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Abstract 
 

 

In this thesis, I have investigated the self-optimization approach in order to solve a generic 

resource allocation challenge. The challenge is defined for a general ICT system serving two 

classes of jobs: low and high priority. The high priority jobs require a higher quality of service 

compared to the low priority jobs. 

In order to fulfill this difference in QoS levels, a part of the total resource capacity should be 

held reserved to serve only high priority jobs. Two different self-optimization methods are 

applied to solve the challenge and the objective of the self-optimization algorithms is to split 

the total resources in such a way as to minimize the overall Blocking considering the different 

level of QoS. The first applied method is a rule-based method and the other one is fuzzy-Q 

learning. 

I also have defined a performance quality matrix which is used to assess and compare the 

algorithm’s reactions in three sets of designed simulation scenarios. The first set of scenarios 

aims to examine the effect of the different parameter settings on the overall performance of 

the algorithms. The second set of scenarios simulates a partial failure in the total capacity 

which is subsequently repaired causing the system to return to normalcy, and observes the 

algorithm’s reactions in adapting to these changes. The final set of simulations changes the 

arrival process to batch arrival where in one group of simulations the arrival rate (λ) has not 

changed while in the other it has decreased by the rate of the average arrival batch size. 

 
Key Words: self-optimization, resource allocation, rule-based, fuzzy-Q learning. 
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1 Introduction 

 

In this chapter, I will first briefly introduce the concept of self-organizing and self-optimizing 

systems, focusing primarily on optimal resource utilization. I will then outline the scope of 

this research, and, finally, provide an overview of the structure of content and chapters of this 

work. 

1.1 General Introduction 
 

Over the course of the last few decades, ICT systems have become significantly more 

complex than their predecessors. Today’s ICT systems are larger, have more users, consist of 

many novel elements and must manage a diversity of inter and intra system interactions. 

Although the changes that ICT systems have undergone have greatly improved these systems 

in a number of ways, they have also made it difficult and time consuming for operators to set 

and manage these complex systems manually.  In order to decrease the complexity of 

manually setting and managing these systems while minimizing capital expenditures 

(CAPEX) and operational expenditures (OPEX) as well as enhancing the performance quality 

of systems, self-organizing systems happen to be of great interest to operators [1]. 

 

Researchers generally divide self-organizing algorithms into three different subareas: self-

configuration, self-healing and self-optimization [2]. Each subarea of these algorithms 

attempts to enhance a self-organized system in a particular way. For each subarea, there are 

automated methodologies which aim to improve the performance and quality of service (QoS) 

by reacting to the dynamic processes related to the system. First, self-configuration 

methodologies deal with the integration of newly deployed services or features and the 

reconfiguration of the entire system by adapting to the changes in topology [3]. Second, self-

healing mechanisms attempt to reduce the impact of the potential failure of the system by 

enabling the system to be recovery oriented in a way that it can response to the failure 

appropriately and return the system to a state of normalcy [4]. Finally, self-optimization 

algorithms automatically and continuously tune and adapt system settings and parameters 

according to the dynamic variation of the system and characteristics of the environment 

without (or with limited) human intervention. The self-optimizing subarea is the focus of the 

thesis. 

 

A self-optimizing algorithm repeatedly adjusts the system’s parameters in order to adapt to a 

variety of changes that the system may experience. For example, changes can happen in the 

traffic profile, system characteristics or interaction between the system and other systems or 

between the system and its environment. A self-optimization algorithm is a closed loop 

process of parameter deployment, performance and quality evaluation, parameter 

optimization, and redeployment of newly optimized parameters to the system. This closed 

loop functions to improve the system’s performance constantly, and, consequently guarantee a 

certain level of quality of the performance in the system. 

 

Different scholars have studied self-optimization algorithms’ applications in various fields of 

ICT systems and networks, such as wireless mobile networks and cloud computing. One of 

the most interesting instances of employing self-optimization methods in wireless mobile 
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networks is related to the settings of handover parameters which allows a network to provide 

a higher QoS and more efficient inter and intra cell resource allocation [5]. Self-optimizing 

methods are also used in the field of wireless mobile network power management in order to 

use power resources more optimized [6]. Additionally, operators have implemented self-

organizing methods with cloud computing, specifically in the realms of green cloud 

computing [7] and also resource management parameters [8] are well known target areas for 

implementing self-organizing methods. The aforementioned uses of these algorithms indicate 

that resource utilization can be a vital field of interest for self-optimizing systems because the 

resources are mostly limited and expensive, which forces cost-conscious stakeholders to use 

them in an efficient way. Therefore, implementing self-organization and self-optimization 

methods is a way to use limited resources to offset the cost of manual setting and the 

complexity of the work. 

1.2 Scope of the Project 
 

Understanding the importance of optimal resource utilization and the role of self-organizing 

algorithms in achieving more efficient and better resource allocation in ICT systems, this 

project identifies two resource allocation challenges in two different ICT system domains. 

One of the challenges is resource splitting in a cloud computing server serving two classes of 

customers (first and second class), while the other considers the challenge of resource 

allocation between fresh and handover calls in a cellular mobile network system. Both of 

these challenges are presented as one general case study which can be applied to any system 

of generic resource allocation between two classes of jobs requiring two different levels of 

QoS. The case study that I will present is an ICT system with a given capacity (resource) to 

serve two different classes of jobs: high priority and low priority. The challenge is splitting 

the given fixed resource into two categories of resources: shared capacity and reserved 

capacity for high priority jobs. 

 

Accordingly, I have applied two different self-optimization algorithms to achieve the most 

optimal resource split in relation to the self-optimization algorithms’ objective which is to 

minimize the overall weighted Blocking probabilities. One of the applied self-optimization 

methods is a rule-based method, which works based on if-then rules written by a human 

expert. The other one is the fuzzy-Q learning algorithm. This learning algorithm does not 

have any a-priori knowledge about the system and proper decision making logic, but it does 

have the ability to learn from former experiences and to take appropriate actions in different 

system states.  

 

This thesis focuses on observing, assessing and comparing the performance of the mentioned 

self-optimization algorithms in the following three sets of simulation scenarios: 

 

 Different parameter settings 

 A sudden failure in the capacity 

 Change in arrival process 

The first set of simulation scenarios investigates the effect of parameter settings on the overall 

performance of the system. The second simulates an actual case of partial failure in the server 

(in cloud computing) or antenna (in cellular network) and, subsequently, determines the 

ability of algorithms to adapt to this failure. It also considers the case of repairing the failure 

and examines the ability of self-optimization algorithms to adjust the system back to the 

normal working situation. The last simulation set models a shift in the arrival process from the 

Poisson process to the batch arrival of a Geometric distribution. This shift models a sudden 



6 

 

change in the arrival profile due to for example introduction of a new service (in cloud 

computing) or a failure in the neighboring cell (in cellular mobile networks). 

 

1.3 Structure of the Thesis 
 

The first part of Chapter 2 describes two resource allocation challenges in cloud computing 

and cellular mobile network domains, while the rest of the chapter focuses on modeling these 

two resource allocation problems into a widely applicable case study. Chapter 3 first provides 

a general overview of two applied self-optimization methods and then describes the steps of 

implementation of each algorithm on the considered case study outlined in Chapter 2. Chapter 

4 presents three sets of simulation scenarios and the results of each scenario as well as an in-

depth analysis of the results and findings. The simulation results are used to assess the self-

optimization algorithms’ performance based on performance quality metric, especially the 

converged value of the cumulative Blocking, the convergence time of the cumulative 

Blocking and the time fraction of meeting targeted Blocking defined by the operator. Chapter 

5 summarizes the work, draws conclusions and suggests directions for further research. 
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2 Case Study 
 

In this chapter, I first provide a brief overview of cloud computing and cellular wireless 

mobile networks. I then identify a resource allocation challenge in each domain. While the 

resource allocation challenges that I discuss are different, they can be modeled into one 

general case study. Finally, I evaluate this case study, which is used in simulations, in the last 

part of this chapter. 

2.1 An Introduction to Cloud Computing 

The basic concept of cloud computing was introduced in the 1960s. At the beginning, it was a 

vague idea of sharing infinite computational resources in which a few remote locations 

provide computation and unimpeded access for global users. Although, this striking term was 

introduced several decades ago, distributed computing did not draw significant attention until 

the last decade. In the last few years, due to the enormous increase in the number of Internet 

users, services and new web-oriented devices, the need for distributed computational 

resources has risen dramatically. Eventually, the long-held dream of computing as a utility 

started to be realized in October 2007 when IBM and Google announced their collaboration in 

the cloud computing domain and soon after, IBM introduced its “Blue Cloud” project. Since 

then, “cloud computing” has become one of today’s most popular concepts in the computer 

world [9]. 

Today,  cloud computing refers to the applications that are delivered as services over the 

Internet as well as the system hardware and software in the datacenters providing those 

services. The software and hardware of the datacenter is called a “cloud”. A cloud is referred 

to as a “public cloud” if it is available to the public and if the utility computing can be sold as 

a service in a pay-as-you-go offer [10].  

2.1.1 Cloud Computing Case Study 

Since one of the fundamental concepts of cloud computing is considering the computation as 

a service, I have identified a resource allocation challenge in a public cloud server as follows. 

Assume a public cloud computing system with a given total resource capacity of CTotal 

offering two price classes of computational services: first and second class. A customer 

asking for a higher level of QoS pays a first class price which is higher than the second class 

price. The second class customer naturally receives a lower quality of service. Within this 

system, customers are rejected if there is not enough vacant resources available to serve the 

customer and logically, rejecting a first class customer is penalized more strongly than 

rejecting a second class customer. To indicate this relative importance, a term of β >1 is 

introduced as: β = the penalty of rejecting a high class customer / the penalty of rejecting a 

low class customer and β value is corresponding to the price difference. Accordingly, CTotal 

should be split into two parts: CShared to serve both first and second class customers and C 

Reserved which is reserved capacity meant only for serving first class customers. 

Customers’ requests are generated according to a Poisson process, and each job request 

occupies one unit (channel) of the resource. A job requested by a first class customer is 

accepted if NFirst + NSecond < CTotal  (NFirst and NSecond represent the number of existing first and 

second class customers’ jobs using the resources), otherwise the request is rejected. In other 
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words, a request from a first class customer is accepted if there is any vacant resource channel 

in the whole capacity (CTotal = CShared + CReserved ). A job requested by a second class customer 

is admitted only if NFirst + NSecond < CShared. So, a second class customer’s job is accepted if 

any unit of resource in the shared capacity (CShared) is vacant. 

The Blocking probabilities of first and second class job requests are observed and measured 

during an observation time and are reported to the decision maker agent of the system - also 

called the controller agent - as the system state (s(t)). 

s(t) = ( PSecond (t) , PFirst(t) ), 

where  

PFirst = Blocked requests from first class customers / received requests from first class 

customers. 

PSecond = Blocked requests from second class customers / received requests from second class 

customers jobs. 

The goal of the self-optimization algorithm is to split CTotal into CShared and CReserved in such a 

way as to minimize the overall Blocking (B) where B = PSecond + βP First. 

2.2 Wireless Mobile Network Introduction 
 

A cellular mobile network is a mobile network in which the area under coverage is divided 

into subareas called cells. Each cell is served by at least one antenna located in a control point 

called the “base station”. These cells, when they are connected, provide coverage over a wide 

geographic area. This enables a large number of mobile devices to communicate with each 

other and other fixed transceivers anywhere within a large area in the network. Mobility is 

one of the most important features of such a network, while continuous service and 

connectivity for the mobile terminal can be provided by supporting handover from one cell to 

another. Handover is the process of changing the former channel associated with the former 

base station located in an former cell to a channel associated with the current base station 

within a current cell while a call (or another service) is in progress [11]. This process is what 

allows us to easily keep talking with our mobile phones when driving from one city to another 

one without experiencing any inconvenience or disconnection while crossing many cells 

borders. 

 

2.2.1 Wireless Mobile Network Case Study 
 

According to the aforementioned principal characteristics of a wireless mobile network due to 

mobility and handover mentioned above, each base station within a cell serves two kinds of 

calls: fresh calls and handover calls. Fresh calls are those that originate in the cell and 

handover calls are calls that originate in other cells and have been transferred to the cell 

because the user has moved to a new cell while on the phone. Assume a total capacity of CTotal 

is dedicated to each cell and one call request requires one channel (unit) of the CTotal for 

establishing a connection. A call is accepted if any vacant channel is available in the cell 

otherwise it is blocked. Blocking a handover call is penalized more than blocking a fresh call 

because blocking a handover call means interruption and disconnection in the middle of an 
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ongoing call which is irritating for users. The relative importance of a handover call over a 

fresh call is indicated by factor β >1. 

To avoid the user irritation by blocking a handover call, each cell reserves some channels to 

only serve handover calls to reduce the handover blocking probabilities. Therefore CTotal is 

split into CReserved and CShared (CTotal = CReserved  + CShared). CShared serves both fresh and 

handover calls while CReserved only serves handover calls. Consequently, a fresh call is 

accepted if NFresh + NHandover < CShared (NFresh and NHandover are the present fresh and handover 

calls using the cell resources), otherwise it is blocked. Conversely, a handover call is accepted 

if NFresh + NHandover < CTotal or in other words, a handover call is accepted if any channel is 

vacant in the whole of the capacity of the cell. 

Blocking probabilities of fresh and handover calls are measured in observation intervals and 

are reported to the decision maker agent of the system called the controller agent in order to 

provide information about the cell state (S(t)). 

S(t) =  S(t) = ( PFresh (t) , PHandover(t)) , 

where 

PHandover = Blocked handover calls / Received handover calls 

PFresh = Blocked fresh calls / Received fresh calls 

The controller agent’s goal is to split CTotal into CReserved and CShared in order to achieve an 

overall minimized PFresh + βPHandover. 

 

2.3 Considered Case Study 

The considered case study should be able to model both of the cases described above. 

Therefore, the case study system I have introduced is a resource with 35 channels in total, 

serving two types of jobs: low and high priority jobs. Blocking high priority jobs is penalized 

more than blocking low priority jobs presented by the factor β >1 (β is the relative importance 

of the high priority jobs over low priority jobs). In the defined case study β = 10; therefore, 

blocking a high priority job is penalized 10 times more strongly than blocking a low priority 

job. High priority jobs represent handover calls or first class customers which need to be 

treated with a higher level of importance (demanding higher level of QoS) and lower blocking 

probabilities. Low priority jobs are normal jobs which do not require special treatment like 

fresh calls or second class jobs. Jobs are generated according to the Poisson process, where λ 

(expected number of occurrences per time unit) is 30. Of all the arrivals, 60% are high priority 

jobs and the rest are low priority jobs. Jobs have independent duration times, according to the 

Poisson distribution. The average duration is 1/µ = 0.8 seconds (for both classes of jobs). 

All 35 channels of the system must be split into CReserved and CShared. CShared is a common 

capacity serving both types of jobs and CReserved signifies certain channels which are reserved 

for high priority jobs (Figure 2-1 and 2-2). 
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                                                                                                Reserved capacity for 

                                                                                                    high priority jobs 

 

                                                                                               Shared capacity for high and low 

                                                                                                         priority jobs (CShared) 

 
 

Figure 2.1: A simple schematic presenting the considered case study system 

The duration of the observation time is 100 seconds. In other words, each 100 seconds, 

blocking probabilities of high and low priority jobs are observed and measured as PHigh and 

PLow. 

PHigh= Blocked high priority jobs in an observation interval / Received high priority jobs in an 

observation interval. 

PLow = Blocked low priority jobs in an observation interval / Received low priority jobs in an 

observation interval. 

Measuring blocking probabilities, the system state consisting of PLow and PHigh (S(t) = (PLow 

(t) , PHigh (t)) is reported to the controller agent in order to provide the necessary information. 

The task of the controller agent is to act appropriately based on the reported state of the 

system and to update the CShared value. The self-optimizing algorithm’s objective is to set and 

adjust the CShared value in a way to minimize the overall Blocking during the system operation.   

Blocking B(t) =  PLow(t) + 10PHigh(t) 

The CShared value is initialized at 10 and the controller should modify CShared until it reaches the 

optimal value in relation to the self-optimization algorithms’ objective 
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Figure 2.2: Job distribution diagram in Cshared and CReserved 
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3 Self-Optimization Methodologies 
 

In this Chapter, first I give a general introduction about the conceived self-optimization 

methodologies which are applied to the case study. The rest of the chapter is dedicated to 

describing the specific application of these methods to the case study defined and designed in 

the Chapter 2.  

 

3.1 Rule-Based Method 
 

Rule-based systems or expert systems are somehow the first and simplest realization of the 

research in the field of Artificial Intelligence (AI). Rule-based systems are a way of 

implementing human knowledge applicable in a specific automated system [12]. The 

controller agents mostly do not have the ability of learning from former experiences and 

improving the performance based on what they have learned. They also lack the ability to 

expand their expertise and cannot deal with a new situation if it is not defined for them by an 

expert. In other words, rule-based systems are the devices to convey expert’s knowledge for 

solving the problem to the machine and translating that knowledge into an understandable 

language for an automated system.  

 

The question arises whether or not there is always a need for human knowledge to be 

transformed in to the artificial intelligent system language. Why do not we use the same 

human expert as the controller agent? There are three main advantages of translating human 

knowledge to rule-based systems. The first advantage is that the human expert's knowledge 

becomes available to a larger range of people and applications. Another advantage is that in 

this way the knowledge and expertise of the human expert can be captured, saved and 

protected against being lost when they retire or leave the firm. The last but not least advantage 

is that after once transferring the knowledge from expert to the rule-based system, the human 

involvement can be eliminated (or at least reduced) and the operating expense (OPEX) can be 

considerably decreased [13].  

 

A typical rule-based system consists of at least three components [14]: 

 The system interface 

 The knowledge data base  

 The controller agent 

The system interface is responsible for measuring the quality of performance in the system 

and interprets this information in a data format which is comprehensible for the rule-based 

controller agent. For example the system interface measures the packet loss in a web server 

during a time interval and reports this as the system state to the controller agent. The 

controller agent is the brain of a rule-based system. It maps the received system state to the 

knowledge data base and derives the appropriate action according to the look-up table written 

by an expert. The knowledge data base is the expert knowledge required for decision making 

and problem solving translated to the form of if-then commands. These if-then commands are 

the core element of rule-based decision making. Some examples are given below: 
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 If X is Green                     Decrease the power. 

 If Y = 1000                     Turn 90 degree to the right. 

 If Z decreases                  Set the temperature to 60º C. 

The knowledge data base is a storage memory full of if-then rules covering all the possible 

system states. After receiving a new system state, the controller agent refers to this stack of 

rules and derives the suitable decision and action from this data base. 

 A schematic diagram of rule-based system units and connections is showed in Figure 3-1. 

 

 

 
Figure 3.1: A simple diagram of a generic rule-based algorithm 

 

3.2 Reinforcement Learning  
 

The first inspiration for reinforcement learning (RL) arose from the nature. In the animal and 

human being nature it is the sign of intelligence to act in ways that are rewarded.  As a human 

being we learn how to interact with our environment and what we have learnt about the 

environment and its reward and punishment policies become one of the main factors that help 

us in decision making procedures later on [15]. In the standard framework of reinforcement 

learning, a controller agent interacts with an unknown environment and tries to maximize a 

long-term benefit. A learning controller agent repeatedly observes the state of the system and 

then chooses and performs an action. Each executed action changes the system state and the 

agent also receives an immediate payoff as a result of the taken action. Positive payoffs can be 

considered as rewards and negative payoffs are punishments. The agent, exploiting the 

knowledge it has previously obtained through past actions and received rewards or 

punishments, must learn to take actions so as to maximize a long term sum or average payoff 

it receives in the future [16]. For example a chess player observes the game and the opponent 
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pieces and makes a move planning and anticipating possible replies. One or some steps 

further it would be clear whether the player’s move was a good choice or not. If it turned out 

as a good move in that circumstance, it is more likely for the player to repeat it in the future 

games when the game state and condition is the same.   

Reinforcement learning is very different than supervised methodologies like rule-based 

systems. In the rule-based method, the needed knowledge for making decisions is provided by 

a knowledgeable external supervisor but in RL, the agent does not need a set of training or 

intelligence in advance; instead it learns on-line and can continuously learn and adopt while 

performing the required task [17]. This interactive approach is more suitable for problems for 

which deriving desired behavior and action in all the possible situations is not easy or 

practical. In this kind of problems, even a knowledgeable expert cannot predict and choose a 

best possible action for each state because unknown elements can affect the feedback rewards 

and punishments. With reinforcement learning the environment is considered unknown and 

unpredictable with dynamic parameters and characteristics.    

Another important advantage of interactive methods like RL over supervised methods like 

rule-based is the opportunity of using exploration phase and exploitation phase 

simultaneously. To achieve the highest possible reward, the agent must choose an action 

which has been selected before and found to be successful to bring rewards to the system, but 

to discover such an action, the agent has to try actions which are not taken before in order to 

discover whether those actions are more appropriate or not. Therefore, the action not only 

must exploit what is has already learnt from former experiments but also is has to explore for 

the best possible decision in the future [18]. The main challenge of the controller agent is to 

find a healthy balance between exploration and exploitation phases without the failure in its 

basic task as the decision maker of the system [19]. 

It should be considered that exploration phase (occasionally choosing a random action rather 

than the action with highest quality) inherently involves potentially costly experimentation as 

an investment towards future possible benefits.  

 Figure 3-2 illustrates the core components of reinforcement learning algorithms. 
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Figure 3.2: The components of a reinforcement learning algorithm 
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The controller agent is the learner and decision maker of the process, which interacts with the 

system via execution of actions and the reception of rewards (or punishments) depending on 

the taken action. The agent receives also information describing the environment state 

continuously. The reward or punishment achieved by a taken action as a feedback is sent back 

to the controller agent who uses this feedback for an assessment of the taken action. If the 

taken action brought reward to the system it is considered as a good action and it is likely to 

be chosen again later when the system is in the same state. 

3.2.1 Markov Decision Process 
 

 Understanding the principles of the RL method’s decision making process is not possible 

without introducing the Markov Decision Process (MDP). MDP provides a mathematical 

framework for modeling decision-making in situations where outcomes are partly random and 

partly under the control of a decision maker. MDP is an ideal mathematical way of modeling 

a self-optimized decision making process as the received feedback by the agent after taking an 

action can be effected by different environmental factors like fluctuation in the arrival process 

or system characteristics. More precisely, a Markov Decision Process is a discrete time 

stochastic control process containing four components [20]:   

• A set of possible system states: S (a set of several s) 

• A set of possible actions for each state: A (a set of several a) 

• A real valued reward function: r(s(t),a(s(t))) 

• A state transition function, which specifies probabilistically the next state of the 

environment, given its present state and agent’s chosen action: Pa(s(t),s(t + ∆t)). 

At each time step, the system is in a state s(t). Considering s(t) the controller agent makes a 

decision and chooses action a(s(t)) from action set A which is available for the specific state 

s(t). The system responds to the taken action a(s(t)) at the next time step and moves to a new 

state s(t+∆t) and as a feedback sends to the agent a corresponding reward r (s(t),a(s(t))). 

The core problem of MDPs is to find a policy for the decision maker (controller agent): a 

function π that specifies the action a = π(s(t)) that the decision maker chooses when the 

system is in the state s(t). The goal is to choose a policy π that will maximize the discounted 

cumulative reward over an infinite time where the discounted cumulative reward is: 

))(),(()(

1

ttstsr ta

t

t 




 ,                    

where the chosen action based on the policy π is a(t)in which π(s(t))=a(t) and γ is the discount 

factor which satisfies 0 < γ < 1. γ <1 is needed to keep the cumulative reward finite and it is 

also used as a measure that indicates the relative importance of future rewards over 

instantaneous reward. γ is typically close to 1, which means the controller agent assigns equal 

value to immediate reward and future reward.    

Given the state transition function P and the reward function r, the objective is to determine 

the policy that maximizes the expected discounted reward. To calculate this optimal policy, 

two arrays indexed by state s(t) needs to be stored: value V, which contains expected future 

values, and policy π which contains actions. At the end of the algorithm, π will contain the 

solutions and V(s(t)) will contain the discounted averaged sum of the rewards to be earned by 

following that solution from state s(t). The optimal action can be found a follows [21]: 

 

a = π (s(t)) := arg maxa { )))(()))((),(()((),((
)(

ttsVtsatsrttstsP
tts

a 


 } 

http://en.wikipedia.org/wiki/Optimal_control_theory
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where 

V(s(t)) := )))(()))((),(())((),((
)(

ttsVtsatsrttstsP
tts

a 


  

3.2.2 Fuzzy-Q Learning 
 

One of the reinforcement learning algorithms which attempt to find the optimal policy using 

MDP principles is Q-learning. The second conceived self-optimization method is Fuzzy-Q 

Learning which combines the fuzzy logic algorithm for discretizing the continuous state (s(t)) 

variable to ensure a finite number of sub-states (s1, s2, etc.) that forms the set of state(S), and 

Q-learning method as its decision making and learning algorithm. 

3.2.2.1 Fuzzy Logic  

In a fuzzy-Q learning algorithm, the reported continuous valued state (s(t)) is mapped to one 

or more sub-states of the S [22]. For example consider that s(t) is the continuous time a 

customer waits to be served at a server and assume that the maximum possible waiting time is 

one hour. Let the set S contain four sub-states denoted as (s1, s2, s3 and s4). These four sub-

states divide the whole range of one hour as below: 

 

         0min                               20min                                   40min                                 60min 

         s1                                       s2                                           s3                                         s4 

The average waiting time is reported to the controller agent as 14.5 minutes (s(t)=14.5). This 

average waiting time should be mapped to one or more sub-states. The location of s(t) in the 

time diagram is between s1 and s2.   

 

 

         s1                                       s2                                           s3                                        s4   

 

s(t) should be mapped to these two sub-states. As it is obvious in the diagram, s(t) is much 

more closer to s2 than to s1 and s(t) should be mapped to s1 and s2 in a weighted way to make 

it clear that even though s(t) is member of both s1 and s2 but is rather closer to s1 than s2. One 

way of implementing this weighted mapping is using the inverse distance. In this method the 

weight of membership of s(t) to a sub-state has reversed relation to the distance of s(t) to that 

sub-state. This weighted membership is called membership degree. Using this method s(t) = 

14.5 can be mapped to s1 and s2 as below: 

 s(t) distance to s1 = 14.5 – 0 = 14.5 min 

 s(t) distance to s2 = 20 – 14.5 = 5.5 min 

 distance between s1 and s2 is = 20 min 

s(t)=14.5 
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 membership degree of s(t) to s1 =  
       

      
 = 0.275 

 membership degree of s(t) to s2 =  
        

      
 = 0.725 

So s(t) is mapped to s1 with the weight of 0.275 and is mapped to s2 with the weight of 0.725. 

 

 3.2.2.2 Q-learning 

Q-learning [23] is a well-known reinforcement learning technique which is more suitable to 

apply to systems where the reward values and probabilities of state transition function are not 

a priory known. The learning process of the Q-learning algorithm is entirely based on former 

experiences. Like other RL algorithms, the Q-learning method considers a set of states S and a 

set of actions per state A. By performing an action (a ∈ A) the state moves from the state s(t) 

to a new state s(t+1). This transition provides the agent an immediate reward value and the 

goal of agent is to maximize the long-term discounted cumulative reward. The Q-learning 

method tries to maximize this long-term discounted cumulative reward by learning which 

action is optimal for each sub-state based on former experiences.  

The algorithm therefore has a function which calculates the quality of a (state,action) 

combination. These Q values indicate how good one action in a specific state is in relation to 

the optimization objective.  

Q: S × A            R (set of the real numbers) 

Initially, all the Q values for all the possible (state,action) pairs are fixed to zero (initialized 

value). Subsequently each time the controller agent picks an action a(t) in state s(t) and will 

update the quality value of that specific (state,action) pair Q values based on the feedback 

rewards it has received from the system. The core of the algorithm is a simple value iteration 

update. It assumes the old Q(s(t),a(s(t))) values and makes a correction based on the newly 

received rewards, as follows [24]: 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Markov_decision_process#Value_iteration
http://en.wikipedia.org/wiki/Markov_decision_process#Value_iteration
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Here, r(s(t)) is the feedback reward to the controller agent after performing a(s(t)) in the state 

s(t),  α (0 < α ≤ 1)  is the learning rate and γ is discount factor such that 0 ≤ γ < 1.  

The learning rate (α) determines to what extent the newly acquired information affects the old 

quality values. The taken action a(t) is judged by two terms: long-term performance and short-

term performance. The short-term performance of a(t) is evaluated by immediate reward r(t) 

and the long-term performance is assessed by the difference between immediate quality and 

discounted future quality. If α = 0, the agent does not learn anything from the experiences, 

while for a learning factor set to 1, the agent applies the newly received information (long-

term and short-term action’s performance assessment) to a full extent which means the 

recently received feedback affects the Q values strongly.  

The discount factor γ indicates the importance of the immediate rewards over future rewards. 

A discount factor of 0 will make the agent "opportunistic" by only considering immediate 

rewards, while a discount factor close to 1 assigns equal values on immediate reward and 

future rewards [25].  

 

3.3 Applied Self-Optimization Algorithms 
 

In the following section, I describe the steps of applying the conceived methods (rule-based 

method and fuzzy-Q learning method) to the case study defined in Chapter 2.   

 

3.3.1 Applying a Rule-Based Method to the Considered Case 
Study 
 

Recalling the case study described in Chapter 2, the mission of the controller agent is using 

the rule-based algorithm as the self-optimization method in order to set CShared to the most 

optimal value in order to minimize the Blocking (B(t) = PLow(t) + β PHigh (t)) or maximize the 

reward (r(t) = - PLow(t) - β PHigh (t)). The reward function is a negative value and maximizing 

reward in this case means attempting to achieve r(t) = 0, i.e. no blocking. 

Note that the self-optimization algorithms objective is maximizing the reward r(t) = - PLow(t) - 

β PHigh (t) during the system performance. However this objective is translated in a different 

way for each method because of inherent differences of the methodologies. For the rule-based 

method, the objective is achieving the highest immediate reward in each observation priod, 

while the fuzzy-Q learning method’s objective is maximizing the average discounted 

cumulative reward.    

An observation agent observes the blocking probability of high and low priority jobs during 

the observation time Δt and reports these probabilities as the system state to the controller 

agent: s(t) = (PLow(t) , PHigh (t)). Given β = 10 (the relative importance of high priority jobs 

over low priority jobs), the controller agent knows that blocking of high priority jobs is 10 

times more strongly penalized than blocking of low priority jobs. Using this insight, the 

controller attempts to minimize PLow + β PHigh by balancing PLow/PHigh = β. Therefore the 

whole range of PLow/PHigh is divided into three ranges as following 
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These three range categories for PLow and PHigh are the main bases for establishing rules (If-

then sentences). Three if-then rules are designed to provide the necessary information for the 

controller agent in order to make an appropriate decision and updating the CShared value.  

Given β = 10 and Δ β = 0.5, the designed rules for the controller agent are as following: 

 

  If  PLow / PHigh   > 10.5                   Then       low priority jobs experience high blocking   

                                                              probability        increase CShared by one channel   

                                 

  If  PLow / PHigh   <  9.5                     Then       high priority jobs experience high blocking   

                                                              probability        decrease CShared by one channel   

                                   

  If 9.5  <  PLow / PHigh  < 10.5         Then                        do not change the CShared value 

The controller agent maps the received state s(t) = (PLow(t),PHigh(t)) to one of the three rules 

and will derive the appropriate action. The chosen action will be implemented to the system. 

The observation agent resets blocking probabilities to zero and again starts observing and 

calculating the new records of blocked jobs in order to compute the new s(t+∆t) to report to 

the controller agent at the end of next observation time interval (t +∆t). 

3.3.2 Applying a Fuzzy-Q Learning Method to the Considered 
Case Study 
 

In this part the fuzzy-Q Learning is implemented on the designed case study in Chapter 2. The 

task of the fuzzy-Q learning algorithm is to help the controller agent in the decision making 

process for setting and updating CShared to the most optimal value in relation to the 

optimization objective which is maximizing the long-term discounted cumulative reward.  

The state of the system is reported to the controller agent as s(t) =(PLow(t),PHigh(t)). PLow(t) 

and PHigh(t) are continuous blocking probability of low and high priority jobs and need to be 

discretized in order to be mapped in to the corresponding sub-states. The discretization 

process is done according to the fuzzification method outlined in Section 3-2-2-1. 

For example assume in one observation time interval ( t ) PLow and PHigh are measured and 

reported to the agent as s(t) = (PLow (t),PHigh (t)) = (0.4,0.25). The state set (S) for both PLow 

and PHigh consists of four sub-states denoted as (s1, s2, s3 and s4). 

 

         0                           25%    33%    40%                            66%                                   100%   

      s1                        PHigh      s2      PLow                       s3                                    s4 
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The fuzzification method outlined in Section 3-2-2-1 is used to derive membership degrees of 

PLow and PHigh: 

 

PLow (t) = 0.4                              
     

     
      

                                                  
     

     
     

 

 

PHigh (t) = 0.25                              
    

    
       

                                                     
     

    
      

 

 

For each job class i ∈ {low, high} the membership degree vector (µ) is defined as: 

µi(s(t)) = (µi
1
(s(t),µi

2
(s(t),µi

3
(s(t),µi

4
(s(t)) 

The membership degree vector for high and low priority jobs is calculated as below: 

µLow (s(t))
 
 = (0,0.8,0.2,0 ) and µHigh (t)

 
 = (0.24,0.76,0,0). 

 

 

Figure 3.3: Fuzzified sub-states diagram 

 

The overall state of the system can be descried by a two dimensional diagram illustrated in 

Figure 3.3:  
 

Each bullet represents a sub-state and the reported state s(t) should be mapped to these sub-

states weighted with membership degrees. 

These class-specific membership degrees map blocking probabilities for each class separately, 

but what is needed is to map the whole state (combining high and low priority jobs 

membership degrees) to the whole sub-state set to provide a general fuzzified overview of the 

Membership degree of PLow 

to sub-state s3 = 0.2 

Membership degree of PLow 

to sub-state s2 = 0.8 

 
Membership degree of P High 

to sub-state s2 = 0.24 

Membership degree of P High 

to sub-state s1 = 0.76 

 

The reported state s(t) will be 

mapped to four sub-states s12, s13, 

s22 ands23 with specific weights 
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system state considering both blocking probabilities. A 4 4 matrix is introduced to give the 

overall membership degree matrix µij (s(t)). 

µij ( s(t) ) = (µ
i
High

  
(s(t))

 
 .  µ

j
Low

 
(s(t))  

  

s11 

µ 11 =  µ
1

High . µ
1

Low 

= 0 

s12 

µ 12 =  µ
1

High . µ
2

Low 

=0.19 

s13 

µ 13 =  µ
1

High . µ
3

Low 

= 0.05 

s14 

µ 14 =  µ
1

High . µ
4

Low 

=0 

s21 

µ 21 =  µ
2

High . µ
1

Low 

= 0 

s22 

µ 22 =  µ
2

High . µ
2

Low 

= 0.61 

s23 

µ 23 =  µ
2

High . µ
3

Low 

= 0.15 

s24 

µ 24 =  µ
2

High . µ
4

Low 

= 0 

s31 

µ 31 =  µ
3

High . µ
1

Low 

= 0 

s32 

µ 32 =  µ
3

High . µ
2

Low 

= 0 

s33 

µ 33 =  µ
3

High . µ
3

Low 

= 0 

s34 

µ 34 =  µ
3

High . µ
4

Low 

= 0 

s41 

µ 41 =  µ
4

High . µ
1

Low 

= 0 

s42 

µ 42 =  µ
4

High . µ
2

Low 

= 0 

s43 

µ 43 =  µ
4

High . µ
3

Low 

= 0 

s44 

µ 44 =  µ
4

High . µ
4

Low 

= 0 

 
Table 3-1: A numerical example of the membership matrix 

 

The membership matrix entries indicate how strongly s(t) is mapped to each sub-state. After 

mapping the state of the system to the discrete sub-states, the controller agent, should take a 

proper action to improve the state. The designed action set contains seven sub-actions as 

given below: 

a1   : increase CShared by 3 channels (units)                      Corresponding active value +3  

a2    : increase CShared by 2 channels (units)                      Corresponding active value +2 

a3   : increase CShared by 1 channels (units)                      Corresponding active value +1 

a4   : decrease CShared by 1 channels (units)                      Corresponding active value -1 

a5   : decrease CShared by 2 channels (units)                      Corresponding active value -2 

a6   : decrease CShared by 3 channels (units)                      Corresponding active value -3 

a7   : do not change the CShared value                                Corresponding active value 0 

 

To discover the best possible action, the controller agent refers to a look-up table contains the 

quality values (Q) of the all possible (sub-state,action) pairs. This look-up table helps the 

controller to find the best action for each sub-state according to former decisions and 

feedbacks. For example, assume for the sub-state s11, the look-up table looks like the one 

below (Table 3-2):  
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Table 3-2: A numerical example (sub-state, action) quality look-up table. The shown value are made up numbers just 

to illustrate the methodology 

 

A similar table exists for each sub-state. Based on this look-up table information, which is 

updated based on former experiences, the best action for this sub-state is a7, i.e. not to change 

the CShared value. After passing the time needed for convergence of Q values from initialized 

values, the quality values of (sub-state,action) pairs converge and the best action for each sub-

state is known. 

At the beginning, the algorithm is totally in the exploration phase because all the Q(sub-

state,action) values are initialized to zeros and all the taken actions are random actions to 

explore the best action in each sub-state. As time passes the controller agent updates the 

quality values after taking any action and relies on former experiences in order to choose the 

action with highest quality and the exploitation phase becomes dominant. However, in some 

self-optimization algorithms (like the one applied in this thesis) the exploration phase never 

ends and in a small portion of the time a random action is chosen instead over the action with 

highest quality in order to keep exploring new possible best actions for each sub-state.  

Assume that after convergence of quality values, the best action for each sub-state and the 

corresponding value is as follows (shown values are made up numbers just to provide an 

overall insight about the methodology): 
 

• Maxl Q (s11 , al) = Q (s11 , a7 ) = 0.75  

• Maxl Q (s12 , al) = Q (s12 , a7 ) = 0.61 

• Maxl Q (s13 , al) = Q (s13 , a5 ) = 0.80 

• Maxl Q (s14 , al) = Q (s14 , a6 ) = 0.87 
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• Maxl Q (s21 , al) = Q (s21 , a2 ) = 0.90 

• Maxl Q (s22 , al) = Q (s22 , a7 ) = 0.69 

• Maxl Q (s23 , al) = Q (s23 , a4 ) = 0.58 

• Maxl Q (s24 , al) = Q (s24 , a4 ) = 0.70 

• Maxl Q (s31 , al) = Q (s31 , a3 ) = 0.91 

• Maxl Q (s32 , al) = Q (s32 , a2 ) = 0.83 

• Maxl Q (s33 , al) = Q (s33 , a7 ) = 0.77 

• Maxl Q (s34 , al) = Q (s34 , a4 ) = 0.64 

• Maxl Q (s41 , al) = Q (s41 , a3 ) = 0.93 

• Maxl Q (s42 , al) = Q (s42 , a2 ) = 0.88 

• Maxl Q (s43 , al) = Q (s43 , a2 ) = 0.67 

• Maxl Q (s44 , al) = Q (s44 , a7 ) = 0.80 

Referring to this look-up table, the controller agent has enough information to calculate the 

optimal action A(s(t)). The system state s(t) has been mapped to some sub-states with 

membership degrees and the best actions for those sub-states are known. Now the agent can 

make the decision and derive the action.  

The taken action would be a combination of best actions in sub-states s12 , s13 , s22 and s23 or 

with probability of ε (experimenting rate) a random action to explore the potential of other 

actions; this means that with probability of ε, the controller chooses a random action out of all 

the possible actions  instead of referring to the look-up table and select the action with the 

highest quality.  

This experimentation phase is necessary because there might exist actions in a specific sub-

state that have been chosen in former experiences while only the quality of those actions get 

updated and the other actions never have the chance of being chosen in that sub-state, 

although they might be very suitable. The derived action (A(s(t))) is calculated as the 

appropriately weighted average of the selected sub-state specific actions as below: 

 

  

 

 

             - arg maxa Q (sij , a )     with probability of 1- ε 

                     

             - al   where  l = random {1,2,...,7}  with probability of ε    

                   

In the continuation of this chapter we assume that )s(  ij

a is equal to arg maxa Q (sij , a ) and 

the algorithm works in exploitation phase, i.e. that the best action rather than a random action 

is selected. In the given numerical example, the derived action (A(s(t)) is calculated as 

following: 

A(s(t)) = round{ ( µ12 × a7 ) + (µ 13 × a5 ) + (µ 22 × a7 ) + (µ 23 × a4 )} = 

     )}s({)(
4

1
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round{(0.19 × 0) + (0.05 × -2) + (0.16 × 0) + (0.15 × -1)} = round{ - 0.25} = 0 

Note that - 0.25 is rounded off to the closest integer which is zero and means that the CShared 

value is not changed. After applying A(s(t)) to the system, the controller agent should wait for 

an observation time interval (∆t) to receive Q(s(t+∆t), A(s(t+∆t))) and r(s(t), A(s(t)) as the 

feedback of the taken action and update the quality of (sub-state , action) pairs according to 

the observed  performance by the induced action. 

 

 ̂(s(t) , A(s(t))) =  

 

For the given example,  ̂(s(t) , A(s(t)))  is computed as: 

Q(s(t) , A(s(t))) =  12 × q (s12 , a7 ) +   13 × q (s13 , a5 ) +   22 × q (s22 , a7 ) +  23 × q (s23 , 

a4 )  = 0.19 × 0.61 + 0.05 × 0.8 + 0.61 × 0.69 + 0.15 × 0.58 = 0.67, 

which indicates the quality of the action A(s(t)) in the system state of s(t). 

For calculating  ̂(s(t) , A(s(t))) and r(s(t) , A(s(t)), the controller agent has to wait until the 

end of next observation time interval (t+∆t) because the new PLow and PHigh are required as 

feedback to assess the taken action performance. Assume at the end of the next observation 

time interval (t+Δt) the state of system is calculated and reported to the agent as  

 

• PLow ( t+Δt) = 0.2                               

• PHigh  (t+Δt) = 0.3 

The controller agent can use this new state (s(t+∆t) ) to calculate  ̂(s(t),A(s(t))) and 

r(s(t),A(s(t)) and update the quality value entries of the (sub-state,action) look-up table. Two 

main aspects of evaluating the performance quality of the taken action are: 

 Short-term reward 

How successful is the taken action A(s(t)) to maximize the reward function. This 

parameter is called the immediate reward r(s(t),A(s(t))). 

 Long-term reward 

How high is the maximum possible quality of the system after the taken action given 

by ( ̂(s(t),A(s(t)))). This parameter is important because it considers the impact of the 

action on future expecting rewards (r(s(t+∆t)), r(s(t +2∆t)),…). For example there 

might be an action which brings a high r(s(t),A(s(t))) but leads the system to future 

states (s(t+∆t), s(t+2∆t),…) with low expected rewards. So, even though an action 

brings some immediate rewards to the system, it may not be a very suitable action in 

the long run. 

 

The immediate reward for the given example is computed below: 

r(s(t),A(s(t))) = - PLow (t+ Δt)  - βP High (t+ Δt) = - 0.2 - 10 × 0.3 = - 3.2 

The future quality will be calculated according to the formula below: 

 

 ̂(s(t),A(s(t))) =  

 

For calculating  ̂(s(t),A(s(t))), the membership degrees of new PLow and PHigh should be 

computed.  

 

PLow (t + ∆t) = 0.2                              
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Membership degree of P Low 

to sub-state s2 = 0.6 

Membership degree of P Low 

to sub-state s1 = 0.4 
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P High (t+∆t) = 0.3                              
    

    
      

                                                                 
     

    
                                                             

 

 

Membership degree vectors of the new PLow and PHigh are as below: 

µHigh
 
= (0.1, 0.9, 0, 0) and µLow

 
= (0.4, 0.6, 0, 0). 

Having new membership degree vectors, new membership degree matrix is computed as: 

µ11 (s(t+∆t)) = 0.04  

µ12(s(t+∆t)) = 0.06      

µ21(s(t+∆t)) = 0.36    

µ22(s(t+∆t)) = 0.54 

while the rest of µij(s(t+∆t))  = 0. 

Referring to the look-up table, the highest expected quality of the new (sub-state, action) pairs 

can be found. Having all the information, the next step would be to calculate the expected 

future quality. 

 

 ̂(s(t+∆t),A(s(t+∆t))) = µ 11 × q (s11 , a7 ) + µ 12 × q (s12 , a7 ) + µ 21 × q (s21 , a2 ) + µ 22 × q (s22 , 

a7 ) = 0.04 × 0.75 + 0.06 × 0.61 + 0.36 × 0.9 + 0.54 × 0.69 = 0.76  

 

Knowing immediate reward (r(s(t),A(s(t))) and future quality  ̂(s(t),A(s(t))), all the required 

information for updating the (sub-state , action) quality look-up table is available.  

For all the sub-states (sij) : 

Qnew(sij(t) , a
*
(sij(t))) = Qold(sij(t) , a

*
(sij(t))) + α ∆Q .   (t)(sijij  

Where 

∆ ̂ = r(s(t+∆t)) +  γ  ̂(s(t+∆t),A(s(t+∆t)))–  ̂(s(t),A(s(t))) 

In the designed fuzzy-Q learning algorithm, the discount factor (γ) is set to 0.8. So, ∆ ̂ is 

calculated as:  

∆ ̂ = - 3.2 + 0.8 × 0.76 - 0.67 = - 3.26. 

The learning rate α indicates to what extent this ∆Q is going to be applied to update the 

present quality look-up table entries. The applied value of α is 0.8. 

The last step is applying α × ∆Q to the look-up table and updating the quality values 

considering the membership degrees.  

In summary the steps of the designed fuzzy-Q Learning algorithm have been described as 

follows:   

1. Initializing the Q-look-up table (sij,al = 0 ) and time (t = 0). 

 

2. Receiving the system state s(t) = (PLow (t), PHigh (t)) every observation time interval (∆t) 

 

3. Discretizing and mapping the received state to the sub-states 

 

4. Computing membership vectors and matrix. 

 

5. Referring to the (sub-state,action) quality look-up table and deriving the best actions for 

each sub-state. 

 

6. Calculating the inferred action. 

 

Membership degree of P Low 

to sub-state s2 = 0.9 

Membership degree of P Low 

to sub-state s1 = 0.1 
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7. Calculating corresponding quality of the taken action. 

 

8. Executing the action A(s(t))  

 

9. t = t+∆t and A(s(t)) leads the system to the state s(t+∆t). 

 

10. Receiving the immediate reward (r(s(t),A(s(t)))). 

 

11. Calculating the highest possible future quality ( ̂ (s(t+∆t) , A(s(t+∆t))). 

 

12. Calculating ∆ ̂. 

 

13. Updating the Q look-up table by the factor α × ∆ ̂. 

 

14. Go back to step 2. 

 

Figure 3-4 illustrates the time scheduling in the fuzzy-Q learning algorithm. 

 

                                       Sensing the system state s(t) 

  Δt Observation time       Deriving and implementing  

                                                the action A(t) 

                                                                                                                                             Time                               
t – Δt                      t                            t + Δt                     t +2 Δt                       

                                                                         

 

                                                                         Observing the new state s(t+∆t) 

                                                                         Calculating r(t) and Q(S(t+∆t)) 

                                                                         Updating quality look-up values 

 
Figure 3.4: Describing the time scheduling of the Fuzzy-Q Learning method 

 

3.3.3 Design Choices and Considerations 
 

In designing and applying the self-optimization algorithms, a lot of design choices need to be 

made and parameters need to be set involving all the tradeoffs and performance concerns. 

This section provides a concise overview of these design considerations and their qualitative 

effects on the overall performance of the algorithm. Two first design choices are common for 

both of the algorithms while the rest of the design considerations is specified for the fuzzy-Q 

learning method.  

3.3.3.1 Design Choices and Considerations for Both of Algorithms 
 

 The first essential choice in self-optimization algorithms is defining the reward 

function (r(s(t),A(s(t))) according to the self-optimization objectives and the inherent 

characteristics of the methodologies. The objective of the system should be carefully 

translated to the reward, e.g. the identical objective of minimizing the long-term 

Blocking in our case study is translated to balancing PLow and PHigh in the way that  



27 

 

PLow/ PHigh = β as the objective of rule-based method while the objective of fuzzy-Q 

learning algorithm is maximizing a discounted cumulative reward. 

 Observation time interval (∆t) should be chosen considering λ (expected occurrences 

per time). ∆t should be large enough to observe enough occurrences in order to provide 

reliable statistics as PLow and PHigh. On the other hand, a very long ∆t leads in to a slow 

controller agent. The controller agent must wait for ∆t for taking a new action and 

react to the system state changes.  

 

3.3.3.2 Design Choices and Considerations for Fuzzy-Q learning 
 

 One of the first choices in designing algorithms is the number of sub-states 

(fuzzification). Defining more sub-state provides the controller agent the facility of 

mapping the reported state to sub-states more accurately. For example, assume instead 

of four sub-states for blocking probabilities, ten sub-states were designed. With four 

defined sub-states, PLow = 0.1 and PLow = 0.3 are both mapped to s1 and s2 while in the 

case of defining ten sub-states they are mapped to totally different sub-states. This 

means that the controller agent has more detailed information about the system state 

and can act more accurately based on this information. The drawback of having more 

sub-states is having more Q(sub-state,action) entries and having a larger quality look-

up table increases the time needed for convergence of the quality values. In other 

words, the larger quality look-up table needs a longer exploration phase before 

converging to reliable values which can be used in exploitation phase. 

 The number of state indicators is another design choice. By adding more quality 

indicators, the system state is described better for the controller agent and this 

additional information can assist the controller agent deciding more accurately, e.g. 

assume that the number of arrivals for each class is added to the blocking probabilities. 

In that case the blocking probability values are more meaningful because the 

controller can consider the arrival process characteristics and makes a better judgment 

about the optimal CShared. Again the disadvantage of having more state indicators is 

increasing the size of quality look-up table and consequently increasing the 

convergence time of the quality entries.    

 The number and kind of actions defined for each state is another matter of design in 

fuzzy-Q learning algorithm. More actions provides the controller agent the better 

facilities to enhance its performance. Defining more actions for each state, increase the 

number of Q(sub-state,action) and the larger quality look-up table, makes the system 

slow towards transition from exploration phase to the exploitation phase. Another 

design consideration related to actions is the choice of designing the proper set of 

actions, e.g. where the actions are relative (like increasing CShared by one channel) or 

determined (e.g. set CShared = 30).    

 Parameter setting choices in fuzzy-Q learning algorithm is setting the discount factor 

(γ). The discount factor indicates the relevant importance of the future reward over the 

instantaneous reward. Setting the γ close to zero indicates that instantaneous reward is 

much more important than future reward while a γ close to one means that the future 
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rewards are as valuable as achieving high immediate reward. Setting  γ = 0.8 indicates 

that for our system receiving high rewards in the future is almost as important as 

immediate reward.  

 The learning rate (α) is a factor indicating to what extent the received feedback of a 

taken action changes the quality of that (sub-state, action) value. If α is close to 1, the 

calculated judgments is directly applied in adapting the quality values while α close to 

zero means that the procedure of updating the quality values is slow. α is set to 0.8 in 

our algorithm. 

 The experimenting rate (ε) is another parameter that needs to be set. ε indicates how 

often a random action is chosen (exploration phase) instead of choosing the action 

with highest quality value (exploitation phase). A non-zero ε is necessary to keep the 

exploration phase running. The case of ε = 0 does not allow the controller agent to 

explore new actions and forces it to always pick the action with highest quality. Note 

that at the beginning (t = 0), all the (sub-state,action) qualities are zero and there is no 

action with highest quality in which case random actions are chosen. ε = 1 means that 

the controller agent always chooses a random action and never uses the learnt 

information based on former experiences which effectively leads to an inefficient self-

optimization method which is just taking random actions.  

Table 3-3 gives an overview of the key design choices and the associated tradeoffs for the 

designed fuzzy-Q learning algorithm.  
 

 

 

 

 

 

 

 

Name of the parameter 

 

 

 

Chosen value 

 

Designing consideration 

 

Number of sub-states for 

each blocking probability 

 

4 

More sub-states 

+: Higher accuracy 

−: larger quality look up 

table, slower quality values 

convergence 

 

 

Number of possible actions 

for each sub-state 

 

 

 

7 

More actions 

+: more chances for taking 

precise action 

−: larger quality look up 

table, slower quality value 

convergence 

 

 

Observation time interval: ∆t 

 

 

100 s 

Larger ∆t 

+: more reliable statistics of 

blocking probabilities 

−: slower control agent 

reaction to the system state 
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Discount factor: γ 

(0 < γ <1) 

 

 

0.8 

Higher  γ 

+: investigates on long-term 

rewards in the future 

−: assigning less value to the 

immediate quality of the 

taken action 

 

 

Learning rate: α 

(0 <  α  <1) 

 

 

0.8 

Higher  α 

+: direct applying of the 

feedbacks, faster reaction to 

the system state 

−: fluctuating quality values 

 

 

 

 

Experimenting rate: ε 

(0 <  ε  <1) 

 

 

 

 

0.2 

Higher ε 

+: more often taking random 

actions to explore, exploring 

new potential beneficial 

actions 

−: exploration is inherently 

costly and the algorithm may 

shows bad performance 

during the exploration 

because of taking a wrong 

action by random 
 

 

 
Table 3-3: An overview of design algorithm choices 
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4 Simulation Scenarios and 

Results 
 

In this chapter, I will define three sets of simulations that are applied to a simulator developed 

in Delphi 5 (the main unit of the code is provided in Appendix B). The objective of the first 

group of simulations is to study the effect of different parameters’ values on the overall 

performance of self-optimization algorithms. The second set of simulation scenarios will 

replicate a partial failure in the total capacity of the system (CTotal) as well as repairing the 

failure allowing the author to observe the algorithm’s reaction to this abrupt change in 

capacity.  The last group of simulations is modeling changes in arrival process profile. 

In all of the aforementioned scenarios, the self-optimization algorithm’s performance is 

assessed by the following quality matrix: 

 

 Convergence time of cumulative Blocking 

 Converged cumulative Blocking value 

 90% of PLow after convergence 

 90% of PHigh after convergence 

 Time fraction of meeting P*Low and P*High after convergence 

 

Convergence time of cumulative Blocking: This entry of the quality matrix 

represents the time of convergence of the cumulative Blocking (PLow + 10PHigh) 

values. Cumulative Blocking at time t’ is the Blocking from t=0 to t=t’.  

Blocking(t’)=PLow (t=0 to t’) + 10PHigh(t=0 to t’). 

The cumulative reward has converged if the difference between seventy 

consecutive Blocking values is less than 0.0001, which means that cumulative 

Blocking values are almost identical and the Blocking has reached its converged 

value. 

Converged cumulative Blocking value: Assuming the same definition of the 

convergence, this term represents the converged value of the cumulative 

Blocking. 

90% of PLow and PHigh after convergence of cumulative Blocking: in 300 

seconds (five minutes) interval PLow and PHigh are measured for more reliable 

statistics. These statistical blocking probability values are sorted in ascending 

order and the 90% value of all values is extracted. These values indicate that 

in 90% of the five minutes statistical intervals, PLow and PHigh are lower than 

given values. These values provide operational statistics for the operator. The 

operator can claim to guarantee lower blocking probabilities in 90% of the 

time. 

Time fraction of meeting P*Low and P*High after convergence: P*Low and 

P*High are targeted values defined by the operator. The system performance is 

considered acceptable if PLow < P*Low and PHigh < P*High . This entry of the 

quality matrix shows the time fraction in which the system is successful 
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meeting the PLow < P*Low and PHigh < P*High requirement. For all the 

simulations PLow = 10% and PHigh = 1%. 

All the simulations duration is equal to 30000 × Δt(Observation time) . 

 

4.1 Changing in Parameters Scenarios 
 

 

The goal of this series of simulations is studying the effect of algorithms’ parameter settings 

on the overall system performance. 

 

4.1.1 Default Setting 
 

A default setting for both algorithms is defined as following: 

CTotal = 35 

CShared initialization = 10 

λ (expected occurrences per time unit)  = 30 

Average job duration = 0.8 

Percentage of high priority jobs = 60% 

β (Relative importance of high priority job over low priority job)  = 10 

Observation time interval = 100 seconds  

Statistical time interval = 300 

P*Low = 10% 

P*High = 1% 

Additional parameter settings are needed for Fuzzy-Q Learning algorithms such as: 

γ ( Discount Factor) = 0.8 

α ( Learning Rate) = 0.8  

ε (Experimenting Rate) = 0.2 

The quality matrix values that resulted from the default setting simulations for rule-based and 

Fuzzy-Q Learning method are recorded in Table 4-1 and the performance of the algorithms 

are shown in Figure 4-1 and 4-2. 

 

 

Self-

optimization 

method 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction of 

meeting 

PLow and 

PHigh target 

 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

Rule-based 

method 

 

0.0669866138 

 

83400 

 

0.999691 

 

 

0.004603 

 

 

0.036192 

 

Fuzz-Q 

learning 

method 

 

0.1024201422 

 

147400 

 

0.88273 

 

 

0.007543 

 

 

0.097688 

 

 
Table 4-1: The quality matrix of default setting scenario 
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Figure 4.1: Rule-based method performance in the default setting 

 

Figure 4.2: Fuzzy-Q learning method performance in the default setting 

According to the above figures, the rule-based method has performed better (faster 

convergence, lower converged cumulative blocking and larger time fraction of meeting 

targeted Blockings) with higher stability because it does not have a learning process or an 

experimenting phase. In order to compare both methodologies, cumulative Blocking of 

methods is plotted on Figure 4-3. 
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Figure 4.3: Comparing Cumulative Blockings of both methods 

 

In the beginning of the simulation, the rule-based has performed better because it knows the 

optimal action while the Fuzzy-Q learning must learn about the best action to take. However 

the overall cumulative Blocking of the fuzzy-Q learning method is slightly higher than that 

one of the rule-based method but both of the methods successfully converge quickly to the 

optimal CShared.  

4.1.2 Change in Observation Time (Common for Both of 
Algorithms) 
 

The goal of the next set of the scenarios is to monitor the observation time length (Δt) on the 

overall performance of algorithms. The observation time is set to five different values and the 

resulting quality matrix for each self-optimization algorithm is shown in Table 4-2 (rule-

based) and table 4-3(fuzzy-Q learning): 

 

 

 

Observation 

time 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

Time 

fraction of 

meeting 

PLow and 

PHigh 

target 
 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

 

2 seconds 

 

0.1027074456 

 

3820 

 

0.84492 
 

 

0.0014603 
 

 

0.1035791 
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50 seconds 

 

0.0669935516 

 

45300 

 

0.999794 

 

 

0.004809 

 

 

0.035396 

 

Default 

Setting 

(100 

seconds) 

 

 

0.0669866138 

 

 

83400 

 

 

0.999691 

 

 

 

0.004603 

 

 

 

0.036192 

 

 

500 seconds 

 

0.0703425341 

 

288500 

 

0.999715 

 

 

0.004671 

 

 

0.038535 

 

 

1000 

seconds 

 

0.0724399872 

 

500000 

 

0.999786 

 

 

0.005339 

 

 

0.043087 

 

 

Table 4-2: The resulting quality matrix for different observation interval sizes in the rule-based method 

 

 

Observation 

time 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

Time 

fraction of 

meeting 

PLow and 

PHigh 

target 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

 

2 seconds 

 

0.1336444671 

 

5630 

 

0.59638 
 

 

0.004855 
 

 

0.18608 
 

 

50 seconds 

 

0.1087111680 

 

73100 

 

0.877782 

 

 

0.007284 

 

 

0.102345 

 

Default 

Setting 

(100 

seconds) 

 

  

 0.1024201422 

 

 

  147400 

 

 

0.88273 

 

 

 

0.007543 

 

 

 

0.097688 

 

 

500 seconds 

 

0.1118317622 

 

641000 

 

0.90103 

 

 

0.007661 

 

 

0.087248 

 

 

1000 

seconds 

 

  0.1107673098 

 

  951000 

 

0.876921 

 

 

0.009417 

 

 

0.128128 

 

 

Table 4-3: The resulting quality matrix for different observation interval sizes in the fuzzy-Q learning method 

 

The above tables illustrate the fact that the length of observation time has a direct effect on 

convergence time. The shorter Δt leads to a shorter convergence time, a fact that shows that 

the system finds the optimal CShared more quickly. However, if the observation time is as 

short as two seconds, the calculated blocking probabilities are not reliable because they are 

based on too few occurrences. That’s the reason that both of the algorithms with Δt = 2 

seconds shows the worst performance of all the scenarios. A long observation time, on the 
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other hand, leads to a slower system reaction to the changes in the environment. Long 

observation time provides more reliable statistical information for the controller agent, but in 

the case of a change in the environment or of taking inappropriate action, the controller reacts 

slowly and the algorithm performance remains bad for a longer time. The higher converged 

cumulative Blocking value for longer observation time is the consequence of the longer time 

that the controller agent spends to find the optimal CShared as well as not reacting fast enough 

to the changes of the system state. I have plotted the three most important quality matrix 

entries in Figures 4-4 to 4-6 (90% PLow and 90% PHigh after convergence figures in the 

Appendix A) to provide a clear comparison between algorithms. 

 

 

 

Figure 4.4: Comparing converged cumulative Blocking values in both methods 

 

As illustrated in Figure 4-4, the cumulative Blocking of the fuzzy-Q learning method in all the 

scenarios is higher than that of the rule-based method, while the relative difference between 

them is almost the same. It is also remarkable that for both algorithms, observation time set to 

100 seconds has the lowest cumulative reward of all the scenarios. We can conclude that 

regardless of the applied self-optimization method, an appropriate observation time should be 

chosen according to the arrival process characteristics (λ).   
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Figure 4.5: Comparing cumulative Blocking convergence time in both methods 

 

Figure 4-5 evidences that in all the scenarios, the fuzzy-Q learning method has converged 

later than the rule-based method, but the differences between two methods’ convergence time 

grows when the observation time is increased. This is not only because the system is acting 

slowly to converge to the optimal CShared; it is also the result of the fact that the learning phase 

takes longer. In the rule-based method, the controller agent already knows the proper action 

but it must wait to take the action after finishing the observation time (1000 seconds), while in 

the fuzzy-Q learning method the controller agent finds out 1000 seconds later if the action is 

an inappropriate one and should start exploring a new action to perform better in that state. 

Thus, both the action taking process and exploration phase are longer, which consequently 

delay the convergence time in the fuzzy-Q learning more than the rule-based method. 

 

 

 

Figure 4.6: Comparing time fraction of meeting targeted Blocking (PLow < 10% and PHigh <1%) after convergence 
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As it is evidenced in Figure 4-6, the observation time set to 2 seconds shows worse 

performance than other scenarios. After convergence the time fraction of meeting targeted 

Blocking is almost identical and, in all the cases, the fuzzy-Q learning method time fraction is 

lower than the rule-based method because of the learning process and experimenting phase. 

Despite that the fuzzy-Q learning still performs acceptably with meeting targeted Blocking in 

more than 80% of the time. 

The time fraction of meeting P*Low and P*High in the first twenty hours for different 

observation interval size is plotted in Figures 4-7 and 4-8 in order to provide a better 

visualization of the effect of observation time length on the system performance before the 

convergence.  

 

 
 

Figure 4.7: Rule-based algorithm performance for different Δt in the 20 hours of running the simulation 

 

 

Figure 4.8: Fuzzy-Q learning algorithm performance for different Δt in the first 20 hours of running the simulation 
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Both figures show that the longer observation time results in a delay in convergence. For 

example, Figure 4-7 illustrates that the rule-based algorithm with observation time set to 2, 20 

and 100 seconds is converged to the optimal CShared value in less than three hours while in the 

scenario with Δt = 1000 it has not converged totally within twenty hours. It is also apparent 

that the observation time set to 2 seconds never performs as well as other settings even after 

fifteen hours of simulation.  

Comparing Figures 4-7 and 4-8, it is evident that the overall time fraction of meeting targeted 

Blocking in fuzzy-Q learning algorithm is lower than that of the rule-based algorithm. The 

reason is that at the beginning of the simulation all of the possible actions have Q(sub-state, 

action) equal to zero and the controller agent should learn the best action in any sub-state by 

taking a particular action and adjusting based on the feedback. Even after convergence, the 

controller agent take a random action to explore new possible action (Experimenting Rate = 

0.2) 20% of the time. This random action might be a very inappropriate one for the current 

state and lead to a lowering of the algorithm’s performance. 

4.1.3 Change in Parameter Scenarios for the Fuzzy-Q Learning 
Method  
 

The rest of parameter changing scenarios are only applicable to the fuzzy-Q learning method. 

In the next set of simulation scenarios, I study the effect of different values of the discount 

factor, learning rate and experimenting rate on the general performance of the algorithm. In 

all of the scenarios, only one parameter value is changed and the rest of the parameters are set 

according to default settings.  

The resulted quality matrix of this set of scenarios is presented in Table 4-4: 

 

 

 

Simulation 

scenarios 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction of 

meeting 

PLow and 

PHigh target 

 

90% of  

PHigh after 

convergence 

 

90% of  

PLow after 

convergence 

 

Discount 

Factor 0.2 

 

 

 

0.1094196230 

 

 

141800 

 

 

0.810222 

 

 

 

0.006473 

 

 

 

0.121524 

 

 

Discount 

Factor 0.5 

 

 

 

0.1021094418 

 

 

128800 

 

 

0.842198 

 

 

 

0.007031 

 

 

 

0.111966 

 

 

Discount 

Factor 0.8 

(Default 

Setting) 

 

 

 

 

0.1024201422 

   

 

 

  

 

147400 

 

 

 

0.88273 

 

 

 

 

0.007543 

 

 

 

 

0.097688 

 

 

Discount 

Factor 0.9 

 

0.1030199232 

 

139100 

 

0.892885 

 

 

0.008028 

 

 

0.088808 
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Learning 

Rate 0.2 

 

 

 

0.1190116431 

 

 

176700 

 

 

0.927285 

 

 

 

0.007643 

 

 

 

0.078734 

 

 

Learning 

Rate 0.5 

 

 

 

0.1062706898 

 

 

138900 

 

 

0.901998 

 

 

 

0.007762 

 

 

 

0.088618 

 

 

Learning 

Rate 0.8 

(Default 

Setting) 

 

 

 

 

0.1024201422 

 

 

 

 

 

147400 

 

 

 

0.88273 

 

 

 

 

0.007543 

 

 

 

 

0.097688 

 

 

Learning 

Rate 0.9 

 

 

 

0.1027510722 

 

 

140300 

 

 

0.871738 

 

 

 

0.00755 

 

 

 

0.101565 

 

 

Experimentin 

Rate 0.2 

(Default 

Setting) 

 

 

 

 

0.1024201422 

 

 

 

 

 

147400 

 

 

 

0.88273 

 

 

 

 

0.007543 

 

 

 

 

0.097688 

 

 

Experimentin 

Rate 0.5 

 

 

 

0.1357384758 

 

 

185600 

 

 

0.801446 

 

 

 

0.006897 

 

 

 

0.131357 

 

 

 

Experimentin 

Rate 0.9 

 

 

 

0.9896108035 

 

 

10500 

 

 

0.0000 

 

 

0.0000 

 

 

 

1 

 

 
Table 4-4: The resulting quality matrix for different parameter setting in the fuzzy-Q learning method 

To provide more specific information about the effect of each parameter the convergence 

time, converged value of the cumulative Blocking and time fraction of meeting targeted 

Blocking are plotted in Figures 4-9 to 4-11 for all the scenarios including the default setting 

( figures of 90%  of PLow and PHigh after convergence are available in appendix).  
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Figure 4.9: Converged value of the cumulative Blocking for all the simulation scenarios in the fuzzy-Q learning 

method 

 

 
 

Figure 4.10: Convergence time of the cumulative Blocking for all the simulation scenarios in the fuzzy-Q learning 

method 
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Figure 4.11: Time fraction of meeting targeted Blocking for all the simulation scenarios in Fuzzy-Q learning method 

 

A higher discount factor considers the future reward as important as the immediate reward. 

The above figures show that the discount factor value does not have a considerable effect on 

convergence time and converged value, yet a higher discount factor shows better performance 

regarding meeting the targeted Blocking.  

The lower learning rate indicates that the received feedback as a reward is implemented 

smoothly to change the Q(sub-state, action) values. Therefore, the (sub-state, action) quality 

matrix changes slowly towards the converged value. Results for different settings of the 

learning rate illustrate that the lower learning rate converges later but, performs slightly better 

in the case of meeting targeted Blocking.  

 

The most dramatic changes in the algorithm performance are related to different settings of 

the experimenting rate. The experimenting rate indicates how often the systems chooses a 

random action rather than the action with highest quality (exploration phase). The 

experimenting rate = 0.9 means that in 90% of the time, the controller agent takes a random 

action. This high experimenting rate deteriorates the self-optimization algorithm’s 

performance in the way that the system never meets targeted Blocking and the converged 

cumulative Blocking is almost 9 times higher than other scenarios. It perhaps worth 

mentioning that although the quality of performance with the experimenting rate set to 0.5 is 

lower than that of 0.2, the algorithm is still working reasonably.   
 

4.2 Change in Capacity Scenarios 
 

The goal of the second group of simulation scenarios is to analyze the reaction of self-

optimization algorithms towards failure in capacity. In coordinated scenarios, at t= 1000000 

seconds, a part of CTotal fails and the whole capacity is decreased to a new value. The system 

remains in this failure situation for 1000000 seconds and at t = 2000000seconds the capacity 

is repaired and the value of CTotal returns to the former value. In other words, the whole 

simulation time (3000000 seconds) is divided into three equal intervals. In the first and third 

interval, the system is working with CTotal = 35, while in the second interval the capacity total 

has decreased because of a partial failure. The self-optimization algorithm should sense this 
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change, adapt to it and converges to a new value of CShared according to new characteristics of 

the system (new CTotal). Investigating algorithms’ adaption to a failure in capacity is important 

because, in many cases, a failure in cloud’s servers or cell’s antennas may occur resulting in 

lower total capacity of the system, and a successful self-optimization algorithm should be able 

to adjust to new circumstances. In this set of simulation, self –optimization algorithms 

encounter situations of failing CTotal by 5, 10 and 20 channels.  

The first assumption is failing Capacity by 5 channels. In Figures 4-12 (the rule-based 

method) and 4-13 (the fuzzy-Q learning method) the algorithms’ responses to this failure are 

plotted. 
 

 
 

Figure 4.12: Rule-based method reaction to 5 channels failure of the CTotal 

 
 

Figure 4.13: Fuzzy-Q learning method reaction to 5 channels failure of the CTotal 
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The above figures highlight the fact that both of the methods react to the change immediately 

and converge to the new CShared value at an appropriate speed. Fuzzy-Q Learning’s 

performance shows more fluctuation in the converged CShared but the converged cumulative 

Blockings values are relatively similar.  

The next failure scenario is a 10 channels failure in CTotal. The algorithms’ performances are 

shown in Figure 4-14 and 4-15. 

 

 

 
Figure 4.14: Rule-based method reaction to 10 channels failure of the CTotal 

 

 

 

 

 
Figure 4.15: Fuzzy-Q learning method reaction to 10 channels failure in CTotal 

In the case of a 10 channels failure in capacity, the fuzzy-Q learning method shows worse 

performance before convergence compared to rule-based method (representing by cumulative 

Blocking’s slope). The reason is that a dramatic increase in blocking probabilities resulting 

from the failure in capacity forces the system to experience totally new states and, 
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consequently the controller agent must learn which action is the best to take in these new 

states.  

Another noticeable point is that the fuzzy-Q learning algorithm takes a longer period of time 

to find the optimal CShared value after repairing the failure compared to the rule-based 

algorithm. The decision making logic of the simulator can explain this phenomenon easily. If 

the derived action results in a CShared larger than total capacity of the system (which is the 

tendency of the system in the case of failure), CShared is set to CTotal value. Therefore, there is 

always a high limit for CShared and that makes the convergence process easier in the case of 

failure; however, in the case of repairing, the controller agent must converge to the new 

optimal CShared starting from the old optimal CShared without the help of forced limitation. This 

phenomenon also exists in the rule-based method’s performance but it is not visible because 

in any case the convergence to the optimal CShared process for the rule-based method is too fast 

to be observed.  

The last scenario of change in capacity is the case of occurring a failure in CTotal by 20 

channels. Algorithms respond to this change presented in Figures 4-16 (the rule-based 

method) and 4-17(the fussy Q-learning method).  

 

 

 

 
 

Figure 4.16: Rule-based method reaction to 20 channels failure of the CTotal 
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Figure 4.17: Fuzzy-Q learning method reaction to 20 channels failure of the CTotal 

In the case of a 20 channels failure in capacity, blocking probabilities are too high for both 

low and high priority jobs. The rule-based method sets the CShared to zero which means the 

system is blocked for low priority jobs and only high priority jobs can be accepted. This can 

be expected because of the β value which is set to 10. The rule-based method attempts to keep 

the ratio PLow/PHigh = 10, therefore PHigh > 10% leads in PLow = 1 which means the system is 

not accepting any low priority job. The fuzzy-Q learning method also converges to very low 

CShared values, but the fuzzy-Q learning method’s policy differs from that one of the rule-

based. The fuzzy-Q learning method’s objective is not to retain the relative Blocking 

probabilities equal to 10, it attempts to minimize a long term discounted cumulative Blocking. 

Thus, the CShared is not totally set to zero. 

As mentioned before, the capacity failure scenarios divide the whole simulation duration in to 

three intervals. In the first interval, the system works normally with default system settings. 

The second interval starts when the failure in the CTotal happens and ends when the failure is 

repaired. In the third interval the system CTotal is brought back to the normal working situation 

with full capacity. The quality matrix for each of these intervals is listed below as three tables 

(table 4-5, 4-6 and 4-7). 

 

 

Simulation 

scenarios 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction 

of 

meeting 

PLow and 

PHigh 

target 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

5 channels 

failure, 

Rule-based 

method 

 

 

0.0669866138 

 

 

83400 

 

 

0.999673 

 

 

 

0.004648 

 

 

 

0.036175 
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5 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

 

0.1024201422 

 

 

 

147400 

 

 

 

0.876452 

 

 

 

 

0.007692 

 

 

 

 

0.10452 

 

10 channels 

failure, 

Rule-based 

method 

 

 

0.0669866138 

 

 

83400 

 

 

0.999673 

 

 

 

0.004648 

 

 

 

0.036175 

 

10 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

0.1024201422 

 

 

147400 

 

 

0.876452 

 

 

 

0.007692 

 

 

 

0.10452 

 

20 channels 

failure, 

Rule-based 

method 

 

 

0.0669866138 

 

 

83400 

 

 

0.999673 

 

 

 

0.004648 

 

 

 

0.036175 

 

20 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

 

0.1024201422 

 

 

 

147400 

 

 

 

0.876452 

 

 

 

 

0.007692 

 

 

 

 

0.10452 

 

 
Table 4-5: The quality matrix of self-optimization algorithms in the first interval (normal working condition) 

 

 

Simulation 

scenarios 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction 

of 

meeting 

PLow and 

PHigh 

target 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

5 channels 

failure, 

Rule-based 

method 

 

 

0.2520098059 

 

 

1085100 

 

 

0.007871 

 

 

 

0.016838 

 

 

 

0.148068 

 

5 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

 

0.2813569193 

 

 

 

1149500 

 

 

 

0.000706 

 

 

 

 

0.017362 

 

 

 

 

0.26019 

 

10 channels 

failure, 

Rule-based 

method 

 

0.7185525230 

  

 1188900.00 

 

0 

 

0.044216 

 

 

0.389091 
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10 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

0.7194092225 

  

 

  1242800.00 

 

 

0 

 

 

0.049065 

 

 

 

0.40813 

 

20 channels 

failure, 

Rule-based 

method 

 

 

2.6066953954 

 

 

1260600 

 

 

0 

 

 

0.174102285 

 

 

1 

 

20 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

2.6733058054 

 

 

1418500 

 

 

0 

 

 

0.194580965 

 

 

 

1 

 

 
Table 4-6: The quality matrix of self-optimization algorithms in the second interval (failure in the capacity) 

 

 
 

 

Simulation 

scenarios 

 

Converged 

cumulative 

Blocking 

value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction 

of 

meeting 

PLow and 

PHigh 

target 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

5 channels 

failure, 

Rule-based 

method 

 

 

0.0561547489 

 

 

2064200 

 

 

0.999359 

 

 

 

0.004454 

 

 

 

0.036769 

 

5 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

0.1098873154 

 

 

2122100 

 

 

0.841763 

 

 

 

0.00752 

 

 

 

0.122427 

 

10 channels 

failure, 

Rule-based 

method 

 

 0.0585011008 

 

2063600 

 

1.00 

 

0.004485 

 

 

0.036141 

 

10 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

0.1410742768 

 

 

2184100 

 

 

0.833027 

 

 

 

0.007626 

 

 

 

0.115626 

 

20 channels 

failure, 

Rule-based 

method 

 

0.0755611173 

 

2096700 

 

0.9973 

 

 

0.004558 

 

 

0.037067 
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20 channels 

failure, 

Fuzz-Q 

Learning 

method 

 

 

0.1124174657 

 

 

2147100 

 

 

0.858386 

 

 

 

0.007892 

 

 

 

0.138756 

 

 

Table 4-7: The quality matrix of self-optimization algorithms in the third interval (repairing the failure and back to 

normal working condition) 

The above results show that both algorithms have successfully adapted to the failure and have 

changed the optimal CShared value according to the new CTotal. I have created the following 

figures (Figure 4-18 to 4-20) to provide a better visualization of the quality matrix values and 

to compare both algorithms’ performances. Converged cumulative Blocking values, 

convergence times and time fraction of meeting targeted Blocking for all the scenarios are 

plotted as below (90% of PLow and PHigh after convergence figures are provided in appendix): 

 

 
Figure 4.18: Converged cumulative Blockings in different change in capacity scenarios for all the three intervals 

In the third interval for 5 and 10 channels failure scenarios, the rule-based method has 

performed considerably better than the fuzzy-Q learning method and the cumulative Blocking 

in this interval is even lower than the cumulative reward in the first interval. The explanation 

is that for the rule-based algorithm, the first and third intervals are basically the same 

considering that the initialized value for CShared in the first interval is 10 channels while in the 

third interval it is higher (28 for the scenario of failure by 5 channels and 22 in the case of 

happening a 10 channels failure in total capacity) and the convergence from a higher 

initialized value is less costly. For the fuzzy-Q learning method, facing a new system state 

plays more important role than the CShared initialization, therefore the same improvement is not 

observed for the fuzzy Q-learning method. 
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Figure 4.19: Convergence time of cumulative Blockings in different failure in capacity scenarios for all the three 

intervals 

 

 

 
 

Figure 4.20: Time fraction of meeting targeted Blocking in different change in capacity scenarios for all the three 

intervals 

 

Figure 4-20 illustrates that in the case of failure in capacity, both of the algorithms were not 

successful meeting the targeted Blocking (0% of the time). However, after repairing the 

failure both of the algorithms successfully returns to normal working circumstances and the 

time fraction of meeting targeted Blocking before and after the failure is relatively the same. 

 

4.3 Change in Arrival Process Scenarios 
 

In the third and final series of scenarios, I will investigate the performance of the self-

optimization algorithms in the case of change in arrival process characteristics using batch 

arrival approach. In the default arrival process, jobs are generated according to the Poisson 
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process and each arrival is equivalent of one arriving job. In the batch arrival, jobs are 

generated according to the Geometric distribution and each arrival represents the arrival of a 

batch of jobs. In other words, a group of jobs called batch arrives and the average size of the 

batch is one of the arrival process parameters which needs to be set.  

In the sections below, I will define two general sets of simulation scenarios. In the first set of 

simulations, at t= 1000000, the arrival process changes gradually over an hour (3600 seconds) 

to a batch arrival process with different average batch sizes. As the number of expected 

arrivals per time (λ) is constant, this batch arrival process means that not only will the system 

have to deal with multiple jobs at the moment of arrival, but it must also deal with an 

increased number of calls. For example, increasing the batch size to two or three while the λ is 

constant means that the total number of arrivals will be two or three times higher than before. 

In the second set of scenarios, while increasing the batch size, the λ is decreased by the same 

rate. For example if in one hour the arrival process has changed to a Geometric distribution 

with batch size of two, then, the λ will be decreased from 30 to 15. In this set of simulation 

scenarios, the total number of arrivals will not be increased, but instead of jobs arriving one 

by one they arrive in a different average batch of sizes.  

All the jobs in one batch arrive simultaneously, but each job has independent duration 

according to the Poisson process with the mean value of 1/µ. Furthermore, jobs are accepted 

and processes in the system one by one which means that the system does not deal all the jobs 

in one batch as “one job which requires more than one channel ” or “one job with longer 

processing time”.  

 

4.3.1 Batch Arrival Scenarios without Changing the Arrival 
Rate (λ) 
 

 

Performance results of changing the arrival process to batch arrival with batch size two and 

without decreasing the λ, are recorded in Table 4-8. 

 

 

 

 

Simulation 

scenarios 

 

Converged 

cumulative 

Blocking value 

 

Convergence 

time 

(Seconds) 

 

Time 

fraction 

of 

meeting 

PLow and 

PHigh 

target 

 

90% of  PHigh 

after 

convergence 

 

90% of  PLow 

after 

convergence 

Rule-based 

method, 

Batch size 2 

 

1.6137291539 

 

1264700 

 

0 

 

0.089520534 

 

 

0.837869823 

 

Fuzzy-Q 

learning 

method, 

Batch size 2 

 

 

2.082705434 

 

 

1062000 

 

 

0 

 

 

0.108465369 

 

 

 

1 

 

Rule-based 

method, 

Batch size 3 

 

3.0775641267 

 

1291900 

 

0 

 

0.221235691 

 

 

1 
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Fuzzy-Q 

learning 

method, 

Batch size 3 

 

 

4.4229599011 

 

 

1058200 

 

 

0 

 

 

0.332876059 

 

 

 

1 

 

Table 4-8: Performance quality matrix of algorithms for different scenarios of change in arrival batch size 

It is illustrated by Table 4-8 values that increasing the batch size without decreasing λ leads to 

a dramatic rise in the number of arrivals and, consequently, PLow and PHigh. The self-

optimization algorithms’ solution towards this increase in arrivals is blocking the system for 

low priority jobs and only accepting high priority jobs. To provide more visualization of the 

quality matrix values, I displayed the converged cumulative Blocking values and the 

convergence time in Figures 4-21 and 4-22. The time fraction of meeting the targeted 

Blocking for all of the scenarios is zero so I have not include the coordinated figure (90% of 

PLow and PHigh values are provided in the Appendix). 

 

 
 

Figure 4.21: The converged cumulative Blocking for different batch arrival scenarios 

 
 

Figure 4.22: The convergence time of cumulative Blocking for different batch arrival scenarios 
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Comparing the rule-based method to the fuzzy-Q learning method performances, it is evident 

that the latter’s cumulative Blockings converges faster and the converged values are higher 

than the formers. 

4.3.2 Batch Arrival Scenarios with Changing the Arrival Rate 
(λ) 
 

 

The second set of simulations is increasing batch size while decreasing λ. In this part of 

simulation for further investigation, average batch arrival size four is added to the scenarios to 

observe the algorithm’s reaction to the higher batch sizes. In this set of scenarios, by 

increasing the batch size to two, three and four, the λ is decreased to λ/2, λ/3 and λ/4. I have 

presented the algorithms’ performance towards changes in arrival process in Figures 4-23 to 

4-28. 
 

 
 

Figure 4.23: Rule-based method’s reaction to the batch arrival (average batch size=2) 
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Figure 4.24: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=2) 

 
 

Figure 4.25: Rule-based method’s reaction to the batch arrival (average batch size=3) 
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Figure 4.26: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=3) 

 

 
 

Figure 4.27: Rule-based method’s reaction to the batch arrival (average batch size=4) 
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Figure 4.28: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=4) 

By observing above figures it is possible to conclude that although increasing batch size and 

decreasing λ does not change the total number of arrivals in a time unit, it does increase PLow 

and PHigh according to the batch size. This growth in blocking probabilities can be explained 

by the fact that by changing the batch size the jobs arrive in a batch whereas the departure 

process of jobs does not change and jobs leave the capacity one by one after job durations. 

This disagreement in arriving and departing jobs increase the blocking probabilities. The 

higher the blocking probabilities are the more reserved capacity for high priority jobs is 

needed in order to provide higher QoS for high priority jobs. It is also important to take note 

of the high fluctuation in immediate reward values. The batch arrival affects the Blocking in a 

dramatic way because of its highly dynamic nature.     

Table 4-9 contains the quality matrix values of algorithms for all the scenarios. 
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Fuzzy-Q 

learning 

method, 

Batch size 2 

 

 

0.3743656398 

 

 

1212900 

 

 

0 

 

 

0.026871757 
 

 

 

0.313081555 
 

Rule-based 

method, 

Batch size 3 

 

0.5332015231 

 

1267300 

 

0 

 

0.034000354 
 

 

0.302417236 
 

Fuzzy-Q 

learning 

method, 

Batch size 3 

 

0.7996475670 

 

1025100 

 

0 

 

0.05331669 
 

 

0.524251259 
 

Rule-based 

method, 

Batch size 4 

 

0.7408968521 

 

1286100 

 

0 

 

0.046799355 
 

 

0.417725014 
 

Fuzzy-Q 

learning 

method, 

Batch size 4 

 

 

1.0888432272 

 

 

1297500 

 

 

0 

 

 

0.072972973 
 

 

 

 

0.72802042 
 

 

Table 4-9: Performance quality matrix of algorithms for different scenarios of simultaneous change in λ and batch 

arrival size 

 

The quality of the performance matrix’s values represent that although the convergence time 

of the cumulative Blocking for both of the algorithms is relatively similar, the converged 

cumulative Blocking of the fuzzy-Q learning method is higher compared to the rule-based 

method. The reason is that the strong fluctuation of immediate reward, resulted by the batch 

arrival process, affects the fuzzy-Q learning method’s performance more than the rule-based 

method because the fuzzy-Q learning method is more sensitive to change in the system state. 

A minor change in the state after fuzzification might result in totally different sub-states. The 

fuzzy-Q learning method decision making logic is totally dependent on previous experiences 

and learning from former action performances. Thus a stable system is preferable with this 

method in order to make a precise assessment about the former taken actions’ performance. A 

dynamic arrival process with fluctuating blocking probabilities may influence the algorithms’ 

assessment in a negative way. For example, a taken action at time t can be considered to be an 

inappropriate one because the Blocking at t+Δt is higher than before. Therefore, the action 

would be punished and not repeated in the same sub-state again while the action could be a 

proper one and the higher blocking probabilities are the result of dynamic change in the 

arrival process. To compare the method’s performance easily I have provided the converged 

value of cumulative Blocking and convergence time values of both algorithms in all the 

scenarios in Figure 4-29 and 4-230. 
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Figure 4.29: Converged cumulative Blocking of algorithms in batch arrival process with changing λ 

 

 
 

Figure 4.30: Convergence time of cumulative Blocking of algorithms in batch arrival process with changing λ 
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5 Conclusion and Future Work 
In this thesis work I have investigated a self-optimization approach of resource allocation in 

ICT systems. The case study that I have designed for this research is a system with a total 

capacity of CTotal serving two classes of jobs: low and high priority. Rejecting a high priority 

job is more costly for the service provider and, as a result, the system must designate some of 

the resources solely for high priority jobs.  This allotment of resources allows the system to 

comply with various standards of QoS.   The objective of the self-optimization methodologies 

is to minimize Blockings while splitting the CTotal into CShared and CReserved. 

 

I used two different methods to apply Self-organization algorithms to the controller agent of 

the system, two different methods have been chosen. The first is the rule-based method which 

is a set of if-then rules written by a knowledgeable human expert, adapting CShared value 

according to the system state, reported at the end of each observation interval. The second 

method is the fuzzy-Q learning method which is one of the reinforcement learning algorithms. 

The fuzzy-Q learning algorithm does not have any prior knowledge about the system state or 

the optimal action for each state, but the controller agent is able to learn from former 

experiences by executing an action and then assessing the success of that action based on the 

feedback from the system.  

 

I have designed three sets simulations to observe and compare the methods performances. The 

first set of scenarios’ objective is to analyze the effect of different algorithms’ parameter 

settings on the overall performance of the methods. The second set of experiments’ was 

simulating an abrupt failure in capacity and to then study how the algorithms react and adapt 

to this change.  The last set of scenarios simulated a change in the arrival process, shifting 

from the Poisson arrival process to the multi-sized Geometric distribution batch arrival 

process, In one group the λ was unchanged while in the another group , it was decreased by 

the same rate of growth in batch size.  

 

 

The overall results show that the rule-based method performs better than the Fuzzy-Q 

Learning method, which is not surprising because the case study that I employed allows the 

algorithms to easily predict which action is best in each state based on the reported PLow (t) 

and PHigh (t).  However, considering the cost of the learning and exploration phases of the 

Fuzzy-Q Learning method, this method also performed acceptably in most of the scenarios.  

 

The first set of simulations indicates that the most influential parameter on the algorithms’ 

overall performance is the size of the observation time interval. The short observation time 

interval does not allow for the reporting of a reliable state because there is an insufficient 

amount of arrivals have been observed.  This unreliable state report leads to deterioration of 

the algorithms’ performances. Conversely, longer observation time intervals do ensure that 

the system state has been reported accurately to the controller agent, but the system reacts 

more slowly and convergence is delayed. It was also highlighted by the simulations’ results 

that the length of observation time should be chosen according to the arrival rate λ, regardless 

of the applied self-optimization algorithms. 

Another important parameter, influencing the fuzzy-Q learning algorithm’s performance is the 

experimenting rate which indicates how often the controller agent chooses a random action to 

explore (exploration phase). 
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The failure in capacity simulation results illustrate that, in the case of a failure in capacity, the 

CShared is set to a lower value as the consequence of increase in blocking probabilities.  If the 

failure occurs on a larger scale, the system is blocked for low priority jobs altogether and only 

services high priority jobs. Another noteworthy observation is that when a larger failure takes 

place, algorithms need more time to adapt and to find the new optimal CShared compare to a 

minor failure. However, it is also important to note that after repairing the failure, algorithms 

can successfully return the system to a normal state after a reasonable time which is 

promising. 

 

The last set of scenarios demonstrate that the larger size of the arrival batch, even when the λ 

is decreased by the same rate, results in higher blocking probabilities and consequently a 

lower CShared. It is also evident that the fuzzy-Q learning method performs worse than the rule-

based method in all of the batch arrival process scenarios.  This is due to the fact that 

fluctuation in the immediate Blocking affects the fuzzy-Q learning method’s performance 

much more than the performance of the rule-based method. 

 

 

One direction of future research for scholars can be designing case studies in which learning 

self-optimization methods like the Fuzzy-Q Learning method performs more efficiently than 

rule-based methods. The case study that I considered for this research, with its direct 

relationship between blocking probabilities and the optimal CShared value, allowed for the easy 

prediction of the most appropriate action in different states of the system. Therefore a 

knowledgeable expert can set up the look-up table in the way that the controller agent does 

not experience any difficulties finding the best possible action in each state. But in more 

complicated case studies it might be not easy (even for a human expert)  to predict the best 

action in the different system states due to unknown and dynamic process affecting the 

system. For example in a game like chess, the best action and reward feedback in each state is 

difficult to predict, because the reward is also dependent on the opponent’s reaction. 

Additionally, scholars could consider and design a case study in which the parameters 

representing the system state are not easily measureable. For example in my case study two 

parameters reporting the system state were blocking probabilities which can be measure and 

reported easily while it is possible that in a cellular mobile network, the blocking probabilities 

in neighboring cells are matter of importance and for the controller agent it is not easy to 

measure blocking probabilities in other cells.   

 

Moreover, as an improvement for the fuzzy-Q learning, I suggest an algorithm with variable 

experimenting rate learning rates. At the beginning of any self-optimization process, the 

fuzzy-Q learning is in the exploration phase and as the time progresses it shifts to utilization 

of learnt information more often (exploitation phase). The higher value of experimenting and 

learning rates accelerate the exploration procedure, but it is not preferable when the algorithm 

is in exploitation phase. Therefore, a dynamic experimenting and learning rate which is high 

at the beginning of the fuzzy-Q learning method’s employment and decreasing as time passes 

improves the algorithm’s performance. 
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Appendix A 
90% of PLow and PHigh Figures for differens simulation scenarios. 
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Appendix B 
 

In this section, I have provided the Delphi codes used as the simulator. The codes are 

generated by in Delphi 5 and only two main programs are presented here. For each specific 

scenario a unit, was added to simulate required changes. 

  

 Rule-Based Method 

program clouding_ifthen; 

 

uses 

  SysUtils, 

  Math, 

  Procedures-IfThen in '..\Clouding Update3\procedures-IfThen.pas', 

  consTypeVar in '..\Clouding Update3\consTypeVar.pas', 

  statistics_ifthen in '..\Clouding with statistics\statistics_ifthen.pas', 

   

var 

  results_1, results_2                                               : 

textfile; 

 

{--------------------------------------------------------------------} 

begin 

  RandSeed := 123456789; 

 

  Assignfile(results_1,'h:\results_1 (' + ParamStr(1) + ' ' + ParamStr(2) + ' 

' + ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6) + 

' ' + ParamStr(7) + ' ).txt'); 

  Rewrite(results_1); 

    Assignfile(results_2,'h:\results_2 (' + ParamStr(1) + ' ' + ParamStr(2) + 

' ' + ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6) 

+ ' ' + ParamStr(7) + ' ).txt'); 

  Rewrite(results_2); 

 

  Initialisations; 

{Setting Parameters} 

  lambda                 :=  StrToFloat(ParamStr(1)); 

  AvgJobDuration         :=  StrToFloat(ParamStr(2)); 

  percentHigh            :=  StrToFloat(ParamStr(3)); 

  capacity.Total         :=  StrToInt  (ParamStr(4)); 

  capacity.Share         :=  StrToInt  (ParamStr(5)); 

  Beta                   :=  StrToFloat(ParamStr(6)); 

  Observationtime        :=  StrToFloat  (ParamStr(7)); 

  statisticinterval      :=  StrToFloat  (ParamStr(8)); 

  PLowtarget             :=  StrToFloat(ParamStr(9)); 

  PHightarget            :=  StrToFloat(ParamStr(10)); 

 

 

  tijd                     := 0.0; 

  tijdNextArrival          := tijd + SampleExponential(lambda); 

  tijdNextDeparture        := MaxExtended; 

  tijdNextOptimisation     := Observationtime; 

  tijdNextstatistic        := statisticinterval; 

  tijdchangeincapacity    := Observationtime * 10000; 

repeat 

if (tijdNextArrival < tijdNextDeparture) and (tijdNextArrival < 

tijdNextOptimisation) and (tijdNextArrival < tijdNextstatistic) then 

{Next Occurrence is Arrival} 

      begin 

        tijd            := tijdNextArrival; 

        tijdNextArrival := tijd + SampleExponential(lambda); 

        CallArrival; 

      end 
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else if (tijdNextDeparture < tijdNextArrival) and (tijdNextDeparture <      

tijdNextOptimisation))and (tijdNextDeparture < tijdNextstatistic)then 

{Next Occurrence is Departure} 

 

      begin 

        tijd            := tijdNextDeparture; 

        CallDeparture; 

      end 

else if (tijdNextOptimisation < tijdNextArrival) and (tijdNextOptimisation < 

tijdNextDeparture) and (tijdNextOptimisation < tijdNextstatistic) then 

{Next Occurrence is Optimization (Happens every 100seconds)} 

      begin 

        tijd            :=  tijdNextOptimisation; 

        PLow  := blocks.Low / arrivals.Low; 

        PHigh := blocks.High / arrivals.High; 

        reward := -PLow - (Beta * PHigh); 

        blocks.cumLow       :=   blocks.cumLow + blocks.Low; 

            blocks.cumHigh      :=   blocks.cumHigh + blocks.High; 

            arrivals.cumLow     :=   arrivals.cumLow + arrivals.Low; 

            arrivals.cumHigh    :=   arrivals.cumHigh + arrivals.High; 

            blocks.changeLow    :=   blocks.changeLow + blocks.Low; 

            blocks.changeHigh   :=   blocks.changeHigh + blocks.High; 

            arrivals.changeLow  :=   arrivals.changeLow + arrivals.Low; 

            arrivals.changeHigh := arrivals.changeHigh + arrivals.High; 

           PLowcum             := blocks.cumLow / arrivals.cumLow; 

           PHighcum            := blocks.cumHigh / arrivals.cumHigh; 

            rewardcum           := -PLowcum - (Beta * PHighcum); 

          

           inc (index); 

           rewardcumMatrix[index]:= -rewardcum; 

       

writeln(results_1,tijd:20:10,capacity.Total :20:10, 

capacity.Share              :20:10,-reward :20:10, -rewardcum :20:10, -

rewardchange :20:10 ); 

 

        callOptimisation; 

        tijdNextOptimisation := tijd + Observationtime; 

 

    end 

else        {Next Occurrence is Deriving Statistics (Happens every 300seconds)} 

 

      begin 

        tijd := tijdNextstatistic; 

     PLowsta   := (blocks.staLow / arrivals.staLow); 

        PHighsta  := (blocks.staHigh / arrivals.staHigh); 

        Rewardsta := PLowsta + (Beta * PHighsta); 

if (PLowsta < PLowtarget ) then  indicatorLow  := indicatorLow 

+1; 

        if (PHighsta <PHightarget )then indicatorHigh := indicatorHigh 

+1; 

        if (Rewardsta < PLowtarget + (Beta * PHightarget) )  then  

indicatorReward :=           indicatorReward + 1; 

 if (PLowsta  < PLowtarget ) and (PHighsta < PHightarget )  and              

(Rewardsta < PLowtarget + (Beta * PHightarget) ) then 

      indicatorGeneral := indicatorGeneral +1; 

      timefraction :=  indicatorGeneral * statisticinterval; 

 

       writeln(results_2,tijd:20:10, PLowsta:20:10, PHighsta:20:10 , 

indicatorGeneral:20:10 , (timefraction/tijd):20:10 ); 

tijdNextstatistic := tijd + statisticinterval; 

       blocks.staLow      := 0; 

       arrivals.staLow    := 0; 

       blocks.staHigh     := 0; 

       arrivals.staHigh   := 0; 

 

      end 

end; 
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    until (arrivals.Low > 0) and (arrivals.High > 0) and (tijd > (30000 * 

Observationtime)); 

 

  Closefile(results_1); 

  Closefile(results_2); 

  {Finding Convergence Time and Converged Cumulative Blocking Value} 

  findingfinalreward;          

  

end. 

 

{-----------------------------------------------------------------------} 

unit procedures-IfThen; 

interface 

uses 

 Math, 

 consTypeVar; 

 

function SampleExponential(rate :extended) :extended; 

procedure Initialisations; 

procedure CallArrival; 

procedure CallDeparture; 

procedure CallOptimisation; 

 

implementation 

 

{--------------------------------------------------------------------} 

{ Poisson Distribution Genetrator} 

function SampleExponential(rate :extended) :extended; 

 

begin 

  SampleExponential := (-1 / rate) * ln(Random); 

end; 

 

{-------------------------------------------------------------} 

 

procedure Initialisations;        

{Initialize Values and Matrixes to Zero and Assigning Actions’ Values} 

var 

  i :longword; 

 

begin 

    present.High := 0;    present.Low := 0;    present.HighandLow  := 0; 

    arrivals.High := 0;   arrivals.Low := 0;   arrivals.HighandLow  := 0; 

    accepts.High := 0;    accepts.Low := 0;    accepts.HighandLow  := 0; 

    blocks.High := 0;     blocks.Low := 0;     blocks.HighandLow  := 0; 

    departures.High := 0; departures.Low := 0;  departures.HighandLow := 0; 

    Action1 := 1;        Action2 := 0;                Action3 :=-1; 

 

    for i := 1 to MaxNumCalls do  

   begin  

calls[i].departure_tijd := MaxExtended; 

     calls[i].callclass      := None;         

   end; 

 

end; 

 

{--------------------------------------------------------------------} 

 

procedure CallArrival; 

var 

  i :longword; 

 

begin 

  if (Random < percentHigh) then                   {Arrived Call is 

Highclass} 

    begin 

      if (present.HighandLow < capacity.Total) then {Call is Accepted} 

      begin 
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           arrivals.High := arrivals.High +1; 

           accepts.High := accepts .High +1; 

           present.High := present .High +1 ; 

           present.HighandLow := present .HighandLow +1 ; 

 

 

                                               

calls[present.HighandLow].departure_tijd := tijd + SampleExponential(1 / 

AvgJobDuration); 

                                               

calls[present.HighandLow].callclass      := High; 

      end 

      else 

      begin                                           {Call is Blocked}    

arrivals.High := arrivals.high +1; 

             blocks.High:= blocks.High +1; 

      end; 

    end 

  else                    {Arrived Call is 

Lowclass} 

    begin 

      if (present.HighandLow< capacity.Share) then   {Call is Accepted} 

      begin      

arrivals.Low := arrivals.Low+1; 

         accepts .Low := accepts .Low +1; 

         present .Low := present .Low +1; 

present.HighandLow := present.HighandLow+1; 

calls[present.HighandLow].departure_tijd:= 

tijdSampleExponential(1/AvgJobDuration); 

                                             

calls[present.HighandLow].callclass:= Low;           

    end 

 

      else  

   begin                                  {Call is Blocked} 

    arrivals.Low := arrivals.Low  +1; 

                  blocks  .Low := blocks  .Low +1;                

 end; 

    end; 

 

  {Set New timeNextDeparture} 

tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do    

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd); 

end; 

 

{---------------------------------------------------------------} 

 

procedure CallDeparture; 

var 

  i,j :longword; 

 

begin 

        {Find Call} 

  i := 0; repeat inc(i) until (Abs(calls[i].departure_tijd - tijd) < 

0.000001); 

 {Administration} 

  if (calls[i].callclass  = High)            then 

  begin                                       

departures.High :=  departures.High +1; 

      present.High:= present.High -1; 

      present.HighandLow := present.HighandLow -1; 

   end 

 

 

  else                            

begin  

departures.Low:=departures.Low+1; 
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              present.Low:=present.Low-1; 

              present.HighandLow:= present.HighandLow-1; 

           end; 

 

  {Remove Departed Call Record} 

  for j := i to present.HighandLow do calls[j] := calls[j + 1]; 

  calls[present.HighandLow + 1].departure_tijd := MaxExtended; 

  calls[present.HighandLow + 1].callclass       := None; 

 

  {Set New timeNextDeparture} 

  tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do 

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd); 

end; 

 

{------------------------------------------------------------------} 

 

procedure CallOptimisation; 

 

var 

  i         :longword; 

  results   : textfile; 

 

begin 

 

if ( Beta - 0.5 < PLow / (PHigh+ 0.00000000000001)) and (PLow / 

(PHigh+ 0.00000000000001) < Beta + 0.5)   then begin 

{No Action} 

        blocks.Low    :=0; 

        arrivals.Low  :=0; 

        blocks.High   :=0; 

arrivals.High :=0; 

      capacity.Share :=  Max(0,Min(capacity.Total,capacity.Share     

+Action2));  

end 

   else 

   if (PLow / (PHigh+ 0.00000000000001) < Beta - 0.5)      then  

begin 

{Decrease C.Shared} 

        blocks.Low     :=0; 

arrivals.Low   :=0; 

blocks.High    :=0; 

arrivals.High  :=0; 

      capacity.Share :=  Max (0 , Min (capacity.Total,capacity.Share + 

Action3)); end 

    else 

   if (PLow / (PHigh+ 0.00000000000001) > Beta + 0.5)         then  

begin 

{Increase C.Shared} 

       blocks.Low   :=0; 

arrivals.Low  :=0; 

        blocks.High   :=0; 

arrivals.High :=0; 

      capacity.Share :=  Max (0 , Min (capacity.Total,capacity.Share + 

Action1)); end; 

 

end; 

 

end. 
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 Fuzzy-Q Learning Method 

program clouding_RLchange; 

 

uses 

  SysUtils, 

  Math, 

  procedures_RL in '..\Clouding Update3\procedures_RL.pas', 

  consTypeVar_RL in '..\Clouding Update3\consTypeVar_RL.pas', 

  Statistics in 'Statistics.pas'; 

   

 

{---------------------------------------------------------------------------} 

 

begin 

  RandSeed := 123456789; 

 

Assignfile(results,'h:\results (' + ParamStr(1) + ' ' + ParamStr(2) + ' ' + 

ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6) + ' ' 

+ ParamStr(7) + ' ' + ParamStr(8) + ' ' + ParamStr(9) + ' ' + ParamStr(10) + 

'' + ParamStr(11) + ').txt'); 

  Rewrite(results); 

  Initialisations; 

  Initialise_RL; 

{Setting Parameters} 

  lambda                    :=  StrToFloat(ParamStr(1)); 

  AvgJobDuration            :=  StrToFloat(ParamStr(2)); 

  percentHigh               :=  StrToFloat(ParamStr(3)); 

  capacity.Total            :=  StrToInt  (ParamStr(4)); 

  capacity.Share            :=  StrToInt  (ParamStr(5)); 

  Beta                      :=  StrToFloat(ParamStr(6)); 

  gama                      :=  StrToFloat(ParamStr(7)); 

  learningrate              :=  StrToFloat(ParamStr(8)); 

  experimentrate            :=  StrToFloat(ParamStr(9)); 

  observationwindow         :=  StrToInt(ParamStr(10)); 

  statisticinterval         :=  StrToFloat(ParamStr(11)); 

  PLowtarget                :=  StrToFloat(ParamStr(12)); 

  PHightarget               :=  StrToFloat(ParamStr(13)); 

 

  tijd                 := 0.0; 

  tijdNextArrival      := tijd + SampleExponential(lambda); 

  tijdNextDeparture    := MaxExtended; 

 

  tijdNextOptimisation := observationwindow; 

  tijdNextstatistic    := statisticinterval; 

  Changeincapacitytime :=observationwindow * 10000 ; 

 

 

  repeat 

 

 

if (tijdNextArrival < tijdNextDeparture) and (tijdNextArrival < 

tijdNextOptimisation) and (tijdNextArrival < tijdNextstatistic) then 

      begin             {Next Occurrence is Arrival} 

        tijd            := tijdNextArrival; 

        tijdNextArrival := tijd + SampleExponential(lambda); 

        Arrival; 

      end 

    else if (tijdNextDeparture < tijdNextArrival) and (tijdNextDeparture < 

tijdNextOptimisation) and (tijdNextDeparture < tijdNextstatistic) then 

      begin            {Next Occurrence is Departure} 

        tijd            := tijdNextDeparture; 

        Departure; 
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      end 

 else if (tijdNextOptimisation < tijdNextDeparture) and (tijdNextOptimisation 

< tijdNextArrival) and (tijdNextOptimisation < tijdNextstatistic) then 

      begin        {Next Occurrence is Optimization Happening every 

100seconds} 

tijd := tijdNextOptimisation; 

Optimisation; 

tijdNextOptimisation := tijd + observationwindow; 

arrivals.High := 0;   arrivals.Low := 0; 

      accepts.High := 0;    accepts.Low := 0; 

      blocks.High := 0;     blocks.Low := 0; 

    end 

 

 

    else          

{Next Occurrence is Deriving Statistics Happening every 300seconds} 

    begin 

 

            tijd := tijdNextstatistic; 

                  PLowsta   := (blocks.staLow / arrivals.staLow); 

           PHighsta  := (blocks.staHigh / arrivals.staHigh); 

           Rewardsta := PLowsta + (Beta * PHighsta); 

    if (PLowsta  < PLowtarget )then  indicatorLow  := indicatorLow +1; 

          if (PHighsta < PHightarget ) then indicatorHigh := indicatorHigh 

+1; 

      if (PLowsta  < PLowtarget ) and (PHighsta < PHightarget ) then 

      indicatorGeneral := indicatorGeneral +1; 

      timefraction:= statisticinterval * indicatorGeneral; 

      tijdNextstatistic := tijd + statisticinterval; 

      blocks.staLow      := 0; 

      arrivals.staLow    := 0; 

      blocks.staHigh     := 0; 

      arrivals.staHigh   := 0; 

 

      end; 

    until (arrivals.Low > 0) and (arrivals.High > 0) and (tijd > (30000 * 

observationwindow)); 

 

  Closefile(results); 

 

  findingfinalreward; 

 

end. 

{-----------------------------------------------------------------------} 

unit procedures_RL; 

 

interface 

 

 

uses 

 Math, 

 consTypeVar_RL, 

 ReinforcementLearning; 

 procedure Initialisations; 

 function SampleExponential(rate :extended) :extended; 

 procedure Arrival; 

 procedure Departure; 

 

 

 

 

implementation 

 

{----------------------------------------------------------------} 
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{Poisson Arrival Generator} 

 

function SampleExponential(rate :extended) :extended; 

 

begin 

  SampleExponential := (-1 / rate) * ln(Random); 

end; 

 

 

{------------------------------------------------------------} 

procedure Initialisations; {Initializing Values and Matrixes to Zero} 

 

 

var 

  i :longword; 

 

begin 

 

 present.High   := 0;    present.Low  := 0;    present.HighandLow  := 

0; 

arrivals.High   := 0;   arrivals.Low  := 0;   arrivals.HighandLow  := 

0; 

accepts.High    := 0;    accepts.Low  := 0;    accepts.HighandLow  := 

0; 

blocks.High     := 0;     blocks.Low  := 0;     blocks.HighandLow  := 

0; 

departures.High := 0; departures.Low  := 0; departures.HighandLow  := 

0; 

blocks.cumLow   := 0;  blocks.cumHigh := 0;     arrivals.cumHigh   := 

0; 

arrivals.cumHigh:= 0; 

  for i := 1 to MaxNumCalls do  

begin  

calls[i].departure_tijd := MaxExtended; 

             calls[i].callclass      := None;         

end; 

 

end; 

 

{----------------------------------------------------------------} 

 

procedure Arrival; 

 

var 

  i :longword; 

 

begin 

  if (Random < percentHigh) then         {Arrived Call is Highclass} 

      begin 

 

      if (present.HighandLow < capacity.Total) then {Call is Accepted} 

      begin 

arrivals.High := arrivals.High +1; 

              accepts.High := accepts .High +1; 

              present.High := present .High +1 ; 

              present.HighandLow := present .HighandLow +1 ; 

 

calls[present.HighandLow].departure_tijd := tijd + 

SampleExponential(1 / AvgCallDuration); 
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calls[present.HighandLow].callclass      := High; 

      end 

      else                                            {Call is 

Blocked} 

      begin                              

arrivals.High := arrivals.High +1; 

             blocks.High:= blocks.High +1; 

      end; 

    end 

  else                                        {Arrived Call is 

Lowclass} 

    begin 

 

if (present.HighandLow< capacity.Share) then   {Call is Accepted} 

begin      

arrivals.Low := arrivals.Low+1; 

accepts .Low := accepts .Low +1; 

present .Low := present .Low +1; 

present.HighandLow := present.HighandLow+1; 

calls[present.HighandLow].departure_tijd      := tijd + 

SampleExponential(1 / AvgCallDuration); 

calls[present.HighandLow].callclass           := Low; 

end 

      else     {Call is Blocked}                        

begin  

arrivals.Low := arrivals.Low  +1; 

       blocks  .Low := blocks  .Low +1;                 

end; 

end; 

 

  {set new timeNextDeparture} 

 

tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do 

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd); 

end; 

 

{--------------------------------------------------------} 

 

procedure Departure; 

 

var 

  i,j :longword; 

 

begin 

  {Find Call} 

  i := 0; repeat inc(i) until (Abs(calls[i].departure_tijd - tijd) < 

0.000001); 

 

  {Administration} 

  if (calls[i].callclass  = High)  then 

  begin                                       

departures.High :=       departures.High +1; 

       present.High:= present.High -1; 

       present.HighandLow := present.HighandLow -1; 

  end 
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  else                            

begin  

departures.Low:=departures.Low+1; 

present.Low:=present.Low-1; 

       present.HighandLow:= present.HighandLow-1; 

 end; 

 

  {Remove Departed Call Record} 

 

  for j := i to present.HighandLow do  

    

calls[j]   := calls[j + 1]; 

    calls[present.HighandLow + 1].departure_tijd := MaxExtended; 

    calls[present.HighandLow + 1].callclass        := None; 

 

  {Set New timeNextDeparture} 

  tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow 

do tijdNextDeparture := 

min(tijdNextDeparture,calls[i].departure_tijd); 

end; 

 

 

 

end. 

 

{-------------------------------------------------------------------} 

unit ReinforcementLearning; 

 

interface 

 

uses 

  SysUtils, 

  Math, 

  consTypeVar_RL; 

 

function DetermineMembershipArray (P :extended) :tMembershipArray; 

function DetermineMembershipMatrix(mu1,mu2 :tMembershipArray) 

:tMembershipMatrix; 

function DetermineSetOfActions (mu: tMembershipMatrix) : 

tSetOfActions; 

Function CalculatingAction (SAC: tSetOfActions) :Integer; 

Procedure Qupdating; 

Procedure Qualitycalculating; 

procedure Optimisation; 

procedure Initialise_RL; 

 

 

implementation 

 

{------------------------------------------------------------------} 

 

procedure Initialise_RL; 

 

var 

  i,j,c :integer; 

 

begin 

  {Determine Fuzzification Sub-State Borders} 
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     for i := 1 to NumberOfBorders do border[i] := (i - 1) /           

(NumberOfBorders - 1); 

 

     for i := 1 to NumberOfBorders do 

    begin 

    mu.High  [i] :=0; 

         mu.Low   [i]  :=0; 

    end; 

 

   for i := 1 to NumberOfBorders do 

   for j := 1 to NumberOfBorders do 

 

  mu.HighLow [i,j] := 0; 

 

 

   for i := 1 to NumberOfBorders do 

   for j := 1 to NumberOfBorders do 

   for c := 1 to 7               do 

   begin 

   Q[i,j,c]   :=0; 

   Qold[i,j,c]:=0; 

   end; 

 

{Define Atomic Actions} 

      AtomicActions[0] := -3; 

      AtomicActions[1] := -2; 

      AtomicActions[2] := -1; 

      AtomicActions[3] :=  0; 

      AtomicActions[4] :=  1; 

      AtomicActions[5] :=  2; 

      AtomicActions[6] :=  3; 

end; 

 

{---------------------------------------------------------------------

-} 

 

procedure Optimisation; 

 

var 

a,i,j :integer; 

action :extended; 

 

begin 

PLow  := blocks.Low / arrivals.Low; 

PHigh := blocks.High / arrivals.High; 

reward:= - PLow - (Beta * PHigh); 

blocks.cumLow    :=   blocks.cumLow + blocks.Low; 

blocks.cumHigh   :=   blocks.cumHigh + blocks.High; 

arrivals.cumLow  :=   arrivals.cumLow + arrivals.Low; 

arrivals.cumHigh :=   arrivals.cumHigh + arrivals.High; 

PLowcum          := blocks.cumLow / arrivals.cumLow; 

PHighcum         := blocks.cumHigh / arrivals.cumHigh; 

rewardcum        := - PLowcum - (Beta * PHighcum); 

 

writeln(results,tijd:20:10,  capacity.Share :20:10, -

reward:20:10,(blocks.Low / arrivals.Low):20:10,(blocks.High / 

arrivals.High):20:10 {, -rewardcum:20:10 }); 
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{Calculating Membership Degrees & Membership Matrix} 

mu.Low          := DetermineMembershipArray (PLow); 

mu.High         := DetermineMembershipArray (PHigh); 

mu.HighLow      := DetermineMembershipMatrix(mu.High,mu.Low); 

{Finding Best Action for Each Sub-State} 

SetOfActions    := DetermineSetOfActions(mu.HighLow); 

{Calculating the Action} 

action          := CalculatingAction (SetOfActions); 

capacity.Share  := Min ( capacity.Total , Max (0, 

capacity.Share + action)); 

 

 

Qualitycalculating; 

Qupdating; 

 

 

{---------------------------------------------------------------------

} 

 

function DetermineMembershipArray (P :extended) :tMembershipArray; 

 

var 

 i    :integer; 

 temp :tMembershipArray; 

 

begin 

for i := 1 to NumberOfBorders do temp[i] := 0.0; 

 

i := 0; 

repeat inc(i) until (P >= border[i]) and (P <= border[i+1]); 

 

temp[i]   := (border[i+1] - P) / (border[i+1] - border[i]); 

temp[i+1] := (P - border[i])   / (border[i+1] - border[i]); 

 

DetermineMembershipArray := temp; 

 

end; 

 

{---------------------------------------------------------------------

--} 

 

function DetermineMembershipMatrix(mu1,mu2 :tMembershipArray) 

:tMembershipMatrix; 

 

var 

  i,j  :integer; 

  temp :tMembershipMatrix; 

 

begin 

for i:=1 to NumberOfBorders do 

  for j:=1 to NumberOfBorders do 

    temp[i,j] := mu1[i] * mu2[j]; 

 

DetermineMembershipMatrix := temp; 

 

end; 

 

{---------------------------------------------------------------------

} 
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function DetermineSetOfActions (mu: tMembershipMatrix) : 

tSetOfActions; 

 

var 

  i,j,k,m :integer; 

  temp    :tSetOfActions; 

 

begin 

 k := 0; 

 

 for i:=1 to NumberOfBorders do 

   for j:=1 to NumberOfBorders do 

     if (mu [i,j] > EPSILON) then 

       begin 

         inc(k); 

 

         if random < experimentrate then 

           begin 

             temp[k].actionid      := random(6); 

             temp[k].mu            := mu[i,j]; 

             temp[k].quality       := Q[i,j,temp[k].actionid]; 

           end 

         else 

           begin 

             qmax := -999999.99; 

             for m:= 0 to 6 do 

               begin 

                 if Q[i,j,m] > qmax then 

                   qmax := Q[i,j,m]; 

               end; 

 

             for m:= 0 to 6 do ArrayOfBest[m] := 99999; 

             NumOfBest := 0; 

             for m:= 0 to 6 do 

               if (Abs(Q[i,j,m] - qmax) < 0.000001) then 

                 begin 

                   NumOfBest := NumOfBest + 1; 

                   ArrayOfBest[NumOfBest - 1] := m; 

                 end; 

 

             ChosenBest := Random(NumOfBest); 

             temp[k].actionid       := ArrayOfBest[ChosenBest]; 

             temp[k].mu             := mu[i,j]; 

             temp[k].quality        := Q[i,j,temp[k].actionid]; 

           end; 

       end; 

 

  DetermineSetOfActions := temp; 

end; 

 

{--------------------------------------------------------------------} 

 

 

 

Function CalculatingAction (SAC: tSetOfActions) :Integer; 

var 

  k :integer; 

  l :integer; 
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  action :extended; 

  begin 

  action := 0; 

   for k:=1 to 4 do 

    begin 

      l      := SetOfActions[k].actionid; 

      action := action + SetOfActions[k].mu* AtomicActions[l]; 

    end; 

 

  CalculatingAction := Round(action); 

end; 

 

{------------------------------------------------------------------} 

 

Procedure Qualitycalculating; 

var m,i,j,k,l,mmax: integer; 

 

 

begin 

k := 0; 

for l := 1 to 4 do 

  begin 

  Maxquality[l].actionid       := 0; 

  Maxquality[l].quality        := 0; 

  Maxquality[l].mu             := 0; 

  end; 

 

for i:=1 to NumberOfBorders do 

  for j:=1 to NumberOfBorders do 

if mu.HighLow[i,j] > EPSILON then 

 begin 

 

    qmax := -999999.99; 

             for m:= 0 to 6 do 

               if Q[i,j,m] > qmax then 

                 begin 

                   qmax := Q[i,j,m]; 

                   mmax := m; 

                 end; 

 

 

 

 

                   inc(k); 

                   Maxquality[k].actionid       := mmax; 

                   Maxquality[k].quality        := Q[i,j,mmax]; 

                   Maxquality[k].mu             := mu.HighLow[i,j]; 

 

                   end; 

 

               actionquality.Old := 0; 

               actionquality.New := 0; 

              for l:= 1 to 4 do 

              begin 

           actionquality.New  := actionquality.New +            

(Maxquality[l].quality * Maxquality[l].mu); 

               actionquality.Old := actionquality.Old + 

(SetOfActionsOld[l].quality* SetOfActionsOld[l].mu); 

              end; 
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              deltaq             := reward + (gama*actionquality.New) 

- actionquality.Old; 

 

 

 

 end; 

{------------------------------------------------------} 

 

 Procedure Qupdating; 

 var x,y,c,f : integer; 

 begin 

 

c:= 0; 

for x:=1 to NumberOfBorders do 

  for y:=1 to NumberOfBorders do 

    if (mu.HighLowOld[x,y] > EPSILON) then 

      begin 

      inc(c); 

      f := SetOfActionsOld[c].actionid; 

      Q[x,y,f] :=  Q[x,y,f] + (learningrate * deltaq * 

mu.HighLowOld[x,y]); 

      end; 

 

 

 

    mu.HighLowOld  := mu.HighLow; 

    SetOfActionsOld := SetOfActions; 

 

end; 

 

{-----------------------------------------------------------------} 

 

end. 

 

 

 


