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Abstract

Money laundering is the process of hiding the origin of funds obtained through illicit activi-
ties. It is a major problem that has significant impacts on the global financial system and
undermines the integrity of financial institutions. To combat this, the Dutch government
planning to make it easier for banks to share data to improve the detection of money laun-
dering. However, this approach raises concerns about privacy, as it would allow banks
to share sensitive financial information with other banks and institutions. A way to allow
banks to still detect money laundering using other banks’ data, but without having to share
the data would be through the use of multi-party computation. In this work we propose a
privacy preserving distributed cycle detection protocol which is meant to find short cycles
in financial transactions to help detect money laundering without compromising the pri-
vacy of the customers at the bank. Finally, we show that our protocol is significantly faster
at detecting short cycles in large financial graphs than current state-of-the-art multi-party
computation protocols.
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1
Introduction

Data collection has become increasingly prevalent in modern society, with organizations
and businesses gathering vast amounts of personal information from individuals and other
sources [3][20][2]. While data collection can providemany benefits, it also poses significant
privacy risks and can have serious real-world consequences when data is misused. From
oppressive regimes using data to control people’s behavior [28], to the Dutch government
using data to blacklist people from receiving their benefits [21]. The Dutch government is
now considering making it easier for banks to share their customer’s bank and transaction
information with the goal of improving the prevention and detection of money laundering
[29][30]. This banking information is some of the most sensitive information available, as
it can for example reveal someone’s religion or political views. While preventing money
laundering is essential, we should look towards solutions that minimize the impact it has on
the privacy of the general population[30]. In this thesis, we show that cycle detection, an
operation that banks would like to conduct on this data, can be done in a privacy-preserving
manner even on a large amount of data.

1.1. Money laundering
Money laundering is the process of hiding the origin of funds obtained through illicit activi-
ties [17]. The term is said to have its origins in the 1920s and 1930s when the mafia in the
United States used laundromats for their money laundering schemes [9]. To launder their
money they would report their income as coming from cash transactions that happened at
these laundromats, making their income seem legitimate.

Nowadays, money laundering schemes are often a lot more complex and can generally
be split into three stages: placement, layering, and integration [23]. Placement is the first
stage of the process, through which the money is moved to the legal financial system. After
this stage, the money seems to be acquired through legitimate business practices, e.g. the
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1.2. Anti-money laundering 2

laundromats that the mafia used. The second stage, layering, involves moving the funds
in order to create more distance from the original source and conceal the money trail. This
may involve transferring the money across multiple jurisdictions and countries with strict
bank secrecy laws to make it as difficult as possible for authorities to trace the funds. The
final stage, integration, involves returning the laundered money to its original source. This
stage is the least complex of the three, but also the most challenging to detect, as the
origins of the funds have been thoroughly obscured.

1.2. Anti-money laundering
To fight money laundering schemes, the European Union (EU) has put in place several
anti-money laundering regulations[14]. One important part of these regulations says that
banks must identify and verify a customer’s identity, this process is called a know-your-
customer (KYC) check. Banks are required by law to perform KYC checks on every new
customer, but each bank’s process for these checks is slightly different because the law
does not specify the exact way banks need to do their KYC process. Lawmakers have,
however, written recommendations that banks are generally expected to follow [4]. In
the Netherlands, the government expects banks to first get general information about the
customer, such as their full name, date of birth, etc. Then, using that information, banks
need to make a risk analysis on how likely the customer is to be involved in money laun-
dering activities. If the customer does not pass the risk analysis the bank can request
more information or proof before deciding whether to do business with the customer. This
risk assessment needs to be repeated periodically to ensure the customer still falls in its
original risk category.

Besides performing KYC checks, banks must also monitor all the transactions that they
process for unusual transactions and report those suspicious transactions to the financial
intelligence unit of the country in which the bank is operating. A financial intelligence unit
is a part of the government that each EU country must have, their goal is to determine
whether transactions are possibly linked to money laundering or terrorism financing[26].
Once a transaction gets reported to a financial intelligence unit they will conduct an inves-
tigation into whether the transaction is suspicious. Financial intelligence units can share
information about unusual financial activity with financial intelligence units from other coun-
tries and also have access to more information with regard to the people involved in the
transactions than a bank would have, such as what other bank accounts they hold. This
allows them to do more thorough investigations into the transactions than the banks are
able to do on their own. In the end, if the financial intelligence unit suspects a transaction
to play a part in money laundering or terrorism financing, they will report it to the police or
the secret services who can then start criminal proceedings. However, most transactions
never get reported to the financial intelligence unit. Out of the 5.7 billion transactions that
happened in the Netherlands in 2021 only 1 million were reported to the financial intelli-
gence unit [27][11]. Thus, most of the work monitoring, filtering, and assessing the risk of
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transactions happens at the banks.
To monitor the billions of transactions that the banks have to process and to detect un-
usual activity banks use so-called transaction monitoring systems. These systems detect
unusual activities by searching for unusual patterns in the transactions [34]. Examples of
patterns that transaction monitoring systems look for are shown in Figure 1.1. Generally,
a cycle with less than 7 transactions is a transaction pattern that does not occur much and
can be an indicator of fraud or money laundering [31]. A fan-in pattern is when an account
receives small amounts of money from many different accounts and a fan-out pattern is
when an account sends small amounts of money to many different accounts. These pat-
terns can occur when criminals try to hide large transactions as large transactions are more
likely to get reported to the financial intelligence unit. However, which patterns banks look
for differs per client, which is why it is important for banks to also understand who their
client is and what type of business they do. For certain businesses such as supermarkets,
it is for example common to pay out an employee who then spends their money again at
the same store. This would create a cycle but is obviously not suspicious. For each abnor-
mal transaction that a transaction monitoring system finds it generates a suspicious activity
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report. These suspicious activity reports are then manually checked by an employee of
the bank, making the detection of fraudulent transactions very costly.

To make the detection of fraudulent transactions easier, the Dutch government is likely
to pass the ”wet gegevensverwerking door samenwerkingsverbanden” (WGS), a law that
would allow banks to share the private data of their clients with each other [36]. This law
would allow banks to share data once they have a signal that some fraudulent activity is
going on. Banks could use this shared data to better determine the origins of a client’s
money and to detect more complex patterns and cases that would previously have been
impossible to detect. For example, a cyclical pattern where the money is transferred be-
tween multiple banks is impossible to detect without banks sharing data with each other.
To improve this further, the Dutch government is expected to propose the law ”plan van
aanpak witwassen” soon, this law would allow the centralized collection and monitoring of
transactions [30]. This would mean that all transactions by Dutch account holders would
be stored on one central database and all banks would be allowed to run algorithms on it
to detect money laundering.

1.3. Privacy
Both the WGS and the ”plan van aanpak witwassen” have raised privacy concerns [29].
The WGS would allow banks and government organizations to share very sensitive data
such as a person’s criminal record or information about a person’s family. Recently with
the Dutch childcare benefit scandal, it has been shown how using such sensitive data
for important algorithms can lead to algorithms that disproportionally target minorities[21].
Sharing all transaction information in one central database as the ”plan van aanpak wit-
wassen” would allow also adds the risk that if one bank suspects someone to be fraudulent
that all the other banks would also refuse to do business with that person [30]. Even for
people who are not part of a minority group and do not run the risk of being suspected of
being fraudulent by the banks, it is still a great breach of privacy. One’s transactions can
reveal exactly where they have been, and which political party or religion someone sup-
ports [30]. This opens up the possibility of mass surveillance through the use of people’s
transactions.
Privacy concerns with regard to anti-money laundering legislation are not new, back in
2013 the European data protection board gave an opinion on “the directive of the Euro-
pean Parliament and of the Council on the prevention of the use of the financial system
for the purpose of money laundering and terrorist financing” [15] in which the European
data protection board said that the directive did not address data protection issues and
asked for the introduction of safeguards [37]. Later in 2018, the General Data Protection
Regulation (GDPR) came into effect [1]. GDPR was meant to give individuals more control
over their own data, improve data protection and give everyone the right to erasure, mean-
ing that individuals have the right to have their personal data erased. Banks are however
largely exempt from GDPR since the data that banks collect falls under their legal obliga-
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tions. The right to erasure and the right to object, which would allow an individual to object
to the processing of their data, do usually not apply to banks [37][15]. Thus leaving room
for the individual member states of the European Union to give banks more room to share
their customers’ data, as the Netherlands is looking to do.

1.4. Secure data sharing
However, there are ways to allow banks to work together without having to naively share
their customers’ data with other banks and financial institutions. Instead of sharing the
data, it is possible to perform operations on data while keeping every bank’s data secret
through secure multi-party computation. A secure multi-party computation (MPC) is a com-
putation in which parties jointly compute a function while not revealing their own data and
inputs to each other. These computations can be accomplished using multiple different
techniques such as homomorphic encryption [33] and oblivious transfers[32]. A classic
example of a multi-party computation is Yao’s Millionaires problem introduced in 1982 by
Andrew Yao [40]. The problem describes a scenario of two millionaires who want to know
who is richer, but do not want to reveal how much money they have. More formalized the
problem is given a and b, determine whether a > b, without revealing a and b.
Banks could use similar schemes to collectively detect patterns in transactions without hav-
ing to outright share customer data. There are multiple multi-party computation protocols
that can find the shortest paths in a graph [8][10]. By modeling the customer accounts as
vertices and the transactions between them as edges, banks can create a graph that they
can use in such protocols. They can also use those protocols to for example find cycles.
Once a cycle has been detected and there is a possible suspicion of some sort of criminal
activity all the banks could collectively decide to reveal the accounts involved. Limiting the
amount of information that gets revealed to the other banks to only the accounts that are
suspicious instead of revealing data about all the accounts to find suspicious accounts.
However, a big problem with current multi-party computation schemes that could be used
to detect cycles is that they, to the best of our knowledge, all scale quadratically with the to-
tal number of vertices in a graph and have a high cost associated with updating the graph.
As the graph of all the bank accounts and all the transactions that are happening in the
world is very large, there are more than 5 billion bank accounts registered worldwide [12],
it is infeasible to use these protocols currently.

1.5. Research objective
This thesis focuses on detecting cycles in financial transactions and improving on the cur-
rent ways that this can be done using MPC. We chose to focus on cycle detection as that
is one of the patterns that are hard to detect for a single bank. As [31] states, a length
of 6 is a realistic length for cycles that are interesting for money laundering detection, we
focus on finding cycles with a length ≤ 6. To the best of our knowledge, no specialized
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protocol for this problem has been proposed in the literature so far. Our goal is to develop
a privacy-preserving protocol for finding short cycles that scales better than existing proto-
cols, which leads us to our research question:

“How can we efficiently find short cycles in financial transactions?”

The objective is to design a protocol that does not share any information between the
parties unless a cycle has been detected. This does not only include personal information
but also the topology of the transactions since this could be used to identify connections
and relations between accounts that are not part of the bank.

1.6. Our Contribution
In this thesis, we propose a privacy-preserving distributed protocol that detects cycles with
small lengths in transactions that are split between banks without revealing the topology of
those transactions. To the best of our knowledge, this is the first time a custom protocol for
privacy-preserving cycle detection has been proposed. Our protocol scales exponentially
with the length of the cycle that one wishes to detect, but we show that with realistic param-
eters for cycle detection in financial transactions our protocol scales and performs better
than other algorithms which scale quadratically. In our tests, we show that while the other
algorithms which can be used to detect cycles can only be executed if the total amount of
vertices in the graph is smaller than 20 thousand, our protocol can find whether a vertex
is part of one or multiple short cycles in graphs with 1 million vertices in 50 minutes in the
worst case with the median case only taking 10 minutes.

1.7. Outline
In Chapter 2, we go over some important concepts necessary to understand the protocols
mentioned in this thesis. In Chapter 3, we present the related work to our thesis. In Chapter
4, we describe our privacy-preserving distributed cycle detection protocol. In Chapter 5, we
go over our tests and results. And in Chapter 6, we provide our final discussion, possible
future work and closing remarks.



2
Preliminaries

In this chapter, we discuss the preliminaries for our thesis, such as one-time pads, Arith-
metic Black-Boxes and graph problems and algorithms.

2.1. One-time pad
A one-time pad is an encryption technique that requires a pre-shared key with a length
that is at least as large as the message that will be encrypted. It works by then performing
an xor operation on each bit of the message and each corresponding bit of the key, the
result is the ciphertext. The ciphertext can then later be decrypted by performing an xor
operation on each bit of the ciphertext and each corresponding bit of the key, which will
result in the plaintext.

The one-time pad operation is widely used in cryptography because it is perfectly se-
cure. Meaning that after applying a one-time pad to a message the resulting ciphertext
contains no information about the original message. Essentially making it impossible to
find out from the ciphertext what the original message was without knowing the key. To
encrypt a message using a one-time pad what one needs to do is convert the message
to bits and generate a secret key of at least the same amount of bits as the message.
Followed by applying the one-time pad operation to the message and the secret key. The
result is the ciphertext and it can be decrypted by doing the same operation again with the
same secret key.

The one-time pad operation has a couple of properties. On top of being perfectly secure
it is also:

• Commutative, meaning that the order of the inputs can be changed without altering
the results. A⊕B = B ⊕A

7
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• Associative, meaning that the order of operations does not matter. (A ⊕ B) ⊕ C =
A⊕ (B ⊕ C)

• Self-inversable, meaning that if the operation is performed on two of the same values,
they negate each other and result in 0. A⊕A = 0

• Has an identity element, 0. A⊕ 0 = A

These properties allow us to apply multiple one-time pads one after another and be
able to decrypt the ciphertext by applying those same one-time pads in any order.

2.2. Graph problems
2.2.1. Cycle Detection
Cycle detection is the problem of finding a cycle in a graph. Formally, let G = (V,E) be a
directed or undirected graph, where V is the set of vertices and E is the set of edges. The
problem is to determine whether there exists a path from a vertex v ∈ V to itself. Many solu-
tions have been proposed to this problem such as Tarjan’s strongly connected components
algorithm [39] based on depth-first search with a complexity of O(|V |+ |E|) and Fleischer
et al.[18] divide and conquer based approach with a complexity of O(|V | log(|V |)). Finding
a cycle with a length ≤ k can also be solved using a depth-first search-based approach by
limiting the depth to which the algorithm continues.

2.2.2. Shortest path problem
The shortest path problem is the problem of finding the shortest path between two vertices
in a graph, if it exists. Formally, letG = (V,E) be a weighted, directed or undirected graph,
where V is the set of vertices and E is the set of edges. Each edge e ∈ E has a length
or weight w(e). The shortest path problem is to find a path P from a source vertex s to a
destination vertex t such that the sum of the weights of the edges in P is minimized. This
can be expressed mathematically as:

P ∗ = min
P∈P(s,t)

∑
e∈P

w(e)

where P(s, t) is the set of all possible paths from s to t. The solution to the shortest path
problem is the path P ∗ that minimizes the sum of edge weights. To solve this problemmany
different solutions have been proposed, two of which are Dijkstra’s algorithm [16] and the
Bellman-Ford algorithm [13]. Dijkstra’s algorithm has a complexity of |E|log(|V |) which is
better than the Bellman-Ford algorithm which has a complexity of O(|V ||E|). However, Di-
jkstra’s algorithm does not work for applications in which edges can have negative lengths
making the Bellman-Ford algorithm more flexible.
The single source shortest path problem is the problem of finding the shortest path from
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one vertex to all other vertices. This can be used to find cycles by first performing a short-
est path algorithm and then checking if there is a path from the source vertex to any of its
neighbors.

2.2.3. All-pairs shortest path problem
The all-pairs shortest path problem is the problem of finding the shortest path between
all pairs of vertices in a graph. Just like for the general shortest path problem, multiple
algorithms for this problem have been proposed. Two of these algorithms are Johnson’s
algorithm and the Floyd-Warshall algorithm [22][19].
The Floyd-Warshall algorithm has a worst-case time complexity of O(n3). Johnson’s al-
gorithm uses the Bellman-Ford algorithm to remove all the negative edges and reweight
the graph, after which it uses Dijkstra’s algorithm to find the shortest paths. Both of these
algorithms can also be used to find the transitive closure of a graph, which is the problem
of finding which vertices are reachable from every vertex. Both Johnson’s and the Floyd-
Warshall algorithms give unreachable vertices a distance value of infinite, meaning that
the transitive closure of a graph can be found by identifying all the vertices for which there
is a distance between them that is not infinite.

2.3. Secure multi-party computation
Secure multi-party computation (MPC) is a cryptographic technique to allow multiple par-
ties to compute a function f(x1, ..., xn) over their inputs xi without revealing their inputs
and without the need for a third party. MPC protocols use cryptographic techniques such
as homomorphic encryption and secret sharing to achieve this functionality. We will give
a short summary of what homomorphic encryption and secret sharing are.

2.3.1. Secret Sharing
Secret sharing is a cryptographic technique that allows users to split a secret into multi-
ple shares, distribute the shares among different users, and then combine the shares to
recover the secret. To reveal the secret a minimum number of shares are required, this is
called a threshold denoted as t.
One such secret sharing scheme is Shamir’s secret sharing scheme which was introduced
in 1979 by Adi Shamir [35]. In Shamir’s secret sharing scheme, the secret is represented
as a polynomial of degree t− 1 in a finite field F . The constant value of the polynomial is
the secret value, while the other coefficients are chosen randomly. Shares of the secret
are created by evaluating the polynomial at n distinct points x1, ..., xn in F , resulting in the
shares (x1, f(x1)), ..., (xn, f(xn)).

The secret can be reconstructed from t or more shares by interpolating the polynomial
f(x) using Lagrange interpolation. The secret is equal to the constant term of f(x), which
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can be computed using the following formula:

S =

t∑
i=1

yi

t∏
j=1,j ̸=i

xj
xj − xi

where S is the secret value, t is the number of shares, and (xi, yi) are the coordinates of
the ith share.
Linear secret sharing is a type of secret sharing in which users can perform linear op-
erations on their shares [24]. This technique can be used to achieve secure multi-party
computation (MPC), where multiple users can jointly compute a function on secret inputs
without revealing the inputs to each other. To perform MPC using linear secret sharing,
the secret inputs x1, ..., xn are first secret shared among all the users. Then, each user
applies the function f to their shares, and the result of f(x1, ..., xn) can be recovered by
combining the resulting shares.

2.3.2. Homomorphic encryption
Homomorphic encryption is a form of encryption that allows operations to be performed on
ciphertext, with the resulting ciphertext corresponding to the same operations performed
on the plaintext. For example, given two ciphertexts c1 and c2 encrypted using homomor-
phic encryption, multiplying c1 and c2 will result in a new ciphertext c3 that, when decrypted,
will contain the sum of the original plaintexts corresponding to c1 and c2. The operations
that can be performed on the ciphertext depend on the homomorphic encryption scheme
that is used. Partially homomorphic encryption schemes are schemes that allow only one
kind of operation to be performed on the ciphertext, such as addition or multiplication.
Meanwhile, fully homomorphic encryption schemes allow multiple different operations to
be performed on the ciphertext. Generally, operations using partially homomorphic en-
cryption schemes are faster than those same operations on fully homomorphic encryption
schemes due to fully homomorphic encryption schemes being more complex.
Homomorphic encryption can be used for secure multiparty computation by allowing mul-
tiple users to encrypt their secret inputs using a common public key. The encrypted inputs
can then be shared among the users, who can jointly compute a function on the encrypted
data without revealing the underlying plaintexts to each other. The result of the computa-
tion can be obtained by sending the resulting ciphertext to a user who holds the secret key,
who can then decrypt it to reveal the result of the function applied to the original inputs.

2.3.3. Arithmetic Black-Box
In multiparty computation, operations on encrypted values can be performed using various
techniques, such as homomorphic encryption [33] or secret sharing [24]. An arithmetic
black box is an ideal functionality that can store and return encrypted information as well
as perform arbitrary arithmetic operations on the encrypted data without revealing any
information about the underlying plaintexts. This concept allows algorithm designers to
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focus on the design of the algorithms without worrying about the details of the underlying
techniques. It also allows the same algorithm to be securely implemented using different
techniques, depending on the specific security requirements and threats.



3
Related work

In this chapter, we look at other works on detecting cycles in a privacy-preserving manner.
We first look at work done on cycle detection in financial transactions. Since to the best of
our knowledge, there are no papers about secure cycle detection papers in a multi-party
setting, we then look at privacy-preserving ways to find the shortest path between two
points and at Topology-hiding computation which is a technique to hide the topology of a
network during a multi-party computation protocol.

3.1. Cycle detection in financial transactions
In 2018 Qui et al.[31] described a system called GraphS which is used by Alibaba to ac-
tively monitor and detect fraudulent transactions based on cycle detection. As the name
implies GraphS models all the financial transactions and accounts as a graph. Accounts
are modeled as vertices and transactions and relations as edges. Relations are for exam-
ple a friendship relation between two accounts or an ownership relation if one person owns
two accounts. Relations are modeled as static edges, while transactions are modeled as
dynamic edges and disappear after a certain amount of time. From the graph GraphS then
marks the vertices with the highest amount of outgoing edges as hot points and computes
all the possible paths between the hot points. Then to find the cycles, GraphS takes as
input a maximum length k and starts by performing a depth-first search from the source
vertex. During the depth-first search, a branch stops if:

1. The destination is reached.

2. The maximum length is reached.

3. A hot point is reached.

12
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For each hot point that is reached GraphS records all the paths from the source vertex
to the hot points. Following this step, GraphS use the reverse graph, which is the graph
but with all the edges reversed, and perform another depth-first search from the source
vertex. Now they have all the paths from the source to the hot points and all the paths from
a hot point to the source vertex, since all the paths between hot points are precomputed
they can now find cycles by only checking whether paths exist between hot points that
have a path to the source and hot points that have a path from the source.
In the experiments, they show that a query with a k of 6 takes less than 10 milliseconds
to complete in 99.9 percent of cases on a graph with over half a billion vertices and nearly
2.1 billion edges. Their system has a throughput of almost 16 thousand transactions per
second when running on an Intel(R) Xeon(R) E5-2650 server with 32 cores and 128GB
of memory. However, it requires that one party has all the data and can not find cycles
once transactions leave their system. Because it is assumed that all the data is owned
and controlled by one party they also pay no attention to privacy.

3.2. Secure Shortest Path protocols
This section introduces previous work on secure shortest path protocols. Secure shortest
path protocols can be used to find the shortest cycle in a graph. Each of these protocols
returns a secret shared array of distances to each vertex from a chosen source vertex.
This array can be used to determine whether the source vertex is part of a cycle by reveal-
ing the distances from the source vertex to each of the vertices that have an edge to the
source vertex. If this value is infinite then there is no cycle if the value is anything else
there is. We also provide a comparison of all the protocols discussed in this section in
Table 3.1.
Aly et al. [7] proposed two single source shortest path protocols modeled as arithmetic
black-boxes one based on Dijkstra’s algorithm and the other based on the Bellman-Ford
algorithm. Both of these protocols find the shortest path from the source vertex to all other
vertices. The values returned by the protocol are the secret shared paths and the secret
shared distances to each other vertex from the source vertex.
Their protocol based on Dijkstra’s algorithm performsO(n3)multiplications andO(n2) com-
parisons. The protocol based on the Bellman-Ford algorithm requires O(n3) comparisons,
multiplications, and additions. All these operations require at least O(1) communication
rounds meaning that the round complexity is also O(n3) for both of these protocols. In
terms of privacy, these protocols are as secure as the underlying protocols that are used
for the operations.
Aly and Cleemput [8] directly build on top of [7] and propose another secure shortest path
protocol modeled as an arithmetic black-box based on Dijkstra’s algorithm. They improve
the complexity of the protocol and require O(n2log(n)) multiplications, which can be paral-
lelized to only need O(n2) rounds of communication.
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Anagreh et al.[10] further improved on Aly et al.[7] and Aly and Cleemputs [8] work.
In their work, they propose two other secure shortest path protocols again based on Di-
jkstra’s protocol and the Bellman-Ford protocol. They improved the round complexity of
the Dijkstra-based protocol to only need O(nlog(n)) rounds and with a total bandwidth
of O(n2). The Bellman-Ford protocol was also improved to have a round complexity of
O(nlog(n)) with the total bandwidth used being O(mn). Additionally, they show that for
the Bellman-Ford based protocol the total bandwidth can be reduced toO(m(k+log(n))) in
O(klog(n)) rounds if the shortest path is known to be of a length shorter than k. They also
give a possible different version of their Bellman-Ford protocol which reduces the round
complexity in half of the original protocol but increase the bandwidth usage by a factor of
log(n).
In their tests they show that the graphs on which the protocol can be executed can be
significantly larger than the protocols proposed by [7] and [8], testing their Dijkstra’s based
protocol on graphs with up to 15 thousand vertices and 112 million edges and taking 13.4
thousand seconds to complete the protocol execution. For their Bellman-Ford based pro-
tocol they test on graphs with up to 9.5 thousand vertices and 500 thousand edges and
show that their protocol takes 151 thousand seconds to complete. Both of these proto-
cols also require significant precomputation, the Dijkstra’s based protocol requiring O(n2)
bandwidth and the Bellman-Ford based protocol requiring O(mlog(n)) bandwidth.

Anagreh et al.[10] also proposed four privacy-preserving all pair shortest distance pro-
tocols of which 2 based on the Johnsons algorithm, one based on the Floyd-Warshall
algorithm, and a transitive closure protocol. The all pair shortest distance protocols return
the distances between each pair of vertices meaning that one can use the result to find
the cycle that each vertex is involved in in a single execution of the protocol. Both the
protocols based on Johnson’s algorithm have a bandwidth consumption of O(n3) with a
round complexity of O(log(n)). The difference between their two Johnson based protocols
is that the version 1 Johnson protocol uses the standard version of their Bellman-Ford pro-
tocol and the version 2 Johnson protocol uses the version of their Bellman-Ford protocol
with reduced rounds of communications but with increased bandwidth usage. The Floyd-
Warshall based protocol also has a bandwidth consumption of O(n3), but with much better
constant factors and a round complexity of O(n). Lastly, the transitive closure protocol has
a bandwidth consumption of O(n3log(n)) with a round complexity of O(log2(n)).

3.3. Topology-hiding computation
Topology-hiding computation is a cryptographic technique that aims to hide the network
topology in secure multiparty computation (MPC) protocols. This is different from the prob-
lem addressed in this thesis, which focuses on hiding information about the data and trans-
action graph held by banks in a network.

Topology-hiding computation was first proposed by Moran et al. [25], who showed
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Table 3.1: Summary of all the protocols mentioned

Protocol Rounds Bandwidth Finds all paths
Dijkstra’s [7] O(n3) O(n4) No
Dijkstra’s [8] O(n2) O(n3) No
Dijkstra’s [10] O(nlog(n)) O(n2) No

Bellman-Ford [7] O(n3) O(n4) No
Bellman-Ford [10] O(nlog(n)) O(mn) No

Bellman-Ford for depth k [10] O(klog(n)) O(m(k + log(n))) No
Johnson [10] O(log(n)) O(n3) Yes

Floyd-Warshall [10] O(n) O(n3) Yes
Transitive closure [10] O(log2(n)) O(n3log(n)) Yes

Our protocol 2l O(dl) No

that it is possible to hide the topology of the communication graph underlying an MPC
protocol from semi-honest adversaries if the diameter of the graph is O(log(n)), where
n is the number of nodes in the network. They proposed a protocol in which each node
and its neighbors, called a neighbourhood, perform a local MPC protocol, and the result
is secret-shared with the other neighbourhoods in the network.

This was later improved by Akavia et al. [6] to work on networks with cycle or tree
topologies, regardless of the diameter. Akavia et al. showed that using a homomorphic,
privately key-commutative, and re-randomizable encryption, each node can perform an
OR operation on an encrypted bit and add another layer of encryption before sending it to
its neighbors. After the bit has been sent to the next node the same number of times as
the depth of the tree or the length of the cycle, the decryption is performed by every node
removing the layer of encryption that they added and sending the encrypted bit back to
the initial sender. After each layer of encryption is removed, the original sender knows the
result of the OR operation.

This was further improved by Akavia et al. [5] to work on arbitrary graphs by using
correlated random walks to send the encrypted bit across the network.



4
Privacy-preserving distributed cycle

detection

In this chapter, we introduce our privacy-preserving distributed cycle detection algorithm
that is tailored toward financial transactions. We describe the assumptions, the entities
and the protocol itself in this chapter.

4.1. Setting and assumptions
Before presenting the protocol, we will describe the setting and the cryptographic assump-
tions. The setting includes all of the entities involved in the protocol, their capabilities, and
the relationships between them.

4.1.1. Entities and relations
Banks are entities that manage accounts for their clients. When a client requests a trans-
action, the bank of the sender account works with the bank of the receiving account to
execute the transaction. We assume that banks are aware of all transactions sent and
received by the accounts they manage.
Accounts are bank accounts managed by a bank but owned by a client of the bank.
Transactions are the transfer of money from one account to another and are performed
by banks on behalf of their clients.

4.1.2. Assumptions
General assumptions
In our protocol, we assume banks can add or remove accounts at any point during the
protocol’s execution. Additionally, we assume that new transactions may be made and

16
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added to a bank’s database, or removed from the database, during the execution of the
protocol. We also assume that the accounts involved in any transaction are valid and exist.

Cryptographic assumptions
In our protocol, we assume that each bank is semi-honest, meaning that they will try to
learn as much information as possible but will not deviate from the protocol. We also as-
sume that each bank has a line of communication with every other bank and that each
message’s integrity, authenticity, and security are guaranteed.

4.2. Objectives
The goal of our protocol is to protect the privacy of banks and their clients. Specifically,
we aim to protect the information about a bank’s clients’ transactions and the number of
clients that a bank has from the other banks participating in the protocol. Hence we aim
to satisfy the following criteria:

• Banks should be unable to learn of the existence of bank accounts.

• Banks should be unable to learn of the existence of transactions between bank ac-
counts.

4.3. Design
In this section, we present the design of our algorithm. We define the banking system as
a graph and then use those definitions to write our protocol. The protocol uses a directed
graph, G = (V,E), to represent the banking system. The set of vertices, V , represents
accounts, and the set of edges, E ⊆ V × V , represents transactions. Each edge (u, v) in
the graph is associated with a secret 128-bit integer value, s(u, v), which could be a hash
of the transaction, for example.

A vertex v is an out-neighbor of another vertex u if there exists an edge (u, v) in the
graph. The set of all out-neighbors of v is denoted as N+(v). A path p is a sequence of
unique vertices v1, ..., vn. A cycle is a path for which the first and last vertices, v1 and vn,
are the same.

The set of banks is represented as a partition of the graph,B = B1, B2, .... EachBi ∈ B
represents an individual bank. The bank that a given vertex v belongs to is denoted as
b(v). Each bank Bi also maintains a set, Si, to keep track of the random values which the
bank has generated during the protocol.

The idea behind our protocol is to detect cycles in the graph by flooding it with a special
value from the nodes that a bank wants to check for cycles. If the same vertex receives the
value back, it means there is a cycle involving that vertex. Since there is no communication
between the accounts, only between the banks it means that banks could learn of the
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Table 4.1: Summary of the symbols.

Symbol Definition
G Graph of all accounts and transactions
V The set of vertices
E The set of edges
B A partition of G
v A vertex

(u, v) An edge from vertex u to vertex v
Bi Bank number i
b(v) Bank that Vertex v is a part of

N+(v) The outgoing neighbors of v
s(u, v) Random 128 bit value associated with edge (u, v)
M A message
Mv A message with target v
l Maximum cycle length
R Random 128-bit value
Si The set of generated numbers for Bi

existence of certain transactions by seeing if they receive the special value on any of the
other vertices as shown in Figure 4.1. To prevent other banks from learning about the
existence of certain transactions, we encrypt each message with a one-time pad before
sending it. However, if a message follows the same path twice, the one-time pads will
cancel each other out and the message will become recognizable again. This can only
happen if there is a cycle, so if a bank detects the original message, it means a cycle has
been found. To control the maximum length of the cycles that a bank wants to find we also
sent a length along with the message, which gets decreased each time it gets sent to the
next vertex. When a bank receives a message with the length zero it will stop forwarding
that message.
To find all the accounts that are part of a cycle, all the banks need to store the values
that they receive and the bank that each value came from. After the protocol has finished,
the initiating bank can communicate with the bank that it received the last message from
for each cycle found, and ask that bank where the message was received from. This
process can then be repeated, with each bank communicating with the bank that it received
the previous message from, until all the banks involved in the cycle have been asked.
At this point, the banks can report the accounts involved to each other and reveal the
full set of accounts involved in the cycle. This would allow the banks to uncover all the
accounts involved in a cycle, without revealing any additional information about accounts
or transactions that are not part of the cycle.



4.3. Design 19

Input: Vertex u, Length of the cycle l and Banks B
Output: Integer c = amount of cycles u is a part of.

1. A bank Bi generates 128 bits of randomness R.

2. Add R to the banks set Si.

3. For each v ∈ N+(u), Bi generates a message Mv as follows:

Mv = R⊕ s(u, v)

4. For each v ∈ N+(u) Bi sends message Mv, 2l and v to b(v).

5. Upon receiving a message a bankBj generates a messageMw forw ∈ N+(v)
if Mv /∈ Si and l ̸= 0:

Mw = Mv ⊕ s(v, w)

6. Bj sends message Mw, (l − 1) and w to b(w) for each w ∈ N+(v).

7. Repeat from step 5 until no more messages get sent.

8. Bi outputs the number of messages received which were in S.

Protocol 1: Privacy preserving distributed cycle detection

4.3.1. Protocol efficiency
The total bandwidth usage of this protocol isO(dl) for degree d as there is one message for
each outgoing neighbor of a vertex and the protocol has O(l) rounds. The computational
complexity is also O(dl) as each message has one one-time pad operation applied to
it which takes O(1) time. To find all the cycles that each vertex is a part of we would
have to execute the protocol for each vertex increasing the bandwidth and computational
complexity by a factor n, but the round complexity stays the same as all the executions can
happen in parallel allowing the banks to send all the messages at the same time. While
the protocol bandwidth and computational complexity are exponential as noted by [31] the
length of typical cycles to look for in financial transactions are small being ≤ 6 additionally
the degree of a vertex is also shown to be relatively small with 80 percent of the vertices
having a degree< 10. This makes our protocol muchmore efficient in real-world scenarios.
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Account B

Account D

Account A

Account C

Bank A Bank B

S1={5}

5

5

5

Figure 4.1: Bank A sends out 5 as a special value from account A to account Band then receives 5 on
account D from account C. From this Bank A learns the message must have gone from B to C.

4.3.2. Security analysis
In this section, we argue that the protocol is secure in the semi-honest model with private
channels, we also mention a couple of possible attacks against the protocol and discuss
those.
During the protocol, the banks can be split into two groups, the initiating bank, which starts
the protocol and forwards messages, and the forwarding banks which only forward mes-
sages. The initiating bank knows the random value, the length that it sends with the first
messages, all the messages that it sends, all the messages that it has received, and the
respective lengths for the sent and received messages. In contrast, forwarding banks only
have knowledge of the messages they receive and send, as well as the lengths of those
messages.
For a bank to be able to learn new information about the graph, it needs to know where a
received message came from. However, the messages sent and received by both the ini-
tiating bank and the forwarding banks are encrypted using a one-time pad, which removes
any information about the previous message from the received messages. This means
that as long as there is at least one one-time pad applied that the bank does not know the
key for, the bank cannot learn where the message came from. If the bank does know the
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key, it means that they already knew about the edge and therefore already knew about
that transaction. In this case, the bank would not learn any new information.
The length that is attached to messages can be used to identify a message. Looking at the
amount of time that has passed and the length, a bank can estimate the expected amount
of times that the protocol has been started around the time that they started it themselves.
Using this information a bank can guess whether a message is their message with a prob-
ability of 1

expected amount which would be better than random guessing unless each bank
initiates the protocol for every account all the time.
If a bank can guess that a message is one that they receive they learn that there is a series
of transactions that goes from the account from which the message was originally sent to
the account on which it is now received. This reveals information about transactions that
it previously did not know existed.
To prevent this type of attack, banks could add random delays to the messages that they
send. This would make it harder to estimate when a message was sent, and would there-
fore decrease the attacker’s ability to identify messages. However, even with a delay, a
bank could still estimate the total number of times that the protocol has been initiated and
then guess with a probability of 1

total amount . For this not to be better than random guessing,
the protocol needs to be initiated at least as often as there are vertices over the delay
amount that is chosen.
The additional information that the initiating bank has in comparison to the forwarding
banks, namely the random value it has generated, can also not be used to link two mes-
sages together since each message gets encrypted with a one-time pad all information
with regards to the previous value is removed from the messages and thus makes it im-
possible to use the knowledge of the generated value to link messages together or identify
messages as being sent by the initiating bank.
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Figure 4.2: Example protocol execution with a cycle of length 3.
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Results

In this chapter, we discuss the results of our experiments. For our experiments, we used
Google Cloud and ran our experiments on an n2-standard-2 instance powered by Intel
Cascade Lake CPUs1. All our experiments were performed on one core with no network
delay and instant communication. For our experiments, we measured the total work and
the total worst-case bandwidth. For our experiments, we use datasets from AMLSim [38].
AMLSim is a simulation tool built to simulate financial transactions and known money laun-
dering typologies. AMLSim has provided datasets with already transaction graphs with
suspicious patterns in them, namely fan-in, fan-out and cyclical patterns. We use these
datasets for our analysis. The datasets have graph sizes ranging from 100 accounts with
10 thousand transactions to 1 million accounts with 100 million transactions.

5.1. Runtime on different graph sizes
To measure the effect of different graph sizes on our performance we tested our protocol
for a cycle length of 5 on 3 different graph sizes from 100 accounts and 10000 transactions
to 1 million accounts and 100 million transactions, each being 100 times larger than the
previous one. We ran our tests by randomly selecting accounts for which we wanted to de-
tect cycles from the graph, for the larger graphs we chose 1000 accounts, and for the small
graph we ran the protocol for all 100 accounts. The results in Figure 5.1 show that with the
graphs becoming 100 times larger the time it takes to run the protocol increases by one
order of magnitude. This is likely because the bigger graphs have more accounts with a
high degree, once those are reached the time one execution takes increases dramatically.
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Figure 5.1: Total run time on differing graph sizes, averaged over 1000 runs, except for the graph with 100
accounts for which we only did 100 runs.

5.2. Runtime for different cycle lengths
Cycle length is the main bottleneck for our protocol. To measure the impact of the cycle
length on performance we ran our protocol on the graph with one million accounts and 100
million edges with varying cycle lengths. As can be seen in Figure 5.2, for each increase in
the cycle length, the execution time of our protocol increased by two orders of magnitude.

5.3. Bandwidth use for differing cycle lengths
Another important metric besides the run time is the amount of bandwidth the protocol
requires. All of our tests were performed without taking bandwidth into account however,
in real-world scenarios bandwidth is often limited and can be a bottleneck. To test this we
ran our protocol on the graph with one million accounts and 100 million transactions with
differing cycle lengths.

Our tests show that bandwidth scales in the sameway as the run-time, meaning that ev-
ery increase in cycle length causes our bandwidth to increase by two orders of magnitude.
Our bandwidth experiments show that detecting cycles of length 5 uses about 6 Terabytes

1https://github.com/C3lio/RustCycleDetection
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Figure 5.2: Total run time for differing maximum cycle lengths, averaged over 1000 runs.

of bandwidth in the worst case. With 100 Gigabyte Ethernet, this can be transferred in 8
minutes, which would increase our worst-case time by 16 percent.

5.4. Comparison

Table 5.1: Time comparison of our protocol with the shortest path protocols mentioned in [10] on graph sizes
of around 100 vertices

Protocol Vertices Edges time precomp. (s) time total (s)
Dijkstra’s [1] 10 thousand 49.9 million 1572.9 6061.6

Bellman-Ford [1] 9500 500 thousand 6600 151 thousand
Our protocol 10 thousand 1 million 0 232
Our protocol 1 million 100 million 0 2910

In Table 5.1, we compare our results to the results from [10] on differing graph sizes.
Overall it shows that even on the largest graph the median time to complete a cycle de-
tection with length = 5 only took 457 seconds with the worst case being 2910 seconds.
We were not able to reproduce the results from [10] but if we compare our results on the
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Figure 5.3: Total bandwidth on a graph with 1 million accounts and 100 million edges for differing cycle
lengths, averaged over 1000 runs.

graph with 10 thousand accounts and 1 million transactions with their Bellman-Ford and
Dijkstra’s based protocols on graphs of a similar size, we can see that our highest mea-
sured run time of 232 seconds is 7 to 10 times faster than just their precomputation steps
on a graph with a similar amount of vertices. While the Dijkstra’s based protocol does have
a lot more edges, their precomputation step only scales with the number of vertices. In
their paper, they state that their Bellman-Ford algorithm can be shortened if the maximum
length of the path is known. This would reduce the number of iterations that are necessary
for the loop, however, precomputations would still have to be performed. In Table 5.2, we

Table 5.2: Time comparison of our protocol with the shortest path protocols mentioned in [10] on graph sizes
of around 10 thousand vertices

Protocol Vertices Edges Time total (s)
Dijkstra’s [10] 150 11 thousand 3.0

Bellman-Ford [10] 85 1200 8.1
Our protocol 100 10 thousand 4

compare our results on our smallest graph of 100 vertices and 10 thousand transactions to
their results on similar-sized graphs however we see that while their Bellman-Ford protocol
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is 2 times slower than our slowest execution of 4 seconds, their Dijkstra’s based protocol
performs significantly better taking 3 seconds on a slightly bigger graph than ours.
In Table 5.3, where we compare our results to the all paths shortest distance protocols

Table 5.3: Time comparison of our protocol with the all pair shortest path protocols mentioned in [10] on
graph sizes of around 10 thousand vertices

Protocol Vertices Edges Time total (s)
Johnson version 1 [10] 100 4950 138.1
Floyd-Warshall [10] 100 4950 6.9

Transitive-Closure [10] 100 4950 51.1
Our protocol 100 10 thousand 166

results from [10] we can see that for small graphs using a privacy-preserving all paths
shortest distance protocol can make sense. Finding all the cycles that each of our ac-
counts is a part of took us a total of 166 seconds. Compared to their execution times on
similar-sized graphs of 138 seconds using their Johnson version 1 protocol to only 6.9
seconds using their Floyd-Warshall based protocol. Comparing our protocol for different
cycle lengths with the results from [10] we can see that while we are faster than any of
their privacy-preserving shortest distance protocols with length = 5, if we do the same
experiments with length = 6 we are likely to be slower on small and medium graphs. On
larger graphs we believe that we would still be faster but as the biggest graph in [10] has 15
thousand vertices we are not able to do such comparisons. However, since their protocols
always take the same amount of time, there is always a maximum cycle length for which
their privacy-preserving shortest-distance protocols perform better. Making each viable in
specific situations.
In Table 5.4, we compare our bandwidth results with the privacy-preserving shortest dis-

Table 5.4: Bandwidth comparison of our protocol with the all pair shortest path protocols mentioned in [10]
on graph sizes of around 10 thousand vertices

Protocol Vertices Edges Bandwidth (GB) Cycle length
Bellman-Ford [1] 3000 50 thousand 133 ∞
Our protocol 1 million 100 million 6228 5
Our protocol 1 million 100 million 55 4

tance protocols in [10] it shows that our bandwidth usage is similar to their Bellman-Ford
algorithm with our graph being much larger for a cycle length of 4 and only one order of
magnitude more for a cycle length of 5 on a graph that has 1 million accounts and 100
million transactions compared to a graph with only 3 thousand vertices and 50 thousand
edges. Based on bandwidth figures presented for their Bellman-Ford based protocol we
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think it is safe to say that if both were executed on the same graph with 1 million ac-
counts and 100 million transactions then the Bellman-Ford protocol would use multiple
orders of magnitude more bandwidth. Bandwidth figures for their Dijkstra’s based privacy-
preserving shortest distance protocol were not given so we are not able to compare with
those.



6
Conclusion

It is clear that money laundering is a problem and that banks play an important role in
combatting it. To do this more effectively it is important for banks to work together. The
Dutch government is trying to make way for this by allowing banks to share data with each
other in their newly proposed laws. Theway that this is currently proposed is a great breach
of people’s personal privacy and introduces the risk of the information being abused.
An alternative approach is to focus on detecting money laundering in a privacy-preserving
manner. In this thesis, we focused on detecting short cycles in a transaction graph, a
process that requires cooperation among multiple banks as not all transactions are known
by a single bank. Our privacy-preserving protocol enables banks to detect such cycles
more efficiently than other state-of-the-art privacy-preserving solutions. In this chapter,
we discuss our results, the limitations of our design, and potential areas for future work.

6.1. Discussion
Our main research question was:

“How can we efficiently find short cycles in financial transactions?”

To address this question, we developed a protocol that detects short cycles in financial
transaction graphs without revealing any additional information about the graph beyond
the cycles that are found. Our testing shows that our protocol allows for the detection of
cycles in large graphs even on consumer-level hardware. Whereas previous works were
only able to run graph problem protocols on graphs smaller than 20 thousand vertices,
our protocol can detect cycles of length less than 6 in graphs with a million nodes, with a
median runtime of under 10 minutes. In terms of security, banks in our protocol are unable
to learn of any edge or accounts existence that they were not already previously aware
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of. Additionally by keeping track of the messages received our protocol gives the banks
the possibility to backtrack and find the entire cycle without the need to share additional
information. Our goal was to make a protocol that does not scale with the number of
vertices in a graph. While this is achieved in theory in practice we show that a larger graph
does seem to impact performance, we believe this to be because the larger graphs also
have vertices with a larger degree. The average degree of all our datasets is the same but
the highest theoretically possible outdegree in the dataset with 100 vertices is 99 while the
dataset with 1 million accounts has multiple accounts that have an outdegree higher than
1000.

6.2. Limitations
In this thesis, we work with some assumptions and simplifications which leads us to have
some limitations which we discuss here.
Our datasets are synthetic and only have three different types of money laundering pat-
terns added to them. Testing on datasets from actual banks could reveal more hidden
patterns and would likely affect our performance in some way. A real dataset would also
allow us to better measure the bandwidth that the protocol uses in the real world as trans-
actions from one account of a bank to another account of the same bank do not add any
additional bandwidth and all the operations for it can be done locally.
The messages are indistinguishable from one another, but this means that our protocol
is only as secure as the number of times that it is invoked at the same time. Since the
bandwidth required for each invocation of the protocol is very high running multiple at the
same time slows the execution down by a lot making it likely not practical.

6.3. Future work
In this section, we discuss some potential future research based on insights we obtained
during our research.

6.3.1. Other patterns and operations
In addition to detecting cycles, banks may also be interested in identifying other patterns
in financial transactions, such as identifying whether any individuals within a group of con-
nected accounts have been labeled as fraudulent. To do this effectively, it would be neces-
sary for banks to be able to group accounts that are closely connected and share whether
anyone in that group has been labeled as fraudulent, without revealing which specific
account has been labeled or for which account the inquiry was being conducted. This
approach would minimize the leakage of sensitive information and could potentially aid
banks in their risk assessments.
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6.3.2. Relations between accounts
Our current system finds cycles in financial transactions, but it does not account for people
having multiple accounts. If a person holds multiple accounts then the money can still end
up with the same person but in different accounts. In [31], they account for this by adding
static edges to indicate relationships between accounts. Future work could look at ways to
take these relationships into account in a privacy-preserving way to improve the detection
of money laundering patterns.

6.4. Closing remarks
Combating money laundering is essential for disrupting organized crime. However, the
Dutch government’s proposed solutions to improve its detection involve granting banks
broad powers that raise concerns about privacy. In this thesis, we demonstrate that some
of the operations that banks may wish to perform on transaction data can be done while
significantly reducing the amount of information that needs to be shared. While further
work is needed to make such solutions practical, we believe we have presented a solution
that moves in the right direction of combating money laundering without compromising
privacy.
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