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ABSTRACT A critical task in graph signal processing is to estimate the true signal from noisy observations
over a subset of nodes, also known as the reconstruction problem. In this paper, we propose a node-adaptive
regularization for graph signal reconstruction, which surmounts the conventional Tikhonov regularization,
giving rise to more degrees of freedom; hence, an improved performance. We formulate the node-adaptive
graph signal denoising problem, study its bias-variance trade-off, and identify conditions under which a
lower mean squared error and variance can be obtained with respect to Tikhonov regularization. Compared
with existing approaches, the node-adaptive regularization enjoys more general priors on the local signal
variation, which can be obtained by optimally designing the regularization weights based on Prony’s method
or semidefinite programming. As these approaches require additional prior knowledge, we also propose a
minimax (worst-case) strategy to address instances where this extra information is unavailable. Numerical
experiments with synthetic and real data corroborate the proposed regularization strategy for graph signal
denoising and interpolation, and show its improved performance compared with competing alternatives.

INDEX TERMS Bias-variance trade-off, graph regularization, graph signal denoising, graph signal
processing.

I. INTRODUCTION
Graphs, as models to represent data, do not only capture in-
formation about entities (nodes) that comprise them, but also
encode the interactions between these entities (edges). Graphs
are promising to deal with high-dimensional data arising in
many applications such as social media, sensor networks, and
transportation networks, to name a few [2]–[8]. To analyze
such networked data, tools from signal processing have been
extended in the area of graph signal processing (GSP) [5], [9].

As in classical signal processing, the task of estimating the
underlying signal from noisy observations, is critical in GSP
as well. Over the past few years, a large amount of research
has been focused on this topic [5], [9]–[20]. Within this body
of work, most approaches solve a least squares problem penal-
ized by different regularizers. The most commonly penaliza-
tion method is the one based on the so-called Tikhonov regu-
larization [21]. It recovers the graph signal by penalizing the
data fitting term with the graph Laplacian quadratic form, also

known as graph Laplacian regularizer (GLR) [17], [22]. This
GLR based method and its variants have succeeded in many
applications such as image smoothing, point cloud denoising,
semi-supervised learning, data classification and graph signal
denoising [5], [23]–[28].1

Other regularizers have also shown their applicability in
different scenarios. For example, the definition of total vari-
ation of discrete signals has been extended to graphs, i.e.,
the graph signal total variation notion based on the adjacency
matrix, graph Laplacian and their variants [24], [29]–[31].
In [32], it is used as a graph signal regularizer to perform

1Note that in [25], [27], [28] the graph edge weights (the graph Laplacian)
are not fixed but (designed) updated in a specific way for tasks like image and
point could denoising. This edge weights updating idea seem to be related to
the idea introduced in our paper, but they are specially designed for/based on
the given tasks, for instance by exploiting the properties of images and point
clouds. This is conceptually different from the idea in this article.
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trend filtering on graphs, effectively extending the generalized
Lasso problem [33] to graphs. By generalizing total variation
to the graph setting, we can consider higher-order graph signal
differences across the nodes and performs graph signal recon-
struction in instances where the graph signal is not necessarily
globally smooth. Similarly, in [18]–[20], the notion of graph
Laplacian regularization is extended by means of graph ker-
nels such as the diffusion kernel, random walk based kernels
and graph bandlimited kernels. As these regularizers tend to
increase the computational complexity of the reconstruction
task, several works have been focused on reducing of the
complexity for finding regularized solutions by means of iter-
ative and distributed implementations, such as adaptive graph
signal estimation, primal-dual gradient method, Chebyshev
polynomial approximation and so on [10]–[16].

Although state-of-the-art address the graph signal recon-
struction, almost all methods adopt a single parameter to con-
trol the reconstruction performance; that is, to balance the fit-
ting error with regularization term. For instance, in the recent
work [17], the authors investigate the bias-variance trade-off
for Tikhonov regularizer and propose an optimally design
strategy for the regularization parameter which matches the
order of the bias and variance term. Despite this effort, it
is clear that a scalar regularization parameter is insufficient
to impose local penalties over the graph signal. To see this,
consider an instance of the Tikhonov denoising that penal-
izes the error fitting term with signal smoothness. A scalar
regularization weight can only penalize in terms of the global
smoothness, instead of local variability. Such a local penalty is
important, for instance, for signals that are piecewise-smooth
or piecewise-constant [25], [26], [32], [34], or in some net-
works where we want to detect anomaly nodes, etc. The global
penalty term limits the denoising performance to deal with
signals with general characteristics. Thus an increased number
of regularization parameters for handling such situations is
needed. In an attempt to increase the degrees of freedom
(DoFs) of the regularization, in [15], it is proposed to min-
imize the signal total smoothness by regularizing separately
the fitting error of each individual nodal measurement. De-
spite that this approach can be considered as a multi-parameter
based regularization, it only focuses on a measurement-wise
regularization and ignores the coupling between the graph
signal and the topology.

Due to the need of a multi-parameter regularization, which
considers the connectivity of the graph, in this paper, we pro-
pose a node-adaptive (NA) regularizer to increase the DoFs
by applying node-dependent weights to fine-tune the trade-off
between the fitting error and regularization term. With these
enhanced DoFs, we expect to achieve a better reconstruction
performance without affecting the method complexity. For
the sake of exposition, we solely focus on the NA Tikhonov-
based reconstruction to make direct comparisons with earlier
works, e.g., [17], however, our findings can be generalized
with the adequate changes to other regularization penalties,
e.g., a graph shift operator based ridge regression penalty
[19], [20].

A. CONTRIBUTIONS
To be more specific, the main questions we address in this
work are: (i) how the bias-variance trade-off behaves for the
NA Tikhonov regularization? and (ii) how to design the NA
weights optimally? Aimed to give answers to these questions,
we make the following main contributions:

1) We formulate the NA Tikhonov regularization problem
under a deterministic signal model assumption, derive
its solution in closed-form, and study the respective
bias-variance trade-off.

2) We derive the conditions for the NA weights to allow
a smaller mean-squared error (MSE) and variance com-
pared to traditional Tikhonov regularization.

3) To design the NA weights, we propose three methods
based on minimizing the MSE. The first two methods
leverage Prony’s method from classical signal process-
ing and convex relaxation techniques. The third method
uses a minimax strategy to design the weights in a worst-
case setting. The latter addresses scenarios where only
upper- and lower-bounds of graph signals are available.

4) We corroborate the theoretical findings of this work,
using both synthetic and real-world data, and show that
the proposed NA denoising performs well with respect
to the competing alternatives, especially in low signal-
to-noise ratio (SNR) settings.

B. OUTLINE AND NOTATION
The rest of this paper is structured as follows: Section II
reviews the conventional Tikhonov regularizer. Section III for-
mulates the NA Tikhonov regularization problem and studies
its bias-variance trade-off. Section IV presents the proposed
optimal designs for the NA regularizer weights. Section V
contains numerical results to validate the theoretical findings.
Finally, Section VI concludes the paper.

Notation: Scalars, vectors, matrices and sets are denoted
by lowercase letters (x), lowercase bold letters (x), uppercase
bold letters (X), and calligraphic letters (X ), respectively. xi

represents the i-th entry of the vector x, and Xi j denotes the
(i, j)th element of the matrix X. X� and X−1 are the transpose
and inverse of the matrix X. 1 and I are the all-one vector and
identity matrix. diag(·) is a diagonal matrix with its arguments
on the main diagonal. ‖ · ‖2 is the Euclidean norm. We use R
to denote the set of real numbers and SN×N

+ to denote the set of
N × N positive semi-definite matrices. E[·] is the expectation
operator, tr(·) is the trace operator and supp(X) is the support
of X. If x is a random variable, then its covariance matrix is
cov(x) = E[(x − E[x])(x − E[x])�].

II. NODE-INVARIANT REGULARIZER
Consider an undirected graph G = (V, E ), where V =
{1, . . . , N} is the set of N nodes and E the set of M edges
such that if nodes i and j are connected, then (i, j) ∈ E .
The neighborhood set of node i is Ni = { j|(i, j) ∈ E}. The
graph can be represented by its adjacency matrix A with entry
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Ai j ≥ 0 if (i, j) ∈ E and Ai j = 0, otherwise. Alternatively, the
graph can also be represented by its graph Laplacian matrix
L = diag(A1) − A.

On the vertices of G, we define a graph signal x =
[x1, . . . , xN ]� whose i-th element xi is the signal value on
node i. The graph signal smoothness can be measured by the
graph Laplacian quadratic form

S2(x) = 1

2

∑
i∈V

∑
j∈Ni

Ai j (xi − x j )
2 = x�Lx. (1)

A signal x is said to be smooth over G, if S2(x) is small [5].
This measure is commonly used as a regularizer to recover
smooth graph signals from noisy measurements [5], [9], [17].

Consider the measurements y = x∗ + n, where x∗ ∈ RN

is a smooth graph signal and n ∈ RN is zero-mean noise
with covariance matrix �. Assuming x∗ is smooth over the
graph, we can recover it by solving the Tikhonov regularized
problem

x̂(ω0) = arg min
x∈RN

‖y − x‖2
2 + ω0x�Lx (2)

where scalar ω0 > 0 is the regularization parameter. The first
term in (2) forces the estimate to be close to the observed
signal (fitting term), while the second term promotes global
signal smoothness. The trade-off between these two quanti-
ties is governed by the scalar weight ω0. The closed-formed
solution of (2) is

x̂(ω0) = (I + ω0L)−1 y := H(ω0)y (3)

where we defined the graph filter H(ω0) � (I + ω0L)−1 [35].
The smooth regularizer in (2) biases the estimator x̂(ω0)

in (3). The bias b(ω0) is given by

b(ω0) = E[x̂(ω0)] − x∗ = (H(ω0) − I)x∗ (4)

which is controlled by ω0. The variance is also controlled by
ω0 and has the form

var(ω0) = E[‖x̂(ω0) − E(x̂(ω0))‖2] = tr(H2(ω0)�). (5)

By combining the bias and the variance, we can quantify
the performance of the estimator in (3) through its MSE

mse(ω0) = E[‖x̂(ω0) − x∗‖2
2] = ‖b(ω0)‖2

2 + var(ω0)

= tr((I − H(ω0))2 x∗x∗�) + tr(H2(ω0)�). (6)

The MSE shows the bias-variance trade-off imposed by the
smoothness regularizer. If scalar ω0 is reduced, we achieve a
lower bias but a higher variance, and vice-versa.

Ways to select the parameter ω0 can be devised using, e.g.,
the discrepancy principle [36], [37], the L-curve criterion [38]
and the generalized cross-validation [39]. In GSP, a natural
optimal parameter selection criterion is based on the mini-
mization of the MSE, which is investigated in [17, Thm. 3],
where parameter ω0 is optimally found by matching the order
of the bias contribution and the variance.

The regularizer in (1) is a global graph signal measure, i.e.,
the signal smoothness over the entire graph. And the impact

of this global regularizer in (2) is controlled by the scalar ω0.
We can differently think of ω0 as a common coefficient that
equally pre-weights the signal on all nodes when computing
the smoothness measure, i.e.,

√
ω0x�L

√
ω0x. Due to this

characteristic, we refer to problem (2) as a node-invariant (NI)
regularization problem. If the signal is globally smooth over
the underlying graph, the NI regularization will result in a
good signal reconstruction performance. However, as it only
focuses on global behaviours, ignoring local signal details, it
might lead to unsatisfactory recovery performance when the
graph signal is not globally smooth and/or when the noise
level is different at each node.

Although the graph signal is not globally smooth in most
situations, it presents a smooth behaviour in different regions,
e.g., smoothness over local details. This prior generalizes the
global smoothness and is amenable for learning. To enhance
the role of local signal detail and improve the estimator’s
MSE, we propose a graph signal regularization strategy that
substitutes the global penalty term S2(x) with a local penalty
on each node. The proposed approach, named node-adaptive
(NA) regularization, allows each node i to weight its signal
xi with an individual scalar ωi. The enhanced DoFs of the NA
regularizer can in turn improve the bias-variance trade-off and
reduce the overall MSE. To understand the NA regularizer,
we first conduct a detailed bias-variance trade-off analysis and
then propose a design strategy for the node-adaptive weights
ω1, . . . , ωN to optimize such a trade-off. Therefore, our goal
in the upcoming sections is to formalize the NA regularization
problem, analyze its statistical properties, and develop optimal
weight design strategies that minimize the MSE.

III. NODE-ADAPTIVE REGULARIZER
Consider a vector of parameters ω = [ω1, . . . , ωN ]� ∈ RN

and define the node-adaptive Laplacian operator

S(ω) � diag(ω)Ldiag(ω) = ωω� � L (7)

where � is the element-wise Hadamard product. Note that
for any ω, the parametric shift operator matrix S(ω) is pos-
itive semi-definite (see Lemma 5 in Appendix A) and has the
same support as the graph Laplacian L –properties that will
result useful in the sequel. The parameterized graph Laplacian
quadratic form for (7) has the form [cf.(1)]

S2(x,ω) = x�S(ω)x = (diag(ω)x)�L(diag(ω)x)

= 1

2

∑
i∈V

∑
j∈Ni

Ai j (ωixi − ω jx j )
2. (8)

This quadratic form can be seen as, first pre-weighting each
entry xi of the signal x with a parameter wi and then comput-
ing the regular quadratic measure in (1) w.r.t. Laplacian L. We
can now use (8) to recover a graph signal x∗ from the noisy
measurements y by solving the convex problem

x̂(ω) = arg minx∈RN ‖y − x‖2
2 + S2(x,ω), (9)

VOLUME 2, 2021 87



YANG ET AL.: NODE-ADAPTIVE REGULARIZATION FOR GRAPH SIGNAL RECONSTRUCTION

where the trade-off between the fitting error and the regu-
larization term is now controlled by the N parameters in ω.
We name (9) as node-adaptive graph signal regularization.
We give the following comments on this regularization frame-
work.
� When ω = ω01, NA graph signal regularization particu-

larizes to the NI case in (2).
� NA regularization is not restricted to the form in (9). The

same generalization can be applied when variants of the
graph Laplacian are used in the regularizer. For example,
if we use a random walk graph Laplacian in (9), the GLR
used in [26] is a special case.

� We can see that NA graph signal regularization uses a
parametric graph Laplacian of form (7) where the edge
weights are adapted by ωω� which will be optimally
designed in the sense of minimizing MSE. In this way,
our work acts as an alternative or a generalization to the
proposed GLR in image and point could denoising [25],
[28] where the graph edge weights are (designed) up-
dated in a specific task-driven way, for instance, as a
function of (feature) difference between two connected
nodes.

To see the impact on local graph signal details in problem
(9), consider a simple piecewise smooth graph signal with
slowly varying nonzero values in a node subset V ′ ⊆ V and
zero on the remaining nodes in V\V ′. We can then weight
the nodes in V ′ with a common scalar, and another different
scalar for the remaining nodes, since the signal is not globally
smooth but locally in two separate parts. Problem (9) will
seek for a graph signal that is locally smooth on V ′ and on
V\V ′. Instead, problem (2) will weight every node with ω0,
effectively looking for a graph signal that is smooth over all
nodes and ignores the local detail. This simplified example
shows how the NA regularization generalizes the NI case
by considering a local smoothness penalty and relates to the
piecewise-constant, -smooth notions. In the sequel, we design
parameter ω to learn the local signal smoothness priors.

The optimal analytical solution for problem (9) can be
found by setting its gradient to zero, i.e.,

x̂(ω) = (I + S(ω))−1 y := H(ω)y (10)

where we have defined the NA filter2 H(ω) � (I + S(ω))−1,
which is PSD by definition. Despite the similarity with (3),
the optimal solution in (10) is now governed by the vector of
parameters ω. This vector changes the bias-variance trade-off
as we discuss in the next section.

Remark 1: The optimal regularized solutions (3) and (10)
can also be interpreted as graph filtering operations [5]. In
particular, while (3) filters the measurements y with an au-
toregressive graph filter with denominator coefficients (1;ω0)
which is common for all nodes [35], the node-adaptive expres-
sion (10) filters y with an autoregressive edge-varying filter
with edge varying coefficients (I;ωω�) [41].

2Here the definition of NA filter is different from the node variant graph
filter in [40]

FIGURE 1. Bias-variance trade-off for recovering a graph signal with the
NA and NI regularizer over an Erdos-Renyì graph, SNR = 0 dB. The detailed
settings are in Section V-A. The node adaptive weights are chosen
randomly to satisfy the result in Lemma 1.

A. BIAS-VARIANCE TRADE-OFF
Similar to (6), the MSE for estimator (10) has the form

mse(ω) = ‖b(ω)‖2
2 + var(ω)

= tr((I − H(ω))2x∗x∗�) + tr(H(ω)2�) (11)

with bias

b(ω) = ((I + diag(ω)Ldiag(ω))−1 − I)x∗ (12)

and variance

var(ω) = tr((I + diag(ω)Ldiag(ω))−2�). (13)

As it follows from (11)–(13), the bias-variance trade-off is
now controlled by ω. If all entries of ω are close to zero
the bias is low and the MSE is governed by a high variance.
If all entries of ω are far from zero, the bias is large and
governs the MSE, achieving a small variance. However, the
enhanced DoFs of the NA regularizer compared to the NI one
allow us to identify an interval for ω that guarantees a smaller
reconstruction variance while maintaining a lower MSE.

Lemma 1: Consider the node-invariant and the node-
adaptive estimates x̂(ω0) and x̂(ω) as in (3) and (10), respec-
tively. Consider also the respective variances over all nodes
var(ω0) in (5) and var(ω) in (13). If all node-adaptive weights
ω = [ω1, . . . , ωN ]� satisfy

ω0 ≤ ω2
i , for i = 1, 2, . . . , N (14)

then var(ω) ≤ var(ω0).
Proof: See Appendix B. �
While a reduced variance is useful for signal recovery, it

often comes at expenses of an increased bias. To see how
sensitive the changes in the two quantities are, we illustrate
in Fig. 1 the bias, the variance, and the MSE for the NI and
the NA regularizers. We see there exists a region for the NA
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weights where both the variance and the MSE of the NA reg-
ularizer are lower compared with those of the NI regularizer,
while the bias is not increased significantly. The following
theorem provides sufficient conditions on ω to identify this
region.

Theorem 1: Consider the measurements y = x∗ + n with
desired graph signal x∗ and noise n ∼ N (0,�). Let L be
the graph Laplacian with maximum eigenvalue λmax(L). Fur-
ther, define a rank-one matrix P := x∗x∗��−1 and let ρ be
its only non-zero eigenvalue. Define also a rank-one matrix
� = P(I + P)−1 and let γ = ρ(1 + ρ)−1 ∈ (0, 1) be its only
non-zero eigenvalue. Consider also the mean squared error
of the node-invariant estimate x̂(ω0) in (3) and node-adaptive
estimate x̂(ω) in (10). Then, if

ω0 ≤ ω2
i , for i = 1, 2, . . . , N (15a)

2γ ≤ 1

1 + ω0λmax(L)
+ 1

1 + max
{
ω2

i

}
λmax(L)

(15b)

both the variance and the mean squared error of the node-
adaptive regularizer are smaller than those of the node-
invariant one; i.e., var(ω) ≤ var(ω0) and mse(ω) ≤ mse(ω0).

Proof: See Appendix C. �
Condition (15b) is easier satisfied when the eigenvalue

γ → 0, i.e., the signal-to-noise ratio (SNR) is low, or ρ → 0.
This indicates that the NA is more powerful in harsher scenar-
ios. In contrast, when γ → 1 and, thus ρ → ∞, i.e., the SNR
is high, the condition for the NA regularization to outperform
NI one is hard to satisfy.

Corollary 1: Under the same settings of Theorem 1, the
condition

max
{
ω2

i

} ≤ (ρλmax(L))−1, for i = 1, 2, . . . , N (16)

guarantees condition (15b) is satisfied.
Proof: See Appendix D. �
Corollary 1 provides an easier condition for the NA param-

eters ω compared to Theorem 1. In addition, condition (16)
provides a clearer link between ω and the SNR. If ρ → 0,
hence γ → 0, the noise is high and the upper bound for ω2

i
increases, implying a larger weight on local smoothness is
needed. If ρ → ∞, hence γ → 1, the noise vanishes and the
upper bound for ω2

i goes to zero, implying the regularization
has little effect. This performance analysis the NA regularizer
compared to the NI one is supported by our numerical findings
in Section V.

B. IMPLEMENTATION
The matrix inversion in optimal estimate x̂(ω) [cf. (10)] makes
the node-adaptive regularizer challenging to be implemented
on large graphs or in a distributed manner. Fortunately, in
both cases the inverse can be approximated with a cost linear
w.r.t. the number of graph edges, i.e., O(M ), by leveraging the
graph filtering equivalence of (10); see, e.g., [35], [41], [42].
The key to such linear cost lies in the sparsity of the parametric
shift operator S(ω), which coincides with the sparsity of the

Algorithm 1: Conjugate Gradient Method for Solv-
ing (18).

1: Input: x̂(0), node-adaptive regularizer weights ω,
accuracy ε, number of iterations T

2: Initialization:
3: S(ω) = diag(ω)Ldiag(ω)
4: b(0) = r(0) = y − (I + S(ω))x̂(0)

5: d(0) = dnew = r�
(0)r(0)

6: while τ < T and dnew > ε2d(0)

7: c(τ ) = dnew
b�

(τ ) (I+S(ω))b(τ )

8: x̂(τ+1) = x̂(τ ) + c(τ )bτ

9: r(τ+1) = r(τ ) − c(τ )(I + S(ω))b(τ )

10: dold = dnew, dnew = r�
(τ+1)r(τ+1)

11: b(τ+1) = r(τ+1) + dnew
dold

b(τ )

12: τ = τ + 1
13: Output: x̂(ω) = x̂(τ+1)

graph [cf. (7)]. Because of this sparsity, the graph signal shift-
ing operation x(1) = S(ω)x = (ωω� � L)x has a cost of order
linear in the number of edges M. Moreover, this operation is
local over the graph and the i-th signal value is given by

x(1)
i = ωi

∑
j∈Ni

Ai j (ωixi − ω jx j ). (17)

By exploring (17), we detail next how the NA filter can be
implemented using the conjugate gradient method [43] and
distributed graph filters [35], [44].

Centralized. To implement (10) efficiently, we first
rephrase it as a linear system

(I + S(ω))x̂(ω) = y (18)

and then employ conjugate gradient [43] to obtain x̂(ω). For
completeness, Algorithm 1 summarizes the required steps.
Exploiting the local operation (17) in Steps 7 and 9 of Al-
gorithm 1, which are the main sources of computing exhausts,
and running the conjugate gradient method for T iterations,
we have a cost of order O(T M ).

Distributed. To implement (10) distributively with graph
filters, we start with a random initialization x̂0 for estimate
x̂(ω). At iteration τ , the distributed estimate follows the re-
cursion

x̂τ (ω) = −S(ω)x̂τ−1(ω) + y. (19)

From (17), we can see the term S(ω)x̂τ−1(ω) implies nodes
communicate with their neighbors and exchange information
about the previous estimate x̂τ−1(ω), which has a cost of order
O(M ).

When ω satisfies the spectral norm inequality ‖S(ω)‖ < 1,
recursion (19) leads to the steady-state (τ → ∞) estimate

x̂(ω) � lim
τ→∞ x̂τ (ω) =

∞∑
τ=0

(−S(ω))τ y = (I + S(ω))−1y,

(20)
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which matches the optimal solution (10). Arresting, therefore,
(19) in T iterations leads again to a distributed communication
and computational cost of order O(T M ).

The sparsity of parametric shift operator S(ω) leads to a
reduced implementation complexity for both centralized and
distributed ways, which is critical in practice. In the following,
we investigate how to optimally design the NA weights so to
obtain the optimal performance.

IV. WEIGHT DESIGN
In this section, we focus on designing the NA weights ω in a
minimum MSE (MMSE) sense. The estimation error between
the optimal estimate x̂(ω) [cf. (10)] and the true value x∗ is

e � x̂(ω) − x∗. (21)

We can then formulate the optimal design of ω as solving the
optimization problem

min
ω∈RN

E
{‖x̂(ω) − x∗‖2

2

}
, (22)

where x̂ is defined in (10). The inverse relation in x̂(ω) ren-
ders problem (22) challenging to solve in its original form.
To overcome this challenge, we first propose two relaxation
methods to solve (22) for ω leveraging strong (approximate)
prior knowledge of the graph signal. Then, we use the min-
max strategy to adapt these two methods to scenarios where
only signal bounds are available.

A. PRONY’S METHOD
Given the estimate x̂(ω) = (I + S(ω))−1y and the error e in
(21), a typical approach to design parameters in inverse rela-
tionships is to consider Prony’s modified error [45]

e′ � y − (I + S(ω))x∗, (23)

which is obtained by multiplying both sides of (21) by (I +
S(ω)). Albeit not equivalent to the true error e, minimizing
the modified error e′ is easier due to the linear relationship in
ω and the resulting performance is often satisfactory [45]. The
NA weights that minimize the error e′ in (23) can be obtained
by solving the following problem

min
ω∈RN

E
{‖y − (I + S(ω))x∗‖2

2

}
s.t. ω∗

0 ≤ ω2
i , for i = 1, . . . , N (24)

where the constraint imposes all entries of ω to satisfy
Lemma 1. It would be more natural to also add the condi-
tion on a smaller MSE [cf. (15b) and (16)] as a constraint.
However, this condition depends on the SNR, i.e., when the
SNR is low, it is easier for them to be satisfied; it leads to a
smaller set of feasible solutions. Thus, the complication of this
condition does not encourage us to add it in the optimization
problem. Instead, we observe that Lemma 1 already improves
the optimal weight design in practice.

The quadratic relation in the optimization variable ω in
S(ω) [cf. (7)] makes problem (24) non-convex. To obtain ω,
we follow a two step approach. First we define a positive

semi-definite rank-one matrix � � ωω� and solve (24) w.r.t
the new variable �. Then, we find a vector estimate ω̂ by per-
forming a rank-one approximation of the obtained matrix [46].

Rewriting (24) w.r.t. the new variable �, we obtain

min
�∈SN×N

+
tr
{
(� � L)2x∗x∗�}

s.t. ω∗
0 ≤ �ii, for i = 1, . . . , N (25)

where the derivation of the cost function is reported in Ap-
pendix E. Note that in (25), we followed [46] and dropped
the non-convex constraint rank(�) = 1. Then, problem (25)
becomes a convex semi-definite program (SDP), solvable with
off-the-shelf tools [47], [48], and for instance with interior-
point method [49], [50], it has a cost3 of O(N3) per itera-
tion. We also observe that the returned solution from (25) is
consistently a rank-one matrix. Given then �∗ from (25), the
node-adaptive weight vector ω∗ is equal to the eigenvector
of �∗ with the largest eigenvalue, multiplied with the square
root of the eigenvalue. However, more sophisticated rank-one
approximations are also possible [46].

B. SEMI-DEFINITE RELAXATION
Despite its simplicity, Prony’s method does not directly relate
to the true error e in (21). Working with the modified error
might be viable when the signal-to-noise ratio (SNR) is high
but it might lead to a degraded performance when the SNR
is low. To overcome the latter, we propose here an optimiza-
tion problem relying on semi-definite relaxation when mini-
mizing the true error in (22). This approach follows again a
two-step procedure: first, we formulate (22) w.r.t. the matrix
variable H(�) = (I + � � L)−1 where � := ωω�, and then
we obtain � from H(�) by means of inversion. Finally, ω∗ is
extracted from �∗ by rank-one approximation [46].

To start, let us recall the node-adaptive estimate x̂(ω) =
(I + ωω� � L)−1y and rewrite (22) w.r.t. H(�) as

min
�,H(�)∈SN×N

+
E
{‖H(�)y − x∗‖2

2

}
s.t. H(�) = (I + � � L)−1

rank(�) = 1,

ω∗
0 ≤ �ii, for i = 1, . . . , N. (26)

where the last constraint is again Lemma 1. The cost function
in (26) can be expanded further as (cf. Appendix. F)

E
{‖H(�)y − x∗‖2

2

} = tr{(H2(�))

− 2H(�) + I)x∗x∗� + H2(�)�}
(27)

which depends on both the signal and noise covariance. Prob-
lem (26) presents two non-convex constraints: the inverse
relationship H(�) = (I + � � L)−1 and the rank-one con-
straint rank(�) = 1. We address the former, by leveraging

3We also refer to the recent SDP work [51] to provide a complete complex-
ity analysis.
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semi-definite relaxation and by writing the constraint in its
positive semi-definite convex form [46]

H(�) − (I + � � L)−1 � 0. (28)

Since L, �, and I + � � L are positive semi-definite matri-
ces, we can use the Schur complement (see Appendix A) to
reformulate (28) into a convex linear matrix inequality(

I + � � L I
I H(�)

)
� 0.

Regarding the non-convexity of the rank-one constraint, we
can relax it as in (25). With these relaxation techniques, we
rephrase problem (26) into the convex form

min
�,H(�)∈SN×N

+
E
{‖H(�)y − x∗‖2

2

}

s.t.

(
I + � � L I

I H(�)

)
� 0,

ω∗
0 ≤ �ii, for i = 1, . . . , N . (29)

This is also an SDP problem but with more constraints com-
pared to (25). After obtaining H∗(�) by solving (29), we can
find � from the inverse relation below

H∗(�)(I + � � L) = (I + � � L)H∗(�) = I

by solving the following least squares problem

min
�∈SN×N

+
‖H∗(�)(I + � � L) − I‖2

2

+ ‖(I + � � L)H∗(�) − I‖2
2. (30)

Given then matrix �∗ from (30), we extract ω∗ by a rank-
one approximation [46]. With the obtained NA weights ω∗,
we subsequently build the filter H(ω∗) = (I + ω∗ω∗� � L)−1

and obtain the estimate x̂(ω∗) as in (10).
The main advantage of the semidefinite relaxation (SDR)

approach (29)–((30)) is that it focuses directly on the true
error (21) rather than the modified error (23). However, due
to the complexity issue, semidefinite relaxation methods are
applicable to medium-sized graphs with up to a thousand
nodes.

C. MIN-MAX ADAPTATION
As it follows from (24) and (26), both Prony’s method and the
SDR method require knowledge of signal x∗ to design weights
ω. This is possible in a data-driven fashion under the condition
that the test and training data have a similar distribution. In
this section, we depart from this assumption and propose a
design method that is independent of x∗ but only requires
side information such as signal evolution bounds. The latter
is simpler to acquire from a small set of data or by physical
considerations.

Consider signal x∗ has an evolution bounded in the interval
[xl, xu]. We can then design the parameter vector ω for esti-
mator x̂(ω) [cf. (10)] as the one that minimizes the MSE of

the worst-case scenario, i.e.,

min
ω

max
x∗ E

{‖x̂(ω) − x∗‖2
2

}
s.t. xl ≤ x∗ ≤ xu,

ω∗
0 ≤ ω2

i , for i = 1, . . . , N. (31)

Problems of the form (31) are known as min-max problems.
The inner maximization seeks for the signal x∗ that leads to
the worst MSE performance, while the outer minimization
finds the parameter ω that minimizes the worst MSE among
all possible choices. Different from problems (24) and (26),
signal x∗ is now an optimization variable in (31) and only
xl and xu are needed. There are efficient methods to solve
min-max problems of the form (31) such as iterative first-order
methods [52] or gradient descent-ascent [53]. In the sequel,
we detail how (31) specializes to Prony’s method and SDR
method.

Following the same rationale as in (25), we can write the
min-max Prony’s method as

min
�∈SN×N

+
max

x∗ tr{(� � L)2x∗x∗�}

s.t. xl ≤ x∗ ≤ xu,

ω∗
0 ≤ �ii, for i = 1, . . . , N. (32)

Since � � L is positive semidefinite, the cost function is
quadratic (convex) over the inner optimization variable x∗.
Further, it can be shown that the maximizer of the inner
problem is at the boundaries, i.e., either x∗ = xl or x∗ = xu.
To solve the outer minimization problem w.r.t. �, we proceed
similarly as in (25). For the SDR problem (29) we can also
solve the min-max version since the cost function for the latter
is also convex in x∗. Here again, we optimize the true error [cf.
(21)] at the price of a higher computational complexity.

V. NUMERICAL RESULTS
In this section, we compare the performance of the proposed
design schemes with state-of-the-art alternatives and illustrate
the different trade-offs inherent to NA regularization on syn-
thetic and real-world data from the Molene4 and the NOAA5

data sets. We measure the recovery accuracy between the
estimate x̂ and the true signal x∗ through the normalized mean
squared error, NMSE = ‖x̂ − x∗‖2

2/‖x∗‖2
2. In these simula-

tions, we used the GSP [54] and CVX [47] toolboxes.

A. SYNTHETIC DATA
In the first set of experiments, we consider synthetic Erdos-
Renyì graphs of N = 50 nodes and link formation probability
0.5. We generate a synthetic graph signal x∗, whose graph
Fourier transform is one in the first 20 coefficients and zero

4Raw data available at [Online]. Available: https://donneespubliques.
meteofrance.fr/donnees libres/Hackathon/RADOMEH.tar.gz

5Raw data available at [Online]. Available: https://www.ncdc.noaa.
gov/data-access/land-based-station-data/land-based-datasets/climate-
normals/1981-2010-normals-data
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FIGURE 2. NMSE of different methods as a function of the SNR over an
Erdos-Renyì graph. The true graph signal is bandlimited to the first 20
graph frequencies.

elsewhere. This signal is called a bandlimited graph signal
and varies smoothly over the graph [5]; hence, it fits the
assumption for Tikhonov regularization (2). We corrupted the
signal with a zero-mean Gaussian noise with variance σ 2

n ,
so to obtain a signal-to-noise ratio SNR = ‖x∗‖2

2/(Nσ 2
n ). We

average the performance over 50 graphs and 100 noise re-
alizations leading to a total of 5000 Monte-Carlo runs. This
scenario is also the one used in Fig. 1, where we showed the
NA regularizer can achieve both a lower variance and MSE.

We first evaluate Prony’s method when the true signal is
known and the SDR method when both the true signal and
noise variance are known. Our rationale is to avoid biases in-
duced by a training set or by focusing solely on the worst-case
scenario. We address the latter in the subsequent section with
real data. The specific approaches we consider are:

1) The benchmark node-invariant regularizer with optimal

weight ω∗
0 = O(

√
θ

λ2λN
), where θ = √

1
SNR , and λ2, λN

are the smallest and the largest non-zero eigenvalues of
the graph Laplacian L, respectively [17].

2) The naive node-adaptive regularization where the NA
weights ω are chosen randomly to satisfy Lemma 1;
i.e., ωi = √

ω∗
0 + ω∗

0 · ci for i = 1, . . . , N , where ci is
uniformly distributed in [0,1].

3) Prony’s node-adaptive design, where we do not enforce
the constraint of Lemma 1 in problem (25).

4) Prony’s method [cf. (25)].
5) The SDR node-adaptive design [cf. (29), (30)].
6) The diffusion kernel ridge regression (KRR) with

parameters σ 2
KRR = 1 and μKRR = 10−4, chosen to

achieve the best performance [19].
Fig. 2 shows the NMSE recovery performance of the con-

sidered methods with respect to the SNR. First, we observe
the proposed Prony’s method and the SDR reduce the NMSE
by one order of magnitude compared with the optimal NI
approach and the KRR. As we anticipated in Fig. 1, even the

FIGURE 3. Interpolation performance of the different methods as a
function of the number of observed nodes with SNR = 0 dB over an
Erdos-Renyì graph. The true graph signal is bandlimited in the first 20
graph frequencies.

naive random NA regularizer achieves a comparable perfor-
mance with these competitive alternatives, ultimately, high-
lighting the potential of the NA regularizer for graph signal
recovery. We also remark the importance of the theoretical
result in Lemma 1 in the Prony’s problem (25), which reduces
the MSE by one order of magnitude. We attribute the latter
to the fact that Prony’s approaches focus on the modified
error rather than the true one. This is also evidenced by the
comparison with the SDR technique, where Prony’s method
has a worse NMSE for lower SNRs; i.e., where considering
the true error is more effective to deal with the large noise.

Next, we evaluate the NMSE performance of six dif-
ferent methods for interpolating missing values. We con-
sider noisy observations from the random subset M ∈
{10, 15, 20, . . . , 50} with an SNR of 0 dB to show the robust-
ness of NA regularization. From Fig. 3, we observe again the
superior performance of Prony’s method and the SDR method.
On the contrary, the naive weight setting and Prony’s uncon-
strained method offer a similar performance as the bench-
mark NI regularization. The latter highlights the improvement
brought by Lemma 1.

In the sequel, we will conduct experiments over real-world
measurements. We omit the results of the NA design based
on the ground truth signal since they behave the same as for
the synthetic data. Instead, we consider the earlier mentioned
data-driven and min-max scenarios.

B. MOLENE DATA SET
The Molene data set comprises T = 744 hourly tempera-
ture measurements collected in January 2014 from N = 32
weather stations in the region of Brest, France. We treat each
weather station as a node of a graph and build a geomet-
ric distance graph in which each node is connected to its
five nearest neighbours. The weight of edge (i, j) is Ai j =
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FIGURE 4. NMSE denoising performance of different methods w.r.t SNRs in the Molene data set. (a) Data-driven scenario. Half of the data are used to
estimate the node-adaptive parameters. (b) Min-max scenario based on signal evolution bounds.

exp{−5 d2(i, j)}, where d (i, j) is the Euclidean distance be-
tween stations i and j. After removing the mean temperature
across space and time, we can view every temporal snapshot
as a graph signal. Among the six approaches listed in the
former section, we omit the naive Lemma 1 based approach as
well as Prony’s unconstrained method to avoid overcrowded
plots since their performance trend is similar to that observed
with synthetic data. For the KRR, we tune σ 2

KRR = 5 to reach
its best performance. The performance measure is still the
NMSE averaged over all the 744 graph signals. The collected
measurements are assumed to be the true signal and we arti-
ficially add noise as before. We consider 50 noise realizations
per signal.

To show how different methods behave in the ideal and in
a more practical setting, we considered two scenarios. First,
we considered a data-driven scenario, where half of the tem-
poral data are used to learn the NA weights. Specifically, we
use these data to compute an average of x∗x∗� to be used
in Prony’s design [cf. (25)] and the SDR problem [cf.(29)].
The remaining half graph signals are used for testing. As the
objective function of (29) depends on the noise covariance, for
a fixed SNR, the noise level for each signal is different. Thus,
we need to design NA weights based on (29) for each training
signal. To avoid doing so, we use one instance from the whole
recordings to compute the noise covariance matrix needed in
the SDR method, which degrades its performance. Second,
the min-max method is tested where only the signal lower
and upper bounds are known. The bounds are obtained as the
lowest and highest temperature records in the dataset. For both
scenarios, we consider the NMSE denoising performance as a
function of the SNR.

From Fig. 4, we observe that for more practical scenarios,
the performance of the NA approaches degrades by approxi-
mately one order of magnitude, where the benchmark is done
based on the oracle design (25) with true signal available.

However, they still outperform the KRR counterpart. Specif-
ically, from the results in Fig. 4(a), we observe that Prony’s
method degrades substantially and achieves an NMSE similar
to the NI regularizer. Though in the large SNR regime, it gets
worse than the NI regularizer, this is because when noise is
negligible, the training strategy will result in a suboptimal
approximation of x∗x∗�, and thus, suboptimal NA weights in
problem (25).

Fig. 4(b) shows the NA algorithms still perform better than
competing alternatives in the low SNR regime although the
only information is the signal variation range. We attribute the
saturation in the high SNR regime to the lack of information
needed for designing the NA weights; i.e., the NA regularizer
will impose a stronger bias on the solution that is not needed
to denoise the signal in the high SNR regime.

We then evaluate the interpolation performance of differ-
ent methods. We collect noisy observations at nodes M ∈
{2, 4, 6, . . . , 28, 30} and SNR = 0 dB. The results are shown
in Fig. 5. For the data-driven case in Fig. 5(a), Prony’s method
degrades significantly with a performance worse than the NI
regularizer. This could be due to over-fitting the training data.
On the other hand, the SDR is not obtaining satisfactory
results unless the observations are collected from all of the
nodes. This is because the obtained estimate of x∗x∗� does
not apply on the SDR method for the interpolation case. In
the min-max scenario in Fig. 5(b), we only make use of the
signal bounds and obtain a consistently better performance by
Prony’s method, while the SDR method behaves similar to the
NI regularizer.

The performance of the NA regularizer on the Molene data
set is in general not surprisingly good. This is because the
temperature data is collected geographically in a small region,
which inherently leads to a set of smooth signal measurements
over the graph. Next, we will test the performance of the NA
regularizer over a different data set which is collected from a
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FIGURE 5. NMSE interpolation performance of different methods w.r.t the number of sampled nodes on Molene data set. The signal-to-noise ratio is
SNR = 0 dB. (a) Data-driven scenario. Half of the data are used to estimate the signal covariance matrix. (b) Min-max scenario based on signal evolution
bounds.

FIGURE 6. (a) Denoising performance of the enhanced Prony’s method w.r.t. SNRs with different methods in min-max scenario. (b) Interpolation
performance w.r.t. SNRs the number of observed nodes, SNR = 0 dB.

very large geographical region. The global smoothness then is
not intrinsically guaranteed, therefore a superior performance
of the NA regularizer is expected.

C. NOAA DATA SET
The NOAA data set comprises T = 8759 hourly tempera-
ture measurements collected across the continental U.S. from
N = 109 weather stations in 2010. It is collected from a much
larger geographical region compared to the Molene weather
data. Following [55], we treat each station as a node of a seven
nearest neighbor graph based on geographical distances. We
measure again the NMSE performance averaged over all the
8759 signals and 50 noise realizations per signal. The param-
eters of all methods are the same as in the former section.

Fig. 6 shows the results for the min-max method applied to
denoising and interpolation. From Fig. 6(a), we observe the
improved performance of the proposed NA regularizer over

other alternatives. In specific, we see a 3 dB SNR improve-
ment for a fixed NMSE in Prony’s method, which is more
accentuated at low SNRs. This shows the benefits of the NA
regularizer in situations with a high noise level compared with
the NI regularizer.

In the interpolation setting, the observed nodes are M ∈
{10, 15, 20, . . . , 90, 95}. From Fig. 6(b), we observe that
the NA regularizer achieves consistently a smaller NMSEs
compared with the NI regularizer and KRR method. This
improved performance gets more noticeable when the num-
ber of observed nodes is larger since the node-adaptive reg-
ularizer can better exploit the local signal behavior to find
the missing values. In turn, this indicates that when the true
signal is not available but only the signal variation bounds are
known, i.e., the maximal and minimal signal observations, the
NA regularizer can still perform well based on the min-max
strategy.
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In practical situations, with proper prior information on
the graph signals, we recommend to design the NA regular-
izer using the min-max strategy, since it does not require the
true signal or training data, but only the signal measurement
bounds. From the above results, we see that in harsher situa-
tions with a high level of noise present, based on the min-max
strategy, the NA regularizer will behave better than the NI and
KRR counterparts in graph signal reconstruction. But when
the SNR is high or the noise level is low, we can see that the
NI approach is reasonably good. In addition, when the graph
signal is globally smooth, such as the Molene weather data,
the NA regularizer would behave similar to the NI one. How-
ever, if the signal does not have global smoothness, e.g., the
NOAA data, the reconstruction ability of the NA regularizer
is shown to be much stronger than the NI one.

VI. CONCLUSION
This paper proposed a node-adaptive regularizer for graph
signal reconstruction by enhancing the degrees of freedom
of the regularization and generalizing the typical global sig-
nal smoothness prior. We considered the popular Tikhonov
regularizer (also known as graph Laplacian regularizer), and
proposed a node-adaptive extension of it. Instead of adopting
a shared weight for all nodes, we assign each node a weight to
deal with local signal smoothness and possible node hetero-
geneity. This strategy allows the signal priors to be adapted
locally by tuning the regularization parameters, instead of
assuming a global smoothness prior. In addition, we evaluated
the related bias-variance trade-off, and showed its potential in
achieving a lower variance and MSE. Furthermore, we for-
malized optimal design of the node weights based on Prony’s
method and semi-definite relaxation. We also proposed a min-
max formulation to deal with situations when no training data
is available but only signal side information such as evolu-
tion bounds. Finally, numerical results on both synthetic and
different type real data were performed to corroborate our
findings.

Meanwhile, in our parallel work [1], we proposed a first-
order iterative method to optimally design the NA weights
based on a min-max game where an energy bound is assumed
on the signal measurements. In the future, we expect to further
extend the node-adaptive regularization to other regularizers,
and aim to reduce the complexity of optimal weight design.

APPENDIX A
IMPORTANT LEMMAS AND THEOREMS
Lemma 2: Schur complement lemma: Given any symmetric

matrix, M = ( A B
B� C

)
, the following conditions are equivalent:

� M � 0 (M is positive semi-definite);
� A � 0, (I − AA†)B = 0, C − B�A†B � 0
� C � 0, (I − CC†)B = 0, A − B�C†B � 0
Lemma 3: Let A, B, C be n × n symmetric matrices, then

tr
(
(A2 − B2)C

)
= tr ((A − B)(A + B)C) − tr ((AB − BA)C)

= tr ((A − B)(A + B)C) (33)

because tr(ABC) = tr((ABC)�) = tr(CBA) = tr(ACB).6

Lemma 4: Let A be an n × n positive semi-definite matrix,
and B an n × n negative semi-definite matrix, then tr(AB) ≤
0.

Proof: Consider an eigenvalue-eigenvector equation of ma-
trix AB as follows

ABx = λx, (34)

where eigenvalue λ is a scalar, and eigenvector x is a vector of
length n. If we left multiply (34) by x�B on both sides, then

x�BABx = λx�Bx. (35)

The eigenvalue of AB can be represented as

λ = x�BABx
x�Bx

. (36)

From [56, Thm. 7.2.7], matrix BAB is positive semi-definite
independent of matrix B. Thus, the numerator x�BABx is
nonnegative. Since matrix B is negative semi-definite, the de-
nominator x�Bx is nonpositive. This results into a nonpositive
eigenvalue λ. Thus, the trace of matrix AB is nonpositive. �

Lemma 5: Let n × n matrices A, B be positive semi-
definite, then A � B is positive semi-definite [56, Thm. 7.5.3]
and

λmax(A � B) ≤ λmax(A)max {bii} (37)

where bii is the i-th diagonal element of B [56, 7.5.P24]. Since
the inequality is given in the exercise part of [56], so we give
the proof below.

Proof: Let λn be the maximal eigenvalue of A, then
λnI − A � 0. Thus, we have (λnI − A) � B is positive semi-
definite. Let x ∈ Rn be a nonzero vector, then

x� ((A − λnI) � B) x

= x� (A � B) x − λnx� (I � B) x ≤ 0, (38)

which leads to

x� (A � B) x ≤ λnx� (I � B) x

= λn

n∑
i=1

bii|xi|2 ≤ λnmax {bii} ‖x‖2. (39)

If x is the eigenvector, the claim holds competing the proof.�
Theorem 2: (Weyl’s Inequality) [56, Thm. 4.3.1] Let A, B

be n × n Hermitian matrices and let the respective eigen-
values of A, B and A + B be {λi(A)}n

i=1, {λi(B)}n
i=1 and

{λi(A + B)}n
i=1, each of which is algebraically ordered as

λmin = λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn = λmax. Then

λi(A + B) ≤ λi+ j (A) + λn− j (B), j = 0, 1, . . . , n − i (40)

for each i = 1, . . . , n, with equality for some pair (i, j) if and
only if there is a nonzero vector x such that Ax = λi+ j (A)x,

6Due to the cyclic property of trace and tr(A) = tr(A� )
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Bx = λn− j (B)x and (A + B)x = λi(A + B)x. Also,

λi− j+1(A) + λ j (B) ≤ λi(A + B), j = 1, . . . , i (41)

for each i = 1, . . . , n, with equality for some pair (i, j) if and
only if there is a nonzero vector x such that Ax = λi− j+1(A)x,
Bx = λ j (B)x and (A + B)x = λi(A + B)x. If A and B have
no common eigenvector, then every inequality above is a strict
one.

APPENDIX B
PROOF OF LEMMA 1
To show var(ω) ≤ var(ω0), given ω2

i ≥ ω0, for i =
1, 2, . . . , n, it suffices to show

var(ω) − var(ω0) = tr(H2(ω)�) − tr(H2(ω0)�)

= tr([(H(ω) − H(ω0))(H(ω) + H(ω0))] �) ≤ 0 (42)

where the second equality comes from Lemma 3. Since ma-
trices �, H(ω) and H(ω0) are positive semi-definite by def-
inition, the sum of two positive semi-definite matrices is
also positive semi-definite. Thus, from Lemma 4, it suffices
to show H(ω) − H(ω0) � 0 with the condition ω2

i > ω0 for
i = 1, . . . , N .

With this condition, we have ωω� � ω011�. Since
diag(ω)Ldiag(ω) = ωω� � L and ω0L = ω011� � L, we
further have

(I + ω011� � L) − (I + ωω� � L)

= (ω011� − ωω�) � L � 0 (43)

where the equality holds because the Hadamard product is
distributive over addition. Then, we left multiply both sides
by (I + ω011� � L)−1 and right multiply both sides by (I +
ωω� � L)−1. This does not change the sign because they are
both PSD. Hence, we have

(I + ωω� � L)−1 − (I + ω011� � L)−1 � 0

H(ω) − H(ω0) � 0 (44)

which completes the proof.

APPENDIX C
PROOF OF THEOREM 1
Proving mse(ω) ≤ mse(ω0) with the given conditions, is
equivalent to showing � = mse(ω) − mse(ω0) ≤ 0. We ex-
pand the latter as

� = tr((I − H(ω))2 x∗x∗T ) + tr(H2(ω)�)

− tr((I − H(ω0))2 x∗x∗T ) + tr(H2(ω0)�). (45)

Since x∗x∗T = P� holds by definition, by working out the
above equation, we have

� = tr(� (H(ω0) − H(ω))

· [2P − (H(ω) + H(ω0)) (I + P)]). (46)

Due to the covariance matrix � � 0 and from the first condi-
tion (15a) we have also that the filter difference is positive
semi-definite H(ω0) − H(ω) � 0. Thus, from Lemma 4, it
suffices to show that

2P − (H(ω) + H(ω0)) (I + P) � 0. (47)

Further, since I + P � 0 and it is invertible, we can focus on
proving the smallest eigenvalue is greater than or equal to
zero, i.e.,

λmin
{
H(ω) + H(ω0) − 2P (I + P)−1} ≥ 0. (48)

Let us then define the matrix � � P(I + P)−1 and scalar γ ∈
(0, 1) as its only nonzero eigenvalue to simplify notations.
From Theorem 2, we have

λmin {H(ω) + H(ω0) − 2�} ≥ λmin {H(ω)}
+ λmin {H(ω0)} + λmin {−2�} . (49)

So, a sufficient condition for mse(ω) ≤ mse(ω0) is

λmin {H(ω)} + λmin {H(ω0)} − λmax {2�} ≥ 0 (50)

where λmax{2�} = 2γ ∈ (0, 2), and λmin{H(ω)},
λmin{H(ω0)} can be found as follows. From the eigen-
decomposition

H(ω0) � (I + ω0 L)−1 =
N∑

i=1

1

1 + ω0λi
uiu�

i (51)

with λi being the i-th eigenvalue of the Laplacian L, and ui

the corresponding eigenvector, we have

λmin {H(ω0)} = λmin
{
(I + ω0 L)−1} = 1

1 + ω0λmax(L)
.

(52)
From Lemma 5, we have

λmax
{
ωω� � L

} ≤ λmax(L)max
{
ω2

i

}
(53)

which results in

λmax
{
I + ωω� � L

} ≤ 1 + λmax(L)max
{
ω2

i

}
. (54)

The lower bounds of λmin{H(ω)} then follows

λmin
{
(I + ωω� � L)−1} ≥ 1

1 + λmax(L)max
{
ω2

i

} . (55)

Finally, the sufficient conditions for mse(ω) ≤ mse(ω0) are

ωi ≥ √
ω0 > 0, for i = 1, 2, . . . , n (56a)

1

1 + λmax(L)max
{
ω2

i

} + 1

1 + ω0λmax(L)
≥ 2γ (56b)

which completes the proof.

APPENDIX D
PROOF OF COROLLARY 1
If we let the following two hold

1

1 + λmax(L)max
{
ω2

i

} ≥ γ (57a)
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1

1 + ω0λmax(L)
≥ γ (57b)

then we have the condition (15a) sufficiently satisfied. Since
γ = ρ/(1 + ρ) = 1/(1 + 1

ρ
), we substitute this relation into

above two conditions and have

max
{
ω2

i

}
λmax(L) ≤ 1

ρ
(58a)

ω0λmax(L) ≤ 1

ρ
(58b)

ωi ≥ √
ω0 > 0, for i = 1, 2, . . . , n. (58c)

Condition (58b) can be omitted since max{ω2
i } ≥ ω0, which

completes the proof.

APPENDIX E
SIMPLIFYING THE COST FUNCTION FOR (24)
First, we expand the inner term as

E[‖y − (I + � � L)x∗‖2
2]

= E[tr{[y − (I + � � L)x∗][y − (I + � � L)x∗]�}]
= E[tr{yyT − 2yx∗T (I + � � L) + (I + � � L)2x∗x∗T }].

(59)

Since the trace operation can be switched with the expectation
operation, the cost function is equal to

tr{E(yy�) − 2E(yx∗T )(I + � � L) + (I + � � L)2x∗x∗T }.
(60)

Further, since E(yy�) = � + x∗x∗T and E(yx∗T ) = x∗x∗T ,
the above is equivalent to

tr{� + x∗x∗T − 2x∗x∗T (I + � � L) + (I + � � L)2x∗x∗T }
= tr{� + [I − (I + � � L)]2x∗x∗T }
= tr{� + (� � L)2x∗x∗T }. (61)

As our optimization variable is �, we can drop the unrelated
covariance matrix �, which gives the cost function in prob-
lem (25).

APPENDIX F
DETAILING THE COST FUNCTION IN (26)
The cost function in (26) is

E
{‖H(�)y − x∗‖2

2

}
(62)

which can be further expressed as

Etr(H2(�)yy� − 2H(�)yx∗� + x∗x∗�). (63)

Then, exchanging the expectation and trace operator, we ob-
tain the cost function

tr{(H2(�)) − 2H(�) + I)x∗x∗� + H2(�)�}. (64)

From this expression, we indeed see it includes both the signal
and the noise.
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