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ABSTRACT 

 
We propose a methodology to achieve consistency, asymptotic normality and efficiency, while 

sampling alternatives in Random Regret Minimization models. Our method is an extension of 

previous results for Logit and MEV models. We illustrate the methodology using Monte Carlo 

experimentation. Experiments show that the proposed methodology is practical, that it 

outperforms the uncorrected model, and that it yields acceptable results. 
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1 Introduction 

When choice sets are very large, like is the case in many route- and destination-choice 

models, sampling of alternatives becomes necessary to ensure the practical feasibility of 

discrete choice-model formulation and estimation. In the context of the classical Random 

Utility Maximization-based (RUM) Logit model (McFadden, 1974), a convenient method 

has been proposed (McFadden, 1978) to obtain a consistent estimator for model 

parameters. This estimator capitalizes on the fact that, due to its independently and 

identically distributed (or: iid) errors, the RUM-based Logit model exhibits the IIA-

property. This property states that the ratio of choice probabilities of any two alternatives 

in a choice set depends only on the performance (or: utility) of these two alternatives and 

not on that of other, ‘irrelevant’ alternatives.  

Although very convenient from a modeler’s perspective, this IIA-property is often 

considered to be restrictive in terms of the implied behavior of decision-makers. Over the 

past few decades, this observation has led to the development of a number of alternative 

discrete choice model forms whose errors are not iid. While still featuring closed form 

choice probabilities, these models do not exhibit the IIA property as they allow for 

correlation between the errors associated with different (subsets of) alternatives. A 

prominent example of this category is the Nested Logit model (Ben-Akiva, 1973), which 

was shown a few years after its inception to belong to the more general family of closed 

form choice models based on a Multivariate Extreme Value distribution (McFadden, 

1978). More recently, Mixed MEV-models have been proposed which allow for even 

more flexibility in terms of the specification of error term distribution and related 

behavioral implications and substitution patterns (e.g., McFadden & Train, 2000). Over 

the years, estimators have been proposed based on sampled choice sets in the context of 

these more advanced models (Manski & Lerman, 1977; Garrow et al., 2005; Bierlaire et 

al., 2008). 

Recently, a choice model has been approach that does not exhibit the IIA-property 

even though (when written in Logit-form) its errors are iid. This Random Regret 

Minimization (RRM) model (Chorus, 2010), which is the focus of this paper, is based on 

a regret minimization-based decision rule. The model postulates that when decision 

makers choose between alternatives, they try to avoid the situation where a non-chosen 

alternative outperforms a chosen one in terms of one or more attributes. This translates 

into a regret function for a considered alternative that by definition features all attributes 

of all competing alternatives. Since its introduction a few years ago, the RRM model has 

been successfully estimated and applied by various authors in the context of a variety of 

different choice contexts, involving – to name a few examples – travelers choices 

between vehicle types, destinations, modes, routes, departure times, and driving 

maneuvers; politicians’ choices between policy options; patients choices between 

medical treatments; and tourists’ choices between leisure activity-locations. Recent 

studies on RRM can be found in, for example, Chorus & de Jong (2011), Thiene et al. 

(2012), Boeri et al. (2012), Kaplan & Prato (2012), Hensher et al. (2012), and Bekhor et 

al. (2012).  
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One disadvantage of the RRM model which was highlighted in Chorus (2012) is that 

runtimes may suffer from combinatorial explosion when choice sets become very large. 

This issue of course is a direct result from the behavioral postulate, incorporated in the 

regret function, that every alternative is compared with every other alternative in the 

choice set in terms of every attribute. As a consequence, finding a proper way to estimate 

RRM models on sampled choice sets is an important condition for the model to be useful 

in the context of choice situations involving very large numbers of alternatives. At his 

point it should be noted that, because of the fact that the RRM model does not exhibit the 

IIA-property, McFadden’s 1978-result does not apply. As mentioned, this is the case 

even when – such as is the case for RRM-based Logit models – errors are distributed iid.  

However, Guevara and Ben-Akiva (2010) recently proposed a method to address 

sampling of alternatives in MEV models, which consists in expanding the components 

that get truncated because of the sampling. This paper extends the work of Guevara and 

Ben-Akiva (2010) by presenting an estimator for the RRM-based Logit model in the 

context of sampled choice sets (section 2). Furthermore, it analyzes the conditions 

required for consistency, asymptotic normality and efficiency, determines the correct 

expansion factors required in some relevant examples (section 3), and illustrates and 

studies the finite sample properties of the estimators using Monte Carlo experimentation 

(section 4). 

 

2 Estimation and Sampling of Alternatives in Random 
Regret Models 

Consider that the random regret RRin, which an agent n retrieves from an alternative i, can 

be written as the sum of a systematic part R and a random error term ε, as shown in Eq. 

(1) 

 

     in

ij

injnininin xxRRR   


exp1ln , (1) 

 

where the systematic regret depends on variables x and parameters β*. Note that for 

reasons of ease of communication, and without loss of general applicability, we consider 

in this paper the simplified case where alternatives are evaluated in terms of a single 

attribute or variable. 

Then, if the negative of ε is independent and identically distributed (iid) Extreme 

Value (0,μ), the probability that n will choose alternative i will correspond to the Logit 

model shown in Eq. (2) 

 

  









n

jn

in

Cj

R

R

n
e

e
iP





, (2) 
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where Cn is the choice-set of Jn elements from which agent n chooses an alternative. The 

scale μ in Eq. (2) is not identifiable and is usually normalized to equal 1. 

Consider that the researcher samples from the true choice-set Cn a subset Dn with 
nJ

~
 

elements. For estimation purposes, Dn must include (and therefore depends on) the 

chosen alternative i because, otherwise, the quasi-log-likelihood of the model may 

become unbounded, making the estimation of the model parameters impossible. 

Term  nDi,  is the joint probability that agent n would choose alternative i and that 

the researcher would draw the set Dn. Using the Bayes theorem, this joint probability can 

be rewritten as shown in Eq. (3) 

 

          nnnnn DDiiPiDDi  ||,  , (3) 

 

where  nDi |  is the conditional probability of choosing alternative i, given that the set 

Dn was drawn, and  iDn |  is the conditional probability that the researcher drew the set 

Dn, given that alternative i was chosen by the agent. 

Since the events of choosing each one of the alternatives in Cn are mutually exclusive 

and totally exhaustive, we can use the Total Probability theorem (see, e.g., Bertsekas and 

Tsitsiklis, 2002) to write the probability  nD  of constructing the set Dn as shown in Eq. 

(4) 

 

          



nn Dj

nn

Cj

nnn jPjDjPjDD ||  , (4) 

 

where the second equality holds because   nn DjjD  0| . 

Substituting Eq. (4) and the choice probability  iPn  shown in Eq. (2) into Eq. (3), Eq. 

(5) is obtained by canceling and re-arranging terms. 
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 (5) 

 

The direct application of Mcfadden´s (1978) result on sampling of alternatives for 

Logit can be used to show that maximizing a log-likelihood based in the expression 

shown in Eq. (5) would yield consistent estimators of the model parameters. 
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Eq. (5) shows two things about the conditional probability  nDi | . The first is that 

the form of the probability is very similar to Eq. (2), except for the term  jDn |ln , 

which is known as the sampling correction. The second is that the denominator depends 

only on the alternatives in Dn. These simplifications result from the cancellation of the 

denominators when dividing the probabilities of two alternatives, which is a convenient 

mathematical property of Logit that results from considering that the error is iid across 

alternatives.  

However, Eq. (5) does not yet offer a practical solution for the sampling of 

alternatives in random regret models. This follows from the simple fact that, even though 

the denominator of the choice probability depends only on Dn, the argument Ri still 

depends on the full choice-set Cn.  

In this paper, we adapt Eq. (5) to the problem of sampling of alternatives in random 

regret models by replacing Ri by an estimator that depends only on the subset Dn. The 

method we propose is a direct extension of the method proposed by Guevara and Ben-

Akiva (2010) for addressing the sampling of alternatives in MEV models, which is 

develped in detail by Guevara (2010). We analyze the conditions required for 

consistency, asymptotic normality and efficiency, determine the correct expansion factors 

required in some relevant examples, and illustrate the finite sample properties of the 

estimators using Monte Carlo experimentation. 

The results on consistency, asymptotic normality and efficiency are summarized by 

the following theorem: 

  

Theorem: Given N observations, a choice-set Cn of cardinality Jn, and a subset Dn of 

cardinality 
nJ

~
. If  

a)    | 0   and  | 0n n n nD j j D D j j D       ,  

b) the choice model is RRM and    



ij

injnin xxR exp1ln , 

c)  nin DR̂  is an unbiased and consistent (in 
nJ

~
) estimator of inR , 

d) The variance of  ni DR̂ is bounded and decreases with 
nJ

~
, which can be written as    

  nnin JKRVar
~ˆ   where Kn is a scalar; 

 

then, the maximization of the quasi-log-likelihood function 
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



  (6) 

 

yields, under general regularity conditions, consistent estimators (in N) of the model 

parameters β*, as 
nJ

~
 increases with N at any rate. If 

nJ
~

 increases faster than N , the 

estimators of the model parameters will be consistent, asymptotically normal  
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 N
a

11*,Normal~ˆ 
WRR , 

 

where 
 

















 D
Var n |*ln

W  and 
 















'

|*ln2



 D
E nR , 

and as asymptotically efficient as the estimators obtained from the maximization of a 

quasi-log-likelihood shown on Eq. (6). Finally, if Jn is finite and the protocol is sampling 

without replacement, 
nJ

~
 needs to increase only up to 

nn JJ 
~

 in order to achieve 

consistency and relative efficiency. 

 

Draft Proof: Given that 
inR̂  is a consistent estimator of inR , as 

nJ
~

 increases, the Slutsky 

theorem guarantees that  nDi |̂ will be a consistent estimator of  nDi | , because it is 

continuous. Then, McFadden’s consistency results for Logit guarantee that the 

maximization of the quasi-log-likelihood shown in Eq. (6) will result in the consistent 

estimation of the model parameters as N increases. 

Note that the claim of McFadden’s consistency result is established as N increases, 

but the consistency of 
inR̂ , and  nDi |̂  is established as 

nJ
~

 increases. To rely 

legitimately on the Slutsky theorem, it is indispensable to determine a concordance 

between 
nJ

~
 and N. This concordance can be established by analyzing the asymptotic 

properties of the estimators. 

The asymptotic distribution of the estimators of the model parameters that result from 

the maximization of the quasi-log-likelihood shown in Eq (6) can be derived using the 

two-stage approach employed by Train (2009, pp. 247-257) to analyze the asymptotic 

properties of simulation-based estimators. In a first stage, we will analyze the asymptotic 

distribution of the sample average of the score, which is defined as the gradient of the 

quasi-log-likelihood shown in Eq. (6). In a second stage we will use those results to 

derive the asymptotic distribution of the estimators of the model parameters. The 

derivation of this result is not detailed in this article, but is fully equivalent to the 

derivation described by Guevara (2010, Ch.5) for sampling of alternatives in MEV 

models. Following this derivation it can be shown that 

 

   NN
a

ΩWRR *,Normal*,Normal~ˆ 11  

, 

 

where 11  WRRΩ , 
 

















 D
Var n |*ln

W  and 
 















'

|*ln2



 D
E nR . 

 

Note that Ω is usually defined as the “robust” or “sandwich” variance-covariance 

matrix of the estimators of the model parameters (see, e.g., Train, 2009, pp. 201). Berndt 

et al. (1974) proposed an estimator of Ω that is known as the BHHH matrix, which, for 

the problem deployed here corresponds to the following expression: 

 



 8 

        1
2

1

1
2

'

|ˆˆln

'

|ˆˆln|ˆˆln

'

|ˆˆlnˆ















































 















 DDDD N

n

nn . 

 

These results imply that the estimators obtained by the maximization of the quasi-log-

likelihood function shown in Eq. (6) will have the same asymptotic variance-covariance 

matrix as the estimators that would be obtained by using Eq. (5), that is, if the full choice-

set C is available for the calculation of the expansion of the term inR . Consequently, it 

can be affirmed that estimators obtained by maximizing Eq. (6) are efficient among all 

possible approximations of the choice probability described in Eq. (5). 

 

3 Application of the method 

3.1 Formulation 

If a sample Dn is drawn from the true choice-set Cn, the only term that would be 

affected (and therefore needs to be approximated) is 

 

   ln 1 expin jn in

j i

R x x


   . 

 

Rin can be approximated by constructing an expanded sum. Then, to apply the method, 

the first step is to determine the expansion factors wjn required to obtain an unbiased and 

consistent estimator  

 

   ˆ ln 1 exp

n

in jn jn in

j i
j D

R w x x



   . 

 

For attaining unbiasedness and consistency, the expansion factors wjn in inR̂ have to 

have the following form 

 

 
 jn

jn

jn
nE

n
w ~

~
 , (7) 

 

where jnn~  corresponds to the number of times alternative j is included in the sample for 

agent n, and  jnnE ~  is its expected value. Note that if the sampling protocol is without 

replacement, 1~ jnn  and  jnnE ~  corresponds to the probability of sampling alternative j. 
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The expansion factors wjn depend on the sampling protocol used and, importantly, on 

whether or not the same subset is used to write the sampling correction  iDn |ln
 
in Eq. 

(5) and to build the expansion factors wjn. 

 

3.2 Expansion Factors when Re-sampling is Possible 

Consider first the case when the researcher has full control of the data and is able to 

sample a set Dn from Cn to build the sampling correction  iDn |ln , and then to sample 

a different set nD
~

 from Cn to construct the expansion factors wjn needed to build inR̂ . To 

save notation we will consider that both Dn and nD
~

have the same cardinality mJ
~

 but this 

is not essential and can be easily generalized. 

The expansion factors required depend on the protocol used for building nD
~

. In what 

follows we consider that the protocol is a simple random sample without replacement. In 

such a case the expansion factors in inR̂  are the following for each alternative j: 

 

 
  J

J

JJnE

n
w

jn

jn

jn ~~
1

~

~
  (8) 

 

To describe the likelihood function required to estimate the model we need to specify 

also the sampling protocol used to build the set Dn so McFadden´s (1978) sampling 

correction can be determined. Consider, for example, that the protocol used in this case is 

the following. In a first step, the chosen alternative for each observation is included. 

Then, non-chosen alternatives are randomly sampled, without replacement, to make a 

total of J
~

. Under this setting, it can be shown that McFadden´s (1978) sampling 

correction will correspond to 

 

 

  













1
~

1
ln|ln

J

J
iDn

, 

a term that, for this particular sampling protocol, is constant across alternatives and, 

therefore, cancels out in the calculation of the quasi-log likelihood function shown in Eq. 

(6). 

To summarize, given the particular sampling protocols for Dn and nD
~

described, the 

conditional probability of choosing alternative i, given that the sets Dn and nD
~

 were 

drawn, can be approximated by 
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 
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where    ˆ ln 1 exp

n

in jn in

j i

j D

J
R x x

J






   . 

 

Therefore, a model estimated using the quasi-log-likelihood function built using this 

expression will result in consistent and asymptotically normal estimators of the model 

parameters and the variance-covariance matrix of the estimators can be obtained using 

the BHHH estimator. This estimation tool is practical because it can be directly applied in 

canned estimation software such as BIOGEME (Bierlaire, 2003) or ALOGIT (Daly, 

1992) with minor modifications, making it more attractive for practitioners. Things 

become more troublesome when the researcher does not have full control of the data and 

is forced to use instead the same set Dn to build the term inR̂ . 

 

3.3 Expansion Factors when Re-Sampling is Not Possible 

Consider now that the researcher does not have full control of the data and is not able to 

sample two sets Dn and nD
~

. This can occur when the researcher is using a database 

previously processed and for which he or she does not have access to the original source, 

or when the data available corresponds to a random sample because of privacy concerns. 

If the protocol used to build Dn (and therefore also nD
~

) was to draw first the chosen 

alternative and then to sample 1
~
J

 

alternatives randomly, the expansion factors required 

to attain consistency and unbiasedness are the following 

 

 

 

    jP
J

J
jP

w

nn

ij









1
1

1
~

1
. (9) 

 

There is a crucial difference between Eq. (9) and Eq. (8). The expression shown in 

Eq. (9) depends on the choice probabilities, which are unknown beforehand in an 

application with real data. To avoid this limitation in practice, we postulate two methods 

called Pop.Shares and 1_0. 

 

Method Pop.Shares: 

One way to approximate the choice probabilities needed for the calculation of the 

expansion factors is to use the population shares W of each alternative. Replacing choice 

probabilities by population shares in Eq. (9), the expansion factors implied by this 

procedure become the following: 
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 
n
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W
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J
W

w
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





 ;,,1

1
1

1
~

1
 . 

 

An advantage in this case is that the expansion factors wjn can be directly calculated 

without incurring additional computational costs. Although the true population shares are 

not available in a real application, good approximations of them are clearly available 

from different sources (Census data for spatial choice models or flow counts in route 

choice modeling), at least at the level of the nests. As in the 1_0 method (please see 

below), Pop. Shares can also be easily implemented in canned estimation software with 

minor modifications, making it more attractive for practitioners. The disadvantage is that 

the approximation may be too rough and may cause important biases. This approach is 

studied using Monte Carlo experiments in Section 4. 

 

Method 1_0: 

Another approach to avoid the need for the choice probabilities is to approximate them, 

considering that it takes value 1 for the observed chosen alternative, and 0 for the non-

chosen ones. Replacing these assumptions in the example described in Eq. (8) the 

expansion factors in this case will be the following: 

 

 1jnw  if j is the chosen alternative 

 

 

 
1

~
1






jm

jm

jn
J

J
w  if j is not chosen. 

 

The advantages and disadvantages of this procedure are similar to those of the 

Pop.Shares method: it can be directly implemented without using additional information 

and without incurring additional computational costs. Additionally, this method can be 

easily implemented in canned estimation software with minor modifications, making it 

more attractive for practitioners. The disadvantage is that the approximation may be too 

rough and may cause important biases. This approach is studied using Monte Carlo 

experiments in Section 4. 

 

4 Monte Carlo Experiment 

A Monte Carlo experiment was performed to illustrate the application of the proposed 

method for achieving consistency, efficiency and asymptotic normality in the case of 

sampling of alternatives in Random Regret Minimization models. We analyze the 

efficacy and efficiency of each method in recovering the true coefficients of each model 

depending of the number of alternatives sampled. 
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The setting of this experiment is summarized by Figure 1. The true or underlying 

model is a Random Regret model where the true coefficient of the attribute equals 1, 

implying a regret model of the form   





nCj
ij

injnin xxR exp1ln . The choice is between 

30 alternatives, there are 2000 observations and the attribute x is distributed Uniform(-

1.5,1.5). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Structure of the Random Regret Model for the Monte Carlo Experiment 

N=2,000 30J ; 25 and 20 15, 10, 5,
~
J  

 

The methodology used to implement the Random Regret model shown in Figure 1 for 

Monte Carlo experimentation was performed in several steps. First, the choice probability 

was calculated replacing the true value of the parameter (which equals 1) in Eq. (2). 

Then, these choice probabilities were used to build a discrete cumulative density function 

by alternative. Afterwards, a random number Uniform (0,1) was generated for each 

observation. Finally, the chosen alternative was determined as the inverse of the 

cumulative density function, evaluated for each random number. 

The sampling protocol used to draw alternatives Dn from the choice-set Cn in this 

experiment was the following. First, the chosen alternative for each observation was 

included. Then non-chosen alternatives were randomly sampled, without replacement, to 

make a total of 25 and 20 15, 10, 5,
~
J . 

 Under this setting we estimated the model using four different methods. The first 

model corresponds to a Truncated version of the problem were only the elements in the 

subset Dn are used to built the term    





nDj
ij

injnin xxR exp1lnˆ . 

The second method is termed True Probabilities. In this case, the true probabilities, 

which are known in this Monte Carlo Experiment, are used to build the expansion factors, 

as shown in Eq. (8). This estimator is not practical since in reality choice probabilities are 

unknown, but is reported to be compared with its approximated versions Pop.Shares and 

1_0, which were described in Section 3.3. 

… … 

μ=1  

30 
1 j 
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Finally, we considered the Re-samplin, method in which an alternative set nD
~

 is 

sampled to build the term 
inR̂ . In this application, nD

~
 was drawn as a random sample 

without replacement, so that the expansion factors are calculated as
J

J
w jn ~ . 

The model was generated 100 times, and the estimation methods were applied 

considering different values for J
~

. For each model estimated we report the following 

statistics to assess the efficacy and efficiency of each method in estimating the model 

coefficients. 

 

Bias: Difference between average estimator and the true value of each respective 

parameter. The smaller the Bias, the better is the method in terms of small sample 

efficacy in recovering the true values of the model. 

Root Mean Squared Error (RMSE): Square root of the sum of the sampling variance 

and the square of the bias. The smaller the RMSE, the better is the method in terms of 

small sample efficiency. 

t-test: Ratio between the bias and the sampling standard deviation of the estimators. This 

statistical test can be used to test the null hypothesis that mean of the sampling 

distribution is equal to its respective true value. 

Count: Number of times the estimator of each repetition is within a 75% confidence 

interval of the true value constructed using the sampling variance from all the 

repetitions. This statistic is usually termed the empirical coverage. The larger this 

statistic is, the better the performance of the method. The closer to 75 this statistic is, 

the closer its empirical distribution is to its theoretical sampling distribution. 

 

Table 1 reports the results for the Truncated model. It can be noted that the results are 

remarkably poor with the truncated model, which is to be expected since it neglects the 

fact that the random regret function gets truncated because of the sampling of 

alternatives. Even for J
~

 as large as 25, the bias is around 47%, the t-test that the mean 

bias is zero is rejected with very large confidence, and there is not even one realization 

for which the estimator is within a 75% confidence interval. 

 

Table 1 Assessment of Estimators Obtained with the Truncated Model 
 

 Truncated 

J
~

 Bias RMSE t-test Count 

5 5.933 35.331 16.733 0 

10 4.045 16.432 15.484 0 

15 2.463 6.099 13.203 0 

20 1.256 1.597 9.244 0 

25 0.477 0.234 5.864 0 

 

Table 2 reports the results of the proposed methodology when the same choice set is used 

to calculate the sampling correction and to build the expansion of the truncated random 

regret model. First is shown the model considering the true probabilities, and then the two 

approximations that are feasible with real data, methods 1_0 and Population shares.  
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Table 2 Assessment of Methods When Resampling is not Possible 
 

 True Probabilities 1_0 Population Shares 

J
~

 Bias RMSE t-test Count Bias RMSE t-test Count Bias RMSE t-test Count 

5 0.403 0.170 4.687 0 3.116 9.800 10.207 0 -0.419 0.177 13.249 0 

10 0.180 0.038 2.473 5 0.587 0.358 5.129 0 -0.222 0.051 5.491 0 

15 0.121 0.018 2.069 17 0.235 0.059 3.534 0 -0.121 0.016 3.009 2 

20 0.078 0.009 1.519 36 0.105 0.014 1.968 20 -0.058 0.005 1.401 37 

25 0.045 0.004 0.912 52 0.045 0.004 0.917 51 -0.016 0.002 0.347 74 

 

Results show that the method proposed performs substantially better than the truncated 

model for all values of J
~

. For the unfeasible True Probabilities model, the bias is below 

10% from a sample of 20 alternatives. Concordantly, for the same number of alternatives 

sampled, the t-test that the mean estimator is equal to its true value cannot be rejected at a 

95% level of significance. Equivalently, the count for this value of J
~

 is 36. As it might 

be expected, for relatively small values of J
~

 

the statistics of the feasible methods 1_0 

and Population Shares, are somehow below to those obtained with the True Probabilities 

method, which they are approximating. However, their values appear to be reasonably 

good. When J
~

 becomes as large as 20, the Population Shares method even appears to 

perform better than the True Probabilities model on all criteria.

 

 

Additionally, Table 2 shows that the consistency of the method proposed depends on 

the value of  J
~

. Although the estimator of the regret function is consistent and unbiased, 

the fact that log-likelihood function is nonlinear, implies that for a given J
~

 

 there is 

going to be a bias that will never disappear, even if N goes to infinity. In practice, this 

implies that the researcher should test the stability of the estimators of the model 

parameters as a function of J
~

. If the estimators for different values of J
~

 are statistically 

equal, one can be confident that the finite sample bias due sampling of alternatives is 

negligible. Otherwise, J
~

 

should be increased until attaining stability. This is equivalent 

to the need for testing for the stability of Logit Mixture’s estimators as a function of the 

number of draws, in the simulated maximum-likelihood framework (Walker, 2001). 

Finally, Table 3 reports the results for the case when re-sampling is possible. 

Comparing the results of Table 3 with those from Table 1 and 2, it can be noted that, for 

this experimental setting, being able to resample a choice-set to expand the regret 

function results in better results. With the same data, the bias is now below 10% for J
~

 

equal to 15. The t-test is also below the 95% confidence critical value and the count is 44 

for this smaller value of  J
~

. 
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Table 3 Assessment of Methods When Resampling is Possible 
 

 ReSampling 

J
~

 Bias RMSE t-test Count 

5 0.631 0.416 4.632 0 

10 0.240 0.066 2.623 3 

15 0.076 0.009 1.300 44 

20 0.021 0.003 0.427 72 

25 0.010 0.002 0.208 77 

 

Finally, it should be recalled that the Monte Carlo results are by no means a full 

description of the small sample properties of the estimators, but only a partial description 

that is valid only for the examples analyzed, and should be understood as an illustration 

of the behavior of the models. This implies that the results showed here in which the 

resampling method outperformed the method 1_0 and Pop.Shares, neither the bias and 

other statistics obtained, may be simply transferred to other applications. To explore 

general applicability of our results, further investigation is required, particularly 

regarding the utilization of real data. 

 

5 Conclusion 

This article proposes a novel method to obtain of consistent, asymptotically normal, 

and efficient estimators (i.e., efficient relative to any other estimator using the same 

sample) for the problem of sampling of alternatives in Random Regret Minimization 

models (RRM). In light of the fact that runtimes of RRM models increase more than 

linearly with choice set size, finding a proper way to estimate RRM-models on sampled 

choice sets is a crucial condition to ensure that the RRM approach is a feasible and 

attractive alternative for Random Utility Maximization-models (RUM) in the context of 

(very) large choice sets. Given that the RRM-model, even when written in Logit form 

(with iid errors), does not exhibit the IIA property, McFadden’s classical 1978-result 

cannot be applied to obtain a proper correction term when choice sets are sampled. To 

overcome this situation, a tailor-made correction approach for RRM-models is presented 

in this paper, which is a direct extension of the one developed by Guevara and Ben-Akiva 

(2010) to address a similar problem in RUM-based MEV models. 

In line with expectations, Monte Carlo experiments showed that sampling of 

alternatives causes a significant bias in the estimators of the model parameters and in the 

estimated shares when no correction is applied. In addition, the proposed method for 

correcting the terms that get truncated because of the sampling performed reasonably 

well. In cases where the researcher has full control of the data and it is possible to obtain 

an additional sample to expand the sum of the exponentials, the method proposed is 

easily applicable. When it is not possible to re-sample, the method requires knowledge of 

the choice probabilities in order to build the expansion factors. In this final case, two 

practical approximation methods showed reasonably good results. 

The sample size required to obtain good estimators while sampling alternatives in 

Random Regret models will vary on a case-by-case basis and cannot be expressed as a 
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percentage of the cardinality of the true choice-set. In general, an appropriate strategy to 

determine if the size of the sample of alternatives is large enough is to test the stability of 

the estimators with different number of alternatives sampled. 
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