

Master of Science Thesis

Self-Optimized Resource

Allocation in ICT Systems

Behnaz Shirmohamadi

Network Architectures and Services (NAS) Group
Department of Telecommunications
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology

Performance of Networks and Systems (PoNS) Group
Technical Sciences Expertise Center
TNO

I

Copyright ©2011 NAS TU Delft and TNO

All rights reserved. No Section of the material protected by this copyright may be reproduced or

utilized in any form or by any means, electronic or mechanical, including photocopying, recording

or by any information storage and retrieval system, without the permission from the author, Delft

University of Technology and TNO.

II

III

IV

Self-Optimized Resource

Allocation in ICT Systems

Master of Science Thesis

For the degree of Master of Science in
Network Services and Architectures Group (NAS)

at Department of Telecommunications
at Delft University of Technology

by

Behnaz Shirmohamadi

September 26, 2011

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft, The Netherlands

V

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF

TELECOMMUNICATIONS

The undersigned hereby certify that they have read and recommend to the Faculty of
Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled

Self-Optimized Resource Allocation in ICT Systems

by

Behnaz Shirmohamadi

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE.

Dated: September 26, 2011

Supervisors:

 Prof. Dr. Ir. Robert E. Kooij

 Dr.Ir. Remco Litjens

Prof. Dr .Hans van den Berg

Readers: Dr. Ir. Gerard Janssen

1

Abstract

In this thesis, I have investigated the self-optimization approach in order to solve a generic

resource allocation challenge. The challenge is defined for a general ICT system serving two

classes of jobs: low and high priority. The high priority jobs require a higher quality of service

compared to the low priority jobs.

In order to fulfill this difference in QoS levels, a part of the total resource capacity should be

held reserved to serve only high priority jobs. Two different self-optimization methods are

applied to solve the challenge and the objective of the self-optimization algorithms is to split

the total resources in such a way as to minimize the overall Blocking considering the different

level of QoS. The first applied method is a rule-based method and the other one is fuzzy-Q

learning.

I also have defined a performance quality matrix which is used to assess and compare the

algorithm’s reactions in three sets of designed simulation scenarios. The first set of scenarios

aims to examine the effect of the different parameter settings on the overall performance of

the algorithms. The second set of scenarios simulates a partial failure in the total capacity

which is subsequently repaired causing the system to return to normalcy, and observes the

algorithm’s reactions in adapting to these changes. The final set of simulations changes the

arrival process to batch arrival where in one group of simulations the arrival rate (λ) has not

changed while in the other it has decreased by the rate of the average arrival batch size.

Key Words: self-optimization, resource allocation, rule-based, fuzzy-Q learning.

2

Acknowledgements

First and foremost, I would like to thank my supervisors Dr. ir. Remco Litjens and Prof. dr.

Hans van den Berg, from the Dutch organization for applied scientific research (TNO) for

their excellent guidance and valuable comments on simulations and designing scenarios. I

highly appreciate their contributions and constant supervisions. Moreover, I would like to

thank my supervisor from Delft University of Technology (TU Delft), Prof. dr. ir. Robert E.

Kooij for his support during this thesis. I also wish to thank all my colleagues from TNO ICT

for their support and encouragement throughout the thesis work.

I am so grateful towards my aunt and uncle who never let me feel far from my family. Their

warm hearts have saved me from freezing in cold long winters of The Netherlands. I am also

very thankful to my dear friends, Yeganeh, Nadjla, Nazgol and Laleh for being kind and

supportive during my study.

I know that I can never express my appreciation to my parents as much as I do feel it deeply

inside but I would like to thank my dearest Leila and Masoud for their unconditional love and

support. Whatever I have accomplished in my life is because of them standing by me all the

time.

And my last but not least special thanks go to Wilfred who could “de zon laten schijnen”

whenever my life was dark.

Delft, The Netherlands Behnaz Shirmohamadi

September 26, 2011

3

Dedicated to people who have reinforced me in learning

1

Table of Contents
Table of Contents .. 1

List of Figures .. 2

List of Tables .. 3

1 Introduction ... 4

1.1 General Introduction .. 4

1.2 Scope of the Project .. 5

1.3 Structure of the Thesis .. 6

2 Case Study ... 7

2.1 An Introduction to Cloud Computing .. 7

2.1.1 Cloud Computing Case Study ... 7

2.2 Wireless Mobile Network Introduction .. 8

2.2.1 Wireless Mobile Network Case Study .. 8

2.3 Considered Case Study ... 9

3 Self-Optimization Methodologies .. 12

3.1 Rule-Based Method .. 12

3.2 Reinforcement Learning ... 13

3.2.1 Markov Decision Process .. 15

3.2.2 Fuzzy-Q Learning ... 16

3.3 Applied Self-Optimization Algorithms .. 18

3.3.1 Applying a Rule-Based Method to the Considered Case Study 18

3.3.2 Applying a Fuzzy-Q Learning Method to the Considered Case Study 19

3.3.3 Design Choices and Considerations .. 26

4 Simulation Scenarios and Results ... 30

4.1 Changing in Parameters Scenarios ... 31

4.1.1 Default Setting ... 31

4.1.2 Change in Observation Time (Common for Both of Algorithms) 33

4.1.3 Change in Parameter Scenarios for the Fuzzy-Q Learning Method 38

4.2 Change in Capacity Scenarios .. 41

4.3 Change in Arrival Process Scenarios ... 49

4.3.1 Batch Arrival Scenarios without Changing the Arrival Rate (λ) 50

4.3.2 Batch Arrival Scenarios with Changing the Arrival Rate (λ) 52

5 Conclusion and Future Work .. 58

Bibliography ... 60

Appendix A ... 62

2

Appendix B .. 68

List of Figures

Figure 2.1: A simple schematic presenting the considered case study system 10

Figure 2.2: Job distribution diagram in Cshared and CReserved ... 11

Figure 3.1: A simple diagram of a generic rule-based algorithm ... 13

Figure 3.2: The components of a reinforcement learning algorithm .. 14

Figure 3.3: Fuzzified sub-states diagram ... 20

Figure 3.4: Describing the time scheduling of the Fuzzy-Q Learning method 26

Figure 4.1: Rule-based method performance in the default setting ... 32

Figure 4.2: Fuzzy-Q learning method performance in the default setting 32

Figure 4.3: Comparing Cumulative Blockings of both methods ... 33

Figure 4.4: Comparing converged cumulative Blocking values in both methods 35

Figure 4.5: Comparing cumulative Blocking convergence time in both methods 36

Figure 4.6: Comparing time fraction of meeting targeted Blocking (PLow < 10% and PHigh

<1%) after convergence ... 36

Figure 4.7: Rule-based algorithm performance for different Δt in the 15 hours of running the

simulation ... 37

Figure 4.8: Fuzzy-Q learning algorithm performance for different Δt in the first 15 hours of

running the simulation .. 37

Figure 4.9: Converged value of the cumulative Blocking for all the simulation scenarios in the

fuzzy-Q learning method .. 40

Figure 4.10: Convergence time of the cumulative Blocking for all the simulation scenarios in

the fuzzy-Q learning method .. 40

Figure 4.11: Time fraction of meeting targeted Blocking for all the simulation scenarios in

Fuzzy-Q learning method ... 41

Figure 4.12: Rule-based method reaction to 5 channels failure of the CTotal 42

Figure 4.13: Fuzzy-Q learning method reaction to 5 channels failure of the CTotal 42

Figure 4.14: Rule-based method reaction to 10 channels failure of the CTotal 43

Figure 4.15: Fuzzy-Q learning method reaction to 10 channels failure in CTotal 43

Figure 4.16: Rule-based method reaction to 20 channels failure of the CTotal 44

Figure 4.17: Fuzzy-Q learning method reaction to 20 channels failure of the CTotal 45

Figure 4.18: Converged cumulative Blockings in different change in capacity scenarios for all

the three intervals ... 48

Figure 4.19: Convergence time of cumulative Blockings in different failure in capacity

scenarios for all the three intervals ... 49

Figure 4.20: Time fraction of meeting targeted Blocking in different change in capacity

scenarios for all the three intervals ... 49

Figure 4.21: The converged cumulative Blocking for all the batch arrival scenarios.............. 51

Figure 4.22: The convergence time of cumulative Blocking for all the batch arrival scenarios

 .. 51

Figure 4.23: Rule-based method’s reaction to the batch arrival (average batch size=2) 52

3

Figure 4.24: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=2) 53

Figure 4.25: Rule-based method’s reaction to the batch arrival (average batch size=3) 53

Figure 4.26: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=3) 54

Figure 4.27: Rule-based method’s reaction to the batch arrival (average batch size=4) 54

Figure 4.28: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=4) 55

Figure 4.29: Converged cumulative Blocking of algorithms in batch arrival process with

changing λ .. 57

Figure 4.30: Convergence time of cumulative Blocking of algorithms in batch arrival process

with changing λ .. 57

List of Tables

Table 3-1: A numerical example of the membership matrix.. 21
Table 3-2: A numerical example (sub-state, action) quality look-up table. The shown value are

made up numbers just to illustrate the methodology .. 22
Table 3-3: An overview of design algorithm choices .. 29

Table 4-1: The quality matrix of default setting scenario .. 31

Table 4-2: The resulting quality matrix for different observation interval sizes in the rule-

based method .. 34

Table 4-3: The resulting quality matrix for different observation interval sizes in the fuzzy-Q

learning method .. 34

Table 4-4: The resulting quality matrix for different parameter setting in the fuzzy-Q learning

method .. 39

Table 4-5: The quality matrix of self-optimization algorithms in the first interval (normal

working condition) ... 46
Table 4-6: The quality matrix of self-optimization algorithms in the second interval (failure in

the capacity) ... 47
Table 4-7: The quality matrix of self-optimization algorithms in the third interval (repairing

the failure and back to normal working condition) .. 48
Table 4-8: Performance quality matrix of algorithms for different scenarios of change in

arrival batch size ... 51

Table 4-9: Performance quality matrix of algorithms for different scenarios of simultaneous

change in λ and batch arrival size .. 56

4

1 Introduction

In this chapter, I will first briefly introduce the concept of self-organizing and self-optimizing

systems, focusing primarily on optimal resource utilization. I will then outline the scope of

this research, and, finally, provide an overview of the structure of content and chapters of this

work.

1.1 General Introduction

Over the course of the last few decades, ICT systems have become significantly more

complex than their predecessors. Today’s ICT systems are larger, have more users, consist of

many novel elements and must manage a diversity of inter and intra system interactions.

Although the changes that ICT systems have undergone have greatly improved these systems

in a number of ways, they have also made it difficult and time consuming for operators to set

and manage these complex systems manually. In order to decrease the complexity of

manually setting and managing these systems while minimizing capital expenditures

(CAPEX) and operational expenditures (OPEX) as well as enhancing the performance quality

of systems, self-organizing systems happen to be of great interest to operators [1].

Researchers generally divide self-organizing algorithms into three different subareas: self-

configuration, self-healing and self-optimization [2]. Each subarea of these algorithms

attempts to enhance a self-organized system in a particular way. For each subarea, there are

automated methodologies which aim to improve the performance and quality of service (QoS)

by reacting to the dynamic processes related to the system. First, self-configuration

methodologies deal with the integration of newly deployed services or features and the

reconfiguration of the entire system by adapting to the changes in topology [3]. Second, self-

healing mechanisms attempt to reduce the impact of the potential failure of the system by

enabling the system to be recovery oriented in a way that it can response to the failure

appropriately and return the system to a state of normalcy [4]. Finally, self-optimization

algorithms automatically and continuously tune and adapt system settings and parameters

according to the dynamic variation of the system and characteristics of the environment

without (or with limited) human intervention. The self-optimizing subarea is the focus of the

thesis.

A self-optimizing algorithm repeatedly adjusts the system’s parameters in order to adapt to a

variety of changes that the system may experience. For example, changes can happen in the

traffic profile, system characteristics or interaction between the system and other systems or

between the system and its environment. A self-optimization algorithm is a closed loop

process of parameter deployment, performance and quality evaluation, parameter

optimization, and redeployment of newly optimized parameters to the system. This closed

loop functions to improve the system’s performance constantly, and, consequently guarantee a

certain level of quality of the performance in the system.

Different scholars have studied self-optimization algorithms’ applications in various fields of

ICT systems and networks, such as wireless mobile networks and cloud computing. One of

the most interesting instances of employing self-optimization methods in wireless mobile

5

networks is related to the settings of handover parameters which allows a network to provide

a higher QoS and more efficient inter and intra cell resource allocation [5]. Self-optimizing

methods are also used in the field of wireless mobile network power management in order to

use power resources more optimized [6]. Additionally, operators have implemented self-

organizing methods with cloud computing, specifically in the realms of green cloud

computing [7] and also resource management parameters [8] are well known target areas for

implementing self-organizing methods. The aforementioned uses of these algorithms indicate

that resource utilization can be a vital field of interest for self-optimizing systems because the

resources are mostly limited and expensive, which forces cost-conscious stakeholders to use

them in an efficient way. Therefore, implementing self-organization and self-optimization

methods is a way to use limited resources to offset the cost of manual setting and the

complexity of the work.

1.2 Scope of the Project

Understanding the importance of optimal resource utilization and the role of self-organizing

algorithms in achieving more efficient and better resource allocation in ICT systems, this

project identifies two resource allocation challenges in two different ICT system domains.

One of the challenges is resource splitting in a cloud computing server serving two classes of

customers (first and second class), while the other considers the challenge of resource

allocation between fresh and handover calls in a cellular mobile network system. Both of

these challenges are presented as one general case study which can be applied to any system

of generic resource allocation between two classes of jobs requiring two different levels of

QoS. The case study that I will present is an ICT system with a given capacity (resource) to

serve two different classes of jobs: high priority and low priority. The challenge is splitting

the given fixed resource into two categories of resources: shared capacity and reserved

capacity for high priority jobs.

Accordingly, I have applied two different self-optimization algorithms to achieve the most

optimal resource split in relation to the self-optimization algorithms’ objective which is to

minimize the overall weighted Blocking probabilities. One of the applied self-optimization

methods is a rule-based method, which works based on if-then rules written by a human

expert. The other one is the fuzzy-Q learning algorithm. This learning algorithm does not

have any a-priori knowledge about the system and proper decision making logic, but it does

have the ability to learn from former experiences and to take appropriate actions in different

system states.

This thesis focuses on observing, assessing and comparing the performance of the mentioned

self-optimization algorithms in the following three sets of simulation scenarios:

 Different parameter settings

 A sudden failure in the capacity

 Change in arrival process

The first set of simulation scenarios investigates the effect of parameter settings on the overall

performance of the system. The second simulates an actual case of partial failure in the server

(in cloud computing) or antenna (in cellular network) and, subsequently, determines the

ability of algorithms to adapt to this failure. It also considers the case of repairing the failure

and examines the ability of self-optimization algorithms to adjust the system back to the

normal working situation. The last simulation set models a shift in the arrival process from the

Poisson process to the batch arrival of a Geometric distribution. This shift models a sudden

6

change in the arrival profile due to for example introduction of a new service (in cloud

computing) or a failure in the neighboring cell (in cellular mobile networks).

1.3 Structure of the Thesis

The first part of Chapter 2 describes two resource allocation challenges in cloud computing

and cellular mobile network domains, while the rest of the chapter focuses on modeling these

two resource allocation problems into a widely applicable case study. Chapter 3 first provides

a general overview of two applied self-optimization methods and then describes the steps of

implementation of each algorithm on the considered case study outlined in Chapter 2. Chapter

4 presents three sets of simulation scenarios and the results of each scenario as well as an in-

depth analysis of the results and findings. The simulation results are used to assess the self-

optimization algorithms’ performance based on performance quality metric, especially the

converged value of the cumulative Blocking, the convergence time of the cumulative

Blocking and the time fraction of meeting targeted Blocking defined by the operator. Chapter

5 summarizes the work, draws conclusions and suggests directions for further research.

7

2 Case Study

In this chapter, I first provide a brief overview of cloud computing and cellular wireless

mobile networks. I then identify a resource allocation challenge in each domain. While the

resource allocation challenges that I discuss are different, they can be modeled into one

general case study. Finally, I evaluate this case study, which is used in simulations, in the last

part of this chapter.

2.1 An Introduction to Cloud Computing

The basic concept of cloud computing was introduced in the 1960s. At the beginning, it was a

vague idea of sharing infinite computational resources in which a few remote locations

provide computation and unimpeded access for global users. Although, this striking term was

introduced several decades ago, distributed computing did not draw significant attention until

the last decade. In the last few years, due to the enormous increase in the number of Internet

users, services and new web-oriented devices, the need for distributed computational

resources has risen dramatically. Eventually, the long-held dream of computing as a utility

started to be realized in October 2007 when IBM and Google announced their collaboration in

the cloud computing domain and soon after, IBM introduced its “Blue Cloud” project. Since

then, “cloud computing” has become one of today’s most popular concepts in the computer

world [9].

Today, cloud computing refers to the applications that are delivered as services over the

Internet as well as the system hardware and software in the datacenters providing those

services. The software and hardware of the datacenter is called a “cloud”. A cloud is referred

to as a “public cloud” if it is available to the public and if the utility computing can be sold as

a service in a pay-as-you-go offer [10].

2.1.1 Cloud Computing Case Study

Since one of the fundamental concepts of cloud computing is considering the computation as

a service, I have identified a resource allocation challenge in a public cloud server as follows.

Assume a public cloud computing system with a given total resource capacity of CTotal

offering two price classes of computational services: first and second class. A customer

asking for a higher level of QoS pays a first class price which is higher than the second class

price. The second class customer naturally receives a lower quality of service. Within this

system, customers are rejected if there is not enough vacant resources available to serve the

customer and logically, rejecting a first class customer is penalized more strongly than

rejecting a second class customer. To indicate this relative importance, a term of β >1 is

introduced as: β = the penalty of rejecting a high class customer / the penalty of rejecting a

low class customer and β value is corresponding to the price difference. Accordingly, CTotal

should be split into two parts: CShared to serve both first and second class customers and C

Reserved which is reserved capacity meant only for serving first class customers.

Customers’ requests are generated according to a Poisson process, and each job request

occupies one unit (channel) of the resource. A job requested by a first class customer is

accepted if NFirst + NSecond < CTotal (NFirst and NSecond represent the number of existing first and

second class customers’ jobs using the resources), otherwise the request is rejected. In other

8

words, a request from a first class customer is accepted if there is any vacant resource channel

in the whole capacity (CTotal = CShared + CReserved). A job requested by a second class customer

is admitted only if NFirst + NSecond < CShared. So, a second class customer’s job is accepted if

any unit of resource in the shared capacity (CShared) is vacant.

The Blocking probabilities of first and second class job requests are observed and measured

during an observation time and are reported to the decision maker agent of the system - also

called the controller agent - as the system state (s(t)).

s(t) = (PSecond (t) , PFirst(t)),

where

PFirst = Blocked requests from first class customers / received requests from first class

customers.

PSecond = Blocked requests from second class customers / received requests from second class

customers jobs.

The goal of the self-optimization algorithm is to split CTotal into CShared and CReserved in such a

way as to minimize the overall Blocking (B) where B = PSecond + βP First.

2.2 Wireless Mobile Network Introduction

A cellular mobile network is a mobile network in which the area under coverage is divided

into subareas called cells. Each cell is served by at least one antenna located in a control point

called the “base station”. These cells, when they are connected, provide coverage over a wide

geographic area. This enables a large number of mobile devices to communicate with each

other and other fixed transceivers anywhere within a large area in the network. Mobility is

one of the most important features of such a network, while continuous service and

connectivity for the mobile terminal can be provided by supporting handover from one cell to

another. Handover is the process of changing the former channel associated with the former

base station located in an former cell to a channel associated with the current base station

within a current cell while a call (or another service) is in progress [11]. This process is what

allows us to easily keep talking with our mobile phones when driving from one city to another

one without experiencing any inconvenience or disconnection while crossing many cells

borders.

2.2.1 Wireless Mobile Network Case Study

According to the aforementioned principal characteristics of a wireless mobile network due to

mobility and handover mentioned above, each base station within a cell serves two kinds of

calls: fresh calls and handover calls. Fresh calls are those that originate in the cell and

handover calls are calls that originate in other cells and have been transferred to the cell

because the user has moved to a new cell while on the phone. Assume a total capacity of CTotal

is dedicated to each cell and one call request requires one channel (unit) of the CTotal for

establishing a connection. A call is accepted if any vacant channel is available in the cell

otherwise it is blocked. Blocking a handover call is penalized more than blocking a fresh call

because blocking a handover call means interruption and disconnection in the middle of an

9

ongoing call which is irritating for users. The relative importance of a handover call over a

fresh call is indicated by factor β >1.

To avoid the user irritation by blocking a handover call, each cell reserves some channels to

only serve handover calls to reduce the handover blocking probabilities. Therefore CTotal is

split into CReserved and CShared (CTotal = CReserved + CShared). CShared serves both fresh and

handover calls while CReserved only serves handover calls. Consequently, a fresh call is

accepted if NFresh + NHandover < CShared (NFresh and NHandover are the present fresh and handover

calls using the cell resources), otherwise it is blocked. Conversely, a handover call is accepted

if NFresh + NHandover < CTotal or in other words, a handover call is accepted if any channel is

vacant in the whole of the capacity of the cell.

Blocking probabilities of fresh and handover calls are measured in observation intervals and

are reported to the decision maker agent of the system called the controller agent in order to

provide information about the cell state (S(t)).

S(t) = S(t) = (PFresh (t) , PHandover(t)) ,

where

PHandover = Blocked handover calls / Received handover calls

PFresh = Blocked fresh calls / Received fresh calls

The controller agent’s goal is to split CTotal into CReserved and CShared in order to achieve an

overall minimized PFresh + βPHandover.

2.3 Considered Case Study

The considered case study should be able to model both of the cases described above.

Therefore, the case study system I have introduced is a resource with 35 channels in total,

serving two types of jobs: low and high priority jobs. Blocking high priority jobs is penalized

more than blocking low priority jobs presented by the factor β >1 (β is the relative importance

of the high priority jobs over low priority jobs). In the defined case study β = 10; therefore,

blocking a high priority job is penalized 10 times more strongly than blocking a low priority

job. High priority jobs represent handover calls or first class customers which need to be

treated with a higher level of importance (demanding higher level of QoS) and lower blocking

probabilities. Low priority jobs are normal jobs which do not require special treatment like

fresh calls or second class jobs. Jobs are generated according to the Poisson process, where λ

(expected number of occurrences per time unit) is 30. Of all the arrivals, 60% are high priority

jobs and the rest are low priority jobs. Jobs have independent duration times, according to the

Poisson distribution. The average duration is 1/µ = 0.8 seconds (for both classes of jobs).

All 35 channels of the system must be split into CReserved and CShared. CShared is a common

capacity serving both types of jobs and CReserved signifies certain channels which are reserved

for high priority jobs (Figure 2-1 and 2-2).

10

 Reserved capacity for

 high priority jobs

 Shared capacity for high and low

 priority jobs (CShared)

Figure 2.1: A simple schematic presenting the considered case study system

The duration of the observation time is 100 seconds. In other words, each 100 seconds,

blocking probabilities of high and low priority jobs are observed and measured as PHigh and

PLow.

PHigh= Blocked high priority jobs in an observation interval / Received high priority jobs in an

observation interval.

PLow = Blocked low priority jobs in an observation interval / Received low priority jobs in an

observation interval.

Measuring blocking probabilities, the system state consisting of PLow and PHigh (S(t) = (PLow

(t) , PHigh (t)) is reported to the controller agent in order to provide the necessary information.

The task of the controller agent is to act appropriately based on the reported state of the

system and to update the CShared value. The self-optimizing algorithm’s objective is to set and

adjust the CShared value in a way to minimize the overall Blocking during the system operation.

Blocking B(t) = PLow(t) + 10PHigh(t)

The CShared value is initialized at 10 and the controller should modify CShared until it reaches the

optimal value in relation to the self-optimization algorithms’ objective

11

Figure 2.2: Job distribution diagram in Cshared and CReserved

 Higher than CShared value just high priority jobs are accepted

CTotal

 CShared

Time

Number of

present jobs

being served

in the system
In CShared low and high

priority jobs are accepted

12

3 Self-Optimization Methodologies

In this Chapter, first I give a general introduction about the conceived self-optimization

methodologies which are applied to the case study. The rest of the chapter is dedicated to

describing the specific application of these methods to the case study defined and designed in

the Chapter 2.

3.1 Rule-Based Method

Rule-based systems or expert systems are somehow the first and simplest realization of the

research in the field of Artificial Intelligence (AI). Rule-based systems are a way of

implementing human knowledge applicable in a specific automated system [12]. The

controller agents mostly do not have the ability of learning from former experiences and

improving the performance based on what they have learned. They also lack the ability to

expand their expertise and cannot deal with a new situation if it is not defined for them by an

expert. In other words, rule-based systems are the devices to convey expert’s knowledge for

solving the problem to the machine and translating that knowledge into an understandable

language for an automated system.

The question arises whether or not there is always a need for human knowledge to be

transformed in to the artificial intelligent system language. Why do not we use the same

human expert as the controller agent? There are three main advantages of translating human

knowledge to rule-based systems. The first advantage is that the human expert's knowledge

becomes available to a larger range of people and applications. Another advantage is that in

this way the knowledge and expertise of the human expert can be captured, saved and

protected against being lost when they retire or leave the firm. The last but not least advantage

is that after once transferring the knowledge from expert to the rule-based system, the human

involvement can be eliminated (or at least reduced) and the operating expense (OPEX) can be

considerably decreased [13].

A typical rule-based system consists of at least three components [14]:

 The system interface

 The knowledge data base

 The controller agent

The system interface is responsible for measuring the quality of performance in the system

and interprets this information in a data format which is comprehensible for the rule-based

controller agent. For example the system interface measures the packet loss in a web server

during a time interval and reports this as the system state to the controller agent. The

controller agent is the brain of a rule-based system. It maps the received system state to the

knowledge data base and derives the appropriate action according to the look-up table written

by an expert. The knowledge data base is the expert knowledge required for decision making

and problem solving translated to the form of if-then commands. These if-then commands are

the core element of rule-based decision making. Some examples are given below:

13

 If X is Green Decrease the power.

 If Y = 1000 Turn 90 degree to the right.

 If Z decreases Set the temperature to 60º C.

The knowledge data base is a storage memory full of if-then rules covering all the possible

system states. After receiving a new system state, the controller agent refers to this stack of

rules and derives the suitable decision and action from this data base.

 A schematic diagram of rule-based system units and connections is showed in Figure 3-1.

Figure 3.1: A simple diagram of a generic rule-based algorithm

3.2 Reinforcement Learning

The first inspiration for reinforcement learning (RL) arose from the nature. In the animal and

human being nature it is the sign of intelligence to act in ways that are rewarded. As a human

being we learn how to interact with our environment and what we have learnt about the

environment and its reward and punishment policies become one of the main factors that help

us in decision making procedures later on [15]. In the standard framework of reinforcement

learning, a controller agent interacts with an unknown environment and tries to maximize a

long-term benefit. A learning controller agent repeatedly observes the state of the system and

then chooses and performs an action. Each executed action changes the system state and the

agent also receives an immediate payoff as a result of the taken action. Positive payoffs can be

considered as rewards and negative payoffs are punishments. The agent, exploiting the

knowledge it has previously obtained through past actions and received rewards or

punishments, must learn to take actions so as to maximize a long term sum or average payoff

it receives in the future [16]. For example a chess player observes the game and the opponent

14

pieces and makes a move planning and anticipating possible replies. One or some steps

further it would be clear whether the player’s move was a good choice or not. If it turned out

as a good move in that circumstance, it is more likely for the player to repeat it in the future

games when the game state and condition is the same.

Reinforcement learning is very different than supervised methodologies like rule-based

systems. In the rule-based method, the needed knowledge for making decisions is provided by

a knowledgeable external supervisor but in RL, the agent does not need a set of training or

intelligence in advance; instead it learns on-line and can continuously learn and adopt while

performing the required task [17]. This interactive approach is more suitable for problems for

which deriving desired behavior and action in all the possible situations is not easy or

practical. In this kind of problems, even a knowledgeable expert cannot predict and choose a

best possible action for each state because unknown elements can affect the feedback rewards

and punishments. With reinforcement learning the environment is considered unknown and

unpredictable with dynamic parameters and characteristics.

Another important advantage of interactive methods like RL over supervised methods like

rule-based is the opportunity of using exploration phase and exploitation phase

simultaneously. To achieve the highest possible reward, the agent must choose an action

which has been selected before and found to be successful to bring rewards to the system, but

to discover such an action, the agent has to try actions which are not taken before in order to

discover whether those actions are more appropriate or not. Therefore, the action not only

must exploit what is has already learnt from former experiments but also is has to explore for

the best possible decision in the future [18]. The main challenge of the controller agent is to

find a healthy balance between exploration and exploitation phases without the failure in its

basic task as the decision maker of the system [19].

It should be considered that exploration phase (occasionally choosing a random action rather

than the action with highest quality) inherently involves potentially costly experimentation as

an investment towards future possible benefits.

 Figure 3-2 illustrates the core components of reinforcement learning algorithms.

Rewards/

Punishments State The chosen action

Figure 3.2: The components of a reinforcement learning algorithm

System

The self-learning

Controller Agent

15

The controller agent is the learner and decision maker of the process, which interacts with the

system via execution of actions and the reception of rewards (or punishments) depending on

the taken action. The agent receives also information describing the environment state

continuously. The reward or punishment achieved by a taken action as a feedback is sent back

to the controller agent who uses this feedback for an assessment of the taken action. If the

taken action brought reward to the system it is considered as a good action and it is likely to

be chosen again later when the system is in the same state.

3.2.1 Markov Decision Process

 Understanding the principles of the RL method’s decision making process is not possible

without introducing the Markov Decision Process (MDP). MDP provides a mathematical

framework for modeling decision-making in situations where outcomes are partly random and

partly under the control of a decision maker. MDP is an ideal mathematical way of modeling

a self-optimized decision making process as the received feedback by the agent after taking an

action can be effected by different environmental factors like fluctuation in the arrival process

or system characteristics. More precisely, a Markov Decision Process is a discrete time

stochastic control process containing four components [20]:

• A set of possible system states: S (a set of several s)

• A set of possible actions for each state: A (a set of several a)

• A real valued reward function: r(s(t),a(s(t)))

• A state transition function, which specifies probabilistically the next state of the

environment, given its present state and agent’s chosen action: Pa(s(t),s(t + ∆t)).

At each time step, the system is in a state s(t). Considering s(t) the controller agent makes a

decision and chooses action a(s(t)) from action set A which is available for the specific state

s(t). The system responds to the taken action a(s(t)) at the next time step and moves to a new

state s(t+∆t) and as a feedback sends to the agent a corresponding reward r (s(t),a(s(t))).

The core problem of MDPs is to find a policy for the decision maker (controller agent): a

function π that specifies the action a = π(s(t)) that the decision maker chooses when the

system is in the state s(t). The goal is to choose a policy π that will maximize the discounted

cumulative reward over an infinite time where the discounted cumulative reward is:

))(),(()(

1

ttstsr ta

t

t

 ,

where the chosen action based on the policy π is a(t)in which π(s(t))=a(t) and γ is the discount

factor which satisfies 0 < γ < 1. γ <1 is needed to keep the cumulative reward finite and it is

also used as a measure that indicates the relative importance of future rewards over

instantaneous reward. γ is typically close to 1, which means the controller agent assigns equal

value to immediate reward and future reward.

Given the state transition function P and the reward function r, the objective is to determine

the policy that maximizes the expected discounted reward. To calculate this optimal policy,

two arrays indexed by state s(t) needs to be stored: value V, which contains expected future

values, and policy π which contains actions. At the end of the algorithm, π will contain the

solutions and V(s(t)) will contain the discounted averaged sum of the rewards to be earned by

following that solution from state s(t). The optimal action can be found a follows [21]:

a = π (s(t)) := arg maxa {)))(()))((),(()((),((
)(

ttsVtsatsrttstsP
tts

a

 }

http://en.wikipedia.org/wiki/Optimal_control_theory

16

where

V(s(t)) :=)))(()))((),(())((),((
)(

ttsVtsatsrttstsP
tts

a

3.2.2 Fuzzy-Q Learning

One of the reinforcement learning algorithms which attempt to find the optimal policy using

MDP principles is Q-learning. The second conceived self-optimization method is Fuzzy-Q

Learning which combines the fuzzy logic algorithm for discretizing the continuous state (s(t))

variable to ensure a finite number of sub-states (s1, s2, etc.) that forms the set of state(S), and

Q-learning method as its decision making and learning algorithm.

3.2.2.1 Fuzzy Logic

In a fuzzy-Q learning algorithm, the reported continuous valued state (s(t)) is mapped to one

or more sub-states of the S [22]. For example consider that s(t) is the continuous time a

customer waits to be served at a server and assume that the maximum possible waiting time is

one hour. Let the set S contain four sub-states denoted as (s1, s2, s3 and s4). These four sub-

states divide the whole range of one hour as below:

 0min 20min 40min 60min

 s1 s2 s3 s4

The average waiting time is reported to the controller agent as 14.5 minutes (s(t)=14.5). This

average waiting time should be mapped to one or more sub-states. The location of s(t) in the

time diagram is between s1 and s2.

 s1 s2 s3 s4

s(t) should be mapped to these two sub-states. As it is obvious in the diagram, s(t) is much

more closer to s2 than to s1 and s(t) should be mapped to s1 and s2 in a weighted way to make

it clear that even though s(t) is member of both s1 and s2 but is rather closer to s1 than s2. One

way of implementing this weighted mapping is using the inverse distance. In this method the

weight of membership of s(t) to a sub-state has reversed relation to the distance of s(t) to that

sub-state. This weighted membership is called membership degree. Using this method s(t) =

14.5 can be mapped to s1 and s2 as below:

 s(t) distance to s1 = 14.5 – 0 = 14.5 min

 s(t) distance to s2 = 20 – 14.5 = 5.5 min

 distance between s1 and s2 is = 20 min

s(t)=14.5

17

 membership degree of s(t) to s1 =

 = 0.275

 membership degree of s(t) to s2 =

 = 0.725

So s(t) is mapped to s1 with the weight of 0.275 and is mapped to s2 with the weight of 0.725.

 3.2.2.2 Q-learning

Q-learning [23] is a well-known reinforcement learning technique which is more suitable to

apply to systems where the reward values and probabilities of state transition function are not

a priory known. The learning process of the Q-learning algorithm is entirely based on former

experiences. Like other RL algorithms, the Q-learning method considers a set of states S and a

set of actions per state A. By performing an action (a ∈ A) the state moves from the state s(t)

to a new state s(t+1). This transition provides the agent an immediate reward value and the

goal of agent is to maximize the long-term discounted cumulative reward. The Q-learning

method tries to maximize this long-term discounted cumulative reward by learning which

action is optimal for each sub-state based on former experiences.

The algorithm therefore has a function which calculates the quality of a (state,action)

combination. These Q values indicate how good one action in a specific state is in relation to

the optimization objective.

Q: S × A R (set of the real numbers)

Initially, all the Q values for all the possible (state,action) pairs are fixed to zero (initialized

value). Subsequently each time the controller agent picks an action a(t) in state s(t) and will

update the quality value of that specific (state,action) pair Q values based on the feedback

rewards it has received from the system. The core of the algorithm is a simple value iteration

update. It assumes the old Q(s(t),a(s(t))) values and makes a correction based on the newly

received rewards, as follows [24]:

http://en.wikipedia.org/wiki/Markov_decision_process#Value_iteration
http://en.wikipedia.org/wiki/Markov_decision_process#Value_iteration

18

Here, r(s(t)) is the feedback reward to the controller agent after performing a(s(t)) in the state

s(t), α (0 < α ≤ 1) is the learning rate and γ is discount factor such that 0 ≤ γ < 1.

The learning rate (α) determines to what extent the newly acquired information affects the old

quality values. The taken action a(t) is judged by two terms: long-term performance and short-

term performance. The short-term performance of a(t) is evaluated by immediate reward r(t)

and the long-term performance is assessed by the difference between immediate quality and

discounted future quality. If α = 0, the agent does not learn anything from the experiences,

while for a learning factor set to 1, the agent applies the newly received information (long-

term and short-term action’s performance assessment) to a full extent which means the

recently received feedback affects the Q values strongly.

The discount factor γ indicates the importance of the immediate rewards over future rewards.

A discount factor of 0 will make the agent "opportunistic" by only considering immediate

rewards, while a discount factor close to 1 assigns equal values on immediate reward and

future rewards [25].

3.3 Applied Self-Optimization Algorithms

In the following section, I describe the steps of applying the conceived methods (rule-based

method and fuzzy-Q learning method) to the case study defined in Chapter 2.

3.3.1 Applying a Rule-Based Method to the Considered Case
Study

Recalling the case study described in Chapter 2, the mission of the controller agent is using

the rule-based algorithm as the self-optimization method in order to set CShared to the most

optimal value in order to minimize the Blocking (B(t) = PLow(t) + β PHigh (t)) or maximize the

reward (r(t) = - PLow(t) - β PHigh (t)). The reward function is a negative value and maximizing

reward in this case means attempting to achieve r(t) = 0, i.e. no blocking.

Note that the self-optimization algorithms objective is maximizing the reward r(t) = - PLow(t) -

β PHigh (t) during the system performance. However this objective is translated in a different

way for each method because of inherent differences of the methodologies. For the rule-based

method, the objective is achieving the highest immediate reward in each observation priod,

while the fuzzy-Q learning method’s objective is maximizing the average discounted

cumulative reward.

An observation agent observes the blocking probability of high and low priority jobs during

the observation time Δt and reports these probabilities as the system state to the controller

agent: s(t) = (PLow(t) , PHigh (t)). Given β = 10 (the relative importance of high priority jobs

over low priority jobs), the controller agent knows that blocking of high priority jobs is 10

times more strongly penalized than blocking of low priority jobs. Using this insight, the

controller attempts to minimize PLow + β PHigh by balancing PLow/PHigh = β. Therefore the

whole range of PLow/PHigh is divided into three ranges as following

19

These three range categories for PLow and PHigh are the main bases for establishing rules (If-

then sentences). Three if-then rules are designed to provide the necessary information for the

controller agent in order to make an appropriate decision and updating the CShared value.

Given β = 10 and Δ β = 0.5, the designed rules for the controller agent are as following:

 If PLow / PHigh > 10.5 Then low priority jobs experience high blocking

 probability increase CShared by one channel

 If PLow / PHigh < 9.5 Then high priority jobs experience high blocking

 probability decrease CShared by one channel

 If 9.5 < PLow / PHigh < 10.5 Then do not change the CShared value

The controller agent maps the received state s(t) = (PLow(t),PHigh(t)) to one of the three rules

and will derive the appropriate action. The chosen action will be implemented to the system.

The observation agent resets blocking probabilities to zero and again starts observing and

calculating the new records of blocked jobs in order to compute the new s(t+∆t) to report to

the controller agent at the end of next observation time interval (t +∆t).

3.3.2 Applying a Fuzzy-Q Learning Method to the Considered
Case Study

In this part the fuzzy-Q Learning is implemented on the designed case study in Chapter 2. The

task of the fuzzy-Q learning algorithm is to help the controller agent in the decision making

process for setting and updating CShared to the most optimal value in relation to the

optimization objective which is maximizing the long-term discounted cumulative reward.

The state of the system is reported to the controller agent as s(t) =(PLow(t),PHigh(t)). PLow(t)

and PHigh(t) are continuous blocking probability of low and high priority jobs and need to be

discretized in order to be mapped in to the corresponding sub-states. The discretization

process is done according to the fuzzification method outlined in Section 3-2-2-1.

For example assume in one observation time interval (t) PLow and PHigh are measured and

reported to the agent as s(t) = (PLow (t),PHigh (t)) = (0.4,0.25). The state set (S) for both PLow

and PHigh consists of four sub-states denoted as (s1, s2, s3 and s4).

 0 25% 33% 40% 66% 100%

 s1 PHigh s2 PLow s3 s4

20

The fuzzification method outlined in Section 3-2-2-1 is used to derive membership degrees of

PLow and PHigh:

PLow (t) = 0.4

PHigh (t) = 0.25

For each job class i ∈ {low, high} the membership degree vector (µ) is defined as:

µi(s(t)) = (µi
1
(s(t),µi

2
(s(t),µi

3
(s(t),µi

4
(s(t))

The membership degree vector for high and low priority jobs is calculated as below:

µLow (s(t))

 = (0,0.8,0.2,0) and µHigh (t)

 = (0.24,0.76,0,0).

Figure 3.3: Fuzzified sub-states diagram

The overall state of the system can be descried by a two dimensional diagram illustrated in

Figure 3.3:

Each bullet represents a sub-state and the reported state s(t) should be mapped to these sub-

states weighted with membership degrees.

These class-specific membership degrees map blocking probabilities for each class separately,

but what is needed is to map the whole state (combining high and low priority jobs

membership degrees) to the whole sub-state set to provide a general fuzzified overview of the

Membership degree of PLow

to sub-state s3 = 0.2

Membership degree of PLow

to sub-state s2 = 0.8

Membership degree of P High

to sub-state s2 = 0.24

Membership degree of P High

to sub-state s1 = 0.76

The reported state s(t) will be

mapped to four sub-states s12, s13,

s22 ands23 with specific weights

21

system state considering both blocking probabilities. A 4 4 matrix is introduced to give the

overall membership degree matrix µij (s(t)).

µij (s(t)) = (µ
i
High

(s(t))

 . µ

j
Low

(s(t))

s11

µ 11 = µ
1

High . µ
1

Low

= 0

s12

µ 12 = µ
1

High . µ
2

Low

=0.19

s13

µ 13 = µ
1

High . µ
3

Low

= 0.05

s14

µ 14 = µ
1

High . µ
4

Low

=0

s21

µ 21 = µ
2

High . µ
1

Low

= 0

s22

µ 22 = µ
2

High . µ
2

Low

= 0.61

s23

µ 23 = µ
2

High . µ
3

Low

= 0.15

s24

µ 24 = µ
2

High . µ
4

Low

= 0

s31

µ 31 = µ
3

High . µ
1

Low

= 0

s32

µ 32 = µ
3

High . µ
2

Low

= 0

s33

µ 33 = µ
3

High . µ
3

Low

= 0

s34

µ 34 = µ
3

High . µ
4

Low

= 0

s41

µ 41 = µ
4

High . µ
1

Low

= 0

s42

µ 42 = µ
4

High . µ
2

Low

= 0

s43

µ 43 = µ
4

High . µ
3

Low

= 0

s44

µ 44 = µ
4

High . µ
4

Low

= 0

Table 3-1: A numerical example of the membership matrix

The membership matrix entries indicate how strongly s(t) is mapped to each sub-state. After

mapping the state of the system to the discrete sub-states, the controller agent, should take a

proper action to improve the state. The designed action set contains seven sub-actions as

given below:

a1 : increase CShared by 3 channels (units) Corresponding active value +3

a2 : increase CShared by 2 channels (units) Corresponding active value +2

a3 : increase CShared by 1 channels (units) Corresponding active value +1

a4 : decrease CShared by 1 channels (units) Corresponding active value -1

a5 : decrease CShared by 2 channels (units) Corresponding active value -2

a6 : decrease CShared by 3 channels (units) Corresponding active value -3

a7 : do not change the CShared value Corresponding active value 0

To discover the best possible action, the controller agent refers to a look-up table contains the

quality values (Q) of the all possible (sub-state,action) pairs. This look-up table helps the

controller to find the best action for each sub-state according to former decisions and

feedbacks. For example, assume for the sub-state s11, the look-up table looks like the one

below (Table 3-2):

22

Table 3-2: A numerical example (sub-state, action) quality look-up table. The shown value are made up numbers just

to illustrate the methodology

A similar table exists for each sub-state. Based on this look-up table information, which is

updated based on former experiences, the best action for this sub-state is a7, i.e. not to change

the CShared value. After passing the time needed for convergence of Q values from initialized

values, the quality values of (sub-state,action) pairs converge and the best action for each sub-

state is known.

At the beginning, the algorithm is totally in the exploration phase because all the Q(sub-

state,action) values are initialized to zeros and all the taken actions are random actions to

explore the best action in each sub-state. As time passes the controller agent updates the

quality values after taking any action and relies on former experiences in order to choose the

action with highest quality and the exploitation phase becomes dominant. However, in some

self-optimization algorithms (like the one applied in this thesis) the exploration phase never

ends and in a small portion of the time a random action is chosen instead over the action with

highest quality in order to keep exploring new possible best actions for each sub-state.

Assume that after convergence of quality values, the best action for each sub-state and the

corresponding value is as follows (shown values are made up numbers just to provide an

overall insight about the methodology):

• Maxl Q (s11 , al) = Q (s11 , a7) = 0.75

• Maxl Q (s12 , al) = Q (s12 , a7) = 0.61

• Maxl Q (s13 , al) = Q (s13 , a5) = 0.80

• Maxl Q (s14 , al) = Q (s14 , a6) = 0.87

23

• Maxl Q (s21 , al) = Q (s21 , a2) = 0.90

• Maxl Q (s22 , al) = Q (s22 , a7) = 0.69

• Maxl Q (s23 , al) = Q (s23 , a4) = 0.58

• Maxl Q (s24 , al) = Q (s24 , a4) = 0.70

• Maxl Q (s31 , al) = Q (s31 , a3) = 0.91

• Maxl Q (s32 , al) = Q (s32 , a2) = 0.83

• Maxl Q (s33 , al) = Q (s33 , a7) = 0.77

• Maxl Q (s34 , al) = Q (s34 , a4) = 0.64

• Maxl Q (s41 , al) = Q (s41 , a3) = 0.93

• Maxl Q (s42 , al) = Q (s42 , a2) = 0.88

• Maxl Q (s43 , al) = Q (s43 , a2) = 0.67

• Maxl Q (s44 , al) = Q (s44 , a7) = 0.80

Referring to this look-up table, the controller agent has enough information to calculate the

optimal action A(s(t)). The system state s(t) has been mapped to some sub-states with

membership degrees and the best actions for those sub-states are known. Now the agent can

make the decision and derive the action.

The taken action would be a combination of best actions in sub-states s12 , s13 , s22 and s23 or

with probability of ε (experimenting rate) a random action to explore the potential of other

actions; this means that with probability of ε, the controller chooses a random action out of all

the possible actions instead of referring to the look-up table and select the action with the

highest quality.

This experimentation phase is necessary because there might exist actions in a specific sub-

state that have been chosen in former experiences while only the quality of those actions get

updated and the other actions never have the chance of being chosen in that sub-state,

although they might be very suitable. The derived action (A(s(t))) is calculated as the

appropriately weighted average of the selected sub-state specific actions as below:

 - arg maxa Q (sij , a) with probability of 1- ε

 - al where l = random {1,2,...,7} with probability of ε

In the continuation of this chapter we assume that)s(ij

a is equal to arg maxa Q (sij , a) and

the algorithm works in exploitation phase, i.e. that the best action rather than a random action

is selected. In the given numerical example, the derived action (A(s(t)) is calculated as

following:

A(s(t)) = round{ (µ12 × a7) + (µ 13 × a5) + (µ 22 × a7) + (µ 23 × a4)} =

)}s({)(
4

1

4

1

 ij

i j

ij atsroundtsA

)s(ij

a

)s(ij

a

24

round{(0.19 × 0) + (0.05 × -2) + (0.16 × 0) + (0.15 × -1)} = round{ - 0.25} = 0

Note that - 0.25 is rounded off to the closest integer which is zero and means that the CShared

value is not changed. After applying A(s(t)) to the system, the controller agent should wait for

an observation time interval (∆t) to receive Q(s(t+∆t), A(s(t+∆t))) and r(s(t), A(s(t)) as the

feedback of the taken action and update the quality of (sub-state , action) pairs according to

the observed performance by the induced action.

 ̂(s(t) , A(s(t))) =

For the given example, ̂(s(t) , A(s(t))) is computed as:

Q(s(t) , A(s(t))) = 12 × q (s12 , a7) + 13 × q (s13 , a5) + 22 × q (s22 , a7) + 23 × q (s23 ,

a4) = 0.19 × 0.61 + 0.05 × 0.8 + 0.61 × 0.69 + 0.15 × 0.58 = 0.67,

which indicates the quality of the action A(s(t)) in the system state of s(t).

For calculating ̂(s(t) , A(s(t))) and r(s(t) , A(s(t)), the controller agent has to wait until the

end of next observation time interval (t+∆t) because the new PLow and PHigh are required as

feedback to assess the taken action performance. Assume at the end of the next observation

time interval (t+Δt) the state of system is calculated and reported to the agent as

• PLow (t+Δt) = 0.2

• PHigh (t+Δt) = 0.3

The controller agent can use this new state (s(t+∆t)) to calculate ̂(s(t),A(s(t))) and

r(s(t),A(s(t)) and update the quality value entries of the (sub-state,action) look-up table. Two

main aspects of evaluating the performance quality of the taken action are:

 Short-term reward

How successful is the taken action A(s(t)) to maximize the reward function. This

parameter is called the immediate reward r(s(t),A(s(t))).

 Long-term reward

How high is the maximum possible quality of the system after the taken action given

by (̂(s(t),A(s(t)))). This parameter is important because it considers the impact of the

action on future expecting rewards (r(s(t+∆t)), r(s(t +2∆t)),…). For example there

might be an action which brings a high r(s(t),A(s(t))) but leads the system to future

states (s(t+∆t), s(t+2∆t),…) with low expected rewards. So, even though an action

brings some immediate rewards to the system, it may not be a very suitable action in

the long run.

The immediate reward for the given example is computed below:

r(s(t),A(s(t))) = - PLow (t+ Δt) - βP High (t+ Δt) = - 0.2 - 10 × 0.3 = - 3.2

The future quality will be calculated according to the formula below:

 ̂(s(t),A(s(t))) =

For calculating ̂(s(t),A(s(t))), the membership degrees of new PLow and PHigh should be

computed.

PLow (t + ∆t) = 0.2

4

1

4

1

*))(,()(
i j

ijijij sasQts

s(t+∆t) = (0.2 , 0.3)

4

1

4

1

 ij)s()(
i j

ij atts

Membership degree of P Low

to sub-state s2 = 0.6

Membership degree of P Low

to sub-state s1 = 0.4

25

P High (t+∆t) = 0.3

Membership degree vectors of the new PLow and PHigh are as below:

µHigh

= (0.1, 0.9, 0, 0) and µLow

= (0.4, 0.6, 0, 0).

Having new membership degree vectors, new membership degree matrix is computed as:

µ11 (s(t+∆t)) = 0.04

µ12(s(t+∆t)) = 0.06

µ21(s(t+∆t)) = 0.36

µ22(s(t+∆t)) = 0.54

while the rest of µij(s(t+∆t)) = 0.

Referring to the look-up table, the highest expected quality of the new (sub-state, action) pairs

can be found. Having all the information, the next step would be to calculate the expected

future quality.

 ̂(s(t+∆t),A(s(t+∆t))) = µ 11 × q (s11 , a7) + µ 12 × q (s12 , a7) + µ 21 × q (s21 , a2) + µ 22 × q (s22 ,

a7) = 0.04 × 0.75 + 0.06 × 0.61 + 0.36 × 0.9 + 0.54 × 0.69 = 0.76

Knowing immediate reward (r(s(t),A(s(t))) and future quality ̂(s(t),A(s(t))), all the required

information for updating the (sub-state , action) quality look-up table is available.

For all the sub-states (sij) :

Qnew(sij(t) , a
*
(sij(t))) = Qold(sij(t) , a

*
(sij(t))) + α ∆Q . (t)(sijij

Where

∆ ̂ = r(s(t+∆t)) + γ ̂(s(t+∆t),A(s(t+∆t)))– ̂(s(t),A(s(t)))

In the designed fuzzy-Q learning algorithm, the discount factor (γ) is set to 0.8. So, ∆ ̂ is

calculated as:

∆ ̂ = - 3.2 + 0.8 × 0.76 - 0.67 = - 3.26.

The learning rate α indicates to what extent this ∆Q is going to be applied to update the

present quality look-up table entries. The applied value of α is 0.8.

The last step is applying α × ∆Q to the look-up table and updating the quality values

considering the membership degrees.

In summary the steps of the designed fuzzy-Q Learning algorithm have been described as

follows:

1. Initializing the Q-look-up table (sij,al = 0) and time (t = 0).

2. Receiving the system state s(t) = (PLow (t), PHigh (t)) every observation time interval (∆t)

3. Discretizing and mapping the received state to the sub-states

4. Computing membership vectors and matrix.

5. Referring to the (sub-state,action) quality look-up table and deriving the best actions for

each sub-state.

6. Calculating the inferred action.

Membership degree of P Low

to sub-state s2 = 0.9

Membership degree of P Low

to sub-state s1 = 0.1

26

7. Calculating corresponding quality of the taken action.

8. Executing the action A(s(t))

9. t = t+∆t and A(s(t)) leads the system to the state s(t+∆t).

10. Receiving the immediate reward (r(s(t),A(s(t)))).

11. Calculating the highest possible future quality (̂ (s(t+∆t) , A(s(t+∆t))).

12. Calculating ∆ ̂.

13. Updating the Q look-up table by the factor α × ∆ ̂.

14. Go back to step 2.

Figure 3-4 illustrates the time scheduling in the fuzzy-Q learning algorithm.

 Sensing the system state s(t)

 Δt Observation time Deriving and implementing

 the action A(t)

 Time
t – Δt t t + Δt t +2 Δt

 Observing the new state s(t+∆t)

 Calculating r(t) and Q(S(t+∆t))

 Updating quality look-up values

Figure 3.4: Describing the time scheduling of the Fuzzy-Q Learning method

3.3.3 Design Choices and Considerations

In designing and applying the self-optimization algorithms, a lot of design choices need to be

made and parameters need to be set involving all the tradeoffs and performance concerns.

This section provides a concise overview of these design considerations and their qualitative

effects on the overall performance of the algorithm. Two first design choices are common for

both of the algorithms while the rest of the design considerations is specified for the fuzzy-Q

learning method.

3.3.3.1 Design Choices and Considerations for Both of Algorithms

 The first essential choice in self-optimization algorithms is defining the reward

function (r(s(t),A(s(t))) according to the self-optimization objectives and the inherent

characteristics of the methodologies. The objective of the system should be carefully

translated to the reward, e.g. the identical objective of minimizing the long-term

Blocking in our case study is translated to balancing PLow and PHigh in the way that

27

PLow/ PHigh = β as the objective of rule-based method while the objective of fuzzy-Q

learning algorithm is maximizing a discounted cumulative reward.

 Observation time interval (∆t) should be chosen considering λ (expected occurrences

per time). ∆t should be large enough to observe enough occurrences in order to provide

reliable statistics as PLow and PHigh. On the other hand, a very long ∆t leads in to a slow

controller agent. The controller agent must wait for ∆t for taking a new action and

react to the system state changes.

3.3.3.2 Design Choices and Considerations for Fuzzy-Q learning

 One of the first choices in designing algorithms is the number of sub-states

(fuzzification). Defining more sub-state provides the controller agent the facility of

mapping the reported state to sub-states more accurately. For example, assume instead

of four sub-states for blocking probabilities, ten sub-states were designed. With four

defined sub-states, PLow = 0.1 and PLow = 0.3 are both mapped to s1 and s2 while in the

case of defining ten sub-states they are mapped to totally different sub-states. This

means that the controller agent has more detailed information about the system state

and can act more accurately based on this information. The drawback of having more

sub-states is having more Q(sub-state,action) entries and having a larger quality look-

up table increases the time needed for convergence of the quality values. In other

words, the larger quality look-up table needs a longer exploration phase before

converging to reliable values which can be used in exploitation phase.

 The number of state indicators is another design choice. By adding more quality

indicators, the system state is described better for the controller agent and this

additional information can assist the controller agent deciding more accurately, e.g.

assume that the number of arrivals for each class is added to the blocking probabilities.

In that case the blocking probability values are more meaningful because the

controller can consider the arrival process characteristics and makes a better judgment

about the optimal CShared. Again the disadvantage of having more state indicators is

increasing the size of quality look-up table and consequently increasing the

convergence time of the quality entries.

 The number and kind of actions defined for each state is another matter of design in

fuzzy-Q learning algorithm. More actions provides the controller agent the better

facilities to enhance its performance. Defining more actions for each state, increase the

number of Q(sub-state,action) and the larger quality look-up table, makes the system

slow towards transition from exploration phase to the exploitation phase. Another

design consideration related to actions is the choice of designing the proper set of

actions, e.g. where the actions are relative (like increasing CShared by one channel) or

determined (e.g. set CShared = 30).

 Parameter setting choices in fuzzy-Q learning algorithm is setting the discount factor

(γ). The discount factor indicates the relevant importance of the future reward over the

instantaneous reward. Setting the γ close to zero indicates that instantaneous reward is

much more important than future reward while a γ close to one means that the future

28

rewards are as valuable as achieving high immediate reward. Setting γ = 0.8 indicates

that for our system receiving high rewards in the future is almost as important as

immediate reward.

 The learning rate (α) is a factor indicating to what extent the received feedback of a

taken action changes the quality of that (sub-state, action) value. If α is close to 1, the

calculated judgments is directly applied in adapting the quality values while α close to

zero means that the procedure of updating the quality values is slow. α is set to 0.8 in

our algorithm.

 The experimenting rate (ε) is another parameter that needs to be set. ε indicates how

often a random action is chosen (exploration phase) instead of choosing the action

with highest quality value (exploitation phase). A non-zero ε is necessary to keep the

exploration phase running. The case of ε = 0 does not allow the controller agent to

explore new actions and forces it to always pick the action with highest quality. Note

that at the beginning (t = 0), all the (sub-state,action) qualities are zero and there is no

action with highest quality in which case random actions are chosen. ε = 1 means that

the controller agent always chooses a random action and never uses the learnt

information based on former experiences which effectively leads to an inefficient self-

optimization method which is just taking random actions.

Table 3-3 gives an overview of the key design choices and the associated tradeoffs for the

designed fuzzy-Q learning algorithm.

Name of the parameter

Chosen value

Designing consideration

Number of sub-states for

each blocking probability

4

More sub-states

+: Higher accuracy

−: larger quality look up

table, slower quality values

convergence

Number of possible actions

for each sub-state

7

More actions

+: more chances for taking

precise action

−: larger quality look up

table, slower quality value

convergence

Observation time interval: ∆t

100 s

Larger ∆t

+: more reliable statistics of

blocking probabilities

−: slower control agent

reaction to the system state

29

Discount factor: γ

(0 < γ <1)

0.8

Higher γ

+: investigates on long-term

rewards in the future

−: assigning less value to the

immediate quality of the

taken action

Learning rate: α

(0 < α <1)

0.8

Higher α

+: direct applying of the

feedbacks, faster reaction to

the system state

−: fluctuating quality values

Experimenting rate: ε

(0 < ε <1)

0.2

Higher ε

+: more often taking random

actions to explore, exploring

new potential beneficial

actions

−: exploration is inherently

costly and the algorithm may

shows bad performance

during the exploration

because of taking a wrong

action by random

Table 3-3: An overview of design algorithm choices

30

4 Simulation Scenarios and

Results

In this chapter, I will define three sets of simulations that are applied to a simulator developed

in Delphi 5 (the main unit of the code is provided in Appendix B). The objective of the first

group of simulations is to study the effect of different parameters’ values on the overall

performance of self-optimization algorithms. The second set of simulation scenarios will

replicate a partial failure in the total capacity of the system (CTotal) as well as repairing the

failure allowing the author to observe the algorithm’s reaction to this abrupt change in

capacity. The last group of simulations is modeling changes in arrival process profile.

In all of the aforementioned scenarios, the self-optimization algorithm’s performance is

assessed by the following quality matrix:

 Convergence time of cumulative Blocking

 Converged cumulative Blocking value

 90% of PLow after convergence

 90% of PHigh after convergence

 Time fraction of meeting P*Low and P*High after convergence

Convergence time of cumulative Blocking: This entry of the quality matrix

represents the time of convergence of the cumulative Blocking (PLow + 10PHigh)

values. Cumulative Blocking at time t’ is the Blocking from t=0 to t=t’.

Blocking(t’)=PLow (t=0 to t’) + 10PHigh(t=0 to t’).

The cumulative reward has converged if the difference between seventy

consecutive Blocking values is less than 0.0001, which means that cumulative

Blocking values are almost identical and the Blocking has reached its converged

value.

Converged cumulative Blocking value: Assuming the same definition of the

convergence, this term represents the converged value of the cumulative

Blocking.

90% of PLow and PHigh after convergence of cumulative Blocking: in 300

seconds (five minutes) interval PLow and PHigh are measured for more reliable

statistics. These statistical blocking probability values are sorted in ascending

order and the 90% value of all values is extracted. These values indicate that

in 90% of the five minutes statistical intervals, PLow and PHigh are lower than

given values. These values provide operational statistics for the operator. The

operator can claim to guarantee lower blocking probabilities in 90% of the

time.

Time fraction of meeting P*Low and P*High after convergence: P*Low and

P*High are targeted values defined by the operator. The system performance is

considered acceptable if PLow < P*Low and PHigh < P*High . This entry of the

quality matrix shows the time fraction in which the system is successful

31

meeting the PLow < P*Low and PHigh < P*High requirement. For all the

simulations PLow = 10% and PHigh = 1%.

All the simulations duration is equal to 30000 × Δt(Observation time) .

4.1 Changing in Parameters Scenarios

The goal of this series of simulations is studying the effect of algorithms’ parameter settings

on the overall system performance.

4.1.1 Default Setting

A default setting for both algorithms is defined as following:

CTotal = 35

CShared initialization = 10

λ (expected occurrences per time unit) = 30

Average job duration = 0.8

Percentage of high priority jobs = 60%

β (Relative importance of high priority job over low priority job) = 10

Observation time interval = 100 seconds

Statistical time interval = 300

P*Low = 10%

P*High = 1%

Additional parameter settings are needed for Fuzzy-Q Learning algorithms such as:

γ (Discount Factor) = 0.8

α (Learning Rate) = 0.8

ε (Experimenting Rate) = 0.2

The quality matrix values that resulted from the default setting simulations for rule-based and

Fuzzy-Q Learning method are recorded in Table 4-1 and the performance of the algorithms

are shown in Figure 4-1 and 4-2.

Self-

optimization

method

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction of

meeting

PLow and

PHigh target

90% of PHigh

after

convergence

90% of PLow

after

convergence

Rule-based

method

0.0669866138

83400

0.999691

0.004603

0.036192

Fuzz-Q

learning

method

0.1024201422

147400

0.88273

0.007543

0.097688

Table 4-1: The quality matrix of default setting scenario

32

Figure 4.1: Rule-based method performance in the default setting

Figure 4.2: Fuzzy-Q learning method performance in the default setting

According to the above figures, the rule-based method has performed better (faster

convergence, lower converged cumulative blocking and larger time fraction of meeting

targeted Blockings) with higher stability because it does not have a learning process or an

experimenting phase. In order to compare both methodologies, cumulative Blocking of

methods is plotted on Figure 4-3.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

5

10

15

20

25

30

35

40

1
0

0
1

0
0

1
0

0
2

0
0

1
0

0
3

0
0

1
0

0
4

0
0

1
0

0
5

0
0

1
0

0
6

0
0

1
0

0
7

0
0

1
0

0
8

0
0

1
0

0
9

0
0

1
0

0
1

0
0

0
1

0
0

1
1

0
0

1
0

0
1

2
0

0
1

0
0

1
3

0
0

1
0

0
1

4
0

0
1

0
0

1
5

0
0

1
0

0
1

6
0

0
1

0
0

1
7

0
0

1
0

0
1

8
0

0
1

0
0

1
9

0
0

1
0

0
2

0
0

0
1

0
0

2
1

0
0

1
0

0
2

2
0

0
1

0
0

2
3

0
0

1
0

0
2

4
0

0
1

0
0

2
5

0
0

1
0

0
2

6
0

0
1

0
0

2
7

0
0

1
0

0
2

8
0

0
1

0
0

2
9

0
0

1
0

0

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

5

10

15

20

25

30

35

40

1
0

0
1

0
0

1
0

0
2

0
0

1
0

0
3

0
0

1
0

0
4

0
0

1
0

0
5

0
0

1
0

0
6

0
0

1
0

0
7

0
0

1
0

0
8

0
0

1
0

0
9

0
0

1
0

0
1

0
0

0
1

0
0

1
1

0
0

1
0

0
1

2
0

0
1

0
0

1
3

0
0

1
0

0
1

4
0

0
1

0
0

1
5

0
0

1
0

0
1

6
0

0
1

0
0

1
7

0
0

1
0

0
1

8
0

0
1

0
0

1
9

0
0

1
0

0
2

0
0

0
1

0
0

2
1

0
0

1
0

0
2

2
0

0
1

0
0

2
3

0
0

1
0

0
2

4
0

0
1

0
0

2
5

0
0

1
0

0
2

6
0

0
1

0
0

2
7

0
0

1
0

0
2

8
0

0
1

0
0

2
9

0
0

1
0

0

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

33

Figure 4.3: Comparing Cumulative Blockings of both methods

In the beginning of the simulation, the rule-based has performed better because it knows the

optimal action while the Fuzzy-Q learning must learn about the best action to take. However

the overall cumulative Blocking of the fuzzy-Q learning method is slightly higher than that

one of the rule-based method but both of the methods successfully converge quickly to the

optimal CShared.

4.1.2 Change in Observation Time (Common for Both of
Algorithms)

The goal of the next set of the scenarios is to monitor the observation time length (Δt) on the

overall performance of algorithms. The observation time is set to five different values and the

resulting quality matrix for each self-optimization algorithm is shown in Table 4-2 (rule-

based) and table 4-3(fuzzy-Q learning):

Observation

time

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

2 seconds

0.1027074456

3820

0.84492

0.0014603

0.1035791

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1
0

0

1
5

0
1

0
0

3
0

0
1

0
0

4
5

0
1

0
0

6
0

0
1

0
0

7
5

0
1

0
0

9
0

0
1

0
0

1
0

5
0

1
0

0

1
2

0
0

1
0

0

1
3

5
0

1
0

0

1
5

0
0

1
0

0

1
6

5
0

1
0

0

1
8

0
0

1
0

0

1
9

5
0

1
0

0

2
1

0
0

1
0

0

2
2

5
0

1
0

0

2
4

0
0

1
0

0

2
5

5
0

1
0

0

2
7

0
0

1
0

0

2
8

5
0

1
0

0

C
u

m
u

la
ti

ve
 B

lo
ck

in
g

Time (Seconds)

Cumulative Blockings

Rule-Based method
Cumulative Blockage

Fuzzy-Q Learning method
Cumulatibe Blockage

34

50 seconds

0.0669935516

45300

0.999794

0.004809

0.035396

Default

Setting

(100

seconds)

0.0669866138

83400

0.999691

0.004603

0.036192

500 seconds

0.0703425341

288500

0.999715

0.004671

0.038535

1000

seconds

0.0724399872

500000

0.999786

0.005339

0.043087

Table 4-2: The resulting quality matrix for different observation interval sizes in the rule-based method

Observation

time

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

2 seconds

0.1336444671

5630

0.59638

0.004855

0.18608

50 seconds

0.1087111680

73100

0.877782

0.007284

0.102345

Default

Setting

(100

seconds)

 0.1024201422

 147400

0.88273

0.007543

0.097688

500 seconds

0.1118317622

641000

0.90103

0.007661

0.087248

1000

seconds

 0.1107673098

 951000

0.876921

0.009417

0.128128

Table 4-3: The resulting quality matrix for different observation interval sizes in the fuzzy-Q learning method

The above tables illustrate the fact that the length of observation time has a direct effect on

convergence time. The shorter Δt leads to a shorter convergence time, a fact that shows that

the system finds the optimal CShared more quickly. However, if the observation time is as

short as two seconds, the calculated blocking probabilities are not reliable because they are

based on too few occurrences. That’s the reason that both of the algorithms with Δt = 2

seconds shows the worst performance of all the scenarios. A long observation time, on the

35

other hand, leads to a slower system reaction to the changes in the environment. Long

observation time provides more reliable statistical information for the controller agent, but in

the case of a change in the environment or of taking inappropriate action, the controller reacts

slowly and the algorithm performance remains bad for a longer time. The higher converged

cumulative Blocking value for longer observation time is the consequence of the longer time

that the controller agent spends to find the optimal CShared as well as not reacting fast enough

to the changes of the system state. I have plotted the three most important quality matrix

entries in Figures 4-4 to 4-6 (90% PLow and 90% PHigh after convergence figures in the

Appendix A) to provide a clear comparison between algorithms.

Figure 4.4: Comparing converged cumulative Blocking values in both methods

As illustrated in Figure 4-4, the cumulative Blocking of the fuzzy-Q learning method in all the

scenarios is higher than that of the rule-based method, while the relative difference between

them is almost the same. It is also remarkable that for both algorithms, observation time set to

100 seconds has the lowest cumulative reward of all the scenarios. We can conclude that

regardless of the applied self-optimization method, an appropriate observation time should be

chosen according to the arrival process characteristics (λ).

0
0,02
0,04
0,06
0,08

0,1
0,12
0,14
0,16

C
u

m
u

la
ti

ve
 B

lo
ck

in
g

Rule-Based Method

Fuzzy-Q Learning Method

36

Figure 4.5: Comparing cumulative Blocking convergence time in both methods

Figure 4-5 evidences that in all the scenarios, the fuzzy-Q learning method has converged

later than the rule-based method, but the differences between two methods’ convergence time

grows when the observation time is increased. This is not only because the system is acting

slowly to converge to the optimal CShared; it is also the result of the fact that the learning phase

takes longer. In the rule-based method, the controller agent already knows the proper action

but it must wait to take the action after finishing the observation time (1000 seconds), while in

the fuzzy-Q learning method the controller agent finds out 1000 seconds later if the action is

an inappropriate one and should start exploring a new action to perform better in that state.

Thus, both the action taking process and exploration phase are longer, which consequently

delay the convergence time in the fuzzy-Q learning more than the rule-based method.

Figure 4.6: Comparing time fraction of meeting targeted Blocking (PLow < 10% and PHigh <1%) after convergence

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

Ti
m

e
 (

se
co

n
d

s)

Rule-Based Method

Fuzzy-Q Learning Method

0

0,2

0,4

0,6

0,8

1

1,2

Ti
m

e
 F

ra
ct

io
n

Rule-Based Method

Fuzzy-Q Learning Method

37

As it is evidenced in Figure 4-6, the observation time set to 2 seconds shows worse

performance than other scenarios. After convergence the time fraction of meeting targeted

Blocking is almost identical and, in all the cases, the fuzzy-Q learning method time fraction is

lower than the rule-based method because of the learning process and experimenting phase.

Despite that the fuzzy-Q learning still performs acceptably with meeting targeted Blocking in

more than 80% of the time.

The time fraction of meeting P*Low and P*High in the first twenty hours for different

observation interval size is plotted in Figures 4-7 and 4-8 in order to provide a better

visualization of the effect of observation time length on the system performance before the

convergence.

Figure 4.7: Rule-based algorithm performance for different Δt in the 20 hours of running the simulation

Figure 4.8: Fuzzy-Q learning algorithm performance for different Δt in the first 20 hours of running the simulation

0

0,2

0,4

0,6

0,8

1

1,2

1 3 5 7 9 11 13 15 17 19 21

Ti
m

e
 f

ra
ct

io
n

 o
f

m
e

e
ti

n
g

ta
rg

e
te

d

B
lo

ck
in

g

Time (Hour)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
 f

ra
ct

io
n

 o
f

m
e

e
ti

n
g

ta
rg

e
te

d

B
lo

ck
in

g

Time (Hour)

2 seconds

50 seconds

100 seconds

500 seconds

1000 seconds

38

Both figures show that the longer observation time results in a delay in convergence. For

example, Figure 4-7 illustrates that the rule-based algorithm with observation time set to 2, 20

and 100 seconds is converged to the optimal CShared value in less than three hours while in the

scenario with Δt = 1000 it has not converged totally within twenty hours. It is also apparent

that the observation time set to 2 seconds never performs as well as other settings even after

fifteen hours of simulation.

Comparing Figures 4-7 and 4-8, it is evident that the overall time fraction of meeting targeted

Blocking in fuzzy-Q learning algorithm is lower than that of the rule-based algorithm. The

reason is that at the beginning of the simulation all of the possible actions have Q(sub-state,

action) equal to zero and the controller agent should learn the best action in any sub-state by

taking a particular action and adjusting based on the feedback. Even after convergence, the

controller agent take a random action to explore new possible action (Experimenting Rate =

0.2) 20% of the time. This random action might be a very inappropriate one for the current

state and lead to a lowering of the algorithm’s performance.

4.1.3 Change in Parameter Scenarios for the Fuzzy-Q Learning
Method

The rest of parameter changing scenarios are only applicable to the fuzzy-Q learning method.

In the next set of simulation scenarios, I study the effect of different values of the discount

factor, learning rate and experimenting rate on the general performance of the algorithm. In

all of the scenarios, only one parameter value is changed and the rest of the parameters are set

according to default settings.

The resulted quality matrix of this set of scenarios is presented in Table 4-4:

Simulation

scenarios

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction of

meeting

PLow and

PHigh target

90% of

PHigh after

convergence

90% of

PLow after

convergence

Discount

Factor 0.2

0.1094196230

141800

0.810222

0.006473

0.121524

Discount

Factor 0.5

0.1021094418

128800

0.842198

0.007031

0.111966

Discount

Factor 0.8

(Default

Setting)

0.1024201422

147400

0.88273

0.007543

0.097688

Discount

Factor 0.9

0.1030199232

139100

0.892885

0.008028

0.088808

39

Learning

Rate 0.2

0.1190116431

176700

0.927285

0.007643

0.078734

Learning

Rate 0.5

0.1062706898

138900

0.901998

0.007762

0.088618

Learning

Rate 0.8

(Default

Setting)

0.1024201422

147400

0.88273

0.007543

0.097688

Learning

Rate 0.9

0.1027510722

140300

0.871738

0.00755

0.101565

Experimentin

Rate 0.2

(Default

Setting)

0.1024201422

147400

0.88273

0.007543

0.097688

Experimentin

Rate 0.5

0.1357384758

185600

0.801446

0.006897

0.131357

Experimentin

Rate 0.9

0.9896108035

10500

0.0000

0.0000

1

Table 4-4: The resulting quality matrix for different parameter setting in the fuzzy-Q learning method

To provide more specific information about the effect of each parameter the convergence

time, converged value of the cumulative Blocking and time fraction of meeting targeted

Blocking are plotted in Figures 4-9 to 4-11 for all the scenarios including the default setting

(figures of 90% of PLow and PHigh after convergence are available in appendix).

40

Figure 4.9: Converged value of the cumulative Blocking for all the simulation scenarios in the fuzzy-Q learning

method

Figure 4.10: Convergence time of the cumulative Blocking for all the simulation scenarios in the fuzzy-Q learning

method

0

0,2

0,4

0,6

0,8

1

1,2

C
o

n
ve

rg
e

d
 B

lo
ck

in
g

va
lu

e

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Ti
m

e
 (

Se
co

n
d

s)

41

Figure 4.11: Time fraction of meeting targeted Blocking for all the simulation scenarios in Fuzzy-Q learning method

A higher discount factor considers the future reward as important as the immediate reward.

The above figures show that the discount factor value does not have a considerable effect on

convergence time and converged value, yet a higher discount factor shows better performance

regarding meeting the targeted Blocking.

The lower learning rate indicates that the received feedback as a reward is implemented

smoothly to change the Q(sub-state, action) values. Therefore, the (sub-state, action) quality

matrix changes slowly towards the converged value. Results for different settings of the

learning rate illustrate that the lower learning rate converges later but, performs slightly better

in the case of meeting targeted Blocking.

The most dramatic changes in the algorithm performance are related to different settings of

the experimenting rate. The experimenting rate indicates how often the systems chooses a

random action rather than the action with highest quality (exploration phase). The

experimenting rate = 0.9 means that in 90% of the time, the controller agent takes a random

action. This high experimenting rate deteriorates the self-optimization algorithm’s

performance in the way that the system never meets targeted Blocking and the converged

cumulative Blocking is almost 9 times higher than other scenarios. It perhaps worth

mentioning that although the quality of performance with the experimenting rate set to 0.5 is

lower than that of 0.2, the algorithm is still working reasonably.

4.2 Change in Capacity Scenarios

The goal of the second group of simulation scenarios is to analyze the reaction of self-

optimization algorithms towards failure in capacity. In coordinated scenarios, at t= 1000000

seconds, a part of CTotal fails and the whole capacity is decreased to a new value. The system

remains in this failure situation for 1000000 seconds and at t = 2000000seconds the capacity

is repaired and the value of CTotal returns to the former value. In other words, the whole

simulation time (3000000 seconds) is divided into three equal intervals. In the first and third

interval, the system is working with CTotal = 35, while in the second interval the capacity total

has decreased because of a partial failure. The self-optimization algorithm should sense this

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Ti
m

e
 F

ra
ct

io
n

42

change, adapt to it and converges to a new value of CShared according to new characteristics of

the system (new CTotal). Investigating algorithms’ adaption to a failure in capacity is important

because, in many cases, a failure in cloud’s servers or cell’s antennas may occur resulting in

lower total capacity of the system, and a successful self-optimization algorithm should be able

to adjust to new circumstances. In this set of simulation, self –optimization algorithms

encounter situations of failing CTotal by 5, 10 and 20 channels.

The first assumption is failing Capacity by 5 channels. In Figures 4-12 (the rule-based

method) and 4-13 (the fuzzy-Q learning method) the algorithms’ responses to this failure are

plotted.

Figure 4.12: Rule-based method reaction to 5 channels failure of the CTotal

Figure 4.13: Fuzzy-Q learning method reaction to 5 channels failure of the CTotal

0

0,2

0,4

0,6

0,8

1

1,2

0

5

10

15

20

25

30

35

40

1
0

0
1

0
0

1
0

0
2

0
0

1
0

0
3

0
0

1
0

0
4

0
0

1
0

0
5

0
0

1
0

0
6

0
0

1
0

0
7

0
0

1
0

0
8

0
0

1
0

0
9

0
0

1
0

0
1

0
0

0
1

0
0

1
1

0
0

1
0

0
1

2
0

0
1

0
0

1
3

0
0

1
0

0
1

4
0

0
1

0
0

1
5

0
0

1
0

0
1

6
0

0
1

0
0

1
7

0
0

1
0

0
1

8
0

0
1

0
0

1
9

0
0

1
0

0
2

0
0

0
1

0
0

2
1

0
0

1
0

0
2

2
0

0
1

0
0

2
3

0
0

1
0

0
2

4
0

0
1

0
0

2
5

0
0

1
0

0
2

6
0

0
1

0
0

2
7

0
0

1
0

0
2

8
0

0
1

0
0

2
9

0
0

1
0

0

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

43

The above figures highlight the fact that both of the methods react to the change immediately

and converge to the new CShared value at an appropriate speed. Fuzzy-Q Learning’s

performance shows more fluctuation in the converged CShared but the converged cumulative

Blockings values are relatively similar.

The next failure scenario is a 10 channels failure in CTotal. The algorithms’ performances are

shown in Figure 4-14 and 4-15.

Figure 4.14: Rule-based method reaction to 10 channels failure of the CTotal

Figure 4.15: Fuzzy-Q learning method reaction to 10 channels failure in CTotal

In the case of a 10 channels failure in capacity, the fuzzy-Q learning method shows worse

performance before convergence compared to rule-based method (representing by cumulative

Blocking’s slope). The reason is that a dramatic increase in blocking probabilities resulting

from the failure in capacity forces the system to experience totally new states and,

44

consequently the controller agent must learn which action is the best to take in these new

states.

Another noticeable point is that the fuzzy-Q learning algorithm takes a longer period of time

to find the optimal CShared value after repairing the failure compared to the rule-based

algorithm. The decision making logic of the simulator can explain this phenomenon easily. If

the derived action results in a CShared larger than total capacity of the system (which is the

tendency of the system in the case of failure), CShared is set to CTotal value. Therefore, there is

always a high limit for CShared and that makes the convergence process easier in the case of

failure; however, in the case of repairing, the controller agent must converge to the new

optimal CShared starting from the old optimal CShared without the help of forced limitation. This

phenomenon also exists in the rule-based method’s performance but it is not visible because

in any case the convergence to the optimal CShared process for the rule-based method is too fast

to be observed.

The last scenario of change in capacity is the case of occurring a failure in CTotal by 20

channels. Algorithms respond to this change presented in Figures 4-16 (the rule-based

method) and 4-17(the fussy Q-learning method).

Figure 4.16: Rule-based method reaction to 20 channels failure of the CTotal

45

Figure 4.17: Fuzzy-Q learning method reaction to 20 channels failure of the CTotal

In the case of a 20 channels failure in capacity, blocking probabilities are too high for both

low and high priority jobs. The rule-based method sets the CShared to zero which means the

system is blocked for low priority jobs and only high priority jobs can be accepted. This can

be expected because of the β value which is set to 10. The rule-based method attempts to keep

the ratio PLow/PHigh = 10, therefore PHigh > 10% leads in PLow = 1 which means the system is

not accepting any low priority job. The fuzzy-Q learning method also converges to very low

CShared values, but the fuzzy-Q learning method’s policy differs from that one of the rule-

based. The fuzzy-Q learning method’s objective is not to retain the relative Blocking

probabilities equal to 10, it attempts to minimize a long term discounted cumulative Blocking.

Thus, the CShared is not totally set to zero.

As mentioned before, the capacity failure scenarios divide the whole simulation duration in to

three intervals. In the first interval, the system works normally with default system settings.

The second interval starts when the failure in the CTotal happens and ends when the failure is

repaired. In the third interval the system CTotal is brought back to the normal working situation

with full capacity. The quality matrix for each of these intervals is listed below as three tables

(table 4-5, 4-6 and 4-7).

Simulation

scenarios

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction

of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

5 channels

failure,

Rule-based

method

0.0669866138

83400

0.999673

0.004648

0.036175

46

5 channels

failure,

Fuzz-Q

Learning

method

0.1024201422

147400

0.876452

0.007692

0.10452

10 channels

failure,

Rule-based

method

0.0669866138

83400

0.999673

0.004648

0.036175

10 channels

failure,

Fuzz-Q

Learning

method

0.1024201422

147400

0.876452

0.007692

0.10452

20 channels

failure,

Rule-based

method

0.0669866138

83400

0.999673

0.004648

0.036175

20 channels

failure,

Fuzz-Q

Learning

method

0.1024201422

147400

0.876452

0.007692

0.10452

Table 4-5: The quality matrix of self-optimization algorithms in the first interval (normal working condition)

Simulation

scenarios

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction

of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

5 channels

failure,

Rule-based

method

0.2520098059

1085100

0.007871

0.016838

0.148068

5 channels

failure,

Fuzz-Q

Learning

method

0.2813569193

1149500

0.000706

0.017362

0.26019

10 channels

failure,

Rule-based

method

0.7185525230

 1188900.00

0

0.044216

0.389091

47

10 channels

failure,

Fuzz-Q

Learning

method

0.7194092225

 1242800.00

0

0.049065

0.40813

20 channels

failure,

Rule-based

method

2.6066953954

1260600

0

0.174102285

1

20 channels

failure,

Fuzz-Q

Learning

method

2.6733058054

1418500

0

0.194580965

1

Table 4-6: The quality matrix of self-optimization algorithms in the second interval (failure in the capacity)

Simulation

scenarios

Converged

cumulative

Blocking

value

Convergence

time

(Seconds)

Time

fraction

of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

5 channels

failure,

Rule-based

method

0.0561547489

2064200

0.999359

0.004454

0.036769

5 channels

failure,

Fuzz-Q

Learning

method

0.1098873154

2122100

0.841763

0.00752

0.122427

10 channels

failure,

Rule-based

method

 0.0585011008

2063600

1.00

0.004485

0.036141

10 channels

failure,

Fuzz-Q

Learning

method

0.1410742768

2184100

0.833027

0.007626

0.115626

20 channels

failure,

Rule-based

method

0.0755611173

2096700

0.9973

0.004558

0.037067

48

20 channels

failure,

Fuzz-Q

Learning

method

0.1124174657

2147100

0.858386

0.007892

0.138756

Table 4-7: The quality matrix of self-optimization algorithms in the third interval (repairing the failure and back to

normal working condition)

The above results show that both algorithms have successfully adapted to the failure and have

changed the optimal CShared value according to the new CTotal. I have created the following

figures (Figure 4-18 to 4-20) to provide a better visualization of the quality matrix values and

to compare both algorithms’ performances. Converged cumulative Blocking values,

convergence times and time fraction of meeting targeted Blocking for all the scenarios are

plotted as below (90% of PLow and PHigh after convergence figures are provided in appendix):

Figure 4.18: Converged cumulative Blockings in different change in capacity scenarios for all the three intervals

In the third interval for 5 and 10 channels failure scenarios, the rule-based method has

performed considerably better than the fuzzy-Q learning method and the cumulative Blocking

in this interval is even lower than the cumulative reward in the first interval. The explanation

is that for the rule-based algorithm, the first and third intervals are basically the same

considering that the initialized value for CShared in the first interval is 10 channels while in the

third interval it is higher (28 for the scenario of failure by 5 channels and 22 in the case of

happening a 10 channels failure in total capacity) and the convergence from a higher

initialized value is less costly. For the fuzzy-Q learning method, facing a new system state

plays more important role than the CShared initialization, therefore the same improvement is not

observed for the fuzzy Q-learning method.

49

Figure 4.19: Convergence time of cumulative Blockings in different failure in capacity scenarios for all the three

intervals

Figure 4.20: Time fraction of meeting targeted Blocking in different change in capacity scenarios for all the three

intervals

Figure 4-20 illustrates that in the case of failure in capacity, both of the algorithms were not

successful meeting the targeted Blocking (0% of the time). However, after repairing the

failure both of the algorithms successfully returns to normal working circumstances and the

time fraction of meeting targeted Blocking before and after the failure is relatively the same.

4.3 Change in Arrival Process Scenarios

In the third and final series of scenarios, I will investigate the performance of the self-

optimization algorithms in the case of change in arrival process characteristics using batch

arrival approach. In the default arrival process, jobs are generated according to the Poisson

50

process and each arrival is equivalent of one arriving job. In the batch arrival, jobs are

generated according to the Geometric distribution and each arrival represents the arrival of a

batch of jobs. In other words, a group of jobs called batch arrives and the average size of the

batch is one of the arrival process parameters which needs to be set.

In the sections below, I will define two general sets of simulation scenarios. In the first set of

simulations, at t= 1000000, the arrival process changes gradually over an hour (3600 seconds)

to a batch arrival process with different average batch sizes. As the number of expected

arrivals per time (λ) is constant, this batch arrival process means that not only will the system

have to deal with multiple jobs at the moment of arrival, but it must also deal with an

increased number of calls. For example, increasing the batch size to two or three while the λ is

constant means that the total number of arrivals will be two or three times higher than before.

In the second set of scenarios, while increasing the batch size, the λ is decreased by the same

rate. For example if in one hour the arrival process has changed to a Geometric distribution

with batch size of two, then, the λ will be decreased from 30 to 15. In this set of simulation

scenarios, the total number of arrivals will not be increased, but instead of jobs arriving one

by one they arrive in a different average batch of sizes.

All the jobs in one batch arrive simultaneously, but each job has independent duration

according to the Poisson process with the mean value of 1/µ. Furthermore, jobs are accepted

and processes in the system one by one which means that the system does not deal all the jobs

in one batch as “one job which requires more than one channel ” or “one job with longer

processing time”.

4.3.1 Batch Arrival Scenarios without Changing the Arrival
Rate (λ)

Performance results of changing the arrival process to batch arrival with batch size two and

without decreasing the λ, are recorded in Table 4-8.

Simulation

scenarios

Converged

cumulative

Blocking value

Convergence

time

(Seconds)

Time

fraction

of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

Rule-based

method,

Batch size 2

1.6137291539

1264700

0

0.089520534

0.837869823

Fuzzy-Q

learning

method,

Batch size 2

2.082705434

1062000

0

0.108465369

1

Rule-based

method,

Batch size 3

3.0775641267

1291900

0

0.221235691

1

51

Fuzzy-Q

learning

method,

Batch size 3

4.4229599011

1058200

0

0.332876059

1

Table 4-8: Performance quality matrix of algorithms for different scenarios of change in arrival batch size

It is illustrated by Table 4-8 values that increasing the batch size without decreasing λ leads to

a dramatic rise in the number of arrivals and, consequently, PLow and PHigh. The self-

optimization algorithms’ solution towards this increase in arrivals is blocking the system for

low priority jobs and only accepting high priority jobs. To provide more visualization of the

quality matrix values, I displayed the converged cumulative Blocking values and the

convergence time in Figures 4-21 and 4-22. The time fraction of meeting the targeted

Blocking for all of the scenarios is zero so I have not include the coordinated figure (90% of

PLow and PHigh values are provided in the Appendix).

Figure 4.21: The converged cumulative Blocking for different batch arrival scenarios

Figure 4.22: The convergence time of cumulative Blocking for different batch arrival scenarios

0

1

1

2

2

3

3

4

4

5

5

Batch size 2 Batch size 3

C
u

m
u

la
ti

ve
 B

lo
ck

in
g

Rule-Based Method

Fuzzy-Q Learning Method

0

200000

400000

600000

800000

1000000

1200000

1400000

Batch size 2 Batch size 3

C
o

n
ve

rg
e

n
ce

 T
im

e
 (

Se
co

n
d

s)

Rule-Based Method

Fuzzy-Q Learning Method

52

Comparing the rule-based method to the fuzzy-Q learning method performances, it is evident

that the latter’s cumulative Blockings converges faster and the converged values are higher

than the formers.

4.3.2 Batch Arrival Scenarios with Changing the Arrival Rate
(λ)

The second set of simulations is increasing batch size while decreasing λ. In this part of

simulation for further investigation, average batch arrival size four is added to the scenarios to

observe the algorithm’s reaction to the higher batch sizes. In this set of scenarios, by

increasing the batch size to two, three and four, the λ is decreased to λ/2, λ/3 and λ/4. I have

presented the algorithms’ performance towards changes in arrival process in Figures 4-23 to

4-28.

Figure 4.23: Rule-based method’s reaction to the batch arrival (average batch size=2)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0

5

10

15

20

25

30

35

40

1
0

0
1

0
0

1
0

0
2

0
0

1
0

0
3

0
0

1
0

0
4

0
0

1
0

0
5

0
0

1
0

0
6

0
0

1
0

0
7

0
0

1
0

0
8

0
0

1
0

0
9

0
0

1
0

0
1

0
0

0
1

0
0

1
1

0
0

1
0

0
1

2
0

0
1

0
0

1
3

0
0

1
0

0
1

4
0

0
1

0
0

1
5

0
0

1
0

0
1

6
0

0
1

0
0

1
7

0
0

1
0

0
1

8
0

0
1

0
0

1
9

0
0

1
0

0
2

0
0

0
1

0
0

2
1

0
0

1
0

0
2

2
0

0
1

0
0

2
3

0
0

1
0

0
2

4
0

0
1

0
0

2
5

0
0

1
0

0
2

6
0

0
1

0
0

2
7

0
0

1
0

0
2

8
0

0
1

0
0

2
9

0
0

1
0

0

B
lo

ck
in

g

C
ap

ac
it

y

Time

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

53

Figure 4.24: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=2)

Figure 4.25: Rule-based method’s reaction to the batch arrival (average batch size=3)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0

5

10

15

20

25

30

35

40

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

-0,1

0,1

0,3

0,5

0,7

0,9

1,1

1,3

1,5

1,7

1,9

0

5

10

15

20

25

30

35

40
B

lo
ck

in
g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

54

Figure 4.26: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=3)

Figure 4.27: Rule-based method’s reaction to the batch arrival (average batch size=4)

0

0,5

1

1,5

2

2,5

3

0

5

10

15

20

25

30

35

40

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

0

0,5

1

1,5

2

2,5

0

5

10

15

20

25

30

35

40
B

lo
ck

in
g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

55

Figure 4.28: Fuzzy-Q learning method’s reaction to the batch arrival (average batch size=4)

By observing above figures it is possible to conclude that although increasing batch size and

decreasing λ does not change the total number of arrivals in a time unit, it does increase PLow

and PHigh according to the batch size. This growth in blocking probabilities can be explained

by the fact that by changing the batch size the jobs arrive in a batch whereas the departure

process of jobs does not change and jobs leave the capacity one by one after job durations.

This disagreement in arriving and departing jobs increase the blocking probabilities. The

higher the blocking probabilities are the more reserved capacity for high priority jobs is

needed in order to provide higher QoS for high priority jobs. It is also important to take note

of the high fluctuation in immediate reward values. The batch arrival affects the Blocking in a

dramatic way because of its highly dynamic nature.

Table 4-9 contains the quality matrix values of algorithms for all the scenarios.

Simulation

scenarios

Converged

cumulative

Blocking value

Convergence

time

(Seconds)

Time

fraction

of

meeting

PLow and

PHigh

target

90% of PHigh

after

convergence

90% of PLow

after

convergence

Rule-based

method,

Batch size 2

 0.2921340385

1159100

0.006

0.019352505

0.17171176

0

1

2

3

4

5

0

5

10

15

20

25

30

35

40

B
lo

ck
in

g

C
ap

ac
it

y

Time (Seconds)

Capacity Total

Capacity Shared

Immediate Blockage

Cumulative Blockage

56

Fuzzy-Q

learning

method,

Batch size 2

0.3743656398

1212900

0

0.026871757

0.313081555

Rule-based

method,

Batch size 3

0.5332015231

1267300

0

0.034000354

0.302417236

Fuzzy-Q

learning

method,

Batch size 3

0.7996475670

1025100

0

0.05331669

0.524251259

Rule-based

method,

Batch size 4

0.7408968521

1286100

0

0.046799355

0.417725014

Fuzzy-Q

learning

method,

Batch size 4

1.0888432272

1297500

0

0.072972973

0.72802042

Table 4-9: Performance quality matrix of algorithms for different scenarios of simultaneous change in λ and batch

arrival size

The quality of the performance matrix’s values represent that although the convergence time

of the cumulative Blocking for both of the algorithms is relatively similar, the converged

cumulative Blocking of the fuzzy-Q learning method is higher compared to the rule-based

method. The reason is that the strong fluctuation of immediate reward, resulted by the batch

arrival process, affects the fuzzy-Q learning method’s performance more than the rule-based

method because the fuzzy-Q learning method is more sensitive to change in the system state.

A minor change in the state after fuzzification might result in totally different sub-states. The

fuzzy-Q learning method decision making logic is totally dependent on previous experiences

and learning from former action performances. Thus a stable system is preferable with this

method in order to make a precise assessment about the former taken actions’ performance. A

dynamic arrival process with fluctuating blocking probabilities may influence the algorithms’

assessment in a negative way. For example, a taken action at time t can be considered to be an

inappropriate one because the Blocking at t+Δt is higher than before. Therefore, the action

would be punished and not repeated in the same sub-state again while the action could be a

proper one and the higher blocking probabilities are the result of dynamic change in the

arrival process. To compare the method’s performance easily I have provided the converged

value of cumulative Blocking and convergence time values of both algorithms in all the

scenarios in Figure 4-29 and 4-230.

57

Figure 4.29: Converged cumulative Blocking of algorithms in batch arrival process with changing λ

Figure 4.30: Convergence time of cumulative Blocking of algorithms in batch arrival process with changing λ

0

0,2

0,4

0,6

0,8

1

1,2

 Batch size 2 Batch size 3 Batch size 4

Rule-Based Method

Fuzzy-Q Learning Method

0

200000

400000

600000

800000

1000000

1200000

1400000

 Batch size 2 Batch size 3 Batch size 4

Rule-Based Method

Fuzzy-Q Learning Method

58

5 Conclusion and Future Work
In this thesis work I have investigated a self-optimization approach of resource allocation in

ICT systems. The case study that I have designed for this research is a system with a total

capacity of CTotal serving two classes of jobs: low and high priority. Rejecting a high priority

job is more costly for the service provider and, as a result, the system must designate some of

the resources solely for high priority jobs. This allotment of resources allows the system to

comply with various standards of QoS. The objective of the self-optimization methodologies

is to minimize Blockings while splitting the CTotal into CShared and CReserved.

I used two different methods to apply Self-organization algorithms to the controller agent of

the system, two different methods have been chosen. The first is the rule-based method which

is a set of if-then rules written by a knowledgeable human expert, adapting CShared value

according to the system state, reported at the end of each observation interval. The second

method is the fuzzy-Q learning method which is one of the reinforcement learning algorithms.

The fuzzy-Q learning algorithm does not have any prior knowledge about the system state or

the optimal action for each state, but the controller agent is able to learn from former

experiences by executing an action and then assessing the success of that action based on the

feedback from the system.

I have designed three sets simulations to observe and compare the methods performances. The

first set of scenarios’ objective is to analyze the effect of different algorithms’ parameter

settings on the overall performance of the methods. The second set of experiments’ was

simulating an abrupt failure in capacity and to then study how the algorithms react and adapt

to this change. The last set of scenarios simulated a change in the arrival process, shifting

from the Poisson arrival process to the multi-sized Geometric distribution batch arrival

process, In one group the λ was unchanged while in the another group , it was decreased by

the same rate of growth in batch size.

The overall results show that the rule-based method performs better than the Fuzzy-Q

Learning method, which is not surprising because the case study that I employed allows the

algorithms to easily predict which action is best in each state based on the reported PLow (t)

and PHigh (t). However, considering the cost of the learning and exploration phases of the

Fuzzy-Q Learning method, this method also performed acceptably in most of the scenarios.

The first set of simulations indicates that the most influential parameter on the algorithms’

overall performance is the size of the observation time interval. The short observation time

interval does not allow for the reporting of a reliable state because there is an insufficient

amount of arrivals have been observed. This unreliable state report leads to deterioration of

the algorithms’ performances. Conversely, longer observation time intervals do ensure that

the system state has been reported accurately to the controller agent, but the system reacts

more slowly and convergence is delayed. It was also highlighted by the simulations’ results

that the length of observation time should be chosen according to the arrival rate λ, regardless

of the applied self-optimization algorithms.

Another important parameter, influencing the fuzzy-Q learning algorithm’s performance is the

experimenting rate which indicates how often the controller agent chooses a random action to

explore (exploration phase).

59

The failure in capacity simulation results illustrate that, in the case of a failure in capacity, the

CShared is set to a lower value as the consequence of increase in blocking probabilities. If the

failure occurs on a larger scale, the system is blocked for low priority jobs altogether and only

services high priority jobs. Another noteworthy observation is that when a larger failure takes

place, algorithms need more time to adapt and to find the new optimal CShared compare to a

minor failure. However, it is also important to note that after repairing the failure, algorithms

can successfully return the system to a normal state after a reasonable time which is

promising.

The last set of scenarios demonstrate that the larger size of the arrival batch, even when the λ

is decreased by the same rate, results in higher blocking probabilities and consequently a

lower CShared. It is also evident that the fuzzy-Q learning method performs worse than the rule-

based method in all of the batch arrival process scenarios. This is due to the fact that

fluctuation in the immediate Blocking affects the fuzzy-Q learning method’s performance

much more than the performance of the rule-based method.

One direction of future research for scholars can be designing case studies in which learning

self-optimization methods like the Fuzzy-Q Learning method performs more efficiently than

rule-based methods. The case study that I considered for this research, with its direct

relationship between blocking probabilities and the optimal CShared value, allowed for the easy

prediction of the most appropriate action in different states of the system. Therefore a

knowledgeable expert can set up the look-up table in the way that the controller agent does

not experience any difficulties finding the best possible action in each state. But in more

complicated case studies it might be not easy (even for a human expert) to predict the best

action in the different system states due to unknown and dynamic process affecting the

system. For example in a game like chess, the best action and reward feedback in each state is

difficult to predict, because the reward is also dependent on the opponent’s reaction.

Additionally, scholars could consider and design a case study in which the parameters

representing the system state are not easily measureable. For example in my case study two

parameters reporting the system state were blocking probabilities which can be measure and

reported easily while it is possible that in a cellular mobile network, the blocking probabilities

in neighboring cells are matter of importance and for the controller agent it is not easy to

measure blocking probabilities in other cells.

Moreover, as an improvement for the fuzzy-Q learning, I suggest an algorithm with variable

experimenting rate learning rates. At the beginning of any self-optimization process, the

fuzzy-Q learning is in the exploration phase and as the time progresses it shifts to utilization

of learnt information more often (exploitation phase). The higher value of experimenting and

learning rates accelerate the exploration procedure, but it is not preferable when the algorithm

is in exploitation phase. Therefore, a dynamic experimenting and learning rate which is high

at the beginning of the fuzzy-Q learning method’s employment and decreasing as time passes

improves the algorithm’s performance.

60

Bibliography
[1] Nec. (2009). Self Organizing Network, NEC's proposals for nextgeneration radio network

management.

[2] J.L. van den Berg,R.Litjens. (2008). SOCRATES: Self-Optimisation and self-ConfiguRATion in

wirelESs networks. COST 2100 TD(08)422, Wroclaw, Poland.

[3] Mcauley, A., & Manousakis, K. (2000). SELF-CONFIGURING NETWORKS. MILCOM 2000. 21st

Century Military Communications Conference Proceedings .

[4] Debanjan.G, S. R. (2007). Self-healing systems — survey and synthesis. Decision Support Systems

42 (2007) 2164–218.

[5] Yilmaz, O. (2010). 'Self-Optimization of Coverage and Capacity in LTE using Adaptive Antenna

System'. Master's Thesis, AALTO university <http://lib.tkk.fi/Dipl/2010/urn100152.pdf>.

[6] Nasri, R. A. (2006). 'Fuzzy-Q-Learning-Based Autonomic Management of Macro-diversity

Algorithm in UMTS Networks'. ANNALES DES TELECOMMUNICATIONS, VOL 61; PART 9/10, p.

1119-1135 .

[7] Bahsoon, R. (2010). 'Green Cloud: Towards a Framework for Dynamic Self-Optimization of Power

and Dependability Requirements in Cloud Architectures. ECSA'10, 510-514.

[8] Nguyen Van, H. D. (n.d.). 'Autonomic virtual resource management for service hosting platforms'.

Proc. of the Workshop on Software Engineering Challenges in Cloud Computing, 2009.

[9] Vouk, M. (2008). Cloud computing–Issues, research and implementations. Journal of Computing

and Information Technology - CIT 16, 235–246.

[10] Michael Armbrust, A. F. (2009). Above the clouds: A berkeley view of cloud computing. Technical

Report No. UCB/EECS-2009-28.

[11] Qing-An Zeng, D. P. (2002). Handoff in wireless mobile networks. Handbook of wireless networks

and mobile computing, John Wiley & Sons, Inc., New York, NY, USA, 1-25.

[12] Crina Grosan, A. A. (2011). Intelligent Systems: A Modern Approach. 149-153: Intelligent Systems

Reference Library Series, Springer Verlag, Germany.

[13] Abraham, A. (2005). 130: Rule-based Expert Systems. Handbook of Measuring System Design,

edited by Peter H. Sydenham and Richard Thorn, John Wiley & Sons, Ltd. ISBN: 0-470-02143-

8, 909-919.

[14] Adedeji Bodunde Badiru, P. M.-B. (2002). Fuzzy engineering expert systems with neural network

applications. John Wiley & Sons, Inc. New York, NY, USA.

[15] Peter Dayan, C. J. (2001). Reinforcement Learning. Encyclopedia of Cognitive Science London,

England: MacMillan Press.

61

[16] Tom Mitchell, M. H. (1997). Machine Learning. 367-390: McGraw-Hill Science Engineering.

[17], [19] Richard S. Sutton, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, A Bradford Book.

[18], [20] Leslie Pack Kaelbling, M. L. (1996). Reinforcement learning: a survey. Journal of Artificial

Intelligence Research, 237-285.

[21] Smith, M. (2006). Markov Decision Processes & Reinforcement Learning. Lehigh University.

 [22] Hellmann, M. (2001). Fuzzy logic introductio. Laboratoire Antennes Radar Telecom.

[23] Watkins, C. J. (1989). Learning from delayed rewards. PhD Thesis, University of Cambridge,

England.

[24] Eder, C. (2008). Q-Learning:A Simple Reinforcement Learning Algorithm Based On The Temporal

Difference Approach. Version 18. Knol.

[25] by Eyal Even-dar, Y. M. (2003). Learning Rates for Q-learning. Journal of Machine Learning

Research, 1-25.

62

Appendix A
90% of PLow and PHigh Figures for differens simulation scenarios.

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

0,01

2 seconds 50 seconds 100 seconds
(Deffault
Setting)

500 seconds 1000
seconds

B
lo

ck
in

g
P

ro
b

ab
lit

y

90% of P(High) After Convergence, Change in
Observation Time Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

2 seconds 50 seconds 100 seconds
(Deffault
Setting)

500 seconds 1000
seconds

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(Low) After Convergence, Change in
Observation Time Scenarios

Rule-Base Mathod

Fuzzy-Q Learning Method

63

0
0,001
0,002
0,003
0,004
0,005
0,006
0,007
0,008
0,009

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(High) After Convergence, Parameters Settings
Scnerios for Fuzzy-Q Learning

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(Low) After Convergence, Parameters Settings
Scnerios for Fuzzy-Q Learning

64

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(Low) After Convergence, Parameters Settings
Scnerios for Fuzzy-Q Learning

0

0,05

0,1

0,15

0,2

0,25

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(High) After Convergence, Failure in Capacity
Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

65

0

0,2

0,4

0,6

0,8

1

1,2

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(Low) After Convergence, Failure in
Capacity Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

Batch size 2 Batch size 3

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(High) After Convergence, Batch Arrival
Process Without Chanaging λ Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

66

0,75

0,80

0,85

0,90

0,95

1,00

1,05

Batch size 2 Batch size 3

B
lo

ck
in

g
P

ro
b

ab
ili

ty

90% of P(Low) After Convergence, Batch Arrival Process
Without Chanaging λ Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

 Batch size 2 Batch size 3 Batch size 4

B
lo

ck
in

g
P

ro
b

ab
ili

ti
e

s

90% of P(High) After Convergence, Batch Arrival Process
With Chanaging λ Scenarios

Rule-Based Method

Fuzzy-Q Learning Method

67

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

 Batch size 2 Batch size 3 Batch size 4

B
lo

ck
in

g
P

ro
ab

ili
ty

90% of P(Low) After Convergence, Batch Arrival Process

With Chanaging λ Scenarios

Rule-Based Method

Fuaay Q Learning Method

68

Appendix B

In this section, I have provided the Delphi codes used as the simulator. The codes are

generated by in Delphi 5 and only two main programs are presented here. For each specific

scenario a unit, was added to simulate required changes.

 Rule-Based Method

program clouding_ifthen;

uses

 SysUtils,

 Math,

 Procedures-IfThen in '..\Clouding Update3\procedures-IfThen.pas',

 consTypeVar in '..\Clouding Update3\consTypeVar.pas',

 statistics_ifthen in '..\Clouding with statistics\statistics_ifthen.pas',

var

 results_1, results_2 :

textfile;

{--}

begin

 RandSeed := 123456789;

 Assignfile(results_1,'h:\results_1 (' + ParamStr(1) + ' ' + ParamStr(2) + '

' + ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6) +

' ' + ParamStr(7) + ').txt');

 Rewrite(results_1);

 Assignfile(results_2,'h:\results_2 (' + ParamStr(1) + ' ' + ParamStr(2) +

' ' + ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6)

+ ' ' + ParamStr(7) + ').txt');

 Rewrite(results_2);

 Initialisations;

{Setting Parameters}

 lambda := StrToFloat(ParamStr(1));

 AvgJobDuration := StrToFloat(ParamStr(2));

 percentHigh := StrToFloat(ParamStr(3));

 capacity.Total := StrToInt (ParamStr(4));

 capacity.Share := StrToInt (ParamStr(5));

 Beta := StrToFloat(ParamStr(6));

 Observationtime := StrToFloat (ParamStr(7));

 statisticinterval := StrToFloat (ParamStr(8));

 PLowtarget := StrToFloat(ParamStr(9));

 PHightarget := StrToFloat(ParamStr(10));

 tijd := 0.0;

 tijdNextArrival := tijd + SampleExponential(lambda);

 tijdNextDeparture := MaxExtended;

 tijdNextOptimisation := Observationtime;

 tijdNextstatistic := statisticinterval;

 tijdchangeincapacity := Observationtime * 10000;

repeat

if (tijdNextArrival < tijdNextDeparture) and (tijdNextArrival <

tijdNextOptimisation) and (tijdNextArrival < tijdNextstatistic) then

{Next Occurrence is Arrival}

 begin

 tijd := tijdNextArrival;

 tijdNextArrival := tijd + SampleExponential(lambda);

 CallArrival;

 end

69

else if (tijdNextDeparture < tijdNextArrival) and (tijdNextDeparture <

tijdNextOptimisation))and (tijdNextDeparture < tijdNextstatistic)then

{Next Occurrence is Departure}

 begin

 tijd := tijdNextDeparture;

 CallDeparture;

 end

else if (tijdNextOptimisation < tijdNextArrival) and (tijdNextOptimisation <

tijdNextDeparture) and (tijdNextOptimisation < tijdNextstatistic) then

{Next Occurrence is Optimization (Happens every 100seconds)}

 begin

 tijd := tijdNextOptimisation;

 PLow := blocks.Low / arrivals.Low;

 PHigh := blocks.High / arrivals.High;

 reward := -PLow - (Beta * PHigh);

 blocks.cumLow := blocks.cumLow + blocks.Low;

 blocks.cumHigh := blocks.cumHigh + blocks.High;

 arrivals.cumLow := arrivals.cumLow + arrivals.Low;

 arrivals.cumHigh := arrivals.cumHigh + arrivals.High;

 blocks.changeLow := blocks.changeLow + blocks.Low;

 blocks.changeHigh := blocks.changeHigh + blocks.High;

 arrivals.changeLow := arrivals.changeLow + arrivals.Low;

 arrivals.changeHigh := arrivals.changeHigh + arrivals.High;

 PLowcum := blocks.cumLow / arrivals.cumLow;

 PHighcum := blocks.cumHigh / arrivals.cumHigh;

 rewardcum := -PLowcum - (Beta * PHighcum);

 inc (index);

 rewardcumMatrix[index]:= -rewardcum;

writeln(results_1,tijd:20:10,capacity.Total :20:10,

capacity.Share :20:10,-reward :20:10, -rewardcum :20:10, -

rewardchange :20:10);

 callOptimisation;

 tijdNextOptimisation := tijd + Observationtime;

 end

else {Next Occurrence is Deriving Statistics (Happens every 300seconds)}

 begin

 tijd := tijdNextstatistic;

 PLowsta := (blocks.staLow / arrivals.staLow);

 PHighsta := (blocks.staHigh / arrivals.staHigh);

 Rewardsta := PLowsta + (Beta * PHighsta);

if (PLowsta < PLowtarget) then indicatorLow := indicatorLow

+1;

 if (PHighsta <PHightarget)then indicatorHigh := indicatorHigh

+1;

 if (Rewardsta < PLowtarget + (Beta * PHightarget)) then

indicatorReward := indicatorReward + 1;

 if (PLowsta < PLowtarget) and (PHighsta < PHightarget) and

(Rewardsta < PLowtarget + (Beta * PHightarget)) then

 indicatorGeneral := indicatorGeneral +1;

 timefraction := indicatorGeneral * statisticinterval;

 writeln(results_2,tijd:20:10, PLowsta:20:10, PHighsta:20:10 ,

indicatorGeneral:20:10 , (timefraction/tijd):20:10);

tijdNextstatistic := tijd + statisticinterval;

 blocks.staLow := 0;

 arrivals.staLow := 0;

 blocks.staHigh := 0;

 arrivals.staHigh := 0;

 end

end;

70

 until (arrivals.Low > 0) and (arrivals.High > 0) and (tijd > (30000 *

Observationtime));

 Closefile(results_1);

 Closefile(results_2);

 {Finding Convergence Time and Converged Cumulative Blocking Value}

 findingfinalreward;

end.

{---}

unit procedures-IfThen;

interface

uses

 Math,

 consTypeVar;

function SampleExponential(rate :extended) :extended;

procedure Initialisations;

procedure CallArrival;

procedure CallDeparture;

procedure CallOptimisation;

implementation

{--}

{ Poisson Distribution Genetrator}

function SampleExponential(rate :extended) :extended;

begin

 SampleExponential := (-1 / rate) * ln(Random);

end;

{---}

procedure Initialisations;

{Initialize Values and Matrixes to Zero and Assigning Actions’ Values}

var

 i :longword;

begin

 present.High := 0; present.Low := 0; present.HighandLow := 0;

 arrivals.High := 0; arrivals.Low := 0; arrivals.HighandLow := 0;

 accepts.High := 0; accepts.Low := 0; accepts.HighandLow := 0;

 blocks.High := 0; blocks.Low := 0; blocks.HighandLow := 0;

 departures.High := 0; departures.Low := 0; departures.HighandLow := 0;

 Action1 := 1; Action2 := 0; Action3 :=-1;

 for i := 1 to MaxNumCalls do

 begin

calls[i].departure_tijd := MaxExtended;

 calls[i].callclass := None;

 end;

end;

{--}

procedure CallArrival;

var

 i :longword;

begin

 if (Random < percentHigh) then {Arrived Call is

Highclass}

 begin

 if (present.HighandLow < capacity.Total) then {Call is Accepted}

 begin

71

 arrivals.High := arrivals.High +1;

 accepts.High := accepts .High +1;

 present.High := present .High +1 ;

 present.HighandLow := present .HighandLow +1 ;

calls[present.HighandLow].departure_tijd := tijd + SampleExponential(1 /

AvgJobDuration);

calls[present.HighandLow].callclass := High;

 end

 else

 begin {Call is Blocked}

arrivals.High := arrivals.high +1;

 blocks.High:= blocks.High +1;

 end;

 end

 else {Arrived Call is

Lowclass}

 begin

 if (present.HighandLow< capacity.Share) then {Call is Accepted}

 begin

arrivals.Low := arrivals.Low+1;

 accepts .Low := accepts .Low +1;

 present .Low := present .Low +1;

present.HighandLow := present.HighandLow+1;

calls[present.HighandLow].departure_tijd:=

tijdSampleExponential(1/AvgJobDuration);

calls[present.HighandLow].callclass:= Low;

 end

 else

 begin {Call is Blocked}

 arrivals.Low := arrivals.Low +1;

 blocks .Low := blocks .Low +1;

 end;

 end;

 {Set New timeNextDeparture}

tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd);

end;

{---}

procedure CallDeparture;

var

 i,j :longword;

begin

 {Find Call}

 i := 0; repeat inc(i) until (Abs(calls[i].departure_tijd - tijd) <

0.000001);

 {Administration}

 if (calls[i].callclass = High) then

 begin

departures.High := departures.High +1;

 present.High:= present.High -1;

 present.HighandLow := present.HighandLow -1;

 end

 else

begin

departures.Low:=departures.Low+1;

72

 present.Low:=present.Low-1;

 present.HighandLow:= present.HighandLow-1;

 end;

 {Remove Departed Call Record}

 for j := i to present.HighandLow do calls[j] := calls[j + 1];

 calls[present.HighandLow + 1].departure_tijd := MaxExtended;

 calls[present.HighandLow + 1].callclass := None;

 {Set New timeNextDeparture}

 tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd);

end;

{--}

procedure CallOptimisation;

var

 i :longword;

 results : textfile;

begin

if (Beta - 0.5 < PLow / (PHigh+ 0.00000000000001)) and (PLow /

(PHigh+ 0.00000000000001) < Beta + 0.5) then begin

{No Action}

 blocks.Low :=0;

 arrivals.Low :=0;

 blocks.High :=0;

arrivals.High :=0;

 capacity.Share := Max(0,Min(capacity.Total,capacity.Share

+Action2));

end

 else

 if (PLow / (PHigh+ 0.00000000000001) < Beta - 0.5) then

begin

{Decrease C.Shared}

 blocks.Low :=0;

arrivals.Low :=0;

blocks.High :=0;

arrivals.High :=0;

 capacity.Share := Max (0 , Min (capacity.Total,capacity.Share +

Action3)); end

 else

 if (PLow / (PHigh+ 0.00000000000001) > Beta + 0.5) then

begin

{Increase C.Shared}

 blocks.Low :=0;

arrivals.Low :=0;

 blocks.High :=0;

arrivals.High :=0;

 capacity.Share := Max (0 , Min (capacity.Total,capacity.Share +

Action1)); end;

end;

end.

73

 Fuzzy-Q Learning Method

program clouding_RLchange;

uses

 SysUtils,

 Math,

 procedures_RL in '..\Clouding Update3\procedures_RL.pas',

 consTypeVar_RL in '..\Clouding Update3\consTypeVar_RL.pas',

 Statistics in 'Statistics.pas';

{---}

begin

 RandSeed := 123456789;

Assignfile(results,'h:\results (' + ParamStr(1) + ' ' + ParamStr(2) + ' ' +

ParamStr(3) + ' ' + ParamStr(4) + ' ' + ParamStr(5) + ' ' + ParamStr(6) + ' '

+ ParamStr(7) + ' ' + ParamStr(8) + ' ' + ParamStr(9) + ' ' + ParamStr(10) +

'' + ParamStr(11) + ').txt');

 Rewrite(results);

 Initialisations;

 Initialise_RL;

{Setting Parameters}

 lambda := StrToFloat(ParamStr(1));

 AvgJobDuration := StrToFloat(ParamStr(2));

 percentHigh := StrToFloat(ParamStr(3));

 capacity.Total := StrToInt (ParamStr(4));

 capacity.Share := StrToInt (ParamStr(5));

 Beta := StrToFloat(ParamStr(6));

 gama := StrToFloat(ParamStr(7));

 learningrate := StrToFloat(ParamStr(8));

 experimentrate := StrToFloat(ParamStr(9));

 observationwindow := StrToInt(ParamStr(10));

 statisticinterval := StrToFloat(ParamStr(11));

 PLowtarget := StrToFloat(ParamStr(12));

 PHightarget := StrToFloat(ParamStr(13));

 tijd := 0.0;

 tijdNextArrival := tijd + SampleExponential(lambda);

 tijdNextDeparture := MaxExtended;

 tijdNextOptimisation := observationwindow;

 tijdNextstatistic := statisticinterval;

 Changeincapacitytime :=observationwindow * 10000 ;

 repeat

if (tijdNextArrival < tijdNextDeparture) and (tijdNextArrival <

tijdNextOptimisation) and (tijdNextArrival < tijdNextstatistic) then

 begin {Next Occurrence is Arrival}

 tijd := tijdNextArrival;

 tijdNextArrival := tijd + SampleExponential(lambda);

 Arrival;

 end

 else if (tijdNextDeparture < tijdNextArrival) and (tijdNextDeparture <

tijdNextOptimisation) and (tijdNextDeparture < tijdNextstatistic) then

 begin {Next Occurrence is Departure}

 tijd := tijdNextDeparture;

 Departure;

74

 end

 else if (tijdNextOptimisation < tijdNextDeparture) and (tijdNextOptimisation

< tijdNextArrival) and (tijdNextOptimisation < tijdNextstatistic) then

 begin {Next Occurrence is Optimization Happening every

100seconds}

tijd := tijdNextOptimisation;

Optimisation;

tijdNextOptimisation := tijd + observationwindow;

arrivals.High := 0; arrivals.Low := 0;

 accepts.High := 0; accepts.Low := 0;

 blocks.High := 0; blocks.Low := 0;

 end

 else

{Next Occurrence is Deriving Statistics Happening every 300seconds}

 begin

 tijd := tijdNextstatistic;

 PLowsta := (blocks.staLow / arrivals.staLow);

 PHighsta := (blocks.staHigh / arrivals.staHigh);

 Rewardsta := PLowsta + (Beta * PHighsta);

 if (PLowsta < PLowtarget)then indicatorLow := indicatorLow +1;

 if (PHighsta < PHightarget) then indicatorHigh := indicatorHigh

+1;

 if (PLowsta < PLowtarget) and (PHighsta < PHightarget) then

 indicatorGeneral := indicatorGeneral +1;

 timefraction:= statisticinterval * indicatorGeneral;

 tijdNextstatistic := tijd + statisticinterval;

 blocks.staLow := 0;

 arrivals.staLow := 0;

 blocks.staHigh := 0;

 arrivals.staHigh := 0;

 end;

 until (arrivals.Low > 0) and (arrivals.High > 0) and (tijd > (30000 *

observationwindow));

 Closefile(results);

 findingfinalreward;

end.

{---}

unit procedures_RL;

interface

uses

 Math,

 consTypeVar_RL,

 ReinforcementLearning;

 procedure Initialisations;

 function SampleExponential(rate :extended) :extended;

 procedure Arrival;

 procedure Departure;

implementation

{--}

75

{Poisson Arrival Generator}

function SampleExponential(rate :extended) :extended;

begin

 SampleExponential := (-1 / rate) * ln(Random);

end;

{--}

procedure Initialisations; {Initializing Values and Matrixes to Zero}

var

 i :longword;

begin

 present.High := 0; present.Low := 0; present.HighandLow :=

0;

arrivals.High := 0; arrivals.Low := 0; arrivals.HighandLow :=

0;

accepts.High := 0; accepts.Low := 0; accepts.HighandLow :=

0;

blocks.High := 0; blocks.Low := 0; blocks.HighandLow :=

0;

departures.High := 0; departures.Low := 0; departures.HighandLow :=

0;

blocks.cumLow := 0; blocks.cumHigh := 0; arrivals.cumHigh :=

0;

arrivals.cumHigh:= 0;

 for i := 1 to MaxNumCalls do

begin

calls[i].departure_tijd := MaxExtended;

 calls[i].callclass := None;

end;

end;

{--}

procedure Arrival;

var

 i :longword;

begin

 if (Random < percentHigh) then {Arrived Call is Highclass}

 begin

 if (present.HighandLow < capacity.Total) then {Call is Accepted}

 begin

arrivals.High := arrivals.High +1;

 accepts.High := accepts .High +1;

 present.High := present .High +1 ;

 present.HighandLow := present .HighandLow +1 ;

calls[present.HighandLow].departure_tijd := tijd +

SampleExponential(1 / AvgCallDuration);

76

calls[present.HighandLow].callclass := High;

 end

 else {Call is

Blocked}

 begin

arrivals.High := arrivals.High +1;

 blocks.High:= blocks.High +1;

 end;

 end

 else {Arrived Call is

Lowclass}

 begin

if (present.HighandLow< capacity.Share) then {Call is Accepted}

begin

arrivals.Low := arrivals.Low+1;

accepts .Low := accepts .Low +1;

present .Low := present .Low +1;

present.HighandLow := present.HighandLow+1;

calls[present.HighandLow].departure_tijd := tijd +

SampleExponential(1 / AvgCallDuration);

calls[present.HighandLow].callclass := Low;

end

 else {Call is Blocked}

begin

arrivals.Low := arrivals.Low +1;

 blocks .Low := blocks .Low +1;

end;

end;

 {set new timeNextDeparture}

tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow do

tijdNextDeparture := min(tijdNextDeparture,calls[i].departure_tijd);

end;

{--}

procedure Departure;

var

 i,j :longword;

begin

 {Find Call}

 i := 0; repeat inc(i) until (Abs(calls[i].departure_tijd - tijd) <

0.000001);

 {Administration}

 if (calls[i].callclass = High) then

 begin

departures.High := departures.High +1;

 present.High:= present.High -1;

 present.HighandLow := present.HighandLow -1;

 end

77

 else

begin

departures.Low:=departures.Low+1;

present.Low:=present.Low-1;

 present.HighandLow:= present.HighandLow-1;

 end;

 {Remove Departed Call Record}

 for j := i to present.HighandLow do

calls[j] := calls[j + 1];

 calls[present.HighandLow + 1].departure_tijd := MaxExtended;

 calls[present.HighandLow + 1].callclass := None;

 {Set New timeNextDeparture}

 tijdNextDeparture := MaxExtended; for i := 1 to present.HighandLow

do tijdNextDeparture :=

min(tijdNextDeparture,calls[i].departure_tijd);

end;

end.

{---}

unit ReinforcementLearning;

interface

uses

 SysUtils,

 Math,

 consTypeVar_RL;

function DetermineMembershipArray (P :extended) :tMembershipArray;

function DetermineMembershipMatrix(mu1,mu2 :tMembershipArray)

:tMembershipMatrix;

function DetermineSetOfActions (mu: tMembershipMatrix) :

tSetOfActions;

Function CalculatingAction (SAC: tSetOfActions) :Integer;

Procedure Qupdating;

Procedure Qualitycalculating;

procedure Optimisation;

procedure Initialise_RL;

implementation

{--}

procedure Initialise_RL;

var

 i,j,c :integer;

begin

 {Determine Fuzzification Sub-State Borders}

78

 for i := 1 to NumberOfBorders do border[i] := (i - 1) /

(NumberOfBorders - 1);

 for i := 1 to NumberOfBorders do

 begin

 mu.High [i] :=0;

 mu.Low [i] :=0;

 end;

 for i := 1 to NumberOfBorders do

 for j := 1 to NumberOfBorders do

 mu.HighLow [i,j] := 0;

 for i := 1 to NumberOfBorders do

 for j := 1 to NumberOfBorders do

 for c := 1 to 7 do

 begin

 Q[i,j,c] :=0;

 Qold[i,j,c]:=0;

 end;

{Define Atomic Actions}

 AtomicActions[0] := -3;

 AtomicActions[1] := -2;

 AtomicActions[2] := -1;

 AtomicActions[3] := 0;

 AtomicActions[4] := 1;

 AtomicActions[5] := 2;

 AtomicActions[6] := 3;

end;

{---

-}

procedure Optimisation;

var

a,i,j :integer;

action :extended;

begin

PLow := blocks.Low / arrivals.Low;

PHigh := blocks.High / arrivals.High;

reward:= - PLow - (Beta * PHigh);

blocks.cumLow := blocks.cumLow + blocks.Low;

blocks.cumHigh := blocks.cumHigh + blocks.High;

arrivals.cumLow := arrivals.cumLow + arrivals.Low;

arrivals.cumHigh := arrivals.cumHigh + arrivals.High;

PLowcum := blocks.cumLow / arrivals.cumLow;

PHighcum := blocks.cumHigh / arrivals.cumHigh;

rewardcum := - PLowcum - (Beta * PHighcum);

writeln(results,tijd:20:10, capacity.Share :20:10, -

reward:20:10,(blocks.Low / arrivals.Low):20:10,(blocks.High /

arrivals.High):20:10 {, -rewardcum:20:10 });

79

{Calculating Membership Degrees & Membership Matrix}

mu.Low := DetermineMembershipArray (PLow);

mu.High := DetermineMembershipArray (PHigh);

mu.HighLow := DetermineMembershipMatrix(mu.High,mu.Low);

{Finding Best Action for Each Sub-State}

SetOfActions := DetermineSetOfActions(mu.HighLow);

{Calculating the Action}

action := CalculatingAction (SetOfActions);

capacity.Share := Min (capacity.Total , Max (0,

capacity.Share + action));

Qualitycalculating;

Qupdating;

{---

}

function DetermineMembershipArray (P :extended) :tMembershipArray;

var

 i :integer;

 temp :tMembershipArray;

begin

for i := 1 to NumberOfBorders do temp[i] := 0.0;

i := 0;

repeat inc(i) until (P >= border[i]) and (P <= border[i+1]);

temp[i] := (border[i+1] - P) / (border[i+1] - border[i]);

temp[i+1] := (P - border[i]) / (border[i+1] - border[i]);

DetermineMembershipArray := temp;

end;

{---

--}

function DetermineMembershipMatrix(mu1,mu2 :tMembershipArray)

:tMembershipMatrix;

var

 i,j :integer;

 temp :tMembershipMatrix;

begin

for i:=1 to NumberOfBorders do

 for j:=1 to NumberOfBorders do

 temp[i,j] := mu1[i] * mu2[j];

DetermineMembershipMatrix := temp;

end;

{---

}

80

function DetermineSetOfActions (mu: tMembershipMatrix) :

tSetOfActions;

var

 i,j,k,m :integer;

 temp :tSetOfActions;

begin

 k := 0;

 for i:=1 to NumberOfBorders do

 for j:=1 to NumberOfBorders do

 if (mu [i,j] > EPSILON) then

 begin

 inc(k);

 if random < experimentrate then

 begin

 temp[k].actionid := random(6);

 temp[k].mu := mu[i,j];

 temp[k].quality := Q[i,j,temp[k].actionid];

 end

 else

 begin

 qmax := -999999.99;

 for m:= 0 to 6 do

 begin

 if Q[i,j,m] > qmax then

 qmax := Q[i,j,m];

 end;

 for m:= 0 to 6 do ArrayOfBest[m] := 99999;

 NumOfBest := 0;

 for m:= 0 to 6 do

 if (Abs(Q[i,j,m] - qmax) < 0.000001) then

 begin

 NumOfBest := NumOfBest + 1;

 ArrayOfBest[NumOfBest - 1] := m;

 end;

 ChosenBest := Random(NumOfBest);

 temp[k].actionid := ArrayOfBest[ChosenBest];

 temp[k].mu := mu[i,j];

 temp[k].quality := Q[i,j,temp[k].actionid];

 end;

 end;

 DetermineSetOfActions := temp;

end;

{--}

Function CalculatingAction (SAC: tSetOfActions) :Integer;

var

 k :integer;

 l :integer;

81

 action :extended;

 begin

 action := 0;

 for k:=1 to 4 do

 begin

 l := SetOfActions[k].actionid;

 action := action + SetOfActions[k].mu* AtomicActions[l];

 end;

 CalculatingAction := Round(action);

end;

{--}

Procedure Qualitycalculating;

var m,i,j,k,l,mmax: integer;

begin

k := 0;

for l := 1 to 4 do

 begin

 Maxquality[l].actionid := 0;

 Maxquality[l].quality := 0;

 Maxquality[l].mu := 0;

 end;

for i:=1 to NumberOfBorders do

 for j:=1 to NumberOfBorders do

if mu.HighLow[i,j] > EPSILON then

 begin

 qmax := -999999.99;

 for m:= 0 to 6 do

 if Q[i,j,m] > qmax then

 begin

 qmax := Q[i,j,m];

 mmax := m;

 end;

 inc(k);

 Maxquality[k].actionid := mmax;

 Maxquality[k].quality := Q[i,j,mmax];

 Maxquality[k].mu := mu.HighLow[i,j];

 end;

 actionquality.Old := 0;

 actionquality.New := 0;

 for l:= 1 to 4 do

 begin

 actionquality.New := actionquality.New +

(Maxquality[l].quality * Maxquality[l].mu);

 actionquality.Old := actionquality.Old +

(SetOfActionsOld[l].quality* SetOfActionsOld[l].mu);

 end;

82

 deltaq := reward + (gama*actionquality.New)

- actionquality.Old;

 end;

{--}

 Procedure Qupdating;

 var x,y,c,f : integer;

 begin

c:= 0;

for x:=1 to NumberOfBorders do

 for y:=1 to NumberOfBorders do

 if (mu.HighLowOld[x,y] > EPSILON) then

 begin

 inc(c);

 f := SetOfActionsOld[c].actionid;

 Q[x,y,f] := Q[x,y,f] + (learningrate * deltaq *

mu.HighLowOld[x,y]);

 end;

 mu.HighLowOld := mu.HighLow;

 SetOfActionsOld := SetOfActions;

end;

{---}

end.

