Delft University of Technology
Master of Science Thesis in Embedded Systems

Federated Learning with Rebalanced
Dataset

Tianyi Liu

(=
H E

Embedded
Systems

Federated Learning with Rebalanced Dataset

Master of Science Thesis in Embedded Systems

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Tianyi Liu

November 25 2023

mailto:T.Liu-14@student.tudelft.com

Author
Tianyi Liu (T.Liu-14@student.tudelft.com)

(Itylty221@gmail.com))
Title

Federated Learning with Rebalanced Dataset
MSc Presentation Date

November 30 2023

Graduation Committee
Dr. Qing Wang Delft University of Technology

Dr. Jie Yang Delft University of Technology
MingKun Yang Delft University of Technology

mailto:T.Liu-14@student.tudelft.com
mailto:ltylty221@gmail.com

Abstract

With the widespread application of artificial intelligence, centralized machine
learning approaches, which require access to users’ local data, have raised con-
cerns about data privacy. In response, federated learning, an architecture that
aggregates models trained locally with local data, has been proposed. This ap-
proach addresses the data privacy issues inherent in centralized machine learn-
ing while also alleviating the high communication costs and server resource
demands. However, due to its architectural nature, federated learning, with its
single global model, struggles to meet the diverse personalized needs of clients
and suffers significant accuracy degradation when client data distributions are
uneven or exhibit non-IID characteristics. Personalized federated learning has
been introduced to address these issues of data heterogeneity and personalized
needs. Its goal is not to train a single global model but to ensure that each
client participating in the personalized federated learning framework has a local
model that meets their individual needs. Yet, personalized federated learning
also has its shortcomings: the global model in federated learning often becomes
an intermediary product in this framework, lacking the advantage of learning a
generalized model. This thesis proposes a new personalized federated learning
scheme, Federated Learning with Rebalanced Dataset(FedReb), which is based
on parameter decoupling. By introducing a rebalanced dataset generated ac-
cording to the distribution of clients’ local data, this framework achieves high
accuracy for both the global model and average client models. Comparative
experiments demonstrate its superior scalability and robustness over other fed-
erated learning and personalized federated learning algorithms, and the report
suggests optimal configurations for achieving the best results with reasonable
costs. Additionally, a testbed has been established, and the deployment of the
algorithm on it has been realized, verifying the feasibility of the algorithm in
real-world setups.

v

Preface

My interest in federated learning was sparked during the summer of 2022, when
I assisted my daily supervisor, MingKun Yang, and Ran Zhu in building a
federated learning testbed using Raspberry Pi. My previous experience with
Raspberry Pi and a keen interest in hardware-related projects led me to this
opportunity. It was through this project that I first encountered the concept
of federated learning and its challenges in edge computing. This experience
inspired me to incorporate these insights into my thesis.

My current thesis, guided by Dr. Qing Wang, aims to address the heterogen-
eity issues in federated learning. I am deeply grateful for Dr. Wang’s direction
in the research, who, with his extensive experience, has often provided fresh per-
spectives when facing research challenges. 1 also appreciate MingKun Yang’s
technical support and our collaborative discussions on various solutions and
research methods in related fields, which have broadened my problem-solving
approach.

I am fortunate that the project has progressed beyond expectations and is
moving towards publication. I am also thankful to TU Delft for providing a
platform that has enabled me to learn and gain research experience, fostering
my ability to practically engage with topics of interest.

Acknowledgments to Dr. Qing Wang for his invaluable guidance, MingKun
Yang and Ran Zhu for their technical support, and my friends and family for
their unwavering encouragement and support throughout this journey.

Tianyi Liu

Delft, The Netherlands
27th November 2023

vi

Contents

[Prefacel

[1__Introductionl

[[3 Contributionl

2 Related Workl
2.1 Federated Learning|
2.1.1 Horizontal Federated Learning|
2.1.2 Vertical Federated Learning
2.2 Client Drift : The Impact of Data Heterogeneity|
2.3 Personalized Federated Learningl

2.3.2 Learning Personalized Models|
2.4 Data Augmentation|
2.5 Message Queuing Telemetry Transport|

2.5.2 Retained Message|]
[2.5.3 Last Will and Testament (LWT)|

3 FedReb Overviewl|

13.2.2 FedReb Client: Local Training Part|

3.2.3 FedReb Server: Federated Learning Part|.
3.3 Alogrithm of Federated Learning with Rebalanced Dataset|

13.3.1 Algorithm of Creating Rebalanced Dataset|

18.3.2 Algorithm of FedReb Client|

3.3.3 Algorithm of FedReb Server|.

vii

4 Implementation|
A1 TRebalancing Dataset Creating Algorithm]
4.2 Implementation Details of FedReb Server|
4.3 Implementation Details of FedReb Client|
4.4 Communication on the Testbedl

[Experiments]
.1 Experiment Baselines| 0.0 ..

[5.2.2 Fashion-MNIST (FMNIST)
.3 Experimental Configuration|
P-4 Impact of Size and Creation Methods of the Rebalanced Dataset|
p.4.1 The Impact of Augmentation Methods|.
[5.4.2 'The Impact of Threshold#
5.4.3 ecommend Configuration|
5.5 Impact of Head Layer Depth and Choice of Aggregation Weights|
5.5.1 The Impact of Head Layers Depthl
9.5.2 The Impact of Aggregation Weights|
[5.5.3 Recommand Configuration|

5.6 omparative Results| 00000

[.6.1 Robustness Analysis| v v v v v v i i
9.6.2 Scalability Analysis| 0.

6 Validag TesiBedl

|IA Application Used on Testbed|

IB_Source Codel

viii

31
31
32
33
33

39
39
41
41
42
42

44
46
47
48
48
49
49
50
o1
51

53
53
55

57
57
58

65

67

Chapter 1

Introduction

1.1 Introduction

In the era of rapid technological advancement, Artificial Intelligence (AI) tech-
nologies have not only matured but have also been integrated into various ap-
plications, reshaping numerous industries. This growth has been significantly
bolstered by the development and proliferation of intelligent devices, such as
smartphones, smartwatches, and smart gateways. These devices, with their en-
hanced capabilities, have contributed to an exponential increase in data, which
is crucial for Al-driven solutions [40]. Traditional approaches to leveraging this
data have relied heavily on Al and big data techniques, involving the transfer
of data from local devices to centralized cloud servers or data centers. While
effective, this centralization poses significant risks in terms of data breaches and
privacy invasions, as it often requires sensitive personal data to be exposed to
external networks and servers.

Earlier solutions to mitigate the intense computational and storage demands
on servers included distributed data parallelism. This approach entails divid-
ing the entire training dataset into smaller, equally sized shards for distributed
processing [19]. However, this approach, while addressing computational chal-
lenges, does little to alleviate concerns about data security and privacy.

With many modern devices now equipped with substantial computational
capabilities, an alternative approach to machine learning has become feasible.
Federated Learning (FL) emerged as a solution to these privacy concerns. Unlike
traditional approaches, FL involves training local models on individual devices
and then aggregating these models on a central server to form a global model.
This process ensures that personal data remains on the user’s device, thereby
enhancing data security.

Introduced by McMahan et al. in 2016, Federated Learning began with the
Federated Averaging (FedAvg) algorithm [29]. This decentralized approach en-
ables collaborative training of a machine learning model across various devices
while keeping user data localized. In this framework, each device trains a model
based on its data and sends only the model parameters, not the data itself, to
a central server. The server aggregates these parameters from multiple devices
to form a global model. The aggregation weights are determined by the data
volume on each device, which ensures that devices with more data have a greater

Centralized Learning Federated Learning
Global
Model
Parameters

[—

—-—

—

=

A
S [] o ‘
= Client Dataset Client Model Global Model
=

Figure 1.1: Differences between Centralized Machine Learning and
Federated Learning: Centralized Learning involves uploading clients’
data to a central server, demanding significant bandwidth and posing
risks to data privacy. In contrast, Federated Learning requires only
the upload of locally trained model parameters, reducing bandwidth
usage and better preserving clients’ data privacy.

influence on the final model.

This approach is particularly advantageous as it reduces the communication
overhead compared to transmitting entire datasets and encourages users with
limited local data to participate in improving the overall model performance.

Despite these advantages, Federated Learning faces challenges in practical
applications, especially when dealing with non-independent and identically dis-
tributed (non-IID) data. In such scenarios, where client data distributions are
unbalanced and heterogeneous, traditional FL approaches often perform subop-
timally. The non-IID nature of data means that clients training solely on their
datasets can achieve higher accuracy than those participating in FL, suggesting
an inability of the aggregated global model to adapt effectively to individual
data distributions. This limitation significantly hinders the personalization of
solutions to meet the diverse needs of different clients [33].

1.2 Research Questions

Federated learning faces performance degradation when dealing with highly het-
erogeneous non-IID data distributions among clients. The primary issue this
thesis aims to address is the global model’s difficulty in adapting to local data
distributions. Consequently, this thesis will propose the main research question
and subsequent secondary research questions.

Main research question:

How to solve the performance degradation caused by data heterogeneity in
federated learning?

Secondary research questions:

1. What causes data heterogeneity problems in federated learning?

2. What are the solutions to the data heterogeneity problem in federated
learning?

3. What are the limitations of these solutions?

4. What approaches can be used to design algorithms that solve the problem
of data heterogeneity?

1.3 Contribution

This thesis proposes a new training architecture, Federated Learning with Rebal-
anced Dataset (FedReb), based on model decoupling in personalized federated
learning. It aims to achieve a well-performing global model under user data
heterogeneity while ensuring no loss in performance of local models for each
user, with even slight improvements.

The contributions of this thesis can be summarized as follows:

1. A training framework Federated Learning with Rebalanced Dataset(FedReb),

for personalized federated learning based on model decoupling, is designed.
This approach creates a new rebalanced dataset from the user’s original
local data without requiring additional data sample exchanges with the
server. This allows the server to generate a well-performing global model
while maintaining local accuracy for users.

2. A modification to the aggregation weights during the aggregation process
is proposed based on the FedReb, further enhancing the global model
accuracy.

3. The impact of the size and creation method of the rebalanced dataset
required by FedReb during training are investigated and found an optimal
solution that achieves the highest global model accuracy across various
configurations.

1.4 Organization of the Thesis

To address the problems arising from client data heterogeneity and to meet
individual client needs, a research direction known as personalized federated
learning (PFL) has been proposed. It addresses the limitations of FL by per-
sonalizing the global model or learning personalized models locally. The goal
shifts from obtaining a single optimal global model to achieving optimal local
models for all clients.

One limitation of this approach is the lack of a well-performing global model,
which is often a intermediate product of the training process [15]. A well-
performing global model, which learns the diverse characteristics of all particip-
ating clients, would have better generalizability.

Chapter 2] will explain federated learning and the impact of data heterogeneity
on it, answering secondary research question 1.

This is followed by an explanation of personalized federated learning, an effect-
ive direction for addressing data heterogeneity in federated learning, answering
secondary research question 2.

As mentioned above, the limitation of PFL in lacking a well-performing global
model is the answer to secondary research question 3.

Finally, to answer secondary research question 4 and ultimately resolve the
main research question, Chapter [3|will propose the Federated Learning with Re-
balanced Dataset (FedReb) algorithm, based on personalized federated learning.
Chapter [f] will explain its implementation, and Chapter [5] will present experi-
mental results comparing FedReb with other algorithms. In the end, Chapter [f]
will provide a validation of deploying the algorithm onto the testbed.

Chapter 2

Related Work

This chapter introduces concepts related to this thesis, including federated learn-
ing, personalized federated learning, data augmentation, and MQTT. Figure[2.]]
provides an overview of the differences between centralized machine learning,
which combines big data with machine learning, and both federated learning
and personalized federated learning. This taxonomy was proposed in the paper
[33].

Centralized machine learning involves collecting user data and training on
centralized servers. By learning from diverse client data, the model gains gen-
erality. However, this approach faces issues of data privacy and high commu-
nication costs due to the need to transfer user data. Additionally, when dealing
with heterogeneous data, or data heterogeneity, model training can struggle to
converge. Moreover, as it learns a single model, it lacks personalized solutions
for local users with different data distributions and characteristics.

Federated learning allows users to train models locally and then upload these
trained models to a centralized server. The server aggregates these models
and redistributes them to clients. This method addresses the data privacy and
communication cost issues found in centralized machine learning. However, it
also faces challenges in converging when dealing with data heterogeneity and
lacks personalized solutions due to its reliance on a single model.

Personalized federated learning, through methods of personalizing the global
model and learning personalized models, addresses the convergence issues in
federated learning caused by data heterogeneity. It also provides personalized
solutions for participating clients [33].

Personalized federated learning is a research direction based on federated
learning, and this thesis will explain various solutions in federated learning
and personalized federated learning. The algorithm proposed in this thesis is
based on the Architecture-based approaches, parameter decoupling, one of the
approaches in learning personalized models strategy described in section [2.3

2.1 Federated Learning
Federated Learning, first conceptualized by the authors of FedAvg [29], aims to

train a global model that performs well across multiple clients, or an ”average
client.” This contrasts with traditional approaches that rely on transferring local

Centralized Learning Personalized Federated Learning

J Generalization
X Privacy

X Communication

X Data Heterogenity
Data

l X Solution Personalization O
Q Global Model Personaliation

Federated Learning QGlobal Model Personalization

Data Heterogeneity

Global Model-based

o/ Generaization

J Privacy

o/ Communication

o Generaiization
o Privacy

o Communication

PFL Apporaches

o ata Heterogenity

Architecture-based

J Solution Personalization

Data Het i . .
X ata Heterogenity Solution Personalziation

A A A X solution Personalization

Q Learning Personalized Models Similarity-based

— 4D, 2 .
= dam

= Client Dataset |:| Client Model Global Model Trained Global Model P~ PFL Algorithm Personalized Client
= NAX Model

Figure 2.1: Centrralized Learning, Federated Learning and Personal-
ized Federated Learning.

user data to a centralized server for training.
A typical Federated Learning training process is illustrated in Figure 2.2}
During a communication round in Federated Learning, the process is as follows:

1. At the beginning of a communication round, the server sends a global
model to all clients selected for that round.

2. Selected clients train the received global model on their local data.

3. Upon completing training, these clients send the parameters of their trained
models back to the centralized server.

4. The server aggregates these parameters and updates them into a new
global model for use in the next round.

The goal of each round is to obtain an optimal global model w that minimizes
the aggregated local loss function f, (wy,) [40]:

1
fm (wm) = le(xz7yszm) (21)
M = CxK D
min f (w) = Z ?mfm (wm) (2.2)
m=1

Client 1 Client N

= Weight parameters of global model are sent to activated clients
= Clients train the local model based on self-contained data

t Clients offload the local weight parameters to server

= Server aggregates and updates global model

Q0T

Figure 2.2: Process of Federated Learning in one communication
round.

Here, in equation [2.1| z; and y; represent the features and labels of sample i
, respectively. D,, is the size of the client’s local dataset, D is the total size of
samples from all clients participating in the round, C is the participation rate
per round, K is the total number of clients,M is the client that join in this round
, m is the client’s ID, and [is the loss function.

Federated Learning can be broadly categorized into three types: Horizontal
Federated Learning, Vertical Federated Learning, and Federated Transfer Learn-
ing. Federated Transfer Learning serves as an intermediary approach between
Horizontal and Vertical Federated Learning.

2.1.1 Horizontal Federated Learning

Horizontal Federated Learning, also known as homogeneous FL, involves clients
with the same feature space but different sample spaces. For instance, each
client has different persons as sample data, but all the data include the same
features such as Age, Sex, Height, and Weight. FedAvg [29] is an example of a
Horizontal Federated Learning algorithm. In this approach, only the aggregated
weights w from the server and the model weights w,,, from clients participating
in the round are transmitted, offering a secure way to protect data. However,
as the number of training rounds increases, Federated Learning can consume
substantial communication resources. Research addressing this issue includes
client updates sub-sampling[13] and model quantization [35].

2.1.2 Vertical Federated Learning

Vertical Federated Learning, or heterogeneous FL, involves clients sharing the
same sample space but with different feature spaces. As shown in Figure [2.4
different clients have the same samples but use different features. For example,

Features

Person A 24 Male 178 78 1
Person B 61 Female 165 64 0 Client 1
Person C 44 Male 182 89 1

Samples
Person D 17 Female 159 52 0
Person E 11 Male 137 36 1 Client 2
Person F 33 Female 171 60 0

Figure 2.3: Features pace and samples space of Horizontal Federated
Learning. In HFL, every client has different data samples. These
samples have the same features [40].

Features

Person A 24 178 1 Person A Male 78

Person B 61 165 0 Person B Female 64

S ! Person C 44 182 1 Person C Male 89
amples Person D 17 159 0 Person D Female 52
Person E 11 137 1 Person E Male 36

Person F 33 171 0 Person F Female 60

Client 1 Client 2

Figure 2.4: Features pace and samples space of Vertical Federated
Learning. In VFL, every client has all the data samples, but each
client has different features of these data, and only the guest party
has the labels of these data. Here, Client 1 is the guest party and
Client 2 is the host party [40].

Client 1’s samples may have Age and Height features, while Client 2 has Sex
and Weight features.

In Vertical Federated Learning, it is assumed that only one client, usually
referred to as the guest party or passive party, has the data labels such as Client
1 in Figure Other clients, known as host parties or active parties, such as
Client 2 in Figurg2.4] do not have these labels [40]. Unlike Horizontal Federated
Learning, Vertical Federated Learning does not have a common global model.
Each client uses its local model, and there is no centralized server for aggregating
model parameters. However, similar to Horizontal Federated Learning, they still
send some results to the guest party. The training process in Vertical Federated
Learning is as follows:

1. Each selected client in a communication round trains on the same data
shard with its local model, which is designed for specific features, produ-
cing a result.

2. Host parties send this result to the guest party.

3. The guest party calculates the loss function and intermediate gradients

locally, updating its model.

4. The guest party sends these intermediate gradients back to the host parties,
who then update their models and repeat the process with the next data
shard.

Unlike Horizontal Federated Learning, Vertical Federated Learning does not
send model parameters to a central server or guest party, lacks a shared model
structure and global model, and only transmits the host party’s outputs to
the guest party, who then sends back intermediate gradients. However, every
training round and data shard training in each communication round requires
communication.

Compared to Horizontal Federated Learning, Vertical Federated Learning has
a performance closer to centralized machine learning and requires less data to
be communicated, only transmitting client outputs and intermediate gradients
rather than entire models. However, it also faces data privacy concerns [40].

Federated Transfer Learning is applied in scenarios where there is an overlap
in the feature and sample spaces between Horizontal and Vertical Federated
Learning.

Under the Federated Learning framework, the model performs well when the
data distribution among clients is homogeneous. However, in more realistic non-
IID distributions with highly heterogeneous data, this framework significantly
suffers, leading to difficulty in model convergence. The accuracy of the model
aggregated on the server and tested on local user data can decrease, struggling
to adapt to local data distributions. This challenge of performance degradation
due to data heterogeneity remains one of the significant obstacles in Federated
Learning.

2.2 Client Drift : The Impact of Data Hetero-
geneity

The impact of data heterogeneity on Federated Learning is mainly attributed
to the phenomenon of client drift, which occurs due to multiple rounds of local
training on non-IID data and subsequent synchronization via a centralized server
[23]. Figure demonstrates the effect of client drift in Federated Learning
algorithms on both IID and non-ITD data distributions.

Taking two clients as an example, in the FedAvg algorithm, the optimal weight
of the server-aggregated global model gradually shifts towards the average of
the clients’ optimal solutions. When the data is IID distributed, the global
model’s optimal solution w* is equidistant from each client’s optimal solutions
w? and w3. In this process, the global model w! with each round of aggregation
gradually approaches the global optimal solution w*.

However, with non-IID data distribution, the theoretical global optimal solu-
tion w* is no longer equidistant from the clients’ local optimal solutions. As
shown in Figure b), the global optimal solution w* in this case is closer to
Client 2’s optimal solution w3.

Despite multiple rounds of updates in the FedAvg algorithm, clients’ weights
tend to converge towards their local optimal solutions, but the global model
weight w? still approaches the average of the local clients’ optimal solutions.

a 1ID Data b Non-IID Data

1

w witt . W}t/zltﬂ i
. w; 1
‘/v.(tl/’ i w . t"WH_l I:i:l
‘\». - w; .t —@ 41 b

w3 wy w2 w; wy
@ Local model Local optima ~ —» Client update
@ Global model A Global optima » Server update

Figure 2.5: Phenomenon of Client Drift [33].

This result deviates from the theoretical global optimal solution, leading to
convergence issues.

2.3 Personalized Federated Learning

Personalized Federated Learning is a research direction proposed on the basis of
traditional federated learning, aimed at addressing the convergence challenges
in highly heterogeneous data environments while meeting individual user needs.
Unlike federated learning, personalized federated learning does not solely fo-
cus on developing a global model that performs well on an “average client.”
Instead, it emphasizes cultivating models that perform well locally, tailored to
each client’s data distribution [26].

This field mainly employs two approaches: personalization of the global model
and learning personalized models. As illustrated in Figure a distinction
is made between generic machine learning, federated learning, and personal-
ized federated learning. Personalized federated learning primarily involves two
strategies: Global Model Personalization and Learning Personalized
Models, each further divided into various approaches. [33].

2.3.1 Global Model Personalization

The first category, Global Model Personalization, follows the traditional feder-
ated learning training approach. It addresses the issue where a single global
model underperforms in highly heterogeneous data contexts. Similar to tradi-
tional federated learning, this strategy initially develops a single global model.

However, post distribution to clients, the global model undergoes localized
adaptation training based on individual data distributions. This dual process of
federated learning training followed by local adaptation is a common strategy
in personalized federated learning [22].

10

Personalized Federated Learning

Data Augmentation

Data-base

Client Selection

Q Global Model Personalization

Data Heterogeneity Regularization

Model-based / Meta-Learning

_ Transfer Learning

PFL Apporaches Parameter Decoupling

Architecture-based

Knowledge Distillation

Solution Personalization

Multi-Task Learning

Similarity-based } Model Interpolation
_ Clustering

Q Learning Personalized Models

Learning Personalized Model

Wiy O

71 s
. . . dup? . < Personalized Client
Client Dataset |:| Client Model ‘ Global Model 0 Trained Global Model '\!EQ PFL Algorithm OAModel
Figure 2.6: Personalized Federated Learning Approaches. The al-
gorithm proposed in this thesis is based on Parameter Decoupling,
which is one of the Architecture-based approaches.

The performance of the localized model under this strategy depends heavily on
the global model’s effectiveness. Therefore, many approaches strive to enhance
the global model’s performance in highly heterogeneous data environments to
improve subsequent localized adaptive personalization.

As Figure[2.7) depicted, the Global Model Personalization strategy is categor-
ized into two approaches: Data-Based and Model-Based.

Data-Based Approaches

Data-based approaches aim to reduce the statistical heterogeneity of client data.
These approaches include:

1. Data Augmentation: Considering IID data distribution as a funda-
mental assumption in statistical learning theory, the goal of data aug-
mentation is to enhance the statistical homogeneity of user data. To ad-
dress unbalanced data distribution, techniques like Over Sampling [2I]and
Under Sampling [25] have been proposed. However, direct application in
federated learning is challenging due to data privacy concerns. Therefore,
data augmentation typically requires some degree of data sharing or a

11

Data-base Approaches

a Data Augmentation b Client Selection

AR
select
clients

_
— :
model parameters odel parameters Client Dataset

)| —— Augmented é .
Data = l:, Client Model
é ‘ Global Model
Model-based Approaches u Trained Global Model
¢ Regularized Local Loss d Meta-Learning e Transfer Learnining

Jam
NaRm% PFL Algorithm
\\rﬁ

Personalized Client
Model

Optimized for fast adaptation

Figure 2.7: Strategies for Implementing Personalized Federated Learn-
ing with Global Model Personalization. The figure illustrates various
approaches to personalizing the global model in personalized feder-
ated learning. a) Data Augmentation b) Client Selection are data-
based approaches. ¢) Regularized Local Loss can be achieved through
1) regularization between the global model and local models or 2) reg-

ularization between local models and their respective ideal models.
d) Meta-Learning e) Transfer Learning are model-based approaches

[33].

Frozen Fine-tune

representative dataset that mirrors the overall data distribution [33].

2. Client Selection: This approach implements a client selection mechan-
ism designed to balance data distribution among selected clients, thereby
enhancing the global model’s performance [34].

Model-Based Approaches

Model-Based approaches focus on two objectives: acquiring a robust global
model for subsequent personalization and enhancing the model’s adaptability
to individual local environments. Specific approaches include:

1. Regularized Local Loss: Regularization in loss functions is commonly
used to prevent overfitting and improve convergence. In personalized fed-

12

erated learning, regularized local loss functions limit the deviation of the
model post-local training, indirectly enhancing the stability and speed of
global model convergence. Notable algorithms include FedProx [28] and
SCAFFOLD [23].

2. Meta-Learning: Often referred to as “learning to learn,” meta-learning
aims to optimize algorithms through exposure to various tasks or datasets.
In personalized federated learning, non-IID data distributions from differ-
ent clients are treated as distinct tasks. The server aggregation process is
akin to the training phase in meta-learning, while local adaptive training
resembles the testing phase, applying gradient descent based on local data
distribution. Renowned algorithms in this category include Per-FedAvg
[20].

3. Transfer Learning: A common technique in machine learning, transfer
learning aims to transfer knowledge from one domain to another similar
one. In personalized federated learning, the global model often starts
as a pre-trained model, which clients then adaptively train locally for
personalization.

2.3.2 Learning Personalized Models

The central aim of this strategy is to address the personalization of the solution
itself. Contrary to the strategy of global model personalization, which focuses
on training a singular global model, this approach emphasizes training a separ-
ate, personalized federated learning model for each client. This often involves
modifications to the federated learning framework or process to achieve person-
alized models or solutions. As shown in the Figure the strategy of learning
personalized models mainly divides into two categories: Architecture-Based Ap-
proaches and Similarity-Based Approaches.

Architecture-Based Approaches

Architecture-Based solutions achieve personalization by allowing each client to
have its own personalized model. The main approaches include Parameter De-
coupling and Knowledge Distillation:

1. Parameter Decoupling: This approach involves segmenting a part of
the model to serve as the personalized component for each client. The
personalized segment is trained locally with client-specific data and is
not transmitted to the centralized server nor updated by the aggregated
model. This allows the personalized portion to be tailored to local data
distributions or even specific tasks. Decoupling strategies typically fol-
low two types: “base layers + personalized layer,” exemplified by
algorithms like FedPer [12]. The personalized head layer learns specific ex-
pressions based on local data distribution or tasks, while the base part acts
as a feature extractor, learning low-level generic features of the samples.
Another type involves each client retaining a private personalized feature
representation, while the rest of the model is transmitted to a centralized
server for aggregation.

13

Architecture-base Approaches

b Knowledge Distillation

a Parameter Decoupling

Federated model

—
parameters % Client Dataset

[] cient Model

‘ Global Model

Similarity-based Approaches u Trained Global Model

Personalized
Feature
Representation

1 Personalized

Layers

c Multi-Task Learning

\7
(Server RN
<’ lient relationship IearnirE
71
dam,
Nurg

Model ~—_Y&¥~ "~ Client
Jarameteri//r \\‘relationships

e Clustering e
h"n!

wrsk, PFL Algorithm
Server_ WY

luster 1 Cluster
Personalized Client
j’\m Model
odel
@ parameters %

Figure 2.8: Strategies for implementing personalized federated learning
with Learning personalized models include these approaches: a) Para-
meter Decoupling, achieved by retaining parts of the model as private,
either through 1) personalized head layers or 2) personalized fea-
ture representation, and b) Knowledge Distillation, where knowledge
transfer can occur through 1) client to server distillation, 2) server
to client distillation, 3) mutual distillation between client and server,
and 4) mutual distillation among clients. These two are architecture-
based approaches. c¢) Multi-task learning, d) model interpolation,
and e) clustering are considered similarity-based approaches [33].

2. Knowledge Distillation: Knowledge Distillation transfers knowledge
from a group of teacher models to a lighter student model. The “know-
ledge” usually pertains to class scores or logit outputs for a sample, in-
dicating the probabilities or scores for all possible classes. For instance,
in a 10-class task, a sample processed by the model would yield ten prob-
abilities, each corresponding to the likelihood of belonging to one of the
ten classes. Knowledge distillation involves training a simpler structure to
emulate the output of a more complex model. In personalized federated
learning, this allows each client to have entirely different models based on
their local data distribution or task type. Generally, knowledge distillation
requires a common dataset for different models to imitate the results on
this dataset. There are four main ways to achieve personalized federated
learning through knowledge distillation [33]:

(a) Client distills knowledge from the server to obtain a stronger person-

14

alized model,
(b) The server distills knowledge from clients to improve the global model,
(c¢) Bidirectional distillation between clients and server,

(d) Mutual distillation among clients without server involvement.

Similarity-Based Approaches

Similarity-Based approaches require establishing a relationship of similarity
among clients. Clients learn from others within this relationship to develop a
localized personalized model. Specific techniques include Multi-task Learning,
Model Interpolation, and Clustering;:

1. Multi-task Learning: This approach trains a model to adapt to multiple
related or similar tasks, enabling the model to learn common features and
key knowledge across different tasks to enhance its generality. In person-
alized federated learning, different clients with non-I1ID data distributions
can be viewed as similar tasks in multi-task learning.

2. Model Interpolation: This technique balances the local model of the
user with the aggregated global model. It considers the similarity between
the local and global models, introducing a penalty parameter A to prevent
large deviations between the two. When A equals zero, it means each
client trains solely based on their local data, independent of the aggreg-
ated model. As X increases, the local model becomes more similar to the
global model. When A approaches infinity, all local models nearly resemble
the global model, eliminating personalization and resembling traditional
federated learning.

3. Clustering: Clustering is an approach used when there is significant
heterogeneity and variance in client data. It groups clients with similar
data into clusters, employing the same model within each cluster and
different models across clusters. This strategy assumes a natural grouping
or clustering of clients based on data distribution.

The approach to personalized federated learning is diverse, and various ap-
proaches can be combined to create new solutions. However, in traditional
federated learning algorithms, the global model often serves merely as an inter-
mediate product during training [I5]. This overlooks the potential of federated
learning to develop a versatile global model that learns from the diverse local
data of each client.

The approach adopted in this thesis is based on the data decoupling ap-
proach in learning personalized model strategy, while also incorporating a data
augmentation solution. Data decoupling is achieved by splitting the training
model into parts for aggregation on the server and parts for training and use on
the client’s local device. The following chapter will provide detailed descriptions
of the approaches that have been designed.

2.4 Data Augmentation

Data augmentation, while not the central focus of this thesis, plays a signific-
ant supportive role in enhancing the federated learning model’s effectiveness.

15

In deep learning, especially in computer vision and image processing, data aug-
mentation is crucial. It involves expanding the dataset artificially through modi-
fications to the original data, such as geometric transformations and noise ad-
dition [I§]. Data augmentation’s primary purpose is to address data scarcity, a

Data Augmentation on Cifar10 Data Sample

Original Aug 1 Aug 2 Aug 3 Aug 4
airplane airplane airplane airplane airplane
Aug 5 Aug 6 Aug 7 Aug 8 Aug 9
airplane airplane airplane airplane airplane

*l-'

Figure 2.9: Data Augmentation on Cifar10 Data Sample.

common challenge in deep learning. Gathering extensive datasets can be costly
and time-consuming. Data augmentation offers a low-cost, efficient solution to
reduce reliance on extensive data collection and preparation [32]

In federated learning, data augmentation mitigates data heterogeneity, lead-
ing to more evenly distributed and similar data distributions across clients while
maintaining privacy [I§]. Augmented data significantly improves the perform-
ance and results of deep learning models [32].

Data augmentation also reduces operational costs related to data collection
and labeling [32]. In the thesis, Data augmentation is used to generalize the
rebalanced dataset based on local datasets and improve the generalization of
the global model when aggregated.

2.5 Message Queuing Telemetry Transport

Message Queuing Telemetry Transport (MQTT) is a messaging protocol based
on a publish-subscribe mechanism [30]. In the thesis, it is primarily used to es-
tablish a TestBed for communication between simulated servers and clients on
experimental devices. In the MQTT protocol, there are two main network en-
tities: the Message Broker and the Clients. The role of the Message Broker is to
receive messages published by clients and forward them. After connecting to the
broker, each client subscribes to its chosen topics. A client can subscribe to mul-
tiple topics, and messages sent to a specific topic are forwarded by the message
broker to all other clients subscribed to the same topic. MQTT was selected for
this thesis mainly due to its mechanisms like Persistent Session, Retained Mes-
sages, and Last Will and Testament (LWT). These features effectively handle
issues such as device crashes and disconnections during experiments, allowing

16

the training to continue after reconnection.

2.5.1 Persistent Session

This mechanism allows clients to set their Quality of Service (QoS) level, with
three levels available: 0, 1, and 2. At QoS levels 1 or 2, the message broker
retains the client’s subscribed topics and unacknowledged messages even after
disconnection. When the client reconnects, these messages are resent. At QoS
level 0, however, if the client disconnects, new messages published on subscribed
topics during the disconnection are not retained, and the client won’t receive
these messages upon reconnection. This is particularly useful for handling poor
network conditions, preventing data transmission interruptions, and ensuring
data completeness for ongoing processes.

2.5.2 Retained Message

With this feature, the latest message marked as ”"Retained” under a topic is
preserved. When a new client subscribes to this topic, the retained message is
immediately sent to them. This ensures that when clients connect to the server,
they receive the experiment details immediately without requiring the server to
resend these details repeatedly.

2.5.3 Last Will and Testament (LWT)

This mechanism sends a LWT message to notify other clients when a client
disconnects unexpectedly. It is crucial for addressing situations where an exper-
imental device crashes or disconnects, preventing the server from unknowingly
selecting the disconnected client for further training, which could otherwise lead
to process interruptions.

17

18

Chapter 3

FedReb Overview

This chapter will provide a detailed explanation of the design philosophy and
specific processes of the newly designed framework. It will first introduce the
fundamental ideas and key assumptions underlying the algorithm design, as
well as how the non-IID data used in the simulation is partitioned. This will be
followed by a general description of the algorithm, illustrated with pseudocode
to explain the overall process.

3.1 Basic Idea / Key Assumptions

3.1.1 Feature Extractor

This part mainly explains the feature extraction characteristics of different parts
of the model for tasks or data. As mentioned earlier, FedPer proposes a frame-
work for personalized federated learning through parameter decoupling, consist-
ing of “base layers + personalized head layers” [12]. In this framework, the
base layers are aggregated through federated learning, while the personalized
head layers are retained by the clients and trained with local data.

This framework assumes that the base layers of the model can learn low-level,
general-purpose features that are common across different user data distribu-
tions or similar tasks, such as color blocks, textures, corners, or edges in images.
These features are common regardless of how different the data distributions are.
Therefore, it is feasible to design a structure where the base layers participate
in federated learning to learn features from various data distributions.

In contrast, the remaining layers, referred to as personalized head layers in
FedPer, are opposite to the base layers [12]. They learn information useful for
specific tasks and data distributions, based on different combinations of low-
level features extracted by the base layers, such as specific shapes formed by
combinations of textures, colors, and edges in image information. These layers
learn classifications specific to data distributions or tasks.

The understanding and assumptions about base and personalized head lay-
ers form the foundation of this thesis. The thesis also adopts the parameter
decoupling approach of splitting the model into base and personalized head
layers.

However, unlike FedPer [12], where only the base layers participate in feder-
ated learning, the new approach introduced in this thesis additionally involves a

19

head layer, inspired by FedROD [I5], allowing the server to use it to aggregate
a complete model for task completion. This additional head layer is trained
locally with the client’s original personalized head layer but uses a different
dataset, which will be explained in detail later.

Besides FedPer, other algorithms like FedRep [16], FedBABU [31], and Fed-
ROD [I5] also achieve personalized federated learning through parameter de-
coupling. These algorithms split the model into two parts: one part is com-
pletely private and trained locally by the client, and the other part is aggregated
and updated through federated learning.

The FedROD [I5]algorithm mentioned above is another algorithm considered
as the reference in this thesis. It introduces an additional head for global ag-
gregation and a softmax balanced loss, achieving a well-performing global model
while addressing data heterogeneity and fulfilling diverse personalized solutions
for different clients.

3.1.2 Data Distribution

In federated learning, the assumed independently and identically distributed
(IID) data implies that the data volume is similar among all participating clients,
and the distribution of various types of data is also similar. Specifically, if a
client has 100 samples with 10 classes, each class having 10 samples in a uniform
distribution, other clients would also have approximately 100 samples with a
similar distribution. This is an ideal assumption and hard to achieve in reality.

When data distribution is non-IID, closer to real-world scenarios, the per-
formance of federated learning is not as satisfactory. In personalized federated
learning, to simulate the non-IID situation in real-world data distributions, vari-
ous methods are used to allocate data to simulated users.

One common situation in personalized federated learning that needs to be
addressed in non-1ID is label distribution skew. Suppose a sample data (z,y),
where x represents features like pixel position and color in an image input to
the model, and y is the label of the image. The data distribution for a local
user m is P, (z,y).

In cases where label distributions differ, each client’s label distribution Py, (y)
is different. However, the feature distribution for the same label should be
similar, meaning that although local data distributions differ, the features are
the same, i.e., the conditional distribution P, (z | y) is similar [40].

Label distribution skew mainly involves differences in the number of samples
per client and the distribution of samples across classes. In the original FedAvg
paper, a method to simulate unbalanced data distribution is proposed, where
each client only has data for specific ¢ classes[29].

Figure[3.1] shows the situation where each client only has data for two classes.
When c is set equal to the total number of classes in the dataset, the data
distribution among clients approximates an IID distribution. This approach is
also known as the “hold ¢ classes” scheme.

Another approach that closely simulates the non-1ID distribution among cli-
ents is based on the Dirichlet distribution Dir («). It assumes that the probab-
ility of a class c being distributed to client m is pe y,.

For a client, the probability of class ¢ being distributed is p. ~ Dirg (). The
smaller the a, the more imbalanced the client data distribution; as o approaches
infinity, the data distribution among clients becomes IID.

20

bird deer frog ship

Client1| &
Client 2 H g

Figure 3.1: Data partition method: Hold ¢ classes [40]

The bar chart below Figure [3.2] shows the distribution of a 10-class dataset
among 20 clients according to the Dirichlet distribution with & = 0.1, where
each bar represents a client, each color represents a class, and the length of the
bar indicates the quantity of data. The method used in this thesis to simulate
non-IID data distribution also adopts this approach.

Original dataset data partition(a=0.1)

1
= 0
4000 - -1
- 2
= 3
- 4
3000 4 . 5
@ 6
v -7
]
8 w8
m 20004 . 9
8
1000 A

012 3 45 6 7 8 910111213 14 15 16 17 18 19
Clients

Figure 3.2: Data partition method: Dirichlet distribution

3.2 Overview of the FedReb Algorithm

This section divides the algorithm into two parts for explanation: first, the ag-
gregation part in federated learning, and then the training process for individual
clients. However, before that, an explanation of how to generate the Rebalanced
Dataset mentioned in the algorithm is provided.

21

3.2.1 Rebalanced Dataset

The Rebalanced Dataset is generated based on the local original dataset. It first
determines a value based on the number of each class of data in the original
dataset. This value can be the mean number of data for classes that have data
in all users’ local original datasets. For example, if a user only has data in 5
classes, then this mean value would be the mean of these 5 classes. This value
could also be the maximum, median, or minimum value. The main purpose
is to choose a threshold value t, so that the data of all held classes increases
or decreases to t, achieving a balance among the existing classes, approaching
the effect of an IID dataset. However, it might become a scheme similar to the
“hold ¢ class” mentioned earlier due to the limited number of classes in local
data, but since the classes held by each client vary, it is not exactly the same
as that scheme.

Once this value is determined, classes exceeding this value will randomly
select ¢ samples, while those below ¢ will use data augmentation to increase
their samples to t. Compared to the original local dataset, the Rebalanced
Dataset has the same classes as the original local dataset, but the quantity of
data in each class is the same, all set to a specific threshold value t.

The main purpose is to train a more balanced model locally and make the
model aggregated through federated learning more balanced and generalizable.
Figure 3.3 shows the clients’ data distributions of the rebalanced dataset gener-
ated with the threshold ¢. The threshold ¢ is set to the mean number of samples
across classes that have non-zero samples in the original dataset. The original
dataset is generated based on the Dirichlet partition in Figure [3.2

Rebalanced dataset data partition:Mean

1
= 0
4000 -1
- 2
= 3
- 4
3000 - = 5
o 6
@ -7
b
2 8
= 20004 = 9
° |
10004 o
-

012 3 45 6 7 8 9101112131415 1617 18 19
Clients

Figure 3.3: Rebalanced Dataset Generated with threshold ¢ as mean
value.

22

3.2.2 FedReb Client: Local Training Part

‘ ‘ -
Step 2 — . Client Original Dataset

[
U Client Rebalanced Dataset

O Base of model

l:l Head H1 to aggregate

|:| Head H2 used locally

! J Parts Optimizer updates
.-

Figure 3.4: Overview of Client Local Training Part of FedReb

As shown in Figure the local training process of the user consists of two
steps, with the model being trained sequentially through two sets of data. Train-
ing starts with the original dataset, where data is processed through the base
layer to output an intermediate result, mid. mid is then processed through Head
H1 and Head H2, respectively outputting output, as a prediction result with
a more balanced distribution among classes and output, as a prediction result
where the distribution among classes depends on the local data distribution.

“output,+output,” is used as the output result for input into the loss function
to calculate the gradient. During backpropagation, the gradient is propagated
back to the base through both H1 and H2. Subsequently, the optimizer updates
the parameters of the Base and Head H2, while H1 remains unchanged. The
idea of using “output, + output,” as the output result is to allow Head H2,
which is closer to the local data distribution, to be trained more quickly with
the help of Head H1, which is aggregated through federated learning and has a
more balanced and generalizable prediction for various classes.

Next, the Rebalanced Dataset is used to retrain the base. The output mid
result is only fed to H1, and the loss is calculated only based on H1’s output,.
During backpropagation, it only propagates through H1 to the base. The op-
timizer then updates the base and H1.

After this, the base and H1, as a complete model, upload their parameters
to the server for aggregation. This step mainly aims to train a Head H1 with a
more balanced prediction result distribution through a Rebalanced Dataset with
a more balanced data distribution, providing the central server with a model
that has strong generalizability.

This step updates the Base part because the base is considered a low-level
feature extractor, and the low-level features learned from the Rebalanced Data-
set generated based on the original dataset are not significantly different from
those learned from the original dataset.

Moreover, the Rebalanced Dataset includes samples generated through data
augmentation, which should make the base part more robust.

For this training approach, it is worth noting that the number of training
samples for the local model’s base part and Head H1 are actually different be-
cause the rebalanced dataset could be created with different threshold ¢. There-

23

fore, some adjustments to the server aggregation step mentioned earlier are
proposed in this thesis.

3.2.3 FedReb Server: Federated Learning Part

Client Original Dataset

A S S S

Client Rebalanced Dataset

Base of model

Client 1 ‘ Client N ‘
[] [~

Head H1 to aggregate
(-

(-}
U | | e D | |
| | |
- I - | I
. I:II : . |:|' | . _ _ Parts sentto server

Figure 3.5: Overview of Federated Learning Part of FedReb

Head H2 used locally

OO @

As shown in Figure|3.5] an explanation of all components in the entire process
is provided. Each client holds their own original dataset and a Rebalanced
Dataset generated from it. The model structure held by each client is the same,
with each having a base layer of the model, and Head layers H1 and H2. By
combining the base layer with the Head layers, the model can make complete
predictions and learn about each category of a task or dataset, meaning the
Head layers will output for every class of the dataset, regardless of whether the
local user has data in those classes.

The Head layer H1 is trained with the local Rebalanced Dataset, resulting in
H1 being influenced by a dataset that is closer to an IID distribution, leading
to more balanced model predictions. When a certain class significantly exceeds
others in quantity, machine learning models tend to predict future outcomes as
the class with more data in the training set.

However, by training Head H1 with the Rebalanced Dataset, the predictions
made by combining the base layer and Head H1 will not be biased towards a
specific class due to unbalanced local data distribution. Subsequently, Head H1,
along with the base layer, is transmitted to the centralized server for aggregation,
resulting in a model with strong generalizability.

The Head layer H2 is trained with the local non-1ID distributed original data,
learning the characteristics of the local data distribution. Thus, predictions
made by combining the base layer and Head H2 will be more aligned with the
local data distribution. After training, Head H2 is retained locally and not
updated through federated learning. When predicting locally, both Head H1
and H?2 work together.

24

During server aggregation, the aggregation weights differ from traditional fed-
erated learning. They are based on the size of the original datasets of the clients
participating in the current round. Typically, the server’s aggregation part ad-
opts the FedAvg aggregation approach, as written in the following equation

BTk

M Dm
m=1

In equation wy is the global model’s parameters, w,, is the parameters of
client m’s model, D,, is the size of client m’s original dataset, D is the total
size of the original datasets of all clients participating in the current round, and
M is the number of clients participating in the round. However, in this thesis,
the model’s base part and Head part are aggregated separately with different
weights, as shown in the following formulas:

<Ny
Wo,g :Z

m=1

DO

m|

[De]

M

D7,
Wh,g = Z |De|wh,m, (33)

m=1

Here, in equations and wb,m is the weight of each user’s base,wy 4 is
the weight of the aggregated global model’s base, wy ., is the weight of each
client’s Head H1, and wy, 4 is the weight of the aggregated global model’s head.
D¢, is the size of client m’s original dataset, which is the previously mentioned
D,,. D° is the same as D, the total size of the original datasets of all clients
participating in the current round.

D¢ refers to the number of effective samples in client m’s Rebalanced Data-
set, and D¢ refers to the total number of effective samples in the Rebalanced
Datasets of all clients participating in the current round.

Effective samples are actually the number of samples obtained in the Rebal-
anced Dataset that are not generated through data augmentation. If the target
value t is the mean, then the number of effective samples is calculated as follows

equation [3-4}
k

In equation [3.4] k is the total number of classes, i is the class label, and e; is the
number of effective samples in class 7 in the Rebalanced Dataset. For classes in
the original dataset with fewer samples than ¢, e; is the number of samples in
class i, as the other data are generated through data augmentation. For classes
with equal to or more than ¢, e; is ¢, as the data for these classes are reduced
to t.

25

Algorithm 1: Algorithm of Rebalanced Dataset

Input: Client Local Dataset
1 for Class label i =0,1,2,--- ,k do

2 ‘ e; + Count quantity of data of class i
3 end
4 for Class label i =0,1,2,--- ,k do
5 if 0 <e; <t then
6 Generate t — e; augmented data base on existed class i data
7 Add augmented data to the Rebalanced Dataset
8 Add original data fo class i to the Rebalanced Datset
9 else
10 if e; > t then
11 Random Select t data from class i
12 Add selected data to the Rebalanced Dataset
13 end
14 end
15 end

3.3 Alogrithm of Federated Learning with Re-
balanced Dataset

3.3.1 Algorithm of Creating Rebalanced Dataset

The algorithm for generating rebalanced datasets begins by reading the user’s
original local data d, and initializing an empty dataset or container d,. to receive
samples for the rebalanced dataset. Next, the quantity of data for each class is
calculated to compute the threshold ¢t. Here, t is set as the mean value of the
number of samples of all non-zero classes.

For the i class in the original dataset, if its sample size e; is between 0 and
the threshold ¢, data augmentation is used to generate “t — e;” samples to add
to the rebalanced dataset d,., followed by adding the original data of class i to
d,-. This results in class 7 in d, having a total of ¢ samples.

For classes in the original dataset with a sample size e; greater than or equal
to t, t samples are randomly selected and added to the rebalanced dataset. As
the threshold ¢ is the mean value of all classes with non-zero samples, the size
of the rebalanced dataset is the same as the original dataset.

3.3.2 Algorithm of FedReb Client

The client-side local training algorithm begins by initializing the loss function
[, optimizers opt; and opts, and the local model w,,, including the base model
parameters wy, ,, and the parameters of two heads: head H1 for aggregation
WH1,m and the personalized head layer head H2 wg2 . It loads the original
dataset d,and the rebalanced dataset d,.

At the start of each communication round k, if the client is selected, it receives
the global model wék) from the centralized federated learning server. The global

model’s base parameterswl()kg) and head parameters wék;are loaded into the local

26

Algorithm 2: Algorithm of FedReb Client
Input: loss function 1, optimizer, original data loader d,, rebalance
data loaderd,
1 Initialzied w,, at random
2 for communication round k = 1,2,3,... do

3 if Client m is selected then
4 Receive wgk) from Server
5 for batch b, = (x0,Yy,) in d, do
6 mid < base(z,)
7 output giopar < head H1(mid)
8 outputpersoant <— head H2(mid)
9 loss < f(output giopar+outputpersoant,Yo)
10 loss function backwards
11 Optimizer updates wé%,wgi_m,w%&m
12 end
13 for batch b, = (z,,y,)in d, do
14 mid < base(x.)
15 outputgiopar < head;(mid)
16 loss < f(outputgiobai,yr)
17 loss function backwards
18 Optimizer updates wl(,i?wwgg,m
19 end
20 Send D¢,,D;.
21 Send wl()kyzl , wg;i’m to Server
22 end
23 end

model’s base wy, ,, and head H1, wgy m, replacing the local base and head H1
parameters.

Training starts with loading data from the local original dataset d,, loading
a batch b, of data x, and their corresponding labels y,. The data first passes
through the local model’s base to generate an intermediate result mid, which
then goes through heads H1 and H2 to output predictions output, and output,,
respectively.

“outputy + output,” is used as the model’s output, which, along with the
sample labelsy,, is input into the loss function [to calculate gradients and
perform backpropagation through the entire model. Gradients for the model’s
base, head H1, and H2 are calculated.

Then, optimizer opt; updates the model’s base and head H2 based on the
gradients from the loss function, while head H1 is not updated.

Next, data from the rebalanced dataset d, is loaded for training, loading a
batch b, of data x, and corresponding labelsy,.. This data also passes through
the local model’s base to generate an intermediate result mid, which then goes
through head H1 to produce output,.

output, and the data labels y, are input into the loss function I to calculate
loss and gradients, and backpropagation is performed on the model’s base and

27

head H1. Finally, optimizer opt, updates the model’s base and head H1.
After training, the client sends the model’s base and head H1 as a complete
model to the centralized server.

3.3.3 Algorithm of FedReb Server

Algorithm 3: Algorithm of FedReb Server

Input: Initialzied w, at random
for Commumnication round k = 1,2,3,... do

=

2 Select Client join in this round M

3 Send wgk) to Client m € M

4 Receive Dy, D7,

5 Receive w}()kgl , wgﬁim from Client m € M

6 Calculate Clients’ aggregation Weight v, p, = %;7:, Yh,m = %’T:?

7 Aggregate global model base with wl(fgﬂ) = Zn]\le Yo,m X wl()ﬁil

8 Aggregate global model head with w,(fjl) = Zf\le Vh,m X wgg,m

9 end

From the perspective of a centralized server, the system’s algorithm begins
with the server initializing a complete model parameter w,. Then, in each
communication round, the server randomly selects multiple client IDs to form
the set M and sends the aggregated model parameters wék) from the previous
round to the selected clients m € M. The model parameters sent in the first
round are the randomly initialized w,.

After sending the model parametersws(,k) for communication round k, the
server waits for all selected clients to complete local training. Clients m € M
send back the size of their original local training dataset DS,, the size of the
effective samples in the rebalanced dataset D, the base part of the local model
wlgkg%, and the parameters of head H1 for aggregation w;’;}m to the centralized
server. The server calculates the weights ~;,, and v, for aggregating the

global model’s base and head, with equations [3.7hnd [3.8respectively:

D°= Y Dy, (3.5)

meM

D= Y Dt (3.6)

meM
D7,
Yoom = Do (37)
Dy,
Yhom = De (38)

The server aggregates the local model’s base parameters w'® and head H1’s

b,m
parameters wgim sent by client m € M to form the base wl(;kgﬂ) and head

28

w,(fﬂ of the global model wé 1 for the next round:
k
wz(; gﬂ) Z Yo,m X wb i (3.9)
w,(Lk;rl) Z Vhym X le m (3.10)

After aggregation, the next communication round begins, and the model is
sent again.

29

30

Chapter 4

Implementation

This chapter will specifically introduce the details of the algorithm’s implement-
ation in code, focusing on three main parts: the generation of the rebalanced
dataset, the server-side federated learning component, and the client-side local
training. Additionally, details of the communication aspects necessary for de-
ployment on the testbed will be introduced. The simulation part of the code
primarily utilizes the Python machine learning library, PyTorch.

The main framework of the code implementation is based on the open-source
repository — Personalized Federated Learning Platform [7], which includes im-
plementations of various federated learning and personalized federated learning
algorithms published in well-known conferences and journals, such as FedAvg
[29], FedProx [28], FedDyn [10], etc. This repository facilitates experimentation
and comparison and is continuously updated. The latest update includes the
GPFL algorithm, published in ICCV 2023 in October 2023 [39].

4.1 Rebalancing Dataset Creating Algorithm

The original dataset is partitioned using a Dirichlet distribution, with code
implementation mainly referencing [38]. The generation of the rebalanced data
occurs after each client has been allocated their local simulation dataset. The
local client simulation datasets are loaded using PyTorch’s DataLoader class.
This allows for the counting of each class’s data volume e; as mentioned in the
algorithm, using the labels of all samples contained in the DataLoader.

Since the data labels are represented numerically (for example, in a 10-class
dataset, labels are represented by numbers 0-9), counting each class can be
simply implemented through a loop. The creation of new samples through data
augmentation is achieved using PyTorch’s torchvision.transforms().

As the experimental part of the thesis primarily uses the Cifar10 and FMNIST
image datasets, the AutoAugment () function provided by PyTorch is used for
data augmentation. The effectiveness of this fucntion is also demonstrated in
the paper [17].

For the part involving random sample extraction, the random.sample function
from Python’s built-in random library is used. This involves randomly selecting
sample indices and then extracting the corresponding data and labels from the
dataloader.

31

Regarding data saving, an empty dataset is initialized to store data, as men-
tioned earlier. In actual implementation, two numpy arrays provided by numpy
are initialized to separately save data and their corresponding labels. Finally,
the data is saved as an npz file using the savez_compressed () function provided
by numpy.

4.2 Implementation Details of FedReb Server

Server

args:ArgumentParser # Contain the Training Detail

Clients:List # Contain all the instances of
clients

global_model:Model #Global Model used to aggregate

selected_client:List # Contain the IDs of clients selected

this communication round
uploaded_weight:List ~ # Contain the size of clients' local
dataset to calculate the
aggregation weights
uploaded_model:List ~ # Contain the model parameters
uploaded by selected clients

set_clients(): # Initialize Clients with training Detail

select_clients(): # Select clients attending in this
communication round

send_models(): # Let all Clients load their local model
based on the aggregated global
model

receive_models(): # Receive the local model parameters

from selected clients and
calculate their aggregation

weight
aggregate_parameters():# Aggregate the global model
evaluate() # Evaluate the global model

...... and clients' local models

Figure 4.1: Key variables and function of Class Server

For the server part of the simulation federated learning, different federated
learning algorithms are implemented as subclasses of the Server class. As
shown in Figure the Server superclass contains specific training process
parameters as class variables for direct access and includes basic class functions
such as running local evaluation and aggregation.

During instantiation, as there is a need to compare the accuracy of global mod-
els of different algorithms in the experimental part, the global model is initialized
as a complete model. K client instances are initialized, and this model’s struc-
ture and parameters are copied to the clients using Python’s copy.deepcopy ()
function, instead of only initializing a base or head part of the model that cannot
perform local prediction on the server side.

In the actual aggregation part, if there is no special requirement for aggreg-
ation weights like in this scheme, the entire model of all clients participating
in the current round is used for global model aggregation after the simulation
clients have completed training, following the FedAvg approach. In the local
simulation code, the size of the user dataset is not repeatedly sent to the server

32

in each communication round, as the server can directly access the dataset size
by calling the client’s class variable.

However, the aggregation weights 73 ,, and ., need to be recalculated in
each communication round due to different clients being selected. The aggreg-
ated model is saved as a variable of the simulation server and is also saved as
a pth file used by PyTorch for saving model parameters, to facilitate the con-
tinuation of previous training in case of unexpected simulation interruptions.

4.3 Implementation Details of FedReb Client

Client
args:ArgumentParser # Contain the Training Detail
model:Model # Local Model
loss:Module # Loss function used in training
optimizer:Optimzier # Optimizer used in training
train(): # Local training function
test_metrics(): # Use the local model to test on the

local test dataset

Figure 4.2: Key variables and function of Class Client

In the implementation of the client part of the algorithm, different federated
learning algorithms are implemented as subclasses of the Client class. Similar
to the Server class, as shown in Figure the Client class contains class
variables related to training details and basic functions such as local testing and
loading global model parameters into the local model.

During instantiation, the user loads the original dataset and the corresponding
rebalanced dataset according to their assigned ID, initializes a model according
to the model provided by the
textttServer, and then copies the model’s head as the local personalized layer
head H2 on top of this model using Python’s copy.deepcopy () function.

The original model’s head is the head H1 mentioned earlier for aggregation
on the server. Since it is actually the original local model’s head, it can directly
call the Server superclass’s aggregation function without writing additional ag-
gregation functions for the algorithm. Subsequently, the loss function 1 and two
optimizers opt; and optsy are initialized, specifying their updated model parts as
“model .base+Head H2” and “model.base+model.head” during initialization.

4.4 Communication on the Testbed

Considering network instability during communication or poor performance of
the experimental equipment leading to interruption or freezing of the experi-
mental process, a more mature communication protocol, MQTT, is used when
deploying on the testbed. MQTT is a communication protocol designed for
IoT field applications, and due to its subscription and publishing mechanism,

33

EHI Federated Learning Server
: l

MQTT Message Broker

AIIILIIII' A AIIJIIIII' A A-..L....'

- - - - - Federated Learning Client Devices
4 4 4 4 4
7 7 7 7

Figure 4.3: The Communication Scheme of MQTT

as shown in Figure it requires a message broker server to handle all the
messages sent by clients on various topics [30].

In the testbed experiment, the message broker used is a personal computer
running the Windows 11 operating system. Eclipse Mosquitto [14], an open-
source MQTT message broker software, needs to be installed on the personal
computer and run as a background system service so that all relevant clients
can connect to the message broker server (personal computer) through the local
area network’s IP address or the service URL provided by the server to transmit
messages through the message intermediary. Figure shows the background
operation status of Mosquitto.

‘Windows PowerShell X +

p9: Sending PINGRESP to ©
Received PUBLISH from 2 (d®, g8, reé, m@, 'serv
ending PUBL to 2 (de, g8, r®, m@, 'server
Sending PUBLISH to server_sim (d@, q@, reé, me, e bytes))
Received PUBLISH from 2 (d8, g8, re, m@, e ~/re e p 16 bytes))
ending PUBL to 2 (d&, g8, re, m@, 'server .
ending PUBL! to server_sim (d qé, re, me, er, ei hts,
Received PUBLISH from (de, ge, re, me, 'client/test_metrics/', ... (13 bytes))
ending PUBL to server_sim (de, q8, ré, me, 'client/test_metrics/', . (13 bytes))
ending PUBL. to 2 (de, g@, re, ma, 'client/test_metrics/', ... (13 bytes))
Sending PUBLISH to @ (de, q@, r®, m@, 'client/test_metrics/', . (13 bytes))
Received PUBLISH from @ (de, g8, re, me, 'server/receive_info/@', ... (13 bytes))
ending PUBL to 8 (do, go, ré, md, 'server/: ei (13 bytes))
ending PUBL to server_sim (de, g8, re, me, erve ceive_info/a", (13 bytes))
Received PUBLISH from @ (d®, g8, reé, m@, 'serv e e_weights/e', . 16 bytes))
Sending PUBLISH to & (de, g8, ré®, m@, 'server eive ghts/e' . 2: bytes))
Sending PUBLISH to server_sim (de@, q@, ré, m@, 'server/receive hts/e', ... (1235216 bytes))
Received PUBLISH from @ (d8, q@, re, m@, 'client/test_metrics/' .. (13 bytes))
ending PUBL to server_sim (d@, q8, r&, m@, 'client/test_metrics/', ... (13 bytes))
ending PUBL to 2 (de, g8, ré, md, 'client/test_metrics/', . (13 bytes))
ending PUBLISH to @ (de, g8, re, me, 'client/test_metrics/', ... (13 bytes))
R ived PINGREQ from server_sim
ding PINGRESP to server_sim
Received PUBLISH from @ (d8, g8, re, m@, e e info/1', ... (13 bytes))
ending PUBLISH to @ (de, g8, re, m@, 'server ei nfo/1", (13 bytes))
ending PUBL to server_sim (do, g0, ré, mo, 'server/receive_info/1', ... (13 bytes))
(1235216 bytes))
to © (de, g0, ro, mo, erver, eive_ ... Q2 6 bytes))
SH to server_sim (de, q@, r®, m@, 'server/receive_weights/1', ... (1235216 bytes))
Received PINGREQ from 2

Figure 4.4: Message log of MQTT message broker Mosquitto

In the communication framework mentioned earlier, both the simulation server

34

and clients are actually clients relative to the message broker server. When
deployed on the testbed, the Python library paho_mqtt is used to implement
activities as a client.

The specific implementation is to instantiate a paho.mqtt.client client in
the Python code and connect it to the message broker server. This essentially
establishes a communication channel between the user and the message inter-
mediary. After establishing the connection, the client needs to specify the topics
they want to subscribe to in order to receive messages published on those topics.

The MQTT client has several very important class functions or member func-
tions, namely the on_connect () function, the on_message () function, and the
publish function. The rest of the text will refer to this instance as mqtt_client.

The publish function is relatively easy to understand; the mqtt_client can
publish messages on the topics it subscribes to using the mqtt_client.publish()
function. The on_connect() function and the on_message() function are two
response functions.

The on_connect () function is passively triggered when the mqtt_client es-
tablishes a connection with the message broker using the mqtt_client.connect ()
function. The on_message () function is passively triggered when the mqtt_client
receives messages published on the topics it subscribes to and is used to pro-
cess messages. In implementing code that can communicate on the testbed, the
communication part mainly involves the federated learning server and clients
sending and aggregating models. Next, the 9 topics used in the implementation
and their functions will be explained.

It should be noted that the ‘#’ in the topics is a wildcard in MQTT, meaning
subscribing to all subsequent levels of topics under the topic. For example, sub-
scribing to “server/receive_info/#” would subscribe to “server/receive_info/0”,
“server/receive_info/1”, and other topics.

Here are the details of the nine MQTT topics used for communication in the
testbed setup:

1. “client/train_detail/”: This topic is primarily used for the federated
learning server to send details of the experiment. In practice, these details
are typically stored in an instance of Python’s command-line parsing class
argparse.ArgumentParser, whose base class is NameSpace, a class that
can hold various types of variables as class variables.

Since MQTT cannot directly send a class as a message, it’s necessary to
use the json.dumps () function from the JSON library to convert Python’s
key-value pair data collections or arrays into binary data that MQTT can
send. This is done by first converting the training details args into a
dictionary, then sending it through json.dumps().

It’s important to note that when the server sends these experimental de-
tails, the message’s “retained” flag should be set to True. This ensures
that new clients subscribing to this topic after the message is sent can still
receive it as the latest message.

On the client side of federated learning, the on_message() function can
read this binary message using the json.loads() function from the JSON
library and reload it into the NameSpace class. This approach simplifies
the process of converting simulation code into code deployable on a test-
bed, particularly in terms of reading training details, requiring minimal

35

adjustments to the simulation code.

. “client /connected/”: This topic is mainly for the federated learning
server to confirm how many and which clients have established a con-
nection. Each experimental device simulates multiple clients and assigns
them IDs. After establishing a connection and receiving the training de-
tails from the previous topic, clients actively send a dictionary composed
of a list of locally simulated client IDs and a Boolean value represent-
ing the connection status to this topic using the mqtt_client.publish()
function.

Since mqtt_client cannot directly send dictionaries, the json.dumps()
function from the JSON library is used to convert the list into binary data
for transmission. Additionally, if a client loses connection, it will send a
message on this topic using the Last Will and Testament (LWT) feature,
changing the Boolean value for connection status to false.

On the server side, the on_message () function will load the message con-
tent into a list using json.loads () to confirm the IDs of clients that have
connected or lost connection, and update a local dictionary client_stat
that maintains client status, changing the Boolean value of the “connect”
key for each client iD to indicate whether the client is connected.

. “server/send_weights/”: This topic is mainly used by the server to
send the global model. Since the server model and the local model have
the same structure in the algorithm, and to avoid exceeding MQTT’s data
size limit for messages, the server only sends the global model’s parameter
dictionary, generated by calling global model.state_dict().

For transmission, the parameters are first saved into an instance of io.BytesIO
from the IO library using PyTorch’s torch.save () function. The instance

of io.BytesIO acts as a virtual file containing binary content of any file
format, which is then sent through mqtt_client.

This approach is used because the state_dicts() output from a PyTorch
model is not a dictionary that can be converted into binary data by JSON,
as it contains tensors of the model and must be sent in a binary file format.
On the client side, the on message() function handles this message by
loading it through an instance of io.BytesIO, and then the local model
uses the model.load state_dict () function to load it as a file containing
state dicts into the local model.

. “server/receive_info/#”: This topic is primarily used by the feder-
ated learning server to confirm the current status of clients. The server
subscribes to this topic and its subsequent levels, while federated learning
clients only subscribe to the topic corresponding to the client ID simulated
on their device, such as ”server/receive_info/0”.

In each communication round, if training is completed, the current client
and the number of the training round are sent under this topic. After
receiving this, the server’s on_message() function updates the value of
the current_round key for the corresponding client ID in the client status
dictionary client_stat. When the current_round value for all clients
selected in the current round matches the current communication round,
the federated learning server begins aggregation for that round.

36

5. “server/receive_weights/#”: This topic is used by the federated learn-
ing server to receive model parameters from clients with corresponding
IDs. The approach of transmitting parameters is the same as mentioned
in the ”server/send_weights/” topic, implemented through an instance
of the io.BytesIO class and PyTorch’s “save()” and load _state dict()
functions for PyTorch models.

6. “server/current_round/”: This topic is used by the federated learning
server to send the current communication round number k, allowing all
clients to synchronize with the current communication round. Along with
the ”server /receive_info/#” topic, it helps determine the communica-
tion round number of the clients participating in training to aggregate the
global model. The message can have its retained flag set to True to pre-
serve the latest message, so clients can confirm the current communication
round after reconnecting and read the locally downloaded model.

7. “client/selected/”: This topic is used by the federated learning server to
send the list of clients selected for the current communication round. The
IDs of the selected clients are stored in a list, which can be converted into
binary data using the json.dumps() function from the JSON library and
sent through mqtt_client. The retained flag can also be set to True to
preserve the latest message, allowing federated learning clients to confirm
upon reconnection whether the locally simulated client is participating in
the current round of training.

Clients handle this in the onmessage() function by loading the data
with json.loads() and comparing the IDs of the locally simulated clients
against the list to determine participation in the current round of training.

8. “client/test_metrics/”: During the server testing phase, this topic is
used to receive local test results from clients for calculating metrics such
as average accuracy. The data, stored in a list, is transmitted and read
using the JSON functions mentioned earlier, with decimals retained to four
decimal places.

9. “train/end/”: This topic is used by the federated learning server to
send a command to end training. After receiving this command, clients
will confirm whether this instruction is True after completing local training
to end the local simulation.

37

38

Chapter 5

Experiments

In this chapter, a brief introduction to the baseline algorithms used for com-
parison will first be provided. This will be followed by a description of the
datasets used and the experimental configurations implemented. Subsequently,
the chapter will explore the optimal configuration for achieving the best per-
formance with the FedReb algorithm. This exploration will include an analysis
of the impact of two key factors: the creation method of the balanced dataset,
and the number of personalized head layers and aggregation weights during the
algorithm’s aggregation process. Recommendations for configurations that yield
the best performance will be provided. Finally, FedReb will be compared with
other baseline algorithms under the optimal configuration, and the advantages
of the FedReb algorithm over these alternatives will be analyzed.

5.1 Experiment Baselines

The experiments mainly compare two types of federated learning approaches.
The first type includes traditional federated learning schemes such as FedAvg
[29], FedProx [2§], and FedDyn [I0]. The second type involves personalized
federated learning schemes like Ditto [27], FedPer [12], FedRep [16], FedBABU
[31], and FedROD [I5]. Among these, FedPer, FedRep, FedBABU, and FedROD
are algorithms that, similar to this thesis, implement personalized federated
learning through parameter decoupling.

1. FedAvg (Federated Averaging) [29]: As mentioned earlier, it is the
earliest federated learning algorithm. It works by clients learning local
models and then aggregating these models on a centralized federated learn-
ing server. Compared to traditional centralized machine learning, it en-
hances user data privacy and reduces communication overhead. However,
it performs poorly in the face of non-IID data distribution.

2. FedProx (Federated Proximity) [28]: This algorithm is designed based
on FedAvg to address heterogeneity issues in federated learning, includ-
ing data heterogeneity caused by non-IID data distribution and system
heterogeneity due to different computational and communication capab-
ilities of participating devices. The algorithm introduces an additional
proximal term in the local optimization problem to aid in the stability

39

and improvement of the algorithm’s convergence, especially in the face of
data heterogeneity caused by non-IID data distribution.

. FedDyn (Federated Dynamics) [I0]: This is another traditional feder-
ated learning algorithm designed to address problems caused by data het-
erogeneity. The algorithm introduces a dynamic regularizer in the local
loss function to align local model updates more closely with the global
model’s optimal solution, rather than just the local model’s optimal solu-
tion, reducing the impact of data heterogeneity on the convergence speed
and accuracy of the federated learning global model.

. Ditto [27]: A personalized federated learning scheme implemented through
regularization. It aims to strike a balance between a single global model in
federated learning and a personalized model trained locally without any
federated learning scheme.

During training, clients actually have two models: a local model and a
model that continuously participates in traditional federated learning. It
achieves personalization by optimizing the local model to keep it close to
the federated learning global model.

. FedPer (Federated Personalization) [I2]: A personalized federated
learning algorithm and one of the main reference algorithms for the thesis,
implemented through parameter decoupling. The model is split into a
base shared with the federated learning server and a head retained locally
for personalization, allowing the model to accommodate different clients’
personalized needs more effectively.

During the learning process, local training trains the complete base + head
part of the model, but since only the base part of each client is aggregated,
it is impossible to aggregate a global model capable of completing the task.

. FedRep (Federated Representation Learning) [16]: A personalized
federated learning algorithm that also decouples parameters, splitting the
model into a base shared with the federated learning server and a locally
retained head.

The aggregated base is considered to have learned the global feature rep-
resentation of each client, while the head, although not called a personal-
ization layer like in FedPer, is mainly used for local personalization. The
main difference from FedPer is that during local training, the user’s head
is trained for multiple rounds to meet personalization needs, and then the
aggregated base is trained for only one round to learn the local feature
representation.

. FedBABU (Federated Body and Batchnorm Update) [31]: Also a
personalized federated learning scheme implemented through data decoup-
ling, it similarly splits the model into a base and a head. Unlike FedPer,
during training, only the base part is trained and aggregated, while the
head part is fine-tuned with local data for local testing. This approach
primarily enhances the learning capability of feature representation for
image classification tasks in personalized federated learning frameworks.

40

8. FedROD (Federated Robust Decoupling) [15]: Another personalized
federated learning scheme based on data decoupling and another main
reference algorithm for the thesis. It splits the model into a base and two
identical heads, one for aggregation and one for local personalization, and
trains the two heads with different loss functions.

The complete model base and the head used for aggregation are trained
together using a balanced softmax loss function to calculate gradients.
The other head, used for local personalization, is trained separately using
a common cross-entropy loss function. The aim of this algorithm is to
simultaneously obtain a better global model and a personalized local model
for clients. However, the paper only tested scenarios with 5 out of 20 clients
participating in training, lacking scalability.

5.2 Dataset

This section introduces two commonly used datasets in the experiments: Cifar10
and Fashion-MNIST (FMNIST).

5.2.1 Cifarl0

e RIS EIE
automobile Eﬁh‘
ot R malE WERS ¥ EEW
<« EESEHNEEEs P
aer MBS ES T RS
wg [HESE = BIPIETa B
rog I R 21 O R N R
norse) I 5 9 1o B 1 RS T
o e e T
rock 4 R e 0 S o L S

Figure 5.1: Samples of data in Cifar10 [11]

The Cifar10 dataset is a popular dataset for machine learning and computer
vision, consisting of 60,000 color images with a resolution of 32x32, divided into
10 different classes. Each class, including airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck, contains 6,000 images [24]. Figuredisplays
several sample images from each class.

41

Bag (8)

Ankle boot (9)

T-shirt/top (0)

Figure 5.2: samples of data in Fashion-MNIST [37]

5.2.2 Fashion-MNIST (FMNIST)

The Fashion-MNIST dataset comprises 70,000 grayscale images of 28x28 res-
olution. It is categorized into 10 different types of fashion products, including
coat, trousers, shirts, sneakers, bags, etc [36]. Figure shows some samples
from the dataset.

5.3 Experimental Configuration

Figure 5.3: ConvNet Architecture used to learn Cifar10 dataset

The experimental model adopts the ConvNet used in the FedDyn and Fed-
ROD paper [10][I5], as shown in Figure consisting of two convolutional

42

layers, one pooling layer after each convolutional layer, and three fully connec-
ted layers, with the activation function of the fully connected layers being the
ReLU function.

The experimental datasets used are Cifar10 and FMNIST. The datasets’ train-
ing and test sets are first mixed and then distributed using a Dirichlet distribu-
tion with a values of 0.1 and 0.5. Of the distributed data, 75% is used as the
training set for the clients, and 25% as their test set. All clients’ test sets are
combined to form the global model’s test set.

For client participation rates in each communication round, two approaches
are tested: selecting 5 out of 20 clients and 20 out of 100 clients per communic-
ation round. The communication rounds are set to 100, with 5 local training
rounds for clients, a batch size of 20, an optimizer learning rate of 0.01, and a
momentum of 0.9.

The data provided in the tables are the averages of five runs with the same
experimental configuration. In each run, the highest global model accuracy (best
global model accuracy) and every client accuracy (best average client accuracy)
out of 100 rounds are recorded and then calculate their average values.

The global model and all client local models are tested after the federated
learning server sends out the global model. The average client accuracy is
actually calculated by summing the number of correctly predicted samples and
the total number of samples in the test set, then dividing the two. The global
model is tested using the combined test sets of all clients.

In comparison algorithms, personalized federated learning algorithms like Fed-
Per, FedRep, and FedBABU do not have a complete global model for prediction.
The entire local models of clients are aggregated during the aggregation pro-
cess, and after distributing the global model, clients use parts of the parameters
according to their algorithms.

In traditional federated learning approaches, local model parameters are identical
to global model parameters. Therefore, for these traditional federated learning
approaches, the accuracy of the model distributed to the local and tested on the
local test set (average client accuracy) is mostly the same as the global model
accuracy in most cases.

The additional hyperparameters introduced by different algorithms:

1. FedAvg: A traditional federated learning algorithm using the above ex-
perimental configuration, with no additional hyperparameters.

2. FedProx: Due to the additional proximal term introduced in optimization,
there is an extra hyperparameter, mu, representing the strength of the
proximal term. In the experiments, mu is set to 0.001, a commonly used
option in the original paper’s code [I], and also used in FedROD [I5]for
replication and comparison.

3. FedDyn: The strength of the dynamic regularizer, alpha, in the algorithm
is set to 0.01 in the experiments, also referring to the source code [3] and
the experimental configuration in FedROD.

4. Ditto: Since there are actually two models at the client’s local: a federated
learning model and a local personalized model, the training rounds of
the local personalized model become an extra hyperparameter, termed
personal local step pls. It is set to 5 in the experiments, the same as

43

other algorithms’ local training rounds. The federated learning model’s
local training rounds are also 5.

5. FedPer: No extra parameters, but since the original algorithm theoretic-
ally only has a base for the global model and cannot be used for testing, in
practical testing, the entire models of clients are aggregated as the global
model for testing global model accuracy.

6. FedRep: The training rounds of the local personalized model’s head are an
extra hyperparameter, also represented by the variable personal local step
pls, set to 5 in the experiments. The training rounds of the model base
are as described in the original paper and source code, only one round [2].

7. FedBABU: Since only the base of the local model is trained during local
model training. And the head part is trained before testing, there is an
extra hyperparameter, the number of fine tuning rounds of the head part
fine_tune, set to 10 in the experiments.

8. FedROD: No extra hyperparameters, although it introduces an additional
softmax balance loss function and optimizer, the loss function has no extra
parameters, and the optimizer’s learning rate is the same.

5.4 Impact of Size and Creation Methods of the
Rebalanced Dataset

In generating the rebalanced dataset, the experiment selected four values as
thresholds ¢: the maximum, median, mean, and the second minimum
value of the class sample sizes that are not zero. The effects of different
thresholds were tested. Figure [5.4] shows the data distributions of rebalanced
datasets created under different thresholds ¢.

Two methods were used to generate the data through augmentation: one is
the AutoAugmentation() function provided by the PyTorch library, and the
other is a common, simple 5-step data augmentation process.

The reason for choosing the second minimum class sample size as one of the
threshold values ¢ is that using the minimum value as t would not invoke the data
augmentation method. All other class data would be reduced to the minimum
class size, making it impossible to assess the impact of data augmentation on
the rebalanced dataset.

Another reason is that the client data allocated through the Dirichlet dis-
tribution sometimes results in classes with only one sample. In such cases, all
other class data in the rebalanced dataset would be reduced to one, which is
too small to significantly impact the model. However, even selecting the second
minimum value as ¢ might still result in another class with only one sample.
This threshold setting aims to avoid the issue of excessively small rebalanced
datasets.The data distribution through all the client under different threshold ¢
are shown in Figure [5.4]

5.4.1 The Impact of Augmentation Methods

The AutoAugmentation() function in PyTorch includes over 20 different data
augmentation operations, with preset enhancement strategies for datasets like

44

Dirichlet data partition a = 0.1 Rebalanced dataset data partition:Max

-0 35000 1 - 0
2000 | 1 w1
-2 30000 4 -2
-3 -3
M 25000 N
3000 4 - - s
g w6 3 w6
@ -7 & 20000 -7
g w8 8 w8
& 20001 - & 15000 -
10000
1000 4
5000 -
1 0d
012345678 91011121314151617 1819 012345678 91011121314151617 1819
Clients Clients
(a) Original (b) Maximum
Rebalanced dataset data partition:Median Rebalanced dataset data partition:Mean
- 0 - 0
1 2000 1
2000 -2 -2
- -3
- -
1500 - - 5 3000 4 - 5
g w6 g w6
@ -7 @ -7
K] w8 K] w8
2 1000 { 9 £ 2000 -9
Q Q
500 1000 4
0- 0-
0123458678 91011121314151617 1819 012345678 910111213141516171819
Clients Clients
(c) Median (d) Mean

Rebalanced dataset data partition:Second Minimum

2000

1500

NG U e WN O

1000

Dataset Size

0123456 78 21011121314151617 18 19
Clients

(e) Second Minimum

Figure 5.4: Clients’ data distributions of Rebalanced Dataset under
different threshold t.

Cifar10, IMAGNET, and SVHN [I7]. The 5-step PyTorch data augmentation
process used in the experiment consists of random horizontal flipping, random
cropping, random rotation, color jitter, and random affine. For FMNIST, which
consists of grayscale images, the color jitter step is omitted. Table shows
the impact of different settings on the Cifarl0 dataset, with 5 out of 20 clients
participating per round and a Dirichlet « value of 0.1. The number of head layers
of the model used in these experiments is 2. The main differences are reflected in
the global model accuracy, with less noticeable differences in average accuracy.

From Table it is evident that the rebalanced datasets generated using

45

Table 5.1: Table shows the influence of different Data Augmentation
methods on the algorithm.

Aug Method | Threshold ¢ | Best Global Acc | Best Average Acc
Max 53.27% 87.81%
AutoAug Median 52.58% 89.77%
Mean 55.26% 88.90%
SecMin 53.57% 90.08%
Max 59.37% 90.29%
-step Median 55.84% 89.64%
Mean 60.40% 90.25%
Sec-Min 54.66% 90.58%

the simple 5-step data augmentation scheme consistently enable the FedReb
algorithm to achieve higher global model accuracy.

This indicates that in generating rebalanced datasets, a more complex data
augmentation scheme is not necessarily better, and the generation of rebalanced
datasets does not rely on how new data is generated through data augmentation
to supplement classes with fewer samples than threshold ¢. This may be caused
by the AutoAugmentation() method introducing too much noise to the ConvNet
model, as shown in Figure[5.5] While 5-step augmentation only introduces slight
changes in the images, as shown in Figure ConvNet is too simple for image
classification.

5.4.2 The Impact of Threshold ¢

Table 5.2: Table shows the influence of different selection of threshold
t to the algorithm. When the ¢ is the maximum or the mean value of
the quantities of the classes that are non-zero, the algorithm has its
best performance.

Threshold ¢ | Best Global Acc | Best Average Acc
Max 59.37% 90.29%
Median 56.90% 89.94%
Mean 60.40% 90.25%
Sec-Min 55.69% 90.38%

Table [5.2] isolates the results of rebalanced datasets generated through the
5-step data augmentation from Table aiming to compare the impact of
different threshold values ¢ on the algorithm. From Table it is observed that
the algorithm performs best when the threshold ¢ is set to either the maximum
or average value of all non-zero classes. Compared with Table[5.1] similar results
are seen when using AutoAugmentation(), with the highest performance when
the threshold is the mean value of all non-zero classes.

However, comparing with tables 5.5 and [5.6] that compare various algorithms,
it is found that even when the threshold ¢ is set to the second minimum value,
FedReb still achieves a better global model than other personalized federated
learning algorithms, except for FedROD, particularly the FedPer algorithm,

46

Data Augmentation on Cifarl0 Data Sample with AutoAugmentation

Original Aug 1 Aug 2 Aug 3 Aug 4
airplane airplane airplane airplane airplane
b - b h
Aug 5 Aug 7 Aug 8 Aug 9
airplane airplane airplane airplane
e
- &
>
Aug 10 Aug 12 Aug 13 Aug 14
airplane airplane airplane airplane
o -
- L o ﬁ e Y
b - e
e r
Aug 15 Aug 17 Aug 18 Aug 19
airplane airplane airplane airplane
=, i
- >
Aug 20 Aug 22 Aug 24
airplane airplane airplane

Figure 5.5: Data Augmentation on Cifarl0 Data Sample with
AutoAugmentation.

which was a main reference for this thesis.

This shows that the FedReb algorithm, by using the rebalanced dataset archi-
tecture alone, can improve the accuracy of the global model compared to other
personalized learning algorithms that do not specifically optimize the global
model. When an appropriate threshold ¢ and data augmentation scheme are
selected, it can achieve performance close to FedROD in scenarios with a small
number of clients, and surpass FedROD in terms of global model accuracy and
average accuracy in scenarios with a larger number of clients.

5.4.3 Recommend Configuration

From the experimental results, for Cifarl0 and Mnist, a simple 5-step data
augmentation strategy can be chosen. The appropriate threshold ¢ should be
the mean value of all non-zero classes. Using either the maximum value or the
mean value of all non-zero classes as t to generate the rebalanced dataset can
enable FedReb to achieve high global model accuracy and average accuracy,
with similar results between the two. The dataset generated using the mean
value is smaller in size and requires less training overhead.

47

Data Augmentation on Cifarl0 Data Sample with 5-step Augmentaiton

Original Aug 1 Aug 2 Aug 3 Aug 4
airplane airplane airplane airplane airplane

-

I~
Aug 5 Aug 6 Aug 7 Aug 8 Aug 9
airplane airplane airplane airplane airplane

Aug 10 Aug 11 Aug 12 Aug 13 Aug 14
airplane airplane airplane airplane airplane

-

=3

Aug 15 Aug 16 Aug 17 Aug 18 Aug 19
airplane airplane airplane airplane airplane

Aug 20 Aug 21 Aug 22 Aug 23 Aug 24
airplane airplane airplane airplane airplane

Figure 5.6: Data Augmentation on Cifar1l0 Data Sample with 5-step
simple augmentation.

5.5 Impact of Head Layer Depth and Choice of
Aggregation Weights

The impact of the number of personalized head layers has actually been men-
tioned in the FedPer paper[I2], where it was concluded that the impact of
personalized layer depth on the results is very minimal. This section simil-
arly demonstrates the effect of the number of layers designated as personal-
ized (head) on the experimental results. Additionally, a comparison was made
between the performance of FedReb when aggregating the global model using
separate aggregation for base and head, versus the traditional federated learning
aggregation approach, to select the appropriate aggregation scheme.

5.5.1 The Impact of Head Layers Depth

The experiment used the Cifarl0 dataset, with 5 out of 20 clients participating
per communication round, and a Dirichlet « of 0.1.

From Table [5.3] it is evident that the number of personalized head layers in
the model has a minimal impact on both the global model accuracy and average

48

Table 5.3: Table shows the influence of different numbers of head layers
and aggregation weight on the algorithm. The threshold ¢ used in
these experiments is the mean value of the class sample sizes that are
not zero.

Layers | Agg Weight | Best Global Acc | Best Average Acc
3 59.72% 90.19%
Origin 2 57.68% 89.76%
1 59.05% 89.56%
3 59.90% 89.82%
Split 2 60.40% 90.25%
1 59.18% 89.64%

accuracy of the FedReb algorithm, similar to the conclusions in the FedPer paper
regarding the minimal impact of different personalized layer depths. The only
instance where a decrease in global model accuracy was observed was when the
model’s head had two layers and the traditional federated learning aggregation
approach was chosen.

5.5.2 The Impact of Aggregation Weights

Table 5.4: Table shows the influence of the aggregation weight to the
algorithm. The number of head layers of the model used in these
experiments is 2.

Agg Weight | Threshold ¢ | Best Global Acc | Best Average Acc

Max 57.61% 89.62%

Origin Median 56.90% 89.94%
Mean 57.68% 89.76%

Sec-Min 55.49% 90.28%

Max 59.37% 90.29%

Split Median 58.14% 90.00%
Mean 60.40% 90.25%

Sec-Min 54.66% 90.58%

Comparing with the data in Table which shows the impact of different
threshold values ¢t and aggregation schemes on FedReb, it is apparent that in
most cases, FedReb performs better when the base and head are aggregated
with different weights.

5.5.3 Recommand Configuration

From this, it can be inferred that for a scheme like FedReb that uses rebalanced
datasets, it is more effective to use different weights for aggregating the base and
head. Additionally, the number of layers in the model’s head has little impact
on the results under this aggregation scheme. Nevertheless, a head layer depth
of two marginally enhances both the global accuracy and the average accuracy
in the FedReb model.

49

5.6 Comparative Results

Table 5.5: The table includes the performance of all comparison al-
gorithms on the Cifar1l0 dataset.
Model Accuracy, and ‘P’ denotes the Best Client Average Accur-
acy. The data of FedReb are written in blue.

‘G’ represents the Best Global

Dataset Cifar10

joining rate 5 of 20 20 of 100

@ 0.1 0.5 0.1 0.5

Alg. G P G P G P G P
FedAvg 54.92% | 54.92% | 65.47% | 65.47% | 49.50% | 49.50% | 60.20% | 60.20%
FedProx 55.41% | 55.41% | 65.34% | 65.34% | 51.32% | 51.32% | 60.44% | 60.44%
FedDyn 56.27% | 56.27% | 63.64% | 63.64% | 51.75% | 51.75% | 57.56% | 57.56%

Ditto 55.91% | 88.19% | 65.94% | 68.86% | 49.39% | 84.68% | 60.82% | 60.82%

FedPer 47.75% | 90.40% | 62.22% | 75.86% | 44.22% | 87.93% | 53.93% | 67.49%
FedRep 41.20% | 89.64% | 55.78% | 72.80% | 36.25% | 85.91% | 43.72% | 61.17%

FedBABU | 53.25% | 89.02% | 58.57% | 73.75% | 39.42% | 85.18% | 49.65% | 64.82%
FedROD 59.14% | 89.62% | 66.29% | 76.71% | 49.85% | 88.38% | 59.69% | 73.94%
FedReb 60.40% | 90.25% | 65.96% | 76.76% | 57.70% | 89.20% | 62.15% | 74.06%

Table 5.6: The table includes the performance of all comparison al-
gorithms on the Fashion-MINIST dataset. ‘G’ represents the Best
Global Model Accuracy, and ‘P’ denotes the Best Client Average Ac-

curacy. The data of FedReb are written in blue.
Dataset FMNIST
joining rate 5 of 20 20 of 100
@ 0.1 0.5 0.1 0.5
Alg. G P G P G P G P
FedAvg 83.08% | 83.08% | 90.12% | 90.12% | 81.27% | 81.27% | 87.61% | 87.61%
FedProx 83.91% | 83.91% | 90.50% | 94.21% | 80.65% | 80.65% | 87.47% | 87.47%
FedDyn 85.03% | 85.03% | 89.59% | 89.59% | 84.08% | 84.08% | 87.44% | 87.44%
Ditto 84.20% | 97.81% | 89.97% | 91.33% | 81.63% | 96.21% | 87.69% | 87.69%
FedPer 72.66% | 98.30% | 89.36% | 94.05% | 80.06% | 97.42% | 87.28% | 92.01%
FedRep 58.24% | 98.13% | 87.99% | 93.01% | 61.43% | 96.59% | 77.61% | 88.22%
FedBABU | 71.27% | 97.84% | 85.73% | 92.19% | 75.48% | 95.34% | 83.88% | 87.88%
FedROD 86.17% | 98.14% | 90.84% | 94.18% | 80.01% | 96.74% | 87.32% | 93.10%
FedReb 87.29% | 98.07% | 90.46% | 93.84% | 88.21% | 97.58% | 90.38% | 94.18%

Tables [5.5(and present comparisons between various algorithms and the

algorithm developed in this thesis. The columns labeled 'G’ and "P’ represent
the best global model accuracy and the best average accuracy of the personal
model, respectively. The “joining rate” indicates the selection of clients for
each communication round, such as ”5 of 20,” meaning five clients are chosen
out of twenty for that round’s training. FedPer and FedROD arethe reference
algorithms in this thesis. FedROD is a recent personalized federated learning

50

algorithm that enhances global model accuracy. Some parts of the analysis will
primarily compare these algorithms.

5.6.1 Robustness Analysis

Table shows performance on the Cifar10 dataset. Under the condition of 20
clients choosing 5 with a Dirichlet distribution of @ 0.5, where client data distri-
bution is relatively balanced, FedReb’s global model accuracy is slightly lower
than FedROD’s, but its average accuracy is high, similar to other personalized
federated learning algorithms. It’s also observed that personalized federated
learning generally has higher average accuracy than traditional federated learn-
ing.

When the Dirichlet o drops to 0.1, indicating an imbalanced data distribu-
tion, FedReb achieves higher global model accuracy than most personalized
federated learning algorithms, even surpassing traditional federated learning al-
gorithms. The average accuracy is close to other personalized federated learning
algorithms, with only minor differences, but still higher than traditional feder-
ated learning. Notably, as the Dirichlet o decreases, the decline in FedReb’s
global model accuracy is only 5.56%, lower than most other personalized and
traditional federated learning schemes, such as FedROD, which drops by 7.14%.

Comparing Table on the FMNIST dataset, with 20 clients choosing 5 per
round, FedReb shows similar performance. It’s observed that under the “5 of
20” condition, although FedReb’s global model accuracy and average accuracy
are very good, the difference with the FedROD algorithm is not significant.
However, when the Dirichlet « decreases, the loss in global model accuracy for
FedReb remains the lowest among all algorithms, dropping only by 3.17%.

Similarly, comparing both datasets under the condition of 100 clients choosing
20, FedReb maintains a lower accuracy loss when the Dirichlet « decreases
and data becomes more imbalanced, demonstrating strong robustness. This
robustness is evident as the data becomes more imbalanced and heterogeneous
with a lower Dirichlet «, resulting in smaller losses in global model accuracy
and average accuracy compared to other algorithms.

5.6.2 Scalability Analysis

Comparing data from the Cifarl0 table Table as the number of clients
increases from 20 to 100 and the number of clients participating in each round
increases from 5 to 20, Table shows that FedReb’s global model accuracy
and average accuracy are generally higher than all other comparison subjects.

It’s observed that under these conditions, the previously excellent-performing
FedROD algorithm’s global model accuracy significantly decreases. With the
same Dirichlet a value of 0.1, FedROD’s global model accuracy on Cifar10 drops
from 59.14% to 49.85%, lower than traditional federated learning algorithms like
FedProx and FedDyn, despite its design to enhance global model accuracy.

However, at this point, the global accuracy of other personalized federated
learning algorithms is also not as high as traditional federated learning al-
gorithms. When the Dirichlet « is increased to 0.5, FedReb’s global accuracy
and average accuracy remain the highest, even surpassing traditional federated
learning methods.

o1

It’s evident that while FedReb’s performance in the 20 choose 5 scenario is not
the best, comparable to FedROD, it still maintains excellent results when the
scenario changes to 100 choose 20, leading in global model accuracy among all
comparison subjects and having an average accuracy close to FedROD, higher
than other algorithms. This phenomenon is also observed in tests on the FM-
NIST dataset.

Thus, it can be concluded that the FedReb algorithm, compared to other al-
gorithms, especially the newer FedROD, demonstrates better scalability. Scalab-
ility is evident in the algorithm’s ability to maintain high global accuracy and
average accuracy even as the number of clients increases.

52

Chapter 6

Validation on TestBed

6.1 Implementation of TestBed

The primary purpose of TestBed is to study how federated learning algorithms
can be implemented and tested in real-world scenarios. The content of the ex-
perimental results section is still mainly based on local simulation tests. TestBed
consists of a personal computer running Windows 11, multiple Raspberry Pi 4
Model B units, and a wireless router.

Figure 6.1: Raspberry Pi 4 Model B units used in testbed

93

Raspberry Pi is a type of small single-board computer (SBC), originally de-
signed to promote basic computer science education through low-cost hardware
and free software. It is commonly used in research and education fields [§].

The model used in TestBed is the Raspberry Pi 4 Model B, equipped with
8GB of RAM and a 1.5GHz ARM architecture central processing unit. It serves
as a simulated federated learning client, where one Raspberry Pi can simulate
multiple clients. However, if too many are simulated, the training speed is lim-
ited. During verification, no more than five clients are simulated. Additionally,
since the Raspberry Pi only has a central processing unit and lacks a dedic-
ated graphics processing unit or units specialized for training neural networks,
training complex models can be very time-consuming. Therefore, simpler mod-
els like ConvNet and a two-layer fully connected DNN are used for deployment
feasibility verification.

In TestBed, the personal computer acts as both a simulated federated learn-
ing server and an MQTT message broker. The computer is equipped with an
NVIDIA RTX3080 graphics card, 64GB RAM, and an AMD Ryzen 9 5900HX
central processor, operating at a frequency of 3.3GHz. To simultaneously send

LI ﬂ- Dk el b L sl b

EiSARRERRRRRRRRRRANE

L EEREEE]

LSEEEEE

T

[F— x

Figure 6.2: MTPuTTY user interface when connecting with 2 Rasp-
berry Pi units

commands to all participating Raspberry Pis, MTPuTTY [0],as shown in Fig-
ure is installed on the personal computer for running multiple SSH sessions
and issuing the same command line instructions at the same time.

The experimental datasets and rebalanced datasets of clients are first gener-
ated on the simulated federated learning server (personal computer) and then
uploaded to Google Drive. Although each Raspberry Pi must hold all clients’
datasets, this facilitates adjusting the number of clients simulated on the Rasp-
berry Pi. The total size of the compressed original datasets and the rebalanced
datasets generated with threshold values ¢ being the mean value of classes is
771.9MB. To facilitate unified data downloading on the Raspberry Pi units,

54

T Anaconda Prompt (anaconda: X + v

Running time: @th

=8, dilation=1, ceil_mode=False)

with result code @

Figure 6.3: Federated Learning Server running on the testbed

gdown [4] is installed, allowing direct file downloads from Google Drive links
via the command line. Combined with MTPuTTY, this enables the Raspberry Pis
to uniformly obtain experimental data and decompress it locally. The code on
TestBed is deployed via GitHub [5], and updates can also be pulled uniformly
using MTPuTTY by sending commands simultaneously.

Due to performance limitations, TestBed only verified the scenario of up to
four clients training for 100 rounds, which could be completed in full. By forcibly
interrupting the training of clients, situations where clients disconnected during
training were simulated, and the code’s reconnection functionality was verified.
However, due to the small number of clients, it is difficult to use this data
for comparison with other algorithms. Therefore, the experimental results in
chapter [5] are still primarily comparing simulations conducted on remote high-
performance servers.

6.2 Result of Validation

In the feasibility verification part of the TestBed, due to the performance limit-
ations of the Raspberry Pi, the model used is a DNN network composed of two
fully connected layers, tested on the Cifarl0 dataset.

This means the input of the DNN is 3 x 32 x 32 (the size and dimension of
Cifarl0 images), with an intermediate layer of 100 and an output layer of 10,
corresponding to the number of categories in Cifar10. The test data is derived
from the simulation code, where the Cifarl0 dataset is distributed to 20 clients
using a Dirichlet distribution.

However, only 4 clients actually participate in the training, and these 4 clients
are selected in every communication round. In other words, 4 clients are simu-
lated using Raspberry Pi, with client IDs 0, 1, 2, 3, and they use the datasets
of clients 0, 1, 2, 3 from the 20-client dataset.

95

The other test parameters are the same as those used in the chapter [5]| ex-
periments. The algorithms tested are only FedAvg and FedReb, to verify the
feasibility of deploying the code on the TestBed.

After 100 training rounds, the results are as follows:

Alg Global% | Average%
FedAvg | 38.64% 54.96%
FedReb | 39.72% 55.98%

The data in the table shows that there is no significant difference in perform-
ance between the FedReb and FedAvg algorithms. The most significant factor
seems to be the model itself. A two-layer fully connected DNN model, when
trained directly on the complete Cifar10 dataset, achieves an accuracy of around
37%.

Limited by the device, a ConvNet composed of two convolutional layers takes
more than ten times longer per training round compared to the DNN. Therefore,
a model without convolutional computations had to be chosen. To further
verify the results of the algorithm, testing on devices specifically designed for
convolutional computations would be necessary.

56

Chapter 7

Conclusions and Future
Work

7.1 Conclusions

Now, through the content of this thesis, answers to the research questions posed
at the beginning can be provided :
Secondary Research Questions:

1. What causes data heterogeneity problems in federated learning?

In Chapter[2] it is explained that data heterogeneity in federated learning
is caused by client drift.

2. What are the solutions to the data heterogeneity problem in
federated learning?

In Section of Chapter [2] a research direction is discussed that aims
to solve the data heterogeneity problem in federated learning while also
addressing the lack of personalization in federated learning algorithms:
personalized federated learning.

3. What are the limitations of these solutions?

Personalized federated learning no longer aims to aggregate a global model
that performs well across all clients. Instead, it focuses on training mod-
els on clients that meet their own task requirements or data distributions.
However, in this process, the global model aggregated by the federated
learning server often serves as an intermediate product and lacks the cap-
ability to complete tasks or test data, losing the potential of federated
learning to form a generalized global model by learning the characteristics
of different users’ data.

4. What approaches can be used to design algorithms that solve
the problem of data heterogeneity?

Various approaches in personalized federated learning can effectively solve
the problem of data heterogeneity, but they lack a well-performing global
model. The FedROD paper proposes a personalized learning solution

o7

based on parameter decoupling, which addresses personalization and data
heterogeneity issues in federated learning while also obtaining a well-
performing global model [15]. Both FedROD [15] and another algorithm,
FedPer [12], which also implements personalized federated learning through
parameter decoupling, address data heterogeneity issues and overcome
the lack of a generalized global model in personalized federated learn-
ing. Therefore, designing a new personalized federated learning algorithm
through parameter decoupling is an effective approach.

Main Research Question:

How to solve the performance degradation caused by data hetero-
geneity in federated learning?

A novel personalized federated learning scheme based on parameter decoup-
ling is designed , Federated Learning with Rebalanced Dataset (FedReb). It ad-
dresses the challenges brought by data heterogeneity in federated learning, over-
comes the lack of a generalized global model in personalized federated learning,
and demonstrates higher scalability and robustness compared to the reference
FedROD algorithm.

Federated Learning with Rebalanced Dataset (FedReb), as a personalized
learning solution implemented through data decoupling to address performance
degradation caused by data heterogeneity in federated learning, has been valid-
ated on image data. It shows performance in global model accuracy and average
accuracy comparable to FedROD, a newly proposed algorithm specifically de-
signed to optimize global model accuracy in personalized federated learning.
Additionally, compared to the main reference algorithm FedPer, it surpasses in
both aspects.

Furthermore, FedReb possesses the scalability and robustness that FedROD
lacks, enabling better performance in scenarios with more users and more im-
balanced user data distributions. Using MQTT as the communication protocol,
its feasibility for deployment on actual devices has been validated. It is believed
that FedReb can solve the data heterogeneity problem in federated learning,
overcome the lack of a well-performing generalized global model in personalized
federated learning, and has the capability to be deployed in real-world applica-
tions.

7.2 Future Work

In Chapter [0} the implementation section, section[6.1] it was mentioned that the
algorithm was validated on a testbed composed of Raspberry Pi and personal
computers using MQTT, capable of completing training. However, due to limit-
ations in the performance of the experimental equipment, only a small number
of clients running FedReb with a simple model were simulated. Additionally,
the code for the disconnection and reconnection mechanism implemented in the
testbed was not fully tested.

In the future, tests could be conducted using devices with higher computa-
tional capabilities, such as the NVIDIA Jetson Nano and other products de-
signed for machine learning. This would allow for the testing and validation of
the reconnection mechanism in the code, leading to improvements that would
enable practical deployment of the algorithm.

58

Regarding the algorithm itself, although the experimental section tested the
generation of rebalanced datasets using different threshold values ¢, the effects
of using other values were not verified. Future research could focus on how to
generate a threshold ¢ that allows the algorithm to achieve good results with a
smaller rebalanced dataset or how to generate a better rebalanced dataset that
can improve global model accuracy.

Similarly, the algorithm was designed from a training architecture perspective.
In the machine learning process, there are many aspects that can be modified
to enhance algorithm performance, such as the loss function, optimizer, and
model. The algorithm still uses basic components from federated learning and
machine learning algorithms, such as Cross Entropy loss and SGD optimizer.
Investigating whether other loss functions and optimizers could improve the
algorithm’s performance is another potential research direction.

59

60

Bibliography

[1]

2]

Federated optimization in heterogeneous networks. https://github.com/
litian96/FedProx, 2021. Last accessed: Nov. 22, 2023.

Exploiting shared representations for personalized federated learning (icml
2021). https://github.com/lgcollins/FedRep, 2022. Last accessed:
Nov. 22, 2023.

Federated learning based on dynamic regularization. https://github.
com/alpemreacar/FedDyn, 2022. Last accessed: Nov. 22, 2023.

gdown. https://github.com/wkentaro/gdown, 2023. Last accessed: Nov.
21, 2023.

Github. https://www.github.com/, 2023. Last accessed: Nov. 21, 2023.

Mtputty. https://ttyplus.com/multi-tabbed-putty/, 2023. Last ac-
cessed: Nov. 21, 2023.

Personalized federated learning platform. https://github.com/TsingZ0/
PFL-Non-1I1ID, 2023. Last accessed: Nov. 22, 2023.

Raspberry pi. https://www.raspberrypi.org/, 2023. Last accessed: Nov.
21, 2023.

Realvnc. https://www.realvnc.com/, 2023. Last accessed: Nov. 21, 2023.

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mat-
tina, Paul N Whatmough, and Venkatesh Saligrama. Federated learning
based on dynamic regularization. arXiv preprint arXiv:2111.04263, 2021.

Vinod Nair Alex Krizhevsky and Geoffrey Hinton. The cifar-10 dataset.
https://www.cs.toronto.edu/~kriz/cifar.html, 2009. Last accessed:
Nov. 18, 2023.

Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. Federated learning with personalization layers, 2019.

Sebastian Caldas, Jakub Kone¢ny, H. Brendan McMahan, and Ameet Tal-
walkar. Expanding the reach of federated learning by reducing client re-
source requirements, 2019.

Cedalo. Eclipse mosquitto. https://mosquitto.org/, 2023. Last accessed:
Nov. 21, 2023.

61

https://github.com/litian96/FedProx
https://github.com/litian96/FedProx
https://github.com/lgcollins/FedRep
https://github.com/alpemreacar/FedDyn
https://github.com/alpemreacar/FedDyn
https://github.com/wkentaro/gdown
https://www.github.com/
https://ttyplus.com/multi-tabbed-putty/
https://github.com/TsingZ0/PFL-Non-IID
https://github.com/TsingZ0/PFL-Non-IID
https://www.raspberrypi.org/
https://www.realvnc.com/
https://www.cs.toronto.edu/~kriz/cifar.html
https://mosquitto.org/

[15]

[16]

[20]

[21]

[22]

Hong-You Chen and Wei-Lun Chao. On bridging generic and personalized
federated learning for image classification, 2022.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai.
Exploiting shared representations for personalized federated learning. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 2089-2099. PMLR, 18-24 Jul 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and
Quoc V Le. Autoaugment: Learning augmentation strategies from data. In
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 113-123, 2019.

Artur Back de Luca, Guojun Zhang, Xi Chen, and Yaoliang Yu. Mitigating
data heterogeneity in federated learning with data augmentation. arXiv
preprint arXiw:2206.09979, 2022.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Marc' aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
Quoc Le, and Andrew Ng. Large scale distributed deep networks. In
F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized
federated learning with theoretical guarantees: A model-agnostic meta-
learning approach. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 3557-3568. Curran Associates, Inc., 2020.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Ad-
aptive synthetic sampling approach for imbalanced learning. In 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress
on Computational Intelligence), pages 1322-1328, 2008.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles,
Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira, Hubert
Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adria Gascén, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser,
Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchin-
son, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak,
Jakub Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrede Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard
Nock, Ayfer Ozgiir, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh
Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U.
Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer, Praneeth
Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu,
Han Yu, and Sen Zhao. Advances and open problems in federated learning.
Foundations and Trends®) in Machine Learning, 14(1-2):1-210, 2021.

62

[23]

[27]

[28]

[29]

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic con-
trolled averaging for federated learning. In International conference on
machine learning, pages 5132-5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

Miroslav Kubat, Stan Matwin, et al. Addressing the curse of imbalanced
training sets: one-sided selection. In Icml, volume 97, page 179. Citeseer,
1997.

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personal-
ization techniques for federated learning. In 2020 Fourth World Conference
on Smart Trends in Systems, Security and Sustainability (WorldS4), pages
794-797. IEEE, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair
and robust federated learning through personalization. In International
Conference on Machine Learning, pages 6357-6368. PMLR, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Tal-
walkar, and Virginia Smith. Federated optimization in heterogeneous net-
works. Proceedings of Machine learning and systems, 2:429-450, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In Aarti Singh and Jerry Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine Learning Research,
pages 1273-1282. PMLR, 20-22 Apr 2017.

OASIS Standard. Mqtt version 3.1.1 plus errata 01. https://docs.
oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, 2015. Last ac-
cessed: Nov. 18, 2023.

Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards en-
hanced representation for federated image classification, 2022.

Deval Shah. The essential guide to data augmentation in deep learning.
https://www.v7labs.com/blog/data-augmentation-guidel, 2022. Last
accessed: Nov. 18, 2023.

Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated
learning. IEEE Transactions on Neural Networks and Learning Systems,
pages 1-17, 2022.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated
learning on non-iid data with reinforcement learning. In IJEEE INFOCOM
2020 - IEEE Conference on Computer Communications, pages 1698-1707,
2020.

63

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.v7labs.com/blog/data-augmentation-guide

[35]

[40]

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi,
Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differ-
ential privacy: Algorithms and performance analysis. IEEE Transactions
on Information Forensics and Security, 15:3454-3469, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. CoRR,
abs/1708.07747, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. fashion_mnist. https:
//www.tensorflow.org/datasets/catalog/fashion_mnist, 2017. Last
accessed: Nov. 21, 2023.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greene-
wald, Nghia Hoang, and Yasaman Khazaeni. Bayesian nonparametric fed-
erated learning of neural networks. In International conference on machine
learning, pages 7252-7261. PMLR, 2019.

Jianging Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui
Ma, Jian Cao, and Haibing Guan. Gpfl: Simultaneously learning global
and personalized feature information for personalized federated learning,
2023.

Hangyu Zhu, Jinjin Xu, Shiqging Liu, and Yaochu Jin. Federated learning
on non-iid data: A survey. Neurocomputing, 465:371-390, 2021.

64

https://www.tensorflow.org/datasets/catalog/fashion_mnist
https://www.tensorflow.org/datasets/catalog/fashion_mnist

Appendix A

Application Used on
Testbed

@ :
$ Bedopios ~/PriNo. ' 2 5 0456

Bl fed@pi23: ~/PFL-Non-IID/system
MEE(F) MWAR(E) WFE(T) MEANH)

Figure A.1: VNC Viewer[9] running on a personal computer, connect-
ing to the Raspberry Pi desktop. This setup allows users to interact
with the Raspberry Pi desktop without the need for a screen or other
external devices.

65

Server View Tools
Servers
Search

) PuTTY sessions
asp_0_1_154
rasp_0_2_145
asp_0_3_237
-asp_0_4_138
rasp_0_5_110

Servers X | Sessions X

Figure A.2: MTPuTTY running on a personal computer.

Help

d -

nx

| sed [Jsendtoal

MTPUTTY start page

(B Hide this page when displaying [l

Recent comnections (double dick tq TYPS Your script:

rasp_1_3_96
rasp_2_2_13

Send this script to servers:

Select all
Select nane

Inverse selection

Script commands and keys Sendsaript | | Cancel

mtputty. sl

User can

send script commands to all the SSH clients it connects all at once.

66

Appendix B

Source Code

Source Code can be referred from Github Link https://github.com/TUDelftFedAvg2022/
PFL-Non-IID. The repository may still be private,

67

https://github.com/TUDelftFedAvg2022/PFL-Non-IID
https://github.com/TUDelftFedAvg2022/PFL-Non-IID

	Preface
	Introduction
	Introduction
	Research Questions
	Contribution
	Organization of the Thesis

	Related Work
	Federated Learning
	Horizontal Federated Learning
	Vertical Federated Learning

	Client Drift : The Impact of Data Heterogeneity
	Personalized Federated Learning
	Global Model Personalization
	Learning Personalized Models

	Data Augmentation
	Message Queuing Telemetry Transport
	Persistent Session
	Retained Message
	Last Will and Testament (LWT)

	 FedReb Overview
	Basic Idea / Key Assumptions
	Feature Extractor
	Data Distribution

	Overview of the FedReb Algorithm
	Rebalanced Dataset
	FedReb Client: Local Training Part
	FedReb Server: Federated Learning Part

	Alogrithm of Federated Learning with Rebalanced Dataset
	Algorithm of Creating Rebalanced Dataset
	Algorithm of FedReb Client
	Algorithm of FedReb Server

	Implementation
	Rebalancing Dataset Creating Algorithm
	Implementation Details of FedReb Server
	Implementation Details of FedReb Client
	Communication on the Testbed

	Experiments
	Experiment Baselines
	Dataset
	Cifar10
	Fashion-MNIST (FMNIST)

	Experimental Configuration
	Impact of Size and Creation Methods of the Rebalanced Dataset
	The Impact of Augmentation Methods
	The Impact of Threshold t
	Recommend Configuration

	Impact of Head Layer Depth and Choice of Aggregation Weights
	The Impact of Head Layers Depth
	The Impact of Aggregation Weights
	Recommand Configuration

	Comparative Results
	Robustness Analysis
	Scalability Analysis

	Validation on TestBed
	Implementation of TestBed
	Result of Validation

	Conclusions and Future Work
	Conclusions
	Future Work

	Application Used on Testbed
	Source Code

