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A B S T R A C T

This paper investigates the correlations among 3D graphic statics, Maxwell–Rankine stress function, and
Pucher’s equation (the governing equation of membrane shells). When there is only vertical load, a solution of
Pucher’s equation can be converted into a Maxwell–Rankine stress function. The resulting stress function can
be further discretized into Rankine reciprocal diagrams. The analogous membrane shell will simultaneously be
discretized into a gridshell, which has planar polygonal faces and prismatoidal Rankine diagrams. A family of
analytical free-edge membrane shells is also presented. Once these membrane shells are discretized, they can
have co-apex pyramidal Rankine diagrams. The resulting discretized Rankine diagrams provide an intuitive
way for structure designers to perceive the equilibrium of shell structures.
1. Introduction

Graphic statics is an intuitive and powerful design tool that allows
a structure designer to analyze and control forces in trusses. Before
the advent of computers, graphic statics was arguably the only viable
means to design funicular structures (e.g. bending-moment-free trusses,
arches). The resulting structures are often material efficient. To reduce
the embodied greenhouse gas emissions from our construction and
manufacturing industries for a more sustainable future, it is in our
interest to revive and revisit such economical design methods.

Graphic statics is deeply connected with stress functions and smooth
reciprocal diagrams (Maxwell, 1868, 1870). In a two-dimensional
domain, the projections of a polyhedral Airy stress function and its
dual figure are the Maxwell reciprocal diagrams; similarly, for a three-
dimensional case, the projections of a polytopal Maxwell–Rankine
stress function and its dual figure are the Rankine reciprocal diagrams
(Fig. 1).

Historically, the applications of reciprocal diagrams were mainly in
the discrete fashion and had been through some rises and falls. Graphic
statics was popular, especially in 2D before the popularization of com-
puters, since the available drafting tools (e.g. pen and paper) had no
difficulty implementing such methods. However, with the emergence
computers (ca. the 1980s), the input/output interfaces of these devices
were mainly for numerical data. Therefore, matrices analysis became
dominant. Meanwhile, graphical processes were relatively too compu-
tationally demanding, and thus graphic statics received less attention.

E-mail address: Chiang.YuChou@gmail.com.

Having said that, computer graphics has been greatly improved in the
latest decades. Graphics statics has regained the attention of researchers
across architecture, engineering, and computer graphics (Block and
Ochsendorf, 2007; Vouga et al., 2012; Konstantatou et al., 2018).

In recent years, developments in 3D visualization allows much more
interesting progress in 3D graphic statics, which was not widely studied
before. For instance, D’Acunto et al. (2019) developed 3D vector-based
graphic statics in which the forces on a node reach equilibrium when
the force vectors form a closed loop. Meanwhile using the Rankine
reciprocal diagrams, Akbarzadeh et al. (2015) and Konstantatou et al.
(2018) expressed a node’s equilibrium by a closed polyhedron, in which
an oriented facet (i.e., the normal vector and surface area of the facet)
represents a force (i.e., the direction and magnitude of the force).
Naturally, the net-oriented surface area of a closed polyhedron always
equals zero, which promises that the net force of each node equals zero,
as well.

A special type of gridshell, which has a Rankine diagram consisting
of pyramids sharing the same apex point, had been shown by Ak-
barzadeh et al. (2015) as well as Lee et al. (2018) and McRobie et al.
(2021). McRobie et al. (2021) call such a gridshell a simple Rankine
gridshell. Considering a shell is one of the structures that can material-
efficiently cover a space, the paper would like to raise two questions:
What would be the smooth counterparts of the simple Rankine gridshell?
and, Is there a way to discretize an arbitrary membrane shell into its
Rankine reciprocal diagrams?
vailable online 6 June 2022
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Fig. 1. Reciprocal diagrams. (a) A smooth Airy stress function 𝑓 (𝑥, 𝑦) of a triangular plate stressed at the corners and its reciprocal diagram 𝜙(𝜉, 𝜂). The principal stress trajectories
are shown as white curves on 𝑓 (𝑥, 𝑦), while the corresponding trajectories are the black curves on 𝜙(𝜉, 𝜂). (b) The discrete counterparts of the 𝑓 (𝑥, 𝑦) and 𝜙(𝜉, 𝜂). The stress
trajectories are discretized into borders between quadrilateral patches. (c) A smooth Maxwell–Rankine stress function 𝐹 (𝑥, 𝑦, 𝑧) of a tetrahedral solid stressed at the corners and its

reciprocal diagram 𝛷(𝜉, 𝜂, 𝜁 ). (d) The discrete counterparts of the 𝐹 (𝑥, 𝑦, 𝑧) and 𝛷(𝜉, 𝜂, 𝜁 ).
Although it had been suggested that the discretized Airy stress
function and Maxwell–Rankine stress function are not limited to funic-
ular structures (Williams and McRobie, 2016; McRobie and Williams,
2

2017), in this paper, we are limiting investigation to funicular frames,

which can be much more material-efficient and thus preferable when

designing slender structures.
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.1. Contributions and outline

The main objective of this research is to convert a membrane
hell into its Rankine reciprocal diagrams and identify what type of
embrane shell can be discretized into a simple Rankine gridshell. With

hese targets in mind, the investigation has made some contributions:

• revisiting the interconnected relations among smooth stress func-
tions, reciprocal diagrams, and graphic statics (Section 2),

• translating general solutions of Pucher’s equation into smooth
Maxwell–Rankine stress functions (Section 3.1),

• discretizing the smooth Maxwell–Rankine stress functions into
triangular or quadrilateral prismatic polytopes (Section 3.2),

• identifying that self-Airy membrane shells (see Millar et al., 2021a)
are the smooth counterparts of simple Rankine gridshells (see McRo-
bie et al., 2021) (Section 4.1), and

• discretizing free-edge self-Airy membranes shells into co-apex
pyramidal Rankine diagrams (Section 4.3).

inally, Section 5 concludes this paper.

. Graphic statics with reciprocal diagrams and stress functions

The theory of graphic statics intertwines with those of stress func-
ions and reciprocal diagrams. The development of these theories
lso tangled (Fig. 2). The development of 2D graphic statics can
e traced back to Varignon (1725), then Maxwell (1864), Culmann
1866), and Cremona (1875) carried on the investigation. Instead of
sing a closed polygon to express the equilibrium of a node in a
D structure, Rankine (1864) proposed a method of using a closed
olyhedron to express the equilibrium of a node in a 3D structure. In
he same year, Airy (1863) proposed his seminal theory on extracting
n auto-equilibrium stress tensor field from a single scalar function,
hich is called the Airy stress function in present days. More im-
ortantly, Maxwell (1868) extended the notions of discrete reciprocal
iagrams to smooth scalar functions and identified that the reciprocal
iagram of a smooth 2D function would yield the same mechanical
nterpretation as of the Airy stress functions. Eventually, Maxwell
1870) unified all related theories and pointed out that when a smooth
iry stress function is discretized into a polyhedral one, the reciprocal
esult is identical to its Maxwell reciprocal diagram; when a smooth
axwell–Rankine stress function is discretized into a polytopal one,

he reciprocal result is identical to its Rankine reciprocal diagram.
Historically, the discrete reciprocal diagrams were proposed earlier

han the stress functions and smooth reciprocal diagrams. However,
e can discuss the notions backward, since the definitions of stress

unctions and smooth reciprocal diagrams are more general than the
iscrete counterparts.

.1. Smooth reciprocal diagrams

Maxwell (1868, 1870) stated the existence of a mutual mapping
3

etween two smooth reciprocal multivariable functions. Let the two
unctions be 𝐹 (𝑥, 𝑦, 𝑧) and 𝛷(𝜉, 𝜂, 𝜁 ), and the mapping is provided by

𝜉 = 𝜕𝑥𝐹 , 𝜂 = 𝜕𝑦𝐹 , 𝜁 = 𝜕𝑧𝐹 , 𝛷 = 𝑥 𝜕𝑥𝐹 + 𝑦 𝜕𝑦𝐹 + 𝑧 𝜕𝑧𝐹 − 𝐹 , (1a)

= 𝜕𝜉𝛷, 𝑦 = 𝜕𝜂𝛷, 𝑧 = 𝜕𝜁𝛷, 𝐹 = 𝜉 𝜕𝜉𝛷 + 𝜂 𝜕𝜂𝛷 + 𝜁 𝜕𝜁𝛷 −𝛷, (1b)

n which 𝜕𝑥 = 𝜕∕𝜕𝑥 is Euler’s notation for the derivatives. When the
unctions are continuously differentiable, a point on 𝐹 (𝑥, 𝑦, 𝑧) maps to
point on 𝛷(𝜉, 𝜂, 𝜁 ) and vice versa. Maxwell suggested an interesting
echanical feature of the reciprocal diagrams. When a surface element

n the (𝑥, 𝑦, 𝑧) domain (e.g. area 𝑐 in Fig. 1c) has the same resultant force
s a uniform normal stress 𝑃0 acting on the corresponding element in
he (𝜉, 𝜂, 𝜁 ) domain (e.g. area 𝛾 in Fig. 1c), such a stress tensor field will
utomatically satisfy the equilibrium conditions
∑

𝑖
𝜕𝑖𝜎𝑖𝑗 = 0, (2)

n which 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}. The stress tensor field in (𝑥, 𝑦, 𝑧) can be
xpressed as

𝑥𝑥 = 𝑃0 [𝜕𝑦𝑦𝐹 ⋅ 𝜕𝑧𝑧𝐹 − (𝜕𝑦𝑧𝐹 )2], (3a)

𝜎𝑦𝑦 = 𝑃0 [𝜕𝑧𝑧𝐹 ⋅ 𝜕𝑥𝑥𝐹 − (𝜕𝑧𝑥𝐹 )2], (3b)

𝜎𝑧𝑧 = 𝑃0 [𝜕𝑥𝑥𝐹 ⋅ 𝜕𝑦𝑦𝐹 − (𝜕𝑥𝑦𝐹 )2], (3c)

𝜎𝑥𝑦 = 𝑃0 [𝜕𝑦𝑧𝐹 ⋅ 𝜕𝑧𝑥𝐹 − 𝜕𝑧𝑧𝐹 ⋅ 𝜕𝑥𝑦𝐹 ], (3d)

𝜎𝑥𝑧 = 𝑃0 [𝜕𝑥𝑦𝐹 ⋅ 𝜕𝑦𝑧𝐹 − 𝜕𝑦𝑦𝐹 ⋅ 𝜕𝑧𝑥𝐹 ], (3e)

𝜎𝑦𝑧 = 𝑃0 [𝜕𝑧𝑥𝐹 ⋅ 𝜕𝑥𝑦𝐹 − 𝜕𝑥𝑥𝐹 ⋅ 𝜕𝑦𝑧𝐹 ]. (3f)

The stress function 𝐹 (𝑥, 𝑦, 𝑧) is called the Maxwell–Rankine stress func-
tion (McRobie and Williams, 2017).

In a two dimensional case, the reciprocal relations between the
functions 𝑓 (𝑥, 𝑦) and 𝜙(𝜉, 𝜂) turn into

𝜉 = 𝜕𝑥𝑓, 𝜂 = 𝜕𝑦𝑓, 𝜙 = 𝑥 𝜕𝑥𝑓 + 𝑦 𝜕𝑦𝑓 − 𝑓, (4a)

𝑥 = 𝜕𝜉𝜙, 𝑦 = 𝜕𝜂𝜙, 𝑓 = 𝜉 𝜕𝜉𝜙 + 𝜂 𝜕𝜂𝜙 − 𝜙. (4b)

Similarly, when an element of a line segment in the (𝑥, 𝑦) domain (e.g.
segmen 𝑎 in Fig. 1a) has the same resultant force as a uniform normal
stress 𝑝0 acting on the corresponding element of the line segment in the
(𝜉, 𝜂) domain (e.g. segment 𝛼 in Fig. 1a), such a stress tensor field will
also automatically satisfy equilibrium conditions (2) when 𝑖, 𝑗 ∈ {𝑥, 𝑦}.
The 2D stress tensor field in (𝑥, 𝑦) can be expressed as

𝜎𝑥𝑥 = 𝑝0 𝜕𝑦𝑦𝑓, (5a)

𝜎𝑦𝑦 = 𝑝0 𝜕𝑥𝑥𝑓, (5b)

𝜎𝑥𝑦 =−𝑝0 𝜕𝑥𝑦𝑓, (5c)

The stress function 𝑓 (𝑥, 𝑦) is generally called the Airy stress function.
To be noted, in this paper, we use capital 𝐹 and 𝛷 for the reciprocal

diagrams of 3D Maxwell–Rankine stress functions and use lowercase 𝑓

and 𝜙 for the reciprocal diagrams of 2D Airy stress functions.
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Fig. 3. Graphs of a polyhedral Airy stress function 𝑓 (𝑥, 𝑦) and its Maxwell reciprocal diagram 𝜙(𝜉, 𝜂).
2.2. Discrete reciprocal diagrams

When the stress functions are discretized, they are not continuously
differentiable anymore. A discretized Airy stress function consists of a
series of polygonal patches, in any of which the gradients 𝜕𝑥𝑓 and 𝜕𝑦𝑓
are constants. One may graph such a 2D discretized stress function in
a (2 + 1)D space as a polyhedral surface {𝑥, 𝑦, 𝑓 (𝑥, 𝑦)}. All points on a
planar facet of such a polyhedral surface correspond to a single point on
the reciprocal surface {𝜉, 𝜂, 𝜙(𝜉, 𝜂)}. Meanwhile, a summit surrounded
by 𝑛 facets corresponds to the polygon formed by the 𝑛 corresponding
points (Fig. 3).

Regarding the 3D discretized Maxwell–Rankine stress function, all
the geometry elements receive one more dimension. A discretized
Maxwell–Rankine stress function consists of a series of polyhedral
patches, in any of which the gradients 𝜕𝑥𝐹 , 𝜕𝑦𝐹 , and 𝜕𝑧𝐹 are constants.
Should someone graph the 3D discretized stress function, the result is
in a (3+1)D space as a polytopal hyper-surface {𝑥, 𝑦, 𝑧, 𝐹 (𝑥, 𝑦, 𝑧)}. All
points in a polyhedral cell of such a polytopal hyper-surface correspond
to a single point on the reciprocal hyper-surface {𝜉, 𝜂, 𝜁 , 𝛷(𝜉, 𝜂, 𝜁 )}.
Meanwhile, a summit surrounded by 𝑛 polyhedral cells corresponds to
the polyhedron formed by the 𝑛 corresponding points.

It would be quite challenging to visualize such polytopal hyper-
surfaces, but visualizing the projections of the borders would be much
easier. As we can project the borders between polygonal patches of
the polyhedral Airy stress function 𝑓 (𝑥, 𝑦) onto a 2D plane (Fig. 1b),
we can project the border between polyhedral patches of the polytopal
Maxwell–Rankine stress function 𝐹 (𝑥, 𝑦, 𝑧) into a 3D space (Fig. 1d).
When a smooth stress function is discretized along the trajectories of
principal stresses, the result can be a quadrilateral mesh (Fig. 1b) or a
hexahedral mesh (Fig. 1d).

This section has revisited the smooth and discrete reciprocal dia-
grams. The notions from (2 + 1)D polyhedral Airy stress functions are
extended to (3 + 1)D polytopal Maxwell–Rankine stress functions. In
the following sections, the discussion will focus on smooth and discrete
Maxwell–Rankine stress functions and their diagrams.

3. Pucher’s equation and Maxwell–Rankine stress function for
general membrane shells

Pucher’s equation governs the 3D equilibrium of membrane shells,
which might arguably be the most simple yet expressive 3D structures.
However, to the best of the author’s knowledge, there is no direct
way to convert a solution of Pucher’s equation into a Maxwell–Rankine
stress function. This section is going to provide such a conversion and
further discretize the stress functions into polytopal ones.

3.1. Smooth Maxwell–Rankine stress functions of membrane shells

Pucher’s equation relates the 2D stress resultant (represented by the
Airy stress function), the shape function, and the external loads. In
the absences of horizontal loads, the governing differential equation
– Pucher’s equation – is expressed as (Timoshenko and Woinowsky-
Krieger, 1959, p. 461)

𝜕 𝑓 ⋅ 𝜕 𝑠 − 2𝜕 𝑓 ⋅ 𝜕 𝑠 + 𝜕 𝑓 ⋅ 𝜕 𝑠 = −𝑝 , (6)
4

𝑦𝑦 𝑥𝑥 𝑥𝑦 𝑥𝑦 𝑥𝑥 𝑦𝑦 𝑧
where 𝑓 (𝑥, 𝑦) is the Airy stress function for the horizontal stress resul-
tants, 𝑠(𝑥, 𝑦) is the shape of the shell, and 𝑝𝑧 is the vertical load (per unit
horizontal area). This single scalar equation can adequately express the
equilibrium in all 𝑥-, 𝑦-, and 𝑧-directions.

For a pair of the Airy stress function 𝑓 (𝑥, 𝑦) and shape function
𝑠(𝑥, 𝑦), the corresponding Maxwell–Rankine stress function 𝐹 (𝑥, 𝑦, 𝑧)
can be expressed as

𝐹 (𝑥, 𝑦, 𝑧) = 𝛼𝑓 (𝑥, 𝑦) +

{

−𝛽
[

𝑠(𝑥, 𝑦) − 𝑧
]

, 𝑧 > 𝑠(𝑥, 𝑦),

𝛽
[

𝑠(𝑥, 𝑦) − 𝑧
]

, 𝑧 ≤ 𝑠(𝑥, 𝑦),
(7)

where 𝛼 and 𝛽 are constants. According to Eq. (3), at places above or
below the membrane shell (𝑧 ≠ 𝑠(𝑥, 𝑦)), one can easily derive that stress
function 𝐹 (𝑥, 𝑦, 𝑧) in (7) yields five zero stress components: 𝜎𝑥𝑥 = 𝜎𝑦𝑦 =
𝜎𝑥𝑦 = 𝜎𝑦𝑧 = 𝜎𝑦𝑧 = 0. The only non-zero stress component, 𝜎𝑧𝑧, takes
forms of

𝜎𝑧𝑧
𝑃0

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛼2𝜕𝑥𝑥𝑓 ⋅ 𝜕𝑦𝑦𝑓 − 𝛼𝛽(𝜕𝑥𝑥𝑓 ⋅ 𝜕𝑦𝑦𝑠 + 𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑓 )

+𝛽2𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑠 − 𝛼2(𝜕𝑥𝑦𝑓 )2

+2𝛼𝛽𝜕𝑥𝑦𝑓 ⋅ 𝜕𝑥𝑦𝑠 − 𝛽2(𝜕𝑥𝑦𝑠)2, 𝑧 > 𝑠(𝑥, 𝑦),

𝛼2𝜕𝑥𝑥𝑓 ⋅ 𝜕𝑦𝑦𝑓 + 𝛼𝛽(𝜕𝑥𝑥𝑓 ⋅ 𝜕𝑦𝑦𝑠 + 𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑓 )

+𝛽2𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑠 − 𝛼2(𝜕𝑥𝑦𝑓 )2

−2𝛼𝛽𝜕𝑥𝑦𝑓 ⋅ 𝜕𝑥𝑦𝑠 − 𝛽2(𝜕𝑥𝑦𝑠)2, 𝑧 < 𝑠(𝑥, 𝑦).

(8)

The difference in the vertical stress 𝜎𝑧𝑧 above and below the surface
𝑧 = 𝑠(𝑥, 𝑦) yields

𝜎𝑧𝑧
|

|

|𝑧>𝑠(𝑥,𝑦)
− 𝜎𝑧𝑧

|

|

|𝑧<𝑠(𝑥,𝑦)
= −2𝛼𝛽𝑃0(𝜕𝑥𝑥𝑓 ⋅ 𝜕𝑦𝑦𝑠 + 𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑓 )

+ 4𝛼𝛽𝑃0𝜕𝑥𝑦𝑓 ⋅ 𝜕𝑥𝑦𝑠, (9)

= 2𝛼𝛽𝑃0𝑝𝑧, (10)

in which the right-hand side of Eq. (9) has the same terms as the left-
hand side of Pucher’s equation (6), therefore we can arrive at Eq. (10).
Once 𝛼𝛽𝑃0 = 1∕2, the expression (7) can sufficiently convert a solution
of Pucher’s equation into a Maxwell–Rankine stress function.

3.2. Polytopal Maxwell–Rankine stress functions of gridshells

Since the 1980s, scholars have discretized the shape functions and
the Airy stress functions of membrane shells into triangular meshes
(Hedgűs, 1984). The triangular polyhedral Airy stress functions are
flexible to approximate arbitrary 2D stress field or the horizontal stress
resultant field of shells, and thus they are often used in computational
applications (Fraternali et al., 2002; Vouga et al., 2012; Pellis and
Pottmann, 2018).

Instead of discretizing Airy stress functions into polygonal patches,
this paper discretized the Maxwell–Rankine stress functions (7) of mem-
brane shells into prismatic cells. The corresponding Rankine reciprocal
diagrams will consist of frustums (Figs. 4 and 5).

3.2.1. Triangular discretization
To discretize the stress function (7) into triangular prismatic cells is

rather straightforward.
One can start from a 2D triangular mesh, which has 𝑛 faces 𝑓𝑖,

𝑖 ∈ {1, … , 𝑛}, formed by vertices (𝑥𝑖 , 𝑦𝑖 ), 𝑗 ∈ {1, 2, 3}. Subsequently,
𝑗 𝑗
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Fig. 4. A triangular gridshell (a) and its Rankine diagrams (b). The vertical loads
(yellow lines) and the compression forces (blue lines) of the grids shells correspond to
parallel faces (yellow) and lateral faces (blue) of the prismatoids. Prismatic cells above
and below the triangle 𝐱𝑖1𝐱

𝑖
2𝐱

𝑖
3 correspond to vertices 𝝃𝑖+ and 𝝃𝑖−.

one can project the triangular faces onto the surface 𝑠(𝑥, 𝑦) and beyond.
Each resulting triangular prism should have 3 edges intersecting the
surface at 3 points 𝐱𝑖𝑗 = (𝑥𝑖𝑗 , 𝑦

𝑖
𝑗 , 𝑠

𝑖
𝑗 ), in which 𝑠𝑖𝑗 = 𝑠(𝑥𝑖𝑗 , 𝑦

𝑖
𝑗 ). The points

can further define a triangle 𝑓 ′
𝑖 that cuts the prism into two segments:

one above the triangle and the other one below. Let triangle 𝑓 ′
𝑖 seal

the bottom of the upper prismatic segment and cap the lower prismatic
segment (Fig. 4).

So far, the borders between the cells are defined. The remaining task
is to evaluate the three gradients 𝜉, 𝜂, 𝜁 ; and one value 𝛷 for each cell.
Then, we can complete the Rankine reciprocal diagrams.

We can start the evaluation from the upper cells, where the gradient
𝜁 = 𝜕𝑧𝐹 is constantly equal to +𝛽 according to Eq. (7). The 𝑖th upper
cell has three vertices on the surface 𝑠(𝑥, 𝑦). The values 𝐹 𝑖

𝑗 of the stress
function at these vertices shall be provided by

𝐹 𝑖
𝑗 = 𝐹 (𝑥𝑖𝑗 , 𝑦

𝑖
𝑗 , 𝑠

𝑖
𝑗 ) = 𝛼𝑓 𝑖

𝑗 = 𝛼𝑓 (𝑥𝑖𝑗 , 𝑦
𝑖
𝑗 ). (11)

These values can sufficiently determine the two remaining gradients
𝜉𝑖+, 𝜂𝑖+; and one value 𝛷𝑖+ in the cell:

⎡

⎢

⎢

⎢

⎢

⎣

𝜉𝑖+

𝜂𝑖+

𝛷𝑖+

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑖1 𝑦𝑖1 −1

𝑥𝑖2 𝑦𝑖2 −1

𝑥𝑖3 𝑦𝑖3 −1

⎤

⎥

⎥

⎥

⎥

⎦

−1
⎛

⎜

⎜

⎜

⎜

⎝

𝛼

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 𝑖
1

𝑓 𝑖
2

𝑓 𝑖
3

⎤

⎥

⎥

⎥

⎥

⎦

− 𝛽

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑖1
𝑠𝑖2
𝑠𝑖3

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (12)

Similarly, for the lower cells, we have 𝜁 𝑖− = −𝛽 and

⎡

⎢

⎢

⎢

⎢

⎣

𝜉𝑖−

𝜂𝑖−

𝛷𝑖−

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑥𝑖1 𝑦𝑖1 −1

𝑥𝑖2 𝑦𝑖2 −1

𝑥𝑖3 𝑦𝑖3 −1

⎤

⎥

⎥

⎥

⎥

⎦

−1
⎛

⎜

⎜

⎜

⎜

⎝

𝛼

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 𝑖
1

𝑓 𝑖
2

𝑓 𝑖
3

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝛽

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝑖1
𝑠𝑖2
𝑠𝑖3

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (13)

Thus, the polytopal Maxwell–Rankine stress function defined by ver-
tices (𝑥𝑖𝑗 , 𝑦

𝑖
𝑗 , 𝑠

𝑖
𝑗 , 𝐹

𝑖
𝑗 ) is corresponding to another polytopal hyper-surface

defined by vertices 𝝃𝑖+ = (𝜉𝑖+, 𝜂𝑖+,+𝛽,𝛷𝑖+) and 𝝃𝑖− = (𝜉𝑖−, 𝜂𝑖−,−𝛽,𝛷𝑖−).
Fig. 4 shows a simple example of a triangular gridshell. For a more

realistic structure, the numerical method of radial basis functions (Chi-
ang and Borgart, 2022) is used to generate a pair of smooth Airy stress
function 𝑓 (𝑥, 𝑦) and shape function 𝑠(𝑥, 𝑦) subjected to a uniform unit
vertical load 𝑝𝑧 = −1. The result of discretization is displayed in Fig. 7a.
Since these examples are compression-dominated shells, the coefficients
are set as 𝛼 = −1, 𝛽 = 1∕2, and 𝑃0 = −1.

3.2.2. Quadrilateral discretization
Discretizing a smooth Maxwell–Rankine stress function (7) into non-

triangular prismatic cells is not so trivial. Adding one more vertex into
Eq. (12) or (13), we will have an overdetermined system. However, we
can treat the fourth vertex as unknown and list conditions to locate it.

For a pair of quadrilateral prismatic cells, let us assume that the
first three vertices (𝑥𝑗 , 𝑦𝑗 , 𝑠𝑗 , 𝐹𝑗 ) of the middle quadrilateral are known.
Then, we can derive the parameters 𝜉+, 𝜂+, 𝛷+, 𝜉−, 𝜂−, and 𝛷− of
5

the upper and lower cells by Eqs. (12) and (13). The fourth vertex
Fig. 5. A non-triangular gridshell (a) and its Rankine diagrams (b). The vertical loads
(yellow lines) and the compression forces (blue lines) of the grids shells correspond to
parallel faces (yellow) and lateral faces (blue) of the prismatoids. Prismatic cells above
and bellow the hexagon 𝐱𝑖1𝐱

𝑖
2 … 𝐱𝑖6 correspond to vertices 𝝃𝑖+ and 𝝃𝑖−, which connect 6

edges in the horizontal planes.

Fig. 6. Rankine diagrams of self-Airy gridshells. (a) 𝑠 = 𝑥2 + 𝑦2. (b) 𝑠 = 2𝑥𝑦. (The lines
of vertical loads and the walls between prismatic cells are omitted for visual clarity).

(𝑥4, 𝑦4, 𝑧4, 𝐹4) shall be located at the intersection of four hyper-surfaces:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹4 = 𝜉+𝑥4 + 𝜂+𝑦4 + 𝛽𝑧4 −𝛷+,

𝐹4 = 𝜉−𝑥4 + 𝜂−𝑦4 − 𝛽𝑧4 −𝛷−,

𝐹4 = 𝐹 (𝑥4, 𝑦4, 𝑧4),

𝑧4 = 𝑠(𝑥4, 𝑦4).

(14)

By Eq. (14), we can locate the fourth vertex when the other three
vertices are given. In regions that all vertices have the same valence 6
(1 to 𝑧 = ∞, 1 to 𝑧 = −∞, and the other 4 to neighborhood vertices)
and all prismatic cells are quadrilateral, we can derive quadrilateral
prismatic cells with 𝑚-by-𝑛 4D vertices when (𝑚 + 𝑛 − 1) 2D vertices
are provided. A strategy of arranging the starting vertices based on
conjugate curve networks (Liu et al., 2006) for a given membrane shell
is briefly discussed in Appendix. This discretization method can also
be used to re-mesh the results from other mesh-based numerical solu-
tions (Block and Ochsendorf, 2007; Vouga et al., 2012; de Goes et al.,
2013; Pellis and Pottmann, 2018).

Occasionally, the discretization requires some singular vertices
(valance other than 6) or singular prismatic cells (non-quadrilateral
prisms). For further discussion on the singularity, readers are referred
to Zadravec et al. (2010) and Li et al. (2012), or (Douthe et al., 2017).

Fig. 7b shows a discrete stress function of a quadrilateral gridshell.
The closeups of the singular hexagonal prismatic cells are shown in
Fig. 5.
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Fig. 7. Planar funicular gridshells and their Rankine diagrams. (a) A triangular gridshell. (b). A quadrilateral gridshell. Although discretized into different patterns, both (a) and
(b) are based on a common membrane shell. (c) A self-Airy gridshell, which has distinctly curved free edges tangent to planes. (Vertical lines to 𝑧 = ±∞ are excluded for visual
clarity).
4. Self-Airy shells

This section further investigates what type of membrane shell can
be discretized into a simple Rankine gridshell (McRobie et al., 2021),
which has a Rankine diagram consisting of co-apex pyramids. Some
non-trivial analytical instances are provided (Section 4.2), which are
later discretized into quadrilateral Rankine diagrams (Section 4.3).

4.1. Simple Rankine gridshells and self-Airy shells

A shell’s Maxwell–Rankine stress function (7) has upper and lower
parts that read 𝐹 = 𝛼𝑓 ∓ 𝛽𝑠 ± 𝛽𝑧. If 𝛼𝑓 = ±𝛽𝑠, which means the
Airy stress function 𝑓 (𝑥, 𝑦) is linearly proportional to the shape function
𝑠(𝑥, 𝑦), the stress function can be greatly simplified. Let 𝑓 (𝑥, 𝑦) =
2𝛿𝛾2𝑠(𝑥, 𝑦), in which 𝛿 = ±1 and 𝛾 ≥ 0. When 𝛼 = −𝛿∕(2𝛾) and 𝛽 = 𝛾,
the Maxwell–Rankine stress function (7) turns into

𝐹 (𝑥, 𝑦, 𝑧) =

{

− 2𝛾𝑠(𝑥, 𝑦) + 𝛾𝑧, 𝑧 > 𝑠(𝑥, 𝑦),

− 𝛾𝑧, 𝑧 ≤ 𝑠(𝑥, 𝑦).
(15)

In this case, any point below 𝑧 = 𝑠(𝑥, 𝑦) corresponds to a common
point (0, 0,−𝛾) in the (𝜉, 𝜂, 𝜁 ) domain. This is the main feature of simple
Rankine gridshells. Thus, we can proclaim that the smooth counterparts
of simple Rankine gridshells shall be the membrane shells that have
Airy stress functions linearly proportional to their shapes. Furthermore,
6

we call these special instances self-Airy membrane shells, extending the
terminology self-Airy gridshells used by Millar et al. (2021b) on the
discrete version.

For self-Airy membrane shells that have 𝑓 (𝑥, 𝑦) = 2𝛿𝛾2𝑠(𝑥, 𝑦) (𝛿 = ±1
and 𝛾 ≥ 0), the Pucher’s equation (6) degenerates into

4𝛿𝛾2
[

𝜕𝑥𝑥𝑠 ⋅ 𝜕𝑦𝑦𝑠 − (𝜕𝑥𝑦𝑠)2
]

= −𝑝𝑧. (16)

When the load 𝑝𝑧 is constant, the solutions to this equation can be
as simple as paraboloids such as the elliptic one 𝑠 = 𝑥2 + 𝑦2 and the
hyperbolic one 𝑠 = 2𝑥𝑦. These simple solutions can be easily discretized
into quadrilateral gridshells (Fig. 6).

For a more interesting example, the numerical method of radial
basis functions (Chiang and Borgart, 2022; Chiang, 2022) is used again.
Fig. 7c shows a discretized result, which is a points-supported shell
with free edges. At the free edges, the self-Airy membrane shell has
to comply with all conventional free edge conditions imposing on the
Airy stress function:

𝜕𝑛𝑛𝑠 = 0, 𝜕𝑛𝑡𝑠 = 0, (17)

where 𝑛 and 𝑡 denote the normal and tangential directions at the
free edges. These two conditions require free edges have tangent
planes (Csonka, 1987; Miki et al., 2015). Having two boundary con-
ditions around all the edges and a second-order governing equation,
finding the form of a point-supported self-Airy membrane has to be
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Fig. 8. The general solution of the 𝑏 − 𝑦0 curve.

ormulated as a free boundary problem (Chiang, 2022). The shapes of
he curved free-edges are not designed but are part of the solution of
he free boundary problem.

.2. Analytical self-Airy shells with free edges

Chiang (2022) provided a set of analytical solutions of self-Airy
embrane shells that have free edges. Here, we briefly revisit the

nalytical solutions. The solutions have a standard cross-section 𝑠0 =
(𝑦0) sweeping along the 𝑥-axis and gradually scaled by function 𝑎(𝑥),
hich means

(𝑥, 𝑦) = 𝑎(𝑥) ⋅ 𝑏(𝑦0), (18)

here 𝑦0 = 𝑦∕𝑎(𝑥). Subsequently, one can derive the second derivatives
s

𝑥𝑥𝑠 = 𝑎′′𝑏 − 𝑎′′𝑦0𝑏
′ + 𝑎′2

𝑎
𝑦0

2𝑏′′,

𝜕𝑦𝑦𝑠 =
1
𝑎
𝑏′′,

𝜕𝑥𝑦𝑠 = −𝑎′

𝑎
𝑦0𝑏

′′.

These expressions turn Eq. (16) into
𝑎′′

𝑎
𝑏′′(𝑏 − 𝑦0𝑏

′) =
−𝑝𝑧
4𝛿𝛾2

. (19)

Since 𝑝𝑧 shall be a non-zero constant, the equation can be satisfied
whenever both 𝑎′′∕𝑎 and 𝑏′′(𝑏 − 𝑦0𝑏′) are non-zero constants. The
solutions of 𝑎(𝑥) and 𝑏(𝑥) can be expressed as

𝑎(𝑥) = 𝑒𝜆𝑥, cosh(𝜆𝑥), or cos(𝜆𝑥), (20)

𝑏(𝑦0) = 𝐶0

⎡

⎢

⎢

⎣

√

1 −
(

𝑦0
𝜔
𝐶0

)2
+ 𝑦0

𝜔
𝐶0

arcsin
(

𝑦0
𝜔
𝐶0

)

⎤

⎥

⎥

⎦

+ 𝐶1𝑦0, (21)

where 𝜔2 = |

|

𝑏′′(𝑏 − 𝑦0𝑏′)|| is a constant related to overall curvature
and 𝐶0 = 𝑏(0) and 𝐶1 = 𝑏′(0) are constants of integration. Then, these
𝑎(𝑥) and 𝑏(𝑦0) make Eq. (19) become 𝜆2𝜔2 = −𝑝𝑧∕(4𝛿𝛾2). The general
solution of 𝑏(𝑦0) is plotted in Fig. 8.

4.3. Polytopal Maxwell–Rankine stress functions of self-Airy gridshells

We can further convert the aforementioned solutions into smooth
Maxwell–Rankine stress functions through Eq. (15), and discretize the
results into polytopal ones. Quadrilateral discretization is preferable
since its Rankine diagram is more legible than one from triangular
discretization (Fig. 7a & b).

For a general shell, we can use Eqs. (14) to locate the fourth
vertex of a quadrilateral prismatic cell when the other 3 vertices are
7

provided. For a self-Airy shell, however, Eqs. (14) cannot determine a
unique fourth vertex. Since self-Airy shells have the Airy stress function
linearly proportional to the shape functions, the last two equations in
(14) become linearly dependent.

This paper uses isotropic-circular mesh (Pottmann and Liu, 2007)
instead. As a result, each prismatic cell has vertices on the lateral
surface of a vertical cylinder. This condition provides a means to
uniquely determine the fourth vertex of a prismatic cell. Furthermore,
the resulting edges will form the isotropic-principal-curvature lines of
the surface 𝑧 = 𝑠(𝑥, 𝑦). For the definition and detailed features of
sotropic-circular mesh, readers are referred to the paper by Pottmann
nd Liu (2007).

To locate the fourth vertex of a quadrilateral prismatic cell for such
n isotropic-circular mesh, one shall find a replacement of either the
hird or the fourth equation in (14). Let (𝑥𝑐 , 𝑦𝑐 ) and 𝑟 denote the center
xis and radius of the circumscribed vertical cylinder determined by
he first there vertices (𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {1, 2, 3}. Subsequently, one can revise
he third equation in (14), and locate the fourth vertex (𝑥4, 𝑦4, 𝑧4, 𝐹4) at
he intersection of four hyper-surfaces:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹4 = 𝜉+𝑥4 + 𝜂+𝑦4 + 𝛾𝑧4 −𝛷+,

𝐹4 = −𝛾𝑧4,

𝑟2 = (𝑥4 − 𝑥𝑐 )2 + (𝑦4 − 𝑦𝑐 )2,

𝑧4 = 𝑠(𝑥4, 𝑦4).

(22)

he second equation in (22) is also simplified due to the expression
15).

Eqs. (22) can help us to discretize the smooth stress functions into
uadrilateral prismatic cells and corresponding Rankine diagrams. The
esults are illustrated in Figs. 7c and 9.

. Conclusions

This paper has presented a method to convert solutions of mem-
rane shells to Maxwell–Rankine stress functions and further discretize
hem into Rankine diagrams, which are powerful means to graphically
how how forces flow in 3D space. This method has been tested to
iscretize smooth numerical solutions from the method of radial basis
unctions and can potentially be applied to re-mesh dense triangular
hrust networks into planar-quadrilateral funicular gridshells.

Self-Airy membrane shells are identified to be the special cases that
llow co-apex pyramidal Rankine diagrams. A family of analytical self-
iry membranes with free edges is also provided and discretized into
ankine diagrams.

Further valuable investigations on Rankine diagrams of shells would
onsider horizontal loads and bending resistances of the shell. Re-
arding the self-Airy membrane shells, their free edge conditions and
umerical form-finding methods also deserve more detailed discussion
nd investigation.
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Fig. 9. Discretized analytical self-Airy shells and their Rankine diagrams. All self-Airy shells are drawn with the same 𝑏 − 𝑦0 curve when 𝑏(0) = 1 and 𝑏′(0) = 0. The 𝑎(𝑥) curves
are −exp(𝑥), −cosh(𝑥), and cos(𝑥) in panels (a), (b), and (c) respectively.
Appendix. Conjugate curve networks

To discretize a smooth two-variable scalar function 𝑧 = 𝑔(𝑥, 𝑦) into
a group of 𝐶0 continuous planar quadrilateral patches, one can make
use of conjugate curve networks (Liu et al., 2006; Zadravec et al.,
2010; Millar et al., 2021a), which consist of two families of curves
that have unit projected tangent vectors 𝐭1 = [ cos 𝜃1 sin 𝜃1 ]T and 𝐭2 =
[ cos 𝜃2 sin 𝜃2 ]T satisfy

𝐭T1𝐇𝑔𝐭2 = 0,

where 𝐇𝑔 denotes the Hessian matrix of function 𝑔(𝑥, 𝑦). Such a conju-
gate curve network can guide the arrangement of quadrilateral patches.
8

For the task of discretizing stress function (7) into quadrilateral pris-
matic cells, the projected vectors 𝐭1 and 𝐭2 shall satisfy two conditions:
{

𝐭T1𝐇𝛼𝑓−𝛽𝑠𝐭2 = 0,

𝐭T1𝐇𝛼𝑓+𝛽𝑠𝐭2 = 0.

These two conditions can uniquely determine the set of vectors 𝐭1 and
𝐭2. The solution exists when there is a non-hyperbolic linear combina-
tion of 𝐇𝑓 and 𝐇𝑠:

det[𝑎𝐇𝑓 + (1 − 𝑎)𝐇𝑠] ≥ 0, 𝑎 ∈ R.

Therefore, when the membrane shell is in pure tension or pure compres-
sion (𝑑𝑒𝑡(𝐇 ) > 0), the solution of 𝐭 , 𝐭 exists everywhere. The vector
𝑓 1 2
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fields 𝐭1(𝑥, 𝑦) and 𝐭2(𝑥, 𝑦) can provide the basic guide for the polytopal
iscretization.
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