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Abstract

We study the Laplace operator on domains subject to Dirichlet or Neumann boundary conditions. We 
show that these operators admit a bounded H∞-functional calculus on weighted Sobolev spaces, where 
the weights are powers of the distance to the boundary. Our analysis applies to bounded C1,λ-domains 
with λ ∈ [0,1], revealing a crucial trade-off: lower domain regularity can be compensated by enlarging 
the weight exponent. As a primary consequence, we establish maximal regularity for the corresponding 
heat equation. This extends the well-posedness theory for parabolic equations to domains with minimal 
smoothness, where classical methods are inapplicable.
© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
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MSC: primary 47A60; secondary 35K20, 46E35

Keywords: Functional calculus; Laplace operator; Weights; Maximal regularity; Rough domains

✩ The first author is supported by the grant OCENW.KLEIN.358 of the Dutch Research Council (NWO). The second 
author is partially supported by the Academy of Finland through grant no. 336323 and partially supported by the VENI 
grant VI.Veni.242.057 of the NWO. The third and fourth author are supported by the VICI grant VI.C.212.027 of the 
NWO.

* Corresponding author.
E-mail addresses: nick.lindemulder@gmail.com (N. Lindemulder), e.lorist@tudelft.nl (E. Lorist), 

f.b.roodenburg@tudelft.nl (F.B. Roodenburg), m.c.veraar@tudelft.nl (M.C. Veraar).
https://doi.org/10.1016/j.jde.2025.113884
0022-0396/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2025.113884&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2025.113884
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:nick.lindemulder@gmail.com
mailto:e.lorist@tudelft.nl
mailto:f.b.roodenburg@tudelft.nl
mailto:m.c.veraar@tudelft.nl
https://doi.org/10.1016/j.jde.2025.113884
http://creativecommons.org/licenses/by/4.0/


N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3. Weighted Sobolev spaces and trace characterisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4. Fractional domains of the Laplacian on the half-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5. Functional calculus for the Laplacian on special domains . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6. Functional calculus for the Laplacian on bounded domains . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Appendix A. Localisation techniques for rough domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

1. Introduction

This paper contributes to the extensive study of the Laplace operator on domains with min
imal boundary regularity (often referred to as rough domains), see, e.g., [37--39,86,90] and the 
monographs [31,74] and references therein. In particular, we are interested in the H∞-functional 
calculus for the Laplacian on inhomogeneous weighted Sobolev spaces. The H∞-functional cal
culus provides a powerful framework for establishing well-posedness and regularity results for 
(possibly nonlinear) partial and stochastic partial differential equations ((S)PDEs). Therefore, 
the H∞-calculus for sectorial operators is widely studied, see for instance [17,35,36,67] and the 
references therein. Applications to PDEs and SPDEs can, e.g., be found in [15,18,40,68,81,88] 
and [1,2,78,79], respectively.

Given a bounded C2-domain 𝒪 ⊆ Rd , it is well known that the Laplacian with Dirichlet 
boundary conditions on Lp(𝒪) with p ∈ (1,∞) and domain W 2,p(𝒪) ∩ W

1,p

0 (𝒪) generates 
an analytic C0-semigroup, has the maximal regularity property and admits a bounded H∞
functional calculus. However, if the regularity of 𝒪 is too low (say Lipschitz or C1), these 
properties fail and explicit counterexamples can be constructed, see [10,74]. In such counterex
amples, the derivatives of the solutions to the resolvent equation

λu − Δu = f,

u|∂𝒪 = 0,

can drastically blow up near the boundary ∂𝒪. As a consequence, the canonical domain of the 
Dirichlet Laplacian on Lp(𝒪) is no longer a closed subspace of W 2,p(𝒪). Moreover, if one is 
interested in higher-order Sobolev regularity of the solution u, then more smoothness of 𝒪 is 
needed (see [26,61]), and additional boundary conditions for the data f (compatibility condi
tions) need to be imposed (see [16]). These additional boundary conditions for the data occur, in 
particular, in the study of mixed-order systems (see [19]).

To set up a satisfying well-posedness and regularity theory for PDE without such additional 
regularity or compatibility conditions, one can use a weighted function space for the solution 
u. In particular, one can consider spatial weights of the form w∂𝒪

γ (x) := dist(x, ∂𝒪)γ for some 
suitable γ ∈ R, which compensate the blow-up of the derivatives of the solution near ∂𝒪 and 
2 
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relax compatibility conditions. Partial differential equations on weighted spaces have already 
been studied extensively, see for instance [20--22,49,54,59,60,76] for deterministic equations and 
[45--47,57,62] for stochastic equations. 

As stated, we are interested in the H∞-functional calculus for the Laplacian on inhomoge
neous weighted Sobolev spaces of order k ∈ N0. This was studied in [70,72] for the Dirichlet and 
Neumann Laplacian on the half-space Rd+. In the present paper, we extend the results to bounded 
domains 𝒪 with minimal smoothness, while ensuring that the canonical domain of the Laplacian 
is a closed subspace of a weighted Sobolev space of order k + 2.

Our main result for the Dirichlet Laplacian is as follows, see Theorems 6.2 and 6.4. For the 
definition of the involved spaces, the reader is referred to Section 3.

Theorem 1.1 (H∞-calculus for the Dirichlet Laplacian). Let p ∈ (1,∞), k ∈N0, λ ∈ [0,1] and 
γ ∈ (−1,2p − 1) \ {p − 1}. Furthermore, suppose that

λ > 1 − γ+1
p

or, equivalently γ > (1 − λ)p − 1

and 𝒪 is a bounded C1,λ-domain. Then for all μ ≥ 0 the operator

μ − ΔDir on Wk,p(𝒪,w∂𝒪
γ+kp) with D(ΔDir) = W

k+2,p

Dir (𝒪,w∂𝒪
γ+kp)

has a bounded H∞-calculus of angle zero.

Theorem 1.1 generalises the result in [72, Theorem 6.1], which is restricted to the case k = 0
and to bounded C2-domains. Theorem 1.1 allows for bounded C1-domains if γ ∈ (p−1,2p−1), 
while for γ ∈ (−1,p − 1) we obtain that the smoothness of the domain may depend on the 
weight: if the power of the weight is larger, then a rougher domain is allowed. The smoothness 
parameter λ is almost optimal. Indeed, solving the Dirichlet problem in the scale of weighted 
Sobolev spaces with a gain of two derivatives for the solution requires the boundary of the domain 
to have W 2−(γ+1)/p,p-smoothness, see [74, Theorem 15.6.1 applied to ℓ = 2 − (γ + 1)/p] and 
[74, Section 14.6.1] for an explicit counterexample with C1-domains. Furthermore, for γ = p−1
the domain characterisation in Theorem 1.1 in terms of spaces with vanishing traces fails, see 
[70, Remark 4.3], and for this reason we omit this case. 

Concerning the Neumann Laplacian on bounded domains, we prove the following result, see 
Theorems 6.3 and 6.5.

Theorem 1.2 (H∞-calculus for the Neumann Laplacian). Let p ∈ (1,∞) and λ ∈ (0,1]. Fur
thermore, suppose that either

(i) k ∈ N0, γ ∈ (p − 1,2p − 1), λ > 2 − γ+1
p

and 𝒪 is a bounded C1,λ-domain, or,

(ii) k ∈ N1, γ ∈ (−1,p − 1), λ > 1 − γ+1
p

and 𝒪 is a bounded C2,λ-domain.

Then for all μ > 0 the operator

μ − ΔNeu on Wk,p(𝒪,w∂𝒪 ) with D(ΔNeu) = W
k+2,p

(𝒪,w∂𝒪 )
γ+(k−1)p Neu γ+(k−1)p

3 
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Fig. 1. The spaces Wk,p(𝒪,w∂𝒪
α ) where μ − ΔDir and μ − ΔNeu as in Theorems 1.1 and 1.2 (with α = γ + kp and 

α = γ + (k − 1)p, respectively) admit a bounded H∞-calculus.

has a bounded H∞-calculus of angle zero. Moreover, using function spaces modulo constants 
gives the result for all μ ≥ 0.

Note that, compared to Theorem 1.1, the Sobolev spaces in Theorem 1.2 have a smaller weight 
exponent, which is consistent with [70, Theorem 1.2]. Fig. 1 visualises the parameters of the 
spaces in Theorem 1.1 and 1.2 where we obtain a bounded H∞-calculus. Similar to the case 
of Dirichlet boundary conditions, we expect that the regularity of the domain in Theorem 1.2 is 
almost optimal as well, see [74, Section 15.6] for some related results in this direction.

The main novelties of our results are the following.

(i) We prove the boundedness of the H∞-calculus, which is, in general, much harder to prove 
than maximal regularity and yields the boundedness of many singular integral operators 
[42]. In particular, boundedness of the H∞-calculus implies (stochastic) maximal regu
larity [36,78]. Maximal regularity and higher-order regularity results for the heat equation 
with Dirichlet and Neumann boundary conditions are contained in Section 6.1. In partic
ular, we recover some maximal regularity results for the Dirichlet Laplacian from [53] 
(for bounded C1-domains) and [55] (for bounded C1,λ-domains and k = 0). For the latter 
case, our results with k ≥ 1 are new. The Neumann Laplacian on the half-space is studied 
on weighted Sobolev spaces in [21,22] (for k = 0) and [70], but a systematic study on 
bounded domains seems to be unavailable until now.

(ii) The smoothness of the domain 𝒪 in Theorems 1.1 and 1.2 is independent of the smooth
ness k of the Sobolev space. The reason for this is that we do not use the standard 
localisation procedure from the half-space to domains (see, e.g., [17,26,61]). This stan
dard localisation procedure typically works for Ck+2-domains. Instead, we apply a more 
sophisticated C1-diffeomorphism suitable for the weighted setting. We discuss this in more 
detail below.

The key ingredient in the proofs of Theorems 1.1 and 1.2 is the perturbation of the H∞
calculus on the half-space (obtained in [70]) to special domains, i.e. domains above the graph 
4 
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of a function with compact support. A common method is to relate the Laplacian on the half
space and on a special domain via a diffeomorphism. However, due to the low regularity of 
the domain, we cannot use the standard diffeomorphism as in, e.g., [17,26,61,89]. Instead, we 
construct a variant of the Dahlberg–Kenig--Stein pullback, based on ideas in [53,44,89]. This 
diffeomorphism straightens the boundary, preserves the distance to the boundary and leaves the 
direction of the normal vector at the boundary invariant. Moreover, higher-order derivatives exist, 
but blow up near the boundary of the domain. This blow-up is compensated by the weights in 
our spaces.

With estimates on this diffeomorphism at hand, we can employ perturbation theorems for the 
H∞-calculus to extend the results to special domains. Another difficulty arising in this perturba
tion argument is that, if the regularity of the domain is too low, then the perturbations are of the 
same order as the Laplacian. It is known that the H∞-calculus is not stable under small perturba
tions [75]. Additionally, we need the perturbations to be well behaved with respect to a fractional 
power of the original operator. This requires the identification of certain complex interpolation 
spaces and fractional domains to perform the perturbation argument. Finally, by another local
isation argument, based on lower-order perturbations, the H∞-calculus on special domains is 
transferred to bounded domains. 

We comment on some related and open problems. Theorems 1.1 and 1.2 provide the bounded 
H∞-calculus on Sobolev spaces with integer smoothness, and with complex interpolation, the 
bounded H∞-calculus can also be obtained on spaces with fractional smoothness. However, an 
intrinsic characterisation of these complex interpolation spaces seems unavailable. Furthermore, 
we expect that our results can be extended to spaces with negative smoothness via duality. Some 
results for the weak (Dirichlet) Laplacian on weighted spaces are contained in [7,80].

An interesting question regarding the smoothness of the domain is whether for γ ∈ (p −
1,2p − 1) the assumption of C1-domains can be weakened to Lipschitz domains. In general, 
the analysis for Lipschitz domains becomes much more involved and different techniques are 
required than for C1-domains, see for instance [37--39,90] and the references therein. We believe 
that our method should work for domains with a small Lipschitz character. The H∞-calculus on 
Lipschitz domains could be important for studying SPDEs in the weighted setting, see [48,50--
52], where the range of weights is significantly smaller than γ ∈ (p − 1,2p − 1).

Outline

The outline of this paper is as follows. In Section 2 we introduce some preliminary concepts 
and results needed throughout the paper. In Section 3 we study weighted Sobolev spaces on 
domains and prove characterisations for these spaces. In Section 4 we prove results on the frac
tional domains of the Laplacian on the half-space, which are required for perturbation of the 
H∞-calculus. In Section 5 we perturb the H∞-calculus from the half-space to special domains, 
and in Section 6 we perform a localisation procedure to obtain the H∞-calculus on bounded 
domains. Moreover, as a consequence, we obtain maximal regularity for the heat equation and 
boundedness of Riesz transforms. Finally, in Appendix A we provide localisation techniques on 
rough domains.
5 
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2. Preliminaries

2.1. Notation

We denote by N0 and N1 the set of natural numbers starting at 0 and 1, respectively. For 
a ∈ R, we use the notation (a)+ = a if a ≥ 0 and (a)+ = 0 otherwise.

For d ∈ N1, the half-space is given by Rd+ = R+ ×Rd−1, where R+ = (0,∞) and for x ∈ Rd+
we write x = (x1,˜︁x) with x1 ∈ R+ and ˜︁x ∈ Rd−1. For γ ∈R, 𝒪 ⊆ Rd open and x ∈𝒪 we define 
the power weight w∂𝒪

γ (x) := dist(x, ∂𝒪)γ .
For two topological vector spaces X and Y , the space of continuous linear operators is 

ℒ(X,Y ) and ℒ(X) := ℒ(X,X). Unless specified otherwise, X will always denote a Banach 
space with norm ∥ · ∥X and the dual space is X′ := ℒ(X,C).

For a linear operator A : X ⊇ D(A) → X on a Banach space X we denote by σ(A) and ρ(A)

the spectrum and resolvent set, respectively. For λ ∈ ρ(A), the resolvent operator is given by 
R(λ,A) = (λ − A)−1 ∈ ℒ(X).

We write f ≲ g (resp. f ≳ g) if there exists a constant C > 0, possibly depending on param
eters which will be clear from the context or will be specified in the text, such that f ≤ Cg (resp. 
f ≥ Cg). Furthermore, f ≂ g means f ≲ g and g ≲ f .

For an open and non-empty 𝒪 ⊆ Rd and ℓ ∈ N0 ∪ {∞}, the space Cℓ(𝒪;X) denotes the 
space of ℓ-times continuously differentiable functions from 𝒪 to some Banach space X. In the 
case ℓ = 0 we write C(𝒪;X) for C0(𝒪;X). Furthermore, we write Cℓ

b(𝒪;X) for the space of 
all functions f ∈ Cℓ(𝒪;X) such that ∂αf is bounded on 𝒪 for all multi-indices α ∈ Nd

0 with 
|α| ≤ ℓ.

Let C∞
c (𝒪;X) be the space of compactly supported smooth functions on 𝒪 equipped with 

its usual inductive limit topology. The space of X-valued distributions is given by 𝒟′(𝒪;X) :=
ℒ(C∞

c (𝒪);X). Moreover, C∞
c (𝒪;X) is the space of smooth functions with their support in a 

compact set contained in 𝒪.
We denote the Schwartz space by 𝒮(Rd;X) and 𝒮 ′(Rd ;X) := ℒ(𝒮(Rd);X) is the space of 

X-valued tempered distributions. For 𝒪 ⊆ Rd we define 𝒮(𝒪;X) := {u|𝒪 : u ∈ 𝒮(Rd ;X)}.
Finally, for θ ∈ (0,1) and a compatible couple (X,Y ) of Banach spaces, the complex interpo

lation space is denoted by [X,Y ]θ .

2.2. Holomorphic functional calculus

In this section, we collect the required preliminaries on sectorial operators with a bounded 
H∞-calculus.

2.2.1. Definitions
For ω ∈ (0,π), let Σω := {z ∈ C \ {0} : | arg(z)| < ω} be a sector in the complex plane.

Definition 2.1. An injective, closed linear operator (A,D(A)) with dense domain and dense 
range on a Banach space X is called sectorial if there exists a ω ∈ (0,π) such that σ(A) ⊆ Σω

and

sup ∥λR(λ,A)∥ < ∞.

λ∈C\Σω

6 
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Furthermore, the angle of sectoriality ω(A) is defined as the infimum over all possible ω > 0.

To continue, we introduce the following Hardy spaces. Let ω ∈ (0,π), then H 1(Σω) is the 
space of all holomorphic functions f : Σω → C such that

∥f ∥H 1(Σω) := sup 
|ν|<ω

∥t ↦→ f (eiν t)∥
L1(R+, dt

t
)
< ∞.

Moreover, let H∞(Σω) be the space of all bounded holomorphic functions on the sector with 
norm

∥f ∥H∞(Σω) := sup 
z∈Σω

|f (z)|.

Definition 2.2. Let A be a sectorial operator on a Banach space X and let ω ∈ (ω(A),π), ν ∈
(ω(A),ω) and f ∈ H 1(Σω). We define the operator

f (A) := 1 
2π i

∫︂
∂Σν

f (z)R(z,A) dz,

where ∂Σν is oriented counterclockwise. The operator A has a bounded H∞(Σω)-calculus if 
there exists a C > 0 such that

∥f (A)∥ ≤ C∥f ∥H∞(Σω) for all f ∈ H 1(Σω) ∩ H∞(Σω).

Furthermore, the angle of the H∞-calculus ωH∞(A) is defined as the infimum over all possible 
ω > ω(A).

For more details on the H∞-calculus, the reader is referred to [33] and [35, Chapter 10].

2.2.2. Fractional domains
Let A be a sectorial operator and let α ∈ C. To define fractional powers Aα , we need a func

tional calculus allowing for holomorphic functions of polynomial growth. This is known as the 
extended functional calculus and the reader is referred to [36, Chapter 15] or [67, Appendix 15.C] 
for a detailed study of extended functional calculi and fractional powers. In particular, Aα is again 
sectorial.

A sectorial operator A on a Banach space X has bounded imaginary powers (BIP) if Ais

extends to a bounded operator on X for every s ∈R. The angle is given by

ωBIP(A) := inf{ω ∈R : sup 
s∈R

e−ω|s|∥Ais∥ < ∞}.

Moreover, a bounded H∞-calculus implies BIP and ωBIP(A) ≤ ωH∞(A), see [36, Section 15.3].
We recall a result on the interpolation of fractional domains. For details on interpolation the

ory, the reader is referred to [6] and [85].
7 
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Proposition 2.3 ([36, Corollary 15.3.10]). Let A be a sectorial operator on a Banach space X
and assume that A has BIP. Then for all θ ∈ (0,1) and 0 ≤ α < β we have

D(A(1−θ)α+θβ) = [D(Aα),D(Aβ)]θ .

Moreover, by [36, Proposition 15.2.12] we have for a sectorial operator A that D((μ+A)α) =
D(Aα) for all μ ≥ 0 and α > 0.

2.2.3. Perturbation of the H∞-calculus
We collect some known perturbation results for the H∞-calculus. For further perturbation 

results for the H∞-calculus, the reader is referred to [36,40,41,67]. We start with a result for 
shifting the H∞-calculus.

Proposition 2.4 ([36, Proposition 16.2.6]). Let A be a sectorial operator on a Banach space X
and let ω ∈ (ω(A),π).

(i) If A has a bounded H∞(Σω)-calculus, then μ + A has a bounded H∞(Σω)-calculus 
for all μ > 0. Moreover, the constant in the estimate for the H∞-calculus can be taken 
independent of μ.

(ii) If μ0 + A has a bounded H∞(Σω)-calculus for some μ0 > 0, then μ + A has a bounded 
H∞(Σω)-calculus for all μ > 0.

In the case of a lower-order perturbation, we have the following result.

Theorem 2.5 ([36, Theorem 16.2.7]). Let A be a sectorial operator on a Banach space X. Let 
ω ∈ (ω(A),π) and assume that A has a bounded H∞(Σω)-calculus. Let α ∈ (0,1) and assume 
that B is a linear operator on X such that D(B) ⊇ D(Aα) and

∥Bu∥X ≤ C∥Aαu∥X, u ∈ D(A), (2.1)

for some C > 0. Then there exists a μ ≥ 0 such that μ+A+B with D(μ+A+B) = D(A) has 
a bounded H∞(Σω)-calculus.

To extend the H∞-calculus of the Laplacian on Rd+ to domains in Sections 5 and 6, we need to 
deal with perturbations that are not of lower order. Unfortunately, the H∞-calculus is not stable 
under small perturbations, as shown in a counterexample by McIntosh and Yagi [75]. Instead, 
for the H∞-calculus, one has statements of the following type, in which the perturbation is in 
addition required to be well behaved with respect to a fractional power of the original operator.

Theorem 2.6 ([36, Theorem 16.2.8]). Let A be a sectorial operator on a Banach space X such 
that 0 ∈ ρ(A). Let ω ∈ (ω(A),π) and assume that A has a bounded H∞(Σω)-calculus. Let B
be a linear operator on X such that D(B) ⊇ D(A). Suppose that there is an η > 0 such that

(i) ∥Bu∥X ≤ η ∥Au∥X, u ∈ D(A).

Moreover, suppose that at least one of the following relative bounds is satisfied:
8 
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(ii) there exists an α ∈ (0,1) such that B(D(A1+α)) ⊆ D(Aα) and

∥AαBu∥X ≤ C∥A1+αu∥X, u ∈ D(A1+α),

(iii) there exists an α ∈ (0,1) such that

∥A−αBu∥X ≤ C∥A1−αu∥X, u ∈ D(A1−α),

for some C > 0. Then there exists an ˜︁η > 0 such that, if (i) holds with η < ˜︁η, then A + B with 
D(A + B) = D(A) has a bounded H∞(Σω)-calculus.

Remark 2.7. Theorem 2.6 is taken from [36, Theorem 16.2.8], where it should be noted that 
their condition of R-sectoriality on B is redundant, see also [66] and the errata to [36]. A version 
of Theorem 2.6 for positive fractional powers also appeared in [15, Theorem 3.2].

2.3. The UMD property

Throughout this paper, we work mostly with vector-valued Sobolev spaces (although our re
sults are also new for the scalar-valued case), and for this, we need the UMD property for Banach 
spaces. We recall that a Banach space X satisfies the condition UMD (unconditional martingale 
differences) if and only if the Hilbert transform extends to a bounded operator on Lp(R;X). We 
list the following relevant properties of UMD spaces, see for instance [34, Chapter 4 & 5].

(i) Hilbert spaces are UMD Banach spaces. In particular, C is a UMD space.
(ii) If p ∈ (1,∞), (S,Σ,μ) is a σ finite measure space and X is a UMD Banach space, then 

Lp(S;X) is a UMD Banach space.
(iii) UMD Banach spaces are reflexive.

The UMD property is known to be necessary for many results on vector-valued Sobolev spaces 
(see [5], [34, Section 5.6], and [36, Corollary 13.3.9]). Moreover, the boundedness of the H∞
calculus of −Δ on spaces such as Lp(Rd ;X) also is equivalent to the UMD property (see [35, 
Section 10.5]).

2.4. Domains

Let λ ∈ (0,1] and let 𝒪 ⊆ Rd−1 be open. A function h : 𝒪 → R is called uniformly λ-Hölder 
continuous on 𝒪 if

[h]λ,𝒪 := sup 
x,y∈𝒪
x≠y

|h(x) − h(y)|
|x − y|λ < ∞.

In addition, for ℓ ∈N0 we define the space of λ-Hölder continuous functions by

C
ℓ,λ
b (𝒪) := {f ∈ Cℓ

b(𝒪) : [∂αh]λ,𝒪 < ∞ for all |α| = ℓ}.

For λ = 0 we write Cℓ,0
b (𝒪) := Cℓ

b(𝒪). By Cℓ,λ
c (𝒪) we denote the subset of functions in Cℓ,λ(𝒪)

with compact support in 𝒪. Moreover, on Cℓ,λ
(𝒪) we define the norm
b

9 
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∥h∥Cℓ,λ(𝒪) :=
∑︂
|α|≤ℓ

sup 
x∈𝒪

|∂αh(x)| +
∑︂
|α|=ℓ

[∂αh]λ,𝒪.

Definition 2.8. Let 𝒪 ⊆ Rd be a domain, i.e., a connected open set. Let ℓ ∈N0 and λ ∈ [0,1].

(i) We call 𝒪 a special Cℓ,λ
c -domain if, after translation and rotation, it is of the form

𝒪 = {(x1,˜︁x) ∈Rd : x1 > h(˜︁x)} (2.2)

for some h ∈ C
ℓ,λ
c (Rd−1;R).

(ii) Given a special Cℓ,λ
c -domain 𝒪, we define

[𝒪]Cℓ,λ := ∥h∥Cℓ,λ(Rd−1),

where h ∈ C
ℓ,λ
c (Rd−1;R) is such that, after rotation and translation, (2.2) holds. Note that 

[𝒪]Cℓ,λ is uniquely defined due to the compact support of h.
(iii) We call 𝒪 a Cℓ,λ-domain if every boundary point x ∈ ∂𝒪 admits an open neighbourhood 

V such that

𝒪 ∩ V = W ∩ V and ∂𝒪 ∩ V = ∂W ∩ V

for some special Cℓ,λ
c -domain W .

If λ = 0, then we write Cℓ for Cℓ,0 in the definitions above.

For any δ > 0 and Cℓ-domain 𝒪, the special Cℓ
c -domains W can always be chosen such that 

[W ]Cℓ < δ. If λ ∈ (0,1], ε ∈ (0, λ) and 𝒪 is a Cℓ,λ-domain, then for any δ > 0, the special Cℓ,λ
c

domains W can be chosen such that [W ]Cℓ,λ−ε < δ. Indeed, if h ∈ C
ℓ,λ
c (Rd−1;R) is associated 

with W , then for any |α| = ℓ, we have

[∂αh]λ−ε,𝒪 = sup 
x,y∈𝒪
x≠y

|∂αh(x) − ∂αh(y)|
|x − y|λ |x − y|ε < δ,

whenever |x − y|ε is small enough. Note that for ε = 0, the quantity [∂αh]λ,𝒪 cannot be made 
arbitrarily small.

3. Weighted Sobolev spaces and trace characterisations

Let 𝒪 ⊆ Rd be a domain with non-empty boundary ∂𝒪. A locally integrable function w :
𝒪 → (0,∞) is called a weight. For γ ∈ R we define the spatial power weight w∂𝒪

γ on 𝒪 by

w∂𝒪
γ (x) := dist(x, ∂𝒪)γ , x ∈𝒪,

and denote wγ := w∂Rd+
γ .
10 
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For p ∈ [1,∞), γ ∈ R and X a Banach space we define the weighted Lebesgue space 
Lp(𝒪,w∂𝒪

γ ;X) as the Bochner space consisting of all strongly measurable f : 𝒪 → X such 
that

∥f ∥Lp(𝒪,w∂𝒪
γ ;X) :=

(︂∫︂
𝒪

∥f (x)∥p
X w∂𝒪

γ (x) dx
)︂1/p

< ∞.

Let w∂𝒪
γ be such that (w∂𝒪

γ )
− 1 

p−1 ∈ L1
loc(𝒪). The k-th order weighted Sobolev space for k ∈N0

is defined as

Wk,p(𝒪,w∂𝒪
γ ;X) :=

{︂
f ∈ 𝒟′(𝒪;X) : ∀|α| ≤ k, ∂αf ∈ Lp(𝒪,w∂𝒪

γ ;X)
}︂

equipped with the canonical norm. If γ = 0, then we simply write Wk,p(𝒪;X).

Remark 3.1. The local L1 condition for (w∂𝒪
γ )

− 1 
p−1 ensures that all the derivatives ∂αf are 

locally integrable in 𝒪. If 𝒪 is the half-space Rd+ or a bounded domain, then this condition holds 
for all γ ∈ R. For 𝒪 = Rd the local L1 condition holds only for weights wγ (x) = |x1|γ with 
γ ∈ (−∞,p − 1). For γ ≥ p − 1, one has to be careful with defining the weighted Sobolev 
spaces on the full space because functions might not be locally integrable near x1 = 0, see [64]. 
This explains why, for example, we cannot employ classical reflection arguments from Rd+ to Rd

if γ > p − 1.

Let p ∈ (1,∞), k ∈ N0, γ > −1 and let X be a Banach space. To impose zero boundary 
conditions, we define

◦
W

k,p
0 (𝒪,w∂𝒪

γ ;X) := C∞
c (𝒪;X)

Wk,p(𝒪,w∂𝒪
γ ;X)

. (3.1)

Furthermore, to impose Dirichlet and Neumann boundary conditions, we set

C∞
c,Dir(𝒪;X) := C∞(𝒪;X) ∩ {︁

f ∈ Cc(𝒪;X) : f |∂𝒪 = 0
}︁
,

C∞
c,Neu(𝒪;X) := C∞(𝒪;X) ∩ {︁

f ∈ C1
c (𝒪;X) : (∂𝒏f )|∂𝒪 = 0

}︁
,

which contain functions that are smooth in the interior of 𝒪, satisfy the boundary condition and 
have compact support at infinity (in the case of unbounded domains). Here, 𝒏 denotes the inward 
unit normal vector at ∂𝒪 and ∂𝒏 = 𝒏 · ∇ . We define

◦
W

k,p

Dir (𝒪,w∂𝒪
γ ;X) := C∞

c,Dir(𝒪;X)
Wk,p(𝒪,w∂𝒪

γ ;X)

,

◦
W

k,p
Neu(𝒪,w∂𝒪

γ ;X) := C∞
c,Neu(𝒪;X)

Wk,p(𝒪,w∂𝒪
γ ;X)

.

(3.2)

The notation 
◦

W
k,p

0 , 
◦

W
k,p

Dir and 
◦

W
k,p
Neu as in (3.1) and (3.2) will mean that the spaces are defined 

as the closure of some space of test functions. Alternative characterisations of these spaces with 
boundary conditions in terms of traces (which will be denoted by Wk,p, Wk,p and Wk,p) are 
0 Dir Neu

11 
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derived in Sections 3.1, 3.2 and 3.3. The characterisations involving traces are also used in [70, 
72] to define Sobolev spaces with boundary conditions.

We recall from [72, Lemma 3.1] that for p ∈ [1,∞), γ ∈ (−∞,p −1) and X a Banach space, 
we have the Sobolev embedding

W 1,p(R+,wγ ;X) ↪→ C([0,∞);X).

Hardy’s inequality plays a central role in the analysis of weighted Sobolev spaces. We state a 
version on R+ from [72, Lemma 3.2]. A version for Rd+ will be given in Corollary 3.4. For 
Hardy’s inequality on more general domains, the reader is referred to [63, Section 8.8].

Lemma 3.2 (Hardy’s inequality on R+). Let p ∈ [1,∞) and let X be a Banach space. Let u ∈
W 1,p(R+,wγ ;X) and assume either

(i) γ < p − 1 and u(0) = 0, or,
(ii) γ > p − 1.

Then

∥u∥Lp(R+,wγ−p;X) ≤ Cp,γ ∥u′∥Lp(R+,wγ ;X).

3.1. Trace characterisations for weighted Sobolev spaces on the half-space

In the following three sections, we present characterisations of the spaces in (3.1) and (3.2)
as closed subspaces of Wk,p(𝒪,w∂𝒪

γ ;X) with vanishing traces. In this section, we start with the 
special case 𝒪 = Rd+.

For p ∈ (1,∞), k ∈ N0, γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1} and X a Banach space, we define 
the following spaces with vanishing traces

W
k,p
0 (Rd+,wγ ;X) :=

{︂
f ∈ Wk,p(Rd+,wγ ;X) : Tr(∂αf ) = 0 if k − |α| > γ+1

p

}︂
,

W
k,p

Dir (Rd+,wγ ;X) :=
{︂
f ∈ Wk,p(Rd+,wγ ;X) : Tr(f ) = 0 if k >

γ+1
p

}︂
,

W
k,p
Neu(R

d+,wγ ;X) :=
{︂
f ∈ Wk,p(Rd+,wγ ;X) : Tr(∂1f ) = 0 if k − 1 >

γ+1
p

}︂
.

All the traces in the above definitions are well defined, see [70, Section 3.1]. Although we will 
not consider weights wγ with γ ≤ −1, we can nonetheless define

W
k,p

Dir (Rd+,wγ ;X) := W
k,p
0 (Rd+,wγ ;X) := Wk,p(Rd+,wγ ;X),

see [72, Lemma 3.1(2)].

In [72] the above spaces are also used to define weighted Sobolev spaces on domains. How
ever, since we consider domains with low regularity, we cannot do this, as will be explained 
12 
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in Remark 3.11. Therefore, we first defined the Sobolev spaces as the closure of test func
tions in (3.1) and (3.2). The following proposition relates the spaces Wk,p

BC and 
◦

W
k,p
BC , where 

BC ∈ {0,Dir,Neu} stands for boundary conditions. That is, we prove that certain classes of test 
functions are dense in Sobolev spaces with zero trace conditions.

Proposition 3.3 (Trace characterisation on Rd+). Let p ∈ (1,∞), k ∈ N0, γ ∈ (−1,∞) \ {jp −
1 : j ∈ N1} and let X be a Banach space. For BC ∈ {0,Dir,Neu} we have the trace characteri
sations

◦
W

k,p

BC (Rd+,wγ ;X) = W
k,p

BC (Rd+,wγ ;X).

Proof. From [72, Proposition 3.8] we have that C∞
c (Rd+;X) is dense in Wk,p

0 (Rd+,wγ ;X) and 

therefore the trace characterisation for 
◦

W
k,p
0 (Rd+,wγ ;X) follows.

Let (BC, j) ∈ {(Dir,0), (Neu,1)}. Then [82, Proposition 4.8] implies that

{︁
f ∈ C∞

c (Rd+;X) : (∂j

1 f )|∂Rd+ = 0
}︁Wk,p(Rd+,wγ ;X)

= W
k,p

BC (Rd+,wγ ;X).

Since

{︁
f ∈ C∞

c (Rd+;X) : (∂j
1 f )|∂Rd+ = 0

}︁ ⊆ C∞
c,BC(Rd+;X),

the trace characterisations for the Dirichlet and Neumann boundary conditions follow. □
Before we continue with trace characterisations on domains, we record the following Hardy 

inequalities. As a corollary of Hardy’s inequality on R+ (Lemma 3.2), we have the following 
Hardy’s inequality on Rd+, see also [72, Corollary 3.4].

Corollary 3.4 (Hardy’s inequality on Rd+). Let p ∈ (1,∞), k ∈N1, γ ∈R and let X be a Banach 
space. Then

W
k,p
0 (Rd+,wγ ;X) ↪→ Wk−1,p(Rd+,wγ−p;X) if γ < p − 1,

Wk,p(Rd+,wγ ;X) ↪→ Wk−1,p(Rd+,wγ−p;X) if γ > p − 1,

W
k,p
0 (Rd+,wγ ;X) ↪→ W

k−1,p
0 (Rd+,wγ−p;X) if γ / ∈ {jp − 1 : j ∈ N1}.

Moreover, as a consequence of Hardy’s inequality above, we obtain the following non-sharp 
Hardy’s inequality.

Lemma 3.5. Let p ∈ (1,∞), γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1}, s ∈ [0,∞) such that γ > sp − 1
and let X be a Banach space. Then for any integer k ≥ s it holds that

Wk,p(Rd+,wγ ;X) ↪→ Lp(Rd+,wγ−sp;X).
13 
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Proof. Let φ1, φ2 ∈ C∞(R+; [0,1]) such that φ1(x1) = 0 for x1 ≥ 2 and φ2(x1) = 0 for x1 ≤ 1. 
In addition, take φ1 and φ2 such that φ1 + φ2 = 1. Let f ∈ Wk,p(Rd+,wγ ;X), with Hardy’s 
inequality (Corollary 3.4 using that γ > sp − 1) we obtain

∥f ∥Lp(Rd+,wγ−sp;X) ≤ ∥f φ1∥Wk,p(Rd+,wγ+(k−s)p;X) + ∥f φ2∥Lp(Rd+,wγ−sp;X)

≲ ∥f φ1∥Wk,p(Rd+,wγ ;X) + ∥f φ2∥Lp(Rd+,wγ ;X) ≲ ∥f ∥Wk,p(Rd+,wγ ;X),

where we have used that wγ+(k−s)p(x) ≲ wγ (x) for x1 ≤ 2 (since k ≥ s) and wγ−sp(x) ≲ wγ (x)

for x1 ≥ 1. □
Occasionally, we also need a sharp Hardy’s inequality with fractional smoothness. We use 

complex interpolation to deal with spaces with fractional smoothness and weights wγ+kp with 
γ ∈ (−1,p − 1) and k ∈ N1 outside the Muckenhoupt class.

Lemma 3.6. Let p ∈ (1,∞), k ∈N0, γ ∈ (−1,p − 1), s ∈ [0,1) such that γ > sp − 1 and let X
be a UMD Banach space. Then

[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)] s+1
2 

↪→ Wk+1,p(Rd+,wγ+(k−s)p;X).

Proof. For s = 0 the result follows from [82, Proposition 6.3], so from now on we assume 
s ∈ (0,1). We start with the case k = 0. Let |α| ≤ 1, then by [71, Lemma 3.7] (which also holds 
on Rd+) and [71, Propositions 5.5 & 5.6], we obtain

∥∂αf ∥Lp(Rd+,wγ−sp;X) ≲ ∥∂αf ∥Hs,p(Rd+,wγ ;X) ≲ ∥f ∥Hs+1,p(Rd+,wγ ;X)

≂ ∥f ∥[Lp(Rd+,wγ ;X),W 2,p(Rd+,wγ ;X)] s+1
2 

,

where Hs,p(Rd+,wγ ;X) is a weighted Bessel potential space, see [71, Section 3]. For k ≥ 1, we 
proceed by induction. Assume that the statement of the lemma holds for some k ∈ N0, then it 
remains to prove the statement for k+1. We recall from [70, Section 3.2] that M is the pointwise 
multiplication operator given by Mu(x) = x1u(x) for x ∈ Rd+. Then by [70, Lemma 3.8] (using 
that γ > sp − 1) and the induction hypothesis, we obtain

∥f ∥Wk+2,p(Rd+,wγ+(k+1−s)p;X) ≂

∑︂
|β|≤1

∥M∂βf ∥Wk+1,p(Rd+,wγ+(k−s)p;X)

≲
∑︂
|β|≤1

∥M∂βf ∥[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)] s+1
2 

≲ ∥f ∥[Wk+1,p(Rd+,wγ+(k+1)p;X),Wk+3,p(Rd+,wγ+(k+1)p;X)] s+1
2 

,

where the last estimate follows from the fact that for |β| ≤ 1 the operators

M∂β : Wk+1,p(Rd+,wγ+(k+1)p;X) → Wk,p(Rd+,wγ+kp;X) and 

M∂β : Wk+3,p(Rd+,wγ+(k+1)p;X) → Wk+2,p(Rd+,wγ+kp;X)
14 
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are bounded, see [70, Lemma 3.6]. □
3.2. Trace characterisations for weighted Sobolev spaces on special domains

For 𝒪 = Rd+ we have shown in Proposition 3.3 that the definition of weighted Sobolev spaces 
in (3.1) and (3.2) is equivalent to setting certain traces to zero. To define Sobolev spaces with 
vanishing traces for a special Cℓ,λ

c -domain 𝒪, we will employ the diffeomorphisms Φ,Ψ : 𝒪 →
Rd+ from Lemmas A.4 and A.5 to construct isomorphisms between Sobolev spaces on 𝒪 and 
Rd+. Which diffeomorphism we use depends on the boundary conditions. Throughout the rest of 
this paper, we will always use the diffeomorphism Φ from Lemma A.4 for Dirichlet boundary 
conditions and the diffeomorphism Ψ from Lemma A.5 for Neumann boundary conditions. The 
diffeomorphism Φ is not applicable for Neumann boundary conditions, since it does not preserve 
the direction of the normal vector.

Proposition 3.7. Let p ∈ (1,∞), ℓ ∈ N1, λ ∈ [0,1], k ∈ N0 and let X be a Banach space. Let 
γ ∈ (−1,∞) \ {jp − 1 : j ∈N1} be such that γ > (k − (ℓ + λ))+p − 1.

(i) Let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤ 1. Let Φ : 𝒪 → Rd+ be as in Lemma A.4

and consider the change of coordinates mappings

Φ∗ : Wk,p(𝒪,w∂𝒪
γ ;X) → Wk,p(Rd+,wγ ;X),

Φ∗ : ◦
W

k,p

BC (𝒪,w∂𝒪
γ ;X) → ◦

W
k,p

BC (Rd+,wγ ;X) for BC ∈ {0,Dir},

defined by Φ∗f := f ◦ Φ−1.
(ii) Let 𝒪 be a special Cℓ,λ

c -domain with [𝒪]Cℓ,λ ≤ Λ, where Λ ∈ (0,1) is as in Lemma A.5. 
Let Ψ : 𝒪 →Rd+ be as in Lemma A.5 and consider the change of coordinates mappings

Ψ∗ : Wk,p(𝒪,w∂𝒪
γ ;X) → Wk,p(Rd+,wγ ;X), (3.3a)

Ψ∗ : ◦
W

k,p
BC (𝒪,w∂𝒪

γ ;X) → ◦
W

k,p
BC (Rd+,wγ ;X) for BC ∈ {0,Dir,Neu}, (3.3b)

defined by Ψ∗f := f ◦ Ψ−1.

Then Φ∗ and Ψ∗ are isomorphisms of Banach spaces for which (Φ−1)∗ and (Ψ−1)∗, respectively, 
act as inverse.

Proof. We give the proof of (ii) and the proof of (i) is similar using Lemma A.4 instead of 
Lemma A.5.

Step 1: proof of (3.3a). We start with some preparations. Let k ∈ N1 and f ∈ C
ℓ,λ
c (𝒪;X). 

Note that by Lemma A.5 we have that Ψ∗f ∈ C
ℓ,λ
c (Rd+;X). Let α ∈ Nd

0 \ {0} with |α| ≤ k, then 
by [9, Theorem 2.1] we have the multivariate Faà di Bruno’s formula

∂αΨ∗f =
∑︂

(Ψ∗∂βf )

|α| ∑︂ ∑︂ s∏︂
cα,𝒌j ,𝓵j

[∂𝓵j Ψ−1]𝒌j ,
1≤|β|≤|α| s=1 ps(α,β) j=1

15 
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for some constants cα,𝒌j ,𝓵j
and sets ps(α,β) contained in

{︂
(𝒌1, . . . ,𝒌s;𝓵1, . . . ,𝓵s) ∈ (Nd

0 \ {0})s × (Nd
0 \ {0})s :

s∑︂
j=1 

|𝒌j | = |β|,
s∑︂

j=1 
|𝒌j ||𝓵j | = |α|

}︂
.

(3.4)

Therefore, we have

∥∂αΨ∗f ∥Lp(Rd+,wγ ;X) ≲
∑︂

1≤|β|≤|α|

|α| ∑︂
s=1 

∑︂
ps(α,β)

∥(Ψ∗∂βf )

s∏︂
j=1

[∂𝓵j Ψ−1]𝒌j ∥Lp(Rd+,wγ ;X)

≲
∑︂

1≤|β|≤|α|

|α| ∑︂
s=1 

∑︂
ps(α,β)

∥Ψ∗∂βf ∥Lp(Rd+,wγ−∑︁s
j=1(|𝓵j |−(ℓ+λ))+|𝒌j |p;X)

·
s∏︂

j=1

∥y ↦→ y
(|𝓵j |−(ℓ+λ))+
1 ∂𝓵j Ψ−1(y)∥|𝒌j |

L∞(Rd+;Rd )
. (3.5)

From Lemma A.5(v) we obtain

s∏︂
j=1

∥y ↦→ y
(|𝓵j |−(ℓ+λ))+
1 ∂𝓵j Ψ−1(y)∥|𝒌j |

L∞(Rd+;Rd )
≲ 1. (3.6)

Step 1a: proof of (3.3a) if ℓ + λ ≥ k. If k = 0, then (3.3a) follows immediately from 
Lemma A.5. Let k ∈ N1 and note that |𝓵j | ≤ |α| ≤ k ≤ ℓ + λ. Therefore, (|𝓵j | − (ℓ + λ))+ = 0
in (3.5) and the case k = 0 implies

∥Ψ∗∂βf ∥Lp(Rd+,wγ ;X) ≲ ∥∂βf ∥Lp(𝒪,w∂𝒪
γ ;X) ≤ ∥f ∥Wk,p(𝒪,w∂𝒪

γ ;X), 1 ≤ |β| ≤ |α|, (3.7)

and we find

∥Ψ∗f ∥Wk,p(Rd+,wγ ;X) ≲ ∥f ∥Wk,p(𝒪,w∂𝒪
γ ;X), f ∈ Cℓ,λ

c (𝒪;X),

and by density the estimate extends to f ∈ Wk,p(𝒪,w∂𝒪
γ ;X). Recall from Lemma A.5 that Ψ

is invertible and thus (Ψ−1)∗ is the inverse of Ψ∗. The estimate for the inverse (Ψ−1)∗ can be 
shown using similar estimates as in (3.5), (3.6) and (3.7). This shows that Ψ∗ in (3.3a) is an 
isomorphism if ℓ + λ ≥ k.

Step 1b: proof of (3.3a) if ℓ + λ < k. We claim that in (3.5) we have

γ −
s∑︂

j=1 
(|𝓵j | − (ℓ + λ))+|𝒌j |p > −1. (3.8)

Indeed, if |𝓵j | ≤ ℓ + λ for all j ∈ {1, . . . , s}, then
16 
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γ −
s∑︂

j=1 
(|𝓵j | − (ℓ + λ))+|𝒌j |p = γ > (k − (ℓ + λ))p − 1 > −1,

and if |𝓵j0 | > ℓ + λ for some j0 ∈ {1, . . . , s}, then with (3.4) we obtain

γ −
s∑︂

j=1 
(|𝓵j | − (ℓ + λ))+|𝒌j |p = γ −

(︂ s∑︂
j=1
j≠j0

(|𝓵j | − (ℓ + λ))+|𝒌j | + (|𝓵j0 | − (ℓ + λ))|𝒌j0 |
)︂
p

≥ γ −
(︂ s∑︂

j=1
j≠j0

|𝓵j ||𝒌j | + |𝓵j0 ||𝒌j0 | − (ℓ + λ)
)︂
p

= γ − (|α| − (ℓ + λ))p ≥ γ − (k − (ℓ + λ))p > −1.

Moreover, again by (3.4) we have

s∑︂
j=1 

(|𝓵j | − (ℓ + λ))+|𝒌j | ≤
s∑︂

j=1 
|𝓵j ||𝒌j | − |β| = |α| − |β| ≤ k − |β|. (3.9)

Therefore, by Lemma 3.5 (using (3.8) and (3.9)) and Step 1a, we have for 1 ≤ |β| ≤ |α| ≤ k =
ℓ + 1 that

∥Ψ∗∂βf ∥Lp(Rd+,wγ−∑︁s
j=1(|𝓵j |−(ℓ+λ))+|𝒌j |p;X) ≲ ∥Ψ∗∂βf ∥Wk−|β|,p(Rd+,wγ ;X)

≲ ∥∂βf ∥Wk−|β|,p(𝒪,w∂𝒪
γ ;X)

≲ ∥f ∥Wk,p(𝒪,w∂𝒪
γ ;X), f ∈ Cℓ,λ

c (𝒪;X).

(3.10)

Now, density and (3.5), (3.6) and (3.10) yield that

Ψ∗ : Wk,p(𝒪,w∂𝒪
γ ;X) → Wk,p(Rd+,wγ ;X) (3.11)

is bounded for k = ℓ + 1.
The general case k ≥ ℓ + 1 follows by induction on k. Assume that (3.11) holds for some 

k ≥ ℓ + 1 and let 1 ≤ |β| ≤ |α| ≤ k + 1. Using the induction hypothesis instead of Step 1a in 
(3.10), we obtain the estimate

∥Ψ∗∂βf ∥Lp(Rd+,wγ−∑︁s
j=1(|𝓵j |−(ℓ+λ))+|𝒌j |p;X) ≲ ∥f ∥Wk+1,p(𝒪,w∂𝒪

γ ;X),

which proves (3.11) for k ≥ ℓ + 1.
The estimate for the inverse can be shown directly using similar estimates as in (3.5) and (3.6), 

together with the estimate
17 
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∥(Ψ−1)∗∂βf ∥Lp(𝒪,w∂𝒪
γ−∑︁s

j=1(|𝓵j |−(ℓ+λ))+|𝒌j |p;X) ≲ ∥∂βf ∥Lp(Rd+,wγ−∑︁s
j=1(|𝓵j |−(ℓ+λ))+|𝒌j |p;X)

≲ ∥∂βf ∥Wk−|β|,p(Rd+,wγ ;X)

≲ ∥f ∥Wk,p(Rd+,wγ ;X), f ∈ Wk,p(Rd+,wγ ;X),

which follows from Step 1a and Lemma 3.5. This completes the proof of (3.3a).
Step 2: proof of (3.3b). The proof (3.3b) is similar to the proof of (3.3a) if we work with a 

suitable dense subspace, i.e.,

• if BC = 0, take f ∈ C∞
c (𝒪;X),

• if BC ∈ {Dir,Neu}, take f ∈ C∞
c,BC(𝒪;X),

see (3.1) and (3.2). Note that in both cases Lemma A.5 ensures that Ψ∗f is in the respective 
dense subspace on Rd+. In particular, for the Neumann boundary condition, we have

(∂1Ψ∗f )|∂Rd+ = (Ψ∗(∂νf ))|∂Rd+ ,

where ν(y) = ν(˜︁y) = (1,−∇˜︁yh(˜︁y))⊤ is the inward normal direction. Indeed, this follows from 
Lemma A.5 since

∂y1f (Ψ−1(y)) = (∇f )(Ψ−1(y)) · ∂y1Ψ
−1(y)

= (∇f )(Ψ−1(y)) · ν(Ψ−1(y)) = (∂νf )(Ψ−1(y)), y = (0,˜︁y) ∈ ∂Rd+,

where we recall from the construction of Ψ−1 in the proof of Lemma A.5 that ∂y1Ψ
−1(y) =

(1,−∇˜︁yh(˜︁y))⊤ = ν(˜︁y) = ν(Ψ−1(y)) if y = (0,˜︁y) ∈ ∂Rd+. Furthermore, note that the conditions 
(∂𝒏f )|∂𝒪 = 0 and (∂νf )|∂𝒪 = 0 are equivalent. □
Remark 3.8. By inspection of the proof of Proposition 3.7, we see that for BC = 0 no additional 
conditions on γ are necessary since Hardy’s inequality always applies in this case. That is, we 
can allow for any γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1}. Furthermore, we expect that for Dirichlet 
boundary conditions, the range for γ can also be improved, although we will not need this.

We define the following spaces with vanishing traces at the boundary of a special Cℓ,λ
c

domain.

Definition 3.9. Let p ∈ (1,∞), ℓ ∈ N1, λ ∈ [0,1], k ∈ N0 and let X be a Banach space. Let 
γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1} be such that γ > (k − (ℓ + λ))+p − 1 and let 𝒪 be a special 
C

ℓ,λ
c -domain. If [𝒪]Cℓ,λ ≤ 1, let Φ∗ be the isomorphism from Proposition 3.7(i) and define

W
k,p

0 (𝒪,w∂𝒪
γ ;X) :=

{︂
f ∈ Wk,p(𝒪,w∂𝒪

γ ;X) : Tr(∂α(Φ∗f )) = 0 if k − |α| > γ+1
p

}︂
,

W
k,p

Dir (𝒪,w∂𝒪
γ ;X) :=

{︂
f ∈ Wk,p(𝒪,w∂𝒪

γ ;X) : Tr(Φ∗f ) = 0 if k >
γ+1
p

}︂
.

If [𝒪]Cℓ,λ ≤ Λ, where Λ ∈ (0,1) is as in Lemma A.5, let Ψ∗ be the isomorphism from Proposi
tion 3.7(ii) and define
18 
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W
k,p
Neu(𝒪,w∂𝒪

γ ;X) :=
{︂
f ∈ Wk,p(𝒪,w∂𝒪

γ ;X) : Tr(∂1(Ψ∗f )) = 0 if k − 1 >
γ+1
p

}︂
.

The above spaces are well defined by Proposition 3.7. Furthermore, by Lemmas A.4 and 
A.5, the definitions of the above spaces are consistent in the sense that viewing 𝒪 as either a 
special Cℓ,λ

c -domain or a special C1
c -domain yields the same space. Moreover, the condition 

Tr(∂1(Ψ∗f )) = 0 correctly models the Neumann boundary condition, since Ψ leaves the direc
tion of the normal vector invariant, see Lemma A.5(iv). Finally, we note that the spaces Wk,p

0

and Wk,p

Dir could also be defined using Ψ∗ instead of Φ∗, yielding an equivalent definition by 
Proposition 3.10 below. 

Similar to Proposition 3.3 we can now characterise the spaces 
◦

W
k,p
BC (𝒪,w∂𝒪

γ ;X) in terms of 
vanishing traces with the aid of the isomorphisms from Proposition 3.7.

Proposition 3.10 (Trace characterisation on special domains). Let p ∈ (1,∞), ℓ ∈ N1, λ ∈
[0,1], k ∈ N0 and let X be a Banach space. Let γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1} be such that 
γ > (k − (ℓ + λ))+p − 1.

(i) Let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤ 1 and let Φ∗ be the isomorphism from 

Proposition 3.7. Let BC ∈ {0,Dir} and let Wk,p

BC be defined using Φ∗. Then we have the 
trace characterisations

◦
W

k,p
BC (𝒪,w∂𝒪

γ ;X) = W
k,p
BC (𝒪,w∂𝒪

γ ;X).

(ii) Let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤ Λ, where Λ ∈ (0,1) is as in Lemma A.5, 

and let Ψ∗ be the isomorphism from Proposition 3.7. Let BC ∈ {0,Dir,Neu} and let Wk,p

BC
be defined using Ψ∗. Then we have the trace characterisations

◦
W

k,p

BC (𝒪,w∂𝒪
γ ;X) = W

k,p

BC (𝒪,w∂𝒪
γ ;X).

Proof. We only prove (ii). The proof of (i) is similar. Let BC ∈ {0,Dir,Neu} and f ∈
◦

W
k,p

BC (𝒪,w∂𝒪
γ ;X), then by Propositions 3.7 and 3.3 we have Ψ∗f ∈ ◦

W
k,p

BC (Rd+,wγ ;X) =
W

k,p

BC (Rd+,wγ ;X). This implies that all the required traces of Ψ∗f are zero. Moreover, since 
Ψ∗f ∈ Wk,p(Rd+,wγ ;X) it follows by Proposition 3.7 that f = (Ψ−1)∗Ψ∗f ∈ Wk,p(𝒪,w∂𝒪

γ ;X)

as well. This proves that f ∈ W
k,p

BC (𝒪,w∂𝒪
γ ;X). The other inclusion is similar. □

Remark 3.11. If h ∈ C
ℓ,λ
c (Rd−1) is associated with the special Cℓ,λ

c -domain, then the classical 
diffeomorphism Φcl : 𝒪 → Rd+ given by

Φcl(x) = (x1 − h(˜︁x),˜︁x), x = (x1,˜︁x) ∈ 𝒪,

defines a Cℓ,λ-diffeomorphism. Moreover, the change of coordinates mapping (Φcl)∗ becomes 
an isomorphism between Wk,p

BC (𝒪,w∂𝒪
γ ;X) and Wk,p

BC (Rd+,wγ ;X) for ℓ ≥ k and BC ∈ {0,Dir}. 
In [72, Section 3.2], this isomorphism is used to define weighted Sobolev spaces on domains. 
However, for ℓ < k or Neumann boundary conditions, this isomorphism is not sufficient, which 
19 
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is why we have employed the diffeomorphisms Φ and Ψ from Lemma A.4 and A.5 to define 
weighted Sobolev spaces with vanishing traces. We elaborate on the construction of the diffeo
morphisms in Appendix A.

3.3. Trace characterisations for weighted Sobolev spaces on bounded domains

In this section, we define Sobolev spaces with vanishing traces for bounded domains 𝒪. To 
this end, we will employ a localisation procedure to relate spaces on bounded domains with 
spaces on special domains. We start with a lemma containing a decomposition of weighted 
Sobolev spaces, see also [72, Section 2.2].

Lemma 3.12. Let ℓ ∈ N1, λ ∈ [0,1] and let 𝒪 ⊆ Rd be a bounded Cℓ,λ-domain. Then for any 
δ > 0, the following statements hold.

(i) For all ε ∈ (0, λ) there exists a finite open cover (Vn)
N
n=1 of ∂𝒪, together with special 

C
ℓ,λ
c -domains (𝒪n)

N
n=1 which satisfy [𝒪n]Cℓ,λ−ε < δ, such that

𝒪 ∩ Vn = 𝒪n ∩ Vn and ∂𝒪 ∩ Vn = ∂𝒪n ∩ Vn, n ∈ {1, . . . ,N}.
If λ = 0, then the special Cℓ

c -domains (𝒪n)
N
n=1 can be chosen such that [𝒪n]Cℓ < δ.

(ii) There exist η0 ∈ C∞
c (𝒪) and ηn ∈ C∞

c (Vn) for n ∈ {1, . . . ,N} such that 0 ≤ ηn ≤ 1 for 
n ∈ {0, . . . ,N} and 

∑︁N
n=0 η2

n = 1 on 𝒪 (partition of unity).
(iii) For p ∈ (1,∞), k ∈ N0, γ ∈ R and X a Banach space, the space Wk,p(𝒪,w∂𝒪

γ ;X) has 
the direct sum decomposition

W k,p
γ := Wk,p(Rd ;X) ⊕

N⨁︂
n=1 

Wk,p(𝒪n,w
∂𝒪n
γ ;X). (3.12)

Moreover, the mappings

ℐ : Wk,p(𝒪,w∂𝒪
γ ;X) →W k,p

γ and 𝒫 : W k,p
γ → Wk,p(𝒪,w∂𝒪

γ ;X)

given by

ℐf := (ηnf )Nn=0 and 𝒫(fn)
N
n=0 :=

N∑︂
n=0 

ηnfn, (3.13)

are continuous and satisfy 𝒫ℐ = id. Thus, 𝒫 is a retraction with coretraction ℐ .

Proof. We note that the result in (i) follows from the discussion after Definition 2.8 in Sec
tion 2.4. The partition of unity in (ii) is standard, see for instance [61, Section 8.4] (noting that 
a C2-domain is not required for constructing the partition of unity). Finally, using the partition 
of unity and the (co)retraction in (3.13), the direct sum decomposition in (iii) follows. Indeed, 
η0 ∈ C∞

c (𝒪) and we can extend to the full space Rd without a weight since there is no boundary. 
Furthermore, for n ∈ {1, . . . ,N} we have ηn ∈ C∞

c (Vn), so the weight w∂𝒪
γ (x) can be replaced 

by w∂𝒪n
γ (x) for x ∈ 𝒪n. □
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With Lemma 3.12 we can now define traces of functions in Wk,p(𝒪,w∂𝒪
γ ;X) if 𝒪 is a 

bounded Cℓ,λ-domain. Furthermore, we define the following spaces with vanishing traces at 
the boundary.

Definition 3.13. Let p ∈ (1,∞), ℓ ∈ N1, λ ∈ [0,1], k ∈ N0 and let X be a Banach space. Let 
γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1} be such that γ > (k − (ℓ + λ))+p − 1. Moreover, let 𝒪 be a 
bounded Cℓ,λ-domain, let (𝒪n)

N
n=1 be special Cℓ,λ

c -domains and let ℐ be the coretraction from 
Lemma 3.12. We define

W
k,p

0 (𝒪,w∂𝒪
γ ;X) :=

{︂
f ∈Wk,p(𝒪,w∂𝒪

γ ;X) : ℐf ∈Wk,p(Rd ;X) ⊕
N⨁︂

n=1 
W

k,p

0 (𝒪n,w
∂𝒪n
γ ;X)

}︂
,

W
k,p

Dir (𝒪,w∂𝒪
γ ;X) :=

{︂
f ∈Wk,p(𝒪,w∂𝒪

γ ;X) : ℐf ∈Wk,p(Rd ;X) ⊕
N⨁︂

n=1 
W

k,p

Dir (𝒪n,w
∂𝒪n
γ ;X)

}︂
,

W
k,p
Neu(𝒪,w∂𝒪

γ ;X) :=
{︂
f ∈Wk,p(𝒪,w∂𝒪

γ ;X) : ℐf ∈Wk,p(Rd ;X) ⊕
N⨁︂

n=1 
W

k,p
Neu(𝒪n,w

∂𝒪n
γ ;X)

}︂
.

Note that the above spaces are well defined by Lemma 3.12 and Definition 3.9. Moreover, 
the definitions are independent of the chosen covering of ∂𝒪 and the partition of unity in 
Lemma 3.12.

Similar to Propositions 3.3 and 3.10 we can now relate the spaces 
◦

W
k,p
BC (𝒪,w∂𝒪

γ ;X) and 

W
k,p

BC (𝒪,w∂𝒪
γ ;X) for bounded domains.

Proposition 3.14 (Trace characterisation on bounded domains). Let p ∈ (1,∞), ℓ ∈ N1, λ ∈
[0,1], k ∈ N0 and let X be a Banach space. Let γ ∈ (−1,∞) \ {jp − 1 : j ∈ N1} be such that 
γ > (k − (ℓ + λ))+p − 1. Moreover, let 𝒪 be a bounded Cℓ,λ-domain. For BC ∈ {0,Dir,Neu}
we have the trace characterisations

◦
W

k,p
BC (𝒪,w∂𝒪

γ ;X) = W
k,p
BC (𝒪,w∂𝒪

γ ;X).

Proof. We only prove the statement for BC = 0 since the proof for the other cases is similar. Let 
f ∈ W

k,p

0 (𝒪,w∂𝒪
γ ;X). Proposition 3.10 and the fact that C∞

c (Rd ;X) is dense in Wk,p(Rd ;X), 
allows us to approximate ℐf by a sequence g := (g0,m, g1,m, . . . , gN,m)m≥1 where (g0,m)m≥1 ⊆
C∞

c (Rd ;X) and (gn,m)m≥1 ⊆ C∞
c (𝒪n;X) for all n ∈ {1, . . . ,N}. Using Lemma 3.12 we see that 

f = 𝒫ℐf can be approximated by the sequence 𝒫g ⊆ C∞
c (𝒪;X). □

3.4. Complex interpolation of weighted Sobolev spaces

To conclude this section, we recall the following two interpolation results for weighted 
Sobolev spaces on Rd+ with boundary conditions from [82], which also hold for special and 
bounded domains by the results from Sections 3.1, 3.2 and 3.3.
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Proposition 3.15. Let p ∈ (1,∞), k ∈ N0, λ ∈ [0,1], γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and 
let X be a UMD Banach space. Moreover, let 𝒪 be a special C1,λ

c -domain with [𝒪]C1,λ ≤ 1 or a 
bounded C1,λ-domain. Then

[Wk,p(𝒪,w∂𝒪
γ+kp;X),W

k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X)] 1

2
= W

k+1,p

Dir (𝒪,w∂𝒪
γ+kp;X).

Proposition 3.16. Let p ∈ (1,∞), k ∈ N0, λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1} and 
let X be a UMD Banach space. Moreover, let 𝒪 be a special Cj+1,λ

c -domain with [𝒪]Cj+1,λ ≤ Λ, 
where Λ ∈ (0,1) is as in Lemma A.5 or a bounded Cj+1,λ-domain. Then

[Wk+j,p(𝒪,w∂𝒪
γ+kp;X),W

k+2+j,p
Neu (𝒪,w∂𝒪

γ+kp;X)] 1
2

= W
k+1+j,p
Neu (𝒪,w∂𝒪

γ+kp;X).

Proof of Propositions 3.15 and 3.16. By Propositions 3.7, 3.10 and Lemma 3.12, it suffices to 
prove the statements for 𝒪 = Rd+, which follows from [82, Theorem 6.5]. □

We remark that in the above two propositions the conditions on [𝒪]Cj+1,λ can be omitted and 
in this case the implicit constants will depend on the domain.

4. Fractional domains of the Laplacian on the half-space

In this section, we establish properties of the Laplacian on the half-space that are required 
for Sections 5 and 6. There, we will transfer the H∞-calculus for the Laplacian from Rd+ to do
mains using the perturbation results in Section 2.2. The aim of the present section is to recall the 
bounded H∞-calculus for the Laplacian on Rd+ from [70] and to characterise the relevant frac
tional domains and interpolation spaces. These characterisations are one of the key ingredients 
in the perturbation theorems in Section 5.

Throughout this section, the Dirichlet and Neumann Laplacian on Rd+ will be defined as 
follows.

Definition 4.1. Let p ∈ (1,∞), k ∈N0 and let X be a UMD Banach space.

(i) Let γ ∈ (−1,2p − 1) \ {p − 1}. The Dirichlet Laplacian ΔDir on Wk,p(Rd+,wγ+kp;X) is 
defined by

ΔDiru := Δu with D(ΔDir) := W
k+2,p

Dir (Rd+,wγ+kp;X).

(ii) Let γ ∈ (−1,p − 1) and j ∈ {0,1}. The Neumann Laplacian ΔNeu on Wk+j,p(Rd+, 
wγ+kp;X) is defined by

ΔNeuu := Δu with D(ΔNeu) := W
k+j+2,p
Neu (Rd+,wγ+kp;X).

Note that equivalently we can write ΔNeu on Wk,p(Rd+,wγ+(k−1)p;X) where k ∈ N0 and 
γ ∈ (p − 1,2p − 1), or, k ∈ N1 and γ ∈ (−1,p − 1). This matches the notation in Theo
rem 1.2.
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We recall from [70] that these Laplace operators admit a bounded H∞-calculus.

Theorem 4.2 ([70, Theorem 1.1 & Remark 1.3(i)]). Let p ∈ (1,∞), k ∈ N0, γ ∈ (−1,2p −
1) \ {p − 1} and let X be a UMD Banach space. Let ΔDir on Wk,p(Rd+,wγ+kp;X) be as in 
Definition 4.1(i). Then for all μ > 0 we have that

(i) μ − ΔDir is sectorial of angle ω(μ − ΔDir) = 0,
(ii) μ − ΔDir has a bounded H∞-calculus of angle ωH∞(μ − ΔDir) = 0.

Moreover, the statements hold for μ = 0 as well if γ + kp ∈ (−1,2p − 1).

Theorem 4.3 ([70, Theorem 1.2 & Remark 1.3(i)]). Let p ∈ (1,∞), k ∈ N0, γ ∈ (−1,p − 1), 
j ∈ {0,1} and let X be a UMD Banach space. Let ΔNeu on Wk+j,p(Rd+,wγ+kp;X) be as in 
Definition 4.1(ii). Then for all μ > 0 we have that

(i) μ − ΔNeu is sectorial of angle ω(μ − ΔNeu) = 0,
(ii) μ − ΔNeu has a bounded H∞-calculus of angle ωH∞(μ − ΔNeu) = 0.

Moreover, the statements hold for μ = 0 as well if k = 0.

Remark 4.4. The domain D(A) of an operator A on a Banach space Y is endowed with the graph 
norm ∥u∥Y + ∥Au∥Y for u ∈ D(A). It follows from Theorems 4.2 and 4.3 that the graph norm is 
equivalent to the norm of the domain in Definition 4.1. Under the conditions of Theorem 4.2, we 
have for the Dirichlet Laplacian that

∥u∥Wk+2,p(Rd+,wγ+kp;X)

≂p,k,γ,μ,X ∥u∥Wk,p(Rd+,wγ+kp;X) + ∥(μ − ΔDir)u∥Wk,p(Rd+,wγ+kp;X)

≂p,k,γ,μ,X ∥(μ −ΔDir)u∥Wk,p(Rd+,wγ+kp;X), u ∈W
k+2,p

Dir (Rd+,wγ+kp;X),

where the latter identity only holds for μ > 0. A similar norm equivalence holds for the Neumann 
Laplacian.

To transfer the H∞-calculus for the Laplacian from Rd+ to domains, we need to identify 
certain fractional domains and interpolation spaces. This will be done in Section 4.1 and 4.2 for 
the Dirichlet and Neumann Laplacian, respectively. We additionally define for γ ∈ (−1,∞) \
{jp − 1 : j ∈ N1} and k ∈ N0 the following weighted Sobolev spaces with boundary conditions 
(cf. [72, Section 6.3])

W
k,p

Δ,Dir(R
d+,wγ ;X) :=

{︂
u ∈ Wk,p(Rd+,wγ ;X) : Tr(Δju) = 0,∀j < 1

2

(︁
k − γ+1

p

)︁}︂
,

W
k,p
Δ,Neu(R

d+,wγ ;X) :=
{︂
u ∈ Wk,p(Rd+,wγ ;X) : Tr(Δj∂1u) = 0,∀j < 1

2

(︁
k − 1 − γ+1

p

)︁}︂
.

4.1. Fractional domains for the Dirichlet Laplacian

We begin with an elliptic regularity result for the shifted Dirichlet Laplacian on spaces with 
additional boundary conditions.
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Lemma 4.5. Let p ∈ (1,∞), k ∈ N0, γ ∈ (−1,2p − 1) \ {p − 1}, μ > 0 and let X be 
a UMD Banach space. Then for all f ∈ W

k+1,p

Δ,Dir (Rd+,wγ+kp;X) there exists a unique u ∈
W

k+3,p

Δ,Dir (Rd+,wγ+kp;X) such that μu − Δu = f . Moreover, this solution satisfies

∥u∥Wk+3,p(Rd+,wγ+kp;X) ≤ C∥f ∥Wk+1,p(Rd+,wγ+kp;X),

where the constant C > 0 only depends on p,k, γ,μ,d and X.

Proof. Step 1: the case γ ∈ (−1,p − 1). Let γ ∈ (−1,p − 1) and note that

W
k+1,p

Δ,Dir (Rd+,wγ+kp;X) = W
k+1,p

Dir (Rd+,wγ+kp;X) = W
k+1,p
0 (Rd+,wγ+kp;X),

which has C∞
c (Rd+;X) as a dense subspace, see Proposition 3.3. We claim that for f ∈

C∞
c (Rd+;X) there exists a unique solution u ∈ 𝒮(Rd+;X) to μu − Δu = f on Rd+ that sat

isfies u(0, ·) = (Δu)(0, ·) = 0. Indeed, by the proof of [70, Lemma 5.3] we obtain an odd 
function u ∈ 𝒮(Rd ;X) which solves μu − Δu = fodd ∈ 𝒮(Rd ;X) on Rd . We recall from [70] 
that fodd(x) = sign(x1)f (|x1|,˜︁x) for x ∈ Rd is the odd extension of f with respect to x1 = 0. 
Since u is odd, it follows that Δu is odd as well. Then u := u|Rd+ ∈ 𝒮(Rd+;X) is a solution to 

μu − Δu = f on Rd+ and satisfies u(0, ·) = (Δu)(0, ·) = 0. The uniqueness follows from [72, 
Corollary 4.3]. This proves the claim.

Let f ∈ C∞
c (Rd+;X) and let u ∈ 𝒮(Rd+;X) be the solution to μu − Δu = f as follows from 

the claim. In particular, we have that Tr(∂2
1 u) = 0. We define v0 := u and vj := ∂ju for j ∈

{1, . . . , d}. These functions satisfy the equations

μv0 − Δv0 = f

μv1 − Δv1 = ∂1f

μvj − Δvj = ∂jf

v0(0, ·) = u(0, ·) = 0,

(∂1v1)(0, ·) = (∂2
1 u)(0, ·) = 0,

vj (0, ·) = 0, j ∈ {2, . . . , d}.
Therefore, by [70, Propositions 5.4 & 5.6] we have for j ∈ {0, . . . , d} the estimates

∥vj∥Wk+2,p(Rd+,wγ+kp;X) ≤ C∥f ∥Wk+1,p(Rd+,wγ+kp;X),

where the constant C only depends on p,k, γ,μ,d and X. This implies that

∥u∥Wk+3,p(Rd+,wγ+kp;X) ≂

d∑︂
j=0 

∥vj∥Wk+2,p(Rd+,wγ+kp;X) ≲ ∥f ∥Wk+1,p(Rd+,wγ+kp;X),

where the constant only depends on p,k, γ,μ,d and X. A density argument, similar to the 
proof of [70, Proposition 5.4], yields the desired result for the case γ ∈ (−1,p − 1). Note that 
the uniqueness of u ∈ W

k+3,p

Δ,Dir (Rd+,wγ+kp;X) ↪→ W
k+2,p

Dir (Rd+,wγ+kp;X) follows from [70, 
Proposition 5.4].

Step 2: the case γ ∈ (p − 1,2p − 1). Note that for γ ∈ (p − 1,2p − 1) we have

W
k+1,p

(Rd+,wγ+kp;X) = Wk+1,p(Rd+,wγ−p+(k+1)p;X).
Δ,Dir
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Since γ − p ∈ (−1,p − 1) and

W
k+3,p

Δ,Dir (Rd+,wγ+kp;X) = W
(k+1)+2,p

Dir (Rd+,wγ−p+(k+1)p;X),

the result follows from Theorem 4.2 (see also [70, Proposition 5.4]). □
We can now proceed with characterising fractional domains of the Dirichlet Laplacian.

Proposition 4.6. Let p ∈ (1,∞), k ∈ N0, γ ∈ (−1,2p−1)\ {p−1}, μ > 0 and let X be a UMD
Banach space. Let ΔDir on Wk,p(Rd+,wγ+kp;X) as in Definition 4.1. Then

D
(︁
(μ − ΔDir)

1
2
)︁ = W

k+1,p

Dir (Rd+,wγ+kp;X),

D
(︁
(μ − ΔDir)

3
2
)︁ = W

k+3,p

Δ,Dir (Rd+,wγ+kp;X).

Proof. We write ADir := μ − ΔDir. For γ ∈ (−1,2p − 1) \ {p − 1} it holds that ADir has BIP by 
Theorem 4.2, so Propositions 2.3 and 3.15 imply

D(A
1
2
Dir) = [Wk,p(Rd+,wγ+kp;X),W

k+2,p

Dir (Rd+,wγ+kp;X)] 1
2

= W
k+1,p

Dir (Rd+,wγ+kp;X).

By [36, Theorem 15.2.5] and the characterisation of D(A
1
2
Dir) we find

D(A
3
2
Dir) = {u ∈ D(ADir) : ADiru ∈ D(A

1
2
Dir)}

= {u ∈ W
k+2,p

Dir (Rd+,wγ+kp;X) : ADiru ∈ W
k+1,p

Dir (Rd+,wγ+kp;X)}.
(4.1)

It is straightforward to check that the embedding Wk+3,p

Δ,Dir (Rd+,wγ+kp;X) ↪→ D(A
3
2
Dir) holds. 

The converse embedding follows from (4.1) and Lemma 4.5. □
As a consequence of Proposition 4.6, we can characterise the fractional domains as complex 

interpolation spaces as well.

Corollary 4.7. Let p ∈ (1,∞), k ∈ N0, k0, k1 ∈ {0,1,2,3}, θ ∈ (0,1) and let X be a UMD
Banach space. For μ > 0 and ΔDir on Wk,p(Rd+,wγ+kp;X) be as in Definition 4.1.

(i) If γ ∈ (−1,p − 1), then

D
(︁
(μ − ΔDir)

(1−θ)k0+θk1
2 

)︁ = [︁
W

k+k0,p

Δ,Dir (Rd+,wγ+kp;X),W
k+k1,p

Δ,Dir (Rd+,wγ+kp;X)
]︁
θ
.

(ii) If γ ∈ (p − 1,2p − 1), then

D
(︁
(μ − ΔDir)

(1−θ)k0+θk1
2 

)︁ = [︁
W

k+k0,p(Rd+,wγ+kp;X),W
k+k1,p(Rd+,wγ+kp;X)

]︁
.
Dir Dir θ
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Proof. The fractional domains of the shifted Dirichlet Laplacian on Wk,p(Rd+,wγ+kp;X) form 
a complex interpolation scale by Proposition 2.3 and Theorem 4.2, so the statements are a direct 
consequence of Proposition 4.6. □

We close this section about the Dirichlet Laplacian with a complex interpolation identification, 
which follows from reiteration and the work of Šneı̆berg [83,84] on the openness of the set of 
θ ∈ (0,1) for which a bounded operator T : [X0,X1]θ → [Y0, Y1]θ is invertible.

Proposition 4.8. Let p ∈ (1,∞), k ∈N0, k0 ∈ {0,1,2}, γ ∈ (p−1,2p−1) and let X be a UMD
Banach space. Then there exists an ε > 0 such that for all θ ∈ (︁

0,
2−k0
3−k0

+ ε
)︁

we have

[︁
W

k+k0,p

Dir (Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)
]︁
θ

= [︁
W

k+k0,p
0 (Rd+,wγ+kp;X),W

k+3,p
0 (Rd+,wγ+kp;X)

]︁
θ
.

Proof. Let μ > 0 and define ADir := μ − ΔDir on Wk,p(Rd+,wγ+kp;X) as in Definition 4.1. 
First consider the case k0 = 0 and θ = 2

3 , in which case we have by Corollary 4.7 and [82, 
Proposition 6.2]

[Wk,p(Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)] 2
3

= D(ADir)

= W
k+2,p

Dir (Rd+,wγ+kp;X) = W
k+2,p
0 (Rd+,wγ+kp;X)

= [Wk,p(Rd+,wγ+kp;X),W
k+3,p
0 (Rd+,wγ+kp;X)] 2

3
.

(4.2)

Next, for θ ∈ (0, 2
3 ), we set ˜︁θ = θ · 3

2 ∈ (0,1). Then, by reiteration for the complex interpolation 
method (see [6, Theorem 4.6.1]) and (4.2) we have

[Wk,p(Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]θ
= [︁

Wk,p(Rd+,wγ+kp;X), [Wk,p(Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)] 2
3

]︁˜︁θ
= [︁

Wk,p(Rd+,wγ+kp;X), [Wk,p(Rd+,wγ+kp;X),W
k+3,p

0 (Rd+,wγ+kp;X)] 2
3

]︁˜︁θ
= [Wk,p(Rd+,wγ+kp;X),W

k+3,p

0 (Rd+,wγ+kp;X)]θ .

Note that the identity mapping is bounded on Wk,p(Rd+,wγ+kp;X) and

id : Wk+3,p

0 (Rd+,wγ+kp;X) → W
k+3,p

Dir (Rd+,wγ+kp;X) is bounded.

Moreover, we have proved that it is invertible as a mapping

id : [Wk,p(Rd+,wγ+kp;X),W
k+3,p
0 (Rd+,wγ+kp;X)]θ

→ [Wk,p(Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]θ
for θ ∈ (0, 2

3 ]. Since the collection of θ ∈ (0,1) for which this mapping is invertible is open (see 
[24, Theorem 1.3.24]), the proposition in the case k0 = 0 follows.
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Finally, for k0 ∈ {1,2}, let ε > 0 be such that the proposition holds for k0 = 0 and fix θ ∈(︁
0,

2−k0
3−k0

+ ε
)︁
. Then we have

(1 − θ)
k0
3 + θ = k0

3 + (
3−k0

3 )θ <
k0
3 + 2−k0

3 + ε = 2
3 + ε.

Therefore, using [82, Proposition 6.2], reiteration for the complex interpolation method and the 
case k0 = 0, we obtain

[Wk+k0,p

0 (Rd+,wγ+kp;X),W
k+3,p

0 (Rd+,wγ+kp;X)]θ
= [︁[Wk,p

0 (Rd+,wγ+kp;X),W
k+3,p
0 (Rd+,wγ+kp;X)] k0

3 
,W

k+3,p
0 (Rd+,wγ+kp;X)

]︁
θ

= [Wk,p

0 (Rd+,wγ+kp;X),W
k+3,p

0 (Rd+,wγ+kp;X)]
(1−θ)

k0
3 +θ

= [Wk,p

Dir (Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]
(1−θ)

k0
3 +θ

.

Using Corollary 4.7 two more times, we have

[Wk,p

Dir (Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]
(1−θ)

k0
3 +θ

= D(A
(1−θ)

k0
2 + 3

2 θ

Dir )

= [Wk+k0,p

Dir (Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]θ ,

proving the proposition. □
Remark 4.9. We conjecture that, e.g., in the case k = k0 = 0, there is actually the equality of 
complex interpolation spaces

[Lp(Rd+,wγ ;X),W
3,p

Dir (Rd+,wγ ;X)]θ = [Lp(Rd+,wγ ;X),W
3,p
0 (Rd+,wγ ;X)]θ (4.3)

for all θ ∈ (︁
0, 1

3 (1 + γ+1
p

)
)︁
, which is suggested by results on interpolation with boundary condi

tions as studied in [71,82]. However, at the moment, the case γ ∈ (p − 1,2p − 1) of (4.3) for the 
parameter range θ ∈ (︁ 2

3 + ε, 1
3

(︁
1 + γ+1

p

)︁)︁
is an interesting open problem that seems to require a 

novel approach to interpolation with boundary conditions.

4.2. Fractional domains for the Neumann Laplacian

Similar to the Dirichlet Laplacian above, we now characterise fractional domains for the Neu
mann Laplacian. The proofs are similar to those in Section 4.1, but for the convenience of the 
reader, we provide the details.

Lemma 4.10. Let p ∈ (1,∞), k ∈ N0 ∪{−1}, γ ∈ (−1,2p−1)\{p−1} such that γ +kp > −1, 
μ > 0 and let X be a UMD Banach space. Then for all f ∈ W

k+2,p
Δ,Neu (Rd+,wγ+kp;X) there exists a 

unique u ∈ W
k+4,p

(Rd+,wγ+kp;X) such that μu− ΔNeuu = f . Moreover, this solution satisfies
Δ,Neu
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∥u∥Wk+4,p(Rd+,wγ+kp;X) ≤ C∥f ∥Wk+2,p(Rd+,wγ+kp;X),

where the constant C > 0 only depends on p,k, γ,μ,d and X.

Proof. Step 1: the case γ ∈ (p − 1,2p − 1) and k ≥ −1. Note that for γ ∈ (p − 1,2p − 1) we 
have

W
k+2,p
Δ,Neu (Rd+,wγ+kp;X) = Wk+2,p(Rd+,wγ−p+(k+1)p;X).

Since γ − p ∈ (−1,p − 1) and

W
k+4,p
Δ,Neu (Rd+,wγ+kp;X) = W

(k+2)+2,p
Neu (Rd+,wγ−p+(k+1)p;X),

the result follows from Theorem 4.3 (see also [70, Proposition 5.6]).
Step 2: the case γ ∈ (−1,p − 1) and k ≥ 0. Note that for γ ∈ (−1,p − 1) we have

W
k+2,p
Δ,Neu (Rd+,wγ+kp;X) = W

k+2,p
Neu (Rd+,wγ+kp;X),

which has

C∞
c,1(R

d+;X) := {f ∈ C∞
c (Rd+;X) : ∂1f ∈ C∞

c (Rd+;X)}

as a dense subspace, see [82, Proposition 4.9]. For f ∈ C∞
c,1(R

d+;X) there exists a unique solution 
u ∈ 𝒮(Rd+;X) to μu − ΔNeuu = f on Rd+ that satisfies (∂1u)(0, ·) = (Δ∂1u)(0, ·) = 0. This can 
be proved similarly as in Lemma 4.5 now using an even extension (cf. [70, Lemma 5.5]).

Take f ∈ C∞
c,1(R

d+;X) and let u ∈ 𝒮(Rd+;X) be the solution to μu − ΔNeuu = f as above. 
We define v0 := u and vj := ∂ju for j ∈ {1, . . . , d}. These functions satisfy the estimates

μv0 − Δv0 = f

μv1 − Δv1 = ∂1f

μvj − Δvj = ∂jf

(∂1v0)(0, ·) = 0,

v1(0, ·) = 0,

(∂1vj )(0, ·) = 0, j ∈ {2, . . . , d}.
If j = 1, then by Lemma 4.5 (using that (∂1f )|∂Rd+ = 0) we have the estimate

∥v1∥Wk+3,p(Rd+,wγ+kp;X) ≤ C∥∂1f ∥Wk+1,p(Rd+,wγ+kp;X). (4.4)

If j ∈ {2, . . . , d}, then applying Step 1 with k − 1 and γ + p ∈ (p − 1,2p − 1), yields

∥vj∥Wk+3,p(Rd+,wγ+kp;X) = ∥vj∥W(k−1)+4,p(Rd+,wγ+p+(k−1)p;X)

≤ C∥∂jf ∥Wk+1,p(Rd+,wγ+kp;X),
(4.5)

and similarly for j = 0 we obtain

∥vj∥ k+3,p d ≤ C∥f ∥ k+1,p d . (4.6)
W (R+,wγ+kp;X) W (R+,wγ+kp;X)
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The estimates (4.4), (4.5) and (4.6) imply that

∥u∥Wk+4,p(Rd+,wγ+kp;X) ≂

d∑︂
j=0 

∥vj∥Wk+3,p(Rd+,wγ+kp;X)

≲ ∥f ∥Wk+1,p(Rd+,wγ+kp;X) +
d∑︂

j=1 
∥∂jf ∥Wk+1,p(Rd+,wγ+kp;X)

≲ ∥f ∥Wk+2,p(Rd+,wγ+kp;X),

where the constant only depends on p,k, γ,μ,d and X. A density argument, similar to the proof 
of [70, Proposition 5.4], yields the result. Note that the uniqueness of u ∈ W

k+4,p
Δ,Neu (Rd+,wγ+kp; 

X) ↪→ W
k+3,p
Neu (Rd+,wγ+kp;X) follows from [70, Proposition 5.6]. □

We continue with the characterisation of fractional domains of the Neumann Laplacian.

Proposition 4.11. Let p ∈ (1,∞), k ∈N0 ∪{−1}, γ ∈ (−1,2p−1)\ {p−1} such that γ +kp >

−1, μ > 0 and let X be a UMD Banach space. Let ΔNeu on Wk+1,p(Rd+,wγ+kp;X) as in 
Definition 4.1. Then

D
(︁
(μ − ΔNeu)

1
2
)︁ = W

k+2,p
Neu (Rd+,wγ+kp;X),

D
(︁
(μ − ΔNeu)

3
2
)︁ = W

k+4,p
Δ,Neu (Rd+,wγ+kp;X).

Proof. We write ANeu := μ − ΔNeu. For γ ∈ (−1,2p − 1) \ {p − 1} it holds that ANeu has BIP
by Theorem 4.3, so Propositions 2.3 and 3.16 imply

D(A
1
2
Neu) = [Wk+1,p(Rd+,wγ+kp;X),W

k+3,p
Neu (Rd+,wγ+kp;X)] 1

2
= W

k+2,p
Neu (Rd+,wγ+kp;X).

By [36, Theorem 15.2.5] and the characterisation of D(A
1
2
Neu) we find

D(A
3
2
Neu) = {u ∈ D(ANeu) : ANeuu ∈ D(A

1
2
Neu)}

= {u ∈ W
k+3,p
Neu (Rd+,wγ+kp;X) : ANeuu ∈ W

k+2,p
Neu (Rd+,wγ+kp;X)}.

From this, the embedding Wk+4,p
Δ,Neu (Rd+,wγ+kp;X) ↪→ D(A

3
2
Neu) is straightforward and the con

verse embedding follows from Lemma 4.10. □
In contrast to the Dirichlet case, we do not need a version of Proposition 4.8 for the Neumann 

Laplacian. This is simply due to the fact that we cannot consider the Neumann Laplacian on 
Wk,p(Rd+,wγ+kp;X) with γ > p − 1, see Theorem 4.3.
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5. Functional calculus for the Laplacian on special domains

To derive the H∞-calculus for the Dirichlet and Neumann Laplacian on bounded domains, 
we will proceed in two steps:

(1) Use the H∞-calculus for the Laplacian on the half-space (Theorems 4.2 and 4.3) and known 
perturbation theorems for the H∞-calculus (Section 2.2) to obtain the H∞-calculus for the 
Laplacian on special domains of the form 𝒪 := {x ∈ Rd : x1 > h(˜︁x)} for a compactly sup
ported function h on Rd−1 (see Definition 2.8).

(2) Perform a localisation procedure to transfer the H∞-calculus for the Laplacian on special 
domains to bounded domains.

In this section, we will perform Step 1, while Step 2 is postponed to Section 6. While localisation 
procedures are standard in the literature (see, e.g., [17,26,61]), the low regularity of the domains 
considered here leads to perturbation terms that, in some cases, are of the same order as the 
Laplacian. Therefore, we employ a localisation procedure that is different from the standard 
procedure as in the aforementioned literature. This leads to a far-reaching generalisation of the 
results in [72, Theorem 6.1] where exclusively bounded C2-domains are considered for only the 
Lp-case (i.e., k = 0).

We begin by defining the Laplacian on special domains. Recall that weighted Sobolev spaces 
on special domains with vanishing boundary conditions are defined in Definition 3.9.

Definition 5.1. Let p ∈ (1,∞), k ∈N0, λ ∈ [0,1] and let X be a UMD Banach space.

(i) Let γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and 𝒪 a special C1,λ
c -domain with [𝒪]C1,λ ≤ 1. 

The Dirichlet Laplacian ΔDir on Wk,p(𝒪,w∂𝒪
γ+kp;X) with k ∈N0 is defined by

ΔDiru := Δu with D(ΔDir) := W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X).

(ii) Let γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1} and 𝒪 a special C
j+1,λ
c -domain with 

[𝒪]Cj+1,λ ≤ Λ, where Λ ∈ (0,1) is as in Lemma A.5. The Neumann Laplacian ΔNeu
on Wk+j,p(𝒪,w∂𝒪

γ+kp;X) is defined by

ΔNeuu := Δu with D(ΔNeu) := W
k+j+2,p
Neu (𝒪,w∂𝒪

γ+kp;X).

Moreover, the Dirichlet and Neumann Laplacian on Rd+ as in Definition 4.1 will be denoted 

by Δ
Rd+
Dir and Δ

Rd+
Neu, respectively.

The main results from this section on the H∞-calculus for the Laplacian on special domains 
are summarised in the following two theorems.

Theorem 5.2 (H∞-calculus for μ − ΔDir on special domains). Let p ∈ (1,∞), k ∈ N0, λ ∈
[0,1], γ ∈ ((1−λ)p−1,2p−1)\{p−1}, μ > 0 and let X be a UMD Banach space. Moreover, 
assume that 𝒪 is a special C1,λ

c -domain. Then there exists a δ ∈ (0,1) such that if [𝒪]C1,λ < δ, 
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then μ − ΔDir on Wk,p(𝒪,w∂𝒪
γ+kp;X) as in Definition 5.1 has a bounded H∞-calculus with 

ωH∞(μ − ΔDir) = 0.

Theorem 5.3 (H∞-calculus for μ − ΔNeu on special domains). Let p ∈ (1,∞), k ∈ N0, λ ∈
(0,1], γ ∈ ((1−λ)p−1,p−1), j ∈ {0,1}, μ > 0 and let X be a UMD Banach space. Moreover, 
assume that 𝒪 is a special Cj+1,λ

c -domain. Then there exists a δ ∈ (0,1) such that if [𝒪]Cj+1,λ <

δ, then μ − ΔNeu on Wk+j,p(𝒪,w∂𝒪
γ+kp;X) as in Definition 5.1 has a bounded H∞-calculus 

with ωH∞(μ − ΔNeu) = 0.

Remark 5.4. Similar to Theorems 4.2 and 4.3, we expect that Theorems 5.2 and 5.3 also hold 
for μ = 0 if γ + kp is small. We will not consider this minor improvement of the theorems here, 
since in Section 6 we consider bounded domains and use properties of the spectrum to obtain the 
H∞-calculus with μ = 0.

The proofs of Theorems 5.2 and 5.3 are given in Section 5.2 after having established some 
preliminary estimates in Section 5.1.

5.1. Preliminary estimates

In the proofs of Theorems 5.2 and 5.3, we derive the H∞-calculus on special domains by 
perturbing the corresponding calculus for the Laplacian on the half-space. To relate the Laplacian 
on special domains and the half-space, we use the diffeomorphisms Φ and Ψ from Lemmas A.4
and A.5 for the Dirichlet and Neumann Laplacian, respectively. The diffeomorphism Φ is easier 
to deal with, but it does not suffice for the Neumann Laplacian since it does not preserve the 
direction of the normal vector at the boundary, see Appendix A. 

First, consider the case of Dirichlet boundary conditions. Let 𝒪 be a special C1
c -domain and 

recall that Φ∗f = f ◦ Φ−1 for f ∈ L1
loc(𝒪;X). Define ΔΦ : W 2,1

loc (Rd+;X) → L1
loc(R

d+;X) by

ΔΦ := Φ∗ ◦ Δ ◦ (Φ−1)∗.

Making use of the explicit form of the diffeomorphism Φ(x) = (x1 − h1(x),˜︁x) for x ∈ 𝒪 (see 
Lemma A.4), an elementary computation involving the chain rule shows that ΔΦ = Δ + B , 
where the perturbation B is given by

B = −2((∇h1) ◦ Φ−1) · ∇∂1 + |(∇h1) ◦ Φ−1|2 ∂2
1 − ((Δh1) ◦ Φ−1)∂1. (5.1)

Note that the first two perturbation terms in (5.1) are second-order differential operators since 
(∇h1) ◦ Φ−1 is bounded on Rd+ if 𝒪 is a special C1

c -domain, see Lemma A.4. The order of the 
latter perturbation term in (5.1) depends on the smoothness of the domain.

• If 𝒪 is a special C2
c -domain, then (Δh1) ◦ Φ−1 is bounded on Rd+ and thus the last term in 

(5.1) is a lower-order perturbation term.
• If 𝒪 is a special C1

c -domain, then (Δh1)(Φ
−1(y)) blows up like y−1

1 in the neighbour
hood of y1 = 0, see Lemma A.4. Therefore, estimating, say, the Lp(Rd+,wγ )-norm of 
((Δh1) ◦ Φ−1)∂1 gives that the weight exponent effectively decreases. However, this loss 
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). 
can be compensated by applying Hardy’s inequality, which allows us to recover the origi
nal weight wγ . In this way, we also obtain an additional derivative from Hardy’s inequality, 
meaning that all three perturbation terms in (5.1) have the same order.

This demonstrates that if the smoothness of the domain is low, then the last perturbation term in 
(5.1) is more difficult to deal with.

Similarly, for Neumann boundary conditions, let Ψ be the diffeomorphism from Lemma A.5
and define ΔΨ : W 2,1

loc (Rd+;X) → L1
loc(R

d+;X) by

ΔΨ := Ψ∗ ◦ Δ ◦ (Ψ−1)∗.

Recall that Ψ(x) = (x1 −h1(x),˜︁x−˜︁h1(˜︁x)) for x ∈ 𝒪 and we write h = (h1,˜︁h1) =: (h1, h2, . . . , hd

Another tedious, but elementary calculation with the chain rule shows that ΔΨ = Δ + B with

B =
d∑︂

i,j=1

[︁(︁ − Hi,j − Hj,i + (HH⊤)i,j
)︁ ◦ Ψ−1]︁∂2

ij −
d∑︂

j=1 

[︁
Δhj ◦ Ψ−1]︁∂j ,

where H := Dh is the Jacobi matrix of h. Compared to the case of Dirichlet boundary conditions 
in (5.1), we have more perturbation terms, since the diffeomorphism Ψ is more involved. To 
simplify the estimates later on, we simply note that B is a linear combination of terms of the 
following forms [︁

(∂ν1hi1) ◦ Ψ−1]︁∂μ, |ν1| = 1, |μ| = 2,[︁
(∂ν1hi1) ◦ Ψ−1]︁[︁(∂ν2hi2) ◦ Ψ−1]︁∂μ, |ν1| = |ν2| = 1, |μ| = 2,[︁

(∂ν1hi1) ◦ Ψ−1]︁∂μ, |ν1| = 2, |μ| = 1,

(5.2)

where i1, i2 ∈ {1, . . . , d}. Note that the perturbation terms in (5.1) can also be written as in (5.2)
with i1 = i2 = 1 and Φ instead of Ψ.

In the following lemmas we provide precise estimates for the perturbation terms. We note 
that these estimates work for both diffeomorphisms Φ and Ψ since they have the same regularity 
properties. Throughout the rest of this subsection, we let 𝒪 be a special C1

c -domain and take the 
following standing assumptions:

• In the case of Φ: [𝒪]C1 ≤ 1 and take h1 as in Lemma A.4.
• In the case of Ψ: [𝒪]C1 ≤ Λ, where Λ ∈ (0,1) as in Lemma A.5, take h1 and ˜︁h1 as 

Lemma A.5 and set (h1, h2, . . . , hd) := (h1,˜︁h1).

We start with the estimates for the perturbation terms with |μ| = 2.

Lemma 5.5 (Estimates for |μ| = 2). Let p ∈ (1,∞), k ∈ N0 and let X be a Banach space. Take 
|μ| = 2, |ν1| = |ν2| = 1 and i1, i2 ∈ {1, . . . , d}. Let Υ ∈ {Φ,Ψ} and define

P1 := [︁
(∂ν1hi1) ◦ Υ−1]︁∂μ,

P2 := [︁
(∂ν1hi ) ◦ Υ−1]︁[︁(∂ν2hi ) ◦ Υ−1]︁∂μ.
1 2
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(i) If γ ∈ (p − 1,2p − 1), then for n ∈ {0,1} and u ∈ Wk+2+n,p(Rd+,wγ+kp;X) it holds that

∥Pmu∥Wk+n,p(Rd+,wγ+kp;X) ≤ C · [𝒪]C1 · ∥u∥Wk+2+n,p(Rd+,wγ+kp;X), m ∈ {1,2}.

(ii) If λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1} and 𝒪 is a special Cj+1,λ
c -domain, then 

for n ∈ {0,1} and u ∈ Wk+2+j+n,p(Rd+,wγ+kp;X) it holds that

∥Pmu∥Wk+j+n,p(Rd+,wγ+kp;X) ≤ C ·[𝒪]Cj+1,λ ·∥u∥Wk+2+j+n,p(Rd+,wγ+kp;X), m ∈ {1,2}.

In all cases, the constant C > 0 only depends on p,k, γ,λ, d and X.

Proof. For notational convenience we write Wk,p(wγ ) := Wk,p(Rd+,wγ ;X).
Step 1: preparations. We prove the estimates for P1, where, from now on, we omit the sub

scripts from ν and i. The estimates for P2 are derived in a similar way.
For α ∈Nd

0 and some regular enough u we obtain with the product rule that

∥∂α[((∂νhi)◦Υ−1)∂μu]∥Lp(wγ+kp)

≲
∑︂
β≤α

⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦
Lp(wγ+kp)

.
(5.3)

In the case that |α|, |β| ≥ 1 and y ∈ Rd+, the multivariate Faà di Bruno’s formula [9, Theorem 
2.1] implies

|∂β
y (∂νhi)(Υ

−1(y))| ≲
∑︂

1≤|δ|≤|β|
|(∂δ∂νhi)(Υ

−1(y))|
|β| ∑︂
s=1 

∑︂
ps(β,δ)

s∏︂
m=1

|∂𝓵mΥ−1(y)|𝒌m, (5.4)

where the sets ps(β, δ) are contained in

{︂
(𝒌1, . . . ,𝒌s;𝓵1, . . . ,𝓵s) ∈ (Nd

0 \ {0})s × (Nd
0 \ {0})s :

s∑︂
m=1

|𝒌m| = |δ|,
s∑︂

m=1

|𝒌m||𝓵m| = |β|
}︂
.

(5.5)

By Lemma A.4(ii)+(iv) for Υ = Φ and Lemma A.5(ii)+(v) for Υ = Ψ, we have the estimate

|(∂δ∂νhi)(Υ
−1(y))| ≲ [𝒪]Cj+1,λ

dist(Υ−1(y), ∂𝒪)(|δ|−j−λ)+ ≲ [𝒪]Cj+1,λ

y
(|δ|−j−λ)+
1

, (5.6)

for all λ ∈ [0,1], j ∈ {0,1}, δ ∈ Nd
0 , |ν| = 1 and y ∈ Rd+. Moreover, by the same lemmas we also 

have the (non-optimal) estimate

|∂𝓵Υ−1(y)| ≲ [𝒪]Cj+1

y
(|𝓵|−j−1)+
1

, (5.7)

for all j ∈ {0,1}, 𝓵 ∈Nd and y ∈Rd+.
0

33 



N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
Step 2: proof of (i). Let γ ∈ (p − 1,2p − 1), n ∈ {0,1} and 𝒪 a special C1
c -domain. To prove 

(i) we need to consider (5.3) with |α| ≤ k + n. If β = 0 in (5.3), then it follows from (5.6) that

∥((∂νhi) ◦ Υ−1)(∂α∂μu)∥Lp(wγ+kp) ≲ [𝒪]C1∥u∥Wk+2+n,p(wγ+kp).

By (5.4), (5.6) and (5.7), we have for β ≤ α with |α|, |β| ≥ 1 that (5.3) can be further estimated 
as ⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦

Lp(wγ+kp)

≲ [𝒪]C1

∑︂
1≤|δ|≤|β|

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−|δ|p−∑︁s
m=1(|𝓵m |−1)|𝒌m|p)

≲ [𝒪]C1∥∂α−β∂μu∥W |β|,p(wγ+kp) ≲ [𝒪]C1∥u∥Wk+2+n,p(wγ+kp),

where we have applied Hardy’s inequality (Corollary 3.4) |β| times using that

γ + kp − |δ|p −
s∑︂

m=1

(|𝓵m| − 1)|𝒌m|p (5.5)= γ + kp − |β|p > (1 − n)p − 1 ≥ −1,

since γ > p − 1, |β| ≤ k + n and n ∈ {0,1}. This completes the proof of (i).
Step 3: proof of (ii). Let λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1), n ∈ {0,1}, j ∈ {0,1} and 𝒪

a special Cj+1,λ
c -domain. Consider (5.3) with |α| ≤ k + j + n. In the case that β = 0 it follows 

from (5.6) that

∥((∂νhi) ◦ Υ−1)(∂α∂μu)∥Lp(wγ+kp) ≲ [𝒪]Cj+1,λ∥u∥Wk+2+j+n,p(wγ+kp).

By (5.4), (5.6) and (5.7), we have for β ≤ α with |α|, |β| ≥ 1 that (5.3) can be further estimated 
as ⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦

Lp(wγ+kp)

≲ [𝒪]Cj+1,λ

∑︂
1≤|δ|≤j

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−∑︁s
m=1(|𝓵m|−(j+1))+|𝒌m|p)

+ [𝒪]Cj+1,λ

∑︂
j+1≤|δ|≤|β|

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−(|δ|−j−λ)p−∑︁s
m=1(|𝓵m|−1)|𝒌m|p),

(5.8)

where the sum over 1 ≤ |δ| ≤ j is only present if j = 1 and in this case we have (|δ|− j −λ)+ =
0. We first consider the case j + 1 ≤ |δ| ≤ |β| for j ∈ {0,1}. Note that by (5.5) we have

γ + kp − (|δ| − j − λ)p −
s∑︂

m=1

(|𝓵m| − 1)|𝒌m|p = γ + kp − (︁|β| − j − λ
)︁
p

> (1 − n)p − 1 ≥ −1.
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Therefore, Lemma 3.5 applied with s = |β| − j − λ ≤ |β| yields

∥∂α−β∂μu∥Lp(wγ+kp−(|β|−j−λ)p) ≲ ∥∂α−β∂μu∥W |β|,p(wγ+kp) ≤ ∥u∥Wk+2+j+n,p(wγ+kp).

In the case that j = 1, we additionally estimate the sum over |δ| = 1 in (5.8). In the case that 
|𝓵m| ≤ j + 1 = 2 for all m ∈ {1, . . . , s}, we have (|𝓵m| − 2)+ = 0 and

∥∂α−β∂μu∥Lp(wγ+kp) ≲ ∥u∥Wk+3+n,p(wγ+kp).

If there exists an m0 ∈ {1, . . . , s} such that |𝓵m0 | > 2, then it follows from (5.5) and |β| ≤ k+1+n

that

γ + kp −
s∑︂

m=1

(|𝓵m| − 2)+|𝒌m|p = γ + kp −
(︂ s∑︂

m=1
m≠m0

(|𝓵m| − 2)+|𝒌m| + (|𝓵m0 | − 2)|𝒌m0 |
)︂
p

≥ γ + kp −
(︂ s∑︂

m=1
m≠m0

|𝓵m||𝒌m| + |𝓵m0 ||𝒌m0 | − 2|𝒌m0 |
)︂
p

≥ γ + kp − |β|p + 2p > (2 − n − λ)p − 1 ≥ −1.

Therefore, Lemma 3.5 (applied with s replaced by 
∑︁s

m=1(|𝓵m| − 2)+|𝒌m| ≤ |β|), yields

∥∂α−β∂μu∥Lp(wγ+kp−∑︁s
m=1(|𝓵m|−2)+|𝒌m|p) ≲ ∥∂α−β∂μu∥W |β|,p(wγ+kp) ≤ ∥u∥Wk+3+n,p(wγ+kp).

This finishes the proof of (ii). □
We continue with some preliminary estimates for the perturbation term with |μ| = 1.

Lemma 5.6 (Estimates for |μ| = 1). Let p ∈ (1,∞), k ∈N0 and let X be a UMD Banach space. 
Take |μ| = 1, |ν| = 2 and i ∈ {1, . . . , d}. Let Υ ∈ {Φ,Ψ} and define

P := [︁
(∂νhi) ◦ Υ−1]︁∂μ,

(i) If γ ∈ (p − 1,2p − 1), then for n ∈ {0,1} it holds that

∥Pu∥Wk+n,p(Rd+,wγ+kp;X) ≤ C · [𝒪]C1 · ∥u∥Wk+2+n,p(Rd+,wγ+kp;X),

for

u ∈
{︄

Wk+2,p(Rd+,wγ+kp;X) if n = 0,

W
k+3,p

(Rd ,w ;X) if n = 1.
0 + γ+kp
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(ii) If λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and 𝒪 is a special C1,λ
c -domain, then for u ∈

[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)]1− λ
2 

it holds that

∥Pu∥Wk,p(Rd+,wγ+kp;X) ≤ C · [𝒪]C1,λ · ∥u∥[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)]
1− λ

2 
.

In particular, for u ∈ Wk+2,p(Rd+,wγ+kp;X) it holds that

∥Pu∥Wk,p(Rd+,wγ+kp;X) ≤ C · [𝒪]C1,λ · ∥u∥Wk+2,p(Rd+,wγ+kp;X).

(iii) If λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and 𝒪 is a special C2,λ
c -domain, then for u ∈

Wk+2,p(Rd+,wγ+kp;X) it holds that

∥Pu∥Wk+1,p(Rd+,wγ+kp;X) ≤ C · [𝒪]C2,λ · ∥u∥Wk+2,p(Rd+,wγ+kp;X).

In all cases, the constant C > 0 only depends on p,k, γ,λ, d and X.

Note that in Lemma 5.6(i) with n = 1, we need two traces of u to be zero. This will not be a 
problem later on, since the Neumann trace will disappear in the complex interpolation space, see 
Step 1 in the proof of Theorem 5.2.

Proof. For notational convenience we write Wk,p(wγ ) := Wk,p(Rd+,wγ ;X).
Step 1: preparations. For α ∈Nd

0 and some regular enough u we obtain with the product rule 
that

∥∂α[((∂νhi)◦Υ−1)∂μu]∥Lp(wγ+kp)

≲
∑︂
β≤α

⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦
Lp(wγ+kp)

.
(5.9)

In the case that |α|, |β| ≥ 1 and y ∈ Rd+, the multivariate Faà di Bruno’s formula [9, Theorem 
2.1] implies

|∂β
y (∂νhi)(Υ

−1(y))| ≲
∑︂

1≤|δ|≤|β|
|(∂δ∂νhi)(Υ

−1(y))|
|β| ∑︂
s=1 

∑︂
ps(β,δ)

s∏︂
m=1

|∂𝓵mΥ−1(y)|𝒌m, (5.10)

where the sets ps(β, δ) are given as in (5.5). By Lemma A.4(ii)+(iv) for Υ = Φ and 
Lemma A.5(ii)+(v) for Υ = Ψ, we have the estimate

|(∂δ∂νhi)(Υ
−1(y))| ≲ [𝒪]Cj+1,λ

dist(Υ−1(y), ∂𝒪)(|δ|+1−j−λ)+ ≲ [𝒪]Cj+1,λ

y
(|δ|+1−j−λ)+
1

, (5.11)

for all λ ∈ [0,1], j ∈ {0,1}, δ ∈ Nd
0 , |ν| = 2 and y ∈ Rd+. Moreover, by the same lemmas we also 

have the (non-optimal) estimate
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|∂𝓵Υ−1(y)| ≲ [𝒪]C1

y
(|𝓵|−1)+
1

, (5.12)

for all 𝓵 ∈ Nd
0 and y ∈ Rd+.

Step 2: proof of (i). Let γ ∈ (p − 1,2p − 1), n ∈ {0,1} and 𝒪 a special C1
c -domain. To prove 

(i) we need to consider (5.9) with |α| ≤ k + n. If β = 0 in (5.9), then it follows from (5.11) and 
Hardy’s inequality (Corollary 3.4, using that γ + (k − 1)p > −1) that

∥((∂νhi) ◦ Υ−1)(∂α∂μu)∥Lp(wγ+kp) ≲ [𝒪]C1∥∂α∂μu∥Lp(wγ+(k−1)p) ≲ [𝒪]C1∥u∥Wk+2+n,p(wγ+kp).

By (5.10), (5.11) and (5.12), we have for β ≤ α with |α|, |β| ≥ 1 that (5.9) can be further esti
mated as ⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦

Lp(wγ+kp)

≲ [𝒪]C1

∑︂
1≤|δ|≤|β|

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−(|δ|+1)p−∑︁s
m=1(|𝓵m|−1)|𝒌m|p)

≲ [𝒪]C1∥∂α−β∂μu∥W |β|+1,p(wγ+kp) ≲ [𝒪]C1∥u∥Wk+2+n,p(wγ+kp),

where we have applied Hardy’s inequality |β| + 1 times using that

γ + kp − (|δ| + 1)p −
s∑︂

m=1

(|𝓵m| − 1)|𝒌m|p (5.5)= γ + kp − (|β| + 1)p > −np − 1,

since γ > p − 1, |β| ≤ k + n and n ∈ {0,1}. This shows that for n = 1 we need to take u ∈
W

k+3,p
0 (wγ+kp) by Hardy’s inequality. This completes the proof of (i).
Step 3: proof of (ii). Let λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and 𝒪 a special C1,λ

c -domain. 
Consider (5.9) with |α| ≤ k. If β = 0 in (5.9), then it follows from (5.11) and Lemma 3.6 (applied 
to s = 1 − λ and using that X is UMD) that

∥((∂νhi) ◦ Υ−1)(∂α∂μu)∥Lp(wγ+kp) ≲ [𝒪]C1,λ∥∂α∂μu∥Lp(wγ+kp−(1−λ)p)

≲ [𝒪]C1,λ∥u∥Wk+1,p(wγ+kp−(1−λ)p)

≲ [𝒪]C1,λ∥u∥[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)]
1− λ

2 
.

By (5.10), (5.11) and (5.12), we have for β ≤ α with |α|, |β| ≥ 1 that (5.9) can be further esti
mated as ⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦

Lp(wγ+kp)

≲ [𝒪]C1,λ

∑︂
1≤|δ|≤|β|

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−(|δ|+1−λ)p−∑︁s
m=1(|𝓵m|−1)|𝒌m|p).
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By (5.5) and the Hardy inequalities from Lemmas 3.2 (using γ + kp − (|β|+ 1 −λ)p > −1) and 
3.6, we obtain

∥∂α−β∂μu∥Lp(wγ+kp−(|δ|+1−λ)p−∑︁s
m=1(|𝓵m|−1)|𝒌m|p) = ∥∂α−β∂μu∥Lp(wγ+kp−(|β|+1−λ)p)

≲ ∥u∥Wk+1,p(wγ+kp−(1−λ)p)

≲ ∥u∥[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)]
1− λ

2 
.

This completes the proof of (ii).
Step 4: proof of (iii). Let λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and 𝒪 a special C2,λ

c -domain. 
Consider (5.9) with |α| ≤ k + 1. If β = 0 in (5.9), then it follows from (5.11) that

∥((∂νhi) ◦ Υ−1)(∂α∂μu)∥Lp(wγ+kp) ≲ [𝒪]C2,λ∥∂α∂μu∥Lp(wγ+kp) ≲ [𝒪]C2,λ∥u∥Wk+2,p(wγ+kp).

By (5.10), (5.11) and (5.12), we have for β ≤ α with |α|, |β| ≥ 1 that (5.9) can be further esti
mated as ⃦⃦[∂β((∂νhi) ◦ Υ−1)][∂α−β∂μu]⃦⃦

Lp(wγ+kp)

≲ [𝒪]C2,λ

∑︂
1≤|δ|≤|β|

|β| ∑︂
s=1 

∑︂
ps(β,δ)

∥∂α−β∂μu∥Lp(wγ+kp−(|δ|−λ)p−∑︁s
m=1(|𝓵m |−1)|𝒌m|p)

≲ [𝒪]C2,λ∥∂α−β∂μu∥W |β|,p(wγ+kp) ≲ [𝒪]C2,λ∥u∥Wk+2,p(wγ+kp),

where we have used Lemma 3.5 with s replaced by |β| − λ and that

γ + kp − (|δ| − λ)p −
s∑︂

m=1

(|𝓵m| − 1)|𝒌m|p = γ + kp − |β|p + λp > −1.

This finishes the proof of (iii). □
The fact that we need boundary conditions in the spaces in parts of Lemma 5.6 will complicate 

the proof of perturbing the H∞-calculus in Section 5.2. In particular, for the Dirichlet Laplacian 
on special C1,λ

c -domains, we need an additional estimate, which we obtain via extrapolation 
spaces and the adjoint operator.

Let p ∈ (1,∞), γ ∈ R, 𝒪 ⊆ Rd open and let X be a reflexive Banach space (which is implied 
by the UMD condition). Then Lp(𝒪,w∂𝒪

γ ;X) is reflexive and with the unweighted pairing

⟨f,g⟩Lp(𝒪,w∂𝒪
γ ;X)×(Lp(𝒪,w∂𝒪

γ ;X))′ =
∫︂
𝒪

⟨f (x), g(x)⟩X×X′ dx,

its dual space is

(Lp(𝒪,w∂𝒪
γ ;X))′ = Lp′

(𝒪,w∂𝒪′ ;X′),
γ
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where p′ = p/(p−1) and γ ′ = −γ /(p−1). Note that if γ ∈ (−1,p−1), then γ ′ ∈ (−1,p′ −1).

We have the following characterisation of the adjoint operator of the Dirichlet Laplacian. 
We note that for γ ∈ (p − 1,2p − 1) the characterisation of the domain of the adjoint is more 
sophisticated, see [72, Proposition 6.6].

Proposition 5.7 ([72, Proposition 6.5]). Let p ∈ (1,∞), γ ∈ (−1,p − 1) and let X be a UMD

Banach space. Let Ap,γ,X := Δ
Rd+
Dir on Lp(Rd+,wγ ;X) be the Dirichlet Laplacian as in Defini

tion 4.1. Then the adjoint operator is (Ap,γ,X)′ = Ap′,γ ′,X′ .

To continue, we briefly recall the extrapolation scales, see [67, Appendix E] or [3, Chapter 5] 
for more details. Let A be a sectorial operator on a Banach space Y such that 0 ∈ ρ(A). Then for 
any α ∈ R, we can define the scale of extrapolation spaces

(Eα,A,∥ · ∥Eα,A
) =

{︄
(D(Aα),∥Aα · ∥Y ) if α ≥ 0,

(Y,∥Aα · ∥Y )∼ if α < 0.

where ∼ denotes the completion of the space. Let A′ denote the adjoint of A. In the case that Y
is reflexive and α ∈ R, the extrapolation scale satisfies

E−α,A = (Eα,A′)′, (5.13)

with respect to the duality ⟨Y,Y ′⟩.

With the extrapolation scale and the characterisation of the adjoint, we can prove the following 
estimate for the perturbation terms coming from the Dirichlet Laplacian in (5.1) on weighted 
Lebesgue spaces.

Lemma 5.8. Let p ∈ (1,∞), λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and let X be a UMD Banach 

space. Let Δ
Rd+
Dir on Lp(Rd+,wγ ;X) be the Dirichlet Laplacian as in Definition 4.1. Assume that 

𝒪 is a special C1,λ
c -domain with [𝒪]C1,λ ≤ 1. Then the perturbation B in (5.1) satisfies

∥(μ − Δ
Rd+
Dir )

− 1
2 Bu∥Lp(Rd+,wγ ;X) ≤ C · [𝒪]C1,λ · ∥(μ − Δ

Rd+
Dir )

1
2 u∥Lp(Rd+,wγ ;X),

for all μ > 0 and u ∈ W
1,p

Dir (Rd+,wγ ;X).

Proof. We write A := μ − Δ
Rd+
Dir . Note that (5.13), Propositions 5.7 and 4.6 imply that

∥A− 1
2 Bu∥Lp(Rd+,wγ ;X) ≂ sup

⃓⃓⟨Bu,v⟩
Lp(Rd+,wγ ;X)×Lp′

(Rd+,wγ ′ ;X′)
⃓⃓
,

where the supremum is taken over all v ∈ E 1
2 ,A′ = D((A′) 1

2 ) = W
1,p′
Dir (Rd+,wγ ′ ;X′) with 

∥v∥
W 1,p′

(Rd+,wγ ′ ;X′) ≤ 1. Fix such a v ∈ W
1,p′
Dir (Rd+,wγ ′ ;X′). Recall from (5.1) that the pertur

bation terms in B are of the form ((∂νh1) ◦ Φ−1)κ∂μ∂1 with |μ| = |ν| = 1 and κ ∈ {1,2}, or, 
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with |ν| = 2, |μ| = 0 and κ = 1. Therefore, by Lemma A.4(iv), integration by parts, Hölder’s 
inequality, Lemma 3.5 and Proposition 4.6, we obtain⃓⃓⟨Bu,v⟩

Lp(Rd+,wγ ;X)×Lp′
(Rd+,wγ ′ ;X′)

⃓⃓
≲ [𝒪]C1,λ

(︂ ∑︂
|μ|=1

∫︂
Rd+

|⟨∂μ∂1u,v⟩X×X′ | dx +
∫︂
Rd+

x
−(1−λ)
1 |⟨∂1u,v⟩X×X′ | dx

)︂

≤ [𝒪]C1,λ

(︂ ∫︂
Rd+

x
γ

1 ∥∂1u∥p
X dx

)︂ 1 
p

·
[︂ ∑︂

|μ|=1

(︂ ∫︂
Rd+

x
γ ′
1 ∥∂μv∥p′

X′ dx
)︂ 1 

p′ +
(︂ ∫︂
Rd+

x
γ ′−(1−λ)p′
1 ∥v∥p′

X′ dx
)︂ 1 

p′ ]︂

≲ [𝒪]C1,λ∥u∥W 1,p(Rd+,wγ ;X)∥v∥
W 1,p′

(Rd+,wγ ′ ;X′) ≲ [𝒪]C1,λ∥A 1
2 u∥Lp(Rd+,wγ ;X).

This proves the desired estimate. □
5.2. The proofs of Theorems 5.2 and 5.3

With the preliminary estimates on the perturbation terms, we can now continue with proving 
the boundedness of the H∞-calculus for the Laplacian on special domains. We start with the 
proof of Theorem 5.2 for the Dirichlet Laplacian.

Proof of Theorem 5.2. Let 𝒪 be a special domain as specified in the theorem, which is of the 
form

𝒪 = {x ∈ Rd : x1 > h(˜︁x)},
and let h1 and Φ be as in Lemma A.4. Recall that we introduced ΔΦ : W

2,1
loc (Rd+;X) →

L1
loc(R

d+;X) given by

ΔΦ := Φ∗ ◦ Δ ◦ (Φ−1)∗
= Δ − 2((∇h1) ◦ Φ−1) · ∇∂1 + |(∇h1) ◦ Φ−1|2 ∂2

1 − ((Δh1) ◦ Φ−1)∂1

=: Δ + B1 + B2 + B3.

Let −ΔΦ
Dir denote the realisation of ΔΦ in Wk,p(Rd+,wγ+kp;X) with domain D(−ΔΦ

Dir) =
W

k+2,p

Dir (Rd+,wγ+kp;X). Due to the isomorphisms in Proposition 3.7, the trace characterisation 
in Proposition 3.10 and standard properties of the H∞-calculus, the desired statements in The
orem 5.2 for −ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X) are equivalent to the corresponding statements for 

−ΔΦ
Dir on Wk,p(Rd+,wγ+kp;X). We will apply the perturbation theorems from Section 2.2.3 to 

show that the H∞-calculus for the Laplacian on the half-space is preserved under the perturba
tion B := B1 +B2 +B3. We note that the estimates for B1 and B2 are covered in Lemma 5.5 and 
for B3 in Lemma 5.6.
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Step 1: the case γ ∈ (p−1,2p−1). Let γ ∈ (p−1,2p−1) and let 𝒪 be a special C1
c -domain. 

Let μ > 0 and we write ADir := μ − Δ
Rd+
Dir . We apply Theorem 2.6 to show that μ − (Δ

Rd+
Dir + B)

has a bounded H∞-calculus. Let u ∈ D(ADir) = W
k+2,p

Dir (Rd+,wγ+kp;X), then by Lemma 5.5(i), 
Lemma 5.6(i) and Remark 4.4, we have

∥Bu∥Wk,p(Rd+,wγ+kp;X) ≲ [𝒪]C1∥u∥Wk+2,p(Rd+,wγ+kp;X)

≂ [𝒪]C1∥ADiru∥Wk,p(Rd+,wγ+kp;X),

which shows condition (i) of Theorem 2.6. To show that condition (ii) of Theorem 2.6 holds, 
note that by Lemma 5.5(i) and Lemma 5.6(i) we have that

B : Wk+2,p(Rd+,wγ+kp;X) → Wk,p(Rd+,wγ+kp;X) and 

B : W
k+3,p

0 (Rd+,wγ+kp;X) → Wk+1,p(Rd+,wγ+kp;X)
(5.14)

are bounded operators. Take θ ∈ (0, 1
2 ) such that Proposition 4.8 for k0 = 2 holds and let u ∈

D(A1+θ
Dir ). Then, by Corollary 4.7 twice, properties of the complex interpolation method using 

(5.14), Proposition 4.8 and the invertibility of ADir we have

∥Aθ
DirBu∥Wk,p(Rd+,wγ+kp;X) ≤ ∥Bu∥D(Aθ

Dir)
≂ ∥Bu∥[Wk,p(Rd+,wγ+kp;X),Wk+1,p(Rd+,wγ+kp;X)]2θ

≲ ∥u∥[Wk+2,p(Rd+,wγ+kp;X),W
k+3,p
0 (Rd+,wγ+kp;X)]2θ

≲ ∥u∥[Wk+2,p
0 (Rd+,wγ+kp;X),W

k+3,p
0 (Rd+,wγ+kp;X)]2θ

≂ ∥u∥[Wk+2,p

Dir (Rd+,wγ+kp;X),W
k+3,p

Dir (Rd+,wγ+kp;X)]2θ

≂ ∥u∥
D(A1+θ

Dir )
≂ ∥A1+θ

Dir u∥Wk,p(Rd+,wγ+kp;X).

This shows condition (ii) of Theorem 2.6. Therefore, Theorems 4.2 and 2.6 give that μ − ΔΦ
Dir

has a bounded H∞-calculus of angle zero if [𝒪]C1 is small enough.
Step 2: the case γ ∈ ((1 − λ)p − 1,p − 1). Let λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and 

let 𝒪 be a special C1,λ
c -domain. We apply Theorem 2.6 to show that μ − (Δ

Rd+
Dir + B) has a 

bounded H∞-calculus. Let u ∈ D(ADir) = W
k+2,p

Dir (Rd+,wγ+kp;X). Then by Lemma 5.5(ii), 
Lemma 5.6(ii) and Remark 4.4, we have

∥Bu∥Wk,p(Rd+,wγ+kp;X) ≲ [𝒪]C1,λ∥u∥Wk+2,p(Rd+,wγ+kp;X)

≂ [𝒪]C1,λ∥ADiru∥Wk,p(Rd+,wγ+kp).

Thus, condition (i) of Theorem 2.6 is satisfied. To continue, we verify condition (iii) of Theo
rem 2.6 for α = 1

2 . If k = 0, then the required estimate follows from Lemma 5.8. If k ∈ N1, then 
by Proposition 3.15 and Corollary 4.7, we have
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Wk,p(Rd+,wγ+kp;X) = [Wk−1,p(Rd+,wγ+p+(k−1)p;X),W
k+1,p

Dir (Rd+,wγ+p+(k−1)p;X)] 1
2

= D(˜︁A 1
2
Dir),

where ˜︁ADir := μ − Δ
Rd+
Dir on Wk−1,p(Rd+,wγ+p+(k−1)p;X). Moreover, note that by definition of 

the fractional powers and [70, Lemma 6.4], it follows that the fractional powers of ADir and ˜︁ADir
are consistent. Therefore, together with Lemma 5.5(i), Lemma 5.6(i) and Remark 4.4, we obtain

∥A− 1
2

Dir Bu∥Wk,p(Rd+,wγ+kp;X) ≂ ∥˜︁A 1
2
DirA

− 1
2

Dir Bu∥Wk−1,p(Rd+,wγ+p+(k−1)p;X)

= ∥Bu∥Wk−1,p(Rd+,wγ+p+(k−1)p;X)

≲ ∥u∥Wk+1,p(Rd+,wγ+kp;X) ≂ ∥A
1
2
Diru∥Wk,p(Rd+,wγ+kp;X),

for u ∈ D(A
1
2
Dir) = W

k+1,p

Dir (Rd+,wγ+kp;X). Therefore, Theorems 4.2 and 2.6 give that μ−ΔΦ
Dir

has a bounded H∞-calculus of angle zero if [𝒪]C1,λ is small enough. □
We conclude this section with the proof of Theorem 5.3 about the H∞-calculus for the Neu

mann Laplacian.

Proof of Theorem 5.3. Let 𝒪 be a special Cj+1,λ
c -domain with [𝒪]Cj+1,λ ≤ Λ, where Λ ∈

(0,1) is as in Lemma A.5. Let Ψ be the diffeomorphism from Lemma A.5 and define ΔΨ :
W

2,1
loc (Rd+;X) → L1

loc(R
d+;X) by ΔΨ := Ψ∗ ◦ Δ ◦ (Ψ−1)∗. Recall that ΔΨ = Δ + B , where the 

perturbation term B is a linear combination of terms of the form (5.2). In particular, we define 
B1,B2 and B3 as, respectively, all the perturbation terms in B of the form[︁

(∂ν1hi1) ◦ Ψ−1]︁∂μ, |ν1| = 1, |μ| = 2,[︁
(∂ν1hi1) ◦ Ψ−1]︁[︁(∂ν2hi2) ◦ Ψ−1]︁∂μ, |ν1| = |ν2| = 1, |μ| = 2,[︁

(∂ν1hi1) ◦ Ψ−1]︁∂μ, |ν1| = 2, |μ| = 1,

where i1, i2 ∈ {1, . . . , d}.
For j ∈ {0,1} let −ΔΨ

Neu denote the realisation of −ΔΨ in Wk+j,p(Rd+,wγ+kp;X) with do

main D(ΔΨ
Neu) = W

k+2+j,p
Neu (Rd+,wγ+kp;X). Due to the isomorphisms in Proposition 3.7, the 

trace characterisation in Proposition 3.10 and standard properties of the H∞-calculus, the de
sired statements in Theorem 5.3 for −ΔNeu on Wk+j,p(𝒪,w∂𝒪

γ+kp;X) are equivalent to the 

corresponding statements for −ΔΨ
Neu on Wk+j,p(Rd+,wγ+kp;X). We will apply the perturbation 

theorems from Section 2.2.3 to show that the H∞-calculus for the Laplacian on the half-space is 
preserved under the perturbation B = B1 + B2 + B3. We note that the estimates for B1 and B2
are covered in Lemma 5.5 and for B3 in Lemma 5.6.

Let μ > 0 and we write ANeu := μ − Δ
Rd+
Neu. We first apply Theorem 2.6 to show that μ −

(Δ
Rd+
Neu + B1 + B2) has a bounded H∞-calculus on Wk+j,p(Rd+,wγ+kp;X) for k ∈ N0. Let 

u ∈ D(ANeu) = W
k+j+2,p

(Rd+,wγ+kp;X). Then by Lemma 5.5(ii) and Remark 4.4, we have
Neu

42 



N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
∥B1u + B2u∥Wk+j,p(Rd+,wγ+kp;X) ≲ [𝒪]Cj+1,λ∥u∥Wk+j+2,p(Rd+,wγ+kp;X)

≂ [𝒪]Cj+1,λ∥ANeuu∥Wk+j,p(Rd+,wγ+kp;X),

which shows condition (i) of Theorem 2.6. Next, we verify condition (ii) of Theorem 2.6 for 

α = 1
2 . Let u ∈ D(A

3
2
Neu) = W

k+j+3,p
Δ,Neu (Rd+,wγ+kp;X), then by Proposition 4.11, Lemma 5.5(ii)

and the invertibility of ANeu, we have

∥A
1
2
Neu(B1 + B2)u∥Wk+j,p(Rd+,wγ+kp;X) ≤ ∥B1u + B2u∥

D(A
1
2
Neu)

≲ ∥u∥Wk+j+3,p(Rd+,wγ+kp;X)

≂ ∥u∥
D(A

3
2
Neu)

≂ ∥A
3
2
Neuu∥Wk+j,p(Rd+,wγ+kp;X).

Therefore, Theorems 4.3 and 2.6 give that μ − (Δ
Rd+
Neu + B1 + B2) has a bounded H∞-calculus 

of angle zero if [𝒪]Cj+1,λ is small enough.
To obtain that μ − ΔΨ

Neu has a bounded H∞-calculus, it remains to apply Theorem 2.5 to the 
lower-order perturbation B3. First, for j = 0 we apply Theorem 2.5 with α = 1 − λ

2 ∈ [ 1
2 ,1). For 

u ∈ D(μ − (Δ
Rd+
Neu + B1 + B2)) = D(ANeu) we obtain with Lemma 5.6(ii) and Proposition 2.3

(using Theorem 4.3) that

∥B3u∥Wk,p(Rd+,wγ+kp;X) ≲ ∥u∥[Wk,p(Rd+,wγ+kp;X),Wk+2,p(Rd+,wγ+kp;X)]
1− λ

2 
≲ ∥u∥

D(A
1− λ

2 
Neu )

.

For j = 1 we apply Theorem 2.5 with α = 1
2 . For u ∈ D(μ − (Δ

Rd+
Neu + B1 + B2)) = D(ANeu) we 

obtain with Lemma 5.6(iii) that

∥B3u∥Wk+1,p(Rd+,wγ+kp;X) ≲ ∥u∥Wk+2,p(Rd+,wγ+kp;X).

Observe that by Proposition 3.16, the bounded H∞-calculus for μ − (Δ
Rd+
Neu + B1 + B2) and 

Proposition 2.3, we obtain

W
k+2,p
Neu (Rd+,wγ+kp;X) = [Wk+1,p(Rd+,wγ+kp;X),W

k+3,p
Neu (Rd+,wγ+kp;X)] 1

2

= [Wk+1,p(Rd+,wγ+kp;X),D(μ − (Δ
Rd+
Neu + B1 + B2))] 1

2

= D
(︁
(μ − (Δ

Rd+
Neu + B1 + B2))

1
2
)︁
.

This shows the required estimate (2.1) for both j = 0 and j = 1. Therefore, the bounded H∞

calculus for μ − (Δ
Rd+
Neu + B1 + B2), Theorem 2.5 and Proposition 2.4(ii), show that μ − ΔΨ

Neu
has a bounded H∞-calculus of angle zero if [𝒪]Cj+1,λ is small enough. Note that the application 
of Proposition 2.4(ii) requires sectoriality of μ−ΔΨ

Neu for all μ > 0, which can be obtained from 
[36, Theorem 16.2.3(2)] applied to the operator A = μ − ΔRd+

Neu, provided that [𝒪]Cj+1,λ is small 
enough. □
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6. Functional calculus for the Laplacian on bounded domains

In this section, we establish our main results concerning the H∞-calculus for the Laplacian 
on bounded domains. We begin by recalling the definition of the Laplacian in this setting. The 
relevant weighted Sobolev spaces with vanishing boundary conditions were introduced in Defi
nition 3.13.

Definition 6.1. Let p ∈ (1,∞), k ∈N0, λ ∈ [0,1] and let X be a UMD Banach space.

(i) Let γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and 𝒪 a bounded C1,λ-domain. The Dirichlet 
Laplacian ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X) with k ∈ N0 is defined by

ΔDiru := Δu with D(ΔDir) := W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X).

(ii) Let γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1} and 𝒪 a bounded Cj+1,λ-domain. The Neumann 
Laplacian ΔNeu on Wk+j,p(𝒪,w∂𝒪

γ+kp;X) is defined by

ΔNeuu := Δu with D(ΔNeu) := W
k+j+2,p
Neu (𝒪,w∂𝒪

γ+kp;X).

(iii) Let γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1} and 𝒪 a bounded Cj+1,λ-domain. The Neumann 
Laplacian ΔNeu on the quotient space

Wk+j,p(𝒪,w∂𝒪
γ+kp;X)/{c 1𝒪 : c ∈ X} 

is defined by ΔNeuu := Δu with

D(ΔNeu) := W
k+j+2,p
Neu (𝒪,w∂𝒪

γ+kp;X)/{c 1𝒪 : c ∈ X}.

We now state the main results of this paper about the H∞-calculus for the Laplacian on 
bounded domains. The proofs of the theorems below are given in Sections 6.2 and 6.3.

Theorem 6.2 (H∞-calculus for μ − ΔDir on domains). Let p ∈ (1,∞), k ∈ N0, λ ∈ [0,1], γ ∈
((1 − λ)p − 1,2p − 1) \ {p − 1}, σ ∈ (0,π) and let X be a UMD Banach space. Moreover, 
assume that 𝒪 is a bounded C1,λ-domain. Let ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X) be the Dirichlet 
Laplacian as in Definition 6.1. Then there exists a ˜︁μ > 0 such that for all μ > ˜︁μ the operator 
μ − ΔDir has a bounded H∞-calculus with ωH∞(μ − ΔDir) ≤ σ .

Theorem 6.3 (H∞-calculus for μ − ΔNeu on domains). Let p ∈ (1,∞), k ∈ N0, λ ∈ (0,1], 
γ ∈ ((1 − λ)p − 1,p − 1), j ∈ {0,1}, σ ∈ (0,π) and let X be a UMD Banach space. More
over, assume that 𝒪 is a bounded Cj+1,λ-domain. Let ΔNeu on Wk+j,p(𝒪,w∂𝒪

γ+kp;X) or 

Wk+j,p(𝒪,w∂𝒪
γ+kp;X)/{c 1𝒪 : c ∈ X} be the Neumann Laplacian as in Definition 6.1(ii) or (iii), 

respectively. Then there exists a ˜︁μ > 0 such that for all μ > ˜︁μ the operator μ − ΔNeu has a 
bounded H∞-calculus with ωH∞(μ − ΔNeu) ≤ σ .
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For X = C we obtain that the spectrum of the Laplacian is independent of the involved pa
rameters. Hence, for the Dirichlet Laplacian we also obtain the H∞-calculus with μ = 0 since 
zero is not contained in the spectrum.

Theorem 6.4. Suppose that the assumptions of Theorem 6.2 hold with X = C. Then the following 
assertions hold.

(i) The spectrum σ(−ΔDir) is discrete, contained in (0,∞) and is independent of p ∈ (1,∞), 
k ∈ N0 and γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1}.

(ii) Let ˜︁μ > 0 be the smallest eigenvalue of −ΔDir. For all μ > −˜︁μ the operator μ−ΔDir has 
a bounded H∞-calculus with ωH∞(μ − ΔDir) = 0.

The spectrum of the Neumann Laplacian on bounded domains contains the eigenvalue zero 
so we cannot allow for μ = 0 unless the constant functions are removed from the spaces.

Theorem 6.5. Let p ∈ (1,∞), k ∈ N0, λ ∈ (0,1], γ ∈ ((1 − λ)p − 1,p − 1) and j ∈ {0,1}. 
Moreover, assume that 𝒪 is a bounded Cj+1,λ-domain. If ΔNeu is the Neumann Laplacian on 
Wk+j,p(𝒪,w∂𝒪

γ+kp) as in Definition 6.1(ii) with X = C, then the following assertions hold.

(i) The spectrum σ(−ΔNeu) is discrete, contained in [0,∞) and is independent of p ∈ (1,∞), 
k ∈ N0, γ ∈ ((1 − λ)p − 1,p − 1) and j ∈ {0,1}.

(ii) For all μ > 0 the operator μ−ΔNeu has a bounded H∞-calculus with ωH∞(μ−ΔNeu) =
0.

Moreover, if ΔNeu is the Neumann Laplacian on Wk+j,p(𝒪,w∂𝒪
γ+kp)/{c 1𝒪 : c ∈ C} as in Defi

nition 6.1(iii) with X = C, then the following assertion holds.

(iii) Let ˜︁μ > 0 be the smallest eigenvalue of −ΔNeu. For all μ > −˜︁μ the operator μ − ΔNeu

has a bounded H∞-calculus with ωH∞(μ − ΔNeu) = 0.

Remark 6.6. 

(i) It is an open question whether Theorems 6.2 and 6.3 (in the case where ΔNeu is defined 
as in Definition 6.1(iii)) with general UMD Banach spaces X also hold for μ = 0. In the 
following special cases, one can actually conclude the result of Theorems 6.2 and 6.3 with 
μ = 0.

• If X is a Hilbert space or isomorphic to a closed subspace of an Lp-space, then by 
redoing the proofs of [34, Proposition 2.1.2 & Theorem 2.1.9] for Sobolev spaces, 
one sees that the results in the scalar case with μ = 0 (Theorems 6.4 and 6.5) extend 
to the vector-valued case.

• If X is a UMD Banach space and k = 0, then using [34, Theorem 2.1.3] and that the 
semigroup corresponding to the Laplacian is positive and uniformly exponentially 
stable, we can obtain the bounded H∞-calculus with μ = 0. The proof of this special 
case for the Dirichlet Laplacian is provided in Corollary 6.10 below. However, the 
proof does not extend to k ≥ 1.
45 



N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
For the general case (k ≥ 0 and X a UMD Banach space) we expect that one can show uni
form exponential stability for the semigroup corresponding to the Laplacian via (weighted) 
kernel bounds for the scalar-valued case. Using a tensor extension and consistency, one 
could also obtain the required kernel bounds for the vector-valued case.

(ii) The p-independence of the spectra of the Laplacian on Lp-spaces is well-studied. More
over, in [14,65] it is proved that on certain weighted Lp-spaces the spectrum is independent 
of the weight. However, the power weights w∂𝒪

γ that we use do not fit into their settings. 
Instead, we will use compactness and consistency of the resolvent to obtain the spectral 
independence in Theorems 6.4 and 6.5.

6.1. Consequences of the bounded H∞-calculus

In this section, we discuss two consequences of the bounded H∞-calculus for the Laplacian: 
maximal regularity and boundedness of the Riesz transform.

6.1.1. Maximal Lq -regularity
Let T ∈ (0,∞]. We study the time-dependent heat equation on I := (0, T ) given by

∂tu(t) − Δu(t) = f (t), t ∈ I,

on a bounded domain 𝒪 with Dirichlet or Neumann boundary conditions and zero initial con
dition. Furthermore, we consider this in a setting with temporal weights, where we denote by 
Aq(I) the class of Muckenhoupt weights. For an extensive introduction to maximal regularity, 
the reader is referred to [36, Chapter 17].

The following two corollaries on maximal regularity for the heat equation follow immediately 
from Theorems 6.2, 6.3, 6.4, 6.5 and [36, Theorems 17.3.18, 17.2.39 & Proposition 17.2.7].

Corollary 6.7 (Maximal regularity for −ΔDir). Assume that the conditions from Theorem 6.2
hold. In addition, let q ∈ (1,∞), T ∈ (0,∞) and v ∈ Aq(I). Then −ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X)

has maximal Lq(v)-regularity on I , i.e., for all

f ∈ Lq(I, v;Wk,p(𝒪,w∂𝒪
γ+kp;X))

there exists a unique

u ∈ W 1,q(I, v;Wk,p(𝒪,w∂𝒪
γ+kp;X)) ∩ Lq(I, v;Wk+2,p

Dir (𝒪,w∂𝒪
γ+kp;X))

such that ∂tu − ΔDiru = f with u(0) = 0 and

∥u∥W 1,q (I,v;Wk,p(𝒪,w∂𝒪
γ+kp;X)) + ∥u∥

Lq(I,v;Wk+2,p

Dir (𝒪,w∂𝒪
γ+kp;X))

≲ ∥f ∥Lq(I,v;Wk,p(𝒪,w∂𝒪
γ+kp;X)),

where the constant only depends on p,q, k, γ, v, T , d and X. Moreover, if X = C, then the above 
statement holds for I = R+ as well.

Corollary 6.8 (Maximal regularity for −ΔNeu). Assume that the conditions from Theo
rem 6.3 hold. In addition, let q ∈ (1,∞), T ∈ (0,∞) and v ∈ Aq(I). Then −ΔNeu on 
Wk+j,p(𝒪,w∂𝒪 ;X) has maximal Lq(v)-regularity on I , i.e., for all
γ+kp
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f ∈ Lq(I, v;Wk+j,p(𝒪,w∂𝒪
γ+kp;X))

there exists a unique

u ∈ W 1,q(I, v;Wk+j,p(𝒪,w∂𝒪
γ+kp;X)) ∩ Lq(I, v;Wk+2+j,p

Neu (𝒪,w∂𝒪
γ+kp;X))

such that ∂tu − ΔNeuu = f with u(0) = 0 and

∥u∥W 1,q (I,v;Wk+j,p(𝒪,w∂𝒪
γ+kp;X)) + ∥u∥

Lq(I,v;Wk+2+j,p
Neu (𝒪,w∂𝒪

γ+kp;X))
≲ ∥f ∥Lq(I,v;Wk+j,p(𝒪,w∂𝒪

γ+kp;X)),

where the constant only depends on p,q, k, γ, j, v, T , d and X. Moreover, the above statement 
also holds if we consider ΔNeu on the spaces without constant functions as in Definition 6.1(iii). 
In this case, if additionally X = C, then the statement also holds for I = R+.

Remark 6.9. 

(i) Similar results as in Corollaries 6.7 and 6.8 for 𝒪 = Rd+ are obtained in [70, Section 8].
(ii) Corollaries 6.7 and 6.8 concern the heat equation with zero initial data. Well-posedness 

for the heat equation with non-zero initial data can be obtained as a consequence, see [28, 
Section 4.4] and [36, Section 17.2.b].

We connect the above results to the existing literature about PDE on homogeneous weighted 
Sobolev spaces, see [58,59,73]. For p ∈ (1,∞), k ∈ N0, θ ∈ R and 𝒪 ⊆ Rd a bounded C1
domain, the homogeneous Sobolev spaces are given by

Hk
p,θ (𝒪) =

{︂
f ∈𝒟′(𝒪) : ∀|α| ≤ k, ∂αf ∈ Lp(𝒪,w∂𝒪

θ−d+|α|p)
}︂
,

see for instance [73, Proposition 2.2]. Note that Lp(𝒪,w∂𝒪
γ ) = H 0

p,γ+d(𝒪). In the setting for 
the Dirichlet Laplacian with γ ∈ (p − 1,2p − 1) we have the following relation between the 
involved homogeneous and inhomogeneous spaces:

Wk,p(𝒪,w∂𝒪
γ+kp) = Hk

p,γ+d(𝒪),

W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp) = Hk+2

p,γ+d−2p(𝒪).

The first characterisation follows from the fact that 𝒪 is bounded and Hardy’s inequality using 
that γ +kp > −1. The second characterisation follows similarly using that Wk+2,p

Dir (𝒪,w∂𝒪
γ+kp) =

W
k+2,p
0 (𝒪,w∂𝒪

γ+kp) for γ ∈ (p − 1,2p − 1). Note that we have used that the domain is bounded, 
for unbounded domains the homogeneous and inhomogeneous spaces cannot be compared.

In [53], the authors use homogeneous spaces to study spatial regularity for boundary value 
problems with Dirichlet boundary conditions on bounded C1-domains. There, the boundary 
condition is encoded implicitly within the function space. In contrast, our approach imposes 
boundary conditions explicitly, allowing greater flexibility -- particularly when extending to more 
regular domains or handling smaller weight exponents and Neumann boundary conditions. In the 
homogeneous setting, some results for the Neumann Laplacian on the half-space (in the special 
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case k = 0) are contained in [21,22], but a general study on bounded domains seems to be un
available.

Finally, we remark that maximal Lq -regularity for the Dirichlet Laplacian on Lp(𝒪,w∂𝒪
γ ) is 

also obtained in [55]. Here they treat bounded C1,λ-domains with γ ∈ ((1 − λ)p − 1,2p − 1)

which corresponds to our result in Corollary 6.7 with k = 0.

6.1.2. Riesz transforms
In this section, we discuss the boundedness of the Riesz transform associated with the Dirich

let Laplacian on the half-space and bounded domains. For an elaborate study of Riesz transforms 
associated with the Laplacian on the half-space, the reader is referred to [23].

We start with an extension of the H∞-calculus of −ΔDir from scalar-valued Lebesgue spaces 
to vector-valued Lebesgue spaces, see also Remark 6.6. This extends the result in [72, Theorem 
6.1 & Corollary 6.2].

Corollary 6.10 (H∞-calculus for −ΔDir on Lp(𝒪,w∂𝒪
γ ;X)). Let p ∈ (1,∞), λ ∈ [0,1], 

γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and let X be a UMD Banach space. Let ΔDir on 
Lp(𝒪,w∂𝒪

γ ;X) be as in Definition 6.1. Then the operator −ΔDir has a bounded H∞-calculus 
with ωH∞(−ΔDir) = 0.

Proof. We define the operators

ΔC
Dir := ΔDir on Lp(𝒪,w∂𝒪

γ ) and 

ΔX
Dir := ΔDir on Lp(𝒪,w∂𝒪

γ ;X)

as in Definition 6.1. Theorem 6.4 implies that 0 ∈ ρ(−ΔC
Dir) and it follows from [36, Proposi

tion K.2.3] that the analytic semigroup St generated by ΔC
Dir is uniformly exponentially stable. 

Moreover, the resolvent R(λ,ΔC
Dir) is positive for λ > 0 (this follows from the L2-case and con

sistency in Lemma 6.14) and [25, Theorem VI.1.8] yields that St is positive. Therefore, by [34, 
Theorem 2.1.3] the operator St ⊗ idX defined by

(St ⊗ idX)(f ⊗ x) := Stf ⊗ x, f ∈ Lp(𝒪,w∂𝒪
γ ), x ∈ X,

extends to a bounded operator on Lp(𝒪,w∂𝒪
γ ;X) with equal operator norm. It is straightforward 

to verify that St ⊗ idX is generated by ΔX
Dir and that R(λ,ΔX

Dir)(f ⊗ x) = (R(λ,ΔC
Dir)f )⊗ x for 

f ∈ Lp(𝒪,w∂𝒪
γ ), x ∈ X and λ ∈ ρ(ΔC

Dir) ∩ ρ(ΔX
Dir). The semigroup St ⊗ idX is also uniformly 

exponentially stable, which shows that −ΔX
Dir is sectorial. Proposition 2.4 and Theorem 6.2 now 

give the desired result. □
We have the following result for the Riesz transform associated with the Dirichlet Laplacian.

Corollary 6.11 (Riesz transform associated with −ΔDir). Let p ∈ (1,∞), λ ∈ [0,1] and let X be 
a UMD Banach space. Assume that either

(i) 𝒪 = Rd+, k = 0, γ ∈ (−1,2p − 1) \ {p − 1} and X is a UMD Banach space, or,
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(ii) 𝒪 is a bounded C1,λ-domain, k = 0, γ ∈ ((1−λ)p−1,2p−1)\ {p−1} and X is a UMD
Banach space, or,

(iii) 𝒪 is a bounded C1,λ-domain, k ∈N0, γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and X = C.

Let ΔDir on Wk,p(𝒪,w∂𝒪
γ+kp;X) be as in Definition 4.1 or 6.1. Then

∥∇(−ΔDir)
− 1

2 f ∥Wk,p(𝒪,w∂𝒪
γ+kp;X) ≤ C∥f ∥Wk,p(𝒪,w∂𝒪

γ+kp;X), f ∈ Wk,p(𝒪,w∂𝒪
γ+kp;X),

for some C > 0 which only depends on p,k, γ,𝒪 and X.

Proof. First, we claim that

(−ΔDir)
− 1

2 : Wk,p(𝒪,w∂𝒪
γ+kp;X) → W

k+1,p

Dir (𝒪,w∂𝒪
γ+kp;X) (6.1)

is bounded. Indeed, since

(−ΔDir)
−1 : Wk,p(𝒪,w∂𝒪

γ+kp;X) → W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X)

is bounded (see Theorems 4.2, 6.4 and Corollary 6.10) and the identity operator is bounded on 
Wk,p(𝒪,w∂𝒪

γ+kp;X), it holds by Stein interpolation [87, Theorem 2.1] that

(−ΔDir)
− 1

2 : Wk,p(𝒪,w∂𝒪
γ+kp;X) → [Wk,p(𝒪,w∂𝒪

γ+kp;X),W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X)] 1

2

is bounded. To verify the conditions for Stein interpolation, one uses that −ΔDir has BIP, which 
follows again from the bounded H∞-calculus in Theorem 4.2, Theorem 6.4 and Corollary 6.10. 
The claim (6.1) now follows from Proposition 3.15.

Therefore, (6.1), Proposition 3.15 and Proposition 2.3 (using that −ΔDir has BIP), imply

∥∇(−ΔDir)
− 1

2 f ∥Wk,p(𝒪,w∂𝒪
γ+kp;X) ≤ ∥(−ΔDir)

− 1
2 f ∥

W
k+1,p

Dir (𝒪,w∂𝒪
γ+kp;X)

≂ ∥(−ΔDir)
− 1

2 f ∥[Wk,p(𝒪,w∂𝒪
γ+kp;X),W

k+2,p

Dir (𝒪,w∂𝒪
γ+kp;X)] 1

2

≂ ∥(−ΔDir)
− 1

2 f ∥
D((−ΔDir)

1
2 )

≲ ∥f ∥Wk,p(𝒪,w∂𝒪
γ+kp;X).

This completes the proof. □
Remark 6.12. 

(i) Boundedness of the Riesz transforms on Lp(Rd ,w;X) holds if and only if w ∈ Ap(Rd), 
see [30, Sections 7.4.3 & 7.4.4]. Corollary 6.11 also allows for weights outside the class 
of Muckenhoupt weights. On the other hand, we are restricted to power weights since the 
interpolation results from Proposition 3.15 are only available for this type of weights.
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(ii) With the same proof as in Corollary 6.11 and using Theorems 6.2 and 6.3 it follows that the 
Riesz transforms associated with μ−ΔDir and μ−ΔNeu are bounded on weighted vector
valued Sobolev spaces for μ large enough. Following the proof of Corollary 6.10, we could 
also obtain the bounded H∞-calculus for −ΔNeu on Lp(𝒪,w∂𝒪

γ ;X)/{c 1𝒪 : c ∈ X}.
(iii) In view of Remark 6.6(i), the condition in Corollary 6.11(iii) on the space X can be weak

ened to X being a Hilbert space or being isomorphic to a closed subspace of an Lp-space.

6.2. The proofs of Theorems 6.2 and 6.3

To transfer the H∞-calculus on special domains (Section 5) to bounded domains, we em
ploy a localisation procedure based on the decomposition of weighted Sobolev spaces as in 
Lemma 3.12. For this localisation of the H∞-calculus, we need the following abstract lemma, 
which follows from lower order perturbation results.

Lemma 6.13 ([72, Lemma 6.11]). Let A be a linear operator on a Banach space Y and let ˜︁A be 
a sectorial operator on a Banach space ˜︁Y with a bounded H∞-calculus. Assume that there exist 
bounded linear mappings ℐ : Y → ˜︁Y and 𝒫 : ˜︁Y → Y satisfying

(i) 𝒫ℐ = id,
(ii) ℐD(A) ⊆ D(˜︁A) and 𝒫D(˜︁A) ⊆ D(A),

(iii) (ℐA − ˜︁Aℐ)𝒫 : D(˜︁A) → ˜︁Y and ℐ(A𝒫 −𝒫˜︁A) : D(˜︁A) → ˜︁Y extend to bounded linear oper
ators [˜︁Y ,D(˜︁A)]θ → ˜︁Y for some θ ∈ (0,1).

Then A is a closed and densely defined operator and for every σ > ωH∞(˜︁A) there exists a μ > 0
such that μ + A has a bounded H∞-calculus with ωH∞(μ + A) ≤ σ .

We now turn to the proofs of Theorems 6.2 and 6.3 concerning the H∞-calculus on bounded 
domains.

Proof of Theorems 6.2 and 6.3. We start with the proof for the Dirichlet Laplacian. Let λ ∈
[0,1], γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and let 𝒪 be a bounded C1,λ-domain. Define A :=
−ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X). We show that the operator μ−ΔDir has a bounded H∞-calculus 
for μ sufficiently large.

If λ = 0, then take (Vn)
N
n=1, (𝒪n)

N
n=1, (ηn)

N
n=0 from Lemma 3.12 such that for all n ∈

{1, . . . ,N} we have [𝒪n]C1 < δ where δ ∈ (0,1) is small enough such that Theorem 5.2 ap
plies for every 𝒪n. If λ ∈ (0,1], then let ε ∈ (0, λ) be such that γ > (1 − (λ − ε))p − 1. 
Take (Vn)

N
n=1, (𝒪n)

N
n=1, (ηn)

N
n=0 from Lemma 3.12 such that for all n ∈ {1, . . . ,N} we have 

[𝒪n]C1,λ−ε < δ where δ ∈ (0,1) is small enough such that Theorem 5.2 (applied with λ replaced 
by λ − ε) applies for every 𝒪n. We define the following operators

(i) ˜︁A := ⨁︁N
n=0

˜︁An on W k,p
γ+kp as defined in (3.12), where

(a) ˜︁A0 on Wk,p(Rd ;X) with D(˜︁A0) := Wk+2,p(Rd ;X) is given by ˜︁A0˜︁u := Δ˜︁u,
(b) ˜︁An on Wk,p(𝒪n,w

∂𝒪n

γ+kp;X) with D(˜︁An) := W
k+2,p

Dir (𝒪n,w
∂𝒪n

γ+kp;X) is given by ˜︁An˜︁u := ΔDir˜︁u for n ∈ {1, . . . ,N},
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(ii) B : D(A) → W k,p
γ+kp given by Bu := ([Δ,ηn]u)Nn=0,

(iii) C : D(˜︁A) → Wk,p(𝒪,w∂𝒪
γ+kp;X) given by C˜︁u := ∑︁N

n=0[Δ,ηn]˜︁u.

Let μ > 0. By [70, Lemma 2.6], Proposition 2.4 and Theorem 5.2 it holds that μ − ˜︁An for any 
n ∈ {0, . . . ,N} has a bounded H∞-calculus with ωH∞(μ − ˜︁An) = 0. Thus μ − ˜︁A has a bounded 
H∞-calculus with ωH∞(μ − ˜︁A) = 0 as well.

Let 𝒫 and ℐ be as defined in (3.13). It is straightforward to verify that the conditions (i) and (ii)
from Lemma 6.13 hold. It remains to check condition (iii) in Lemma 6.13. From Proposition 3.15
we obtain

[Wk,p(𝒪n,w
∂𝒪n

γ+kp;X),D(˜︁An)] 1
2

= W
k+1,p

Dir (𝒪n,w
∂𝒪n

γ+kp;X) for n ∈ {1, . . . ,N},

and in combination with (see [34, Theorems 5.6.9 & 5.6.11])

[Wk,p(Rd ;X),D(˜︁A0)] 1
2

= Wk+1,p(Rd ;X),

this yields

[W k,p
γ+kp,D(˜︁A)] 1

2
= [Wk,p(Rd ;X),D(˜︁A0)] 1

2
⊕

N⨁︂
n=1 

[Wk,p(𝒪n,w
∂𝒪n

γ+kp;X),D(˜︁An)] 1
2

= Wk+1,p(Rd ;X) ⊕
N⨁︂

n=1 
W

k+1,p

Dir (𝒪n,w
∂𝒪n

γ+kp;X).

(6.2)

Note that

ℐAu − ˜︁Aℐu = −Bu, u ∈ D(A), and A𝒫˜︁u −𝒫˜︁A˜︁u = C˜︁u, ˜︁u ∈ D(˜︁A),

and every commutator [Δ,ηn] is a first-order partial differential operator with smooth and com
pactly supported coefficients. This and (6.2) yield that

ℐA − ˜︁Aℐ : W
k+1,p

Dir (𝒪,w∂𝒪
γ+kp;X) → W k,p

γ+kp and 

𝒫 : [W k,p
γ+kp,D(˜︁A)] 1

2
→ W

k+1,p

Dir (𝒪,w∂𝒪
γ+kp;X)

are bounded. Similarly, we obtain by (6.2) that

A𝒫 −𝒫˜︁A : [W k,p
γ+kp,D(˜︁A)] 1

2
→ Wk,p(𝒪,w∂𝒪

γ+kp;X) and 

ℐ : Wk,p(𝒪,w∂𝒪
γ+kp;X) →W k,p

γ+kp

are bounded. This shows that (ℐA− ˜︁Aℐ)𝒫 and ℐ(A𝒫 −𝒫˜︁A) extend to bounded operators from 
[W k,p

γ+kp,D(˜︁A)] 1
2

to W k,p
γ+kp . Applying Lemma 6.13 gives that for all σ ∈ (0,π) there exists a ˜︁μ > 0 such that for all μ > ˜︁μ the operator μ − ΔDir on Wk,p(𝒪,w∂𝒪

γ+kp;X) has a bounded 
H∞-calculus with ωH∞(μ − ΔDir) ≤ σ .
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The boundedness of the H∞-calculus for the Neumann Laplacian on Wk+j,p(𝒪,w∂𝒪
γ+kp;X)

can be shown similarly as for the Dirichlet Laplacian using Theorem 5.3 and Proposition 3.16.
It remains to prove the boundedness of the H∞-calculus for μ − ΔNeu on the quotient 

space Y/K := Wk+j,p(𝒪,w∂𝒪
γ+kp;X)/{c 1𝒪 : c ∈ X}. Fix σ ∈ (0,π) and let μ be large enough 

such that μ − ΔNeu on Wk+j,p(𝒪,w∂𝒪
γ+kp;X) has a bounded H∞-calculus of angle ωH∞(μ −

ΔNeu) ≤ σ . Let ω ∈ (σ,π) and let φ ∈ H 1(Σω)∩H∞(Σω). For any c ∈ K we have that x ∈ Y/K

can be represented as x = y + c with y ∈ Y . Note that for z ∈ ρ(μ − ΔNeu) the equation

zu − (μ − ΔNeu)u = c

has the unique solution u = c/(z − μ). Therefore, by definition of the functional calculus and 
Cauchy’s integral formula, we obtain

φ(μ − ΔNeu)c = 1 
2π i

∫︂
∂Σν

φ(z)R(z,μ − ΔNeu)c dz

= 1 
2π i

∫︂
∂Σν

φ(z)c 
z − μ

dz = φ(μ)c ∈ K, ν ∈ (σ,ω).

(6.3)

By (6.3) and the bounded H∞-calculus for μ − ΔNeu on Y , it follows that for x ∈ Y/K and 
c ∈ K we have

∥(φ(μ − ΔNeu)x) − φ(μ)c∥Y = ∥(φ(μ − ΔNeu)(y + c)) − φ(μ)c∥Y = ∥φ(μ − ΔNeu)y∥Y

≲ ∥φ∥H∞(Σω)∥y∥Y = ∥φ∥H∞(Σω)∥x − c∥Y .

Taking the infimum over c ∈ K yields that ∥φ(μ − ΔNeu)x∥Y/K ≲ ∥φ∥H∞(Σω)∥x∥Y/K for x ∈
Y/K , which proves the boundedness of the H∞-calculus on Y/K with angle ωH∞(μ−ΔNeu) ≤
σ . □
6.3. The proofs of Theorems 6.4 and 6.5

We continue with the proof of Theorems 6.4 and 6.5, which deal with the H∞-calculus in 
the special case of X = C. We start with some preliminary results about the consistency of 
resolvents.

Let X0 and X1 be two compatible Banach spaces and suppose that B0 ∈ ℒ(X0) and B1 ∈
ℒ(X1). Then we call the operators B0 and B1 consistent if

B0u = B1u for all u ∈ X0 ∩ X1.

For z ∈ Σ ⊆ C the two families of operators B0(z) ∈ ℒ(X0) and B1(z) ∈ ℒ(X1) are called con
sistent if B0(z) and B1(z) are consistent for all z ∈ Σ.
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We introduce the forms on the Hilbert spaces V (as dense subspace of L2(𝒪)) given by

aDir(v1, v2) :=
∫︂
𝒪

∇v1 · ∇v2 dx, v1, v2 ∈ V = W
1,2
0 (𝒪),

aNeu(v1, v2) :=
∫︂
𝒪

∇v1 · ∇v2 dx, v1, v2 ∈ V = W 1,2(𝒪).

Associated with the forms aDir and aNeu are the densely defined closed Laplace operators −ADir,2
and −ANeu,2 on L2(𝒪), respectively, see for instance [77, Chapter 12]. The domains of these 
operators are

D(ADir,2) = {f ∈ W
1,2
0 (𝒪) ∩ W

2,2
loc (𝒪) : Δf ∈ L2(𝒪)},

D(ANeu,2) = {f ∈ W 1,2(𝒪) ∩ W
2,2
loc (𝒪) : Δf ∈ L2(𝒪)},

see [77, Sections 12.3.b & 12.3.c]. A characterisation of the domains as a closed subspace of 
W 2,2(𝒪) requires more regularity of the domain (compared to the regularity we consider in The
orems 6.4 and 6.5), see [77, Sections 12.3.b & 12.3.c]. For instance, for the Dirichlet Laplacian, 
C2-regularity is required.

We have the following lemma on the consistency of the resolvents for the Dirichlet Laplacian.

Lemma 6.14. Let p ∈ (1,∞), k ∈ N0, λ ∈ [0,1], γ ∈ ((1 − λ)p − 1,2p − 1) \ {p − 1} and let 
𝒪 be a bounded C1,λ-domain. Let

Ap,k,γ := ΔDir on Wk,p(𝒪,w∂𝒪
γ+kp) with D(Ap,k,γ ) = W

k+2,p

Dir (𝒪,w∂𝒪
γ+kp)

be as in Definition 6.1 and let

ADir,2 = ΔDir on L2(𝒪) with D(ADir,2) = {f ∈ W
1,2
0 (𝒪) ∩ W

2,2
loc (𝒪) : Δf ∈ L2(𝒪)}

be as above. Then there exists a ˜︁μ > 0 such that for all μ > ˜︁μ the resolvents R(μ,Ap,k,γ ) and 
R(μ,ADir,2) are consistent.

Proof. Take 1 < q < min{p,2} and κ ∈ (0,2q − 1) \ {q − 1} such that

κ >
q(γ + 1)

p
− 1 > (1 − λ)q − 1. (6.4)

First, we claim that Lp(𝒪,w∂𝒪
γ ) ↪→ Lq(𝒪,w∂𝒪

κ ). Indeed, for u ∈ Lp(𝒪,w∂𝒪
γ ) we have by 

Hölder’s inequality that

∫︂
|u(x)|qw∂𝒪

κ (x) dx ≤
(︂∫︂

|u(x)|pw∂𝒪
γ (x) dx

)︂ q
p
(︂∫︂

w∂𝒪
κp−qγ
p−q 

(x) dx
)︂ p−q

p
< ∞.
𝒪 𝒪 𝒪
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The latter integral can be written as an integral over Rd+ (using localisation from Lemma 3.12
and the diffeomorphism from Lemma A.4), hence the integral is finite since (6.4) implies (κp −
qγ )/(p − q) > −1. This proves the claim.

To continue, we introduce the space

Zr,ν := {f ∈ W
1,r
0 (𝒪,w∂𝒪

ν ) ∩ W
2,r
loc (𝒪) : Δf ∈ Lr(𝒪,w∂𝒪

ν )} for r ∈ (1,2], ν > −1,

and note that D(A2) = Z2,0. Now, consider the equation

μu − ΔDiru = f, f ∈ Wk,p(𝒪,w∂𝒪
γ+kp) ∩ L2(𝒪). (6.5)

By Theorem 6.2 (using that γ > (1 − λ)p − 1) and [77, Section 12.3.b] there exist unique

u0 ∈ W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp) and u1 ∈ Z2,0

solving (6.5) for μ sufficiently large. By Hardy’s inequality (for bounded Lipschitz domains, see 
for instance [63, Section 8.8]) and the claim, we have

W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp) ↪→ W

2,p

Dir (𝒪,w∂𝒪
γ ) ↪→ W

2,q

Dir (𝒪,w∂𝒪
κ ).

Moreover, using κ > 0, q < 2 and elliptic regularity (Theorem 6.2 using (6.4)), we have

Z2,0 ↪→ Zq,κ = W
2,q

Dir (𝒪,w∂𝒪
κ ).

Note that the equation (6.5) with right-hand side f ∈ Lq(𝒪,w∂𝒪
κ ) has a unique solution in 

W
2,q

Dir (𝒪,w∂𝒪
κ ) by Theorem 6.2 (using (6.4)). It follows that u0 = u1, which proves that the 

resolvents of Ap,k,γ and A2 are consistent. □
For the Neumann Laplacian, we have the following result concerning the consistency of re

solvents. Its proof is similar to the proof of Lemma 6.14.

Lemma 6.15. Let p ∈ (1,∞), k ∈N0, λ ∈ [0,1], γ ∈ ((1 −λ)p − 1,p − 1), j ∈ {0,1} and let 𝒪
be a bounded Cj+1,λ-domain. Let

Ap,k,j,γ := ΔNeu on Wk+j,p(𝒪,w∂𝒪
γ+kp) with D(Ap,k,j,γ ) = W

k+j+2,p
Neu (𝒪,w∂𝒪

γ+kp)

be as in Definition 6.1(ii) and let

ANeu,2 = ΔNeu on L2(𝒪) with D(ANeu,2) = {f ∈ W 1,2(𝒪) ∩ W
2,2
loc (𝒪) : Δf ∈ L2(𝒪)}

be as above. Then there exists a ˜︁μ > 0 such that for all μ > ˜︁μ the resolvents R(μ,Ap,k,j,γ ) and 
R(μ,ANeu,2) are consistent.

We can now turn to the H∞-calculus on scalar-valued spaces.
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Proof of Theorems 6.4 and 6.5. We start with the proof of Theorem 6.4(i). Since the embed
ding W 1,p(𝒪,w∂𝒪

γ+kp) ↪→ Lp(𝒪,w∂𝒪
γ+kp) is compact, see [32, Theorem 8.8], we have

D(ΔDir) = W
k+2,p

Dir (𝒪,w∂𝒪
γ+kp) ↪→ Wk+1,p(𝒪,w∂𝒪

γ+kp)
compact
↪→ Wk,p(𝒪,w∂𝒪

γ+kp).

Since (μ − ΔDir)
−1 with μ ∈ ρ(ΔDir) exists (by Theorem 6.2), the compact embedding above 

implies that (μ − ΔDir)
−1 is compact. Thus by the Riesz–Schauder theorem for compact opera

tors, the resolvent operator (μ− ΔDir)
−1 has a discrete countable spectrum {σj : j ∈N0}, where 

σj ≠ 0 are eigenvalues of (μ − ΔDir)
−1. Moreover, zero is in the spectrum of (μ − ΔDir)

−1 and 
is the only accumulation point of the spectrum. Therefore, by the spectral mapping theorem

σ(−ΔDir) = {μj : μj = σ−1
j − μ,j ∈N0 with σj ≠ 0}.

Next, we claim that the spectrum σ(−ΔDir) is independent of p ∈ (1,∞), k ∈ N0 and γ ∈
((1 −λ)p − 1,2p − 1)\ {p − 1}. Let Ap,k,γ and A2 be as in Lemma 6.14. It suffices to show that 
σ(−Ap,k,γ ) = σ(−A2). We proceed as in the proof of [4, Proposition 2.6]. Recall that σ(−A2)

is discrete and only consists of a countable number of positive eigenvalues, see [77, Theorem 
12.26]. By Lemma 6.14 and analytic continuation we find that R(z,−A2) and R(z,−Ap,k,γ )

are consistent for all z ∈ ρ(−A2) ∩ ρ(−Ap,k,γ ). Now, if μ ∈ ρ(−A2), then since σ(−Ap,k,γ ) is 
discrete and countable it follows that there exists an r > 0 such that B(μ, r) \ {μ} ⊆ ρ(−A2) ∩
ρ(−Ap,k,γ ). Therefore, by consistency of the resolvents we obtain

∫︂
∂B(μ,r)

R(z,−Ap,k,γ ) dz =
∫︂

∂B(μ,r)

R(z,−A2) dz = 0,

and thus μ ∈ ρ(−Ap,k,γ ). The other inclusion follows similarly. This proves that σ(−Ap,k,γ ) =
σ(−A2) and the claim follows.

Finally, using that σ(−A2) is discrete, σ(−A2) ⊆ [˜︁μ,∞) ⊆ (0,∞) with ˜︁μ := min{μj : j ∈
N0} > 0 and the claim gives that σ(−Ap,k,γ ) is discrete and σ(−Ap,k,γ ) ⊆ [˜︁μ,∞) ⊆ (0,∞). 
This completes the proof of Theorem 6.4(i).

We continue with the proof of Theorem 6.4(ii). From Theorem 6.2 we have that for fixed 
σ ∈ (0,π) and μ sufficiently large, μ − ΔDir is sectorial with ω(μ − ΔDir) ≤ σ . Combining this 
with the analyticity of z ↦→ (z − ΔDir)

−1 on C \ (−∞,−˜︁μ] yields that for μ > −˜︁μ and σ ′ > σ

the operator μ − ΔDir is sectorial with ω(μ − ΔDir) ≤ σ ′. Therefore, Theorem 6.4(ii) follows 
from Proposition 2.4, Theorem 6.2 and the fact that σ ∈ (0,π) is arbitrary.

The proof of Theorem 6.5 for the Neumann Laplacian is similar to the proof for the Dirichlet 
Laplacian above if we use Theorem 6.3 and Lemma 6.15. Note that for the Neumann Laplacian 
on L2(𝒪), zero is an eigenvalue and the corresponding eigenspace consists of constant functions, 
see [77, Proposition 12.24 & Theorem 12.26]. Therefore, we obtain the bounded H∞-calculus 
for μ−ΔNeu with μ > 0 on Wk+j,p(𝒪,w∂𝒪

γ+kp). In addition, on Wk+j,p(𝒪,w∂𝒪
γ+kp)/{c 1𝒪 : c ∈

X} the eigenvalue zero is removed and we obtain the bounded H∞-calculus for μ − ΔNeu with 
μ > −˜︁μ, where ˜︁μ is the first positive eigenvalue of −ΔNeu. □
55 



N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
Appendix A. Localisation techniques for rough domains

In this appendix, we will construct diffeomorphisms from special domains 𝒪 := {x ∈ Rd :
x1 > h(˜︁x)} to the half-space Rd+. In the literature, such diffeomorphisms are frequently used for 
smooth domains and in this appendix, we will construct modifications of such diffeomorphisms 
for rough domains.

We start with some definitions. Throughout this appendix, we consider d ≥ 2.

Definition A.1. Let U,V ⊆ Rd , ℓ ∈ N1 and λ ∈ [0,1]. A map Φ : U → V is called a Cℓ,λ
diffeomorphism if Φ is a bijection, Φ ∈ Cℓ,λ(U ;Rd) and Φ−1 ∈ Cℓ,λ(V ;Rd).

To be able to deal with boundary value problems involving the normal derivative on the bound
ary, we need a diffeomorphism that preserves the direction of the normal vector. This is the notion 
of admissibility, see [89, Section 2.4].

Definition A.2. Let U and V be C1-domains, ℓ ∈ N1 and λ ∈ [0,1]. A Cℓ,λ-diffeomorphism 
Φ : U → V is called admissible at the point x ∈ ∂U if the push-forward DΦ corresponding to Φ
has the following properties:

(i) DΦ maps the tangent space T∂U,x to T∂V,Φ(x);
(ii) DΦ maps the inner normal ν(x) of ∂U to the inner normal ν(Φ(x)) of ∂V .

Note that in the definition above, we do not require that the length of the normal vector is 
preserved. Furthermore, it holds that Φ is admissible at x ∈ ∂U if and only if Φ−1 is admissible 
at y = Φ(x) ∈ ∂V .

We note that for special C1-domains of the form 𝒪 := {x ∈ Rd : x1 > h(˜︁x)} for some h ∈
C1(Rd−1), the inner normal direction at the boundary of 𝒪 is ν(x) = ν(˜︁x) = (1,−∇˜︁xh(˜︁x))⊤
and the tangent space is spanned by the vectors

(∂x2h(˜︁x),1,0, . . . ,0)⊤, . . . , (∂xd
h(˜︁x),0,0, . . . ,1)⊤.

Example A.3. Let ℓ ∈ N1 and λ ∈ [0,1]. For a special domain 𝒪 corresponding to h ∈
C

ℓ,λ
c (Rd−1), the following two classical diffeomorphisms are well known in the literature.

(i) The most frequently used diffeomorphism Φcl : 𝒪 → Rd+ is given by

Φcl(x) = (x1 − h(˜︁x),˜︁x), x = (x1,˜︁x) ∈ 𝒪,

Φ−1
cl (y) = (y1 + h(˜︁y),˜︁y), y = (y1,˜︁y) ∈ Rd+,

see, e.g., [17,26,61]. This is a Cℓ,λ-diffeomorphism which, in general, is not admissible 
for all x ∈ ∂𝒪. This can be seen, e.g., from the push-forward of Φ−1

cl , which is given by

DΦ−1
cl (y) =

(︃
1 (∇˜︁yh(˜︁y))⊤
0 I

)︃
, y ∈ Rd+.
d−1
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(ii) Let ℓ ≥ 2. Following the construction in [89, Theorem 2.12], one can obtain a less regular 
diffeomorphism that is admissible for all points at the boundary. Let

ν(x) = (1,˜︁ν(˜︁x)) = (1,−∇˜︁xh(˜︁x))

be the inner normal direction at the boundary of 𝒪. Consider Ψcl :Rd+ → 𝒪 given by

Ψcl(y) = (y1 + h(˜︁y),˜︁y + y1˜︁ν(˜︁y)).

The push-forward of Ψcl at the boundary y1 = 0 is

DΨcl(y)|y1=0 =
(︃

1 (∇˜︁yh(˜︁y))⊤˜︁ν(˜︁y) Id−1 + y1D˜︁y˜︁ν(˜︁y)

)︃ ⃓⃓⃓⃓
y1=0

=
(︃

1 (∇˜︁yh(˜︁y))⊤
−∇˜︁yh(˜︁y) Id−1

)︃
,

(A.1)

for all ˜︁y ∈ Rd−1. Hence, for y1 = 0 we have |detDΨcl(y)| ≥ 1 and thus there exists a 
δ > 0 such that |detDΨcl(y)| ≥ 1

2 > 0 for all y ∈ Rd+ with 0 ≤ y1 ≤ δ. By the inverse 
function theorem, there exists an inverse Ψcl to Ψcl on this strip. Then Ψcl is a Cℓ−1,λ
diffeomorphism since ˜︁ν ∈ Cℓ−1,λ(Rd−1). Moreover, (A.1) shows that Ψcl is an admissible 
Cℓ−1,λ-diffeomorphism for all x ∈ ∂𝒪. In the case that ℓ = 1, we obtain that Ψcl is a 
homeomorphism.

If Φcl is the Cℓ,λ-diffeomorphism from Example A.3(i), then the change of coordinates map
ping (Φcl)∗f := f ◦ Φ−1

cl is an isomorphism between Wk,p(𝒪,w∂𝒪
γ ) and Wk,p(Rd+,wγ ) for 

ℓ ≥ k. To be able to deal with rougher domains, i.e., ℓ < k, we will mollify the diffeomorphism 
to make it smooth in the interior. This causes blow-up behaviour of higher-order derivatives near 
the boundary. In the rest of this appendix, we present these mollified versions of Φcl and Ψcl, 
denoted Φ and Ψ respectively.

First, we consider a mollified version of the diffeomorphism Φcl in Example A.3(i). This 
mollified diffeomorphism is in the literature also known as the Dahlberg–Kenig--Stein pull
back, which dates back to [11,12] and is, for instance, applied in [13,27,43]. The Dahlberg--
Kenig--Stein pullback is often used for domains with low regularity (less than C1), see the 
above-mentioned literature. For our purposes, we require estimates on higher-order derivatives 
of the pullback in the case of more regular domains (more than C1). The following lemma is 
an extension of the result for C1-domains in [53, Lemmas 2.6 & 3.8], which is based on the 
works [29,69]. The result of Lemma A.4 is also obtained in [44, Lemma 2.14] with a somewhat 
different proof as below. Nonetheless, we provide the proof since parts of it will be reused for 
constructing the diffeomorphism Ψ in Lemma A.5.

Lemma A.4. Let 𝒪 be a special C1
c -domain. Then there exist continuous functions h1 : 𝒪 → R

and h2 : Rd+ → R which satisfy the following properties.
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(i) The map Φ : 𝒪 →Rd+ given by

Φ(x) = (x1 − h1(x),˜︁x), x = (x1,˜︁x) ∈ 𝒪,

is a C1-diffeomorphism with inverse Φ−1 : Rd+ → 𝒪 given by

Φ−1(y) = (y1 + h2(y),˜︁y), y = (y1,˜︁y) ∈ Rd+.

(ii) We have

dist(Φ(x), ∂Rd+) ≂ dist(x, ∂𝒪), x ∈ 𝒪,

dist(Φ−1(y), ∂𝒪) ≂ dist(y, ∂Rd+), y ∈ Rd+,

where the implicit constants depend on [𝒪]C1 .
(iii) We have h1 ∈ C∞(𝒪) and h2 ∈ C∞(Rd+).

In addition, let ℓ ∈N1, λ ∈ [0,1] and let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤ 1.

(iv) The map Φ in (i) is a Cℓ,λ-diffeomorphism and for all α ∈ Nd
0 , ℓ0 ∈ {0, . . . , ℓ} and λ0 ∈

[0, λ], we have

|∂αh1(x)| ≤ C · [𝒪]Cℓ,λ · dist(x, ∂𝒪)−(|α|−ℓ0−λ0)+ , x ∈ 𝒪,

|∂αh2(y)| ≤ C · [𝒪]Cℓ,λ · dist(y, ∂Rd+)−(|α|−ℓ0−λ0)+ , y ∈ Rd+,

where the constant C > 0 only depends on ℓ,λ,α and d .

We have a similar result for the mollified version of the admissible diffeomorphism Ψcl in 
Example A.3(ii).

Lemma A.5. Let 𝒪 be a special C1
c -domain. Then there exists a Λ ∈ (0,1) such that if [𝒪]C1 ≤

Λ, then there exist continuous functions h1 : 𝒪 → R, ˜︁h1 : 𝒪 → Rd−1, h2 : Rd+ → R and ˜︁h2 :
Rd+ →Rd−1 which satisfy the following properties.

(i) The map Ψ : 𝒪 →Rd+ given by

Ψ(x) = (x1 − h1(x),˜︁x −˜︁h1(x)), x = (x1,˜︁x) ∈ 𝒪,

is a C1-diffeomorphism with inverse Ψ−1 : Rd+ → 𝒪 given by

Ψ−1(y) = (y1 + h2(y),˜︁y +˜︁h2(y)), y = (y1,˜︁y) ∈Rd+.

(ii) We have

dist(Ψ(x), ∂Rd+) ≂ dist(x, ∂𝒪), x ∈ 𝒪,

dist(Ψ−1(y), ∂𝒪) ≂ dist(y, ∂Rd ), y ∈ Rd .
+ +
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(iii) We have h1 ∈ C∞(𝒪), ˜︁h1 ∈ C∞(𝒪;Rd−1), h2 ∈ C∞(Rd+) and ˜︁h2 ∈ C∞(Rd+;Rd−1).
(iv) The diffeomorphism Ψ is admissible for all x ∈ ∂𝒪.

In addition, let ℓ ∈N1, λ ∈ [0,1] and let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤ 1.

(v) The map Ψ in (i) is a Cℓ,λ-diffeomorphism and for all α ∈ Nd
0 , ℓ0 ∈ {0, . . . , ℓ} and λ0 ∈

[0, λ], we have

|∂αh1(x)| + |∂α˜︁h1(x)| ≤ C · [𝒪]Cℓ,λ · dist(x, ∂𝒪)−(|α|−ℓ0−λ0)+ , x ∈ 𝒪,

|∂αh2(y)| + |∂α˜︁h2(y)| ≤ C · [𝒪]Cℓ,λ · dist(y, ∂Rd+)−(|α|−ℓ0−λ0)+ , y ∈ Rd+,

where the constant C > 0 only depends on ℓ,λ,α and d .

Remark A.6. We make the following remarks about Lemmas A.4 and A.5.

(i) The first three statements in both lemmas are standard results for localisation. For the 
standard localisation procedure, one can take h1 and h2 equal to h, see Example A.3. In 
our case, since h is not smooth enough, we need to use a mollifier to make h2 smooth in 
Lemma A.4. Afterwards, h1 is determined using the inverse function theorem. Addition
ally, in Lemma A.5 we need to mollify the normal vector to make ˜︁h2 smooth.

(ii) The important part of Lemma A.4 is (iv), which allows us to estimate higher-order deriva
tives of the diffeomorphism Φ and its inverse. If the number of derivatives exceeds the 
smoothness of the domain, then there is a blow-up near the boundary. We note that the 
construction of Φ is independent of ℓ and λ.

(iii) The important novelty of Lemma A.5 is that Ψ preserves the direction of the normal and 
tangential vectors. This is done by choosing ˜︁h2(y) = y1˜︁𝒱(y), where ˜︁𝒱(y) is a mollified 
version of the normal direction −∇˜︁yh(˜︁y). While the diffeomorphism in Example A.3(ii) is 
less regular than the domain, in Lemma A.5 the regularity of the diffeomorphism is equal to 
the regularity of the domain. Moreover, the estimates on the derivatives in Lemma A.5(v)
are the same as in Lemma A.4(iv).

(iv) The condition [𝒪]Cℓ,λ ≤ 1 in Lemmas A.4(iv) and A.5(v) slightly simplifies the proofs. 
This condition is not necessary and can be removed. The more restrictive condition on 
[𝒪]C1 in Lemma A.5 seems to be necessary to construct a global inverse. For our appli
cation in Section 6, imposing such conditions is not restrictive since [𝒪]Cℓ,λ can be made 
arbitrarily small in our localisation procedure.

(v) Our proofs would also work for Lipschitz domains if one uses an inverse function theorem 
for Lipschitz functions. In the setting of Lemma A.4, this is done in [44]. The result in 
Lemma A.5 appears to be new even in the case of C1-domains.

The rest of this appendix is devoted to the proofs of Lemmas A.4 and A.5.

Proof of Lemma A.4. Let φ ∈ C∞
c (Rd−1) be a non-negative function with its support in the 

unit ball such that 
∫︁
Rd−1 φ(˜︁x) d˜︁x = 1. Let h ∈ C1

c (Rd−1) such that 𝒪 = {x ∈ Rd : x1 > h(˜︁x)}, 
see Definition 2.8.
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Step 1: proof of (i), (ii) and (iii). Define the mapping Φ :Rd →Rd by

Φ(y) := (y1 + h2(y),˜︁y), where 

h2(y) :=
∫︂

Rd−1

h(˜︁y − L−1y1˜︁z)φ(˜︁z) d˜︁z,
for some suitable L > 0 to be chosen later. Note that Φ maps ∂Rd+ to ∂𝒪. It holds that h2 ∈
C1(Rd) ∩ C∞(Rd \ ∂Rd+). The Jacobian matrix of Φ is given by

DΦ(y) =
(︃

1 + ∂y1h2(y) (∇˜︁yh2(y))⊤
0 Id−1

)︃
, y ∈ Rd . (A.2)

Since

∂y1h2(y) = −L−1
∫︂

Rd−1

(∇h)(˜︁y − L−1y1˜︁z) ·˜︁zφ(˜︁z) d˜︁z, y ∈Rd,

it follows that |∂y1h2(y)| ≤ 1
2 for all y ∈ Rd if L = 2[𝒪]C1 . Hence, for all y ∈ Rd , we have 

1 + ∂y1h2(y) ≥ 1
2 and hence

|detDΦ(y)| ≥ 1
2 > 0, (A.3)

meaning that DΦ is invertible.
We construct an inverse of Φ with Hadamard’s inverse function theorem [56, Theorem 6.2.8]. 

Note that if (yn)n≥1 is a sequence in Rd such that |yn| → ∞, then also |Φ(yn)| → ∞ as n →
∞. Indeed, this follows from the fact that h2 is bounded. Hence, Φ is proper in the sense of 
[56, Definition 6.2.2]. This and (A.3) imply that all the conditions of [56, Theorem 6.2.8] are 
satisfied and thus that there exists a continuous inverse Φ : Rd → Rd of Φ. Since actually Φ ∈
C1(Rd ;Rd)∩C∞(Rd \ ∂Rd+;Rd), it also follows that Φ ∈ C1(Rd;Rd)∩C∞(Rd \ ∂𝒪;Rd) by 
the inverse function theorem [56, Theorem 3.3.2]. Moreover, we obtain

DΦ(x) · DΦ(Φ(x)) = Id, x ∈Rd , (A.4)

see, e.g., [56, Equation (3.37)]. From now on, we will write Φ−1 for Φ. Moreover, if x ∈ 𝒪 and 
y = Φ(x) ∈ Rd+, then by the definition of Φ−1 = Φ it holds that

Φ1(x) = y1 = x1 − h2(y) = x1 − h2(Φ(x)), (A.5)

and hence we can write Φ(x) = (x1 − h1(x),˜︁x), where h1(x) = h2(Φ(x)). This completes the 
proof of (i) and (iii).

To continue, we prove that the diffeomorphism preserves the distance to the boundary. Since 
both Φ and Φ−1 are Lipschitz on Rd , we have

|y − y′|≲ |Φ−1(y) − Φ−1(y′)| ≲ |y − y′|, y, y′ ∈Rd . (A.6)
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Let x ∈𝒪 and set y = Φ(x) ∈ Rd+. Then (A.6) gives

dist(x, ∂𝒪) ≤ |x − (h(˜︁x),˜︁x)| = |Φ−1(y) − Φ−1(0,˜︁y)| ≲ y1 = Φ1(x) = dist(Φ(x), ∂Rd+).

In addition, let x′ ∈ ∂𝒪 be such that dist(x, ∂𝒪) = |x − x′| and set y′ = Φ(x′). Note that y′ =
(0,˜︁y ′) for some ˜︁y ′ ∈Rd−1, hence (A.6) also implies

dist(Φ(x), ∂Rd+) = Φ1(x) = y1 ≤ |y − y′|≲ |Φ−1(y) − Φ−1(y′)| = |x − x′| = dist(x, ∂𝒪).

Thus, we have proved that dist(x, ∂𝒪) ≂ dist(Φ(x), ∂Rd+), where the implicit constants depend 
on the Lipschitz constants of Φ and Φ−1 and thus on [𝒪]C1 . The other equivalence in (ii) follows 
by substituting x by Φ−1(y). This completes the proof of (ii).

Step 2: proof of estimates on h2 in (iv). Let ℓ ∈ N1, λ ∈ [0,1] and let 𝒪 be a special Cℓ,λ
c

domain with [𝒪]Cℓ,λ ≤ 1. For multi-indices we write α = (α1,˜︁α) ∈ N0 × Nd−1
0 . By the chain 

rule it holds that

∂y1h(˜︁y − L−1y1˜︁z) = (∇h)(˜︁y − L−1y1˜︁z) · −˜︁z
L 

= −L−1
∑︂
|ν|=1

(∂νh)(˜︁y − L−1y1˜︁z)˜︁zν,

and by iteration one can check for any α ∈Nd
0 that

∂αh2(y1,˜︁y) = 1 
(−L)α1

∫︂
Rd−1

∑︂
|ν|=α1

(∂ν+˜︁αh)(˜︁y − L−1y1˜︁z)˜︁zνφ(˜︁z) d˜︁z. (A.7)

Take ℓ0 ∈ {0, . . . , ℓ}. If |α| ≤ ℓ0, it follows from (A.7) that

|∂αh2(y1,˜︁y)| ≤ C∥h∥Cℓ(Rd−1)

∑︂
|ν|=α1

∫︂
Rd−1

|˜︁zνφ(˜︁z)| d˜︁z ≤ C[𝒪]Cℓ,λ ,

which proves the estimates for h2 in (iv). Now let |α| ≥ ℓ0 + 1 and let β,β ∈ Nd
0 be such that 

β + β = α with |β| = ℓ0 and |β| = |α| − ℓ0. From (A.7) and a substitution ˜︁z ↦→ ((˜︁y −˜︁z)L)/y1 it 
follows that

∂βh2(y1,˜︁y) = 1 
(−L)β1

(︂y1

L 

)︂1−d
∫︂

Rd−1

∑︂
|ν|=β1

(∂ν+˜︁βh)(˜︁z)(︂ (˜︁y −˜︁z)L
y1

)︂ν

φ
(︂ (˜︁y −˜︁z)L

y1

)︂
d˜︁z. (A.8)

By computing the β-derivatives using (A.8), we claim that

∂αh2(y1,˜︁y) = ∂β∂βh2(y1,˜︁y)

= C
1 

y
|α|−ℓ0
1

(︂y1

L 

)︂1−d
∫︂
d−1

∑︂
|ν|=β1

(∂ν+˜︁βh)(˜︁z)φβ,β,ν

(︂ (˜︁y −˜︁z)L
y1

)︂
d˜︁z, (A.9)
R
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where φβ,β,ν ∈ C∞
c (Rd−1) and 

∫︁
φβ,β,ν(˜︁z) d˜︁z = 0. Indeed, if β = ej is the j -th unit vector for 

some j ∈ {2, . . . , d}, then by writing ˜︁y = (y2, . . . , yd) and ˜︁z = (z2, . . . , zd), a calculation shows 
that

∂yj

[︂(︂ (˜︁y −˜︁z)L
y1

)︂ν

φ
(︂ (˜︁y −˜︁z)L

y1

)︂]︂
= L 

y1

[︂
νj

(︂ (yj − zj )L

y1

)︂νj −1 d∏︂
n=2
n≠j

(︂ (yn − zn)L

y1

)︂νn

φ
(︂ (˜︁y −˜︁z)L

y1

)︂

+
(︂ (˜︁y −˜︁z)L

y1

)︂ν

(∂jφ)
(︂ (˜︁y −˜︁z)L

y1

)︂]︂
=: y−1

1 φβ,ej ,ν

(︂ (˜︁y −˜︁z)L
y1

)︂
.

Moreover, note that∫︂
Rd−1

φβ,ej ,ν(˜︁z) d˜︁z =
(︂y1

L 

)︂1−d

y1∂yj

∫︂
Rd−1

(︂ (˜︁y −˜︁z)L
y1

)︂ν

φ
(︂ (˜︁y −˜︁z)L

y1

)︂
d˜︁z

= y1∂yj

∫︂
Rd−1

˜︁zνφ(˜︁z) d˜︁z = 0,

(A.10)

and clearly we have φβ,ej ,ν ∈ C∞
c (Rd−1). This shows (A.9) for β = ej with j ∈ {2, . . . , d}. If 

β = e1, then a calculation shows that

∂y1

[︂(︂y1

L 

)︂1−d(︂ (˜︁y −˜︁z)L
y1

)︂ν

φ
(︂ (˜︁y −˜︁z)L

y1

)︂]︂
= 1 

y1

(︂y1

L 

)︂1−d(︂ (˜︁y −˜︁z)L
y1

)︂ν[︂
(1 − d − β1)φ

(︂ (˜︁y −˜︁z)L
y1

)︂
− (∇φ)

(︂ (˜︁y −˜︁z)L
y1

)︂
·
(︂ (˜︁y −˜︁z)L

y1

)︂]︂
=: y−1

1

(︂y1

L 

)︂1−d

φβ,e1,ν

(︂ (˜︁y −˜︁z)L
y1

)︂
.

The properties of φβ,e1,ν follow similarly as in (A.10). Therefore, we have proved (A.9) for 
|β| = 1. For |β| ≥ 2 we can argue by induction to show that

∂β
y

[︂(︂y1

L 

)︂1−d(︂ (˜︁y −˜︁z)L
y1

)︂ν

φ
(︂ (˜︁y −˜︁z)L

y1

)︂]︂
= C

1 

y
|α|−ℓ0
1

(︂y1

L 

)︂1−d

φβ,β,ν

(︂ (˜︁y −˜︁z)L
y1

)︂
.

This follows in the same manner as for |β| = 1 by considering the ∂y1 and ∂yj
separately. There

fore, (A.9) follows.
Let λ0 ∈ [0, λ]. Performing the substitution ˜︁z ↦→ ˜︁y − L−1y1˜︁z in (A.9) and using that φβ,β,ν

integrates to zero, gives
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|∂αh2(y)| ≤ C y−(|α|−ℓ0)
1

∫︂
Rd−1

∑︂
|ν|=β1

⃓⃓
(∂ν+˜︁βh)(˜︁y − L−1y1˜︁z) − (∂ν+˜︁βh)(˜︁y)

⃓⃓ |φβ,β,ν(˜︁z)| d˜︁z
≤ C ∥h∥Cℓ,λ0 (Rd−1) y

−(|α|−ℓ0)
1

∫︂
Rd−1

|L−1y1˜︁z|λ0 |φβ,β,ν(˜︁z)| d˜︁z
≤ C [𝒪]Cℓ,λ y

−(|α|−ℓ0−λ0)
1 .

This completes the proof of all the estimates for h2 in (iv).
Step 3: proof of estimates on h1 in (iv). It remains to prove the estimates on ∂αh1 for α ∈Nd

0 . 
As h2 is bounded by Step 2, we find that h1(x) = h2(Φ(x)) (see (A.5)) is bounded as well, which 
proves the required estimate for α = 0. For |α| = 1 we first show that ∥DΦ∥ is bounded. Note 
that by (A.4) we have

∥DΦ(x)∥ = ∥[(DΦ−1)(Φ(x))]−1∥ = ∥ adj[(DΦ−1)(Φ(x))]∥
|det[(DΦ−1)(Φ(x))]| , x ∈𝒪,

where adjA denotes the adjugate matrix of the matrix A, i.e., the transpose of the cofactor ma
trix. Recall that the adjugate matrix of A only consists of polynomials of entries of A. Hence, 
combining this with (A.3) and the fact that the entries of DΦ−1 are bounded by Step 2, we find 
that

∥DΦ(x)∥ ≤ C, x ∈ 𝒪. (A.11)

Now the estimate on ∂αh1 with |α| = 1 follows again from h1(x) = h2(Φ(x)) together with the 
estimates on h2 from Step 2, dist(Φ(x), ∂Rd+)≂ dist(x, ∂𝒪) and (A.11).

For the general case, we proceed by induction on |α| ≥ 1. We prove that

|dist(x, ∂𝒪)|(|α|−ℓ0−λ0)+∥D|α|h1(x)∥ ≤ C [𝒪]Cℓ,λ , x ∈𝒪, (A.12)

for all ℓ0 ∈ {0, . . . , ℓ} and λ0 ∈ [0, λ]. Recall that for f : Rd ⊇ U → Rd , x ∈ U and n ∈ N1, 
the n-th order Fréchet derivative Dnf (x) is an n-linear mapping from (Rd)n to Rd , i.e., for 
(ξ1, . . . , ξn) ∈ (Rd)n we have Dnf (x)(ξ1, . . . , ξn) ∈Rd .

The statement (A.12) for |α| = 1 is proved above. Let m ≥ 1 and assume that (A.12) holds for 
all |α| ≤ m, ℓ0 ∈ {0, . . . , ℓ} and λ0 ∈ [0, λ]. It remains to prove (A.12) for |α| = m + 1.

By taking derivatives of the formula (A.4), isolating the highest-order derivatives on Φ and 
applying the multivariate Faà di Bruno’s formula, we obtain the estimate (see [8, Lemma 4])

∥Dm+1Φ(x)∥ ≲ ∥DΦ(x)∥ ·
m+1∑︂
j=2 

∥(DjΦ−1)(Φ(x))∥ ·
∑︂
β

m ∏︂
r=1

∥DrΦ(x)∥βr , x ∈ 𝒪,

(A.13)

where β ∈Nm
0 are such that

m ∑︂
βr = j and 

m ∑︂
rβr = m + 1. (A.14)
r=1 r=1 
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Note that ∥DΦ(x)∥ is uniformly bounded by (A.11) and that for n ≥ 2 we have ∥Dnh1∥ =
∥DnΦ∥ and ∥Dnh2∥ = ∥DnΦ−1∥. Therefore, multiplying (A.13) with |dist(x, ∂𝒪)|(m+1−ℓ0−λ0)+ ,
it suffices to show the uniform boundedness of

|dist(x, ∂𝒪)|(m+1−ℓ0−λ0)+∥(Djh2)(Φ(x))∥
m ∏︂

r=2

∥Drh1(x)∥βr , (A.15)

for j ∈ {2, . . . ,m + 1} and β such that (A.14) holds. Suppose that there exist κ, κ2, . . . , κm ∈
(0,∞) such that

(j − ℓ − λ)+ ≤ κ ≤ j

(r − ℓ − λ)+ ≤ κr ≤ r, r ∈ {2, . . . ,m} (A.16)

and

κ +
m ∑︂

r=2 
βrκr = (m + 1 − ℓ0 − λ0)+. (A.17)

Then, (A.15) can be estimated as

|dist(x, ∂𝒪)|κ∥(Djh2)(Φ(x))∥
m ∏︂

r=2

(︁|dist(x, ∂𝒪)|κr ∥Drh1(x)∥)︁βr ≤ C [𝒪]Cℓ,λ , (A.18)

where we have applied the induction hypothesis (A.12) and the estimates for h2 from Step 2 
together with dist(Φ(x), ∂Rd+) ≂ dist(x, ∂𝒪). It remains to show the existence of κ’s satisfying 
(A.16) and (A.17). We distinguish several cases.

If m + 1 ≤ ℓ0, then (m + 1 − ℓ0 − λ0)+ = 0 and we can take κ = κ2 = · · · = κm = 0. From 
now on, we assume that m ≥ ℓ0. If j ≥ ℓ0 + 1, then we can take

κ = j − ℓ0 − λ0 and κr = r − 1 for r ∈ {2, . . . ,m},

and (A.14) implies that (A.17) is satisfied. For the remaining case j ≤ ℓ0, we will not provide 
the explicit values of the κ’s, but only show the existence of the κ’s. Taking the largest possible 
κ’s in (A.16), gives

κ +
m ∑︂

r=2 
βrκr = j +

m ∑︂
r=2 

rβr = j + m + 1 − β1 ≥ m + 1 − ℓ0 − λ0,

where we have used (A.14) and β1 ≤ j . We will now take the smallest possible κ’s in (A.16). 
First assume that m ≥ ℓ + 1 and that there exists an ˜︁r ∈ {ℓ + 1, . . . ,m} such that β˜︁r ≥ 1. In this 
case, we have
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κ +
m ∑︂

r=2 
βrκr = (j − ℓ − λ)+ +

m ∑︂
r=2 

(r − ℓ − λ)+βr =
m ∑︂

r=ℓ+1

(r − ℓ − λ)βr

≤
m ∑︂

r=1 
rβr − (ℓ + λ)

m ∑︂
r=ℓ+1

βr = m + 1 − (ℓ + λ)

m ∑︂
r=ℓ+1

βr

≤ m + 1 − ℓ − λ ≤ m + 1 − ℓ0 − λ0,

where we have used (j − ℓ − λ)+ ≤ (j − ℓ0 − λ0)+ = 0 and (A.14). If m ≤ ℓ or βr = 0 for all 
r ∈ {ℓ + 1, . . . ,m}, then κ + ∑︁m

r=2 βrκr = 0 ≤ m + 1 − ℓ0 − λ0. The existence of the κ’s shows 
that (A.18) holds. This finishes the induction.

Finally, we remark that the estimates on h1 and h2 imply that if h ∈ C
ℓ,λ
c (Rd−1), then Φ ∈

Cℓ,λ(𝒪;Rd) and Φ−1 ∈ Cℓ,λ(Rd+;Rd). This proves that Φ is a Cℓ,λ-diffeomorphism and this 
finishes the proof of (iv). □

To prepare for the proof of Lemma A.5, we prove the following elementary lemma.

Lemma A.7. Let A and B be d × d-matrices. If det(A) ≠ 0 and ∥A∥d−1∥B∥ · |det(A)|−1 < 1, 
then we have

|det(A + B)| ≥ |det(A)|
(︂

1 − ∥A∥d−1∥B∥
|det(A)| 

)︂d

.

Proof. Let 0 < σ1 ≤ · · · ≤ σd be the singular values of A. Then we have

∥A−1∥ = 1 
σ1

=
∏︁d

j=2 σj

|det(A)| ≤
∥A∥d−1

|det(A)| .

In particular, we have ∥A−1B∥ ≤ ∥A−1∥∥B∥ ≤ ∥A∥d−1∥B∥·|det(A)|−1 < 1. Now let λ1, . . . , λd

be the eigenvalues of A−1B . Then |λj | ≤ ∥A−1B∥ < 1 for all j ∈ {1, . . . , d} and

|det(Id + A−1B)| =
d∏︂

j=1

|1 + λj | ≥
d∏︂

j=1

1 − |λj | ≥ (1 − ∥A−1B∥)d ,

which, combined with the norm estimate for ∥A−1∥, yields

|det(A + B)| = |det(A)||det(Id + A−1B)|

≥ |det(A)|(1 − ∥A−1B∥)d ≥ |det(A)|
(︂

1 − ∥A∥d−1∥B∥
|det(A)| 

)︂d

,

finishing the proof. □
To conclude this appendix, we give the proof of Lemma A.5.
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Proof of Lemma A.5. Let φ ∈ C∞
c (Rd−1) be a non-negative and radially symmetric function 

with its support in the unit ball such that 
∫︁
Rd−1 φ(˜︁x) d˜︁x = 1. Define h ∈ C1

c (Rd−1) such that 
𝒪 = {x ∈Rd : x1 > h(˜︁x)}, see Definition 2.8. Furthermore, let

ν(x) = (︁
1,˜︁ν(˜︁x)

)︁⊤ = (︁
1,−∇˜︁xh(˜︁x)

)︁⊤
, x ∈Rd, (A.19)

be an inward pointing normal vector at ∂𝒪.
Step 1: proof of (i), (ii) and (iii). Define the mapping Ψ :Rd → Rd given by

Ψ(y) := (y1 + h2(y),˜︁y +˜︁h2(y)), where

h2(y) :=
∫︂

Rd−1

h(˜︁y − L−1y1˜︁z)φ(˜︁z) d˜︁z,
˜︁h2(y) := y1˜︁𝒱(y) := y1

∫︂
Rd−1

˜︁ν(˜︁y − L−1y1˜︁z)φ(˜︁z) d˜︁z,
for some suitable L > 0 to be chosen later. Note that Ψ maps ∂Rd+ to ∂𝒪. It holds that 
h2 ∈ C1(Rd) ∩ C∞(Rd \ ∂Rd+). Furthermore, we claim that ˜︁h2 ∈ C1(Rd ;Rd−1) ∩ C∞(Rd \
∂Rd+;Rd−1). Indeed, it is clear that ˜︁h2 ∈ C(Rd ;Rd−1) ∩ C∞(Rd \ ∂Rd+;Rd−1) since ˜︁ν =
−∇˜︁xh ∈ C(Rd−1;Rd−1). Note that

∂1˜︁h2(0,˜︁a) = lim 
y1→0

y1˜︁𝒱((y1,˜︁a))

y1
= ˜︁𝒱(0,˜︁a) =˜︁ν(˜︁a), ˜︁a ∈ Rd−1,

and all the tangential partial derivatives of ˜︁h2 at ∂Rd+ are zero. If y ∈ Rd \ ∂Rd+ and |α| = 1, 
then by a similar computation as (A.9) (with |β| = 1, β = 0, ℓ0 = 0 and h replaced by ˜︁ν) and a 
substitution ˜︁z ↦→˜︁y − L−1y1˜︁z, we obtain

∂α˜︁𝒱(y) = y−1
1

(︂y1

L 

)︂1−d
∫︂

Rd−1

˜︁ν(˜︁z)φ0,α,0

(︂ (˜︁y −˜︁z)L
y1

)︂
d˜︁z

= y−1
1

∫︂
Rd−1

˜︁ν(˜︁y − L−1y1˜︁z)φ0,α,0(˜︁z) d˜︁z,
where φ0,α,0 ∈ C∞

c (Rd−1) and 
∫︁

φ0,α,0(˜︁z) d˜︁z = 0. Let y = (y1,˜︁y) ∈Rd \ ∂Rd+, then we obtain

∂y1
˜︁h2(y) = ˜︁𝒱(y) + y1∂y1

˜︁𝒱(y) =
∫︂

Rd−1

˜︁ν(˜︁y − L−1y1˜︁z)[︁φ(˜︁z) + φ0,e1,0(˜︁z)]︁d˜︁z,
∂yj

˜︁h2(y) = y1∂yj
˜︁𝒱(y) =

∫︂
Rd−1

˜︁ν(˜︁y − L−1y1˜︁z)φ0,ej ,0(˜︁z) d˜︁z, j ∈ {2, . . . , d}.
(A.20)

By applying the dominated convergence theorem and the properties of φ and φ0,ej ,0 for j ∈
{1, . . . , d}, we find that for all ˜︁a ∈Rd−1
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lim 
y→(0,˜︁a)

∂y1
˜︁h2(y) =˜︁ν(˜︁a) and lim 

y→(0,˜︁a)
∂yj

˜︁h2(y) = 0, j ∈ {2, . . . , d}.

Hence, all the partial derivatives of ˜︁h2 at ∂Rd+ exist and are continuous. Therefore, ˜︁h2 ∈
C1(Rd ;Rd−1) and we have proved the claim.

The Jacobian matrix of Ψ is given by

DΨ(y) =
(︃

1 + ∂y1h2(y) (∇˜︁yh2(y))⊤
∂y1

(︁
y1˜︁𝒱(y)

)︁
Id−1 + y1D˜︁y˜︁𝒱(y)

)︃
= DΦ(y) +

(︃
0 0

∂y1

(︁
y1˜︁𝒱(y)

)︁
y1D˜︁y˜︁𝒱(y)

)︃
=: DΦ(y) + P(y), y ∈ Rd,

(A.21)

where Φ is as defined in the proof of Lemma A.4 (see (A.2)) and P is a perturbation. To show that 
the mapping Ψ is invertible, we make use of Lemma A.7 applied to A = DΦ and B = P . Note 
that (A.20) implies supy∈Rd ∥P(y)∥ ≤ C[𝒪]C1 . Furthermore, we recall from Lemma A.4(iv)

and the definition of Φ that supy∈Rd ∥DΦ(y)∥ ≤ C. From Lemma A.7, (A.3) and the before 
mentioned estimates, we obtain that there exists a Λ ∈ (0,1) such that if [𝒪]C1 ≤ Λ, then

inf 
y∈Rd

|detDΨ(y)| ≥ inf 
y∈Rd

|detDΦ(y)|
(︂

1 − ∥DΦ(y)∥d−1∥P(y)∥
|detDΦ(y)| 

)︂d

≥ c(1 − C[𝒪]C1)
d ≥ c(1 − CΛ)d > 0,

for some C,c > 0.
Using Hadamard’s inverse function theorem, we can argue similarly as in the proof of 

Lemma A.4 to obtain an inverse Ψ ∈ C1(Rd;Rd) ∩ C∞(Rd \ ∂𝒪;Rd) to Ψ. We will write 
Ψ−1 for Ψ.

Moreover, if x ∈𝒪 and y = Ψ(x) ∈ Rd+, then by the definition of Ψ−1 = Ψ it holds that

Ψ1(x) = y1 = x1 − h2(y) = x1 − h2(Ψ(x)),˜︁Ψ(x) =˜︁y =˜︁x −˜︁h2(y) =˜︁x −˜︁h2(Ψ(x)),
(A.22)

and hence we can write Ψ(x) = (x1 − h1(x),˜︁x − ˜︁h1(x)) with h1(x) = h2(Ψ(x)) and ˜︁h1(x) =˜︁h2(Ψ(x)). This completes the proof of (i) and (iii). Statement (ii) follows similarly as in the proof 
of Lemma A.4(ii).

Step 2: proof of (iv). We prove that the diffeomorphism Ψ is admissible for any x ∈ ∂𝒪. First, 
note that

(∂y1h2(y))|y1=0 = −L−1(∇h)(˜︁y) ·
∫︂

Rd−1

˜︁zφ(˜︁z) d˜︁z = 0, y ∈ Rd,

where we have used the radial symmetry of φ to obtain that the latter integral vanishes, i.e., ∫︁
R ziφ(˜︁z) dzi = 0 for all i ∈ {2, . . . , d}. Together with (A.19), we see that the push-forward of 

Ψ = Ψ−1 (recall (A.21)) at the boundary ∂Rd+ is given by
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DΨ(0,˜︁y) =
(︃

1 (∇˜︁yh(˜︁y))⊤˜︁𝒱(0,˜︁y) Id−1

)︃
=

(︃
1 (∇˜︁yh(˜︁y))⊤

−∇˜︁yh(˜︁y) Id−1

)︃
, ˜︁y ∈ Rd−1.

It is clear that for all ˜︁y ∈ Rd−1, the push-forward DΨ(0,˜︁y) maps the normal vector (1,0) at ∂Rd+
to the normal vector ν(x) at ∂𝒪. Similarly, any tangent vector at ∂Rd+ is mapped to the tangent 
space at ∂𝒪. Moreover, note that the push-forward does not preserve the length of the vectors. 
This proves that Ψ = Ψ−1 is admissible for any y ∈ ∂Rd+, hence Ψ is admissible for any x ∈ ∂𝒪
as well.

Step 3: proof of (v). Let ℓ ∈N1, λ ∈ [0,1] and let 𝒪 be a special Cℓ,λ
c -domain with [𝒪]Cℓ,λ ≤

Λ. Note that the estimates on the derivatives of h2 follow immediately from Lemma A.4(iv). Let 
α = (α1,˜︁α) ∈ N0 ×Nd−1

0 , ℓ0 ∈ {0, . . . , ℓ} and λ0 ∈ [0, λ]. For the estimate on ∂α˜︁h2, we find with 
the product rule

|∂α˜︁h2(y)| ≲ |y1∂
α˜︁𝒱(y)| + |∂(α1−1,˜︁α)˜︁𝒱(y)|, y ∈ Rd+, (A.23)

where the latter term is only present if α1 ≥ 1. Since ˜︁𝒱 is obtained by mollifying ˜︁ν = −∇h, we 
can redo Step 2 in the proof of Lemma A.4 but with h replaced by −∇h, to obtain

|∂β˜︁𝒱(y)| ≤ C [𝒪]Cℓ,λ y
−(|β|+1−ℓ0−λ0)+
1 , y ∈ Rd+, β ∈ Nd

0 .

Applying this estimate to (A.23) gives the desired estimates for ˜︁h2.
It remains to prove the estimates on h1 and ˜︁h1, which are defined as below (A.22). Hence, as 

h2 and ˜︁h2 are bounded, we find that h1 and ˜︁h1 are bounded as well. To prove the estimates on 
the derivatives ∂αh1 and ∂α˜︁h1 for |α| ≥ 1, one can proceed by induction similar to Step 3 in the 
proof of Lemma A.4. □
References

[1] A. Agresti, M.C. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces part I. Stochastic 
maximal regularity and local existence, Nonlinearity 35 (8) (2022) 4100--4210.

[2] A. Agresti, M.C. Veraar, Nonlinear SPDEs and maximal regularity: an extended survey, Nonlinear Differ. Equ. 
Appl. 32 (6) (2025) 1--123.

[3] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory, Monographs in Mathematics, 
vol. 89, Birkhäuser Boston Inc., Boston, MA, 1995.

[4] W. Arendt, Gaussian estimates and interpolation of the spectrum in Lp , Differ. Integral Equ. 7 (5--6) (1994) 
1153--1168.

[5] W. Arendt, M. Bernhard, M. Kreuter, Elliptic problems and holomorphic functions in Banach spaces, Ill. J. Math. 
64 (3) (2020) 331--347.

[6] J. Bergh, J. Löfström, Interpolation Spaces, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer
Verlag, Berlin-New York, 1976.

[7] M. Bulíček, L. Diening, S. Schwarzacher, Existence, uniqueness and optimal regularity results for very weak solu
tions to nonlinear elliptic systems, Anal. PDE 9 (5) (2016) 1115--1151.

[8] P.G. Ciarlet, P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods, 
Comput. Methods Appl. Mech. Eng. 1 (2) (1972) 217--249.

[9] G.M. Constantine, T.H. Savits, A multivariate Faà di Bruno formula with applications, Trans. Am. Math. Soc. 
348 (2) (1996) 503--520.

[10] B.E.J. Dahlberg, Lq -estimates for Green potentials in Lipschitz domains, Math. Scand. 44 (1) (1979) 149--170.
[11] B.E.J. Dahlberg, On the Poisson integral for Lipschitz and C1-domains, Stud. Math. 66 (1) (1979) 13--24.
[12] B.E.J. Dahlberg, Poisson semigroups and singular integrals, Proc. Am. Math. Soc. 97 (1) (1986) 41--48.
[13] B.E.J. Dahlberg, C.E. Kenig, J. Pipher, G.C. Verchota, Area integral estimates for higher order elliptic equations 

and systems, Ann. Inst. Fourier 47 (5) (1997) 1425--1461.
68 

http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8D33AE5D49F2E238B259161CBA4C2262s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8D33AE5D49F2E238B259161CBA4C2262s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib441C0A639F43F4505F5CC76D62E9601Ds1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib441C0A639F43F4505F5CC76D62E9601Ds1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1496A632155DACB264F1E75AE963B04As1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1496A632155DACB264F1E75AE963B04As1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8ED6DDE6813314C4D2C183844B66B6ABs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8ED6DDE6813314C4D2C183844B66B6ABs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibF5B5CB595B80A9724E61F7D143CA8CC4s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibF5B5CB595B80A9724E61F7D143CA8CC4s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibEEB910DACFB466FEBD111612E571B3E9s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibEEB910DACFB466FEBD111612E571B3E9s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib32DC7F469108E14B6E971855D11BA65Es1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib32DC7F469108E14B6E971855D11BA65Es1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibAA3B9A641CCC1768BF571BD3374AD7BEs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibAA3B9A641CCC1768BF571BD3374AD7BEs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1CF67EA9A1CF54DDD66F8E52F123E013s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1CF67EA9A1CF54DDD66F8E52F123E013s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib7A56620ED880BC93FD6E248C2DF47ABBs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibBB76A1D4056A2C0A02A1B9F61ECA5B00s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib91A58631DC52A44FD4ABEBD228B27840s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib7509DE0A5463C96A199371810D97A916s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib7509DE0A5463C96A199371810D97A916s1


N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
[14] E.B. Davies, Lp spectral independence and L1 analyticity, J. Lond. Math. Soc. 52 (1) (1995) 177--184.
[15] R. Denk, G. Dore, M. Hieber, J. Prüss, A. Venni, New thoughts on old results of R.T. Seeley, Math. Ann. 328 (4) 

(2004) 545--583.
[16] R. Denk, M. Dreher, Resolvent estimates for elliptic systems in function spaces of higher regularity, Electron. J. 

Differ. Equ. 2011 (109) (2011) 1--12.
[17] R. Denk, M. Hieber, J. Prüss, ℛ-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. 

Am. Math. Soc. 166 (788) (2003).
[18] R. Denk, M. Kaip, General Parabolic Mixed Order Systems in Lp and Applications, Operator Theory: Advances 

and Applications, vol. 239, Birkhäuser/Springer, 2013.
[19] R. Denk, R. Schnaubelt, A structurally damped plate equation with Dirichlet-Neumann boundary conditions, J. 

Differ. Equ. 259 (4) (2015) 1323--1353.
[20] H. Dong, D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. 

Math. 274 (2015) 681--735.
[21] H. Dong, D. Kim, On Lp-estimates for elliptic and parabolic equations with Ap weights, Trans. Am. Math. Soc. 

370 (2018) 5081--5130.
[22] H. Dong, D. Kim, H. Zhang, Neumann problem for non-divergence elliptic and parabolic equations with BMOx

coefficients in weighted Sobolev spaces, Discrete Contin. Dyn. Syst. 36 (9) (2016) 4895--4914.
[23] X.T. Duong, I. Holmes, J. Li, B.D. Wick, D. Yang, Two weight commutators in the Dirichlet and Neumann Laplacian 

settings, J. Funct. Anal. 276 (4) (2019) 1007--1060.
[24] M. Egert, On Kato’s Conjecture and Mixed Boundary Conditions, PhD thesis, Sierke Verlag, Göttingen, 2015.
[25] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, 

vol. 194, Springer-Verlag, New York, 2000.
[26] L.C. Evans, Partial Differential Equations, second edition, Graduate Studies in Mathematics, vol. 19, American 

Mathematical Society, 2010.
[27] E.B. Fabes, M. Jodeit Jr., N.M. Rivière, Potential techniques for boundary value problems on C1-domains, Acta 

Math. 141 (3--4) (1978) 165--186.
[28] C. Gallarati, M.C. Veraar, Maximal regularity for non-autonomous equations with measurable dependence on time, 

Potential Anal. 46 (3) (2017) 527--567.
[29] D. Gilbarg, L. Hörmander, Intermediate Schauder estimates, Arch. Ration. Mech. Anal. 74 (1980) 297--318.
[30] L. Grafakos, Classical Fourier Analysis, third edition, Graduate Texts in Mathematics, vol. 249, Springer, New York, 

2014.
[31] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman 

(Advanced Publishing Program), Boston, MA, 1985.
[32] P. Gurka, B. Opic, Continuous and compact imbeddings of weighted Sobolev spaces. II, Czechoslov. Math. J. 39 (1) 

(1989) 78--94.
[33] M.H.A. Haase, The Functional Calculus for Sectorial Operators, Operator Theory: Advances and Applications, 

vol. 169, Birkhäuser Verlag, Basel, 2006.
[34] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Analysis in Banach Spaces. Volume I: Martingales and 

Littlewood-Paley Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 63, Springer, 2016.
[35] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Analysis in Banach Spaces. Volume II: Probabilistic 

Methods and Operator Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 67, Springer, 2017.
[36] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Analysis in Banach Spaces. Volume III: Harmonic 

Analysis and Spectral Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 76, Springer, 2024.
[37] D.S. Jerison, C.E. Kenig, The Neumann problem on Lipschitz domains, Bull. Am. Math. Soc. (N.S.) 4 (2) (1981) 

203--207.
[38] D.S. Jerison, C.E. Kenig, The functional calculus for the Laplacian on Lipschitz domains, Journ. Equ. Dériv. Par

tielles (1989) 1--10.
[39] D.S. Jerison, C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1) 

(1995) 161--219.
[40] N.J. Kalton, P.C. Kunstmann, L. Weis, Perturbation and interpolation theorems for the H∞-calculus with applica

tions to differential operators, Math. Ann. 336 (4) (2006) 747--801.
[41] N.J. Kalton, E. Lorist, L. Weis, Euclidean structures and operator theory in Banach spaces, Mem. Am. Math. Soc. 

288 (1433) (2023).
[42] N.J. Kalton, L. Weis, The H∞-calculus and sums of closed operators, Math. Ann. 321 (2) (2001) 319--345.
[43] C.E. Kenig, J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (1) (2001) 

199--217.
69 

http://refhub.elsevier.com/S0022-0396(25)00911-8/bib0032749CAAACE14A0574CAD7A98D80A6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibBEC3C9A1E0267D0ACB7719B809132F09s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibBEC3C9A1E0267D0ACB7719B809132F09s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1C5F222EA0F284452496EA9970322448s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1C5F222EA0F284452496EA9970322448s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib354F5D04AD10932C66223EF23A322352s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib354F5D04AD10932C66223EF23A322352s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibF4E49B6CCB5D171DB4A313129AB08886s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibF4E49B6CCB5D171DB4A313129AB08886s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib42E457AC16EADA38030E0134EAD3291Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib42E457AC16EADA38030E0134EAD3291Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib59A9AF98C327C1F04660536F722FBD53s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib59A9AF98C327C1F04660536F722FBD53s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1EB35410FA6865BD59D2A291CEF222F9s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1EB35410FA6865BD59D2A291CEF222F9s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib4D8B3CB586B398EB0FE4C0DD1B6754F4s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib4D8B3CB586B398EB0FE4C0DD1B6754F4s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA936A07A8310E387C6CCA6D60F6BF2E7s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA936A07A8310E387C6CCA6D60F6BF2E7s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib65151F6E4645E673304861217226D0BEs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2B6A8D95039087056509756315041742s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2B6A8D95039087056509756315041742s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC7369CC86659E0DC9D99D0A1AD9577BEs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC7369CC86659E0DC9D99D0A1AD9577BEs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibE72D72D0E6C22124879D1C583FAA0FA3s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibE72D72D0E6C22124879D1C583FAA0FA3s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibE9DF0AA1558A56A1C45455498FB0E78Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibE9DF0AA1558A56A1C45455498FB0E78Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib666AA636C1A58D0A7C429854EC258858s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib0AB7219719D8A2148E47F5ED3D3757EBs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib0AB7219719D8A2148E47F5ED3D3757EBs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib436755CEB6D4DA455EB4F28D33A23C96s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib436755CEB6D4DA455EB4F28D33A23C96s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib6BDAF5580A38E72E36E2A0B24D636679s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib6BDAF5580A38E72E36E2A0B24D636679s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA7FFC544766EFA0609D55E1E035A7614s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA7FFC544766EFA0609D55E1E035A7614s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib39A8A9BDAEE577296F46D5B635CEC634s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib39A8A9BDAEE577296F46D5B635CEC634s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC4CD7CE69E6FE761276CF2282A733B44s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC4CD7CE69E6FE761276CF2282A733B44s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib717C5DD3A93CF5C859311BD075294A6Es1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib717C5DD3A93CF5C859311BD075294A6Es1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib43C2565C27371DB4051F55C126379BD6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib43C2565C27371DB4051F55C126379BD6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib5B299772083D6DCE5DB0C569D9375BDCs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib5B299772083D6DCE5DB0C569D9375BDCs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB80E6CF3BB014832DD8848E4F5E56509s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB80E6CF3BB014832DD8848E4F5E56509s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib136C2D48D620372E857A1588592067BFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib136C2D48D620372E857A1588592067BFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2E51D37D1A9EB0D37C44520495DBE474s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2E51D37D1A9EB0D37C44520495DBE474s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibAEDA4D586CD6E9F3C559B309D0035DFCs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB32F22FD675503491167E260A17EF4EAs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB32F22FD675503491167E260A17EF4EAs1


N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
[44] D. Kim, Trace theorems for Sobolev-Slobodeckij spaces with or without weights, J. Funct. Spaces 5 (3) (2007) 
471535.

[45] I. Kim, K.-H. Kim, A regularity theory for quasi-linear stochastic PDEs in weighted Sobolev spaces, Stoch. Process. 
Appl. 128 (2) (2018) 622--643.

[46] K.-H. Kim, On Lp-theory of stochastic partial differential equations of divergence form in C1 domains, Probab. 
Theory Relat. Fields 130 (4) (2004) 473--492.

[47] K.-H. Kim, On stochastic partial differential equations with variable coefficients in C1 domains, Stoch. Process. 
Appl. 112 (2) (2004) 261--283.

[48] K.-H. Kim, An Lp-theory of SPDEs on Lipschitz domains, Potential Anal. 29 (3) (2008) 303--326.
[49] K.-H. Kim, Lq(Lp)-theory of parabolic PDEs with variable coefficients, Bull. Korean Math. Soc. 45 (1) (2008) 

169--190.
[50] K.-H. Kim, An Lp-theory of stochastic PDEs of divergence form on Lipschitz domains, J. Theor. Probab. 22 (1) 

(2009) 220--238.
[51] K.-H. Kim, A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains, J. Theor. 

Probab. 27 (1) (2014) 107--136.
[52] K.-H. Kim, Erratum to ``An Lp -theory of stochastic PDEs of divergence form on Lipschitz domains'', J. Theor. 

Probab. 30 (2017) 395--396.
[53] K.-H. Kim, N.V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in C1 domains, SIAM J. 

Math. Anal. 36 (2) (2004) 618--642.
[54] K.-H. Kim, L. Lee, A weighted Lp-theory for parabolic PDEs with BMO coefficients on C1-domains, J. Differ. 

Equ. 254 (2) (2013) 368--407.
[55] V.A. Kozlov, A. Nazarov, The Dirichlet problem for non-divergence parabolic equations with discontinuous in time 

coefficients in a wedge, Math. Nachr. 287 (10) (2014) 1142--1165.
[56] S.G. Krantz, H.R. Parks, The implicit function theorem, Modern Birkhäuser classics, Birkhäuser, 2002.
[57] N.V. Krylov, A Wn

2 -theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Relat. 
Fields 98 (1994) 389--421.

[58] N.V. Krylov, Some properties of weighted Sobolev spaces in Rd+ , Ann. Sc. Norm. Super. Pisa, Cl. Sci. 28 (4) (1999) 
675--693.

[59] N.V. Krylov, Weighted Sobolev spaces and Laplace’s equation and the heat equations in a half space, Commun. 
Partial Differ. Equ. 24 (9--105) (1999) 1611--1653.

[60] N.V. Krylov, The heat equation in Lq((0, T ),Lp)-spaces with weights, SIAM J. Math. Anal. 32 (5) (2001) 
1117--1141.

[61] N.V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, Graduate Studies in Mathematics, 
vol. 96, American Mathematical Society, 2008.

[62] N.V. Krylov, S.V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. 
Math. Anal. 31 (1) (1999) 19--33.

[63] A. Kufner, Weighted Sobolev Spaces, John Wiley & Sons, 1985.
[64] A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carol. 25 (3) (1984) 

537--554.
[65] P.C. Kunstmann, Heat kernel estimates and Lp spectral independence of elliptic operators, Bull. Lond. Math. Soc. 

31 (3) (1999) 345--353.
[66] P.C. Kunstmann, L. Weis, Perturbation theorems for maximal Lp -regularity, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 

(4) 30 (2) (2001) 415--435.
[67] P.C. Kunstmann, L. Weis, Maximal Lp-regularity for parabolic equations, Fourier multiplier theorems and H∞

functional calculus, in: Functional Analytic Methods for Evolution Equations, in: Lecture Notes in Math., vol. 1855, 
Springer, Berlin, 2004, pp. 65--311.

[68] P.C. Kunstmann, L. Weis, New criteria for the H∞-calculus and the Stokes operator on bounded Lipschitz domains, 
J. Evol. Equ. 17 (1) (2017) 387--409.

[69] G.M. Lieberman, Regularized distance and its applications, Pac. J. Math. 117 (2) (1985) 329--352.
[70] N. Lindemulder, E. Lorist, F.B. Roodenburg, M.C. Veraar, Functional calculus on weighted Sobolev spaces for the 

Laplacian on the half-space, J. Funct. Anal. 289 (8) (2025) 110985.
[71] N. Lindemulder, M. Meyries, M.C. Veraar, Complex interpolation with Dirichlet boundary conditions on the half 

line, Math. Nachr. 291 (16) (2017) 2435--2456.
[72] N. Lindemulder, M.C. Veraar, The heat equation with rough boundary conditions and holomorphic functional cal

culus, J. Differ. Equ. 269 (7) (2020) 5832--5899.
[73] S.V. Lototsky, Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equa

tions, Methods Appl. Anal. 7 (1) (2000) 195--204.
70 

http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1A3B70C0089F464798B39169527AE2C8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1A3B70C0089F464798B39169527AE2C8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib60E6924D9451B0577FBA3649223E6D61s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib60E6924D9451B0577FBA3649223E6D61s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2C22A612DA5423A2AFB1DA550019A485s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib2C22A612DA5423A2AFB1DA550019A485s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB98F3BA640CD2F28FA169DAA79D30A62s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibB98F3BA640CD2F28FA169DAA79D30A62s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib5DF4C4B4E0F289F90F4EBA6E113BBA6Fs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib301CE6CDD1CCE98C635A1A9F77C67061s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib301CE6CDD1CCE98C635A1A9F77C67061s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibFDBA2FF747E6FFFEBA761BFC049513F6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibFDBA2FF747E6FFFEBA761BFC049513F6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib3281F091ED6ED8A59E770360D684E47As1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib3281F091ED6ED8A59E770360D684E47As1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib61409C388E27C8AE39ECFCA5D9AB722Fs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib61409C388E27C8AE39ECFCA5D9AB722Fs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib90FD2E36A2A9BBE0530A006D4F3867B8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib90FD2E36A2A9BBE0530A006D4F3867B8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib0A1A7964853B3FDF2D8BA684B59A3BD0s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib0A1A7964853B3FDF2D8BA684B59A3BD0s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib4E435A4431BF435094BBE386CEFC8916s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib4E435A4431BF435094BBE386CEFC8916s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8DE3E56A85F05AD043635FF89B043A33s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib483BB03E1BB49FFE6768DBBCE5B31CDDs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib483BB03E1BB49FFE6768DBBCE5B31CDDs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib5CCC9C90D2FC5237019114F6F4A0ADA2s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib5CCC9C90D2FC5237019114F6F4A0ADA2s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibBF8C29F435B173357AFB53B9AE937322s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibBF8C29F435B173357AFB53B9AE937322s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibDC19719D59CDD7D334B6F07BCCF477FFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibDC19719D59CDD7D334B6F07BCCF477FFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib55FFE4974F3EDB26FBF5079CFA241B06s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib55FFE4974F3EDB26FBF5079CFA241B06s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibD8BE51867758AF4C35B75C1BC2ED1877s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibD8BE51867758AF4C35B75C1BC2ED1877s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC26AA4C9E36F587C52A38934ABE038ABs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib780EA4E3B499B7309C597A76463F2573s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib780EA4E3B499B7309C597A76463F2573s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1BCF7D52F9DB333E9CF0B2DE971836F8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib1BCF7D52F9DB333E9CF0B2DE971836F8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA5C09CFADDECA9D716742562FEBD9B84s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA5C09CFADDECA9D716742562FEBD9B84s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibEFBE2CA27A79A7EC2AE2B7BE450459D8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibEFBE2CA27A79A7EC2AE2B7BE450459D8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibEFBE2CA27A79A7EC2AE2B7BE450459D8s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib65B4524D135CD8C296014D7F815BA24Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib65B4524D135CD8C296014D7F815BA24Cs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib6D867153884B1EFBAE2AD97322EDF389s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8255BE4FF7E51AB8343F0F9AF52520CFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8255BE4FF7E51AB8343F0F9AF52520CFs1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC60DA6C7D5C25AEE1F0A168D108CB5E6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibC60DA6C7D5C25AEE1F0A168D108CB5E6s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8FEFB91F317A58BA2E6EB6CA35B25044s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bib8FEFB91F317A58BA2E6EB6CA35B25044s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA0DDBFE32874EA99ECE7D09C19EEB248s1
http://refhub.elsevier.com/S0022-0396(25)00911-8/bibA0DDBFE32874EA99ECE7D09C19EEB248s1


N. Lindemulder, E. Lorist, F.B. Roodenburg et al. Journal of Differential Equations 454 (2026) 113884 
[74] V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, Grundlehren der Mathematischen Wis
senschaften, vol. 337, Springer Berlin, Heidelberg, 2009.

[75] A. McIntosh, A. Yagi, Operators of type ω without a bounded H∞ functional calculus, in: Miniconference on 
Operators in Analysis, Sydney, 1989, in: Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., 
Canberra, 1990, pp. 159--172.
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