectorial operator on a Banach space X such
that 0 € p(A). Let w € (w(A), ) and assume that A has a bounded H*°(Z,,)-calculus. Let B
be a linear operator on X such that D(B) 2 D(A). Suppose that there is an n > 0 such that

(i) |Bullx <nlAullx, u € D(A).

Moreover, suppose that at least one of the following relative bounds is satisfied:

8
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(ii) there exists an o € (0, 1) such that B(D(A'7%)) C D(A%) and

A% Bully < ClIA"™™ullx,  ue DA™,
(iii) there exists an o € (0, 1) such that

IA™Bullx <ClIA"®ully,  ue DA™,

for some C > 0. Then there exists an 7] > 0 such that, if (i) holds with n < 7, then A + B with
D(A + B) = D(A) has a bounded H*(X,,)-calculus.

Remark 2.7. Theorem 2.6 is taken from [36, Theorem 16.2.8], where it should be noted that
their condition of R-sectoriality on B is redundant, see also [66] and the errata to [36]. A version
of Theorem 2.6 for positive fractional powers also appeared in [15, Theorem 3.2].

2.3. The UMD property

Throughout this paper, we work mostly with vector-valued Sobolev spaces (although our re-
sults are also new for the scalar-valued case), and for this, we need the UMD property for Banach
spaces. We recall that a Banach space X satisfies the condition UMD (unconditional martingale
differences) if and only if the Hilbert transform extends to a bounded operator on L?(R; X). We
list the following relevant properties of UMD spaces, see for instance [34, Chapter 4 & 5].

(i) Hilbert spaces are UMD Banach spaces. In particular, C is a UMD space.
(i) If p € (1, 00), (S, X, ) is a o-finite measure space and X is a UMD Banach space, then
L?(S; X) is a UMD Banach space.
(iii) UMD Banach spaces are reflexive.

The UMD property is known to be necessary for many results on vector-valued Sobolev spaces
(see [5], [34, Section 5.6], and [36, Corollary 13.3.9]). Moreover, the boundedness of the H°-
calculus of —A on spaces such as L”(R?; X) also is equivalent to the UMD property (see [35,
Section 10.5]).

2.4. Domains

Let & € (0, 1] and let © € R¢~! be open. A function & : O — R is called uniformly A-Hélder
continuous on O if
[h(x) —h(y)]
—_— <

x,yeO |x - Y|A
iy

[hr0 =

In addition, for £ € Ny we define the space of A-Holder continuous functions by
CoM0) == {f € CLO) : [8%h1;. 0 < oo for all |a| = £}.

For L = 0 we write Cﬁ’o((’)) = Cﬁ(@). By Cf’)‘ (O) we denote the subset of functions in Ct*(©)
with compact support in O. Moreover, on Cé”\((’)) we define the norm

9
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Wl cray =Y, sup [0%h ()| + Y [0%Al50.
el < ¥€0 lal=¢

Definition 2.8. Let © C R be a domain, i.e., a connected open set. Let £ € Ng and A € [0, 1].
(i) We call O a special Cf *_domain if, after translation and rotation, it is of the form

O={x,%)eR?: x| >h®)) (2.2)

for some h € Cf’)‘(Rd_l; R).
(i1) Given a special Cf **_domain O, we define

[Olces = ||h||cz.x(Rd—1),

where h € Cf ’)‘(Rd_l; R) is such that, after rotation and translation, (2.2) holds. Note that
[O]ce.s is uniquely defined due to the compact support of /.

(iii) We call O a C%*-domain if every boundary point x € 0 admits an open neighbourhood
V such that

onNnv=wnyv and 0NV =0wnVv
for some special Cf *_domain W.
If A = 0, then we write C¢ for C%9 in the definitions above.

For any § > 0 and C*-domain O, the special Cf -domains W can always be chosen such that
[Wlce <8.1fA€(0,1],e€(0,2)and O isa C%*_domain, then for any 6 > 0, the special CC“-
domains W can be chosen such that [W]e.-e < 8. Indeed, if i € C‘f’)‘(Rd_l; R) is associated
with W, then for any |«| = £, we have

0%h(x) —3%h
RN G b 1601

x,yeO lx — y|)L
XFEY

lx =yl <3,

whenever |x — y|® is small enough. Note that for ¢ = 0, the quantity [0%k], ¢ cannot be made
arbitrarily small.

3. Weighted Sobolev spaces and trace characterisations

Let O € R9 be a domain with non-empty boundary 3. A locally integrable function w :
O — (0, 00) is called a weight. For y € R we define the spatial power weight wgo on O by

wﬁo(x) .= dist(x, 00)?, xeO,

d
and denote w,, := w3R+.

10
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For p € [1,00), ¥y € R and X a Banach space we define the weighted Lebesgue space
LP(O, wgo; X) as the Bochner space consisting of all strongly measurable f: O — X such
that

: 1/p
1 lLr0.u30:x) = ( / 1f @l wi%)dx) < 0.
@]

Let waO be such that (waO) P TelLl
is deﬁned as

(O). The k-th order weighted Sobolev space for k € Ny

loc

WhP (0, wi®; X) = {f eD'(O; X) :V|a| <k, 3% f € LP(O, wi®; X)}
equipped with the canonical norm. If y = 0, then we simply write WX-7(O; X).

Remark 3.1. The local L' condition for (wgo)fﬁ ensures that all the derivatives 0% f are
locally integrable in O. If O is the half-space ]R{i or a bounded domain, then this condition holds
for all y € R. For © = R the local L! condition holds only for weights w,, (x) = |x{|" with
y € (—oo, p — 1). For y > p — 1, one has to be careful with defining the weighted Sobolev
spaces on the full space because functions might not be locally integrable near x; = 0, see [64].
This explains why, for example, we cannot employ classical reflection arguments from ]Ri to R4
ify>p-—1.

Let p € (1,00), k € Ny, y > —1 and let X be a Banach space. To impose zero boundary
conditions, we define

) _ wkp 0.
WP (0, wi0; x) =@ X)), 3.0

Furthermore, to impose Dirichlet and Neumann boundary conditions, we set

Shir(0: X) :=C(O0; X) N {f € Cc(O; X) : flao =0},
(O; X) 1= C*(O; X) N {f € C{(O; X) : (9n a0 =0},

c, Neu
which contain functions that are smooth in the interior of O, satisfy the boundary condition and
have compact support at infinity (in the case of unbounded domains). Here, n denotes the inward
unit normal vector at 90 and 9, = n - V. We define

_—— k'p(O,wgo;X)
D1r (O w X) = chr(O X) ’

3.2)
Wk’p((’),w)a,o;x)

(O; X)

c, Neu

Neu((’) w X) =C

The notation Wk p W]];lf and W as in (3.1) and (3.2) will mean that the spaces are defined

as the closure of some space of test functlons Alternative characterisations of these spaces with
boundary conditions in terms of traces (which will be denoted by Wg P W[];’irp and W{f{eﬁ) are

11
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derived in Sections 3.1, 3.2 and 3.3. The characterisations involving traces are also used in [70,
72] to define Sobolev spaces with boundary conditions.

We recall from [72, Lemma 3.1] that for p € [1, 00), y € (—00, p— 1) and X a Banach space,
we have the Sobolev embedding

WP Rov, wy s X) <> C([0,00); X).
Hardy’s inequality plays a central role in the analysis of weighted Sobolev spaces. We state a
version on R from [72, Lemma 3.2]. A version for ]Rff_ will be given in Corollary 3.4. For

Hardy’s inequality on more general domains, the reader is referred to [63, Section 8.8].

Lemma 3.2 (Hardy’s inequality on Ry). Let p € [1,00) and let X be a Banach space. Let u €
WI'P(R+, wy; X) and assume either

(i) y <p—1andu(0) =0, or,
(ii) y>p—1

Then
/
||u||LP(R+,wy,p;X) < Cp,y”u ”LP(RJr,wy;X)-
3.1. Trace characterisations for weighted Sobolev spaces on the half-space

In the following three sections, we present characterisations of the spaces in (3.1) and (3.2)
as closed subspaces of wk-r (O, w)a/(’); X) with vanishing traces. In this section, we start with the

: d
special case O =R¢.

For p € (1,00), k € Ng, y € (—1,00) \ {jp — 1:j € N1} and X a Banach space, we define
the following spaces with vanishing traces

WEPRY, wy; X) = {f e WEPRY w,; X): Te(d% f) = 0if k — || > VTﬂ}
WEPRY w,; X) = {fe WEP (R w,: X) : Te(f) =0 if k > YTH]

k, .
WEP®RY w,,; X) = {fe WEP (R w,: X) : Te(dy f) = 0if k — 1 > VTﬂ]

All the traces in the above definitions are well defined, see [70, Section 3.1]. Although we will
not consider weights w,, with y < —1, we can nonetheless define

WEPRY w3 X) 1= We P RE, wy; X) = WRP R, wy; X),
see [72, Lemma 3.1(2)].

In [72] the above spaces are also used to define weighted Sobolev spaces on domains. How-
ever, since we consider domains with low regularity, we cannot do this, as will be explained

12
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in Remark 3.11. Therefore, we first defined the Sobolev spaces as the closure of test func-

tions in (3.1) and (3.2). The following proposition relates the spaces Wé’cp and Wég , where
BC € {0, Dir, Neu} stands for boundary conditions. That is, we prove that certain classes of test
functions are dense in Sobolev spaces with zero trace conditions.

Proposition 3.3 (Trace characterisation on ]Ri ). Let p € (1,00), k€ Ng, y € (—1,00) \ {jp —
1:j €Ny} and let X be a Banach space. For BC € {0, Dir, Neu} we have the trace characteri-
sations

ok, k,
Wed (RL, w5 X) = Wed (RL, w5 X).
Proof. From [72, Proposition 3.8] we have that CS° (]Rd ; X) is dense in Wg P (Ri, wy; X) and

therefore the trace characterisation for V(f/g PRL, w,; X) follows.
Let (BC, j) € {(Dir, 0), (Neu, 1)}. Then [82, Proposition 4.8] implies that

whP (R w1 X)

[f e CoMRY; X): 3] P)lyme =0} =WEPRL, w,; X).

Since
{f € CORL X): (0] Plyre =0} S Cpe(RE: X),
the trace characterisations for the Dirichlet and Neumann boundary conditions follow. O

Before we continue with trace characterisations on domains, we record the following Hardy
inequalities. As a corollary of Hardy’s inequality on Ry (Lemma 3.2), we have the following
Hardy’s inequality on R%, see also [72, Corollary 3.4].

Corollary 3.4 (Hardy’s inequality on Ri). Let p € (1,00), k € Ny, y € R and let X be a Banach
space. Then

Wy P (RY wy: X) > WETPRE w0 X) ify <p—1,
WEPRY, wy; X) > WEHPRY, wy,—p; X) ify >p—1,

k, k—1, . . .
Wo P (RS wy: X) > W P(RY, wyp: X) ify ¢{ip—1:jeNi}.

Moreover, as a consequence of Hardy’s inequality above, we obtain the following non-sharp
Hardy’s inequality.

Lemma 3.5. Let p € (1,00), y € (—1,00)\ {jp—1:j €Ny}, s €[0,00) such thaty > sp — 1
and let X be a Banach space. Then for any integer k > s it holds that

WEP@RY w,; X) < LP(RY, w,_gp; X).

13
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Proof. Let ¢1, 92 € C*°(R; [0, 1]) such that ¢;(x;) =0 for x; > 2 and @(x;) =0 for x; < 1.
In addition, take ¢; and ¢, such that ¢ + ¢p = 1. Let f € Wk P(RY, wy; X), with Hardy’s
inequality (Corollary 3.4 using that y > sp — 1) we obtain

”f”LP(Ri,wy_Sp;X) =Ifer ”W"J’(R‘j_,wyﬂk,s)p;x) + ||f(p2”L1’(R‘j_,wy_s,,;X)

N ||f(ﬂl||wk.p(Rtj_,wy;X) + ”fw?”LP(Ri,wy;X) N ”f”kaP(Ri,wy;X)’

where we have used that w,, ¢ (r—s)p(x) S wy, (x) for x; <2 (since k > s) and wy, _sp (x) S wy, (x)
forx;>1. O

Occasionally, we also need a sharp Hardy’s inequality with fractional smoothness. We use
complex interpolation to deal with spaces with fractional smoothness and weights w,, 1, with
y € (—1, p— 1) and k € N outside the Muckenhoupt class.

Lemma 3.6. Let p € (1,00), ke Ng, y e (=1, p—1), s €[0, 1) such that y > sp — 1 and let X
be a UMD Banach space. Then

[WEP R, wy p: X), WP RE wyip Xt > WP RE wy sy pi X).

Proof. For s = 0 the result follows from [82, Proposition 6.3], so from now on we assume
s € (0, 1). We start with the case k = 0. Let |«| < 1, then by [71, Lemma 3.7] (which also holds
on Ri) and [71, Propositions 5.5 & 5.6], we obtain

S 19

0% f”Lp(Rd Wy —sp3 X) ~ f”Hv p(Rd wy; X) ||f||Hr+1p(Rd wy; X)

~IfI (LPRL,wy; X),W2P (RL,wy,; X)] g4 °
2

where H”’(Rd , wy; X) is a weighted Bessel potential space, see [71, Section 3]. For k > 1, we
proceed by induction. Assume that the statement of the lemma holds for some k € Np, then it
remains to prove the statement for k + 1. We recall from [70, Section 3.2] that M is the pointwise
multiplication operator given by Mu(x) = xju(x) for x € Ri. Then by [70, Lemma 3.8] (using
that y > sp — 1) and the induction hypothesis, we obtain

1wk @y g0 = D IMOP Flprstn @, i
IB1=1

S D MO Fliygton R a1 X0, W20 Ry 15 X

1Bl=1 :

S S e, PRY Wy g e 1)ps XD WEHS P RE w1y p3 X)) 51
2

where the last estimate follows from the fact that for |8| < 1 the operators

MP WP RE w4 sy ps X) = WEP(RY w443 X)) and
MP WA PR w1y ps X) — WERP(RL w443 X)

14
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are bounded, see [70, Lemma 3.6]. O
3.2. Trace characterisations for weighted Sobolev spaces on special domains

For O = Rf{_ we have shown in Proposition 3.3 that the definition of weighted Sobolev spaces
in (3.1) and (3.2) is equivalent to setting certain traces to zero. To define Sobolev spaces with
vanishing traces for a special Cf *_domain O, we will employ the diffeomorphisms ®, ¥: O —
]Ri from Lemmas A.4 and A.5 to construct isomorphisms between Sobolev spaces on O and
Ri. Which diffeomorphism we use depends on the boundary conditions. Throughout the rest of
this paper, we will always use the diffeomorphism ® from Lemma A.4 for Dirichlet boundary
conditions and the diffeomorphism W from Lemma A.5 for Neumann boundary conditions. The
diffeomorphism @ is not applicable for Neumann boundary conditions, since it does not preserve
the direction of the normal vector.

Proposition 3.7. Let p € (1,00), £ € Ny, L € [0, 1], k € Ng and let X be a Banach space. Let
ye(—1,00)\{jp—1:jeNi}besuchthaty >k —L+X1)rp— 1L

(i) Let O be a special Cg"\-domain with [O]cer < 1. Let &: O — Ri be as in Lemma A.4
and consider the change of coordinates mappings

@0 WEP(O,wl0; X) > WEP(RL, wy; X),
2k, 2k, .
@0 Wyl (0, w2 X) > W (RY, wy; X)  for BC € {0, Dir},
defined by ® f == f o L.

(ii) Let O be a special Cf‘)‘—domain with [O]ces,. < A, where A € (0, 1) is as in Lemma A.5.
LetV: O — Rff_ be as in Lemma A.5 and consider the change of coordinates mappings

W, WEP (O, wl®; X) — WEP(RE, wy: X)), (3.3a)
Wy W (0, w0 X) — Wi ®RL, w,: X)  for BC € {0, Dir, Neu), (3.3b)

defined by W, f := f o W™ L,

Then @, and W, are isomorphisms of Banach spaces for which (®~ 1), and (W™1),, respectively,
act as inverse.

Proof. We give the proof of (ii) and the proof of (i) is similar using Lemma A.4 instead of
Lemma A.S5. .
Step 1: proof of (3.3a). We start with some preparations. Let k € Ny and f € Cf’)‘(O; X).

Note that by Lemma A.5 we have that W, f € Cf’A(R_d; X). Leta € Ng \ {0} with || <k, then
by [9, Theorem 2.1] we have the multivariate Faa di Bruno’s formula

Je| s

W f= Y (WP Y [ ok 080,

1=|Bl=<le| s=1ps(a,p) j=1

15
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for some constants Cakj L) and sets p;(c, B) contained in

{00 € G\ (0D x NG\ (OD" Y 1y = 181 Y e 1181 = e}
j=1 j=1
! ! (3.4)

Therefore, we have

||

0 gt € 3 5 10D [T

I<|fl<la| s=1 ps(a.B)

||

< v, 9P
~ Z Z Z %9 f”LP(Ri’wV*Zj‘q(Wj\*(5+)»))+\kj|p;X)

I=|Bl=la| s=1 ps(a,B)

N
(81— (+2)+ g Ikl
JTyen PO, L g ey (3.5)
From Lemma A.5(v) we obtain

)
(1€j1=+M)+ 2 1 kj
[Ty n PV D, L gt gy S 1 (3.6)

Step la: proof of (3.3a) if £ + 1 > k. If k =0, then (3.3a) follows immediately from
Lemma A.5. Let k € Ny and note that |{;| < |a| <k < £+ A. Therefore, (|€;| — (£+A)); =0
in (3.5) and the case k = 0 implies

1933”30 S 10 Fllr@atonny < W flwepomioxys  1<IBl<lal, G

and we find
W f e ®e 0 S 1 lwkr©@mioixy: € Ce (O X,

and by density the estimate extends to f € wk.p (O, wﬁog X). Recall from Lemma A.5 that W

is invertible and thus (U~!), is the inverse of W,. The estimate for the inverse (U~!), can be
shown using similar estimates as in (3.5), (3.6) and (3.7). This shows that W, in (3.3a) is an
isomorphism if £ + A > k.

Step 1b: proof of (3.3a) if £ + A < k. We claim that in (3.5) we have

s
Y=Y (4| = €+ 1)y lkjlp > —1. (3.8)
j=1
Indeed, if |[€;| < £+ A forall j €{1,...,s}, then

16
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Y —Z(Ifjl —U+M)ilkjlp=y >k —-(E+1)p—1>-1,
Jj=l1

and if |£;,| > £ + A for some jo € {1, ..., s}, then with (3.4) we obtain

y = D01 = €+ )elkjlp =y = (D 1851 = €+ )4 lks1+ (il = €+ 2Dk ) p
j=1 j=1
J#Jo

N
>y = (D2 1+ 18 1k | = (€ +2) p
j=1
J#jo

=y —(al=U+))pzy —(k=-(+1)p> -1

Moreover, again by (3.4) we have

DU = €)1k <Y 181k ] — 1Bl =lel — Bl <k — |BI. (3.9)

j=1 j=1

Therefore, by Lemma 3.5 (using (3.8) and (3.9)) and Step la, we have for 1 < |B| < |a| <k =
£+ 1 that

B B
|0 f||Lp(Rf_§_,wy7 S W, f”Wk—lﬁl«P(R‘j_,wy;X)

S5 e 1= 4 1k 1p X)
< ||3ﬁf||wkf\ﬂ\~p(o,wéy)o;x) (3.10)

SIflwkr@uioxy, — feCeHO:X.

Now, density and (3.5), (3.6) and (3.10) yield that

W, WhP (O, wi®: X) — WEP(RY w,: X) (3.11)

is bounded for k = ¢ + 1.

The general case k > £ + 1 follows by induction on k. Assume that (3.11) holds for some
k>¢+1andlet 1 <|B| <|a| <k+ 1. Using the induction hypothesis instead of Step la in
(3.10), we obtain the estimate

190" Fl o et 0 S lhwtet g0,

Xy (=) k1P
which proves (3.11) fork > ¢+ 1.
The estimate for the inverse can be shown directly using similar estimates as in (3.5) and (3.6),

together with the estimate

17
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I¥™40” £ll L0, 0 S 197 Fll e

O § .
V—Z§=1(Ifjl—(8+k))+lkj\ﬁ’ ’wV—Zj':](|ej‘_((+)‘))+|kj\l”x)
B
<19 ks @30
SIflwir@®e wyixye € WRPRE wyi X,
which follows from Step 1a and Lemma 3.5. This completes the proof of (3.3a).

Step 2: proof of (3.3b). The proof (3.3b) is similar to the proof of (3.3a) if we work with a
suitable dense subspace, i.e.,

e if BC=0, take f € C°(O0; X),
e if BC € {Dir, Neu}, take f € CZOBC((’); X),

see (3.1) and (3.2). Note that in both cases Lemma A.5 ensures that W, f is in the respective
dense subspace on Ri. In particular, for the Neumann boundary condition, we have

(alq"*fﬂa]}{ljr = (q/*(auf)ﬂaﬂgiy

where v(y) = v(y) = (1, —Vyh@))—r is the inward normal direction. Indeed, this follows from
Lemma A.5 since

Ay fFOVTI ) = (VO (3) - 0y, ()
=(VHW ) v TN =@ NHWT(),  y=(0,5) e R,

where we recall from the construction of W~! in the proof of Lemma A.5 that y, wl(y) =
(1, =Vsh(M) T =v(F) = v(¥~1(y)) if y = (0, 5) € IR%. Furthermore, note that the conditions
(On flao =0 and (9, )|y =0 are equivalent. O

Remark 3.8. By inspection of the proof of Proposition 3.7, we see that for BC = 0 no additional
conditions on y are necessary since Hardy’s inequality always applies in this case. That is, we
can allow for any y € (—1,00) \ {jp — 1 : j € Ny}. Furthermore, we expect that for Dirichlet
boundary conditions, the range for y can also be improved, although we will not need this.

We define the following spaces with vanishing traces at the boundary of a special Cf”\—
domain.

Definition 3.9. Let p € (1,00), £ € Ny, A € [0, 1], k € Np and let X be a Banach space. Let
y e(—1,00)\ {jp —1:j €Ny} besuchthat y > (k — (£ + 1))+ p — 1 and let O be a special
Cf “*_domain. If [Olcer <1, let D, be the isomorphism from Proposition 3.7(i) and define

WeP (0, wi0; X) = {f e WEP (O, wi0; X) : Tr(0% (@ f) = 0 if k — |a| > VTTl}
WhP(O, wi®; X) = [f e WhP(O,wi®: X) : Te(®, f) = 0if k > yTH] .

If [O]cer < A, where A € (0, 1) is as in Lemma A.5, let W, be the isomorphism from Proposi-
tion 3.7(i1) and define

18
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k, 0. . k, 0. . : +1
W (0, w30 X) 1= {f e WhP(O, wdO; X) 1 Tr(81 (Ws ) = 0if k — 1 > VT}

The above spaces are well defined by Proposition 3.7. Furthermore, by Lemmas A.4 and
A.5, the definitions of the above spaces are consistent in the sense that viewing O as either a
special Cf **_domain or a special CC1 -domain yields the same space. Moreover, the condition
Tr(01 (W, f)) = 0 correctly models the Neumann boundary condition, since W leaves the direc-
tion of the normal vector invariant, see Lemma A.5(iv). Finally, we note that the spaces Wg P

and ng’if could also be defined using W, instead of ®,, yielding an equivalent definition by
Proposition 3.10 below.

Similar to Proposition 3.3 we can now characterise the spaces Wé’cp (O, w?,o; X) in terms of
vanishing traces with the aid of the isomorphisms from Proposition 3.7.

Proposition 3.10 (Trace characterisation on special domains). Let p € (1,00), £ € Nj, A €
[0, 1], k € Ng and let X be a Banach space. Let y € (—1,00) \ {jp — 1 : j € N1} be such that
y > (k—(E+1)p—1.

(i) Let O be a special Cf’)‘-domain with [Olces <1 and let ®, be the isomorphism from

Proposition 3.7. Let BC € {0, Dir} and let ng be defined using ®.. Then we have the
trace characterisations

o k, P k, -
Wl (0, wh%; X) = Wy (0, wi®; X).

(ii) Let O be a special Cf‘)‘-d()main with [O]ces,. < A, where A € (0, 1) is as in Lemma A.5,
and let V. be the isomorphism from Proposition 3.7. Let BC € {0, Dir, Neu} and let Wég
be defined using V... Then we have the trace characterisations

Wl (0, w00 X) = Wyl (0, wi?; X).
Proof. We only prove (ii). The proof of (i) is similar. Let BC € {0, Dir, Neu} and f €
V(ifé’cp(o, wgo; X), then by Propositions 3.7 and 3.3 we have W, f € Vi’é’cp(Rd yWwy; X) =
ngp (R‘i, wy; X). This implies that all the required traces of W, f are zero. Moreover, since
W, f € WhP(RY, wy; X) it follows by Proposition 3.7 that f = (W~ 1), W, f € Wkr (O, wi%; X)
as well. This proves that f e Wé’cp (O, wf,o; X). The other inclusion is similar. O

Remark 3.11. If € CO*(R?™1) is associated with the special C¢*-domain, then the classical
diffeomorphism @ : O — R% given by

Qe (x) = (x1 — h(X), X), x=(x1.%) €0,
defines a C**-diffeomorphism. Moreover, the change of coordinates mapping (®)s becomes
an isomorphism between Wé’cp(O, w;‘io; X) and Wég(Rd ,wy; X) for £ > k and BC € {0, Dir}.
In [72, Section 3.2], this isomorphism is used to define weighted Sobolev spaces on domains.

However, for £ < k or Neumann boundary conditions, this isomorphism is not sufficient, which
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is why we have employed the diffeomorphisms ® and ¥ from Lemma A.4 and A.5 to define
weighted Sobolev spaces with vanishing traces. We elaborate on the construction of the diffeo-
morphisms in Appendix A.

3.3. Trace characterisations for weighted Sobolev spaces on bounded domains

In this section, we define Sobolev spaces with vanishing traces for bounded domains O. To
this end, we will employ a localisation procedure to relate spaces on bounded domains with
spaces on special domains. We start with a lemma containing a decomposition of weighted
Sobolev spaces, see also [72, Section 2.2].

Lemma 3.12. Ler £ € Ny, & € [0, 1] and let © € R? be a bounded C4*-domain. Then for any
& > 0, the following statements hold.

(i) For all ¢ € (0, X) there exists a finite open cover (Vn)’}lv:1 of 00, together with special
Cf’)”-domains (On),]:/:l which satisfy [On]lces— < 8, such that

onv,=0,nYV, and oonv,=00,nV,, nell,...,N}.

If A =0, then the special Cf-domains ((9,,)2’21 can be chosen such that [O,] ¢ < 6.

(ii) There exist ng € C°(O) and n, € CF (V) for n € {1, ..., N} such that 0 <n, <1 for
nef0,...,N}and ZLVZO nﬁ =1 on O (partition of unity).

(iii) For p € (1,00), k € No, y € R and X a Banach space, the space WP (O, wJa/O; X) has
the direct sum decomposition

N
WP = whr(RY X) @& @ WEP (O, wi: X). (3.12)

n=1

Moreover, the mappings
T: Wk’p((’), w;‘io; X)— Wlf"p and P: W)f”’ — Wk’p((’), w}a/(’); X)

given by

N
If:=0fineg and P(No=) mnfu (3.13)

n=0

are continuous and satisfy PZ = id. Thus, P is a retraction with coretraction I.

Proof. We note that the result in (i) follows from the discussion after Definition 2.8 in Sec-
tion 2.4. The partition of unity in (ii) is standard, see for instance [61, Section 8.4] (noting that
a C?-domain is not required for constructing the partition of unity). Finally, using the partition
of unity and the (co)retraction in (3.13), the direct sum decomposition in (iii) follows. Indeed,
no € C°(0O) and we can extend to the full space R? without a weight since there is no boundary.
Furthermore, for n € {1, ..., N} we have n, € C°(V,,), so the weight wﬁo (x) can be replaced

by w?o” (x)forxe©,. O
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With Lemma 3.12 we can now define traces of functions in W*?(O, w;’j@; X) if Ois a

bounded C**-domain. Furthermore, we define the following spaces with vanishing traces at
the boundary.

Definition 3.13. Let p € (1,00), £ € N, A € [0, 1], kK € Ny and let X be a Banach space. Let
y e (—1,00)\ {jp—1:j € Nj} besuchthat y > (k — (£ + 1))+ p — 1. Moreover, let O be a
bounded C%*-domain, let ((’)n)fyz | be special Cf “*_domains and let Z be the coretraction from
Lemma 3.12. We define

N
k k
WP (0, w3 X) = {f eWhP (0, wi® X): Tf e WhP R X) & P Wy (O wiOr; X)],
n=1
N
Wi (0, wd%; X) = {f e WhP (O, w30 X)  Tf e WP RY; X) @ €D W (O, wiOr; X)},

Dir
n=1

N
WAL, wi® X)i={ e WP (0, wl%; X): Tf e WHPRY: X) @ D WL (O wi: X0,

n=1

Note that the above spaces are well defined by Lemma 3.12 and Definition 3.9. Moreover,
the definitions are independent of the chosen covering of 3O and the partition of unity in
Lemma 3.12.

Similar to Propositions 3.3 and 3.10 we can now relate the spaces Vi’é’cp (O, wﬁo; X) and
W]];’Cp (0, w;‘)/O; X) for bounded domains.

Proposition 3.14 (Trace characterisation on bounded domains). Let p € (1,00), £ € N, A €
[0,1], k € Ng and let X be a Banach space. Let y € (—1,00) \ {jp — 1 : j € N1} be such that
y > (k — (£ + 1)y p — 1. Moreover, let O be a bounded C**-domain. For BC € {0, Dir, Neu}
we have the trace characterisations

ok, k,
Wil (0, w3 X) = Wl (0, wi®; X).

Proof. We only prove the statement for BC = 0 since the proof for the other cases is similar. Let
fe Wg’p(O, wgo; X). Proposition 3.10 and the fact that C?O(Rd; X) is dense in WK-P(RY; X),
allows us to approximate Z f by a sequence g := (80,m> &1,m> - - - » §N.m)m>1 Where (8o,m)m>1 C
Cé’o(]Rd; X) and (gy,m)m>1 S C(Oy; X) foralln € {1, ..., N}. Using Lemma 3.12 we see that
f ="PZf can be approximated by the sequence Pg C C°(O0; X). O

3.4. Complex interpolation of weighted Sobolev spaces
To conclude this section, we recall the following two interpolation results for weighted
Sobolev spaces on Ri with boundary conditions from [82], which also hold for special and

bounded domains by the results from Sections 3.1, 3.2 and 3.3.
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Proposition 3.15. Let p € (1,00), ke Ng, A €[0,1], ye (1 =Mp—1,2p— D\ {p — 1} and
let X be a UMD Banach space. Moreover; let O be a special Ccl’k-domain with [O]c1. <1ora
bounded CY*-domain. Then

k+2, k 1,
X) Wy (O, w) Qi X1y = Wi 7O, w

(whr o, w? : X).

y+kp ; J/+kp ’ V+kP ’
Proposition 3.16. Let p € (1,0), k € Ng, L € (0, 1], ¥ e((l—k)p—l p—1), je{0,1} and
let X be a UMD Banach space. Moreover, let O be a special C]+ -domain with [O]cj+1x < A,
where A € (0, 1) is as in Lemma A.5 or a bounded C/H1*-domain. Then

(WAHIP (O, w?

k+2 k 1+
X), Wyes PO w5 01y = Whgy (O, w0

)/+kp’
Proof of Propositions 3.15 and 3.16. By Propositions 3.7, 3.10 and Lemma 3.12, it suffices to
prove the statements for O = R4, which follows from [82, Theorem 6.5]. O

We remark that in the above two propositions the conditions on [O]j+1,» can be omitted and
in this case the implicit constants will depend on the domain.

4. Fractional domains of the Laplacian on the half-space

In this section, we establish properties of the Laplacian on the half-space that are required
for Sections 5 and 6. There, we will transfer the H°-calculus for the Laplacian from Rﬁ to do-
mains using the perturbation results in Section 2.2. The aim of the present section is to recall the
bounded H *°-calculus for the Laplacian on Ri from [70] and to characterise the relevant frac-
tional domains and interpolation spaces. These characterisations are one of the key ingredients
in the perturbation theorems in Section 5.

Throughout this section, the Dirichlet and Neumann Laplacian on ]Rff_ will be defined as
follows.

Definition 4.1. Let p € (1, 00), k € Ny and let X be a UMD Banach space.

(i) Lety € (—=1,2p — 1)\ {p — 1}. The Dirichlet Laplacian Api on WP (RL, w45 X) is
defined by

. k 2,
Apitt i= Au with  D(Apir) i= Wi P (R, wy 45 X).

(i) Let y € (—=1,p — 1) and j € {0, 1}. The Neumann Laplacian ANeyw on W’H‘j’p(Ri,
Wy 4kp; X) is defined by

. k+j+2,

Anewtt = Au  with  D(Anew) = Wagd TP (RE, wy 445 X).
Note that equivalently we can write Aney On wk.p (]Ri, Wy +(k—1)ps X) wWhere k € Ng and
ye(p—1,2p—1),or, ke Njand y € (—1, p — 1). This matches the notation in Theo-

rem 1.2.
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We recall from [70] that these Laplace operators admit a bounded H *°-calculus.

Theorem 4.2 ([70, Theorem 1.1 & Remark 1.3(i)]). Let p € (1,00), k € Ng, y € (—1,2p —
D\ {p — 1} and let X be a UMD Banach space. Let Apj; on Wk'p(Ri, Wy 1kp; X) be as in
Definition 4.1(i). Then for all u > 0 we have that

(i) n — Apir is sectorial of angle w (i — Api) =0,
(ii) p — Apir has a bounded H*-calculus of angle wpe (it — Apir) = 0.

Moreover, the statements hold for u =0 as well if y +kp € (—1,2p — 1).

Theorem 4.3 ([70, Theorem 1.2 & Remark 1.3(i)]). Let p € (1, 00), keNg, ye(—1,p—1),
j €1{0, 1} and let X be a UMD Banach space. Let ANey on Wkﬂ’p(Ri, Wy 1kp; X) be as in
Definition 4.1(ii). Then for all u > 0 we have that

(i) W — ANeu is sectorial of angle w (4 — ANeu) =0,
(ii) 1 — ANeu has a bounded H®°-calculus of angle wgoo (1t — ANen) = 0.

Moreover, the statements hold for 1 =0 as well if k = 0.

Remark 4.4. The domain D(A) of an operator A on a Banach space Y is endowed with the graph
norm ||u|ly + || Aully for u € D(A). It follows from Theorems 4.2 and 4.3 that the graph norm is
equivalent to the norm of the domain in Definition 4.1. Under the conditions of Theorem 4.2, we
have for the Dirichlet Laplacian that

et llyyirap ®e w4 )

~pky,u, X ||u”W"~1’(R‘j'_,wy+kp;X) + (e — ADir)“”W/«,p(Ri,warkp;x)
_ k+2, d .
~pdy.X (= Apirul| WP (RL w4 4p3 X)° u€ Wy, p(R s Wytkps X)s

where the latter identity only holds for ;« > 0. A similar norm equivalence holds for the Neumann
Laplacian.

To transfer the H®-calculus for the Laplacian from Ri to domains, we need to identify
certain fractional domains and interpolation spaces. This will be done in Section 4.1 and 4.2 for
the Dirichlet and Neumann Laplacian, respectively. We additionally define for y € (—1, 00) \
{jp —1:jeNj}and k € Ny the following weighted Sobolev spaces with boundary conditions
(cf. [72, Section 6.3])

WA RL wys X) = fu e WEP @R, w1 X) 1 Tr(au) =0,¥) < (k= 1) |,

WL WY wy; X) = {u e WEP(RY wy; X) : Tr(A u) =0,V < L(k—1— VTT‘)}

4.1. Fractional domains for the Dirichlet Laplacian

We begin with an elliptic regularity result for the shifted Dirichlet Laplacian on spaces with
additional boundary conditions.
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Lemma 4.5.Let p € (1,00), k e Ng, y € (—=1,2p — D\ {p —1}, u >0 and let X be

a UMD Banach space. Then for all f € Wk-H’p(Rd , Wy1kp; X) there exists a unique u €

A,Dir
3 . . .
WiTDi’rp (Ri, Wy +kp; X) such that pu — Au = f. Moreover, this solution satisfies

||u||Wk+3‘p(Ri,wy+kp;X) =< C”f”Wk“'P(Ri,wy_,_kp;X)’
where the constant C > 0 only depends on p,k,y, iu,d and X.
Proof. Step I: the case y € (—1, p —1). Let y € (—1, p — 1) and note that
k+1, k+1, k+1,
WA,Dirp(Rd s Wy +kps X)= WDir p(Rd s Wy +kps X)= W() p(Rd s Wy +kps X),

which has Céx’(]R{d;X) as a dense subspace, see Proposition 3.3. We claim that for f €
ch(Rd ; X) there exists a unique solution u € SMRZL; X) to pu — Au= f on Ri that sat-
isfies u(0,-) = (Au)(0,-) = 0. Indeed, by the proof of [70, Lemma 5.3] we obtain an odd
function 7 € S(R?; X) which solves uit — Ali = foqq € S(R?; X) on R¢. We recall from [70]
that foqq(x) = sign(xy) £ (|x1|, X) for x € R? is the odd extension of f with respect to x; = 0.
Since u is odd, it follows that Au is odd as well. Then u := mRi € S(Ri; X) is a solution to

uu — Au = f on Rf{_ and satisfies u(0, -) = (Au)(0, -) = 0. The uniqueness follows from [72,
Corollary 4.3]. This proves the claim.

Let f e C (RZ:; X) and let u € S(RZ; X) be the solution to uu — Au = f as follows from
the claim. In particular, we have that Tr(3?u) = 0. We define v := u and v; := d;u for j €

{1,...,d}. These functions satisfy the equations
uvg — Avg = f vo(0, ) =u(0,-) =0,
pvr—Avi=a1f (@110, ) = @7u)(0,) =0,
[ij—Avjzajf Uj(0,~)=0, j€{2,...,d}.

Therefore, by [70, Propositions 5.4 & 5.6] we have for j € {0, ..., d} the estimates

v ”Wk”’p(Ri,wwk,;;X) = C”f||Wk+1-p(Ri,wy+,{p;x)v
where the constant C only depends on p, k, v, i, d and X. This implies that

d
~ ; <
k2.0 R 5300 = D Vi 2. R 300 S I N ten R 130
j=0

where the constant only depends on p,k,y, u,d and X. A density argument, similar to the
proof of [70, Proposition 5.4], yields the desired result for the case y € (—1, p — 1). Note that

the uniqueness of u € WgTS{f(Ri, Wy kp: X) — ngtz’p(]Ri, Wy 4kp; X) follows from [70,
Proposition 5.4].

Step 2: the case y € (p — 1,2p — 1). Note that for y € (p — 1,2p — 1) we have
k+1,
WP RE, wyap; X) = WEPRE  wy, gy ps X)-

A,Dir
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Sincey —pe(—1,p—1)and
k+3.p mvd . _ wk+D+2,p md .
WA,Dir (RY, Wy +kps X)= WDir (RY, Wy —p+(k+1Dp> X),
the result follows from Theorem 4.2 (see also [70, Proposition 5.4]). O

We can now proceed with characterising fractional domains of the Dirichlet Laplacian.

Proposition 4.6. Let p € (1,00), k€ Ng, y € (—=1,2p—D\{p—1}, u > 0 and let X be a UMD
Banach space. Let Apj; on Wk’p(]Rff_, Wy +kp; X) as in Definition 4.1. Then

Nl—

k+1,
D((— Api)?) = Wi P (RL, wy 43 X),
3 k+3,

D((n— Apin)?) = WA—,FDirp(Ri’ Wy +kp; X)-
Proof. We write Apjr := i — Apjr. For y € (—1,2p — 1) \ {p — 1} it holds that Ap;, has BIP by
Theorem 4.2, so Propositions 2.3 and 3.15 imply

3 k+2, k+1,
D(Ap;) = [WEP (R wypip: X), Wiy (R wy it X011 = Wi (R wy ot X).

1
By [36, Theorem 15.2.5] and the characterisation of D(Af)ir) we find

3 1
D(Ap,;) = {u € D(Apir) : Apirt € D(Apy;)) @1

k+2.p mvd . . k+1.p m>vd .
={ue WDir (RJr, Wy +kps X) : Apiru € WDir (RY, Wy +kps X))

3
It is straightforward to check that the embedding Wiﬁi’rp (Ri, Wy 4kp; X) = D(Aéir) holds.

The converse embedding follows from (4.1) and Lemma 4.5. O

As a consequence of Proposition 4.6, we can characterise the fractional domains as complex
interpolation spaces as well.

Corollary 4.7. Let p € (1,00), k € Ng, ko, k1 € {0,1,2,3}, 8 € (0,1) and let X be a UMD
Banach space. For u > 0 and Apjir on Wk’p(Ri, Wy kp; X) be as in Definition 4.1.

(i) Ify € (=1, p—1), then

U=k tbky k+ko, ki,
D((u—Api) 2 )= [WA,Diorp(Rd s Wy+kp3 X)), WA,Dilrp(Rd Wy kps X) -

(ii) Ify e (p —1,2p — 1), then

U=0ko+0k; k+ko, ktki,
D((w—2Api) 2 ) =[Wpy "PRL, wykp: X), Wi P (RE, wy a3 X))
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Proof. The fractional domains of the shifted Dirichlet Laplacian on wk.p (Ri, Wy 4kp; X) form
a complex interpolation scale by Proposition 2.3 and Theorem 4.2, so the statements are a direct
consequence of Proposition 4.6. O

We close this section about the Dirichlet Laplacian with a complex interpolation identification,
which follows from reiteration and the work of Sneiberg [83,84] on the openness of the set of
0 € (0, 1) for which a bounded operator T: [Xo, X1]o — [Yo, Y1]p is invertible.

Proposition 4.8. Let p € (1,00), k € Ng, kg € {0, 1,2}, y € (p—1,2p —1) and let X be a UMD

Banach space. Then there exists an ¢ > 0 such that for all 6 € (O, 3= kg + 8) we have

k-+ko, d k+3, d
[WDir 0 p(R s Wy+kps X), WDir p(R s Wy +kps X)]g
k—+ko, k+3,
= [Wo ™ R wypp: XD, Wy P (RY, wy i ]y
Proof. Let i > 0 and define Ap;; := u — Apjr on Wk*P(]Ri, Wy 4kp; X) as in Definition 4.1.

First consider the case ko = 0 and 6 = % in which case we have by Corollary 4.7 and [82,
Proposition 6.2]

k+3,
[WEP (R wyspt X), Wy (RY wy+ipi X2 = D(Api)
k+2, k+2,
= WP R w1 X) = WERP R w445 X) 4.2)

k+3,
= [WEP(RY. wyaip: XD, Wy 7 (RY wy ks X1z

Next, for 6 € (0, %), we set§ =6 - % € (0, 1). Then, by reiteration for the complex interpolation
method (see [6, Theorem 4.6.1]) and (4.2) we have

[WEPRL, wy s XD, Wit P R wy 4 X))o
= [WhP R wy i X, IWEP R wy s X). W (R wy i X125
= [WEP R wy i XD, IWEP (R wy i X). Wy P (R wy i X125
= [WEPRL, wyips X), Wy TP (RL, wy i X))o
Note that the identity mapping is bounded on Wk’P(Rﬂlr, Wy +4p; X) and
id: WP RY wy ap; X) = WETPPRY w143 X) s bounded.

Moreover, we have proved that it is invertible as a mapping

. k+3,
id: [WEPRL, wy ks X), Wy P RL, wy s X))o

k+3,
— [WEPRYL, wy 41p: X), WEEPRL, w3 Xl

for 6 € (0, %]. Since the collection of 6 € (0, 1) for which this mapping is invertible is open (see
[24, Theorem 1.3.24]), the proposition in the case ky = 0 follows.
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Finally, for ko € {1, 2}, let & > 0 be such that the proposition holds for kp = 0 and fix 6 €
(O, % + 8). Then we have

-0k o=t Fhoypg b Zh 24

Therefore, using [82, Proposition 6.2], reiteration for the complex interpolation method and the
case ko = 0, we obtain

k+ko, k+3,
[Wy PP R, wyaps X), Wy P (RE, wy s X))o

k, k+3, k+3,
=[[Wy P R, wysap: X). Wy ”(Rd,wwkp;xn%o Wy TP RL, wy s X)],

— rwk? md . k+3.p mvd .
- [WO (]R+v Wy +kp; X)y W() (R+’ Wy +kps X)](I—G)I%O—‘ré‘

—rwk-P (rd . k+3.p mvd .
= [Wpir RE, wykps X), Wiy " (RE, wy i X)](1fe)’%°+9‘
Using Corollary 4.7 two more times, we have

k, d . k+3, d .
[WDif(R+s w)/+kps X)7 WDir p(R ’ wy-H(pv X)](I—G)]%OJ,-@

k
(1-0)2+36
=D(Ap; 7 %)

k+-ko, k+3,
= [Wpar 7 (RL, wyxp: X), Wit P R wyips X))o,
proving the proposition. O

Remark 4.9. We conjecture that, e.g., in the case k = kg = 0, there is actually the equality of
complex interpolation spaces

[LPRY, wy; X), WP RE wy; X)lo = [LPRE, wy; X), Wy PRE, w,; X)ls (43)

forall 0 € (0, %(1 + V—H)), which is suggested by results on interpolation with boundary condi-
tions as studied in [71,82]. However, at the moment, the case y € (p — 1,2p — 1) of (4.3) for the
parameter range 6 € (% + ¢, %(1 + VTJ“])) is an interesting open problem that seems to require a
novel approach to interpolation with boundary conditions.

4.2. Fractional domains for the Neumann Laplacian

Similar to the Dirichlet Laplacian above, we now characterise fractional domains for the Neu-
mann Laplacian. The proofs are similar to those in Section 4.1, but for the convenience of the
reader, we provide the details.

Lemma4.10. Let p € (1,00), k e NgU{—1}, y € (—1,2p—1)\{p — 1} such that y +kp > —1,
w > 0and let X be a UMD Banach space. Then forall f € WZE\?

. k+4 . . .
unique u € WATNéf; (Rd , Wy kps X) such that pu — Axewtt = f. Moreover, this solution satisfies

eﬁ (Rfi, Wy 1kp; X) there exists a
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et ] yyiesa, PRY jwytp; X) = < Cll fllyrsa. P(RE wy 4ip; X)*
where the constant C > 0 only depends on p,k,y, iu,d and X.

Proof. Step 1: the case y € (p —1,2p — 1) and k > —1. Note that for y € (p — 1,2p — 1) we
have

k+2, d k+2 d
WA,Neﬁ(R » Wy +kps X)=W + ,p(R_’_’ Wy —p+k+1ps X).

Sincey —pe(—1,p—1)and

k+4, d . (k+2)+2, d .
WA Nep(R » Wy+kps X)= WNeu p(R » Wy —p+(k+1)p> X),

the result follows from Theorem 4.3 (see also [70, Proposition 5.6]).
Step 2: the case y € (—1, p — 1) and k > 0. Note that for y € (—1, p — 1) we have

k+2,p wk+2.p Rd .
WA,Neu(R+’wV+kP’X) Wew ~ (RE, wy4ips X)),

which has
CXMRL; X) = {f e CRL; X): 91 f € CERYL; X))

as a dense subspace, see [82, Proposition 4.9]. For f € C (Rd ; X) there exists a unique solution
ueSMRY; X) to pu — Aneutt = f on RY that satisfies (3,1)(0, -) = (Ad;u)(0, -) = 0. This can
be proved similarly as in Lemma 4.5 now using an even extension (cf. [70, Lemma 5.5]).

Take f € C (Rd ; X) and let u € S(Rd ; X) be the solution to puu — Aneytt = f as above.

We define vg := “wandv; j:=0ju for j €{l,...,d}. These functions satisfy the estimates
wvg — Avg = f (91v0)(0,-) =0,
uvy — Avy =01 f v1(0,) =0,

poj —Av; =9, f  (1v))0,)=0, jef2,...,d}.

If j =1, then by Lemma 4.5 (using that (9; f”a]Ri = 0) we have the estimate

vl s, PRL, wy4ip; X) = C||31f||wk+1p(Rd Wy kpi X)* “4.4)

If je{2,...,d}, then applying Step | withk—land y + pe (p —1,2p — 1), yields

||U]||Wk+3 PRE wy44p3 X) = ”vj”W(k DHPRL w4 g1y pi X)
4.5)
< C“ajf”Wk+l,p(]Ri’wy+kp;X),
and similarly for j =0 we obtain
lvj ||Wk+3 PRE wyhp; X) = C”f”WkH P(RY wy 4ip: X)* (4.6)
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The estimates (4.4), (4.5) and (4.6) imply that

d

i lpisscn Ry i) = D 07 lterson R i 30
Jj=0

d

SIS Mkt @e w0 T D N85 F lterton e i 50
j=1

5 ”f||Wk+2’p(Riawy+kp;X)’

where the constant only depends on p, k, y, i, d and X. A density argument, similar to the proof

of [70, Proposition 5.4], yields the result. Note that the uniqueness of u € WTSéﬁ (Rd s Wy +kps

X) — WI]fI:u?”p(Ri, Wy 4kp; X) follows from [70, Proposition 5.6]. O
We continue with the characterisation of fractional domains of the Neumann Laplacian.

Proposition 4.11. Let p € (1,00), k e NgU{—1}, y € (—=1,2p— 1)\ {p — 1} such that y + kp >
—1, u > 0 and let X be a UMD Banach space. Let ANey on WkH'p(]Rd s Wy4kp; X) as in
Definition 4.1. Then
1 k+2,p vd .
D((M - ANeu)Z) = Wreu (R_t,_’ Wy +kps X),

3 k+4,
D((1t = ANew)?) = W, Reh (RY, wy 13 X).

Proof. We write ANey := 4 — ANeu. For y € (—1,2p — 1) \ {p — 1} it holds that Aney has BIP
by Theorem 4.3, so Propositions 2.3 and 3.16 imply

i k+3, k+2,
D(Afey) = WP R wyaps X0 Wiiey " (RE wypp: 011 = Wy " (RE, wy i X).
1
By [36, Theorem 15.2.5] and the characterisation of D(Aﬁleu) we find

3 1
D(ARe,) = {1 € D(ANew) : ANeutt € D(AR,,)}
k+3, k+2,
={ue WN:u p(Ri» Wy +kps X) : ANeutt € WN:U p(Ri» Wy +kp; X)}.

3
From this, the embedding Wﬁﬁf}éﬁ (Rd s Wy tkps X) = D(Aﬁleu) is straightforward and the con-

verse embedding follows from Lemma 4.10. O

In contrast to the Dirichlet case, we do not need a version of Proposition 4.8 for the Neumann
Laplacian. This is simply due to the fact that we cannot consider the Neumann Laplacian on
WEP (R, wy4xp; X) with y > p — 1, see Theorem 4.3.
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5. Functional calculus for the Laplacian on special domains

To derive the H*-calculus for the Dirichlet and Neumann Laplacian on bounded domains,
we will proceed in two steps:

(1) Use the H°-calculus for the Laplacian on the half-space (Theorems 4.2 and 4.3) and known
perturbation theorems for the H°°-calculus (Section 2.2) to obtain the H°°-calculus for the
Laplacian on special domains of the form O := {x € R¢ : x| > h(X)} for a compactly sup-
ported function 4 on R?~! (see Definition 2.8).

(2) Perform a localisation procedure to transfer the H-calculus for the Laplacian on special
domains to bounded domains.

In this section, we will perform Step 1, while Step 2 is postponed to Section 6. While localisation
procedures are standard in the literature (see, e.g., [17,26,61]), the low regularity of the domains
considered here leads to perturbation terms that, in some cases, are of the same order as the
Laplacian. Therefore, we employ a localisation procedure that is different from the standard
procedure as in the aforementioned literature. This leads to a far-reaching generalisation of the
results in [72, Theorem 6.1] where exclusively bounded C2-domains are considered for only the
LP-case (i.e., k =0).

We begin by defining the Laplacian on special domains. Recall that weighted Sobolev spaces
on special domains with vanishing boundary conditions are defined in Definition 3.9.

Definition 5.1. Let p € (1, 00), k € Ny, A € [0, 1] and let X be a UMD Banach space.

1 Letye(—-Mp—1.2p—D\{p—1} and O a special C *_domain with [Olcir < 1.

The Dirichlet Laplacian Api; on WP (O, wy+kp, X) with k € Ny is defined by

Apit:=Au with  D(Apyp) := W27 (O, w9, - X).

y+kp
() Let y e (1 —=A)p —1,p—1), j€{0,1} and O a special Cj+1’)\-d0main with
[Olcj+in < A, where A € (0,1) is as in Lemma A.5. The Neumann Laplacian Aney

on Wkti-r(©, wy+kp, X) is defined by

ANeut = Au  with  D(Anew) = Wad/ 220, w9, : X).

y+kp>

Moreover, the Dirichlet and Neumann Laplacian on ]Ri as in Definition 4.1 will be denoted
d d

R R .
by Ap. and Al , respectively.

The main results from this section on the H°°-calculus for the Laplacian on special domains
are summarised in the following two theorems.

Theorem 5.2 (H*-calculus for u — Apir on special domains). Let p € (1,00), k € Ny, A €
[0,1,ye(@=Mp—1,2p—1D\{p—1}, u > 0andlet X be a UMD Banach space. Moreover,
assume that O is a special Cé’)“—domain. Then there exists a § € (0, 1) such that if [O]c1.a <6,
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then u — Apjir on Wk”’((’), wg?kp; X) as in Definition 5.1 has a bounded H®°-calculus with
wpgoo (i — Apir) =0.

Theorem 5.3 (H-calculus for i — Aneu on special domains). Let p € (1,00), k € Ny, A €
O, 1, ye(—=1p—1,p—1),j€{0,1}, u > 0and let X be a UMD Banach space. Moreover,
assume that O is a special CCjH’k-domain. Then there exists a § € (0, 1) such that if [O]cj+1.5 <
8, then u — ANeu On Wk“'j”’((?, wﬁ(zkp; X) as in Definition 5.1 has a bounded H®°-calculus
with wgoo (it — ANeu) = 0.

Remark 5.4. Similar to Theorems 4.2 and 4.3, we expect that Theorems 5.2 and 5.3 also hold
for u =0 if y + kp is small. We will not consider this minor improvement of the theorems here,
since in Section 6 we consider bounded domains and use properties of the spectrum to obtain the
H*-calculus with u = 0.

The proofs of Theorems 5.2 and 5.3 are given in Section 5.2 after having established some
preliminary estimates in Section 5.1.

5.1. Preliminary estimates

In the proofs of Theorems 5.2 and 5.3, we derive the H®-calculus on special domains by
perturbing the corresponding calculus for the Laplacian on the half-space. To relate the Laplacian
on special domains and the half-space, we use the diffeomorphisms ® and ¥ from Lemmas A.4
and A.5 for the Dirichlet and Neumann Laplacian, respectively. The diffeomorphism & is easier
to deal with, but it does not suffice for the Neumann Laplacian since it does not preserve the
direction of the normal vector at the boundary, see Appendix A.

First, consider the case of Dirichlet boundary conditions. Let O be a special CC1 -domain and
recall that ®,.f = f o ®~! for f € L] _(O; X). Define A®: W (RL; X) — L) (RY; X) by

A =d,0A0(d),.

Making use of the explicit form of the diffeomorphism ®(x) = (x; — h1(x),X) for x € O (see
Lemma A.4), an elementary computation involving the chain rule shows that A® = A + B,
where the perturbation B is given by

B=—2((Vh))o®')-Vd; + |(Vh1) o @ 11287 — ((Ah1) 0 @~ H)dy. (5.1

Note that the first two perturbation terms in (5.1) are second-order differential operators since
(Vh1) o @~ ! is bounded on ]Ri if O is a special CC1 -domain, see Lemma A.4. The order of the
latter perturbation term in (5.1) depends on the smoothness of the domain.

e If O is a special Cg-domain, then (Ahy) o ®~! is bounded on Ri and thus the last term in
(5.1) is a lower-order perturbation term.

e If O is a special Ccl-domain, then (Ahl)(cb_l(y)) blows up like yl_1 in the neighbour-
hood of y; = 0, see Lemma A.4. Therefore, estimating, say, the L?” (Ri, wy )-norm of
((Ah1) o @~ 1)3; gives that the weight exponent effectively decreases. However, this loss
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can be compensated by applying Hardy’s inequality, which allows us to recover the origi-
nal weight w,, . In this way, we also obtain an additional derivative from Hardy’s inequality,
meaning that all three perturbation terms in (5.1) have the same order.

This demonstrates that if the smoothness of the domain is low, then the last perturbation term in
(5.1) is more difficult to deal with.

Similarly, for Neumann boundary conditions, let W be the diffeomorphism from Lemma A.5
and define AY : Wloc (Rd :X)—> Ll (RZ; X) by

loc
AY =W, 0 Ao (W h,.

Recall that W(x) = (x; —hi (x), ¥~/ (X)) for x € O and we write h = (h1, k1) =2 (h1, ha, ..., ha).
Another tedious, but elementary calculation with the chain rule shows that A¥ = A + B with

d d
Z —H;j—Hj;i+HH"); ;) oW 0% = > [Ahjow™
j=1 j=1

where H := Dh is the Jacobi matrix of 2. Compared to the case of Dirichlet boundary conditions
in (5.1), we have more perturbation terms, since the diffeomorphism W is more involved. To
simplify the estimates later on, we simply note that B is a linear combination of terms of the
following forms

[@" hiy) o W™ ']0", il =1, |ul =2,
[ hiy) o W[ (82 hiy) 0 W' oM, il =lwnl=1, |ul=2, (5.2)
[@" hiy) o W™ ']0%, il =2, lul =1,
where i1,i7 € {1, ..., d}. Note that the perturbation terms in (5.1) can also be written as in (5.2)

with i1 =i, = 1 and ® instead of V.

In the following lemmas we provide precise estimates for the perturbation terms. We note
that these estimates work for both diffeomorphisms ® and W since they have the same regularity
properties. Throughout the rest of this subsection, we let O be a special Ccl. -domain and take the
following standing assumptions:

e In the case of ®: [O]1 <1 and take /4 as in Lemma A 4.
e In the case of W: [O]c1 < A, where A € (0,1) as in Lemma A.5, take h; and h1 as
Lemma A.5 and set (hy, hy, ..., hg) == (hy, hl)

We start with the estimates for the perturbation terms with |u| =

Lemma 5.5 (Estimates for || = 2). Let p € (1, 00), k € Ng and let X be a Banach space. Take
Il =2, lvil=|wn|=1andiy,ir €{l,...,d}. Let Y € {®, V} and define

Py = [(3"h;y) o YoM,
Py :=[(3"hiy) o Y H[(82hiy) o T 0.
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(i) If y € (p—1,2p — 1), then for n € {0, 1} and u € W*2+1P (R, w,, 4,5 X) it holds that
”Pmu”Wk*’l«l’(Ri,warkp;X) <C-[O]¢i - ”u”WHHH»p(]Ri,warkp;x)’ m € {1,2}.

(ii) Ifx € 0,1] y € (1=2)p—1,p—1), j €{0,1} and O is a special CL*"*-domain, then
forn € {0, 1} and u € Wk+2+i+mnp (R4 w., 105 X) it holds that

| Pt ||Wk+j+”’p(Ri’wy+kp;X) = C-[Olgjsia-flu ”Wk+2+-f+"’p(Ri’wV+kp§X)’ m € {1,2}.
In all cases, the constant C > 0 only depends on p,k,y,A,d and X.

Proof. For notational convenience we write Wk'l’(wy) = Wk (R4, wy; X).

Step 1: preparations. We prove the estimates for P;, where, from now on, we omit the sub-
scripts from v and i. The estimates for P, are derived in a similar way.

For o € Ng and some regular enough u# we obtain with the product rule that

18 hi)o Y™ a" ulll b (w, 41)

< Z 182 ((8"hi) o Y118 P 3% u] ”Lp(wﬁk,,)- (5.3)

B=a

In the case that ||, |8] > 1 and y € R%, the multivariate Faa di Bruno’s formula [9, Theorem
2.1] implies

1B s
PP @ R)CT ONIS D 1@ Ryt oY Yo [T ool (5.4)

1=<|8|=IB] s=1 py(B,8) m=1

where the sets p; (B, §) are contained in

[ e 00 € NG\ 1ODT x NG OD = Y Tkl =161, Y il =181}
m=1 m=1 (55)

By Lemma A .4(ii)+(iv) for T = ® and Lemma A.5(ii)+(v) for T = W, we have the estimate

[Olcj+ia < [Olcj+1a
dist(Y—1(y), 00)18l=i=+ ~ y](|6|—j—x)+ ’

1(3°9"h) (Y ()] S (5.6)

forall A €[0,1], j €{0,1},5 € Nd, [vj=1landye€ Ri. Moreover, by the same lemmas we also
have the (non-optimal) estimate

[O]ch

L~—1 < _Micit
R SN
N1

(5.7)

forall j €{0,1}, £ € N§ and y e RZ.
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Step 2: proof of (i). Lety € (p — 1,2p — 1), n € {0, 1} and O a special Ccl-domain. To prove
(i) we need to consider (5.3) with || < k + n. If 8 =0 in (5.3), then it follows from (5.6) that

1@ i) 0 Y™ H)(@% 0" ) | Lr (wy i) < [Oe el wiszenp 4

By (5.4), (5.6) and (5.7), we have for 8 < o with |«/[, |8| > 1 that (5.3) can be further estimated
as

[16P (@ hiy o YD1 Pkl 1,

1B
-B
S0l Z Z Z 19 aM“”L”(wwkp—w\p—zf,,:l<|zm|—1>\km|p>

1=|8|=IBl s=1 ps(B.9)

5 [O]Cl ||aa*ﬂauu||w\ﬂ\.p(wy+kp) 5 [O]Cl ||M||Wk+2+n,p(wy+kp)a

where we have applied Hardy’s inequality (Corollary 3.4) | 8| times using that

N
(5.5
y +kp—181p = > (1l = Dlknlp =y +kp —1Blp > (1 —m)p — 1= —1,

m=1
since y > p—1,|B| <k+n and n € {0, 1}. This completes the proof of (i).
Step 3: proof of (ii). Let . € (0,1], y e (1 —-Mp—1,p—1),ne{0,1}, j €{0,1} and O

a special chH’k—domain. Consider (5.3) with |¢| <k + j + n. In the case that § = 0 it follows
from (5.6) that

(@ hi) 0 Y@ 0™ )| Loy i) S Ot lullwrszeionnu, )

By (5.4), (5.6) and (5.7), we have for 8 < « with |«/[, |8| > 1 that (5.3) can be further estimated
as

1187 (@ hi) o Y~ H1[9* P oH

u] ” LP(wy1ip)

1Bl

: a—Bau
S1Olci+a Z Z Z 18="a ”””(wy+kp—2fn=](um|—<_i+|>>+\km|p)
1<[8]<j s=1 ps(B.5) (5.8)

1B

) a—fan
+[Olci+r Z Z Z 0" "9 ””L”(wwkp—(lzsw—.f—x)p—zf,,:l(\t’m\—ﬂlkm\p)’
JH1=181=IBl s=1 ps(B.5)

where the sum over 1 < |§| < j is only present if j = 1 and in this case we have (|6] —j —X)4 =
0. We first consider the case j + 1 < |§] < |B]| for j € {0, 1}. Note that by (5.5) we have

y+kp—= (81— j=2p = (ul = Dlkmlp=y +kp— (1Bl —j —2)p

m=1

>(1—-np—-1>-1.
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Therefore, Lemma 3.5 applied with s = || — j — A < |B] yields

o— o—
1092 ull oy 11 S N0 PO b1 ) < Nitllwicszesonpgan, -

In the case that j = 1, we additionally estimate the sum over |§| = 1 in (5.8). In the case that
n| <j+1=2forallme{l,...,s}, we have (|£,,| —2)+ =0 and

||306—/33M

M||LP(wy+kp) S ||M||Wk+3+n,p(wy+kp)'

If there exists anmg € {1, ..., s} such that |£,,,| > 2, then it follows from (5.5) and | 8| < k+1+n
that

N N
Y +kp = 3 (1l =2 lknlp =y +kp = (D7 (ol = D lheml + (ng] =2l ) p

m=1 m=1
m¥£mg

N
=y +kp— (22 nllknl + g ey | = 2lking ) p

m=1

mz£mo
>y+kp—IBlp+2p>Q2—n—-1p—-1=>-1.

Therefore, Lemma 3.5 (applied with s replaced by Y . _; (1€ | — 2)41kim| < |B]), yields

19~ P " ull Lo < o P

yrkp=35 _ (tm =24l p) Ul wiBlp ) = Nl wr34np 0, 40

This finishes the proof of (ii). O
We continue with some preliminary estimates for the perturbation term with || = 1.

Lemma 5.6 (Estimates for || = 1). Let p € (1, 00), k € Ng and let X be a UMD Banach space.
Take || =1, |v|=2andi €{l,...,d}. Let Y € {®, ¥} and define

P:=[(@"h;) 0T ]o",
(i) Ify € (p — 1,2p — 1), then for n € {0, 1} it holds that
”Pu||Wk+n‘p(Ri,wV+kp;X) <C-[O]c - ||M||Wk+2+”’p(Riswy+kp;X)’
for

WP (R, wy 4p; X)  ifn =0,

ue k43, .
Wy PP (RL, wy4p; X)) ifn=1.
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(it) If » € (0,1], ye (1 =X)p—1,p—1) and O is a special CC]’)”-domain, then for u €
[WEPRL, wy1ip: X), WP R wy s X,y it holds that

IPullytr R w, ) = € - [Olera - ”””ka-P(Ri,wy+kp;X>,Wk+2vp<lRi,wy+kp;X)Jl,%°
In particular, for u € Wk+2'p(Rd , Wy+kp; X) it holds that

< . .
||Pu”W""’(R‘i,wy+kp;X)—C [Olcix ||M||Wk+2,p(Ri‘wy+kp;X).

(iii) If A€ (0,1], y e (1 —=M)p—1,p—1) and O is a special Ccz’k-domain, then for u €
Wk”’P(Ri, Wy 1kp; X) it holds that

||Pu||Wk+l’p(Riswy+kp;X) <C- [O]Cm . Hu||Wk+2’p(Ri,wy+kp;X)'
In all cases, the constant C > 0 only depends on p,k,y, ,d and X.

Note that in Lemma 5.6(i) with n = 1, we need two traces of u to be zero. This will not be a
problem later on, since the Neumann trace will disappear in the complex interpolation space, see
Step 1 in the proof of Theorem 5.2.

Proof. For notational convenience we write Wk'l’(wy) = Wk (R4, wy; X).
Step 1: preparations. For o € Ng and some regular enough u# we obtain with the product rule
that

18 1@ hi)o XY™™ ulll Lr w14y
< S 9P (@ hi) o YO8 P ot |

B=a

(5.9)

Lr (wy+k]7) ’

In the case that |«|,|8] > 1 and y € R?, the multivariate Faa di Bruno’s formula [9, Theorem
2.1] implies

18] s
8@ R ONIS Y 1@ Ry onl Y] Y [T ok, (5.10)

1=|8]<|Bl s=1 ps(B.5) m=1

where the sets pg(B,8) are given as in (5.5). By Lemma A.4(ii)+(iv) for T = & and
Lemma A.5(ii)+(v) for Y = ¥, we have the estimate

[Olci+1a < [Olcj+1a

3% ;) (Y ! < 4 . ,

(.11

forallA€[0,1], j€{0,1},8 e N?, |v|=2and y € Ri. Moreover, by the same lemmas we also
have the (non-optimal) estimate
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ot () < e (5.12)
y

(el=14 "
1

forall £ € Ng and y € Rfﬁ.

Step 2: proof of (i). Lety € (p — 1,2p — 1), n € {0, 1} and O a special Cc1 -domain. To prove
(1) we need to consider (5.9) with |a| <k +n. If 8 =0 in (5.9), then it follows from (5.11) and
Hardy’s inequality (Corollary 3.4, using that y + (k — 1) p > —1) that

(@A) 0o Y@ ) | Loy 1) S TOLet 10% 0 ull Loy 41y S [Ole el wirztmp )

By (5.10), (5.11) and (5.12), we have for 8 < o with |«|, |8] = 1 that (5.9) can be further esti-
mated as

1107 (0" hi) o T~ )10 P 90 u] HLp(wmp)

18l
a—Bau
S1Oler Z Z Z 19" u”Lp(wl/Jrkpf(\SHl)pfzfnzl(|£m\*U\km\P)

1=[8|<|Bl s=1 ps(B.9)

SO1 1P o  ullyiptsrpu, ) S [OTet lullwhszin s, 4y )

where we have applied Hardy’s inequality |8| 4 1 times using that

N
(5.5)
y+kp—(8|+1)p— Z(leml = Dlknlp =y +kp— (Bl +1)p>—np—1,

m=1

since y > p— 1, |B]| <k+n and n € {0, 1}. This shows that for n = 1 we need to take u €
Wg 3P (wy 1xp) by Hardy’s inequality. This completes the proof of (i).

Step 3: proof of (ii). Let A€ (0, 1], y € (1 —A)p — 1, p — 1) and O a special C.*-domain.
Consider (5.9) with |a| < k.If 8 =0in (5.9), then it follows from (5.11) and Lemma 3.6 (applied
to s =1 — X and using that X is UMD) that

(@A) 0 Y™)@0 ) r (i) S [ONe12 189 Lo sy 111

SO0l ”“||Wk+1~P(wy+kp,(1,A),,)
<
SOl ”“”[wkvP(Ri,wmp;xxW”W(Ri,wwkp;xnl_% :

By (5.10), (5.11) and (5.12), we have for 8 < o with |«|, |8] > 1 that (5.9) can be further esti-
mated as

[0 (@*hiy o =0 P |,

1Bl

) a—Bau
S [Olcia Z Z Z ll0="a u”Lp(wy+kp—(\5\+|—?»)P—Efn=](Ilm|—|)\km|P)'
1<|81=IB] s=1 ps(B.5)
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By (5.5) and the Hardy inequalities from Lemmas 3.2 (using y +kp — (|8|+1—X)p > —1) and
3.6, we obtain

a—pBau — 19— Ban
”a 9 u”Lp(warkpf(\SHl*1)17*Zf;1=1(Mm\*l)\km\l’)_”a 9 u||LP(wy+/{,,_(w+1_)L)p)

5 ”u||Wk+l’p(wy+kp—(l—k)p)
N e Ry 20, W2 Ry i,
This completes the proof of (ii).
Step 4: proof of (iii). Let L € (0, 1], y € (1 —A)p—1, p — 1) and O a special Cg’)‘—domain.
Consider (5.9) with |@| <k + 1. If 8 =01in (5.9), then it follows from (5.11) that

1C@" Ri) 0 Y@ D 11 (1) S [ONc2 1870l L) S TOV2t 2 -

By (5.10), (5.11) and (5.12), we have for 8 < « with |«/|, |8]| > 1 that (5.9) can be further esti-
mated as

|67 (@ hiy o YD1 P0"ul] 1y,

1Bl

a—fan
S 102 Z Z Z 18=="a u”Lp(wy+kp—(|5|—>~)P—Zf;7=|(\fml—l)\kmlp)
1=18|=IB| s=1 ps(B,6)

S 012 10 P ullyyiprr ) S O 22 sz )5
where we have used Lemma 3.5 with s replaced by |8| — A and that
N
y+kp—(81=2)p =Y (ml = Dlkulp=y +kp—Blp+ip>—1.

m=1

This finishes the proof of (iii). O

The fact that we need boundary conditions in the spaces in parts of Lemma 5.6 will complicate
the proof of perturbing the H°°-calculus in Section 5.2. In particular, for the Dirichlet Laplacian
on special CC1 ’A-dornains, we need an additional estimate, which we obtain via extrapolation
spaces and the adjoint operator.

Letpe(1,00),yeR,OC R4 open and let X be a reflexive Banach space (which is implied
by the UMD condition). Then L? (O, wﬁo; X) is reflexive and with the unweighted pairing

(/s 8) Lr(0.wi0:x)x (LP (O w10 X)) = /(f(x), g(x)) xxx dx,
(@]

its dual space is
(LP(O0,w)%; X)) = L (0, w)?; X'),
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where p’ = p/(p—1)andy’ = —y/(p—1). Note thatif y € (—1, p—1),theny’ € (—1, p'—1).
We have the following characterisation of the adjoint operator of the Dirichlet Laplacian.
We note that for y € (p — 1,2p — 1) the characterisation of the domain of the adjoint is more

sophisticated, see [72, Proposition 6.6].

Proposition 5.7 ([72, Proposmon 6.5]). Let p € (1,00), y € (—1, p — 1) and let X be a UMD

Banach space. Let Aj, , x = A * on LP (R+, wy; X) be the Dirichlet Laplacian as in Defini-
tion 4.1. Then the adjoint operator is (Apyx) =Ap, x.

To continue, we briefly recall the extrapolation scales, see [67, Appendix E] or [3, Chapter 5]

for more details. Let A be a sectorial operator on a Banach space Y such that 0 € p(A). Then for
any @ € R, we can define the scale of extrapolation spaces

(D(A), |A% - |ly) ifa >0,

Eqa,ll- =
(Eo, A || - 1 Eqa) H(Y’ A% - |[y)~ ifa <0.

where ~ denotes the completion of the space. Let A’ denote the adjoint of A. In the case that Y
is reflexive and « € R, the extrapolation scale satisfies

E—a,A = (E(Z,A/)/v (513)

with respect to the duality (Y, Y’).
With the extrapolation scale and the characterisation of the adjoint, we can prove the following
estimate for the perturbation terms coming from the Dirichlet Laplacian in (5.1) on weighted

Lebesgue spaces.

Lemma 5.8. Letpe(l 0), A€ (0,1, ye (1 —=Mp—1,p—1)andlet X be a UMD Banach

space. Let AD on LP (Rd , wy; X) be the Dirichlet Laplacian as in Definition 4.1. Assume that
O is a special CC *_domain with [Olcix < 1. Then the perturbation B in (5.1) satisfies

R 1 RY 1
1= Ap) ™2 Butll p ety xy < €+ [O1ern - 1t = Ay 2l ot - x
forall w>0andu € Wé’if(Rd s Wy X).
Proof. We write A :=pu — A * Note that (5.13), Propositions 5.7 and 4.6 imply that
||A7%B””LP(R1,w},;X) ~ sup [(Bu. ”>LP(Ri,wV;X)xLP’(]Ri,wy/;X’)|’

where the supremum is taken over all v € E1 W= D((A/)%) = D1r (Rd,wy ; X') with
||U||W1.1)’(Ri,wy,;xf) <1.Fixsuchave WDlr (]R+, w,; X'). Recall from (5.1) that the pertur-
bation terms in B are of the form ((8"h;) o ®~1)¥9#d; with |u| = |v| =1 and « € {1, 2}, or,
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with |v| =2, |u| =0 and « = 1. Therefore, by Lemma A.4(iv), integration by parts, Holder’s
inequality, Lemma 3.5 and Proposition 4.6, we obtain

|<B“’U>LP(R“’ wy s X)x LY (R ,w /'X/)’

Ole( fl (9" 91u, v XXX/|dx+f TP, v dx)

1
[|= Rd +
1
S[O]Cl,x(fxr||81u||§dx>p
R¢
Y (1-2) T4
Z / ||aﬂv||§,dx)" +(/x1 "||u||X,dx) ]
[ul=1 Rd Ri

1
SOl lullyr®e w0 10wy ®Yw, xS Olets 1A2ul Ly e, x)-
This proves the desired estimate. O

5.2. The proofs of Theorems 5.2 and 5.3

With the preliminary estimates on the perturbation terms, we can now continue with proving
the boundedness of the H*-calculus for the Laplacian on special domains. We start with the
proof of Theorem 5.2 for the Dirichlet Laplacian.

Proof of Theorem 5.2. Let O be a special domain as specified in the theorem, which is of the
form

={xeR?:x; > h(®)},

and let iy and ® be as in Lemma A.4. Recall that we introduced A® : Wloc (Rd 1 X) >
(RZ; X) given by

loc

A =d,0A0(d ),
=A—2((Vh)) o ® 1) - Vd; + |(Vh) 0 @128 — ((Ah1) 0 @713y
=: A+ B+ B> + Bs.

Let A‘D denote the realisation of A® in Wk-» (R4 & Wy tkp; X) with domain D(— ADW) =

W]];itz P (Rd , Wy 1kp; X). Due to the isomorphisms in Proposition 3.7, the trace characterisation

in Proposition 3.10 and standard properties of the H*-calculus, the desired statements in The-
orem 5.2 for —Apj;; on WEP(O, w? +k ” ; X) are equivalent to the corresponding statements for
—Agir on Wkr (R4 % Wy kp: X). We will apply the perturbation theorems from Section 2.2.3 to
show that the H®°-calculus for the Laplacian on the half-space is preserved under the perturba-
tion B := B + By + B3. We note that the estimates for B and B, are covered in Lemma 5.5 and
for B3 in Lemma 5.6.
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Step 1:thecasey € (p—1,2p—1). Lety e(p—L2p-1) andlet(?beaspecmlCl domaln

Let u > 0 and we write Apjr := . — AD]r We apply Theorem 2.6 to show that u — (ADlr + B)

has a bounded H*°-calculus. Let u € D(Apj) = ]];:2 p(Rd , Wy 4kp; X), then by Lemma 5.5(1),

Lemma 5.6(i) and Remark 4.4, we have

<
| Bull WP (RE w3 X) ~ [Ole ||”||Wk+2,p(1[{i,wy+kp;x)

~ [O]Cl | Apiru ”Wk’p(]Ri’warkp;X)’

which shows condition (i) of Theorem 2.6. To show that condition (ii) of Theorem 2.6 holds,
note that by Lemma 5.5(i) and Lemma 5.6(i) we have that

B: Wk+2’p(Ri, Wy kp; X) — Wk’p(]R‘i, Wy 44p; X)  and

(5.14)
k+3,

B: Wy PP (RYL, wypips X) — WP R wy s X)
are bounded operators. Take 0 € (0, %) such that Proposition 4.8 for kg = 2 holds and let u €

D(A]];lrre) Then, by Corollary 4.7 twice, properties of the complex interpolation method using
(5.14), Proposition 4.8 and the invertibility of Ap;. we have

6 _
I ADiButllwe.r R w, 1430 = IBUN peag, ) = 1Bl R w30, W2 R w415 X)1g

< |lu k43
Sl ”[WM-P(R‘i,ww{p;X),WO+ PR wy 1xp3 X)]ao

<
el Wy 2P (R wy a3 X)W P (R w4 X) g

~ ||U k+2, k+3,
~I ”[WDir PRL, wypip: X), Wpy P RE  wykps X)Tog

_ _ 1460
~ ”””D(AI];") ~ ”ADir u” Wk'p(RiswarkpZX)'

This shows condition (ii) of Theorem 2.6. Therefore, Theorems 4.2 and 2.6 give that u — ADlr
has a bounded H *°-calculus of angle zero if [O] 1 is small enough.

Step 2: the case y € (1 —M)p—1,p—1). Let L € (0, 1], ye((l—)»)p—l p— 1) and
let O be a special CC *_domain. We apply Theorem 2.6 to show that pu — (AD1 . + B) has a

bounded H°-calculus. Let u € D(Apir) = 1];;2 p(R+, Wy +kp: X). Then by Lemma 5.5(ii),
Lemma 5.6(ii) and Remark 4.4, we have

”Bunwk P(Rd Wy kpi X) [O]Cl L ||M||Wk+2 p(Rd Wy 4kp; X)

~[O]c1.: | Apiru ”W]‘*"(Ri,wwrkp)’

Thus, condition (i) of Theorem 2.6 is satisfied. To continue, we verify condition (iii) of Theo-
rem 2.6 for o = % If k = 0, then the required estimate follows from Lemma 5.8. If k € Ny, then
by Proposition 3.15 and Corollary 4.7, we have
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- k+1,
WEP RS wy s X) = [WEHP R wy g pmtyp XD Wi " (RE. wyg pee—1yps X1y

- D(ADlr)

~ d
where Apjr := u — AE{; on Wk_l’p(Ri, Wy 4 p+(k—1)p; X). Moreover, note that by definition of
the fractional powers and [70, Lemma 6.4], it follows that the fractional powers of Ap;; and Ap;;
are consistent. Therefore, together with Lemma 5.5(i), Lemma 5.6(i) and Remark 4.4, we obtain

]
”ADlr Bu”W"P(Rd Wy 4ipi X) ”ADlr Dir B"‘”W"*I’P(Ri’wwpﬂkﬂ)p;X)

- ”Bu”Wk""’(Ri»warka—l)piX)
1

A2
< el wicerr R, i) = DM N wkr RE w4 %)

foru e D(ADH) = ll;:l P(RY, Wy +kp: X). Therefore, Theorems 4.2 and 2.6 give that u — ADlr
has a bounded H *°-calculus of angle zero if [O] 1. is small enough. O

We conclude this section with the proof of Theorem 5.3 about the H*°-calculus for the Neu-
mann Laplacian.

Proof of Theorem 5.3. Let O be a special Cgﬂ’)‘-domain with [O]cj+12 < A, where A €
O, 1) is as in Lemma A.5. Let W be the diffeomorphism from Lemma A.5 and define AY :
wilRL; X) — LIOC(R”];X) by AY := W, 0 A o (U™ 1),. Recall that A¥ = A + B, where the
perturbation term B is a linear combination of terms of the form (5.2). In particular, we define
B1, By and Bj as, respectively, all the perturbation terms in B of the form

[@"hiy) 0w ]or, il =1, |ul=2
[@"hi) o W[ hiy) o W0, fuil =2l =1, |u| =2
[@"hi) 0w o, il =2, |ul=1,
where i1,ip €{1,...,d}.
For j € {0, 1} let —A¥_, denote the realisation of —AY in WX+/-P(R%, w,, 44,3 X) with do-
main D(ANeu) = Wlﬁjuzﬂ p(Rd , Wy 1kp; X). Due to the isomorphisms in Proposition 3.7, the

trace characterisation in Proposition 3.10 and standard properties of the H®°-calculus, the de-

sired statements in Theorem 5.3 for —Apney on WKT/:P O, w (zkp X) are equivalent to the

corresponding statements for —AI‘\IIJCU on Wk+iP(RY, Wy +kp; X). We will apply the perturbation
theorems from Section 2.2.3 to show that the H*°-calculus for the Laplacian on the half-space is
preserved under the perturbation B = B] + B> + B3. We note that the estimates for By and B>
are covered in Lemma 5.5 and for B3 in Lemma 5.6.

Let u > 0 and we write ANey := U — ANeu We first apply Theorem 2.6 to show that u —

(ANeu + Bi + B») has a bounded H°-calculus on WK*/:P(RZ Wy 1kp; X) for k € Np. Let
u € D(ANeu) = {f,:u]H P(RZL, w, 14p; X). Then by Lemma 5.5(ii) and Remark 4.4, we have
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| Biu + BZ“”W“.N’(]R‘J Wy i X) = S[Olgivallu |yt 42, PR w1 5p: X)

~ [O]CjJrl,)\ ” ANeuM ” WkJrj’p(RivaJrkp;X)’
which shows condition (1) of Theorem 2.6. Next, we verify condition (ii) of Theorem 2.6 for

o= 2 Letu e D(ANeu) = szl\{;&p(]li{d , Wy 4kp; X), then by Proposition 4.11, Lemma 5.5(ii)

and the invertibility of Aney, We have

1A5ru(Br+ Byt oy < IBr+ Ball 4 S ltlycssnnc@it o

Neu

~lull 3 ~||A

New [l witip RLwygp: X0
Neu

Therefore, Theorems 4.3 and 2.6 give that y — (ANeu + Bj + B») has a bounded H“°-calculus
of angle zero if [O]j+1,1 is small enough.
To obtain that p — A;\I]’eu has a bounded H *°-calculus, it remains to apply Theorem 2.5 to the

lower-order perturbation Bj3. First, for j =0 we apply Theorem 2.5 witho =1 — ’; € [é, 1). For

ueD(u— (ANeu + B1 + B>)) = D(ANeu) We obtain with Lemma 5.6(ii) and Proposition 2.3
(using Theorem 4.3) that

| B3ue| . P(RY w413 X) ~ S llull [(WhP (R wy s X), W22 (R w413 X1, 2 S llull 1-3

T2 (ANeu

d
For j =1 we apply Theorem 2.5 with o = % Foru e D(n — (AE‘; + B1 + B2)) = D(ANeu) We
obtain with Lemma 5.6(iii) that

IB3ull wiceto ®e w4303 S Nt lwiszp RE o,y 430

Observe that by Proposition 3.16, the bounded H*°-calculus for u — (ANeu + B + B») and
Proposition 2.3, we obtain

k+2, k+3,
Wat 2P (R wy s X) = WP (R w45 X), Wyt (RE, w4 X1,

=W R, wy ks X), D(1t — (ANeu + Bi + B)))]

D=

=D((n— <ANeu + B + Bz))z)

This shows the requlred estimate (2.1) for both j =0 and j = 1. Therefore, the bounded H*°-

calculus for pu — (ANeu + B1 + B»), Theorem 2.5 and Proposition 2.4(ii), show that u — ANCU
has a bounded H *°-calculus of angle zero if [O]j+1,. is small enough. Note that the application
of Proposition 2.4(ii) requires sectoriality of u — A‘I' , for all ,u > (0, which can be obtained from
[36, Theorem 16.2.3(2)] applied to the operator A = ,u ANeu, provided that [O]j+1.1 is small
enough. 0O

43



N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884

6. Functional calculus for the Laplacian on bounded domains

In this section, we establish our main results concerning the H*°-calculus for the Laplacian
on bounded domains. We begin by recalling the definition of the Laplacian in this setting. The
relevant weighted Sobolev spaces with vanishing boundary conditions were introduced in Defi-
nition 3.13.

Definition 6.1. Let p € (1, 00), k € Ny, A € [0, 1] and let X be a UMD Banach space.

() Letye(1—Mp—1,2p — 1) \ {p — 1} and O a bounded C'*-domain. The Dirichlet

Laplacian Api; on WP (O, wy+k ; X) with k € Ny is defined by

Apitt:=Au with  D(Apyr) := W27 (0, w9, : X).

y+kp*

(i) Lety e (1—=Mp—1,p—1),j € {0 1} and O a bounded C/*!-*-domain. The Neumann

Laplacian Aney on Wk+/ PO, wd +kp, X) is defined by

Aneutt :=Au with  D(Aney) := Wt 770, w X).

7+k[7’

(iii) Lety e (1=x)p—1,p—1), j €{0, 1} and O a bounded C/*!-*-domain. The Neumann
Laplacian ANey on the quotient space

WP, w9, X)/{clp :c e X}

y+kp’

is defined by Aneyt := Au with

D(Anew) i= Wi/ P70, w9, s X)/{e1p i c € X}

V+k[”
We now state the main results of this paper about the H*°-calculus for the Laplacian on
bounded domains. The proofs of the theorems below are given in Sections 6.2 and 6.3.

Theorem 6.2 ( H°-calculus for p — Apir on domains). Let p € (1,00), k € Ng, A €[0,1], y €
(A=Mp—-12p—D\{p—1}, 0 € (0,7) and let X be a UMD Banach space. Moreover,
assume that O is a bounded CY*-domain. Let Apiy on W5P(O, wy+kp, X) be the Dirichlet
Laplacian as in Definition 6.1. Then there exists a ;1 > 0 such that for all i > [t the operator
W — Apir has a bounded H®°-calculus with wge~ (it — Apir) < 0.

Theorem 6.3 (H-calculus for &t — ANeyw on domains). Let p € (1,00), k € Ng, A € (0, 1],
ye(l—=-Mp—-1,p—1), je{0,1}, 0 € (0,7) and let X be a UMD Banach space More-
over, assume that O is a bounded C/*tV*-domain. Let Aneyw on WKT/: PO, wy+kp X) or

wktip(O, w? +kp’ X)/{clp:ce X} be the Neumann Laplaczan as in Definition 6.1(ii) or (iii),
respectively. Then there exists a 1 > 0 such that for all > L the operator ;1 — ANey has a
bounded H™°-calculus with wge (4 — ANen) < 0.
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For X = C we obtain that the spectrum of the Laplacian is independent of the involved pa-
rameters. Hence, for the Dirichlet Laplacian we also obtain the H°°-calculus with & = 0 since
zero is not contained in the spectrum.

Theorem 6.4. Suppose that the assumptions of Theorem 6.2 hold with X = C. Then the following
assertions hold.

(i) The spectrum o (—Apj) is discrete, contained in (0, 00) and is independent of p € (1, 00),
keNoandy e (1—-MNp—1,2p—D\{p—1}L

(ii) Let it > 0 be the smallest eigenvalue of — Apyy. For all @ > — i the operator (1 — Apj; has
a bounded H®°-calculus with wge~ (it — Apir) = 0.

The spectrum of the Neumann Laplacian on bounded domains contains the eigenvalue zero
so we cannot allow for u = 0 unless the constant functions are removed from the spaces.

Theorem 6.5. Let p € (1,00), k € Ny, A € O, 1, ye (@ =Mp—1,p—1) and j € {0, 1}.
Moreover, assume that O is a bounded C/tV*-domain. If ANeu is the Neumann Laplacian on
Wkti-p(O, wi(fkp) as in Definition 6.1(ii) with X = C, then the following assertions hold.
(i) The spectrum o (—Aneu) is discrete, contained in [0, 00) and is independent of p € (1, 00),
keNy,ye(d-Mp—1,p—1and je{0,1}.
(it) For all i > 0 the operator (L — ANey has a bounded H°-calculus with wgoo (4 — ANew) =
0.

Moreover, if ANey is the Neumann Laplacian on W*T7:P (O, wﬁ?kp)/{c 1o : c € C} as in Defi-

nition 6.1(iii) with X = C, then the following assertion holds.

(iii) Let 1 > 0 be the smallest eigenvalue of —ANeu. For all i > —[I the operator 1 — ANeu
has a bounded H®°-calculus with wpgo (it — ANeu) = 0.

Remark 6.6.

(i) It is an open question whether Theorems 6.2 and 6.3 (in the case where Aney is defined
as in Definition 6.1(iii)) with general UMD Banach spaces X also hold for ;& = 0. In the
following special cases, one can actually conclude the result of Theorems 6.2 and 6.3 with
u=0.

e If X is a Hilbert space or isomorphic to a closed subspace of an LP-space, then by
redoing the proofs of [34, Proposition 2.1.2 & Theorem 2.1.9] for Sobolev spaces,
one sees that the results in the scalar case with u = 0 (Theorems 6.4 and 6.5) extend
to the vector-valued case.

e If X is a UMD Banach space and k = 0, then using [34, Theorem 2.1.3] and that the
semigroup corresponding to the Laplacian is positive and uniformly exponentially
stable, we can obtain the bounded H *°-calculus with i = 0. The proof of this special
case for the Dirichlet Laplacian is provided in Corollary 6.10 below. However, the
proof does not extend to k > 1.
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For the general case (k > 0 and X a UMD Banach space) we expect that one can show uni-
form exponential stability for the semigroup corresponding to the Laplacian via (weighted)
kernel bounds for the scalar-valued case. Using a tensor extension and consistency, one
could also obtain the required kernel bounds for the vector-valued case.

(i) The p-independence of the spectra of the Laplacian on L?-spaces is well-studied. More-
over, in [14,65] it is proved that on certain weighted L?-spaces the spectrum is independent
of the weight. However, the power weights wﬁo that we use do not fit into their settings.
Instead, we will use compactness and consistency of the resolvent to obtain the spectral
independence in Theorems 6.4 and 6.5.

6.1. Consequences of the bounded H°-calculus

In this section, we discuss two consequences of the bounded H °°-calculus for the Laplacian:
maximal regularity and boundedness of the Riesz transform.

6.1.1. Maximal L9-regularity
Let T € (0, co]. We study the time-dependent heat equation on 7 := (0, T') given by

oru(t) — Au(t) = f(v), tel,

on a bounded domain O with Dirichlet or Neumann boundary conditions and zero initial con-
dition. Furthermore, we consider this in a setting with temporal weights, where we denote by
Ay (1) the class of Muckenhoupt weights. For an extensive introduction to maximal regularity,
the reader is referred to [36, Chapter 17].

The following two corollaries on maximal regularity for the heat equation follow immediately
from Theorems 6.2, 6.3, 6.4, 6.5 and [36, Theorems 17.3.18, 17.2.39 & Proposition 17.2.7].

Corollary 6.7 (Maximal regularity for —Api;). Assume that the conditions from Theorem 6.2

hold. In addition, let g € (1,00), T € (0,00) andv € A;(I). Then —Ap;; on wkr (O, wy+kp, X)
has maximal L1 (v)-regularity on I, i.e., for all

feLi, v; wkrP(o, wy+kp, X))
there exists a unique

k+2,
ue W (1, v WP (0, wi ) X)) N LI, v; W 2P (0, wiF X))
such that o,u — Apiju = f with u(0) =0 and
||u||W1 A (1,0, WkP (O, wf’@ : X)) + ||“||Lq(1 v: Wk+2 ?Q, wao X))~ ||f||Lq(1 v Wk (O, w? +kp 1 X))’

where the constant only depends on p,q,k,y,v, T,d and X. Moreover, if X = C, then the above
statement holds for I =R as well.

Corollary 6.8 (Maximal regularity for —ANey). Assume that the conditions from Theo-
rem 6.3 hold In addition, let q € (1,00), T € (0,00) and v € A;(I). Then —ANeu on

wktir(©, w? X) has maximal L9 (v)-regularity on 1, i.e., for all

y+kp’
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feLiI,v; WHiro,wlQ, . X))

y+kp’

there exists a unique

we W, v; WP, wdQ, s X)) N LA, v; WP (0, wdS, ;X))

V+kp’ )/+kp’

such that 0;u — ANeytt = f with u(0) =0 and

||M||W| A (1,v; Wh+i-p (O, w30 1 X)) + ||u||Lq(l /<+2+/ PO, w dO X))~ ”f”Lq(] v; Wkti-p (O, w? +kp 1 X))’

where the constant only depends on p,q.k,v, j,v,T,d and X. Moreover, the above statement
also holds if we consider Aney on the spaces without constant functions as in Definition 6.1(iii).
In this case, if additionally X = C, then the statement also holds for I = R .

Remark 6.9.

(i) Similar results as in Corollaries 6.7 and 6.8 for O = Ri are obtained in [70, Section 8].

(i1) Corollaries 6.7 and 6.8 concern the heat equation with zero initial data. Well-posedness
for the heat equation with non-zero initial data can be obtained as a consequence, see [28,
Section 4.4] and [36, Section 17.2.b].

We connect the above results to the existing literature about PDE on homogeneous weighted
Sobolev spaces, see [58,59,73]. For p € (1,00), k € Ng, 6 € R and O C R a bounded C!-
domain, the homogeneous Sobolev spaces are given by

HE 4(0) = {f €D/ (0): V|| <k,3°f e LV (O, wSSZ,HO,,P)],

see for instance [73, Proposition 2.2]. Note that L? (O, wgo) =HY +4(0). In the setting for
the Dirichlet Laplacian with y € (p — 1,2p — 1) we have the followmg relation between the
involved homogeneous and inhomogeneous spaces:

Wk p(O wy+kp) = Hk V+d(o)
k+2 k+2
Wi PO w)F,) = Hy 2y, (O).

The first characterisation follows from the fact that O is bounded and Hardy’s inequality using

that y +kp > —1. The second characterisation follows similarly using that WSIJ;Z PO, w w, +kp) =

Wg+2’p((9, wﬁ?kp) for y € (p —1,2p — 1). Note that we have used that the domain is bounded,
for unbounded domains the homogeneous and inhomogeneous spaces cannot be compared.

In [53], the authors use homogeneous spaces to study spatial regularity for boundary value
problems with Dirichlet boundary conditions on bounded C!-domains. There, the boundary
condition is encoded implicitly within the function space. In contrast, our approach imposes
boundary conditions explicitly, allowing greater flexibility — particularly when extending to more
regular domains or handling smaller weight exponents and Neumann boundary conditions. In the
homogeneous setting, some results for the Neumann Laplacian on the half-space (in the special
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case k = () are contained in [21,22], but a general study on bounded domains seems to be un-
available.
Finally, we remark that maximal L?-regularity for the Dirichlet Laplacian on L? (O, wgo) is

also obtained in [55]. Here they treat bounded C!*-domains with y € (1 —1)p —1,2p — 1)
which corresponds to our result in Corollary 6.7 with k = 0.

6.1.2. Riesz transforms

In this section, we discuss the boundedness of the Riesz transform associated with the Dirich-
let Laplacian on the half-space and bounded domains. For an elaborate study of Riesz transforms
associated with the Laplacian on the half-space, the reader is referred to [23].

We start with an extension of the H°-calculus of —Ap;; from scalar-valued Lebesgue spaces
to vector-valued Lebesgue spaces, see also Remark 6.6. This extends the result in [72, Theorem
6.1 & Corollary 6.2].

Corollary 6.10 (H*°-calculus for —Api on LP(O, wgo;X)). Let p € (1,00), A € [0,1],
ye(@d—-MNp—12p—1D\{p— 1} and let X be a UMD Banach space. Let Apj. on
LP(O, w)fi(’); X) be as in Definition 6.1. Then the operator — Apj; has a bounded H*°-calculus
with wgo (—Apir) = 0.

Proof. We define the operators

Agir = Ap;r on LP(O, w?,o) and

A= Apir o LP(O,w??; X)

as in Definition 6.1. Theorem 6.4 implies that 0 € p(—Agir) and it follows from [36, Proposi-
tion K.2.3] that the analytic semigroup S; generated by A(D:ir is uniformly exponentially stable.
Moreover, the resolvent R(X, Agir) is positive for A > 0 (this follows from the L?-case and con-
sistency in Lemma 6.14) and [25, Theorem VI.1.8] yields that S; is positive. Therefore, by [34,
Theorem 2.1.3] the operator S; ® idy defined by

(5 @id)(f®x) =5 f®x,  [feLPOw)), xeX,

extends to a bounded operator on L” (O, wgo; X)) with equal operator norm. It is straightforward
to verify that S; ® id is generated by A%, and that R(A, A% )(f ® x) = (R(%, Agir)f) ® x for
felLP(O, wfjo), xeXand A€ ,o(Agir) N p(Agir). The semigroup S; ® idy is also uniformly
exponentially stable, which shows that —Agir is sectorial. Proposition 2.4 and Theorem 6.2 now
give the desired result. O

We have the following result for the Riesz transform associated with the Dirichlet Laplacian.

Corollary 6.11 (Riesz transform associated with — Ap;;). Let p € (1,00), A € [0, 1] and let X be
a UMD Banach space. Assume that either

(i) O:Rd, k=0,yve(—1,2p—1)\{p— 1} and X is a UMD Banach space, or,
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(ii) O is a bounded C'*-domain, k = 0, ye(l—-Mp—-12p—D\{p—1}and X isa UMD
Banach space, or,
(iii) O is a bounded C'*-domain, k € Ny, ye(l=-Mp—-12p—D\{p—1}and X =C.

Let Apji on Wk PO, w? ; X) be as in Definition 4.1 or 6.1. Then

V+k1’

1
N—7 . . k,
IV(—Apir) zf”Wk*P(O,w;jfkp;X) = C”f”W""’(O,wJ‘j?kp;X)’ fewtr (o, wy+kpv X),
for some C > O which only depends on p,k,y, O and X.

Proof. First, we claim that

(—Api) ™2 WRPO, w0, X) - WhENP (0, wiD, 5 X) 6.1)

y+kp?

is bounded. Indeed, since

(—Api) " WEPO, wdD, ) X) — WP (0, wdD, 1 X)

)/+kp’ V+kp’

is bounded (see Theorems 4.2, 6.4 and Corollary 6.10) and the identity operator is bounded on

wk.p (@R wy hp' ; X), it holds by Stein interpolation [87, Theorem 2.1] that

(—Apin) "2 WEP(0, w9, 2 X) — [WEP(0,wi0, : X), WEHP (0, w? Xl

V+kl7’ y+kp’ )/+kp’
is bounded. To verify the conditions for Stein interpolation, one uses that —Ap;; has BIP, which
follows again from the bounded H °-calculus in Theorem 4.2, Theorem 6.4 and Corollary 6.10.
The claim (6.1) now follows from Proposition 3.15.

Therefore, (6.1), Proposition 3.15 and Proposition 2.3 (using that —Ap;, has BIP), imply
_1 _1
I V(—Apir) zf”Wk’P(O,wgfkp;X) < [(—Apir) zf”W]];iJ;l’p(O,wgfkp;X)

1
=~ |[[(—Apir) "~ 2
”( Dlr) f”[Wk,p(O’w s 1 X), W]];KZ P(O wy+kp X)]]

1
=~ |[(— )2 < ] ; X
I=ao0 ™2 fll ) S ke 0,09, %)

This completes the proof. O
Remark 6.12.
(i) Boundedness of the Riesz transforms on L? (R4, w; X) holds if and only if w € A,(R%),
see [30, Sections 7.4.3 & 7.4.4]. Corollary 6.11 also allows for weights outside the class
of Muckenhoupt weights. On the other hand, we are restricted to power weights since the

interpolation results from Proposition 3.15 are only available for this type of weights.
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(i) With the same proof as in Corollary 6.11 and using Theorems 6.2 and 6.3 it follows that the
Riesz transforms associated with 4 — Apjr and u — Aney are bounded on weighted vector-
valued Sobolev spaces for  large enough. Following the proof of Corollary 6.10, we could
also obtain the bounded H °°-calculus for —Aney on L? (O, w X)/{c 1p:ce X}.

(>iii) In view of Remark 6.6(i), the condition in Corollary 6.11(iii) on the space X can be weak-
ened to X being a Hilbert space or being isomorphic to a closed subspace of an L”-space.

6.2. The proofs of Theorems 6.2 and 6.3

To transfer the H°°-calculus on special domains (Section 5) to bounded domains, we em-
ploy a localisation procedure based on the decomposition of weighted Sobolev spaces as in
Lemma 3.12. For this localisation of the H*-calculus, we need the following abstract lemma,
which follows from lower order perturbation results.

Lemma 6.13 (/72, Lemma 6.11]). Let A be a linear operator on a Banach space Y and let A be
a sectorial operator on a Banach space Y with a bounded H .calculus. Assume that there exist
bounded linear mappings L: Y — Y and P: Y — Y satisfying

(i) PZ =id,
(ii) ID(A) C D(A) and ’PD(A) C D(A),
(iii) (ZA— AI)P D(A) - Y and Z(AP — PA) D(A) — Y extend to bounded linear oper-
ators [Y D(A)]g — onr some 6 € (0, 1).

Then A is a closed and densely defined operator and for every o > wpoo (Av) there exists a 0 > 0
such that p + A has a bounded H°-calculus with wgo (it + A) < o.

We now turn to the proofs of Theorems 6.2 and 6.3 concerning the H *°-calculus on bounded
domains.

Proof of Theorems 6.2 and 6.3. We start with the proof for the Dirichlet Laplacian. Let A €
[0,1],ye (@ =2)p—1,2p—1)\ {p — 1} and let O be a bounded C!*-domain. Define A :=

—Apir on Wk-P(O, wy?kp, X). We show that the operator ;& — Apj; has a bounded H*°-calculus
for p sufficiently large.

If A =0, then take (Vn)n > O, )n 1 (17,,),11\'=O from Lemma 3.12 such that for all n €
{1,..., N} we have [O,]c1 < 8 where § € (0, 1) is small enough such that Theorem 5.2 ap-
plies for every O,. If A € (0 1], then let ¢ € (0,A) be such that y > (1 — (A —¢&))p — 1.
Take (Vn)n 1» (O )n 1 (nn)n =0 from Lemma 3.12 such that for all n € {1,..., N} we have
[Onlcia-e < 8 where 8 € (0, 1) is small enough such that Theorem 5.2 (applied w1th A replaced
by A — ¢) applies for every O,,. We define the following operators

() A:= @2’:0 A, on Wy_fkp as defined in (3.12), where
(a) Agon WrP(RY; X) with D(Ap) := WKt2P(RY; X) is given by Agii := AT,
~ k+2,
(b) Ay on WhP (O, w1 X) with D(A,) = Wit (O, w)Ti,: X) s given by
Anu = Apju forn e {1,...,N},
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(i) B:D(A) — Wyfkp given by Bu = ([A, n,]u)_,,

(i) C:D(A)— WkP(O, wy+kp, X) given by Cii := Z,};’:O[A, Nl

Let u > 0. By [70, Lemma 2.6], Proposition 2.4 and Theorem 5.2 it holds that y — A for any
n €{0,..., N} has abounded H°°—calculus with wge (1 — A 7) =0.Thus pu — A has a bounded
H°°-calculus with wgoo (u — A) 0 as well.

Let P and 7 be as defined in (3.13). It is straightforward to verify that the conditions (i) and (ii)
from Lemma 6.13 hold. It remains to check condition (iii) in Lemma 6.13. From Proposition 3.15
we obtain

[WEP (O, w)

X), D(A, )Ny = WEEP (0, wDn - X)  fornefl,..., N},

y+kp’ V+k17’

and in combination with (see [34, Theorems 5.6.9 & 5.6.11])

[WEP (R X), D(Ap)]y = WEHP (R X),
this yields
~ (@)
(W, DA, = WP R X), D(A0)]) & @IWH? (O, w) Ty, X), DA,
"= (6.2)
k+1, d. k+1,
=W PR ,X)@EBWDW PO wd T X).
n=1
Note that

TAu— ATu=—Bu, uecD(A), and APHE—PAi=Ci, i#ieD(A),

and every commutator [A, 1,] is a first-order partial differential operator with smooth and com-
pactly supported coefficients. This and (6.2) yield that

TA—AT: WP (O, w

y+kp, X)—> Wk +kp and
k+1
P: [Wy+kp,D(A)]1 — Wi PO, wi,: X)
are bounded. Similarly, we obtain by (6.2) that
AP —PA: [W. +,{p,D(A)]l — wkr(, wy+kp,X) and
k,
Z: WHP(O, wy+kp,X)—>W kp

are bounded This shows that ZA - XI)P and Z(AP — 77;) extend to bounded operators from
[W Jbkp? DA ! to W. +kp

i > 0 such that for all u > i the operator i — Apj on wkrO, w?
H®°-calculus with wg~ (it — Apir) < o.

Applying Lemma 6.13 gives that for all o € (0, w) there exists a

y+kp ; X) has a bounded
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The boundedness of the H°°-calculus for the Neumann Laplacian on wk+i.p (O, w?/i)kp; X)
can be shown similarly as for the Dirichlet Laplacian using Theorem 5.3 and Proposition 3.16.
It remains to prove the boundedness of the H%-calculus for u — Aney On the quotient

space Y/K := Wkti-r(O, wﬁ?kp; X)/{c1lp :c € X}. Fix 0 € (0, 7) and let u be large enough

such that ;& — ANey ON Wk+j*”((9, wﬁ?kp; X) has a bounded H“°-calculus of angle wg(u —
ANew) <o.Letw € (o, m) andlet ¢ € HY(Z,)NH>(Z,). For any c € K wehavethatx € Y/K

can be represented as x = y + ¢ with y € Y. Note that for z € p(4 — ANeu) the equation

Zu — (U — ANe)tt =¢C

has the unique solution u = ¢/(z — ). Therefore, by definition of the functional calculus and
Cauchy’s integral formula, we obtain

1
(i — ANeu)C = " f ©(2)R(z, 4 — ANeuw)c dz
N

1 v(2)c

T 2w Z—
ax,

6.3)

dz=¢(u)ce K, ve(o,w).

By (6.3) and the bounded H*°-calculus for © — Aney on Y, it follows that for x € Y/K and
c € K we have

(@ — ANew)X) — @(p)clly = (@1 — ANew) (¥ +¢)) — @(r)clly = llo(n — ANew) Iy
Slelaec)lylly = llelaec,)llx —clly.
Taking the infimum over ¢ € K yields that |l¢(n — Anew)Xlly/x S l@lla=(s,) Xy kx for x €
Y /K, which proves the boundedness of the H°°-calculus on Y /K with angle w g (it — ANey) <
o. O

6.3. The proofs of Theorems 6.4 and 6.5

We continue with the proof of Theorems 6.4 and 6.5, which deal with the H®-calculus in
the special case of X = C. We start with some preliminary results about the consistency of
resolvents.

Let X and X; be two compatible Banach spaces and suppose that By € £(Xg) and B; €
L(X1). Then we call the operators By and B consistent if

Bou = Biu forallu € Xo N X;.

For z € X C C the two families of operators By(z) € L£(Xg) and B(z) € L(X) are called con-
sistent if By(z) and Bj(z) are consistent for all z € X.
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We introduce the forms on the Hilbert spaces V (as dense subspace of L2(0)) given by

apir(vy, v2) := f Vup - Voo dx, v, eV = W&’2(0),
o

aNeu(V1, 12) = / Vi - Vup dx, v, eV = WI’Z(O).
O

Associated with the forms apir and aney are the densely defined closed Laplace operators —Apir,2
and —AnNey,2 On Lz((’)), respectively, see for instance [77, Chapter 12]. The domains of these
operators are

D(Apir2) ={f € Wo *O)n Wl 20): Af e LHO)},

D(Anen2) =1f € W(O) N W2 (0): Af € LA(O)),
see [77, Sections 12.3.b & 12.3.c]. A characterisation of the domains as a closed subspace of
W?22(0) requires more regularity of the domain (compared to the regularity we consider in The-

orems 6.4 and 6.5), see [77, Sections 12.3.b & 12.3.c]. For instance, for the Dirichlet Laplacian,
C?-regularity is required.

We have the following lemma on the consistency of the resolvents for the Dirichlet Laplacian.

Lemma 6.14. Let p € (1,00), ke No, L€ [0, 1], ye (1 —=A)p—1,2p— 1)\ {p — 1} and let
O be a bounded CY*-domain. Let

k 2,
Apiy i=Apir  on WP, wd9, ) with D(Ap 1) = Wit PO, w

y+kp y+kp)

be as in Definition 6.1 and let
Apira = Apir  on LX) with D(Apir2) = {f € Wy 2 (O) N WEZ(O) 1 Af € LX(O))

be as above. Then there exists a [t > 0 such that for all ju > [t the resolvents R(j, Ap k) and
R(w, Apir,2) are consistent.

Proof. Take 1 < g <min{p, 2} and x € (0,2g — 1) \ {g — 1} such that

>M—l>(l—A)q—l. (6.4)

First, we claim that L? (O, wgo) — L1(0O, wf(’o). Indeed, for u € L?(O, wio) we have by
Holder’s inequality that

rP—q
p

q
/|u(x)|qwfj@(x)dx < (/|u(x)|pw30(x)dx>p</wkp 0 (x)dx) <00,
O O O

pP—q
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The latter integral can be written as an integral over ]R‘j_ (using localisation from Lemma 3.12
and the diffeomorphism from Lemma A .4), hence the integral is finite since (6.4) implies (kp —
qv)/(p — q) > —1. This proves the claim.

To continue, we introduce the space

Zry i ={f €Wy (O, wO)NW2I(©O): Af e L"(O,wl9)}  forre(1,2],v>—1,

and note that D(A2) = Z» ¢. Now, consider the equation

it — Apisit = f, fewkrO,wl9 ynL*0). (6.5)

V+k17

By Theorem 6.2 (using that y > (1 —X)p — 1) and [77, Section 12.3.b] there exist unique

k+2,p
ug € Wp;, O, w y+kp) and uj€Zyp

solving (6.5) for u sufficiently large. By Hardy’s inequality (for bounded Lipschitz domains, see
for instance [63, Section 8.8]) and the claim, we have

k+2 p(O w

2, 2, c
Wi ) = Wil (0, w)®) = Wl (0, wl©).

V+kp

Moreover, using k > 0, g < 2 and elliptic regularity (Theorem 6.2 using (6.4)), we have
2,
220> Zge = Wil (O, w29).

Note that the equation (6.5) with right-hand side f € LY(O, waO) has a unique solution in

Dlr 10, de) by Theorem 6.2 (using (6.4)). It follows that ug = u, which proves that the
resolvents of Ap x , and A; are consistent. O

For the Neumann Laplacian, we have the following result concerning the consistency of re-
solvents. Its proof is similar to the proof of Lemma 6.14.

Lemma 6.15. Lefp €(l,0),keNy, Are[0,1],ye(—-Mp—1,p—1), j€{0,1}andlet O
be a bounded C/T'*-domain. Let

k 2,
Apkjyi=Dxew  on WP, wiO, 'y with D(A, 4 i) = Wt TP (O, w

y+kp y+kp)

be as in Definition 6.1(ii) and let
ANeu2 = Anew 01 L3H(O) with D(Aneu2) = (f € WI2(O) N WE2(O) : Af € LX(O)}

be as above. Then there exists a [t > 0 such that for all . > [t the resolvents R(u, Ap k. j.,) and
R(w, ANeu,2) are consistent.

We can now turn to the H*°-calculus on scalar-valued spaces.
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Proof of Theorems 6.4 and 6.5. We start with the proof of Theorem 6.4(i). Since the embed-

ding WP (O, w29, )y LP(O, w??, ) is compact, see [32, Theorem 8.8], we have

Y +kp v +kp

compact

) = PO, w3, )

D(Api) = W70, w WhP(O, w

y+kp V+k17)

Since (1 — Apir)~! with € p(Apj;) exists (by Theorem 6.2), the compact embedding above
implies that (4 — Apjr) ™! is compact. Thus by the Riesz—Schauder theorem for compact opera-
tors, the resolvent operator (i — ADir)_l has a discrete countable spectrum {o; : j € Np}, where

o; # 0 are eigenvalues of (p — ADir)’l. Moreover, zero is in the spectrum of (u — ADir)’1 and
is the only accumulation point of the spectrum. Therefore, by the spectral mapping theorem

o(=Apir) ={uj:puj=o0; '~ j € No with o} #0).

Next, we claim that the spectrum o (—Ap;;) is independent of p € (1,00), k € Ng and y €
((I-=Mp—1,2p—1D\{p—1}.Let A, ;. , and A; be as in Lemma 6.14. It suffices to show that
0(—=Apk,y) =0(—A2). We proceed as in the proof of [4, Proposition 2.6]. Recall that o (—A3)
is discrete and only consists of a countable number of positive eigenvalues, see [77, Theorem
12.26]. By Lemma 6.14 and analytic continuation we find that R(z, —A2) and R(z, —Ap )
are consistent for all z € p(—A2) N p(=Ap k). Now, if u € p(—A3), then since 6 (—Ap ) is
discrete and countable it follows that there exists an » > 0 such that B(u, r) \ {u} € p(—A2) N
p(—Ap k,y). Therefore, by consistency of the resolvents we obtain

R(z,—Apky)dz= / R(z,—A)dz =0,
B (u,r) B(u,r)

and thus u € p(—Ap k). The other inclusion follows similarly. This proves that 6 (—Ap k) =
o0 (—Aj3) and the claim follows.

Finally, using that o (—A») is discrete, o (—A2) € [1t, 00) S (0, 00) with /i :=min{u; : j €
No} > 0 and the claim gives that o (—A ;) is discrete and o (=Ap k) C [1X, 00) C (0, 00).
This completes the proof of Theorem 6.4(i).

We continue with the proof of Theorem 6.4(ii). From Theorem 6.2 we have that for fixed
o € (0, m) and pu sufficiently large, u — Apj; is sectorial with w (4 — Apjr) < 0. Combining this
with the analyticity of z — (z — Ap;) ! on C \ (—oo, —[1] yields that for 4 > —fi and 0’ > &
the operator u — Apj; i8 sectorial with w(u — Apjr) < o’. Therefore, Theorem 6.4(ii) follows
from Proposition 2.4, Theorem 6.2 and the fact that o € (0, &) is arbitrary.

The proof of Theorem 6.5 for the Neumann Laplacian is similar to the proof for the Dirichlet
Laplacian above if we use Theorem 6.3 and Lemma 6.15. Note that for the Neumann Laplacian
on L%(0), zero is an eigenvalue and the corresponding eigenspace consists of constant functions,
see [77, Proposition 12.24 & Theorem 12.26]. Therefore, we obtain the bounded H *°-calculus
for ;1 — Aneu With > 0 on Wi (O, w)a/fk ). In addition, on WK+7:P (O, wgfkp)/{c lp:ce
X} the eigenvalue zero is removed and we obtain the bounded H®°-calculus for . — Aney With
w > —t, where 1 is the first positive eigenvalue of —ANey. O
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Appendix A. Localisation techniques for rough domains

In this appendix, we will construct diffeomorphisms from special domains O := {x € R? :
x1 > h(X)} to the half-space ]R{ff_. In the literature, such diffeomorphisms are frequently used for
smooth domains and in this appendix, we will construct modifications of such diffeomorphisms
for rough domains.

We start with some definitions. Throughout this appendix, we consider d > 2.

Definition A.1.Let U,V CR? ¢ e Ny and A € [0,1]. Amap ®:U — V is called a C**-
diffeomorphism if ® is a bijection, ® € C**(U; R?) and &~ ! € C-*(V; RY).

To be able to deal with boundary value problems involving the normal derivative on the bound-
ary, we need a diffeomorphism that preserves the direction of the normal vector. This is the notion
of admissibility, see [89, Section 2.4].

Definition A.2. Let U and V be C'-domains, ¢ € Ny and A € [0, 1]. A C%*-diffeomorphism
@ : U — V is called admissible at the point x € dU if the push-forward D® corresponding to ®
has the following properties:

(i) D® maps the tangent space Tyy x to Tyv,o(x);
(ii) D® maps the inner normal v(x) of dU to the inner normal v(P(x)) of IV.

Note that in the definition above, we do not require that the length of the normal vector is
preserved. Furthermore, it holds that @ is admissible at x € dU if and only if ®~! is admissible
aty=®(x)edV.

We note that for special C 1_domains of the form O := {x € R? : x; > h(X)} for some & €
C!(R?~1), the inner normal direction at the boundary of O is v(x) = v(¥) = (1, —=Vzh(X) "
and the tangent space is spanned by the vectors

(3,7 (%), 1,0,...,007, ..., (3,h(3),0,0,...,1)".

Example A3.Let £ € Ny and A € [0, 1]. For a special domain O corresponding to & €
Cf ’A(Rd_l), the following two classical diffeomorphisms are well known in the literature.

(i) The most frequently used diffeomorphism & : O — Ri is given by
Pa(x) =(x; —h(@).%), x=x.%e0,
LM =01 +h(F).H.  y=01.9 R,

see, e.g., [17,26,61]. This is a CLA-diffeomorphism which, in general, is not admissible
for all x € 9O. This can be seen, e.g., from the push-forward of <I>al, which is given by

~h()) T —
pagior=(y VHOTY. Rt
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(i1) Let £ > 2. Following the construction in [89, Theorem 2.12], one can obtain a less regular
diffeomorphism that is admissible for all points at the boundary. Let

v(x) = (1,9() = (1, = Vzh(X))

be the inner normal direction at the boundary of ©. Consider W : @ — O given by

W (y) = (1 +h(3), Y+ y19()).

The push-forward of W, at the boundary y; =0 is

- (V) T
D\chl(y)|y]:():< 1 (V}h(y)) )

V() li—1+ 1DV ()

:< 1 (%h@)ﬂ)
—V5h(y) li—1 ’

n=0 (A1)

for all y € R4-!, Hence, for y1 = 0 we have |det Dy (y)| = 1 and thus there exists a
8 > 0 such that |det DW(y)| > % >0 for all y € Ri with 0 < y; < 4. By the inverse
function theorem, there exists an inverse W to W on this strip. Then W is a C =LA,
diffeomorphism since v € C Z‘”‘(Rd_l). Moreover, (A.1) shows that W is an admissible
Cz_l’)‘-diffeomorphism for all x € 9O. In the case that £ = 1, we obtain that W is a
homeomorphism.

If @ is the C**-diffeomorphism from Example A.3(i), then the change of coordinates map-
ping (Oc)«f = f o <I>;1 is an isomorphism between W*7 (O, w?,o) and Wk’p(Rfi, w,) for
£ > k. To be able to deal with rougher domains, i.e., £ < k, we will mollify the diffeomorphism
to make it smooth in the interior. This causes blow-up behaviour of higher-order derivatives near
the boundary. In the rest of this appendix, we present these mollified versions of & and ¥,
denoted ® and W respectively.

First, we consider a mollified version of the diffeomorphism & in Example A.3(i). This
mollified diffeomorphism is in the literature also known as the Dahlberg—Kenig—Stein pull-
back, which dates back to [11,12] and is, for instance, applied in [13,27,43]. The Dahlberg—
Kenig—Stein pullback is often used for domains with low regularity (less than C'), see the
above-mentioned literature. For our purposes, we require estimates on higher-order derivatives
of the pullback in the case of more regular domains (more than C!). The following lemma is
an extension of the result for C!-domains in [53, Lemmas 2.6 & 3.8], which is based on the
works [29,69]. The result of Lemma A .4 is also obtained in [44, Lemma 2.14] with a somewhat
different proof as below. Nonetheless, we provide the proof since parts of it will be reused for
constructing the diffeomorphism W in Lemma A.5.

Lemma A4. Let O be a special CC1 -domain. Then there exist continuous functions h1: O — R

and hy: ]R{_i — R which satisfy the following properties.
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(i) The map ®: 0 — @given by
P(x) = (x1 — h1(x), %), x=@x.9e0,
is a C'-diffeomorphism with inverse ®~! : @ — O given by
' M= +h().Y, y=01L7eRL.
(ii) We have

dist(®(x), IRL) = dist(x, 0), xe€0,
dist(® ™' (y), 00) = dist(y, IR%), yeRY,

where the implicit constants depend on [O] 1.
(iii) We have hy € C*(O) and hy € C®(RY).

In addition, let £ € N1, A € [0, 1] and let O be a special Cf’)‘-domain with [O]ces < 1.

(iv) The map ® in (i) is a CY*-diffeomorphism and for all a € Ng, Lo e{0,...,¢}and Ag €
[0, ], we have

10%h1 (x)| < C - [O] cea - dist(x, dO) ~IeI=o=20)+ x€0,
102 ()| < C - [Olcea - dist(y, IR 117020+ yeR9,

where the constant C > 0 only depends on £, ), o and d.

We have a similar result for the mollified version of the admissible diffeomorphism W in
Example A.3(ii).

Lemma A.5. Let O be a special CC1 -domain. Then there exists a A € (0, 1) such that if [O]c1 <
A, then there exist continuous functions hy : 0 > R, i[l 0 > R py Ri — R and ﬁz :
]Ri — R which satisfy the following properties.

(i) The map ¥:0O — Ri given by
W) = —h(0),¥—hi(x), x=@x,9e0,
is a C'-diffeomorphism with inverse W= : @ — O given by
V)= (), T+ (), y=01 9 eRY,
(ii) We have

dist(¥(x), IR%) = dist(x, d0), xe0,
dist(U™! (), 0) = dist(y, IR%), yeRe.
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(iii) We have hy € C®(0), hy € C®(O; R4, hy € C®(RY) and hy € C®(RE; R4,
(iv) The diffeomorphism WV is admissible for all x € 90.

In addition, let £ € Ny, A € [0, 1] and let O be a special Cf’k—domain with [O]ces < 1.

(v) The map W in (i) is a CY*-diffeomorphism and for all « € Ng, Lo €{0,..., 4} and Ao €
[0, A], we have

101 (xX)| + 189h1 (x)] < C - [O]pes. - dist(x, 0) ~(el=o=20)+ x €0,

10%ha ()| + [8% 2 (9)] < C - [Oces - dist(y, JRD)~el=bo=20+ -y e RE

where the constant C > 0 only depends on £, ), o and d.
Remark A.6. We make the following remarks about Lemmas A.4 and A.S5.

(i) The first three statements in both lemmas are standard results for localisation. For the
standard localisation procedure, one can take /| and A, equal to %, see Example A.3. In
our case, since 4 is not smooth enough, we need to use a mollifier to make /4> smooth in
Lemma A 4. Afterwards, i is determined using the inverse function theorem. Addition-
ally, in Lemma A.5 we need to mollify the normal vector to make Zz smooth.

(i) The important part of Lemma A.4 is (iv), which allows us to estimate higher-order deriva-
tives of the diffeomorphism & and its inverse. If the number of derivatives exceeds the
smoothness of the domain, then there is a blow-up near the boundary. We note that the
construction of & is independent of £ and A.

(iii) The important novelty of Lemma A.5 is that W preserves the direction of the normal and
tangential vectors. This is done by choosing ﬁz(y) = y117(y), where ]7(y) is a mollified
version of the normal direction —V5/4(y). While the diffeomorphism in Example A.3(ii) is
less regular than the domain, in Lemma A.5 the regularity of the diffeomorphism is equal to
the regularity of the domain. Moreover, the estimates on the derivatives in Lemma A.5(v)
are the same as in Lemma A.4(iv).

(iv) The condition [O]cer <1 in Lemmas A.4(iv) and A.5(v) slightly simplifies the proofs.
This condition is not necessary and can be removed. The more restrictive condition on
[O]cr in Lemma A.5 seems to be necessary to construct a global inverse. For our appli-
cation in Section 6, imposing such conditions is not restrictive since [O] ¢+ can be made
arbitrarily small in our localisation procedure.

(v) Our proofs would also work for Lipschitz domains if one uses an inverse function theorem
for Lipschitz functions. In the setting of Lemma A.4, this is done in [44]. The result in
Lemma A.5 appears to be new even in the case of C!-domains.

The rest of this appendix is devoted to the proofs of Lemmas A.4 and A.5.

Proof of Lemma A.4. Let ¢ € C° (R?=1) be a non-negative function with its support in the
unit ball such that [p, i ¢(¥)d¥ = 1. Let h € CL(R?"!) such that O = {x € R? : x; > h(¥)},
see Definition 2.8.
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Step 1: proof of (i), (ii) and (iii). Define the mapping @ : R — R? by

D(y) == (1 +h2(y),y), where

ha(y) = / W= L D) &,

Rd-1

for some suitable L > 0 to be chosen later. Note that ® maps BRi to dO. It holds that /i, €
C'RYHNC®MR?\ B]R‘i). The Jacobian matrix of ® is given by

~ T
DB(y) = (1 + 3y01h2(y) (Vyzlz_(f)) ) . yeR9 (A2)

Since

3y ha(y) = —L / G — L~y D) Ze@dE  yeRY,
Rd-1

it follows that |9y, h2(y)| < 4 for all y € R? if L = 2[O]1. Hence, for all y € RY, we have
143y, ha(y) > % and hence

|det DB(y)| > 1 >0, (A.3)

meaning that D® is invertible.

We construct an inverse of ® with Hadamard’s inverse function theorem [56, Theorem 6.2.8].
Note that if (y,),>1 is a sequence in R? such that |yn| — oo, then also |5(yn)| — o0 asn—
oo. Indeed, this follows from the fact that 4, is bounded. Hence, ® is proper in the sense of
[56, Definition 6.2.2]. This and (A.3) imply that all the conditions of [56, Theorem 6.2.8] are
satisfied and thus that there exists a continuous inverse ® : R¢ — R¥ of ®. Since actually ® €
C'(R4; RY)NC® R4\ 9RZ; RY), it also follows that & € C'(RY; RY) N C>®(R? \ 80; R¥) by
the inverse function theorem [56, Theorem 3.3.2]. Moreover, we obtain

D®(x) - DP(®(x)) = I, xeRY, (A4)

see, e.g., [56, Equation (3.37)]. From now on, we_will write ®~! for ®. Moreover, if x € © and
y=®(x) € ]Ri, then by the definition of ®~! = @ it holds that

Dy (x) =y1 =x1 — ha(y) =x1 — h2(P(x)), (A.5)
and hence we can write ®(x) = (x; — h(x), X), where h{(x) = hy(®(x)). This completes the
proof of (i) and (iii).

To continue, we prove that the diffeomorphism preserves the distance to the boundary. Since
both ® and ®~! are Lipschitz on R4, we have

y—yISI07 ') - 'ONISIly—yI1,  y.y eRL (A.6)
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Letx e Oandsety = d(x) € Ri. Then (A.6) gives

dist(x, 80) < |x — (h(X), D) =D~ (y) = D710, P < y1 = P1(x) =dist(®(x), IRY).

In addition, let x” € 3O be such that dist(x, d0) = |x — x'| and set y' = ®(x’). Note that y’ =
(0,5") for some 5" € R4~ hence (A.6) also implies

dist(@(x), IRD) = D1 (x) =y1 < |y — Y| S 1071 ) — 71O = Ix — x| = dist(x, §O).

Thus, we have proved that dist(x, 00) = dist(D(x), E)Ri), where the implicit constants depend
on the Lipschitz constants of ® and @~ ! and thus on [O]c1. The other equivalence in (ii) follows
by substituting x by ®~!(y). This completes the proof of (ii).

Step 2: proof of estimates on hy in (iv). Let £ € N, A € [0, 1] and let O be a special Cf’)‘—
domain with [O]cex < 1. For multi-indices we write o = (o1, &) € Ng X Ngil. By the chain
rule it holds that

~

~ _ ~ _ —<Z _ ~ _
0 h(G = L7 = (VG = LD —=-L7" 3 @"HG - L7 3T,

lvl=1

and by iteration one can check for any o € Ng that

Y @G- LT DT @) & (A7)

Rd-1 [v|=ay

3*ha(y1,5) =
231, ) Ly

Take £g € {0, ..., £}. If || < £y, it follows from (A.7) that

10%h2(y1. ) < Cllkllcera-1y Y, | Fe@I1dZ < ClOcea,

|V‘=0¢1Rd_1
which proves the estimates for 47 in (iv). Now let |a| > £o + 1 and let S, E € Ng be such that

B+ B =« with |8] = £ and |B| = |a| — £o. From (A.7) and a substitution 7 — (¥ —Z)L)/y; it
follows that

P ha(y1,y) =

<y1>1—d/ Z(a”%(z‘)(@;lm)”q;(@_m)dz (AR)

(—L)A\ L v

Rd-1 =81

By computing the B-derivatives using (A.8), we claim that

3 ha(y1, 7) = PP ha(y1, )

_ 1y vif (=L (A.9)
o) [ X 0 et ) &
1 Ri-1 VI=F1
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where ¢z 7, € CX (R and f(pﬁ,zyv(f)dfz 0. Indeed, if B = ¢; is the j-th unit vector for
some j € {2,...,d}, then by writing y = (y2, ..., yq) and 7= (22, ..., z4), a calculation shows
that

a}yj[((?-'f)L)v@((?—E)L)] _ £|:vj<()’j —z,)L>v,-—1 li[ ((yn —Zn)L)”"(p((?—E)L>

Y1 Y1 Y1 Y1 2 Y1 Y1
n#j
(y—=2)L\» -2L
+H(557) @0 (=)
Y1 V1
- 5 —-2L
=N (pﬂ,ej,v(i)-

Y1
Moreover, note that

[ erern@@= () i, (=28 (=2

V1 3|
Rd-1 Rd-1

=na,, [ Te@dE=0.
]Rd*l

(A.10)

and clearly we have gg.;., € C°(R?™"). This shows (A.9) for B =e; with j € {2,....d}. If
E = ¢, then a calculation shows that

a[(2) 1 (E525) (B2

4G -DLy )
= () T o moe(057)

B (V(p)<@' ;1E)L) _ (@“ ;l"z“)L)]

L1 y\1H (y—-2)L
() (T2

Y1

The properties of ¢g,,» follow similarly as in (A.10). Therefore, we have proved (A.9) for
|B| = 1. For |B]| > 2 we can argue by induction to show that

A1) (OS2 (T2 = () onnn 0525

This follows in the same manner as for |8| = 1 by considering the dy, and 9y, separately. There-
fore, (A.9) follows.

Let A € [0, A]. Performing the substitution Z — ¥ — L™ y;Z in (A.9) and using that Ps B
integrates to zero, gives
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8ha ()| < Cyy 7O [N @G - L' D) — @G 10, 5., @) &
Rd-1 V=81

—(la|—¢ I ~

< Clll ceag a1y y7 147 / L7y M0, 5, @I 42
Rd-1

< C [O]CLK yl_(|a‘_z0_)t0)-

This completes the proof of all the estimates for %7 in (iv).

Step 3: proof of estimates on h in (iv). It remains to prove the estimates on %A for @ € N(‘)l .
As hj is bounded by Step 2, we find that 1 (x) = ho (P (x)) (see (A.5)) is bounded as well, which
proves the required estimate for o = 0. For || = 1 we first show that || D®|| is bounded. Note
that by (A.4) we have

ladi[(DD~H) (@]
|det[(D~1)(@(x)]|

ID®(x)|| = I[(DD (@)~ | = x €0,

where adj A denotes the adjugate matrix of the matrix A, i.e., the transpose of the cofactor ma-
trix. Recall that the adjugate matrix of A only consists of polynomials of entries of A. Hence,
combining this with (A.3) and the fact that the entries of D®~! are bounded by Step 2, we find
that

Do) <C, xeO. (A.11)

Now the estimate on 0%k with |a| = 1 follows again from /1 (x) = hy(P(x)) together with the
estimates on sy from Step 2, dist(P(x), BRi) ~ dist(x, d0) and (A.11).
For the general case, we proceed by induction on |«| > 1. We prove that

|dist(x, 00)| (== )+ plelp (x) | < C[Oces,  x €0, (A.12)

for all £y € {0, ..., ¢} and Ao € [0, A]. Recall that for f: R DU — R4, x € U and n € Ny,
the n-th order Fréchet derivative D" f(x) is an n-linear mapping from (RH" to R4, i.e., for
(E1,....&) € RY" we have D" f (x)(&1, ..., &) € RY.

The statement (A.12) for |o| = 1 is proved above. Let m > 1 and assume that (A.12) holds for
all |a| <m, €y €{0,...,£} and Ag € [0, A]. It remains to prove (A.12) for |o| =m + 1.

By taking derivatives of the formula (A.4), isolating the highest-order derivatives on ® and
applying the multivariate Faa di Bruno’s formula, we obtain the estimate (see [8, Lemma 4])

m+1 m
ID"H )| SIDPW) - Y IDId (@)l - Y [[ID @i, xeo,
j=2 g r=1
(A.13)
where g € Nj' are such that
> B=j and > rf=m+l. (A.14)
r=1 r=1
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Note that || D®(x)| is uniformly bounded by (A.11) and that for n > 2 we have ||D"h;| =
| D" ®|| and || D"hs|| = | D" ®~!||. Therefore, multiplying (A.13) with |dist(x, d()|"T1—fo=20)+
it suffices to show the uniform boundedness of

|dist(x, 90)| " H1 =025 (DI ho) (@) | [ [ 11D R () 1P, (A.15)
r=2

for j € {2,...,m + 1} and B such that (A.14) holds. Suppose that there exist «, k2, ...,k €
(0, 00) such that

(J—t=My=x=]j

(A.16)
r—L€—AN)4 <k <r, re{2,...,m}
and
m
K+Zﬂ,x,=(m+1—zo—xo)+. (A.17)
r=2

Then, (A.15) can be estimated as

(dist(Cx, 80) < [(DI )@ (o | [ (Idist(x, 6O 1D i (ol)* < ClOlees,  (A18)
r=2

where we have applied the induction hypothesis (A.12) and the estimates for s, from Step 2
together with dist(®(x), BRi) =~ dist(x, d0). It remains to show the existence of «’s satisfying
(A.16) and (A.17). We distinguish several cases.

Ifm+1<4£y, then (m+1— £y — xo)+ =0 and we can take k = kr = --- = k;, = 0. From
now on, we assume that m > £q. If j > £y + 1, then we can take

k=j—Llo—iy and k,=r—1lforre{2,...,m},

and (A.14) implies that (A.17) is satisfied. For the remaining case j < £y, we will not provide
the explicit values of the ks, but only show the existence of the «’s. Taking the largest possible
k’s in (A.16), gives

m m

K+Zﬁ,K,=j+Zrﬁr=j+m+l—ﬁ12m+1—€o—?»o,
r=2 r=2

where we have used (A.14) and B; < j. We will now take the smallest possible «’s in (A.16).
First assume that m > £ + 1 and that there exists an 7 € {£ + 1, ..., m} such that 87 > 1. In this

case, we have
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KD B =( ==+ ) = C=)pfr= ) (r—L=D)f;
r=2

r=2 r=£(+1

<SS B+ Y fr=mA I+ Y b

r=1 r=0+1 r=0+1

<m+1—€—-—A<m+1—1~Ly— X,

where we have used (j — ¢ — X))y < (j —€o — A0)+ =0 and (A.14). If m < £ or B, =0 for all
re{+1,...,m}, then x + Z'r":z Brikr =0<m+1— £y — Ag. The existence of the «’s shows

that (A.18) holds. This finishes the induction.

Finally, we remark that the estimates on /; and h imply that if & € Cf *(R4=1), then @ €
C**(O;RY) and &~ € C“*(R4; RY). This proves that ® is a C**-diffeomorphism and this

finishes the proof of (iv). O

To prepare for the proof of Lemma A.5, we prove the following elementary lemma.

Lemma A.7. Let A and B be d x d-matrices. If det(A) # 0 and ||A||9=||B]| - | det(A)|~! < 1,

then we have

||A||d*‘||B||)d

[det(A + B)| > |det(A)|<1 | det(A)|

Proof. Let 0 <oy <--- <oy be the singular values of A. Then we have

Hd . d—1

. o

I _1” 1 Jj=2%J < Al )
o1 |det(A)| — |det(A)]

In particular, we have ||A~!B| < [|A~Y[|B]| < ||A 1Y B]|- | det(A)| ! < 1. Nowlet A, ...

be the eigenvalues of A~!'B. Then |A;| < |[A~'B|| < 1 forall j €{l,...,d} and
d d
|det(Iq+ A B) =11 +21=[[1—1x1=a—11A7" B,
j=1 j=1
which, combined with the norm estimate for ||A~!|, yields

|det(A + B)| = |det(A)||det(Iy + A~ B)|

> | det(A)|(1 — [A7'B|)* > |det(A)|<1 - ”A”dﬂ)d’
) B |det(4)]
finishing the proof. 0O

To conclude this appendix, we give the proof of Lemma A.5.
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Proof of Lemma A.5. Let ¢ € C° (R4~1) be a non-negative and radially symmetric function
with its support in the unit ball such that [ps—1 ¢(¥)dX = 1. Define h € Cl (R~ such that
O ={x eR?: x| > h(X)}, see Definition 2.8. Furthermore, let

v =(1,5®) = (1, -Vzh(®)',  xeRY, (A.19)
be an inward pointing normal vector at dO. .
Step 1: proof of (i), (ii) and (iii). Define the mapping W : R? — R¢ given by
W(y) = 1 +h2(), ¥+ 2(y),  where

ha(y) = / W — L D)) &,

Rd-1

ha(y) =y V() =y / VI - L yDe®) dz,
Ri-1

for some suitable L > 0 to be chosen later. Note that ¥ maps BIRE‘L to d0. It holds that
hy € C'(RY) N C®(R? \ 9RZ). Furthermore, we claim that iy € C'(RY; R4~ N C®(R? \
9R%L; RY~1). Indeed, it is clear that i, € C(R%; R~ N C®(RY \ 9RL; RY~!) since ¥ =
—Vizh € C(R41; RY~1). Note that

017 (0.7) = tim 201D 500 _v@).  derd-!,
y

1—0 Y1

and all the tangential partial derivatives of hy at 8Ri are zero. If y e R\ B]Ri and |a| =1,
then by a similar computation as (A.9) (with |8| =1, 8 =0, £y = 0 and A replaced by 7) and a
substitution 7 — 5 — L~!y,Z, we obtain

o= (7) / Wf)wo,a,o(@;#)&
Rd-1

=y / V(T — L' y1D90.0.07) dZ,
Rd-1

where ¢ 4.0 € Cgo(Rd_l) and [ 904,02 dZ=0.Lety = (y1,y) € R?\ 9R<, then we obtain

dyh2(v) = V() + y18y, V() = / VG = L' D[0@ + ¢0.e,,0D] &7,
Rd—1

3yjﬁz(y) = Y13yj1~7(Y) = / VG = L™ '2D0.,.0@) 6, jef2,....d}.
R

(A.20)

By applying the dominated convergence theorem and the properties of ¢ and o .;,0 for j €
{1,...,d}, we find that for all @ € R¢~!
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lim_dy,h(y) =@ and  lim_d,/(y)=0, je{2,....d}.
y—(0.3) Y03

Hence, all the partial derivatives of 7{2 at aRi exist and are continuous. Therefore, 712 €
C! (Rd ; Rd’]) and we have_ proved the claim.
The Jacobian matrix of W is given by

Dﬁ(y):<1+aylgz(y) (Vsha(y) | )

9 V 1,1 +viD3yV
w (1Y) (;11 y1D5 O(Y) (A21)

= Do)+ <3y1 V) nDVO)

) = D®(y)+ P(y), yeR,

where @ is as defined in the proof of Lemma A .4 (see (A.2)) and P is a perturbation. To show that
the mapping W is invertible, we make use of Lemma A.7 applied to A = D® and B = P. Note
that (A.20) implies sup,cga [[P(V)]| = C [O]c1. Furthermore, we recall from Lemma A.4(iv)
and the definition of ® that SUpP,cRd [D®(y)| < C. From Lemma A.7, (A.3) and the before
mentioned estimates, we obtain that there exists a A € (0, 1) such that if [O]1 < A, then

IDEW 1P )d

. _— - |
inf |detDW > inf |detD® 1-— —
,|4etDT()| = inf |det D) DO

yeR

>c(1=C[O]1)? = c(1 —CA) >0,

for some C, ¢ > 0.

Using Hadamard’s inverse function theorem, we can argue similarly as in the proof of
Lemma A.4 to obtain an inverse ¥ € C!(R?; RY) N C°(R \ 00; R?) to W. We will write
vl for W

Moreover, if x € O and y = W(x) € RY , then by the definition of ¥~! = W it holds that

Vi (x) =y1 =x1 — ha(y) = x1 — ha(W(x)),

~ ~ ~ (A22)
V(x) =y =% —ha(y) =X — ha(¥(x)),

and hence we can write W(x) = (x; — h1(x),x — ﬁl (x)) with A(x) = hp(¥(x)) and ﬁl x) =

ﬁg(\ll(x)). This completes the proof of (i) and (iii). Statement (ii) follows similarly as in the proof

of Lemma A .4(ii).

Step 2: proof of (iv). We prove that the diffeomorphism W is admissible for any x € dO. First,
note that

@y 2 Olyyz0 = =L~ (VR)F) - f Y@ E=0, yeR,
Rd-1

where we have used the radial symmetry of ¢ to obtain that the latter integral vanishes, i.e.,
f]R{ zip(@R)dz; =0 for all i € {2,...,d}. Together with (A.19), we see that the push-forward of
W =W (recall (A.21)) at the boundary R4 is given by
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~h(\) T
D@(O@Z( L (Vh() >

1 (V;h(i))T) ~ _ md—1
L1 - , R,
VO,%) I Ve

- <—V;h@> Iiy

It is clear that for all y € R the push-forward D@(O, y) maps the normal vector (1, 0) at aRi
to the normal vector v(x) at dO. Similarly, any tangent vector at BRi is mapped to the tangent
space at 9. Moreover, note that the push-forward does not preserve the length of the vectors.
This proves that ¥ = W~ is admissible for any y € 9R%, hence W is admissible for any x € O
as well.

Step 3: proof of (v). Let £ € N1, A € [0, 1] and let O be a special Cf’)‘-domain with [O] e <
A. Note that the estimates on the derivatives of 4, follow immediately from Lemgla A.4(1v). Let
o = (a1,a) € Ngx Ng_l, Lo €{0,...,¢}and A9 € [0, A]. For the estimate on 0%h,, we find with
the product rule

10| < 1y10° V()| + 10 DP(y)|,  yeRe, (A.23)

where the latter term is only present if &y > 1. Since V is obtained by mollifying v = —Vh, we
can redo Step 2 in the proof of Lemma A.4 but with & replaced by —V#, to obtain

|3/3§(y)| < C[O]¢en yl—(\ﬂ|+l—fo—ko)+’ ye R, Be N(z)i.

Applying this estimate to (A.23) gives the desired estimates for hs.

It renlains to prove the estimates on 4 ancl h1, which are defined as below (A.22). Hence, as
hy and hj are bounded, we find that 41 and % are bounded as well. To prove the estimates on
the derivatives 8% and 8%/, for |a| > 1, one can proceed by induction similar to Step 3 in the
proof of Lemma A.4. O
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