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Abstract—Speech signals contain rich information, such as
textual content, emotion, and speaker identity. To extract these
features more efficiently, researchers are investigating joint train-
ing across multiple tasks, like Speech Emotion Recognition (SER)
and Speaker Verification (SV), aiming to improve performance by
decoupling task-specific knowledge. Traditional multitask decou-
pling methods in SER typically use orthogonalization to increase
the distance between parameter vectors in the feature space. In
this paper, we introduce a novel Hybrid instance-level Contrastive
Decoupling Loss. This method leverages supervised labels to
effectively decouple SER and SV. Unlike previous approaches, it is
not restricted to dual-stream models with identical architectures
and can be easily integrated with leading models for each
sub-task. Experimental results show that our proposed Hybrid
Contrastive Learning Decoupling (HCLD) method significantly
outperforms traditional orthogonal decoupling approaches.

Index Terms—speech emotion recognition, feature decoupling,
speaker verification.

I. INTRODUCTION

Speech Emotion Recognition (SER) is crucial for interpret-
ing emotional cues in human speech, and it’s applied in areas
like human-computer interaction, speech synthesis, and intent
detection. It’s vital for advancing intelligent robots and Al
Daily speech not only conveys meaning through language but
also communicates speaker emotions, which can be inferred
from unique speech characteristics.

The speech in daily conversations contains rich information,
including not only the meaning represented by the language
itself, but also the speaker’s emotions, and can reflect the
speaker’s information through unique characteristics. Recent
research has led to the design of various tasks, including
SER, Automatic Speech Recognition (ASR) [1], [2], Speaker
Verification (SV) [3], Gender Identification [4], and Key-
word Spotting [3], to exploit the diverse information within
speech, thereby enhancing the performance of each task.
However, task interference poses a challenge to multitasking
advancements. To overcome this, some studies have explored
decoupling methods [3], [5] to isolate relevant features in high-
dimensional spaces, thereby enabling models to concentrate
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on specific objectives. While these methods, often involving
tailored architectures and parameter-level orthogonalization,
have promoted multitask learning in SER, they are limited
by their reliance on specific architectures and complex or-
thogonalization techniques, hindering generalizability across
different tasks and models.

To enhance the adaptability and broad applicability of
feature decoupling techniques, this paper presents an Instance-
level Hybrid Contrastive Learning Decoupling framework,
referred to as HCLD. Specifically, we employ the HuBERT
[6] pre-training model to extract audio features and then refine
them further. In the decoupling representation learning phase,
we create positive and negative sample pairs by combining dif-
ferent speakers and emotions. The Instance-level Contrastive
Learning Loss (ICLD) is then used to decouple the Speech
Emotion Recognition (SER) and Speaker Verification (SV)
tasks. To ensure emotional distinctiveness in the decoupled
feature space, we introduce two additional losses: the Label-
based Contrastive Learning Loss (LCL) and the Supervised
Contrastive Learning Loss (SupCon). These losses leverage
emotion labels obtained from the RoBERTa model to serve
as a benchmark for emotion classification, thereby boosting
the SER performance. Our proposed HCLD method demon-
strates a significant improvement over single-task SER on the
IEMOCAP dataset.

Specific Contributions of This Paper:

e« We propose a novel instance-level Contrastive Learn-
ing Decoupling Loss (ICLD), which differs from ex-
isting methods based on model parameters or feature
orthogonalization. It can be flexibly applied to different-
architectures SER and SV models.

e To prevent the ICLD loss from muddling the feature
space, we’ve added hybrid contrastive learning losses,
including: Label-based Contrastive Learning Loss (LCL)
and the Supervised Contrastive Learning loss (SupCon
Loss). We introduce emotional semantic labels as a
benchmark, futher to reduce the distance between features
belonging to the same category, while expanding the
distance between features from different categories.

e We tested our proposed HCLD on the challenging
IEMOCAP dataset [7]. Compared to single-task SER,
our method achieved a maximum performance boost of
5.77%.
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Fig. 1. Illustration of our proposed Method. On the left is the multi-task feature extraction part, which uses the Hubert pre-training model for feature extraction
and employs models based on CNN/LSTM/Transformer to extract speech emotion features X, and speaker feature Xs. The proposed HCLD loss further

decouples the extracted X. and X in the feature space.

II. RELATED WORK

A. Speech Emotion Recognition

The task of SER involves identifying a speaker’s emo-
tional state from speech signals. As deep learning advances,
the models and features employed for SER are continually
evolving. On one hand, Transformer-based models [8]-[10]
have surpassed CNN and RNN-based models [11]-[15] due
to their ability to capture both global and local information.
On the other hand, pre-trained models like Wav2Vec [16] and
HuBERT [17]are increasingly replacing traditional features
like MFCC [18] and Spectrograms [19], thus enhancing SER
accuracy and performance.

B. Multi Task Learning and Decoupling in SER

In recent years, researchers have explored integrating SER
with other tasks, such as Cai et al. [2] jointly training SER and
ASR, and Pan et al. [4] combining SER with gender recog-
nition. These approaches have bolstered model generalization
by leveraging correlations between feature representations and
tasks. However, multitasking progress is impeded by task
interference. To tackle this, some have employed feature
decoupling strategies, like Wang et al. [3] using a dual-stream
model for KWS and SV tasks, or Liu et al. [5] suppressing
irrelevant information with feature map flows.

Current SER multi-task decoupling strategies often optimize
at the parameter level, limiting their application across various
tasks. This paper proposes an instance-level multi-task decou-

pling framework that can be easily integrated into different
tasks and networks, enhancing performance.

C. Contrastive Learning in SER

Contrastive learning has gained traction in SER tasks. Li et
al. [20] were among the first to use SupCon loss for emotion
recognition in conversational contexts. Tu et al. [21] intro-
duced unsupervised contrastive learning to understand the role
of context and common sense in emotional judgment. Pan et al.
[4] aligned audio and text features across modalities. Ye et al.
[22] designed a module for comparative emotion decoupling.
Building on these, this paper delves into contrastive learning’s
application in instance-level multi-task decoupling.

III. PROPOSED METHODOLOGY

As shown in Figure 1, we propose a Hybrid Contrastive
Learning Decoupling (HCLD) method for Speech Emotion
Recognition (SER) and Speaker Verification (SV). The model
consists of three parts: feature extraction, multi-task classifica-
tion, and hybrid contrastive learning decoupling loss (HCLD).
Below we will present the task configuration and each of these
three parts separately.

A. Task Configuration

Suppose we have a dataset D consisting of N utter-
ances uj,usg, ..., uy, each with corresponding emotion labels
ey, e, ...,en and speaker labels si, ss, ..., sy. We define the
SER task as assigning an emotion label e; to each utterance
u;, and the SV task as assigning a speaker label s; to
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each utterance u;. The decoupling goal is to leverage the
differential features focused on by the two tasks to improve
the performance of the main task (the SER task).

B. Feature Extraction

We use the pre-trained HuBert-base model [6] as the raw
waveform encoder. Specifically, we employ the checkpoint
pre-trained on the 960-hour LibriSpeech dataset [23] released
by torchaudio as the feature extraction model. Subsequently,
we design three feature extractors based on popular network
architectures (CNN, RNN, transformers) to extract emotion
features X. and speaker features X from z;.

X; = Encoder(x;)

where z; € (batchsize,length,dim) represents the audio
features extracted by the pre-trained model hubert.

C. Multi-task Classification

Having extracted the emotion features X. and speaker fea-
tures X g, we predict emotion and speaker categories through
Linear network and softmax layer, with cross-entropy loss. We
use L;qsr to realize basic multi-task learning:

N
Ye = softmazx(w * X¢ +b), Lepmo = — Zyei log(ye)
i=1

N
Us = softmax(w * X5 +b), Lype = — ZySi log(ys)
i=1

Ltask = Lemo + Lspe

where y.; the true emotion label, y,; is the true speaker label,
y is the predicted probability distribution from the softmax
layer, w and b are the learned model parameters, and [V is the
total number of samples used in training.

D. Hybrid Contrastive Learning Decoupling

1) Instance-level Contrastive Learning Decoupling: To
achieve decoupling between SER and SV tasks, we construct
positive samples as samples from the same person expressing
different emotions, and negative samples as samples from dif-
ferent people expressing the same emotion. We then calculate
the loss of positive samples and negative samples to obtain the
overall contrastive decoupling loss L¢f, p. This makes samples
of the same speaker and different emotion closer in feature
space, and samples of different speaker and same emotion
further apart.

Lpositive = ﬁ Z (1 - COS(Xe[i]’ Xe[j])>2

(i,j)€at

where || represents the number of positive sample pairs, and
|~ |represents the number of negative sample pairs. For each
pair of positive samples =", we want the emotion features
to X, be closer. For each pair of positive samples zT, we
calculate the cosine similarity between their emotion features,
hoping that the higher the similarity, the better.

Lnegalive = ﬁ Z maX(Oa Margin—cos(XS [i]’XS [.7]))2
(i,j)€x—

For each pair of negative samples z—, we want the speaker
features fspe to be further apart. For each pair of negative
samples x~, we calculate the cosine similarity between their
speaker features, hoping that this similarity is less than a preset
threshold (Margin).

The total decoupling loss is:

LCLD = Lposilive + Lnegative

2) Label-based Contrastive Loss: We use the roberta-base
model to extract the features FE; of the text labels e;, as a
benchmark in the feature decoupling stage. Inspired by the
anchor loss [24], based on the SupCon loss, we construct
positive and negative sample pairs using the features E; of the
labels and the audio features X., to compute the contrastive
learning loss based on labels:

1
Lae:_ TN
babel Z|P<z>|

el

oy CXD(EL] - Xelp)/7)
2 los = B el

acA(i)

pEP(1)
where X_.[i] represents the emotional feature of the i th
sample.

3) Supervised Contrastive Loss: To avoid the CLD loss
scrambling the feature space, we also introduce a supervised
contrastive learning loss, the SupCon loss. This aims to min-
imize the distance between features of the same category and
maximize the distance between features of different categories.

1 exp(f(s[i] . Xs[p]/T)
L =— —_ lo = -
er ZGZI [P(2)] pgi) e%:(.)exp(Xs[i] - X s[a)/T)

where X, [i] represents the feature representation of the ¢
sample (which could be the speech feature vector extracted by
the deep learning model). P(7) represents the set of all positive
samples of the same category as sample i. A(i) represents the
set of all samples available for comparison, including positive
and negative samples, but excluding sample ¢ itself.

Particularly, contrastive learning methods typically require
a larger batchsize; otherwise, it can result in a significant
decrease in training performance. We replicate and down-
sample the features X. and X , ensuring that each training
sample has at least one positive sample.

Therefore, the total loss can be expressed as:

L = Lygsk + Lowp + Lscr + Liaper

IV. EXPERIMENTS AND RESULTS
A. Dataset

IEMOCAP [7] is a widely-used benchmark SER dataset
with a total length of approximately 12 hours. It contains five
sessions, each featuring one male and one female participant-
for a total of ten speakers.
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TABLE I
MODEL PERFORMANCE COMPARISONS ON THE IEMOCAP DATASET
Model WA(%) UA(%)
CNN-LSTM [25] 65.4 66.9
LGFA [26] 73.29 62.63
ATFNN [27] 73.81 64.48
TFF [28] 74.43 63.90
TAP [29] - 74.2
TAPT [30] - 74.3
HCLD-CNN 75.52 76.08
HCLD-RNN 75.70 75.9
HCLD-transformers 73.80 74.59
TABLE 11
ABLATION STUDY
Type Model Emotion Speaker
WA(%) UA(%) WA(%) UA(%)
CNN 70.84 71.61 - -
EMO-only LSTM 70.13 70.95 -
Transformer 68.03 68.73 - -
CNN 73.35 74.04 74.04 74.83
orth LSTM 74.44 75.24 78.67 78.48
Transformer 70.67 71.50 81.66 81.52
CNN 74.35 74.8 81.57 81.47
wo.SupCon  LSTM 75.16 75.71 80.94 80.77
Transformer 71.18 72.02 81.84 81.69
CNN 75.03 74.27 74.98 75.01
CNN 75.88 76.51 84.46 84.27
wo.LCL LSTM 75.43 75.78 77.6 77.69
Transformer 72.99 73.62 81.84 81.72
CNN 75.52 76.08 75.70 75.90
HCLD LSTM 75.70 75.90 78.95 79.00
Transformer 73.80 74.59 83.02 82.72

We utilize 5531 audio samples from IEMOCAP, which
encase four types of emotions: hap (1636), ang (1084), sad
(1103), and neu (1708), with all ten speaker labels being used.
The dataset is randomly divided into a training set (80%) and
a test set (20%), and a five-fold cross-validation method is
employed for training. Each sample is trimmed to 7.5 seconds
with a sampling rate set at 16kHz.

B. Experimental Setup

After using the pre-trained HuBert-Base [6] for feature
extraction, the features are normalized and mapped to the
dimensions of [batchsize,length, channel]. Specifically, we
set the batchsize to 32, and the length and dim are set to
374 and 768, respectively.

We employ the Adam optimizer with a learning rate of 5e—4
for model training. The model is trained for 100 epochs with
a batch size of 32, of which 5 epochs are dedicated to linear
warm-up. Weighted accuracy (WA) and unweighted accuracy
(UA) were used as the evaluation metrics.

C. Results and Analysis

As shown in Table 1, following the introduction of multi-
task auxiliary SER training, the accuracy of emotion recog-
nition significantly improved. Within the CNN-based model,
the incorporation of multi-tasking and our proposed HCLD
loss resulted in an increase of WA from 70.84% to 75.52%
(+4.68). In the LSTM-based feature extraction model, the

HCLD loss boosted WA from 70.13% to 75.70% (+5.57).
Within the transformer model, WA rose from 68.03% to
72.99% (+3.96), and UA from 68.73% to 73.80% (+5.07).
The significant performance improvements brought about by
the introduction of HCLD indicate the effectiveness of the
proposed HCLD method, coupling multi-task joint training
with feature decoupling. Compared to the orth method, our
HCLD method also led to performance improvements, proving
the effectiveness of our proposed method.

Furthermore, we conducted ablation experiments to validate
the effectiveness of the Supcon loss and label-based contrast
loss. After removing the SupCon loss Lgc,, the WA decreased
by 1.53%, 0.27%, and 1.81% respectively, thus proving the
actual existence of Lgc constraint on labels in the feature
space. After removing the label-based loss Ly qpe;, the WA
in models with LSTM and Transformer as feature extractors
dropped by 0.27% and 0.81% respectively. However, in the
CNN-based feature extraction model, the performance actu-
ally increased by 0.36%. This might be due to performance
bottlenecks in the data. Additionally, we found that when
using transformers, the performance of the SER task was
poorer, but the SV task performed better than the CNN or
LSTM architectures. We suspect this might be due to imperfect
network architecture or loss function design, and we will
continue to investigate this in our future research.

D. Comparison with State-of-the-Arts

To validate the effectiveness of our proposed method, we
compared our HCLD multitask feature decoupling method
with six kinds of unimodal SER methods. Compared to the
LGFA ATFNN TFF model, our WA scores have been increased
by 2.41%, 1.89% and 1.27% respectively. Notably, there is a
significant increase in UA scores, with increments of 13.45%,
11.6% and 12.18% respectively. Compared to the TAPT,
our method improved the UA by 2.3%. This indicates that
exploring multitask joint training and multitask decoupling,
particularly the decoupling of emotional features and other
features in speech, can significantly enhance the performance
of SER. Especially in the simultaneous improvement of WA
and UA, our method performs better. Multitask decoupling
learning has tremendous research potential.

V. CONCLUSION AND LIMITATIONS

In this paper, we presents an instance-level Hybrid Con-
trastive Learning Decoupling method, which effectively en-
hances the performance of SER tasks by introducing a Speaker
Verification. Different from traditional methods based on or-
thogonalization, this approach can operate independently of
specific network architecture designs and effectively disentan-
gle emotion features from speaker features. The effectiveness
of the HCLD method has been validated on the IEMOCAP
dataset.

In the future, we aim to explore more possibilities of this
contrastive decoupling method and attempt to introduce more
subtasks.
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