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Interpreting the single fiber fragmentation test with

numerical simulations

Frans P. van der Meera,∗, Sibrand Raijmaekersb, Iuri B.C.M. Rochaa,b

aDelft University of Technology, Faculty of Civil Engineering and Geosciences, PO Box

5048, 2600 GA Delft, The Netherlands
bKnowledge Centre WMC, Kluisgat 5, 1771 MV Wieringerwerf, The Netherlands

Abstract

Characterization of the mechanical properties of the fiber/matrix interface is a

challenge that needs to be addressed to enable accurate micromechanical mod-

eling of failure in composite materials. In this paper a numerical investigation

is presented into one of the tests that has been proposed for measuring these

interfacial properties. A new cohesive zone model with friction is presented,

as well as an original numerical framework for modeling of embedded fibers.

The research generates new insight into the meaning of the single fiber frag-

mentation test, confirming the applicability of shear lag theory also in presence

of multiple cracks, and emphasizing the relevance of matrix plasticity for the

development of friction in the test. Although the frictional stress that can be

obtained from the test should not be confused with the cohesive strength of the

fiber/matrix interface, measurements of fracture process zone length can give

indirect information on this cohesive strength.

Keywords: B. Interface/interphase; B. Mechanical properties; C.

Computational modelling; C. Micro-mechanics

1. Introduction

Composite materials derive their advantageous properties from their mi-

crostructure. However, the inhomogeneity on the microlevel also makes it diffi-
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cult to predict their performance. To circumvent the need to formulate general

phenomenological models for macroscopic composite material behavior, there is

a drive towards micromechanical modeling, where the complex macroscopic ma-

terial behavior follows from the behavior of the simpler constituents and their

physical interaction. These micromechanical models need input on the behav-

ior of fibers and resin, which can be measured from experiments on individual

fibers or pure resin. However, for some applications, such as the modeling of

failure, additional properties are needed for the fiber/matrix interface. These

are much more difficult to obtain. Specifically, there is no consensus on how

cohesive strength and fracture energy of the fiber matrix can be measured.

One of the tests that have been proposed for the characterization of the

mechanical properties of the fiber/matrix interface is the Single Fiber Frag-

mentation Test (SFFT). This test involves axially loading a strip of resin with

a single fiber embedded in its center. The test supposes that the fiber failure

strain is significantly lower than the resin one. This leads to successive fiber

break events followed by stress redistribution between fiber fragments through

shear stresses in the resin and interface. The test proceeds until a saturation

state when the distance between breaks is shorter than the one necessary to

promote a new failure, the so-called critical length.

Starting from the classic work by Kelly and Tyson [1], numerous authors

[2–5] have assumed the existence of an interface strength computed from the

fiber strength and the critical length by supposing the existence of a constant

shear stress along the entire length of the fiber. Since then, this simplifying

assumption has been challenged by multiple authors for a number of reasons:

Firstly, experimental measurements [6, 7] contradict the notion of a constant

shear stress, even at higher strains. Secondly, the approach does not attempt

to discern the relative roles of resin plasticity and interface friction and does

not distinguish between intact and damaged interfaces [8, 9]. Thirdly, since the

test often fails to reach a saturated state for a number of fiber/matrix combina-

tions [10, 11], the main assumption of the simplified model is invalidated. The

characterization of the interface through a single strength value, and the subse-
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quent use of this value as input for numerical models, is therefore a questionable

choice.

A number of authors have therefore sought to improve the material charac-

terization capabilities of SFFT through a more realistic representation of the

stress field along the fragmented fiber and the inclusion of additional failure

modes. Nairn and Liu [12] developed an analytical model that describes the in-

terface through a fracture energy and a friction parameter which was later used

by Kim and Nairn [13] to analyze their experimental data. Later extensions by

Tripathi et al. [14] and Johnson et al. [15] added the effects of residual stresses

and matrix plasticity to the original model. Further analytical models were also

developed by Wu et al. [16] and Hutchinson and Jensen [17] and more recently

by Sørensen and Lilholt [18, 19] taking into account friction and residual stresses

but neglecting the effects of matrix plasticity.

Comparatively fewer authors attempted to study the problem through nu-

merical analysis. Varna et al. [20] developed an axisymmetric FE model of the

SFFT considering residual stresses but assuming a linear-elastic behavior for

the resin. Nishikawa et al. [10] included matrix plasticity and both interface

debonding and matrix cracks in their FE model but neglected the effect of

residual stresses and friction along the interface. Graciani et al. [11] opted for

a model based on the Boundary Element Method (BEM) with residual stresses

and friction but no plasticity. Therefore, no consensus seems to exist on which

of these mechanisms should be included in a realistic numerical model of the

fragmentation process and which intrinsic material properties may be discerned

from the test.

In this paper, the single fiber fragmentation test is analyzed with two dif-

ferent numerical models. The aim of this research is to study whether simplifi-

cations in shear lag theory are justified. Shear lag theory assumes the presence

of a constant friction, it neglects plasticity and it neglects interaction between

different fiber/matrix debond cracks. For investigating the validity of these sim-

plifications new model components have been developed: a new cohesive law

with friction and a new finite element formulation for embedded fibers, sup-
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porting breakage and debonding of these fibers.

2. Shear lag model

In this work we will make use of analytical expressions derived from a shear

lag model by Sørensen [18, 19]. Sørensen’s model assumes the presence of a

constant frictional stress along the cracked fiber/matrix interface and a fracture

process zone of negligible size with an associated fracture energy Gc. Under

these assumptions the following relation exists between applied stress σ̄ and

debond length:
σ̄

Ec
=

σ̄i
Ec

+
2τ ld
Efr

(1)

where Ec is the composite stiffness of the SFFT specimen (meaning that σ̄/Ec

is equal to the applied strain ε̄), τ is the magnitude of the frictional stress, ld

is half the debond length, Ef is the fiber stiffness, r is the fiber diameter and

σ̄i is the stress level at which debond length starts to grow (assuming the fiber

break is already present). This crack growth stress level is related to the fracture

energy Gc through:

Gc

Efr
=

1

4

(

σ̄i
Ec

−∆εT
)2

(2)

where Ef is the Young’s modulus of the fiber and ∆εT is the difference in

thermal expansion between fiber and matrix. This can be reorganized to give

the initiation strain ε̄i = σ̄i/Ec as:

ε̄i =

√

4Gc

Efr
+∆εT (3)

Sørensen [19] shows how τ , Gc and ∆εT can be determined from the test with

this model if measurements of debond length and fiber crack opening as function

of load are made. If no crack opening data is available, other measurements on

thermal expansion of matrix and fiber can be used to determine ∆εT , after

which Gc and τ can be computed from the crack length evolution.

The relation between debond length and applied strain can be simplified to:

ld =
Efr

2τ
(ε̄− ε̄i) (4)
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Figure 1: Shear lag theory for single fiber fragmentation test [18, 19], where friction τ influences

the slope, fracture energy Gc and residual strain ∆εT shift the curve and fiber strength σf
max

determines how much of the curve needs to be extrapolated to find ε̄i.

For a matrix material with hardening nonlinearity, this formulation in terms of

applied strain is more suitable than that in terms of σ̄/Ec which assumes linear-

elastic behavior. In reality, fiber failure occurs at a strain level that is higher

than that needed for onset of debonding, which means that extrapolation is

necessary to identify ε̄i. The influence of the different material properties on the

relation between debond length and applied strain is summarized in Figure 1.

For micromechanical modeling of failure in composite materials, the method

of choice for modeling fiber/matrix debonding is the cohesive zone method.

Therefore, it is of interest to evaluate which cohesive zone properties can be

identified with the SFFT. The cohesive zone is located in the fracture process

zone where the fracture energy Gc is dissipated. In the context of the shear

lag theory (see Fig. 1) this fracture process zone has infinitesimal size, being

located in a circumferential line that separates the intact part of the interface

from the part where the frictional stress is active. The frictional stress τ that

can be measured from the SFFT is therefore not the cohesive shear strength.

This frictional stress acts on the cracked surface, where cohesive damage is

already equal to 1. The only cohesive property that can be derived from the

test according to shear lag theory is the fracture energy.

5



3. Model description

Two different models are used in this paper to analyse the SFFT setup.

Details of both will be presented in this section. Firstly, an axisymmetric model

is described for detailed investigation of friction on the debonded fiber. Secondly,

a model with a one-dimensional fiber is formulated to analyze the progressive

failure and possible interaction between different fiber breaks. The 1D fiber in

the second model does not capture possible radial compressive stress acting

on the fiber. Therefore a constant frictional stress must be supposed there as

a material parameter. The main purpose of the first model is to validate the

assumption of constant frictional stress.

3.1. Axisymmetric model

The first model is a standard axisymmetric finite element model. The fiber

is modeled with axisymmetric quadrilateral elements close to the axis of sym-

metry. A cylinder of surrounding matrix material is modeled with triangular

axisymmetric elements that increase in size for increasing distance to the fiber.

Interface elements with cohesive law are included to model fiber/matrix debond-

ing. A single fiber crack is present at one end of the domain, which is modeled

by applying symmetry boundary conditions along that edge only on the nodes

associated with the matrix (see Fig. 2). A constant displacement is applied on

the far end of the model. This means that the model represents a scenario with

distributed fiber breaks at a constant spacing of 2L.

For the matrix, the pressure-dependent plasticity model by Melro et al. [21]

as adapted by Van der Meer [22] is used to describe the nonlinear behavior. The

yield surface is given by

f = 6J2 + 2I1(σc − σt)− 2σcσt = 0 (5)

Where I1 is the first invariant of the stress tensor and J2 is the second invariant

of the deviatoric part of the stress tensor and σt and σc are the tensile and com-

pressive yield stress respectively. Both yield stresses are a function of equivalent
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Figure 2: Geometry and boundary conditions of axisymmetric model

plastic strain εpeq, such that measured stress/strain curves from uniaxial tension

and uniaxial compression tests can serve as input for the model.

For the fiber-matrix interface, a new cohesive law with friction is used. The

formulation by Van der Meer and Sluys [23] based on the cohesive law by Turon

et al. [24] and friction according to Alfano and Sacco [25] has been adapted

following Zou and Hameed [26].

The traction is defined as

t = (1− d)Kδ +Dtfric (6)

where K is the initial stiffness of the interface, δ is the displacement jump, tfric

is the Coulomb frictional traction and d and D are two different representations

of the damage variable. The first stands for the relative loss in stiffness and the

second for the relative energy dissipation. During the damaging process, they

are defined as:

D =
δeq − δ0

δf − δ0
(7)

and

d =
δf

(

δeq − δ0
)

δeq (δf − δ0)
(8)

where δeq is the equivalent displacement jump, and δ0 and δf define the bilinear

traction-separation law for the current mode mixity (cf. [24, 27]).
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To account for unloading and irreversibility, D is defined as the maximum

history value of the right hand side of Eq. (7) and d related to D through

d =
Dδf

δ0 −D (δf − δ0)
(9)

In Eq. (6), (1 − d)Kδ is the traction as computed by the frictionless cohesive

law, and Dtfric is the frictional traction that is gradually introduced as damage

develops.

The advantage of the approach by Zou and Hameed [26] withD in the second

term of Eq. (6) rather than that by Alfano and Sacco [23, 25] which has d in that

position, is that it makes the frictional behavior independent of the unphysical

K parameter [26].

Zou and Hameed used the friction formulation in combination with a cohesive

law with incremental damage update. Here, the decohesion/friction interaction

as proposed in Eq. (6) is used in combination with a closed form cohesive law.

For consistent linearization of the new cohesive law, expressions are needed for

∂d/∂δ as well as for ∂D/∂δ. Van der Meer et al. [27] have given the consistent

expression for ∂d/∂δ during damage growth. The one for ∂D/∂δ is defined along

similar lines as:

∂D

∂δ
=

∂D

∂δeq

∂δeq
∂δ

+
∂D

∂δ0eq

∂δ0eq
∂δ

+
∂D

∂δfeq

∂δfeq
∂δ

(10)

3.2. Model with 1D fiber

For analysis of the complete single fiber fragmentation test, it is desirable

to eliminate the length scale of the fiber diameter to make the model lighter.

Therefore, a formulation with an embedded one-dimensional fiber has been de-

veloped. The two or three-dimensional bulk domain must be meshed with solid

elements and the fiber with 1D elements. Methods for embedding a fiber in a

non-conforming discretization of the bulk exist [28–30], which is a desirable when

many fibers are present and meshing all fibers becomes burdensome. However,

in the current case of interest with a single fiber, generating a conforming mesh

for the bulk that has nodes along the fiber, is not particularly demanding. An
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additional advantage of having an element edge coinciding with the fiber is that

the stress discontinuity across the fiber, as expected in the shear lag solution,

can be captured. An embedded fiber formulation with non-conforming mesh

needs a very fine mesh to approximate this stress discontinuity with reasonable

accuracy. Therefore, a conforming mesh is used for this study.

The basic kinematic requirement is that slip of the fiber should be supported,

i.e. the fiber must be allowed to move in longitudinal direction independently

from the surrounding matrix. This could be achieved with bar or truss elements

defined on duplicated nodes. However, when duplicated nodes are used, relative

displacement of the fiber with respect to the surrounding bulk in transverse

direction is also supported, which must be constrained or penalized. A more

elegant solution is to define a model where already in the kinematic formulation

the only supported relative movement of the fiber is movement in longitudinal

direction.

Here, this is achieved by introducing slip degrees of freedom on the nodes

where the fiber is positioned (see Figure 3). The starting point is a standard

displacement field for the matrix um. The strain in the matrix is defined as

εm = ∇
sum (11)

On the location of the fiber, an additional one-dimensional unknown field ∆fm

is defined that represents the amount of slip. The displacement of the fiber is

then defined as the sum of the two fields:

uf(x, y) = um(x, y) + ∆fm(ζ)ζ (12)

where ζ is an auxiliary coordinate defined along the fiber. The axial strain of

the fiber is:

εf =
∂uf · ζ

∂ζ
=
∂um · ζ

∂ζ
+
∂∆fm

∂ζ
(13)

The fiber is connected to the surrounding bulk with cohesive and frictional

tractions. The virtual work equation for this problem is given as:

∫

Ω

δεm :σm dΩ +

∫

Γf

(

Afδεfσf + Cfδ∆fmt
)

dΓ =

∫

ΓN

δu · tN dΓ (14)
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where Ω is the matrix domain, Γf is the one dimensional fiber domain, Af and

Cf are the area and circumference of the fiber cross section respectively, t is the

cohesive and/or frictional sliding traction acting on the fiber/matrix interface

and tN is the external traction applied on ΓN .

The matrix displacement field is discretized with two or three-dimensional

shape functions φ(x):

um(x) = φi(x)û
m
i , i ∈ [1, nnΩ] (15)

where ûi contains the nodal displacements of node i, and nnΩ is the total

number of nodes. Summation over repeating index i is implied. The slip field is

discretized with one-dimensional shape functions ψ(ζ):

∆fm(ζ) = ψj(ζ)∆̂
fm
j , j ∈ [1, nnΓ] (16)

where nnΓ is the number of nodes along the fiber. For the definition of fiber

strain in Eq. (13), the projection of the displacement vector uf in ζ direction

is needed. As long as the order of interpolation ψ(ζ) is equal to that of φ(x),

we have ψj(ζ) = φi(j)(x(ζ)) ∀ ζ ∈ Γf where the subscript i(j) refers to a map

that returns the global node index i ∈ [1, nnΩ] for a given fiber node index

j ∈ [1, nnΓ]. Therefore, we can write:

uf (ζ) · ζ = ψj(ζ)
(

ûm
i(j) · ζ + ∆̂fm

j

)

, j ∈ [1, nnΓ] (17)

With this discretization the virtual work equation from Eq. (14) can be

written as the following set of equations:






f intu

f int∆







=







f extu

0







(18)

with:

f intu =

∫

Ω

BTσm dΩ +

∫

Γf

BT
uζσ

fAf dΓ (19)

f extu =

∫

ΓN

NT tdΓ (20)

f int∆ =

∫

Γf

∇ψTσfAf dΓ +

∫

Γf

ψT tCf dΓ (21)
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where B and N are the standard finite element strain-displacement matrix and

shape function matrix, while Buζ is a vector that contains for every node i

the product of the 1D shape function gradient in fiber direction and the fiber

direction vector:

(Buζ)i =
∂ψi

∂ζ
ζ (22)

Linearization of this system of equations gives the following stiffness matrix:

K =





Kuu Ku∆

K∆u K∆∆



 (23)

with

Kuu =

∫

Ω

BTDB dΩ +

∫

Γf

BT
uζD

fBuζ dΓ

Ku∆ =

∫

Γf

BT
uζD

f
∇ψ dΓ

K∆u =

∫

Γf

(∇ψ)TDfBuζ dΓ

K∆∆ =

∫

Γf

(

(∇ψ)TDf
∇ψ +ψTDtψ

)

dΓ

(24)

and

D =
∂σm

∂εm

Df = Af ∂σ
f

∂εf

Dt = Cf ∂t

∂∆fm

(25)

For the matrix stress σm, Melro’s plasticity model as described in the pre-

vious section is used. For the fiber/matrix slip, a one-dimensional version of the

bilinear cohesive law with friction is used. This is the pure mode II version of

the mixed mode cohesive law described in the previous section. Because of the

1D nature of the fiber, no pressure on the interface is computed. Therefore, the

frictional stress is assumed to be constant, instead of a product of the friction

coefficient and the normal pressure. Again following Zou and Hameed [26] the

1D cohesive law is formulated such that the traction decreases linearly from its

maximum value to the constant friction value. Because the frictional value is
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Figure 3: Definition of coordinates x, y and ζ, unknown fields um
x , um

y and ∆fm and corre-

sponding domains Ω and Γf

t

δδ0 δf

τ

tmax

Dτ

(1− d)Kδ

K

Gc

Figure 4: One-dimensional version of Zou and Hameed cohesive law with constant friction and

definition of Gc.

given a priori, the fracture energy can be taken to include the frictional traction

that is linearly introduced during damage development as shown in Figure 4.

Brittle fiber failure is included in the 1D fiber model. A Weibull strength

distribution is used to define the variation of the strength along the fiber. On

every node a strength value is assigned. Following Nishikawa et al. [10], a Weibull

distribution is achieved by computing nodal strength values as:

σf
max,i = σf

max,0

(

−
l0
∆l

log(1− φi)

)1/ρ

(26)

where σf
max,0 is the reference strength for a fiber of length l0, ∆l is the element

size, φi is a random number from a uniform distribution and ρ is the Weibull

modulus. In the simulations, after equilibrium is reached, the nodal stress in the

fiber is compared to the local strength value σf
max,i. If the stress is higher then

the strength, the fiber breaks, which is achieved by duplicating the slip degree

of freedom on the associated node and redefining the degree of freedom table of
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neighboring elements such that they do not share a slip dof.

The fiber is allowed to break at only one location at a time: the location where

the ratio of stress over strength has the highest value. After fiber failure, the

Newton-Raphson iterative procedure for the same time step is continued to find

the equilibrium solution for the updated discretization, and after convergence,

fiber failure is checked for again. The next time step is entered only after an

equilibrium solution is found for which the stress in the fiber does not exceed

the strength at any point.

When realistic parameters are used for fiber and fiber/matrix interface, un-

stable propagation of debonding over a finite length is possible. For this reason,

the Newton-Raphson procedure sometimes has difficulties converging after fiber

failure. When non-convergence after fiber failure is encountered, a sub-stepping

is introduced to gradually go through the unstable propagation. A traction is

introduced that acts against separation between the two slip dofs on the same

node. This traction is removed is steps of 0.5n where n is the substep level. Ev-

ery time the solution does not converge, n is increased with 1. This is continued

until the traction is completely removed. The whole procedure is performed at

fixed applied displacement level within a single time step. This means that no

spurious tractions across the fiber break are present in the final solution for any

time step.

4. Results

4.1. Axisymmetric analysis

A single fiber fragmentation test with glass fiber in epoxy matrix is simu-

lated. The fiber has a radius of r = 7.5µm. Material properties for the fiber/matrix

interface are estimated. Fiber and matrix parameters are taken as determined

from own experiments on glass fibers and epoxy [31]. The elastic behavior of

the fibers is given by Ef = 73GPa and νf = 0.22, that of the matrix by

Em = 3.13GPa and νm = 0.37. The fitted hardening curves (in MPa) are

13



Figure 5: Mesh for axisymmetric model.

given by:

σt = 71.3997− 34.1296e−εpeq/0.0057 − 14.8590e−εpeq/0.0012

σc = 89.2022− 24.1071e−εpeq/0.0097 − 10.4262e−εpeq/0.0016
(27)

For the cohesive law, the strength for both normal and shear loading is

set to 40MPa. Furthermore, for the fracture energy, we use GIc = 0.02N/mm

and GIIc = 0.05N/mm, with mode interaction parameter η = 1. The friction

coefficient is µ = 0.3. Residual stresses are included with coefficients of thermal

expansion for fiber and matrix of αf = 5.4 · 10−6 K−1 and αm = 60 · 10−6 K−1

and an assumed temperature drop after curing of ∆T = −27 K.

The axisymmetric model is analyzed with L = 3mm, while the outer radius

R is varied from 0.4mm to 0.8mm and 1.6mm. The mesh for R = 0.4mm is

shown in Figure 5. In Figure 6 the evolution of crack length as a function of

applied strain is shown, along with the theoretical result from Eq. (4) with a

fitting value for the interfacial traction of τ = 5MPa. For the case of an elastic

matrix, the radius of the domain does not influence the results. When plasticity

is included, it only influences the level at which the debond stops growing. The

debond arrest is caused by the formation of a perfectly plastic region. As a

consequence of the plastic mechanism, the strain in the matrix is no longer

uniform; the strain only increases in the region near the plane of symmetry. It

is observed that when plasticity is included, the crack length follows the linear

14
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Figure 6: Development of debond length in axisymmetric model with or without plastic matrix

behavior and different domain sizes, in comparison with reference solution from Eq. (4) with

τ = 5MPa (dashed line). Note that the elastic curve is not significantly affected by changing

R.

function of applied strain, as long as no plastic mechanism forms. Without

plasticity, the trend is different and the linear relation between ld and ε̄ from

theory is not recovered.

To explain the cause for the difference, the traction along the fiber matrix

interface is shown for three different time steps in Figure 7 (with R = 0.8mm).

The curves show a clear peak in the stress indicating the position of the crack

tip. The ascending part of the curve on the left side of the peak is where the

cohesive zone is located. As the crack grows, the cohesive zone shifts to the

right, without changing size. It can be observed that in the case with linear

elastic matrix, the traction along the fully damaged part (i.e. on the left side

of the cohesive zone) increases, while it remains approximately constant in the

case with an elastic/plastic matrix. It is concluded that the constant traction

assumption from the shear lag theory is justified, but only if matrix plasticity is

present. The value of τ = 5MPa that gave a good fit for the reference solution in

Fig. 6 is visualized with the dashed line in Fig. 7. The fact that the friction in the

model is indeed at this level confirms the agreement between the assumptions

behind the theory and the processes predicted by the model.
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Figure 7: Shear component of cohesive traction for three different time steps from simulations

with and without plasticity in the matrix.

4.2. Progressive failure analysis with 1D fiber

The axisymmetric results show that, as a consequence of matrix plasticity, a

constant frictional stress is a reasonable assumption. To investigate the assump-

tion that there is no interaction between different fragments until saturation,

the model with embedded 1D fiber is used. The same parameters are used as in

the axisymmetric analysis, except for the following. The cohesive zone now only

receives mode II properties. The element size along the fiber is ∆l = 0.005mm.

Thermal contraction is left out of consideration. In order to stop debonding

from growing too fast, the frictional stress is set to τ = 30MPa and the cohe-

sive strength to tmax = 50MPa. Additionally, the following parameters are used
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for the fiber failure: σf
max,0 = 2000MPa, l0 = 10mm, ρ = 5.

Again, the simulation is performed with and without plasticity. Just like

in the test, multiple fiber breaks occur sequentially as the load is increased.

The individual debond lengths surrounding each of these breaks are monitored

during the simulation. Figure 8 shows the progression of different quantities

by plotting for different time steps the equivalent plastic strain in the matrix,

the stress in the fiber and the traction along the fiber/matrix interface (all

quantities are normalized, the figure is intended as a qualitative illustration of

the sequence of events). Fiber breaks are located where the fiber stress is equal

to zero. Regions with constant nonzero traction indicate the fully damaged areas

where the frictional stress is fully introduced. The plastic strain field shows the

shear bands under ±45° angle as can also be observed in the polarized light

images (see Fig. 9). These cannot be observed in any of the stress or strain

fields when the matrix is taken to be elastic. It is concluded that the visible

shear bands in the experiment are also caused by large scale plasticity.

Figure 10 shows the evolution of the debond length for the simulations with

and without plasticity in the matrix. Every dot represents the total debond

length (2ld) around a single fiber break for a single time step. The debond

length as predicted by shear lag theory is also shown in the figures. It is observed

that the debond length evolution in the computational model agrees well with

theory. Unlike with the axisymmetric model, the simulations without plasticity

here also agree with theory. This is due to the assumption of constant friction,

which is made here, even though the axisymmetric simulations did not show

this.

The debond length of different cracks is equal until they are arrested when

approaching each other. In both simulations, two debonds appear at an applied

strain between 0.03 and 0.04 for which the length is smaller than that of other

debonds. These correspond to two fiber breaks that are so close that they im-

mediately feel each other. In the simulation with plasticity, the debond length

development halts for almost all cracks when a plastic mechanism forms. The

strain distribution becomes non-uniform in a global sense and the assumption
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Figure 8: Fiber stress, interfacial traction and equivalent plastic strain for four different time

steps.

Figure 9: Experimental image showing fiber matrix debonding at several locations and shear

bands emanating from those locations.
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Figure 10: Development of debond length as function of applied strain in comparison with

shear lag theory (Eq. (4)).

that the strain in bonded parts of the fiber is equal to the globally applied strain

ε̄ loses validity.

It is concluded that shear lag theory holds also when multiple fiber breaks

are present. Until onset of strain localization, the debond length development is

the same for the simulations with and without plasticity. The shear bands that

are observable in experiments and in the simulation with plasticity, but not in

the simulation without plasticity, do therefore not influence the debond length

development.

This simulation illustrates that, with shear lag theory, no saturation of fiber

fragmentation is needed before useful information can be extracted from the test.
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Figure 11: Development of debond length as function of applied stress in comparison with

shear lag theory [19].

Early interpretations of the test were based on observations of when saturation

takes place. Matrix failure prior to saturation, as happens in this simulation,

would invalidate the test. However in this virtual test, both τ and Gc could

be determined from looking at the debond length development, even though

saturation is not reached.

In Figure 11, the results from the simulation with plasticity are visualized

once more, but now with the applied stress divided by initial stiffness along

the horizontal axis, instead of the applied strain. This is the representation

that Sørensen uses in his expressions [19] (cf. Eq. (1)). In this visualization the

apparent agreement between theory and numerical results is much less than it

was in Fig. 10. The important quantity in the shear lag theory is the fiber strain.

By design of the specimen, the fiber strain is equal to the overall applied strain,

while for a matrix material showing significant nonlinearity as the one used in

this study the fiber strain does not remain proportional to the applied stress.

4.3. Cohesive zone length study with 1D fiber

The SFFT has been proposed as a test with which the interfacial strength

can be measured. In the original interpretation of the test, this strength is equiv-

alent to the frictional stress in the simulations in this paper. The magnitude of

this frictional stress can indeed be identified from this test, but it is not the same
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thing as the interfacial strength. Sørensen’s shear lag model is a linear elastic

fracture mechanics model with infinitely small fracture process zone, which im-

plies the presence of a stress singularity. The models from the present paper

include a cohesive zone with a cohesive strength. This cohesive strength is what

is needed for multiscale or micromechanical modeling of failure of composite

materials; it is emphasized here that the cohesive strength is not something

that can be directly measured in the SFFT.

Nevertheless, there is a way to get indirect information on the cohesive

strength. It is known that the cohesive zone length is a function of, among

other quantities, the cohesive strength [32, 33]. This also holds for the SFFT.

Having learnt that in the 1D fiber model there is no influence of plasticity or

interaction between debond zones, the simulations with embedded fiber are re-

peated with a single fiber break and an elastic matrix. A series of simulations is

performed varying the cohesive strength from 50MPa to 100MPa. In every sim-

ulation, the length of the two cohesive zones (on either side of the fiber break)

has been monitored. This length was constant throughout the simulation, apart

from minor oscillations. Averaging the cohesive zone length over all time steps

in which complete cohesive zones were present leads to a single value of the

cohesive zone length per simulation. In Figure 12, these values are plotted as

function of the input cohesive strength, along with an analytical curve of the

shape

lanacz =
50l50cz
tmax

(28)

where l50cz is the cohesive zone length found for tmax = 50MPa. It can be con-

cluded that there is a clear dependence of cohesive zone length on the cohesive

strength and that this dependence seems to be of the order t−1
max.

In the experiments, a fracture process zone near the tip of the fiber/matrix

debond region is visible along with a stress concentration. The shape of the

zone is similar to what is observed in the embedded fiber simulations. A rough

estimate of the cohesive strength can therefore be obtained by changing the in-

put cohesive strength such that the fracture process zone size in the simulations
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Figure 12: Cohesive zone length for different values of the strength; dashed line represents

lanacz from Eq. (28).
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Figure 13: Comparison between debond length and cohesive zone length in experimental

observations and simulation results indicating shear stress (shading) and traction (solid line).

matches the experimental observations (see Fig. 13). Another influence on the

cohesive zone size is the shape of the traction-separation law. Therefore, it can-

not be concluded that the thus obtained value for the cohesive strength is equal

to the actual maximum traction that is present along the interface in the test.

Nevertheless, this recipe leads to the value for the cohesive strength which, for

the assumed cohesive zone shape, leads to the closest match with experimental

observations of the fracture process zone. We have used this procedure in [34]

to estimate the degradation of interfacial strength due to hygrothermal aging.
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A further parametric study has shown that the cohesive zone length is also

dependent on the fiber diameter, the frictional stress and the fracture energy.

Therefore, it is important that these are all characterized first before the cohesive

strength is estimated from the proposed inverse modeling exercise. Fortunately,

both can be identified from debond length measurements in the SFFT using the

now validated shear lag approach.

5. Conclusions

The presented numerical investigation into the SFFT has led to the confirma-

tion of the previously hypothesized shear lag theory. Firstly, the assumption of

a constant frictional stress on the debonded fiber/matrix interface is confirmed

by the simulations, but only in presence of plasticity in the surrounding bulk

material. Secondly, the assumption that there is no interaction between differ-

ent debond zones has been validated. Even though there is large scale plasticity

with global shear bands, the matrix deformations that are not accounted for in

shear lag theory do not influence the debond process significantly. However, in

presence of nonlinearity, it is important that applied strain is monitored rather

than the applied stress.

New modeling ingredients have been introduced. The cohesive law that com-

bines decohesion with friction without spurious influence of initial stiffness with

a newly derived consistent tangent has been proven to be robust. The finite el-

ement framework with embedded fiber in conforming mesh with slip degrees of

freedom on the fiber domain is a robust and efficient tool for analysis of fracture

and debonding of isolated fibers in a bulk material.

Moreover, recommendations for the interpretation of the test have been

made. Firstly, it is recommended to analyze the debond length as a function of

applied strain rather than of applied stress. For nonlinear materials this makes a

significant difference. Secondly, it is highlighted that it is possible to use inverse

modeling to get information on the cohesive shear strength of the fiber/matrix

interface.
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