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Abstract

In this thesis, the Random Energy Model (REM) is applied to the highly complex problem
of random heteropolymer folding. The relevance of the REM lies in the fact that it is an ana-
lytically solvable model, which makes it possible to learn more about the (thermodynamical)
behaviour of folding proteins.
Firstly, a rigorous proof of the existence of a critical point in the REM with non-zero mean is
presented. The mathematical properties of the REM with non-zero mean are used to derive
the thermodynamical properties of this special case of the REM, such as the free energy.
In the second part of this thesis, applications of the model to folding polymers are investigated
and a simple simulation of protein folding using the REM is suggested. It turns out that
this simulation is barely useful, so a more realistic version of the REM for polymer folding is
suggested.
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Chapter 1

Introduction

The folding of heteropolymers is one of the most crucial biological processes within the human
body. For instance, our DNA consists of long chains of polymers that are folded in extremely
dense configurations, and are partially unfolded for DNA replication. Interactions between
proteins - a kind of heteropolymers - guide many processes in the cell, such as proliferation
(cell growth) and differentiation (changing cell type)[1]. For example, many allergies are
caused by a misfolding of certain polymers, as the human immune system produces antibod-
ies only for certain protein structures[2]. The folding of heteropolymers is a complex process
that is not fully understood and existing models require much computing time. In this thesis,
an analytically solvable model is applied to the problem of protein folding. This model has
its origin in the field of spin glasses and is called the Random Energy Model.

In this introduction chapter, we begin with a brief summary of the theory of spin glasses.
We try to explain the origin and relevance of the Random Energy Model and describe the
system we want to apply the theory to.

1.1 Spin glasses and the Random Energy Model

In 1980, the Random Energy Model (REM) was created by Bernard Derrida[3] as a simple
toy model to try to understand the behaviour of disordered systems. This model later became
widely accepted in the field of spin glasses.[4]
The field of spin glass theory has its origin in the attempt to describe the behaviour of glass
and systems with a glasslike build-up. The difficulty in describing such a system lies in the
way glasslike materials are built up. At first sight, these kind of materials seem to be ordered
in patterns on the microscopic scale, but they turn out to be fairly unstructured. This will
be further explained in the next chapter. The lack of symmetry of glass leads to many math-
ematical complications in trying to describe a glasslike system deterministically. Therefore,
the REM describes the system stochastically.
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1.1.1 Description and relevance of the original model

In the original paper of Derrida, a very simple form of the Random Energy Model was for-
mulated. The model consisted of a set of N spins that can either be spin up or spin down.
The energy of each of the spins is described in terms of the Hamiltonian. The Hamiltonian[5]
of each spin is not correlated with the state of the others, but is driven with a centred Gaus-
sian distribution. We will go into the details of this model later, but for now it is enough
to observe the relative simplicity of the model. Despite this simplicity, Derrida was able to
show the existence of a phase transition - a sudden change in behaviour - in this model. That
is, there exists a certain critical point (for instance a critical temperature) at which some
properties (for example the free energy) of the system change drastically.
It can be claimed[6] that the REM is the simplest statistical physics model of a disordered
system which exhibits a phase transition. The relevance of the REM lies in the existence of
this phase transition, which is useful in many different contexts. Most obviously, the REM
is used as a toy model to study mathematical and physical properties of disordered systems,
and is in some cases good enough to represent an actual system[7]. However, there are appli-
cations besides of that as well. For instance, the REM was used to model number partitioning
in the field of stochastic optimization [8]. That is, given n numbers X1, ..., Xn drawn i.i.d.
from some distribution, one is asked to find the partition into two subsets such that the sum
of the numbers in one subset is as close as possible to the sum of the numbers in the other set.

1.2 Application

In this report, we will adjust the REM in such a way that it is applicable to describe the
behaviour of folding compact heteropolymers[9], like proteins. As mentioned before, this is a
difficult process that is very relevant in chemistry and nanobiology, for example to study the
structure of DNA. Due to the complexity of these polymers, it is hard to quantify the way
heteropolymers structure and the REM can help to gain more insight in this problem, as it
can be studied analytically. However, the regular REM is hard to implement in the context
of folding polymers, as it is centred around states with zero energy[10]. Therefore, we will
have to study a REM with a non-zero mean in the rest of this report.

2



Chapter 2

The original REM

In this chapter, we take a closer look to the original Random Energy Model of Derrida. The
model will be quantified, different properties will be studied and a few useful results that are
already known for this model will be stated. Furthermore, we will introduce some relevant
lemmas and definitions.

2.1 Quantification of the original model

The REM stated in the first chapter will now be fully characterized as a standard statistical
mechanics model, which is usually defined by a set of configurations and an energy function
defined on this space. In our model, the set of the possible spins is called the state space
SN = {−1,+1}N . This set consist of N different elements on a lattice which can be either
spin up or spin down. The number of possible configurations now is 2N and the space looks
similar to Figure 2.1.
Note that the spacing between the spin elements is periodic. This is different to the build-up of
glasslike materials on the atomic scale, as shown in Figure 2.2. It is clear from this Figure that
the structure of glass is only seemingly symmetric: there is some kind of pattern, but we can
not recognize any symmetries. These kind of systems are sometimes called quasi-symmetric.
To understand why the REM can describe such a quasi-symmetric system, a slight change of
view should be made. Instead of considering the atoms to be located randomly according to
each other (which is the case in a glasslike material), the energies of the different components
are taken to be random and the locations to be periodic in the REM. This approach essentially
leads to the same properties, but has mathematical advantages.

The energy in our system will be fully determined by the Hamiltonian, which has the following
form:

HN (σ) =

N∑
i=1

Eiσi (2.1)
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Figure 2.1: State space with spins up and down Figure 2.2: Glasslike structure

where Ei are i.i.d. standard normal random variables and σi ∈ SN . So, every spot on the
lattice contributes a random energy Ei multiplied by a σi ∈ {+1,−1} to the Hamiltonian.
Note that for large N the sum of Gaussian variables is Gaussian again, so the Hamiltonian
in the REM is a Gaussian.

2.2 Free energy, the partition function

To study the properties of statistical physics models, a few concepts should be known, first
of which is the partition function Z. We can define this function as[11]:

ZN =
∑
σ∈SN

e−βHN (σ)

where β = 1
kBT

is a parameter ≥ 0 representing the inverse temperature (up to the Boltzmann
constant). The partition function can be used to measure the (Gibbs) probability of the
system to be in a certain state[12]:

P(σ) =
1

ZN
e−βHN (σ) (2.2)

Note that the probability in (2.2) is a stochastic variable itself. One could say that the REM
contains two different layers of randomness.
Furthermore, the partition function can be used to compute the free energy FN :

FN = − 1

β
lnZN

This free energy is the total energy needed to create the system at a temperature T, minus
the heat you can get ’for free’ from an environment at T. It is convenient to look at a quantity
f that is very much alike the free energy (we will call it the free energy density[12]):

f =
1

N
lnZN
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As claimed before, this quantity exhibits a phase transition (for example: see Bovier[7]). The
computation gives the following important result. Note the dramatic change in free energy
at the critical point βc.

Theorem 1. In the REM as described above 1

LimN→∞E(f) =

{
β2

2 , if β ≤ βc
β2

2 + (β − βc)βc, if β ≥ βc
(2.3)

where βc =
√

2 ln 2.

2.3 Entropy, density of states

Another important concept from statistical physics is the density of states Ω, which represents
the number of ways arranging things in the system. If we call the total number of states in
the system g′N , then the density of states is just that number multiplied by the probability
distribution function:

Ω(E) = g′Np(E)

From this we can calculate the entropy S of the system:

S(E) = kB ln Ω(E) (2.4)

This quantity has a few interesting physical properties. Entropy and temperature are linked
via T−1 = dS/dE. Temperature is always positive, so dS/dE > 0. Furthermore, the entropy
can never be negative.

2.4 Useful theorems and definitions

In the next chapter, we will go deeper into the mathematical structure behind the phase
transition of the REM. To do so, we need some definitions and theorems from statistics. The
first two are standard.

Markov’s inequality : For any non-negative random variable X: P(X ≥ t) ≤ E(X)
t for t > 0.

Chebyshev’s inequality : For any random variable Y with E(Y ) <∞:
P(|Y | ≥ t) ≤ 1

t2
E(Y 2).

The most important lemmas for the next chapter are those of Borel-Cantelli and Varadhan.
The lemma of Borel-Cantelli is useful for proving a statement to be almost sure. Almost sure
convergence is a strong convergence of a sequence of random variables and is widely used in

1That is: using the Hamiltonian with i.i.d. standard normal energies as described in equation (2.1) and
the state space SN .
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probability theory. We say that the sequence (Xn, n ≥ 1) converges almost surely to X if
P({ω ∈ Ω : Limn→∞Xn(ω) = X(ω)}) = 1. It is more common to state the Borel-Cantelli
lemma reversed, so for an event to happen almost surely not (probability 0)[13].

Borel-Cantelli lemma: Let E1, E2, ... be a sequence of events in some probability space.

If
∞∑
n=1

P(En) <∞, then P(lim supn→∞En) = P(
⋂∞
n=1

⋃∞
k≥nEk) = 0

Varadhan’s lemma requires a function with large deviation properties, so we have to intro-
duce these first. Large deviations have to do with the asymptotic behaviour of remote tails of
sequences of probability distributions and are closely linked to disordered systems. Therefore
we will use them later in this thesis. To get a feeling about what a large deviation is, we
formulate the central limit theorem in the following way[14]:

Central Limit Theorem Let X1, X2, ... be i.i.d. random variables. Let E(X1) = µ, Var (X1) =
σ2 and Sn = X1 + ...+Xn. Then:

1

σ
√
n

(Sn − µn) −−−→
n→∞

Z

Where Z is a standard normal random variable.

We see that the CLT quantifies the probability that Sn and µn differ an amount of order√
n. When we speak about large deviations, we mean differences or order n. This means the

deviations we talk about are indeed large.

We now state a few definitions on large deviations:

Definition 1. A function I is called lower semi-continuous[15] if ∀l ≥ 0 the sets {x : I(x) ≤
l} are closed for x in the domain of I.

Definition 2. A function I : X → [0,∞] is called a rate function [16] if it is lower semi-
continuous

Definition 3. A rate function I : X → [0,∞] is called a good rate function[16] if {x : I(x) ≤
l} is compact in X ∀l <∞.

Definition 4. Let I be a rate function on X, (γn) a sequence with γn → ∞ on X and
(µn) a sequence of probability measures on X. We say that (µn) satisfies a large deviation
principle[16] (LDP) with rate I and speed γn, if:

1. For all open sets O ⊂ X we have lim inf(n)
1
γn

lnµn(O) ≥ − infx∈O I(x).

2. For all closed sets C ⊂ X we have lim sup(n)
1
γn

lnµn(C) ≥ − infx∈C I(x)
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Varadhan’s lemma states a useful property of a function that satisfies a LPD. We will use
this lemma in the next chapter.

Varadhan’s lemma[17]: Suppose PN satisfies a LDP with rate function I. If F : χ → R is
continuous and bounded above, then limN→∞

1
N ln

∫
χe
NF (x) dPN (x) = sup(x∈χ)(F (x)−I(x)).

7



Chapter 3

Adding a mean

In this chapter, a minor modification of the Random Energy Model is studied. Instead of
a Gaussian distribution centred around zero, we will look at the properties of the REM
with Gaussian distributed variables around a non-zero mean. This means that the random
energies as described in the Hamiltonian in (2.1) are shifted. This leads to a new (and more
general) version of the model described in the previous chapter, so we want to explore what
effect adding a mean has on the free energy. Our goal is to find out whether or not the
phase transition in the model mentioned before still remains. If so, the new model could be
applicable in the context of heteropolymers.

3.1 Define model

The basic setup is equivalent to the normal REM as described in the introductory chapter.
We still define a spin system with independently distributed random variables, but we will
add a mean µ (and a less important variance term J2). All Xσ’s have the following probability
density:

pN (E) =
1√

2πJ2N
e−(E−Nµ)2/(2NJ2) (3.1)

And we define for any given set of energies {Ei} the distribution function FN by:

FN (x) =
1

2N
#{i : Ei ≤ xN} (3.2)

Where # counts the number of elements in the set. Note that FN is random itself, so we

have ’two layers of randomness’. We can write the partition function ZN (β) =
2N∑
i=1

e−βEi as:

ZN (β) = 2N
∫ ∞
−∞

e−Nβx dFN (x)

8



We can define the free energy density of the system as:

f(β) = − 1

βN
lnZN (β) (3.3)

3.2 Large deviation properties

We want to show that these distribution functions satisfy a large deviation property and that
there exists a certain critical value xc at which a sudden change in behaviour occurs. We
describe the system for values smaller and larger than this xc. The proof will follow a similar
approach as that of T.C. Dorlas[18], but with a nonzero mean added.

3.2.1 |x| > xc

Lemma 1. For |x| > xc = J
√

2 ln 2 + µ: lim supN→∞
1
N ln(1− FN (x)) = −∞

Proof. First, consider:

1− FN (x) =
2N

2N
−

2N∑
i=1

1{Ei≤xN}

2N
=

1

2N

2N∑
i=1

1{Ei>xN}

Therefore:

{{Ei} : FN (x) = 1} = {{Ei} :
2N∑
i=1

1{Ei>xN} = 0}

But every 1{Ei>xN} gives either 0 or 1, so equivalently:

{{Ei} : FN (x) = 1} = {{Ei} :
2N∑
i=1

1{Ei>xN} < 1}

Introduce AN := {{Ei} :
2N∑
i=1

1{Ei>xN} ≥ 1}. To be able to use the Borel-Cantelli lemma, we

want to show that:
∞∑
N=1

P(AN ) <∞ (3.4)

Noticing that
2N∑
i=1

1{Ei>xN} ≥ 0, Markov’s inequality implies:

P(AN ) = P{
2N∑
i=1

1{Ei>xN} ≥ 1} ≤ E{
2N∑
i=1

1{Ei>xN}}

9



= 2NP{Ei > xN} = 2N
∫ ∞
xN
pN (E) dE

=
2N√

2πJ2N

∫ ∞
xN
e−(E−Nµ)2/(2NJ2) dE

We consider two cases, the first of which is x > µ. We first change the boundaries of the
integral.

2N√
2πJ2N

∫ ∞
xN
e−(E−Nµ)2/(2NJ2) dE =

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE (3.5)

Within the boundaries of this integral we see that: E ≥ (x − µ)N , thus E
N(x−µ) ≥ 1 (where

we used that x > µ) and we obtain:

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE ≤ 2N√

2πJ2N

∫ ∞
(x−µ)N

E

(x− µ)N
e−E

2/(2NJ2) dE

=
2N√

2πJ2N

J2

x− µ
e−(x−µ)2N/2J2

=
2N√
2πN

J

x− µ
e−(x−µ)2N/2J2

In short, for x > µ:

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE ≤ 2N√

2πN

J

x− µ
e−(x−µ)2N/2J2

(3.6)

We now consider the case where x ≤ µ. Equation (3.5) still holds, but now x − µ ≤ 0. We
split the integral in two parts:

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE =

2N√
2πJ2N

(

∫ 0

(x−µ)N
e−E

2/(2NJ2) dE +

∫ ∞
0
e−E

2/(2NJ2) dE)

The second integral is just a normal distribution over a half-infinite interval, so we can say
that this is integral is no larger than 1

2 (it even is 1
2). Within the boundaries of the first

integral we see that: 0 ≥ E ≥ (x − µ)N , thus E
N(x−µ) ≥ 1 and we obtain a similar upper

bound as before:∫ 0

(x−µ)N
e−E

2/(2NJ2) dE ≤
∫ 0

(x−µ)N

E

N(x− µ)
e−E

2/(2NJ2) dE =
J2

x− µ
[e−(x−µ)2N/2J2 − 1]

This gives: ∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE ≤ (

J2

x− µ
e−(x−µ)2N/2J2 − 1) + 1/2

And so:

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE ≤ 2N√

2πJ2N
[(

J2

x− µ
e−(x−µ)2N/2J2 − 1) + 1/2]

10



=
2N√

2πJ2N
[
J2

x− µ
e−(x−µ)2N/2J2 − 1/2]

Thus for x < µ:

2N√
2πJ2N

∫ ∞
(x−µ)N

e−E
2/(2NJ2) dE ≤ 2N√

2πJ2N
[
J2

x− µ
e−(x−µ)2N/2J2 − 1/2] (3.7)

So in both cases it is true that (see equations (3.6) and (3.7)):

P(AN ) ≤ 2N√
2πJ2N

∫ ∞
xN
e−(E−Nµ)2/(2NJ2) dE ≤ 2N√

2πN

J

x− µ
e−(x−µ)2N/2J2

(3.8)

We assumed that |x| > xc = J
√

2 ln 2 +µ, so (x−µ)2

2J2 > ln 2. Furthermore, the following series
converges to a value c:

∞∑
N=1

J

x̃
√

2πN
eN(ln 2−x̃2/(2J2)) → c (3.9)

Noticing that eN ln 2 = 2N we obtain by equation (3.9) (replacing x̃ = x− µ):

∞∑
N=1

J̃

x̃
√

2πN
eN(ln 2−x̃2/(2J2)) =

∞∑
N=1

2N
2J2

(x− µ)
√

2πN
e−N(x−µ)2/(2J2) ≥

∞∑
N=1

P(AN ) (3.10)

This proves equation (3.4). By the Borel-Cantelli lemma:

P[
∞⋂
k=1

∞⋃
N=k

AN ] = 0

But then:

1 = P[{
∞⋂
k=1

∞⋃
N=k

AN}c] = P[{Ei} ∈ {
∞⋂
k=1

∞⋃
N=k

AN}c] = P[{Ei} ∈
∞⋂
k=1

∞⋃
N=k

AcN ]

So {Ei} ∈
⋂∞
k=1

⋃∞
N=k A

c
N almost surely for all i. This means that:

∀i∃k ∈ N : ∀N ≥ k : {Ei} ∈ AcN

But:

{Ei} ∈ AcN =⇒ {Ei} ∈ {{Ei} :
1

2N

2N∑
i=1

1{Ei>(x+µ)N}<1}} = {{Ei} : FN (x) = 1}

So almost surely for |x| > xc: {Ei} ∈ {{Ei} : FN (x) = 1}. This proves the lemma:

lim sup
N→∞

1

N
ln(1− FN (x)) = lim

x→1
ln(1− x) = −∞ , a.s.

11



3.2.2 |x| < xc

Lemma 2. For 0 < |x| < xc: limN→∞
1
N ln(1− FN (x)) = − (x−µ)2

2J2

Proof. Let GN be the scaled distribution function to the density pN :

GN (x) =

∫ xN

−∞
pN (E) dE (3.11)

Then, by Chebyshev’s inequality, for ε ∈ (0, 1):

P [|GN (x)− FN (x)| ≥ ε(1−GN (x))] ≤ 1

ε2(1−GN (x))2
E[(GN (x)− FN (x))2] (3.12)

Working out the last term, by noticing that the function GN (x) is deterministic and using
the linearity of the expectation:

E[(GN (x)− FN (x))2] = E[G2
N (x)− 2GN (x)FN (x) + F 2

N (x)]

= G2
N (x)− 2E[FN (x)]GN (x) + E[F 2

N (x)]

Recall that FN (x) = 1
2N

2N∑
i=1

1{Ei≤xN} to obtain:

E[FN (x)] =
1

2N
2N
∫ xN

−∞
pN (E) dE = GN (x) (3.13)

We are now left with:

G2
N (x)− 2E[FN (x)]GN (x) + E[F 2

N (x)] = G2
N (x)− 2GN (x)GN (x) + E[F 2

N (x)] (3.14)

= −G2
N (x) + (

1

2N

2N∑
i=1

1{Ei≤xN})
2

=
1

22N

2N∑
i=1

2N∑
j=1

(E[1{Ei≤xN}]E[1{Ej≤xN}])−G
2
N (x)

If i = j, both terms in the expected value will be the same (either 0 or 1), so the power 2
can be left out. We can thus split the sum in the above equation and rewrite to:

1

22N
[
∑
i 6=j

(E[1{Ei≤xN}]E[1{Ej≤xN}]) +
2N∑
i=1

E[1{Ei≤xN}]]−G
2
N (x)

=
1

22N
[
∑
i 6=j

G2
N (x) +

2N∑
i=1

GN (x)]−G2
N (x)

12



As the term in the sums does not depend on i or j whatsoever, we can say:

=
1

22N
[2N (2N − 1)G2

N (x) + 2NGN (x)]−G2
N (x)

= 2−N (2N − 1− 2N )G2
N (x) + 2−NGN (x) = 2−NGN (x)(1−GN (x))

So altogether we can say that

E[(GN (x)− FN (x))2] = 2−N (2N − 1− 2N )G2
N (x) + 2−NGN (x) = 2−NGN (x)(1−GN (x))

(3.15)
Plugging in equation (3.15) into equation (3.12) gives:

P [|GN (x)− FN (x)| ≥ ε(1−GN (x))] ≤ GN (x)

ε22N (1−GN (x))

To get an upper bound for the last term in the above equation, we use the following
inequality[19]: ∫ ∞

a
e−u

2/2 du >
1

a+ a−1
e−a

2/2 (3.16)

To use this inequality we rewrite our expression for GN (x), using equations (3.1) and (3.11)
and then change variables:

GN (x) = 1−
∫ ∞
xN

1√
2πJ2N

e−(E−Nµ)2/(2NJ2) dE

= 1− 1√
2πJ2N

∫ ∞
√
N x−µ

J

e−u
2/2 du

So with the inequality (3.16) we obtain:

GN (x) < 1− 1√
2π

1√
N x−µ

J + J√
N(x−µ)

e−
N(x−µ)2

2J2

In a similar way:

1−GN (x) >
1√
2π

1√
N x−µ

J + J√
N(x−µ)

e−
N(x−µ)2

2J2

This leads to:

P [|GN (x)− FN (x)| ≥ ε(1−GN (x))] ≤ 1

ε22N

But then for N large enough, by the Borel-Cantelli lemma almost surely:

|GN (x)− FN (x)| < ε(1−GN (x))

And therefore:

(1− ε)(1−GN (x)) < 1− FN (x) < (1 + ε)(1−GN (x))

This proves the lemma.
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3.2.3 |x| = xc

Lemma 3. For x = xc: lim supN→∞
1
N ln(1− FN (xc)) ≤ − (xc−µ)2

2J2

Proof. Use Chebyshev (notice that FN (x) < 1):

P [1− FN (xc) > N2−N ] = P [|1− FN (xc)| > N2−N ] ≤ 22N

N2
E[(1− FN (xc))

2]

=
1

N2

2N∑
i=1

2N∑
j=1

E[1{Ei>xcN}1{Ei>xcN}]

=
1

N2
[
∑
i 6=j

(1−GN (xc))
2 +

2N∑
i=1

1−GN (xc)]

=
1

N2
[2N (2N − 1)(1−GN (xc))

2 + 2N (1−GN (xc))]

=
2N

N2
(1−GN (xc))(1 + (2N − 1))(1−GN (xc)) ≤

1

N2
√
N

Where in the last inequality we used that:

1−GN (x) =

∫ ∞
xcN

1√
2πJ2N

e−(E−Nµ)2/(2NJ2) dE

So by equation (3.11) with x = xc:

1−GN (x) ≤ 1√
2πN

J

xc − µ
e−(xc−µ)2N/2J2

=
1

2
√
πN ln 2

e−N ln 2 =
2−N

2
√
πN ln 2

Now we see that 1
N2
√
N
→ 0 for N →∞, so for N large enough we have with probability 1 that

1− FN (xc) ≤ N2−N . We finish the proof of this lemma by noticing that − (xc−µ)2

2J2 = − ln 2.

3.2.4 Open and closed sets

We now found a function that can possibly describe a large deviation property (LDP). This
is the function I(x):

I(x) =

{
(x−µ)2

2J2 := K(x), if |x| ≤ xc
∞, if |x| > xc

(3.17)

where xc = J
√

2 ln 2+µ. This function I : R→ [0,∞] is a good rate function. Firstly, we can

easily see that this function is lower semi-continuous (the value xc is x2c
2J2 and not +∞ and

has only two discontinuities). Furthermore {x : I(x) ≤ l} has to be compact in R ∀l < ∞.
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We see that the set {x : I(x) ≤ l} is bounded and closed as all x < ∞ lie in the interval
[−xc, xc].

There are two things left to prove in order to show that I(x) is the rate of the LDP on the
distribution functions FN . First we show that

∀O ⊂ R open : lim inf
N→∞

1

N
ln(1− FN (O)) ≥ inf

x∈O
I(x) (3.18)

If |x| > xc, we can use the first lemma. In this case, we have that I(x) = +∞ and thus
−I(x) = −∞. So for all x in the open set (xc,∞) ⊂ R we can say that I(x) = −∞ as well.
We can use a similar approach for (−∞,−xc). Choose an open set O in the subset (xc,∞).
Then in O we have that lim infN→∞

1
N ln(1−FN (O)) ≤ lim supN→∞

1
N ln(1−FN (O)) = −∞.

It now follows that lim infN→∞
1
N ln(1− FN (O)) ≥ − infx∈O I(x), which shows that (3.18) is

true.

The second thing to prove is:

∀C ⊂ R closed : lim sup
N→∞

1

N
ln(1− FN (C)) ≤ − inf

x∈C
I(x) (3.19)

If |x| ≤ xc, we can use lemma 2 and 3. In this case, we have that for 0 < |x| < xc:
limN→∞

1
N ln(1 − FN (x)) = −K(x). Then by definition lim supN→∞

1
N ln(1 − FN (x)) =

−K(x). For x = xc we have that: lim supN→∞
1
N ln(1 − FN (xc)) ≤ −K(x), so for the total

closed interval [−xc, xc], we have that lim supN→∞
1
N ln(1 − FN (C)) ≤ −K(x). Since K(x)

is strictly convex on the interval [−xc, xc], there exists an infimum of K, namely at x = µ.
Notice that K(x = µ) = 0 and that µ ≤ xc. For every closed set C within −xc, xc we can
find such an infimum. It then follows that lim supN→∞

1
N ln(1 − FN (C)) ≤ − infx∈C K(x),

which proves the statement in (3.19).

3.2.5 Main theorem

Using the lemmas obtained in the previous section we can set up the following theorem to
describe a LDP of the system.

Theorem 2. With probability 1, the random probability measures with distribution functions
FN satisfy a LDP with rate function I given by

I(x) =

{
(x−µ)2

2J2 , if |x| ≤ xc
∞, if |x| > xc

(3.20)

where xc = J
√

2 ln 2 + µ.
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3.3 Finding the free energy

We now want to prove the next expression for the free energy in the system by making use
of Varadhan’s lemma:

Theorem 3. The free energy density f of the REM as described in section 3.1 is:

−βf(β) =

{
ln 2 +−β2J2 + βµ− (βJ2−µ)2

2J2 , if βJ2 − µ ≤ xc
β(J
√

2 ln 2 + µ), if βJ2 − µ > xc

Proof. Take a function F : χ → R that maps x 7→ −βx. We choose χ to be the interval
[−xc, xc] ⊂ R. It is obvious that the function F is continuous and bounded above on χ, as
xc is finite and β is a constant (with respect to N and x). From the above theorem, we take
the rate function I on the specific interval. Then by Varadhan’s lemma:

lim
N→∞

1

N
ln

∫
χ
e−βNx dFN (x) = sup

(x∈χ)
[−βx− (x− µ)2

2J2
] (3.21)

We see from equation (3.3) that the left hand side is equal to −βf(β) up to a factor ln 2. So:

−βf(β)− ln 2 = sup
(x∈χ)

[−βx− (x− µ)2

2J2
] (3.22)

To find the value of this supremum, split the expression in two separate parts. If βJ2−µ ≤ xc
we use just that value to calculate the supremum. So the supremum is (−βx− x2

2J2 )|x=βJ2−µ =

−β2J2 + βµ− (βJ2−µ)2

2J2 . If βJ2 − µ > xc, the supremum will arise if we choose −βx as large

as possible, so x = −xc and we get (−βx− x2

2J2 )|x=−xc = β(J
√

2 ln 2 +µ)− ln 2. So if we plug
these results into equations (3.21) and (3.22) we obtain Theorem 3.

This result is remarkable in the existence of the critical point xc. That is, there exists a point
where the free energy of the system suddenly makes a transition between two regimes. This
means there still exists a certain critical temperature Tc in the REM with non-zero mean
Gaussian distributed energies.

3.4 Entropy of the system

In the first chapter we introduced the concept of entropy. Using the fact that each component
in our system consists of only two different spin states, we can say that (using equations (3.1)
and (2.4)):

S(E) = kB ln(2Np(E)) = kB[ln 2N + ln(
1√

2πJ2N
)− (E −Nµ)2

2NJ2
]

= kB[N ln 2− 1

2
ln(2πJ2N)− (E −Nµ)2

2NJ2
]

16



If we assume that ln(2πJ2N) is small enough compared to the other terms, we see that:

S(E) ≈ kB[N ln 2− (E −Nµ)2

2NJ2
] (3.23)

Which can be written as:

S(E)

NkB
≈ − 1

2J2
[
E

N
]2 − µ

J2
[
E

N
] + ln 2 +

µ2

2J2

This is a parabolic expression and has the following form:

Figure 3.1: Shape of the entropy function. Only the first half positive part of the parabola
is physical

Via equation (3.23) we can now easily obtain an approximate value for Ec, as S(Ec) = 0:

(Ec −Nµ)2

2NJ2
= N ln 2 =⇒ Ec −Nµ = NJ

√
2 ln 2

And this expression leads to a critical temperature Tc:

1

Tc
=
dS

dE
|E=Ec = −kB

(
Ec −Nµ
NJ2

)
=
kB
√

2 ln 2

J

This leads to a critical βc =
√

2 ln 2
J . Furthermore, note that Ec

N = µ+ J
√

2 ln 2 is exactly the
xc we found in the first theorem of this chapter. This means that the assumption we made
in (3.23) is true almost surely for N →∞.
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Chapter 4

Application

4.1 Problem description

We will now take a deeper look into the problem of compact heteropolymers. A heteropolymer
is a long molecule formed from subunits (monomers) that are not all the same, such as a
protein composed of various amino acid subunits. The long strings of the proteins can interact
with other proteins, making them fold together. Biophysicists usually view them as shown in
Figure 4.1, which simplifies the underlying chemical structure. Interactions between proteins
play a key role in many biological processes[1], as it is closely linked to the folding and copying
of DNA. Due to the complexity of the structure of a protein, most models that describe
protein folding require heavy mathematics, leading to high simulation and computing times.
To avoid this, the REM was suggested in the context of heteropolymers.

Figure 4.1: A typical example of folded proteins

We will first make a rough approximation about the shape of heteropolymers. In the light of
this report, it should be enough to regard them shaped as chains of monomers. Looking at
a collection of heteropolymers, the configuration is remarkably compact in many biological
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Figure 4.2: A compact configuration in 2D Figure 4.3: A compact configuration in 3D

processes. For instance, a typical human DNA molecule would have an approximate length
of 0.2 mm[9] if it behaved like a random chain, whereas a typical cell nucleus diameter is in
the order of microns. Therefore, the structure of the folded polymers has to be extremely
compact, which we can see mathematically as a collection of all maximally compact config-
urations on a lattice. Figure 4.1 shows a maximally compact configuration of a 4x4 lattice
(N=16): every lattice point is visited once by the polymer. This Hamiltonian walk is by no
means unique and does not necessarily have to be a circuit. For a fixed volume, a higher
number of N will lead to a more closely packed lattice. In Figure 4.2 a 3D polymer on a
3x3x3 cubic lattice is shown. This 27-mer has become a standard for heteropolymer studies.
In general biophysicists are most interested in three-dimensional globular shapes [20].

Every configuration of the polymers will cost a different amount of energy, so the way the
polymers are structured will be dependent of temperature. For low temperatures, the low
energy states will most likely be preferred. A decreasing temperature will force the polymers
to rearrange and there could even exist a certain temperature at which the system ’freezes’
into a single configuration: a transition to the ground state. Such a transition typically exists
[21], which motivates the application of the REM.

4.2 REM for heteropolymers

To model a system of folding proteins, we start with stating that there are still two possibilities
for each point on the lattice: it is either occupied by a certain monomer, or not. The state
space thus remains SN = {−1,+1}N (or one could rename -1 to 0). 1 represents a lattice point
that is occupied by a monomer, −1 an empty spot. The energy of each configuration of the
heteropolymer will be dependent on the interaction between neighbouring lattice points. The
closer two monomers are, the more they will influence each other. Furthermore, interactions
amongst proteins appear to be dominated by the short-range role of hydrophobicity[21]. For
each pair of monomers we define the interaction energy B between the two momomers1. To
avoid too many mathematical complications, we make a nearest-neighbour approximation.

1For now we will talk about monomers, but normally a single lattice point is not necessarily representing
a single monomer, but a small arrangement of amino acids[22]. So to be precise, we should talk about
”quasimonomers”.
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Let us define the Hamiltonian of a certain monomer si at a certain position ri on the lattice
in the following way:

H(si, ri) =

N∑
i,j

Bij∆(ri − rj) (4.1)

Where we have a finite number q of different monomers such that si ∈ {1, ..., q} on the
lattice. The dirac function ∆ makes the nearest neighbour approximation: ∆(a) = 1 and
∆(a > r) = 0 where a is the lattice spacing.

The interaction energies B are still chosen according to the REM:

P(Bij) =
1√

2πNJ2
e−(Bij−Nµ)2/2NJ2

(4.2)

So, in order to apply the REM, we have to assume that the overall energy levels of the
different configuration possibilities are Gaussian i.i.d. distributed (and thus do not influence
each other). We also see now the necessity of adding a mean to the REM. We can interpret
the variable µ as the mean interaction energy B̄, which is typically nonzero.

4.3 Different states of the heteropolymers

In the heteropolymer model we used in this chapter, the total system is defined by two
parameters: µ and J . Therefore, we expect the model to have three different phases. These
3 phases are respectively the folded, glassy and random phase and are indeed found in the
REM[24].
In the random state, an exponential number of globular conformations dominate equilibrium.
In the glassy state, conformations that are not the target conformation dominate below the
critical temperature Tc. In the folded state, the target conformation dominates equilibrium.

4.4 Folding mechanism and the Metropolis algorithm

Let us return to the REM for folding of random heteropolymers and consider a system in
2D. We will study the folding behaviour of a polymer by using the Metropolis algorithm[25].
In our case, this algorithm first chooses a random configuration of a polymer string on the
lattice. We will later adjust this configuration step by step, creating a Markov chain. We
take the probability for the configuration X to arise according to the Boltzmann distribution,
so the distribution ρ of the configurations is:

ρ(X) = e−βH{X} (4.3)
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We now select a monomer randomly and calculate how much the total energy would change
if we place it to another position. We then get a new configuration X ′, with probability
e−βH{X

′}.
The difference in energy can easily be calculated using the Hamiltonian defined in equation
(4.1):

∆E = H(X)−H(X ′) (4.4)

But what is the probability of such a transition from configuration X to X ′ to occur? If
H(X ′) < H(X), the transition is energetically favourable, so we take the transition proba-
bility T (X → X ′) equal to 1.
IfH(X ′) > H(X), we have to take a closer look. It is unclear what the probability T (X → X ′)
will be, but we know the probability distribution of being in configuration X at a certain step
t in the Markov chain: ρ(X, t). Two values of ρ(X) at different time steps t and t + 1 will
differ because of transitions between state X and the possible states X ′. The next equation,
which is called the master equation, evaluates this difference in order to arrive at a time
evolution equation.

ρ(X, t+ 1)− ρ(X, t) = −
∑
X′

T (X → X ′)ρ(X, t) +
∑
X′

T (X ′ → X)ρ(X ′, t) (4.5)

We are looking for the folded state of the polymer, which is a stationary state (we assume
the protein is stable once it has been folded). Therefore, the master equation should equal 0
and we immediately see a special solution:

T (X → X ′)ρ(X) = T (X ′ → X)ρ(X ′) (4.6)

Note that the exact value of t is in this case not relevant, as the stationary solution should
be valid for all t ≥ tf for some tf . Rewrite equation (4.6) to obtain:

T (X → X ′)

T (X ′ → X)
=
ρ(X ′)

ρ(X)
=
e−βH(X′)

e−βH(X)
= e−β(H(X′)−H(X)) (4.7)

We have assumed that H(X ′) > H(X), so T (X ′ → X) = 1. But then:

T (X → X ′) = e−β(H(X′)−H(X)) (4.8)

We can now summarize the Metropolis algorithm in the following way. First choose an initial
configuration. Then:

1. Select a random monomer and place it somewhere else (within restrictions of the poly-
meric bounds), creating a configuration X ′.

2. Calculate the energy difference ∆E that this change in configuration would cause.

3. If ∆E < 0, make X ′ the new distribution. Otherwise, make X ′ the new distribution
with probability e−β∆E .

4. Repeat.

By using this algorithm, we find a stationary solution that is energetically favourable to the
system. We want to study under which circumstance (parameters β, chain length, ...) the
proteins fold.
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4.4.1 Notes on implementation

To generate an initial polymer configuration, a random chain on a lattice is generated. Every
point on the lattice is represented by either a 0 (an empty space) or a letter (a certain
monomer). Two examples of starting configurations are plotted in Figure 4.4. On the left
is a 50-monomer-long polymer, on the right the polymer consists of 100 monomers. Both
images show a 50× 50 lattice, blue represents an open spot, yellow a monomer.
We chose for a lattice in which the upper row is connected to the lower row and the left
column to the right column. In this way, the two dimensional space represents the spherical
outer surface of a torus. We see this effect in the Figure on the right in Figure 4.4. In later
simulations, the model could be extended to three dimensions as well.
The random heteropolymers were created by the program as shown in the Appendix. From
a starting point on the lattice a random walk is generated, creating a random polymer.

Figure 4.4: Two starting configurations on a 50× 50 lattice. Blue lattice points represent an
empty spot, yellow stands for a certain monomer.

Once an initial configuration is obtained, we can start using the Metropolis algorithm. A
certain monomer is selected and placed to another position. The positions that are allowed
by the polymeric bounds are the neighbouring lattice points, as long as they are not occupied
by another monomer yet. Acceptance of the new structure is determined by using the energy
expressions described in step 2 and 3 of the algorithm.
From some preliminary studies[26] the parameters were taken to be µ = −2, J = 1, with
units in quantities of kBT . The used program can be found in the Appendix.

4.4.2 Simulation results

After running the algorithm for different values of β, sequences were unable to fold to a
compact conformation within 108 Monte Carlo steps. Results give conformations of polymers
that are very similar to the arbitrarily chosen initial configurations: the configuration are not
observably more compact. As an example, the result of a simulation for β = 0.01 is shown
below. If the value of β is increased, the effects are even smaller. This means our model is
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not yet good enough to describe the folding process. In the next sections, we will investigate
a better approach.

Figure 4.5: Simulation result for β = 0.01. The initial configuration on the left has barely
changed compared to the final configuration after 108 steps.

4.5 Validity of the REM for heteropolymer folding

At first sight the REM can only be true for a system that actually behaves as if the inter-
actions act independently2. It was shown that the REM is a good model for these kind of
systems (see Shakhnovich and Gutin[23]) for small configurations. However, it is not always
true that two polymer configurations have interactions that are independent from each other.
Pande, Yu et al. [24] give a good example of that: take two polymer configurations that are
very much alike except for a small rearrangement (let us call them ’similar packings’). These
two configurations are of course close in energy. Therefore, the REM approach can only give
an approximation to the compact folding problem. Luckily these kind of ’similar packings’
are very rare3 , which makes the REM a very good approximation in this setting.

However, the REM has some disadvantages in modelling protein folding. One of these is a
problem known by biophysicists as the speed-stability paradox[27]: for a protein, the lowest
possible energy state occurs significantly more frequently at a temperature below Tc. Thus,
the folding of the polymer happens at a very low temperature, which means the dynamics
of the system are slow as the number of states in the system decreases drastically and (as
mentioned above) the different energy configurations do not have much in common. So, to
change to the lowest energy state, the polymer has to rearrange many of its monomers. This
contradicts the observation that most proteins fold easily and fast. Of course, the REM is
created to describe random heteropolymers and naturally occurring polymers (such as DNA)
are a special kind of polymers. It has been suggested that biological heteropolymers were

2The interactions at different sites are uncorrelated.
3This is due to the heavy constraints that the required compactness lies upon the configuration.
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modified to more easily foldable versions over time due to evolution. We want to describe
naturally occurring proteins with the REM, so in the next section we will extend our model.

4.6 Designed REM

To design a model that describes the folding of naturally occurring proteins in a better way,
we add a single state with low energy. We call this energy the native energy En and it is now
the lowest energy state possible (En < Ec). In the figure below, the new system is drawn in
the same way as in Figure 3.1.
The probability to find the system in the native state now is e−βEn

Zn(β) with Zn(β) = e−βEn+Z(β)

and Z(β) the partition function of the normal REM.

Figure 4.6: Shape of the entropy function for the designed REM. Again, only the first half
positive part of the parabola is physical

What are the properties of this new system? First of all, there will be a new folding tem-
perature Tf , which we want to compute. There will also be a new folding energy Ef , a
new folding βf , etc. Using a ”tangent construction” shown in the above Figure, we see that
dS
dE |Ef '

S(Ef )/kB
Ef−En . Now we can derive an expression for the folding temperature by using

equation (3.23) for E = Ef :

βf =
1

kBTf
=

1

kB

dS

dE
|Ef =

N ln 2− (Ef−Nµ)2

2NJ2

Ef − En
(4.9)

We now notice that E = Nµ −NJ2β (so Ef = Nµ −NJ2βf and En = Nµ −NJ2βn) and
1
2(βcσ)2 = ln 2. Plug this into equation (4.9) to get:

βf =
N 1

2(βcσ)2 − (Nµ−NJ2βf−Nµ)2

NJ2

Nµ−NJ2βf −Nµ+NJ2βn
=

β2
c − β2

f

2(βn − βf )

This equation can be solved for βf :

β2
f − 2βnβf + β2

c = 0
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βf = βn ±
√
β2
n − β2

c

Where we should use the minus sign in the last equation, as the other one is not physical.
From this expression we see that we can make the model fold at higher temperature levels
by increasing the energy difference between En and Ec.
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Chapter 5

Conclusions

Theoretically, it is possible to use the Random Energy Model for studying the folding of
random heteropolymers. We proved that a version of the model in which the Hamiltonians
satisfy a Gaussian probability distribution around a non-zero mean still leads to a phase
transition at a critical point and found an expression for the free energy and entropy.
We wrote a simple model that simulates the behaviour of folding polymers. However, this
model is not very accurate in describing the actual process. Other versions of the REM, such
as the designed REM, may give a better result, although this was not proven in this thesis.
Even without a solid simulation of the difficult protein folding process, the application of
the REM in the field of random heteropolymers is still useful to gain insight in the different
phases and the transition temperature of a polymer.
Properties of the REM heteropolymer model that are left to explore consist of a simula-
tion of the designed REM as it was suggested in this thesis, the effect of not making the
nearest-neighbour approximation or the extension of the simulation to 3D. Some mathe-
matical consequences of the REM were intentionally left out of this thesis. For example, the
distinction between annealed and quenched averages was not made, as was the whole concept
of replica theory.
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Chapter 6

Appendix

6.1 Matlab code for creating a random heteropolymer

1 f unc t i on [ s t a t e spac e , p o s i t i o n s ] = create po lymer ( polymer length ,
s t a t e spac e , numSpinsPerDim )

2 %Given a square l a t t i c e and a polymer l ength gene ra t e s a random
chain on

3 %the l a t t i c e
4 Alphabet=char ( ’ a ’ +(1:26)−1) ’ ;
5 [ I , J]= ndgrid ( 1 : 2 6 , 1 : 2 6 ) ;
6 I=I ’ ; J=J ’ ;
7 XX=[Alphabet ( I ( : ) ) , Alphabet ( J ( : ) ) ] ;
8 XX=s t r v c a t ( Alphabet ,XX) ; %I s now a random chain o f

l e t t e r , but can r e p r e s e n t any s e t o f monomers
9 polymer = XX( 1 : po lymer length ) ;

10 s t a r t x = round ( numSpinsPerDim∗ rand ) +1; %Random s t a r t i n g po int on
l a t t i c e

11 s t a r t y = round ( numSpinsPerDim∗ rand ) +1;
12 s t a t e s p a c e ( s t a r t x , s t a r t y ) = polymer (1 ) ;
13 row = s t a r t x ;
14 c o l = s t a r t y ;
15 p o s i t i o n s = [ row , c o l ] ; %Quick l o c a l i s a t i o n o f

monomers
16 f o r i = 1 : ( polymer length −1) %Generate random chain
17 above = mod( row − 1 − 1 , s i z e ( s t a t e spac e , 1 ) ) + 1 ;
18 below = mod( row + 1 − 1 , s i z e ( s t a t e spac e , 1 ) ) + 1 ;
19 l e f t = mod( c o l − 1 − 1 , s i z e ( s t a t e spac e , 2 ) ) + 1 ;
20 r i g h t = mod( c o l + 1 − 1 , s i z e ( s t a t e spac e , 2 ) ) + 1 ;
21 ne ighbors = [ above , below , l e f t , r i g h t ] ;
22 check = 0 ;
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23 counter = 0 ;
24 whi le check == 0 ;
25 new = randi (4 ) ;
26 i f new == 1
27 i f s t a t e s p a c e ( above , c o l ) == 0
28 row = above ;
29 end
30 e l s e i f new == 2
31 i f s t a t e s p a c e ( below , c o l ) == 0
32 row = below ;
33 end
34 e l s e i f new == 3
35 i f s t a t e s p a c e ( row , l e f t ) == 0
36 c o l = l e f t ;
37 end
38 e l s e i f new == 4
39 i f s t a t e s p a c e ( row , r i g h t ) == 0
40 c o l = r i g h t ;
41 end
42 end
43 i f s t a t e s p a c e ( row , c o l ) == 0
44 check = 1 ;
45 s t a t e s p a c e ( row , c o l ) = polymer ( i +1) ;
46 p o s i t i o n s = [ p o s i t i o n s , row , c o l ] ;
47 end
48 counter = counter +1;
49 i f counter > 100
50 check =1;
51 end
52 end
53 end
54 p o s i t i o n s
55 end

6.2 Metropolis algorithm

1 c l e a r a l l ; c l o s e a l l ; c l c ;
2 numSpinsPerDim = 10 ;
3

4 %c r e a t e i n i t i a l random polymer
5 s t a t e s p a c e = ze ro s ( numSpinsPerDim , numSpinsPerDim ) ;
6 polymer length = 20 ;
7 [ s t a t e spac e , p o s i t i o n s ] = create po lymer ( polymer length ,

s t a t e spac e , numSpinsPerDim ) ;
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9 %model parameters
10 N = numSpinsPerDim∗numSpinsPerDim ;
11 mu = −2;
12 J = 1 ;
13 i n i t i a l = s t a t e s p a c e ;
14 i n i t i a l p o s i t i o n s = p o s i t i o n s ;
15 new sta t e space = s t a t e s p a c e ;
16 new pos i t i on s = p o s i t i o n s ;
17 beta = 0 . 1 ;
18 E = 0 ;
19 E new = 0 ;
20 pos s ib = [ ] ;
21 E i s o l a t i o n = 0 ;
22

23 f o r i =1:100000
24 %pick a random monomer
25 p i c k c o l = 2∗ randi ( numel ( p o s i t i o n s ) /2) ;
26 c o l = p o s i t i o n s ( p i c k c o l ) ;
27 row = p o s i t i o n s ( p i c k c o l −1) ;
28 %f i n d i t s ne ighbours
29 ab = mod( row − 1 − 1 , s i z e ( s t a t e spac e , 1 ) ) + 1 ;
30 be = mod( row + 1 − 1 , s i z e ( s t a t e spac e , 1 ) ) + 1 ;
31 l e = mod( c o l − 1 − 1 , s i z e ( s t a t e spac e , 2 ) ) + 1 ;
32 r i = mod( c o l + 1 − 1 , s i z e ( s t a t e spac e , 2 ) ) + 1 ;
33 ne ighbors = [ ab , be , l e , r i ] ;
34 i f s t a t e s p a c e ( ab , c o l ) == 0 ;
35 pos s ib = [ poss ib , ab , c o l ] ;
36 end
37 i f s t a t e s p a c e ( be , c o l ) == 0 ;
38 pos s ib = [ poss ib , be , c o l ] ;
39 end
40 i f s t a t e s p a c e ( row , l e ) == 0 ;
41 pos s ib = [ poss ib , row , l e ] ;
42 end
43 i f s t a t e s p a c e ( row , r i ) == 0 ;
44 pos s ib = [ poss ib , row , r i ] ;
45 end
46 i f numel ( pos s ib ) ˜=0
47 number = randi ( numel ( pos s ib ) ) ;
48 i f mod(number , 2 ) ==0
49 new col = pos s ib ( number ) ;
50 new row = pos s ib ( number−1) ;
51 end
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52 i f mod(number , 2 ) ==1
53 new row = pos s ib ( number ) ;
54 new col = pos s ib ( number+1) ;
55 end
56 new sta t e space ( new row , new col ) = s t a t e s p a c e ( row , c o l ) ;
57 new sta t e space ( row , c o l ) =0;
58 new pos i t i on s ( p i c k c o l ) = new col ;
59 new pos i t i on s ( p i c k c o l −1) = new row ;
60 end
61

62 %check energy
63 f o r row = 1 : numSpinsPerDim
64 f o r c o l = 1 : numSpinsPerDim
65 n1 = normrnd (N∗mu, s q r t (N) ∗J ) ;
66 n2 = normrnd (N∗mu, s q r t (N) ∗J ) ;
67 n3 = normrnd (N∗mu, s q r t (N) ∗J ) ;
68 n4 = normrnd (N∗mu, s q r t (N) ∗J ) ;
69 i f s t a t e s p a c e ( row , c o l ) ˜= 0
70 E above = s t a t e s p a c e (mod( row − 1 − 1 , s i z e (

s t a t e spac e , 1 ) ) + 1 , c o l ) ∗n1 ;
71 E below = s t a t e s p a c e (mod( row + 1 − 1 , s i z e (

s t a t e spac e , 1 ) ) + 1 , c o l ) ∗n2 ;
72 E l e f t = s t a t e s p a c e ( row , mod( c o l − 1 − 1 ,

s i z e ( s t a t e spac e , 2 ) ) + 1) ∗n3 ;
73 E r ight = s t a t e s p a c e ( row , mod( c o l + 1 − 1 ,

s i z e ( s t a t e spac e , 2 ) ) + 1) ∗n4 ;
74 E = E + E above + E below + E l e f t + E r ight ;
75 end
76 i f n ew sta t e space ( row , c o l ) ˜= 0
77 E above new = new sta t e space (mod( row − 1 − 1 ,

s i z e ( new state space , 1 ) ) + 1 , c o l ) ∗n1 ;
78 E below new = new sta t e space (mod( row + 1 − 1 ,

s i z e ( new state space , 1 ) ) + 1 , c o l ) ∗n2 ;
79 E le f t new = new sta t e space ( row , mod( c o l − 1

− 1 , s i z e ( new state space , 2 ) ) + 1) ∗n3 ;
80 E right new = new sta t e space ( row , mod( c o l + 1

− 1 , s i z e ( new state space , 2 ) ) + 1) ∗n4 ;
81 E new = E new + E above new + E below new +

E le f t new + E right new ;
82 end
83 end
84 end
85 %b e t t e r ? I f not : p r o b a b i l i t y
86 i f E new < E
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87 s t a t e s p a c e = new sta t e space ;
88 p o s i t i o n s = new pos i t i on s ;
89 e l s e
90 prob = exp(−beta ∗(E new−E) ) ;
91 i f rand <= prob
92 s t a t e s p a c e = new sta t e space ;
93 p o s i t i o n s = new pos i t i on s ;
94 end
95 end
96 new sta t e space = s t a t e s p a c e ;
97 new pos i t i on s = p o s i t i o n s ;
98 pos s ib = [ ] ;
99 E i s o l a t i o n =0;

100 end
101

102 f i g u r e (1 )
103 subplot ( 1 , 2 , 1 )
104 t i t l e ( ’ I n i t i a l ’ )
105 image ( i n i t i a l )
106 subplot ( 1 , 2 , 2 )
107 t i t l e ( ’ F ina l ’ )
108 image ( s t a t e s p a c e )
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