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Abstract

Sensing in smartphones consumes a significant amount of energy and leads
to quick depletion of the battery. Most of the existing solutions to over-
come the short battery lifetime caused by periodic sensing are personalized.
They tend to learn and predict the user activities. Thus, fewer samples
are required to recognize user state and sensing intervals can be extended.
However, such methods require a training phase and any change in the user
pattern causes a need for a new training phase. Therefore, in addition to
personalized learning methods, we also need user-agnostic techniques that
guarantee instant energy savings independently of the context to be recog-
nized. In this thesis a user-agnostic method that seeks to provide energy
efficiency in sensing is proposed. Our approach is based on the observation
that an energy overhead occurs every time the CPU is woken up to per-
form a sensor sampling task. Hence, our goal is to decrease the number
of CPU wake-ups incurred due to periodic sampling by combining multiple
sensing actions into one joint activity. Our contribution is a mechanism
that batches the execution of periodic tasks. BASS (BAtch Scheduler for
Sensing) uses the greatest common divisor of the time intervals defined for
the sensor sampling tasks. It also introduces a flexibility factor that implies
the time delay tolerance regarding the execution of a task. Moreover, our
tool implements a detection method for CPU wake-ups caused by any other
application or the user. Based on the above, BASS applies batch scheduling
to execute the sensor sampling tasks in batches and result in fewer CPU
wake-ups. We evaluated our mechanism using a sensing application for
monitoring patients that suffer from Rheumatic Arthritis. We conducted
a number of experiments on an HTC Sensation phone, which showed that
the efficient exploit of CPU wake-ups cuts down the energy consumption in
mobile sensing. The BASS tool achieved an average power reduction of up
to 44% and 18% in laboratory and real-world experiments respectively, in
our application scenario, without compromising sensing time accuracy.
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Chapter 1

Introduction

Smartphones are enhanced with a number of sensors, including accelero-
meter, Global Positioning System (GPS), microphone, Wi-Fi, Bluetooth
etc. Sensing provides phone users the ability to capture their context, re-
cognize their state and extract information regarding their current environ-
ment. Context awareness allows the smartphone to become more adaptive
to situational changes, such as to adjust the screen brightness and ring tone
volume to the appropriate level with respect to a bright or dark, respectively
in a noisy or quiet place. Moreover, the contextual data could be useful to
several applications and services. An indicative example is a healthcare ap-
plication that helps people who suffer from depression to gather information
about their mood. Gathered data then assist clinicians in guiding them.

A project that seeks to facilitate the collection of data using the sensors
of mobile devices is the Sense Platform [8] (the Sense Platform user inter-
face is shown in Figure 1.1), developed at the company Sense Observation
Systems [7], where this thesis project was carried out. In this platform, data
are processed (either on the device or in the cloud) to produce meaningful
information (state sensors) about the person wearing the device and the
person’s environment. Some examples of detectable states are the following:

• Activity of a person (e.g., walking, riding a bike, sleeping, working,
attending a meeting)

• Location of a person (e.g., at home, work, gym)

• Social context (e.g., crowded or quiet place)

Sense is especially interested in real-time detection of the above states.
However, in order to collect this information, continuous usage of the phone
CPU and sensors is required. As an example, the battery of a Nokia N95
is drained in less than 20 hours [18]. Obviously capturing data over a long
period of time is hard.

Most of the existing solutions require personalization relying on training
data sets [19] or a learning phase [29]. In both cases, Markov Models are
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Figure 1.1: Sense Platform GUI.

trained to generate statistical chains used to predict the next user state.
Prediction allows reduction in sensor sampling rates which means that less
energy is consumed. In addition to personalization, the majority of the
energy saving methods are specific sensor and context oriented e.g., [24]
targets the energy-efficient usage of GPS in position tracking. If the user
behaviour suggests repetitiveness, personalized methods can achieve energy
savings. On the other hand, changes in user pattern require a new training
phase for the Markov Model. During this period the method is ineffective
and may result in faulty predictions. We advocate the need for applica-
tion and user-agnostic methods that can also be used as a complement to
prediction-based methods. Such a method guarantees energy conservation,
independently of the context to be recognized.

This thesis proposes a smart sensing scheduler that aims to reduce the
number of CPU wake-ups. In order to capture a sensor sample, the CPU has
to wake up and process the sample data. The CPU power state transitions
– from the sleep to the busy state and vice versa – imply an energy cost [27]
(illustrated in Figure 1.2). According to Min et al. the energy consumption
during these transitions is usually even higher than the CPU busy state
power consumption [22]. Thus, periodic sensor sampling incurs an energy
overhead every time that the CPU is woken up to perform the sampling
process. Our goal is to eliminate this overhead by scheduling the various

2



Figure 1.2: Transitions between different CPU states when capturing an
accelerometer sample.

sampling tasks in batches. This will result in fewer CPU wake-ups. To this
end, we also exploit the delay tolerance regarding the time of execution of a
sampling task. In particular, we create a scheduling mechanism that handles
the smartphone sensing requirements with respect to the balance between
energy conservation and sensor sampling time accuracy.

Batch scheduling [26] is the process of grouping a number of tasks into
batches before executing them on a computer. Solutions based on batch
scheduling have been applied in various fields such as production and trans-
portation [28] and parallel processing [23]. In the first case the purpose is
to provide a schedule of production and transportation that minimizes the
total completion time and total processing cost, while in the second case the
aim is to increase the throughput. As shown in Figure 1.3 the general idea
is that, given a set of sensor sampling tasks and the sensing parameters (e.g.
sampling rate), BASS (BAtch Scheduler for Sensing) generates a sensing
schedule of batched tasks.

Figure 1.3: Batch scheduling applied by BASS.

To analyse the performance of our solution, new software modules were
merged with the Sense Android library [6]. The Monsoon power monitor [4]
and Android logging system LogCat [2] were used throughout the evaluation
procedure.
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1.1 Problem Statement

The main goal of this thesis is to provide an application and user-agnostic
energy saving method that eliminates the CPU wake-up overhead due to the
periodic sensing on smartphones. BASS seeks to reduce the number of CPU
wake-ups in such a way as to capture the most accurate sensor data (in terms
of time), without draining the device battery in a short time. Our sampling
strategy applies batch scheduling on the various embedded sensors and also
exploits the CPU wake-ups caused by other applications. Our solution aims
to fulfil the requirements below:

Applicability Our mechanism has to guarantee energy conservation inde-
pendently of the subset of sensors that are used and the context or
state that is to be recognized. Furthermore, the energy savings have
to be instant and continuous regardless of possible patterns or changes
in user behaviour.

Flexibility Considering the miscellaneous sensing applications, different
levels of accuracy in the time of execution of a sensor sampling task
are demanded and thus the margin for energy savings varies. An ideal
mechanism should be flexible in handling the trade off between the
time of execution accuracy and energy consumption. In this thesis we
define as flexibility the time delay tolerance regarding the execution of
a task.

1.2 System Overview

The inputs into our system are a set of sensor sampling tasks, the corres-
ponding time intervals and flexibilities. Based on this data, our objective is
to schedule the execution of the tasks as to minimize the number of CPU
wake-ups and thus to decrease the energy consumed. To this end, BASS
applies batch scheduling in three ways:

1. Initially BASS groups the tasks based on the greatest common divisor
(gcd) of their time intervals.

2. Taking into consideration the flexibility, BASS postpones their time
of execution in order to overlap each other.

3. Finally, BASS opportunistically executes a task when it detects that
the CPU is woken up to perform a task for another application.

The above techniques are discussed in detail in Chapter 4.
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1.3 Organization

This thesis is organized as follows. Chapter 2 consists of more background
information regarding CPU wake-up energy overhead and batch schedul-
ing. In Chapter 3 the overall design of BASS is presented. The detailed
description of its implementation is included in Chapter 4. The results from
experiments conducted are discussed in Chapter 5. Finally, conclusions and
future work are given in Chapter 6.
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Chapter 2

Background and Related
Work

The purpose of this chapter is to provide the background needed for BASS,
as well as to discuss the related work. In Section 2.1 we describe the CPU
power states and the process of CPU wake-up while the motivation behind
our approach is also presented. Finally, in Section 2.2 related work is dis-
cussed.

2.1 CPU Energy Consumption

Energy consumption due to CPU usage in computational devices (such as
smartphones) can be described using indicative terms regarding the different
CPU states and transitions between them. These states are defined based
on the CPU power states (see Subsection 2.1.1). A transition of special
interest with regard to energy consumption is the one when the CPU wakes
up (see Subsection 2.1.2). Since the smartphones used in this thesis use
the Linux-based Android operating system [3], the following information
concerns Android type of platforms.

2.1.1 Power States

The Advanced Configuration Power Interface (ACPI) defines the degree to
which the processor is “sleeping” by specifying core power states known as
the CPU C-states. Table 2.1 provides an overview of the main C-states. C0
indicates that the processor is actively running code while all other C-states
(C1-Cn) describe states where the processor clock is disabled and various
parts of the processor are shut-off [20].

While a processor operates (i.e. the CPU is in the C0 state), it can be in
one of several CPU performance states (P-states). P-states are operational
states that relate to CPU frequency and voltage. Drivers known as CPU
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C-State Description

C0 CPU fully turned on

C1 Stops CPU main internal clocks via software

C1E Stops CPU main internal clocks via software and reduces CPU voltage

C2 & up Stops CPU main internal clocks via hardware

Table 2.1: CPU C-states.

governors use P-states to raise and lower the frequency in response to the
demands of the applications running [25]. Changes in the frequency allow to
lower the voltage and thus impact energy consumption in a squared manner.
This is modelled by the CPU power consumption formula P = CV 2f , where
C is capacitance, f is frequency and V is voltage.

In this thesis, the CPU power consumption is expressed using the conven-
tion of two representative states: The busy state where the CPU is executing
some task (i.e., the CPU is in the C0 state) and the sleep state where the
phone is in deep-sleep mode and barely consumes energy (i.e., the CPU is
in C1 or a higher state). We also define the transitions from the sleep to
busy and from busy to sleep state as wake-up and going-to-sleep, respect-
ively. Whenever the system is woken up by an interrupt, it enables the
interrupt handler and other hardware components, wakes up the CPU and
resumes past processes [14]. In particular, during the wake-up transition,
a mechanism that keeps the CPU on – the wakelock [9] – is acquired and
released right after the completion of the operation that is to be performed.
In case there are no wakelocks acquired, the system freezes all processes and
suspends the CPU and hardware components. The states and transitions
that we described are illustrated in Figure 2.1.

Figure 2.1: CPU power states and transitions.
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2.1.2 Wake-up Overhead

The wake-up transition implies extra energy cost. The reason is that waking
up from deeper CPU sleep states requires longer times in higher frequency
states [20]. Thus according to the CPU power consumption formula an
energy overhead is induced. Taking this into consideration, the energy con-
sumed in order to perform a task (e.g., process of sensory data) is described
by defining the following three attributes:

• Ew: Energy spent in wake-up transition.

• Es: Energy spent in going-to-sleep transition.

• Eb: Energy spent in busy state.

Figure 2.2 illustrates the above energy costs.

Figure 2.2: Energy spent in different power states.

We also conventionally define the CPU energy overhead Eo as the sum of
wake-up and going-to-sleep transition energy costs:

Eo = Ew + Es (2.1)

From the above it is deduced that for the execution of N tasks Enworst

energy is consumed:
Enworst = N(Eb + Eo) (2.2)

It follows that, if CPU is able to merge all the N tasks in one joint task,
the energy consumed is

Enbest
= NEb + Eo. (2.3)

If we assume that K out of N tasks coincide and thus only one wake-
up is required for each of them, the number of wake-ups L becomes L =
(N −K + 1) and energy consumption is

En = NEb + LEo. (2.4)

Most smartphone applications require their tasks to be executed period-
ically, with a certain time interval between each execution. In the case of
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Sense Platform, each sensor samples in accord with a time interval specified
by the user. Thus, if N different sensors are about to sample and K of these
samples coincide the consumed energy can be described by (2.4). An ideal
energy-aware scheduling of these sampling tasks maximizes the coincidences
in order to minimize the energy consumption. However, the time interval for
each sensor can be different and therefore an optimized schedule is needed.

In this thesis it is also taken into consideration the fact that in the mean-
time the CPU may have been woken-up by some other application or the
user. Brouwers et al. describe a technique with which it is possible to detect
when the CPU is awakened by some application [12]. Specifically, because
of the way that the Thread.sleep() method is implemented in Android, the
timers on which the sleeping behaviour relies are frozen once the processor is
in the sleep state. Hence, a sleeping thread will continue its execution once
CPU is woken up by another process. In this thesis we are motivated by
this knowledge. We make our scheduler aware of CPU wake-ups caused by
any other application and able to opportunistically execute tasks in order to
prevent a CPU wake-up later on. However, to achieve such a behaviour, we
exploit the different options provided by the Alarm Manager [1] of Android
(the exact methodology is described in Chapter 4).

2.2 Related Work

In this section we present the current state of the art with respect to en-
ergy efficient sensing in smartphones. The existing solutions are categorized
as prediction-based (Subsection 2.2.1) and specific-sensor oriented (Subsec-
tion 2.2.2). We also discuss the related work regarding the three different
aspects of our scheduling mechanism as they are enumerated in Chapter 1
(see Subsection 2.2.3).

2.2.1 Prediction-based Methods

Prediction-based approaches for energy conservation require personalization.
They recognize the habitual behaviour of the user. In this way they can
predict his next state and decrease the sampling rates. Such a solution is
proposed by Wang et al. Continuing their previous work [30], the authors
describe an approach to estimate the most likely user state when sensor
observations are missing [29]. Their solution is based on the assumption that
user state evolves as a discrete time semi-Markov process. The time interval
between each observation is adjusted so as to minimize the expected state
estimation error while maintaining an energy consumption budget. Their
approach however is admissible to criticism. Wang et al. consider the sense
observations to be perfect which is unlikely due to factors such as location
provider inaccuracy or noise in sound sensing. Another disadvantage is that
the mechanism provided relies on a learning phase which is conducted once.

10



This renders the estimation policy maladaptive to changes in user behaviour.
Furthermore, a communication overhead is required. The calculation of state
estimation takes place in a server.

Gordon et al. present a methodology that matches sensor configurations
to activities (the number of sensors depends on an acceptable loss para-
meter) [19]. The authors use a first-order Markov chain to predict the next
activity and switch on/off the corresponding sensors. However, the predic-
tion algorithm lacks adaptiveness as it depends on the initially used training
data set. Furthermore, the same and constant sampling rate is defined for
all the sensors.

2.2.2 Specific-Sensor Oriented Approaches

Specific-sensor oriented approaches target the energy-efficient usage of par-
ticular sensors. Paek et al. describe a tool developed based on a collection of
techniques for efficient use of GPS [24]. In general, the location-time history
of the user is exploited in order to eliminate the use of GPS in case it is
unproductive. This approach focuses on energy conservation only from the
perspective of limited GPS usage. The accelerometer is duty-cycled in an
empirical way. The mechanism proposed in [15] schedules the use of the
different location providers given an average localization error. In addition,
prediction opportunities are exploited by generating a logical mobility tree
that includes uncertainty points (e.g. traffic intersections) after which a loc-
ation reading is necessary. A drawback of this solution is that the usage of
a linear predictor may be unsuitable in case the phone’s movement is not
straight. Moreover, according to the authors, varying speeds or pauses in
user mobility cause the prediction to be imprecise.

Besides the location-oriented approaches, another method describes an
activity-adaptive accelerometer for activity recognition [31]. Depending
in the identified current activity, the algorithm determines the most effi-
cient – both in terms of accuracy and energy consumption – combination
of sampling frequency and classification features (e.g. mean, variance, etc).
However, the energy cost of the accelerometer is rather trivial compared
to other sensors (see Chapter 3). This solution is ineffective in case of an
application that uses multiple sensors.

2.2.3 Batch Scheduling Techniques

BASS applies batch scheduling using three different features: (1) The greatest
common divisor (gcd) of the sampling time intervals, (2) the flexibility re-
garding the time of execution of the sampling tasks, (3) the detection of
CPU wake-ups caused by other applications. With respect to the above, we
discuss related work in various fields other than smartphone sensing:

11



Greatest common divisor (gcd) In an already existing approach, batch
scheduling is applied in order to accumulate the clock interrupts needed
to be sent to a Virtual Machine (VM) [10]. The proposed algorithm
introduces a batching factor N and, given the VM time period T , dis-
patches N interrupts every T ×N . Although such a batch scheduling
is efficient for a fixed time interval such as in the case of time period
T , it is rather rigid for interrupts occurred in variable time intervals
(i.e., periodic sensor samples). Another batch scheduling technique
addresses the case of recurrent applications [13]. The gcd of the differ-
ent application time intervals is used in order to enforce the execution
of applications with gcd greater than 1 to coincide and thus to have
fewer CPU wake-ups. However, the algorithm described is eligible
only in the case that the gcd is equal to the smallest interval. In the
worst case scenario where time intervals gcd is equal to 1, it results in
redundant wake-ups. Such an approach is inadequate in our case as
it overlooks some arbitrary events (e.g. CPU wake-up caused by the
user or another application) and possible time delay tolerance in the
execution of a task.

Flexibility Similarly to our flexibility, Davis et al. make use of slack time
in pre-emptive systems scheduling [16]. However, in contrast to our
BASS where the objective is to batch the execution of the tasks, this
algorithm aims to satisfy the task priorities. Another method aims
to optimize performance and minimize energy consumption in hetero-
geneous Network-on-Chip architectures via communication and com-
putation task scheduling [21]. A heuristic algorithm based on slack
budgeting and performance constraints is proposed. While this ap-
proach exploits the multiple tiles in heterogeneous platforms, BASS
provides a solution that is efficient even in single-core processor sys-
tems.

Balasubramanian et al. describe a scheduling algorithm that reduces
the energy overhead of mobile networking [11]. The authors exploit
the time delay tolerance regarding the transmission requests in order
to defer them in such a manner that they are sequentially transmitted.
This way, tail energy (i.e. energy wasted in high-power states after the
completion of a transfer) is minimized. This approach seeks to elimin-
ate the energy overhead in networking resources usage. BASS on the
other hand, applies a scheduling strategy to decrease the correspond-
ing overhead caused by the processing unit use.

CPU wake-ups detection Diao et al. [17] apply machine learning and
particularly a Dynamic Bayesian Network (DBN) model to export the
CPU activity pattern for a multi-core package and predict the next
states in a given horizon. This algorithm aims to improve busy state

12



duration prediction accuracy, however it incurs a prohibitive computa-
tional overhead as it requires frequent predictions. On the other hand,
Min et al. provide an estimator that predicts the next CPU sleep state
duration based on recent history [22]. The authors propose a mech-
anism to predict deterministic and stochastic interrupts that end the
sleep state.

BASS elaborates and combines most of the above concepts, providing a
system that integrates different energy conservation methods. Thus, a more
flexible and robust scheduling mechanism is generated and implemented.
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Chapter 3

Energy Analysis

This chapter provides an energy analysis of smartphone sensing. Section 3.1
presents the devices used in the experiments conducted through the eval-
uation procedure. Section 3.2 provides an experimental analysis regarding
the energy consumed in CPU wake-up and sensor sampling.

3.1 Experimental Setup

Figure 3.1: Monsoon power monitor.

In this section we describe the setup that we use for our energy analysis
(see Section 3.2) and evaluation procedure (see Chapter 5). Our energy
measurements are conducted using the Monsoon power monitor shown in
Figure 3.1. Monsoon analyses the power consumption on any device that
uses a single lithium (Li) battery, hence it can be used for energy optimiza-
tion on mobile devices.

Throughout this thesis we perform measurements on three different smart-
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Phone Model Processor Android Version

HTC Sensation Dual-core 1.2 GHz Scorpion v2.3.4 (Gingerbread)

Samsung Galaxy Gio 800 MHz v2.2 (Froyo)

Samsung Galaxy S II Dual-core 1.2 GHz Cortex-A9 v4.0.4 (Ice Cream Sandwich)

Table 3.1: Phone models used in experiments.

phones: an HTC Sensation, a Samsung Galaxy Gio and a Samsung Galaxy
S II. Table 3.1 provides an overview of the phone models. We choose these
particular phones because of their variety both in terms of processor type
and Android version. For easy connection to the Monsoon, each phone bat-
tery is modified as shown in Figure 3.2. In particular, the battery is covered
with two layers of kapton tape. Between them, there are two strips of copper
tape. The one end of each strip is connected to one of the battery poles and
the other to a cable that can be hooked up to the Monsoon connectors.

Figure 3.2: Phone modified in order to connect to power monitor.

3.2 Energy Analysis

In Chapter 2 we defined the CPU energy overhead Eo as the sum of the
wake-up and going-to-sleep transition energy costs. In order to measure the
energy consumed in the overhead, we wake up the CPU without assigning
any task (i.e., the energy spent in busy state is trivial). Figure 3.3 illustrates
the measurements conducted using three different smartphones. As it is
shown, the overhead energy consumption exists and varies from phone to
phone.

16



Figure 3.3: Energy consumed in CPU energy overhead.

We conventionally define four indicative sensor sampling tasks that are
widely used in sensing applications, picked out from the main four classes
of sensors (Phone State, Motion, Location, Ambience):

• sstate: Detect the call state of the phone.

• saccel.: Obtain one accelerometer sample.

• swifi: Scan for single Wi-Fi channel.

• smic.: Record sound using the microphone for 5 seconds at 44100Hz
frequency.

We also define the cumulative task CS where S is the set of sensor sampling
tasks that are executed in batch (e.g. C{sstate,saccel.} is a cumulative task
that both detects the call state and captures an accelerometer sample). In
order to compare the energy consumption of different task configurations
to the energy consumption of the corresponding cumulative tasks we define
the tables Esum and Ebatch (see Table 3.2) respectively, where E(sn) sym-
bolizes the energy consumed for the execution of sn. Due to a technical
problem occurred in HTC Sensation during this experimental session, the
experiments for this comparison were conducted only on Samsung Galaxy
Gio and Samsung Galaxy S II. From the measurements illustrated in Fig-
ures 3.4a and 3.4b, it derives that for each and every combination of tasks
sstate to smic. the energy required to separately execute them is more than
when they are executed in a batch.

Thus, cumulating tasks guarantees energy savings for every possible com-
bination of sensor sampling tasks. What is more, we can observe that the

17



(a) Samsung Galaxy Gio.

(b) Samsung Galaxy S II.

Figure 3.4: Comparison of energy consumed by different sensor sampling
task combinations and corresponding cumulative tasks.
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Combination Abbreviation Esum Ebatch

state E(sstate) E(C{sstate})

accel. E(saccel.) E(C{saccel.})

state & accel. E(sstate) + E(saccel.) E(C{sstate,saccel.})

wifi E(swifi) E(C{swifi})

state & wifi E(sstate) + E(swifi) E(C{sstate,swifi})

accel. & wifi E(saccel.) + E(swifi) E(C{saccel.,swifi})

state & accel. & wifi E(sstate) + E(saccel.) + E(swifi) E(C{sstate,saccel.,swifi})

mic. E(smic.) E(C{smic.})

state & mic. E(sstate) + E(smic.) E(C{sstate,smic.})

accel. & mic. E(saccel.) + E(smic.) E(C{saccel.,smic.})

state & accel. & mic. E(sstate) + E(saccel.) + E(smic.) E(C{sstate,saccel.,smic.})

wifi & mic. E(swifi) + E(smic.) E(C{swifi,smic.})

state & wifi & mic. E(sstate) + E(swifi) + E(smic.) E(C{sstate,swifi,smic.})

accel. & wifi & mic. E(saccel.) + E(swifi) + E(smic.) E(C{saccel.,swifi,smic.})

state & accel. & wifi & mic.E(sstate) + E(saccel.) + E(swifi) + E(smic.)E(C{sstate,saccel.,swifi,smic.})

Table 3.2: The energy consumption for all possible combinations of tasks
sstate to smic., when they are executed separately (Esum) and batched
(Ebatch).

ratio between the energy savings for different task configurations is similar
in both Samsung Galaxy Gio and S II (e.g. cumulating sstate, saccel. and
swifi is in both cases the most effective combination in terms of energy sav-
ings, while cumulating swifi and smic. is the least effective). Hence, if we
assume that, in any given time range, a set of sensor sampling tasks have
to be performed and different cumulations are possible, the optimal set of
cumulations will be the same for both of the smartphones.

Based on the above results, in Chapter 4 we provide a software architec-
ture which handles a set of tasks in such a way that corresponding cumulative
tasks are generated.
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Chapter 4

Batch Scheduling

This chapter provides an overview of BASS and details all the steps per-
formed in order to reduce the number of CPU wake-ups that are occurred
due to the periodic sensing. In Section 4.1 the general principles are briefly
discussed while Section 4.2 describes the software architecture of BASS in
more detail. The methods presented in Sections 4.3, 4.4 and 4.5 are applied
on a set of sensor sampling tasks in order to generate equivalent cumulative
tasks.

4.1 General Idea

Contrary to already existing solutions (see Chapter 2) in this thesis we
propose an application and user agnostic approach for energy conservation
in mobile sensing. BASS schedules the execution of the sensor sampling tasks
in batches in order to reduce the number of CPU wake-ups. In particular,
BASS seeks to detect when two or more tasks can be scheduled to overlap
with each other or with the execution of another application task. The
functionality performed by BASS is described by the following steps:

1. The sensing application registers to BASS its sensor sampling tasks,
their time intervals and flexibility regarding their execution.

2. BASS groups the tasks in batches by superposing and shifting based
on the time intervals and available flexibility.

3. BASS generates cumulative tasks and the corresponding times of ex-
ecution.

Step 1 is discussed in further detail in Section 4.2 while steps 2 and 3 are
thoroughly described in Sections 4.3, 4.4 and 4.5.
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4.2 Software Architecture

In this section, we provide a software architecture (see Figure 4.1) which
handles a set of tasks such that corresponding cumulative tasks are gener-
ated. BASS consists of three main components:

Figure 4.1: BASS Software Architecture.

Input A set of sensor sampling tasks S = {s1, s2, ...sn}. Each task si =
{Ri, Ii, Fi} is described by a runnable Ri that operates the actual
sampling process, the time interval Ii between each execution of task
si and the flexibility Fi (i.e. the time delay margin regarding each
execution of this task).

Scheduler In Chapter 2 we defined En = NEb + LEo (where Eo is the
energy overhead) as the energy consumed for the execution of N tasks.
Given the input, our scheduler aims to schedule the times of execution
of the tasks in such a way so as to minimize the number of CPU
wake-ups (L) needed for the completion of the tasks.

Output The scheduler generates the next time of execution tnext and the
corresponding cumulative task CSnext (where Snext ⊆ S) that is sched-
uled to be executed.

In order to achieve the above described functionality, BASS applies a
number of batch scheduling techniques on the given input:

Greatest Common Divisor based Scheduling (GCD) GCD method max-
imizes the overlapping in the execution of the different tasks. It gath-
ers the tasks for which the time intervals have gcd greater than 1 and
schedules their executions in order to superpose.

Flexible GCD (F-GCD) In case there is another task scheduled within a
task’s flexibility margin, F-GCD shifts forward the second’s execution
and merges them in a cumulative task. The shifted task may even be
an already cumulative task.

Opportunistic Execution The Opportunistic method shifts backward the
execution of a task in case the CPU is woken up within its flexibility
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margin. Similarly to F-GCD, the shifted task may be a cumulative
task.

Below we present in detail these three methods. Their performance is eval-
uated in Chapter 5.

4.3 Greatest Common Divisor based Scheduling
(GCD)

We described the input to BASS as a set of sensor sampling tasks, where
each task consists of a runnable Ri, the time interval Ii and flexibility Fi

(i.e. si = {Ri, Ii, Fi}). In addition to these parameters, BASS introduces
the nextExecution of a task. The nextExecution property refers to the time
when the next execution of this task is scheduled. When a task is to be
scheduled for the first time, our scheduler follows the procedure described in
Algorithm 1. Initially the task whose time interval has the greatest common
divisor with the new task is found. The times of execution of these two tasks
are then scheduled to coincide. Thus, only one CPU wake-up is required
for the execution of both of them every time that their times of execution
overlap.

Data: new task
Result: next time of execution of new task
tasks ← get tasks();
found task ← null;
gcd ← 1;
foreach tasksi do

// find the task which has gcd with the new task

temp gcd ← gcd(new task.I, tasksi.I);
if temp gcd > gcd then

gcd ← temp gcd;
found task ← tasksi;

end

end
if gcd > 1 then

// executions scheduled to coincide

new task.nextExecution ← found task.nextExecution;

end
else

new task.nextExecution ← now();
end
return new task.nextExecution;

Algorithm 1: New Task Scheduling Algorithm.
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The example illustrated in Figures 4.2 and 4.3 shows a possible execution
of tasks s1 = {A, 2, 0} and s2 = {B, 4, 0} before and after GCD is applied.
As shown in Figure 4.2, a random schedule of the two tasks can result in
one CPU wake-up per task execution. One the other hand, when GCD
is applied (see Figure 4.3) the first execution of task s2 is scheduled to
coincide with the execution of task s1. Thus their executions will overlap
every s2.I

gcd(s1.I,s2.I) = 2 executions of s1. As it can be seen, GCD results in
reduction of the number of CPU wake-ups needed for the periodic execution
of the two tasks.

Figure 4.2: Tasks s1 and s2 are randomly scheduled, thus one CPU wake-up
per task execution is needed.

Figure 4.3: Tasks s1 and s2, with 2 and 4 minutes interval respectively and
gcd equal to 2 minutes, are scheduled in order to overlap every 4 minutes.

4.4 Flexible GCD (F-GCD)

The goal of this method is to cope with the variances in sensor task time
intervals. Since sensing applications may use multiple sensors with different
sampling rates, it is rather unlikely that GCD is always applicable (e.g.,
in case of prime numbers as intervals). Flexible GCD seeks to exploit the
chance of overlapping task executions even in case the gcd of their intervals
is equal to 1. To this end, the BASS scheduler shifts forward the execution
of the upcoming task every time that another task is detected within its flex-
ibility margin and merges them in one cumulative task (see Algorithm 2).
This procedure takes place even when the flexibility is equal to 0, so as
to create a cumulative task out of the tasks that coincide because of GCD
method. In Figure 4.4 intervals of tasks s1 = {C, 5, 2} and s2 = {D, 6, 0}
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have gcd equal to 1 and simple GCD as discussed in Section 4.3, is insuffi-
cient. However, in the case of s1 second execution, task s2 is found within
s1 flexibility margin and thus s1 is shifted in order to be merged with s2 in
one cumulative task.

Data: sorted list of tasks in ascending order with respect to their
next time of execution property

Result: cumulative task and its time of execution
// get the time of execution, flexibility and runnable

// of the task that is to be executed next

next execution time ← sorted tasks0.nextExecution;
remaining flexibility ← sorted tasks0.F;
cumulative task.add(sorted tasks0.R);
for i = 1, i<sizeof(sorted tasks), i++ do

// calculate the time difference between the two tasks

// and deduct it from the remaining flexibility

remaining flexibility -= (sorted tasksi.nextExecution -
sorted tasksi−1.nextExecution);
if remaining flexibility>=0 then

// postpone time of execution to batch with

// this task

next execution time ← sorted tasksi.nextExecution;
cumulative task.add(sorted tasksi.R);

end
// if the flexibility of the current task is lower

// than the remaining, update

if sorted tasksi.F<remaining flexibility then
remaining flexibility = sorted tasksi.F;

end

end
// update the nextExecution time of the tasks that are in

// the cumulative task

for j = 0, j < i, j++ do
sorted tasksj .nextExecution += sorted tasksj .I;

end
return (cumulative task , next execution time);

Algorithm 2: Cumulative Task Creation Algorithm.

Note that the function that implements the above algorithm is called in
two cases:

• After the last created cumulative task has been executed.

• When a new task is registered or its interval is reset. In this case,
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we first recompute the nextExecution times of the tasks and then we
schedule the next execution according to the algorithm 2. Any cumu-
lative task that may be already scheduled is discarded.

Figure 4.4: The second time of execution of tasks s1 and s2, with 5 and 6
minutes interval respectively, is different. However, due to the 2 minutes
flexibility margin of task s1 its execution is postponed by 1 minute in order
to be batched with the execution of s2. It is worth clarifying that the third
time of execution of tasks s1 and s2 is the 10th and 12th minute, respectively,
thus they will again be batched on the 12th minute.

4.5 Opportunistic Execution

In a real-world scenario, multiple applications are running simultaneously,
causing several CPU wake-ups in order to perform their tasks. In addition,
a CPU wake-up is incurred every time that the user presses a button while
the CPU is in the sleep state. Opportunistic Execution seeks to detect the
above wake-ups and schedule the sensor sampling tasks in a way to exploit
the fact that the CPU is already awake.

The Alarm Manager of the Android platform provides the ability to sched-
ule the execution of a task after a given time interval. What is more, we are
able to differentiate the behaviour of the Alarm Manager in two ways:

1. The scheduled task will be executed even if the CPU is in the sleep
state and has to be woken up.

2. The execution of the scheduled task is performed just once the CPU is
woken up due to an event caused by the user or another application.

This way, our scheduler is aware of CPU wake-ups caused by other applic-
ations and is able to opportunistically execute sensor sampling tasks so as
to take advantage of an already occurred CPU wake-up. In the case of Op-
portunistic Execution method, flexibility indicates how earlier than its next
time of execution a task can be executed. The exact scheduling procedure is
described in detail in Appendix 7, where the flexibility used is the remaining
flexibility after the creation of the cumulative task (see Algorithm 2). The
BASS scheduler shifts backward the execution of a task in case the CPU is
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woken up within the flexibility margin of the task, thus the need for a later
CPU wake-up is eliminated (see Figure 4.5). Such as in F-GCD, the shifted
task may be a cumulative task. In this case, more than one methods are
combined.

Figure 4.5: Although the second execution of task s1 is scheduled for the
7th minute, due to the 2 minutes flexibility margin, it is performed on the
5th minute when the CPU is woken up by another application.
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Chapter 5

Experimental Results

This chapter presents the experiments conducted. Section 5.1 provides the
test cases under which the three batch scheduling methods described in
Chapter 4 are evaluated, and presents the result of a real-world experiment.
In Section 5.2, the experimental results are discussed and the problems en-
countered throughout the experimental procedure are given.

5.1 BASS Evaluation

As we mentioned in Chapter 1, Sense uses various sensor sampling task con-
figurations of its Sense Platform in order to recognize different user states.
One of these configurations is applied to monitoring patients that suffer from
Rheumatoid Arthritis [5]. For the purpose of brevity we refer to this applic-
ation using the name Rheuma App. Table 5.1 provides an overview of the
sensor sampling tasks Rheuma App consists of. According to the default
settings of the application, the time interval for tasks sstate to sprox. is 60
seconds while for sloc. it is 300 seconds.

In order to evaluate the performance of GCD, F-GCD and Opportunistic
Execution, three different test cases are presented. The basis of all cases

Task Description I (seconds) F (seconds)

sstate Call state of the phone 60 12

saccel. One accelerometer sample 60 12

smic. Sound from the microphone (5 sec) 60 12

slight Ambient light intensity 60 12

smagn. Ambient magnetic field 60 12

sprox. Proximity of the smartphone to nearby objects 60 12

sloc. Location using cell tower and Wi-Fi access points 300 60

Table 5.1: Sensor sampling tasks of Rheuma App.
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is the Rheuma App sensor sampling task configuration. However, the time
intervals are differentiated in the second test case. HTC Sensation and
Monsoon power monitor (see Chapter 3) were used for our experiments in
all of the three cases. We have to note that the Airplane mode was on and no
other functionality of the phone was taking place during our measurements.
It is worth clarifying that Wi-Fi can be enabled when Airplane mode is on,
thus sloc. is still executed. Each experiment lasted for 1 hour. In each test
case, the average power measurement was instantly given by the Monsoon,
while the number of task executions was retrieved using the Android logs
after the completion of the experiment.

5.1.1 Case 1: Best Case Scenario

The first test case in our experimental procedure is the use of Rheuma App
with the default time intervals. GCD method is totally applicable as the
time intervals (60 and 300 seconds) have gcd equal to 60 (i.e. greater than
1). In particular, BASS generates and executes a cumulative task consisted
of sstate to sprox. and sstate to sloc. every 60 and 300 seconds respectively.
F-GCD and Opportunistic Execution are just as effective in this case as
all the tasks are already merged due to GCD and no other application is
running to cause extra CPU wake-ups. For this reason, flexibility is set to
0.

With regard to the original scheduling policy that is implemented, once
a sensor sampling task is initiated it is periodically executed according to
its time interval. In this case, the initiation time of each task differs by 6
seconds from the previous one so as to avoid accidental overlapping. We
want to compare the energy efficiency before and after applying BASS on
Reuma App, thus we measure the following:

1. The number of task executions per CPU wake-up (see Figure 5.1a)

2. The average power (mW) required for the Rheuma App (see Fig-
ure 5.1b)

As shown in our measurements, it turns out that BASS, and particularly
GCD, makes Rheuma App clearly more energy efficient than it is by default.
Supporting this, the task executions per CPU wake-up are increased by
571%, while the average power required in HTC Sensation is reduced by
44% compared to the original scheduler. This gain is consistent with the
measurements presented in Chapter 3 if we consider that the combination
of all four tasks resulted in 40% and 45% energy savings in Samsung Galaxy
Gio and Galaxy S II, respectively.
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(a) Number of tasks executed per wake-up.

(b) Average Power (mW) required in HTC Sensation.

Figure 5.1: Energy efficiency before and after applying BASS on Reuma
App.
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5.1.2 Case 2: Worst Case Time Intervals

In our second test case we aim to evaluate the effectiveness of F-GCD. To
this end, we reset the time intervals of the seven sensor sampling tasks. In
order to test F-GCD we have to eliminate the effect of GCD, thus prime
numbers (from 41 up to 79) are used as time intervals to guarantee that
gcd is always equal to 1. We apply four different flexibilities (0%, 20%,
35% and 50% of the corresponding time interval) to observe the relation
between the flexibility and energy efficiency. It has to be mentioned that
for 0% flexibility the behaviour of Rheuma App is identical to the original
scheduling because both F-GCD and GCD are ineffective. Similarly to the
first case, the experiments conducted measure the number of task executions
per CPU wake-up (see Figure 5.2a) and the average power (mW) required
for the Rheuma App (see Figure 5.2b).

As it can be observed, the number of tasks executed for 0% is greater
than 1. This is because two tasks are considered to overlap when the second
starts its execution while the first still executes. Applying 20%, 35% and
50% flexibility increases the number of tasks executed per CPU wake-up
by 98%, 147% and 174% respectively while it reduces the average power by
26%, 33% and 37%. As shown, 20% flexibility has quite an impact on energy
efficiency of Reuma App. Raising the flexibility above 35% has minor effect.

5.1.3 Case 3: Extra Application

As we explain in Chapter 4, the Opportunistic Execution method seeks
to maximize the overlapping between the execution of the sensor sampling
tasks and the CPU wake-ups due to other applications. In our last test
case we exam the efficacy of Opportunistic Execution. For this purpose, we
create an application that wakes up the CPU in order to obtain one accel-
erometer sample every minute. Every time interval for executing the task
is uniform randomly chosen in 0 − 60 seconds interval. We name this ap-
plication Extra App and set it to run in parallel with Rheuma App. Hence,
we initially measure the number of overlaps between the Rheuma App tasks
and the Extra App for different flexibilities (see Figure 5.3a). To express
as a percentage, we measure the overlaps occurred during 100 task execu-
tions of Rheuma App. Taking into account the average power required for
Rheuma App, we also measure the overhead caused by the Extra App (see
Figure 5.3b).

As shown in the figures, the effect of flexibility follows a pattern similar
to the one in the second test case. The overlaps between the tasks of the
two applications are increased by 31% when we apply 20% flexibility while
they are slightly more (46%) in case of 50% flexibility. Similarly, the average
power overhead due to the Extra App is reduced by 21% and 32% when we
apply 20% and 50% flexibility respectively. In both the second and third
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(a) Number of tasks executed per wake-up.

(b) Average Power (mW) required in HTC Sensation.

Figure 5.2: Energy efficiency when different flexibilities are applied.
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(a) Number of overlaps between Rheuma App and Extra App.

(b) Average Power overhead (mW) in HTC Sensation due to Extra App.

Figure 5.3: Energy efficiency when Extra App is running and different flex-
ibilities are applied.

34



test cases, increasing the flexibility above 35% is barely effective.

5.1.4 Real-World Experiment

In addition to the measurements analysed in the three test cases, a real-
world experiment was also conducted. In this case, the parameters of the
first test case (i.e. the default settings of Rheuma App) were used. Each
experiment lasted one day and a user followed his regular daily pattern. For
the duration of the experiment the airplane mode was off and the collec-
ted data was transmitted every 30 minutes. Hence power was consumed in
transmission over 3G network and Wi-Fi. The results showed a 18% reduc-
tion in energy consumption. Note that the battery estimation provided by
the phone is quite inaccurate (use of Monsoon was impossible due to lack
of mobility) and it would be inexact to compare this percentage to the 44%
gain measured with the Monsoon. In case of such a comparison, extens-
ive measurements regarding the energy consumed in the data transmission
should be conducted. However, this percentage can be considered as an
indication that BASS conserves energy in case of smartphone regular usage.

5.2 Discussion

Throughout our experimental procedure several observations were made:

• The three batch scheduling methods that are implemented in BASS
increase the energy efficiency in sensing. As it is observed in all of our
test cases, BASS conserved energy by reducing the number of CPU
wake-ups needed for the execution of the same number of tasks.

• Raising the flexibility from 0% to 20% has a major impact. On the
contrary, as shown in the results, a flexibility greater than 35% is
relatively pointless. However, the flexibility margin always depends
on the application on which BASS is applied and the limit differs
according to the sampling time accuracy that is required.

Moreover, two main obstacles were encountered during our evaluation
process and have to be pointed out:

1. Initial experiments were conducted with a ZTE Blade smartphone.
However, it turned out that the use of the proximity sensor was res-
ulting in extensive CPU usage. The reason was that a wakelock was
kept even when release function was called. The results were discarded.

2. During the observation of energy measurements there was no easy
way to map the energy consumption samples depicted by Monsoon
to the corresponding sensor sampling tasks. Thus, our experiments

35



were repeated several times in order to make sure that our setup was
correct.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

The main goal of this thesis was to provide an application and user agnostic
energy saving method which eliminates the CPU wake-up overhead due to
the periodic sensing on smartphones. BASS reduces the number of CPU
wake-ups in such a way as to capture accurate sensor data (in terms of
sampling time) without draining the device battery.

The main principle behind BASS is to schedule the execution of the sensor
sampling tasks in batches so that fewer CPU wake-ups are needed. In par-
ticular, BASS detects when two or more tasks can be scheduled to overlap
each other or with the execution of another application task. To this end,
it applies three different batch scheduling methods: GCD, F-GCD and Op-
portunistic Execution.

From the experiments performed, we derived that BASS reduces the power
consumption of our testbed application by up to 44% in laboratory envir-
onment and 18% in real-world. Furthermore, BASS achieves power savings
of 37% in a worst case scenario while it is able to conserve 32% energy from
another application that is running simultaneously with our testbed.

Our solution provides a robust framework. It can be applied to different
applications that execute periodic sensing tasks. Furthermore, it guarantees
energy conservation independently of the subset of sensors that are used.
Introducing the parameter of flexibility, it exploits the different levels of
sampling time accuracy demanded in order to provide energy savings.

In conclusion, even if some aspects of BASS might allow further improve-
ment, it describes a compact approach for energy efficient sensing in smart-
phones, which completes the missing parts of past solutions. It is worth
mentioning that Sense has already embedded BASS to various commercial
sensing applications that are daily used by its customers.
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6.2 Future Work

There are several ways to enhance BASS :

• Further experimentation should be conducted in order to identify a
model that describes the relation between flexibility and energy ef-
ficiency. Extensive real-world experiments should also take place to
ascertain if BASS conserves energy on a daily usage basis.

• Our flexibility parameter describes the allowable accuracy loss in terms
of task time of execution. However, it is uncertain if this elasticity res-
ults in accuracy loss regarding state recognition. To this end, experi-
mentation using several relevant applications (e.g. activity recognition
application) should be conducted to investigate if the accuracy loss in
terms of task time of execution implies accuracy loss in the state that
is recognized.

• Regarding our energy analysis in Chapter 3, further investigation in
various smartphones and sensors has to be performed. Depending on
the results it may turn out that in different phones different sensor
combinations are preferable and thus the scheduling policy has to be
adjustable.

• Finally, our long-term goal is the development of a middle-ware tool
based on the concept of BASS that performs batch scheduling, syn-
chronizing the task execution between all of the applications running
in a smartphone.
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Chapter 7

Appendix A

There are two different options in setting an Alarm Manager:

ELAPSED REALTIME WAKEUP The CPU will wake up in order to
perform the scheduled task.

ELAPSED REALTIME The execution of the scheduled task is performed
once CPU is woken up due to an event (i.e. user presses a button or
another application task is executed).

As shown in the sample of code below, for every upcoming task execution
two different alarms are set:

In case opportunisticExecution is able to be performed (i.e. the CPU is
woken up some time between (nextExecution−flexibility) and nextExecution
time) the deterministicExecution is cancelled.
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